
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Whole Sentence Spelling and Grammar Correction Using a Noisy
Channel Model

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Yonghahk Albert Park

Committee in charge:

Professor Roger Levy, Chair
Professor Garrison W. Cottrell, Co-Chair
Professor Charles Elkan
Professor Lawrence K. Saul
Professor Nuno Vasconcelos

2013

Copyright

Yonghahk Albert Park, 2013

All rights reserved.

The Dissertation of Yonghahk Albert Park is approved,

and it is acceptable in quality and form for publication

on microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2013

iii

DEDICATION

To my dear parents and loving wife

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . ix

Acknowledgements . xi

Vita . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 The problem of editing written text 1
1.2 Background . 2
1.3 Limitations of this work 8
1.4 Dissertation outline . 8

Chapter 2 Framework . 10
2.1 Base Model . 10
2.2 Implementation . 11

2.2.1 Weighted finite-state transducers and semirings . 12
2.2.2 Computing the composition of wFSTs 15
2.2.3 Base language model 18
2.2.4 Noise models . 25
2.2.5 Expectation-maximization algorithm 25
2.2.6 Learning noise model parameters 27
2.2.7 Finding the maximum posterior probability cor-

rection . 33
2.2.8 Performance considerations 34

Chapter 3 Datasets . 36
3.1 Collection of ESL sentences 36

3.1.1 Data acquisition 36
3.1.2 Sentence extraction 37

3.2 Training, development and evaluation set 41
3.2.1 Obtaining reference sentences for evaluation . . . 41

v

Chapter 4 Evaluation Method . 45
4.1 BLEU and METEOR . 46

4.1.1 BLEU . 46
4.1.2 METEOR . 48

4.2 Using BLEU and METEOR for grammar correction eval-
uation . 52

Chapter 5 Noise models . 57
5.1 Spelling errors . 58

5.1.1 Model . 58
5.1.2 wFST construction 59
5.1.3 Results . 59

5.2 Article choice errors . 62
5.2.1 Model . 62
5.2.2 wFST construction 63
5.2.3 Results . 65

5.3 Preposition choice errors 66
5.3.1 Model . 66
5.3.2 wFST construction 66
5.3.3 Results . 68

Chapter 6 More noise models . 71
6.1 Wordform choice errors 71

6.1.1 Model . 71
6.1.2 wFST construction 72
6.1.3 Results . 72

6.2 Word insertion errors . 75
6.2.1 Model . 75
6.2.2 wFST construction 76
6.2.3 Results . 76

6.3 Word deletion errors . 78
6.3.1 Model . 78
6.3.2 wFST construction 80
6.3.3 Results . 81

6.4 Combined models . 82
6.4.1 Model . 82
6.4.2 wFST construction 82
6.4.3 Results . 83

Chapter 7 Conclusion . 84

Bibliography . 88

vi

LIST OF FIGURES

Figure 2.1: Example of noisy channel model 11
Figure 2.2: Example of an FSA, an FST, and a wFST. The FSA accepts

strings ‘ac’ and ‘bc’. The FST accepts the same strings, and out-
puts ‘xz’ and ‘yz’, respectively. The wFST accepts and outputs
the same strings as the FST, and also has weights for travelling
over each arc. 12

Figure 2.3: Algorithm based on Mohri (2005) for composing two weighted
finite-state transducers, assuming no ε transitions 16

Figure 2.4: Example of finite-state transducers X and Y with ε input and
ε output transitions . 18

Figure 2.5: Finite-state transducers X and Y from Figure 2.4 transformed
to eliminate ε output transitions on X and ε input transitions
on Y . 19

Figure 2.6: Result of X ′ ◦ Y ′ from Figure 2.5. 19
Figure 2.7: Filter for restraining multiple paths due to epsilon transition

orderings. The ‘x’ corresponds to any word in the alphabet. . . 20
Figure 2.8: Result of X ′ ◦G ◦ Y ′ using the filter G in Figure 2.7 to restrain

multiple paths occurring from epsilon transitions 20
Figure 2.9: Example of a bigram language model containing the 3 words a,

an and cat. 21
Figure 2.10: Partial example of noise model for article choice error 24
Figure 2.11: A simple example language model (top), noise model (middle),

and a set of sentences (bottom) for training the parameters.
The language model has been reduced from a bigram language
model for simplicity, but is sufficient to illustrate the use of the
EM algorithm for training the noise model parameters. Our
noise model has one parameter λ which we wish to optimize.
Using parameter λ, we can calculate the probability of making
the error of writing an instead of a [p(a : an) = 1 − λ], or not
making an error [p(a : a) = λ]. The vector of the V -expectation
semiring weight is in brackets. The first value of the vector
denotes the expected count of no error being made on writing
a, and the second that of writing an instead of a. 28

Figure 2.12: Example of language model (top) and noise model (middle)
wFST composition, using the V -expectation semiring. The
noise model parameter has been initialized to λ(1) = 0.95, and
the result of the composition is shown in the bottom wFST. . . 30

vii

Figure 2.13: Example of calculating expectation counts. The top wFST
shows our language-noise wFST. The second wFST is created
using the observed sentence. These two wFSTs are composed,
resulting in the middle wFST which only has the observed sen-
tence as output. For training, we change all the input and out-
put values to ε, and then use the epsilon-removal operation to
find the total weight of the wFST. The real value of the weight
is the total probability of the model generating the sentence,
and we can divide each of the vector index values by the total
probability to find the expected counts for this sentence. 31

Figure 3.1: TOEFL writing sample . 37
Figure 3.2: Another TOEFL writing sample 38
Figure 3.3: Partial template of Amazon Mechanical Turk task for collecting

reference sentences for evaluation 42

Figure 4.1: Example for BLEU metric calculation 46
Figure 4.2: Example for METEOR metric calculation 48
Figure 4.3: Example of METEOR alignment 49
Figure 4.4: Example of METEOR chunks 51
Figure 4.5: Evaulation validation method example for the first three refer-

ence sentences and the observed sentence. The top figure shows
the BLEU scores being calculated on the observed sentence o
and manual correction c1, using c2, c3, c4 and c5 as reference
sentences. The middle figure shows calculations of the BLEU
score on the observed sentence and manual correction c2, using
c1, c3, c4 and c5 as reference sentences, and so on. 56

Figure 5.1: Full model used for article choice error test. The generation of
a sentence, according to the model, starts with the language
model generating a sentence in the language. This sentence is
subjected to the article choice error model where article choice
errors may be introduced, and the output is then subjected to
the spelling error noise model. The output coming from the
spelling error noise model is our observed sentence. 64

viii

LIST OF TABLES

Table 3.1: Allowed characters for line data 40

Table 4.1: BLEU and METEOR scores for ESL sentences vs manual cor-
rections on 686 sentences, averaged by equally weighting each
reference sentence . 53

Table 4.2: BLEU and METEOR scores for ESL sentences vs manual cor-
rections on 686 sentences, averaged by equally weighting each
observed sentence . 53

Table 4.3: Number of sentences which have a higher average BLEU, ME-
TEOR score on 686 sentences. The improvements are significant
by the sign test at p < 0.00001. 54

Table 5.1: Parameter values for spelling error noise model 60
Table 5.2: Average evaluation scores for spelling error noise model run on

1016 sentences, along with counts of sentences with increased (↑)
and decreased (↓) scores. 60

Table 5.3: Aspell vs Spelling noise model 62
Table 5.4: Calculated probabilities for article choice error noise model . . . 63
Table 5.5: Average evaluation scores for spelling and article error noise

model run on 1016 sentences, along with counts of sentences
with increased (↑) and decreased (↓) scores. 63

Table 5.6: 12 most commonly misused prepositions by ESL writers used in
preposition choice noise model 66

Table 5.7: Calculated probabilities for preposition choice error noise model 67
Table 5.8: Original and fixed sentence pairs with preposition changes using

the spelling and preposition error noise model on the develop-
ment set. The original observed sentences are denoted Sn, and
the corresponding fixed version is denoted Sn, where n is the
sentence number . 69

Table 5.9: Average evaluation scores for spelling and preposition error noise
model run on 1016 sentences, along with counts of sentences with
increased (↑) and decreased (↓) scores. 69

Table 6.1: Parameter values for wordform error noise model 72
Table 6.2: Average evaluation scores for spelling and wordform error noise

model run on 1016 sentences, along with counts of sentences with
increased (↑) and decreased (↓) scores. 73

ix

Table 6.3: Original and fixed sentence pairs with wordform changes using
the spelling and wordform error noise model on the development
set. The original observed sentences are denoted Sn, and the
corresponding fixed version is denoted Sn, where n is the sentence
number . 74

Table 6.4: Parameter values for word insertion error noise model 77
Table 6.5: Average evaluation scores for spelling and word insertion error

noise model run on 1016 sentences, along with counts of sentences
with increased (↑) and decreased (↓) scores. 77

Table 6.6: A couple of examples of original and fixed sentence pairs with
extraneous word removal using the spelling and insertion error
noise model on the development set. The original observed sen-
tences are denoted Sn, and the corresponding fixed version is
denoted Sn, where n is the sentence number 78

Table 6.7: Parameter value for word deletion model 81
Table 6.8: Average evaluation scores for spelling and word deletion error

noise model run on 1016 sentences, along with counts of sentences
with increased (↑) and decreased (↓) scores. 81

Table 6.9: Average evaluation scores for various noise models run on 1016
sentences, along with counts of sentences with increased (↑) and
decreased (↓) scores. 83

x

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my Ph.D. advisor, Professor

Roger Levy, who has been a fantastic advisor throughout this journey. He has been

the most supportive of my work, providing me with excellent guidance and support,

and encouragement in times of need. In addition to all this, he has also been very

patient and understanding, more than anyone I have known. Roger has made my

journey an enjoyable one, for which I have the utmost gratitude.

I would also like to thank Randy West, who has been a great office mate

and contributor to this work. He has provided an extra set of eyes on this work,

as well as for my code, and has helped me implement more than I could have done

on my own. Working with Randy was not only enjoyable, but also came with an

extra boost of enthusiasm toward the project, constantly helping it move forward.

I would also like to thank the UCSD Computational Psycholinguistics Lab

members for their ongoing help and support. Though the internet seems to encom-

pass so much human knowledge, the CPL lab members have often been the best

access points, providing me with higher quality information and insights which can

only be obtained by means through time and experience.

Thanks are also due to Markus Dreyer and Jason Eisner for supplying

unpublished code for using the expectation semiring with OpenFST, which helped

move this project forward in a timely manner. Also, I would like to thank Natalie

Katz for reading through and marking up thousands of manual corrections, and

the San Diego Supercomputer Center for setting us up to use their system, and

supplying us with resources for running our experiments.

Finally, I wish to thank my parents and my wife for their continuous support

and understanding. They have always been there when I have needed them most,

always offering support and advice.

Chapters 1, 2, 3, 4, 5, 6, and 7 are, in part, a reprint of the material

as it appears in Automated Whole Sentence Grammar Correction Using a Noisy

Channel Model in Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics (ACL-HLT 2011), Y. Albert Park and Roger Levy. The

dissertation author was the primary investigator and author of this paper.

xi

VITA

1994-1997 Seoul Science High School, Seoul, Korea National University,
Seoul, Korea

1997-2005 B. S. in Computer Engineering magna cum laude, Seoul

2000-2004 Research Engineer, Penta Security Systems, Seoul, Korea

2005-2013 Ph. D. in Computer Science, University of California, San
Diego

PUBLICATIONS

Fei Sha, Y. Albert Park, and Lawrence K. Saul, “Multiplicative updates for L1-
regularized linear and logistic regression”, Proceedings of the Seventh Symposium
on Intelligent Data Analysis (IDA), pp. 13-24, 2007

Y. Albert Park, Roger Levy, “Minimal-length linearizations for mildly context-
sensitive dependency trees”, Proceedings of the North American Chapter of the As-
sociation for Computational Linguistics - Human Language Technologies (NAACL-
HLT), pp. 335-343, 2009

Randy West, Y. Albert Park and Roger Levy, “Bilingual Random Walk Models
for Automated Grammar Correction of ESL Author-Produced Text”, Proceedings
of the ACL Workshop on Innovative Use of NLP for Building Educational Appli-
cations (BEA), 2011

Y. Albert Park, Roger Levy, “Automated Whole Sentence Grammar Correction
Using a Noisy Channel Model”, Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 934-944, 2011

xii

ABSTRACT OF THE DISSERTATION

Whole Sentence Spelling and Grammar Correction Using a Noisy
Channel Model

by

Yonghahk Albert Park

Doctor of Philosophy in Computer Science

University of California, San Diego, 2013

Professor Roger Levy, Chair
Professor Garrison W. Cottrell, Co-Chair

Automated grammar correction techniques have seen improvement over the

years, but there is still much room for increased performance. Current correction

techniques mainly focus on identifying and correcting a specific type of error, such

as verb form misuse or preposition misuse, which restricts the corrections to a

limited scope. We introduce a novel technique, based on a noisy channel model,

which can utilize the whole sentence context to determine proper corrections. We

show how to use the EM algorithm to learn the parameters of the noise model,

using only a data set of erroneous sentences, given the proper language model. This

frees us from the burden of acquiring a large corpora of corrected sentences. We

xiii

also present a cheap and efficient way to provide automated evaluation results for

grammar corrections by using BLEU and METEOR, in contrast to the commonly

used manual evaluation.

xiv

Chapter 1

Introduction

1.1 The problem of editing written text

Humans live in a noisy environment. Our senses constantly receive input,

but the input is not always exactly what we wish to obtain. This is because the

input is often distorted by some type of noise. For example, when we are trying

to have a conversation with another person, we not only hear their voice, but also

hear the other ambient sounds in the environment, such as the sound of a car

honking in the distance, or the hum of a copier churning out documents. Another

source of distortion could be the speaker himself, who may misuse words or make

grammatical mistakes. Despite living in such a noisy environment, humans seem to

be very good at figuring out the underlying source information of the noisy input.

In many cases this is done quite effortlessly, such as filtering out ambient noise

when talking to a friend, or reading highway signs which may be partly obscured

by other traffic.

Another example of this type of process is the editing of written text. The

process of editing written text is performed by humans on a daily basis. In the

case of minor spelling errors, humans often do not even notice the existence of the

misspellings when reading text, and have no trouble figuring out the underlying

intent of the writer. When asked to edit a sentence with various errors, humans

can often read the text and correct the errors without much effort. For example,

given the sentence “I would like go home”, native English speakers can almost

1

2

automatically fix the sentence to “I would like to go home”. Unfortunately, current

computer systems are still far from human capabilities and performance when it

comes to the task of correcting erroneous text input. In fact, just identifying

erroneous sentences in itself is currently a difficult task for computer systems.

This work investigates the problem of automated grammar and spelling cor-

rection of human generated written sentences. The focus is on fixing a given sen-

tence in its entirety. Although this idea could be applied to any human-produced

utterance, in practice we focus on correcting the grammatical errors in non-native

written English. Since humans are currently much more capable than computers

at this task, a little insight into how humans actually figure out the correct edit-

ing may be quite informative. Unfortunately, our current knowledge of the process

used by humans to derive a valid correction of an erroneous sentence is very limited.

In this work, we create a model of language production which can be used to find

a sentence writer’s original intent. We approach the problem by modeling various

types of human errors using a noisy channel (Shannon, 1948). In our overall model,

correct sentences are produced by a predefined probabilistic generative language

model, and then lesioned (or distorted) by the noise model. The language model

parameters are learned from a monolingual corpus of “correct” English, and we

learn the noise model parameters from raw errorful sentences using an expectation-

maximization (EM) approach (Dempster et al., 1977; Wu, 1983). By making use

of EM, we eliminate the need for costly annotation of sentences during training of

the noise model. Our model allows us to deduce the original intended sentence by

looking for the highest probability parses over the entire sentence, which leads to

automated whole sentence spelling and grammar correction based on contextual

information.

1.2 Background

Much of the previous work in the domain of automated grammar correc-

tion has focused on identifying grammatical errors. Chodorow and Leacock (2000)

took an unsupervised approach to identifying grammatical errors by looking for

3

contextual cues in a ±2 word window around a target word. To identify errors,

they searched for cues which did not appear in the correct usage of words. Eeg-

olofsson and Knutsson (2003) used rule-based methods to approach the problem

of discovering preposition and determiner errors of L2 writers. In recent years,

various machine learning techniques have been applied to the problem. Many

proposed techniques use classifier-based methods using local context features, in-

cluding words and part of speech tags. Izumi et al. (2003) and Izumi et al. (2004b)

use a maximum entropy classifier for detecting 13 types of grammatical and lexical

errors on a corpus of spoken English. Han et al. (2006) train a maximum entropy

classifier to select between 4 articles. Maximum entropy models have also been

proposed for use on detecting preposition errors in ESL writing by Tetreault and

Chodorow (2008) and De Felice and Pulman (2008). Gamon et al. (2008) train a

decision tree classifier which is used in conjunction with a 5-gram language model

to detect and correct preposition and determiner errors in a corpus of Chinese ESL

student essays.

While most of these methods have been proposed primarily to identify

grammatical errors, some of the classifier-based methods could actually be used

to determine suggestions for corrections. This can be done by using the scores

or probabilities from the classifiers for other possible words. To do this, for each

word which is determined to have a possibility of being incorrect, we need a set

of words which could be plausible replacements. This set is often referred to as

the confusion set. The highest scoring word in the confusion set may be used to

replace words which have been identified as errors. Rozovskaya and Roth (2011)

use this method to evaluate 4 different classifier algorithms for correcting preposi-

tion errors and article errors, and compare their performance on an annotated ESL

corpus. While this is a plausible approach for grammar correction, there is one

fundamental difference between this approach and the way humans edit. The out-

put scores of classifiers do not take into account that the observed erroneous word

was actually observed. In other words, the observed word is treated no differently

from any other word in the confusion set. This changes the task of editing into

a fill-in-the-blank selection task. In contrast, editing takes the writer’s erroneous

4

word with more consideration, which often encompasses information necessary to

correctly deduce the writer’s intent. For example, let us examine the two sentences

‘We plan to go on vacation about July’ and ‘We plan to go on vacation beyond

July’. Taking the full sentence into account, including the erroneous word, we can

deduce that the former sentence should probably be corrected to ‘We plan to go

on vacation around July’, whereas the latter should probably be corrected to ‘We

plan to go on vacation after July’. While the two sentences are different, using the

classifier method to find the correct word would change both sentences into the

same problem, looking for the best scoring word to fill in the blank in the sentence

‘We plan to go on vacation (blank) July’. Thus we can see that making use of the

actual erroneous word gives us insight into what the intent of the actual writer is,

and thus gives us valuable information as to what the correction should be.

Generation-based approaches to grammar correction have also been taken,

such as Lee and Seneff (2006), where sentences are paraphrased into an over-

generated word lattice, and then parsed to select the best rephrasing. As with the

previously mentioned approaches, these approaches often have the disadvantage of

ignoring the writer’s selected word when used for error correction instead of just

error detection.

Other work which relates to automated grammar correction has been done

in the field of machine translation. Machine translation systems often generate

output which is grammatically incorrect, and automated post-editing systems have

been created to address this problem. For instance, when translating Japanese

to English, the output sentence often needs to be edited to include the correct

articles, since the Japanese language does not contain articles. For example, if the

translation output of a Japanese to English MT system was ‘Girl went home after

brief walk in park.’, this would need to be edited to ‘The girl went home after a

brief walk in the park.’ in the post-editing stage. Early works, such as Murata

and Nagao (1993), Bond et al. (1995), Bond and Ikehara (1996) and Heine (1998)

use heuristic rules in combination with the syntactic and semantic information

from the Japanese source to determine the noun phrase properties, which can

then be used to determine the correct article for the English translation. Knight

5

and Chander (1994) also address the problem of selecting the correct article for

MT systems, but instead of using hand-crafted rules, they focus on automatically

generating the rules by training a decision-tree builder using lexical features, part

of speech information, and other subcategory information. These types of systems

could also be used to facilitate grammar correction.

While grammar correction can be used on the output of MT systems, note

that the task of grammar correction itself can also be thought of as a machine

translation task, where we are trying to ‘translate’ a sentence from an ‘incorrect

grammar’ language to a ‘correct grammar’ language. Under this idea, the use of

statistical machine translation techniques to correct grammatical errors has also

been explored. Brockett et al. (2006) use phrasal SMT techniques to identify

and correct mass noun errors of ESL students. Désilets and Hermet (2009) use

a round-trip translation from L2 to L1 and back to L2 to correct errors using an

SMT system, focusing on errors which link back to the writer’s native language.

Despite the underlying commonality between the tasks of machine trans-

lation and grammar correction, there is a practical difference in that the field of

grammar correction suffers from a lack of good quality parallel corpora. While ma-

chine translation has taken advantage of the plethora of translated documents and

books, from which various corpora have been built, the field of grammar correc-

tion does not have this luxury. Annotated corpora of grammatical errors do exist,

such as the NICT Japanese Learner of English corpus and the Chinese Learner

English Corpus (Shichun and Huizhong, 2003), but the lack of definitive corpora

often makes obtaining data for use in training models a task within itself, and

often limits the approaches which can be taken. As of late, there has been a push

to create corpora for the use of grammar correction, which has resulted in new

annotated corpora such as NUCLE (Dahlmeier and Ng, 2011), or the corpora used

in Rozovskaya and Roth (2010). While this is a very heartening stride forward,

these corpora are still limited to one language, and to the population of learners

from which the annotated corpus was collected. We would need many more an-

notated corpora, in various languages, to create automated grammar correction

systems which actually work for each language if the systems rely on supervised

6

learning. Also, even within the same language, there may be various subgroups of

people we wish to address. For example, the types of mistakes commonly made by

Korean ESL students may be very different from the types of mistakes commonly

made by French ESL students. So, while the introduction of new corpora is a

great stride for the field, it seems we still are very lacking in terms of annotated

data. In terms of creating annotated data, Tetreault et al. (2010) shows promise of

using Amazon Mechanical Turk for annotating grammatical errors using untrained

raters Turkers, reducing the time and cost needed for annotation.

Using classification or rule-based systems for grammatical error detection

has thus proven to be successful to some extent, but many of these approaches are

not yet sufficient for real-world automated grammar correction for various reasons.

First, as we have already mentioned, classification systems and generation-based

systems do not make full use of the given data when trying to make a selec-

tion. This limits the system’s ability to make well-informed edits which match the

writer’s original intent. Second, many of the systems start with the assumption

that there is only one type of error. However, ESL students often make several

combined mistakes in one sentence. These combined mistakes can throw off error

detection/correction schemes which assume that the rest of the sentence is correct.

For example, if a student erroneously writes ‘much poeple’ instead of ‘many peo-

ple’, a system trying to correct ‘many/much’ errors may skip correction of ‘much’

to ‘many’ because it does not have any reference to the misspelled word ‘poeple’.

Also, having knowledge that ‘many/much’ errors can occur may help the correction

of ‘poeple’ to ‘people’, as the word ‘many’ could be used as a contextual cue for

the correction of the spelling. Thus there are advantages in looking at the sentence

as a whole, and creating models which allow several types of errors to occur within

the same sentence.

In the domain of automated spelling correction, early spell checkers searched

for words which were not included in a machine-readable dictionary. This approach

limits spell checkers to finding words which have been misspelled into non-words,

skipping words misspelled into another existing word. For example, if the word

‘trying’ was misspelled as ‘tying’, a spell checker which looks for misspelled words

7

by matching each word to a dictionary entry will not find this error as it is classi-

fied as an existing word. To address this problem, various context-sensitive spelling

correction techniques have been proposed. Golding and Roth (1999) use a vari-

ant of the weight-update algorithm Winnow (Littlestone, 1988) and a variant of

weighted-majority voting to create a high performance context-sensitive spelling

correction algorithm. Previous to their approach, several other techniques were

also proposed. Mays et al. (1991) use trigrams to find misspellings by using the

n-gram context. Bayesian classifiers (Gale et al., 1993), decision lists (Yarowsky,

1994), latent semantic analysis (Jones and Martin, 1997), and other techniques

have also been used (Golding and Schabes, 1996; Mangu and Brill, 1997; Powers,

1997). Golding (1995) uses a hybrid model of decision lists and Bayesian classifiers

to select the proper word from a confusion set.

In 2000, Brill and Moore (2000) propose using a noisy channel to model

the context-sensitive spelling correction problem. Toutanova and Moore (2002)

extend the noisy channel model by using word pronunciation information, and

build an explicit error model for word pronunciations, increasing performance.

More recent work to date on automated spelling correction has been done in context

of using web search query data as a source of training data and also as the target

of correction (Li et al., 2006; Cucerzan and Brill, 2004; Ahmad and Kondrak, 2005;

Kwon et al., 2009; Whitelaw et al., 2009; Sun et al., 2010; Duan and Hsu, 2011).

It is interesting to note that many of the approaches taken above have taken

the problem of grammar or spelling correction and split it into two separate parts,

identifying an error and then correcting the error. Another approach which is

sometimes taken, is to view the problem as a single step process: given a certain

observed output, figure out what the originally intended (error-free) output might

be. These two approaches are conceptually different, and the resulting attempts

also are very different. In this dissertation, we take the second approach, and try

to solve the problem as a whole, instead of separating it into an identification and

then a correction stage.

8

1.3 Limitations of this work

Our work is currently based on correcting sentences by only making use

of the sentence we wish to correct, without the preceding or following sentences.

While this may work in some cases, in many cases the context of the sentence may

be needed to determine the actual intent of the writer. For example, when asked to

correct the sentence “She drive home.”, people may either respond with “She drove

home” or “She drives home” or some other plausible correction. However, when

also given the previous sentence as context, such as “How does she get home? She

drive home.”, the correction should be “She drives home” instead of “She drove

home”, whereas if given the sentences “How did she get home? She drive home.”

the correction would be “She drove home”. This type of context can restrict the

possible corrections, and in some cases confine corrections to an exact correction.

In actual writing, we often find that the overall context surrounding a sentence will

affect the decision of how to correct a sentence. While this may be more preferable

when correcting essays or various types of writing, in this work we have restricted

the input to just the sentence to correct, so we cannot take the larger context into

account in making our decisions. Thus our aim is to correct any given sentence so

that it may in agreement with any of the possible sentence corrections produced

by humans. Future work may try to address this problem by increasing the scope

of context, but the current work described in this dissertation is limited in this

matter.

1.4 Dissertation outline

Chapter 2 discusses the basic concepts of our framework and goes into the

details of the implementation. The chapter explains our overall generative model

of erroneous language production, as well its two component models, the language

model and the noise model. We also show how to use unsupervised learning to

learn the parameters of the noise model, and explain how to efficiently find the

expectation values needed for doing EM.

Chapter 3 explains our need of a data set, and details the specifics of how

9

we created a data set for our experiments. By collecting various TOEFL writing

samples, we created a data set but also needed some manual corrections for eval-

uation, which is explained in more detail in Chapter 4. We also explain how we

collected manual corrections for use in evaluation of our model performance, with

much less effort compared to using a professionally trained annotator.

Chapter 4 presents a new method for evaluating the output of automated

grammar and spelling correction systems. The lack of a unified process in evaluat-

ing performance on automated grammar correction is an obstacle for the current

field. We propose a methodology borrowed from the field of machine translation,

and run a simple experiment to validate the use of this evaluation technique.

Chapters 5 and 6 contain the details of our various noise models, as well

as performance measurements for each model, and analyses of what effects each

model has on performance. Some of the models have better performance, while

some of the models actually make performance worse.

Finally, Chapter 7 summarizes our contributions and outlines possible fu-

ture work.

Chapter 1, in part, is a reprint of the material as it appears in Automated

Whole Sentence Grammar Correction Using a Noisy Channel Model in Proceed-

ings of the 49th Annual Meeting of the Association for Computational Linguistics

(ACL-HLT 2011), Y. Albert Park and Roger Levy. The dissertation author was

the primary investigator and author of this paper.

Chapter 2

Framework

In this chapter, we present our model of human language generation, which

supports the combination of various types of error processes into one combined

model. The model makes use of the whole observed sentence when used to infer the

original intended sentence. We also explain how to train the model, by showing how

to make use of existing optimized algorithms for weighted finite-state transducers.

And finally, we explain how to use the model to find corrections for erroneous

observed sentences.

2.1 Base Model

Our base model is a noisy channel model which consists of two main compo-

nents, a language model and a noise model. The language model is a probabilistic

model which places a probability distribution over “error-free” sentences1. The

probabilistic noise model then takes this sentence and stochastically introduces

various types of errors, such as spelling mistakes, article choice errors, wordform

choice errors, etc., with probabilities determined by its parameters (see Figure 2.1

for example). Using this model, we can find the posterior probability p(Sorg|Sobs)

using Bayes rule where Sorg is the original sentence created by our base language

1In reality, the language model will most likely produce sentences with errors as seen by

humans, but from the modeling perspective, we assume that the language model is a perfect

representation of the language for our task.

10

11

Figure 2.1: Example of noisy channel model

model, and Sobs is the observed erroneous sentence.

p(Sorg|Sobs) =
p(Sobs|Sorg)p(Sorg)

p(Sobs)

For the language model, we can use various known probabilistic models

which already have defined methods for learning the parameters, such as n-gram

models or PCFGs. For the noise model, we need some way to learn the parameter

values for the mistakes that a group of specified writers (such as Korean ESL

students) make. We address this issue in Section 2.2.

Using this model, we can find the highest posterior probability error-free

sentence for an observed output sentence by tracing all possible paths from the

language model through the noise model and ending in the observed sentence as

output. Of course, to do this, we need to be able to search the set of all possible

paths which result in our observed sentence. This is dependent on the type of

model used for the language and noise model. We show how to do this in Section

2.2 using our model implementations.

2.2 Implementation

Our model was implemented using a bigram model for the language model.

Various noise models which introduce spelling errors, article choice errors, prepo-

sition choice errors, etc. were created. The language and noise models are all

implemented using weighted finite-state transducers (wFSTs). For operations on

12

Figure 2.2: Example of an FSA, an FST, and a wFST. The FSA accepts strings

‘ac’ and ‘bc’. The FST accepts the same strings, and outputs ‘xz’ and ‘yz’,

respectively. The wFST accepts and outputs the same strings as the FST, and

also has weights for travelling over each arc.

the wFSTs, we use OpenFST Allauzen et al. (2007), along with expectation semir-

ing code supplied by Markus Dreyer for Dreyer et al. (2008). Before going into

more detail about the models, we first introduce weighted finite-state transducers

and semirings.

2.2.1 Weighted finite-state transducers and semirings

Motivated in part by applications in speech recognition, machine transla-

tion, and other areas of natural language processing, much research has been done

on the weighted finite-state transducers (Mohri, 1997, 2005). This research has

led to the development of essential algorithms on wFSTs such as composition, de-

13

terminization, and minimization (Allauzen and Mohri, 2003; Mohri et al., 1996;

Pereira and Riley, 1997). In this section, we examine wFSTs and the composition

algorithm.

A finite-state transducer (FST) is a finite-state automaton (FSA) which

has output values in addition to the input values on the state transitions. A

weighted finite-state transducer is an FST which also has a weight for going over

each arc. An example of the differences is shown in Figure 2.2. The weights

on the arcs of a wFST can be used to calculate the total weight for going over

various paths in the wFST. The actual calculations on the weights of a wFST

can be abstracted out to the general notion of a semiring (Kuich and Salomaa,

1986). A semiring is an algebraic structure similar to a ring, but which does not

require an additive inverse. Thus a semiring S can be defined as a set having

two binary operations ⊕, ⊗ and their identity elements 0̄, 1̄, respectively, such

that ⊕ is associative and commutative, ⊗ is associative, ⊗ distributes over ⊕, and
0̄⊗ a = a⊗ 0̄ = 0̄. The abstraction of weights to a semiring allows for definitions

of operations over a broad class of weight sets, and the development of algorithms

for these operations. Various types of semirings can be used to calculate different

types of values. For example, the weight of a path in a wFST is defined to be

the product (⊗) of all the weights on the path, and the weight of a set of paths

is the sum (⊕) of the path weights. If we have an algorithm which can calculate

the weight of a set of paths over any given semiring, the we can calculate the

total probability of going over any of the paths using this algorithm by doing the

following. We set the weights of each arc to be the probability of going over the

arc based on the current state, and then use the semiring (R,+,·,0,1), often called

the probability semiring, to calculate the weight of the set of paths. The results

would be the total probability of the paths. Another way to do this would be

to use the log semiring ({R,∞},− log [e−x + e−y],+,∞,0) by setting the weights

to the − log values of the probabilities. The log semiring basically moves the

real semiring into log space, and is often preferable to the probability semiring

for avoiding underflow caused by floating point arithmetic. The result of running

our algorithm on the log semiring will be the − log value of the total probability

14

of the paths. Instead of calculating the total probability, perhaps we wish to

find the probability of the highest probability path. To do this, we can use the

tropical semiring ({R,∞},min,+,∞,0), and again set the arc weights to be the

− log probabilities and run our algorithm for finding the total weight of the paths.

The resulting weight will be the − log probability of the highest probability path,

because the ⊗ operation is +, effectively adding the − log probabilities together

to find the − log probability of each path, and then the ⊕ operation, defined as

min, will select the smallest value.

Now that we have defined a semiring, we can define a weighted finite-state

transducer. Formally, a wFST is defined as T = (Σ,Γ, Q,E, i, F, λ, ρ) over the

semiring S, such that Σ is a finite set called the input alphabet, Γ is a finite

set called the output alphabet, Q is a finite set of states, ε is the empty string,

E ⊆ Q × (Σ ∪ {ε}) × (Γ ∪ {ε}) × S × Q is a finite set of transitions, i ∈ Q is the

initial state, F ⊆ Q the set of final states, λ is the initial weight, and ρ is the final

weight function. We use E[q] to denote the set of transitions which have the initial

state q ∈ Q.

Let us denote, for transition e ∈ E, the previous state as p[e], the next state

as n[e], the input label as i[e], the output label as o[e], and the weight as w[e]. Then

we can define a path π = e1e2 · · · ek as an element in E∗ such that n[ei] = p[ei+1]

for all i = 1, 2, · · · , k−1. We can expand the definition of p and n so that for path

π, p[π] = p[e1] and n[π] = n[ek]. Let P (q, q′) denote the set of paths that start at

q (i.e. p[e1] = q) and end at q′ (i.e. n[ek] = q′). Let P (q, x, y, q′) denote all paths

from q to q′ with input string x ∈ Σ∗ and output string y ∈ Γ∗. We can expand

the definition of P to P (q, x, y, R) = ∪q′∈RP (q, x, y, q′) where R ⊆ Q. We define

w[π], the weight of a path π, as follows.

w[π] = w[e1]⊗ w[e2]⊗ · · · ⊗ w[ek] (2.1)

Using this definition of a path, we define the weight associated by weighted finite-

state transducer T to an input, output string pair (x, y) as

15

[T](x, y) =
⊕

π∈P (i,x,y,F)

λ⊗ w[π]⊗ ρ(n[π]) (2.2)

and [T](x, y) = 0̄ when P (i, x, y, F) = ∅.
In this work, we make use of the composition operation (Mohri, 2009;

Pereira and Riley, 1997). The composition operation, denoted asX◦Y , is defined as

follows. Let X = (Σ,Γ, QX, EX, iX, FX, λX, ρX) and Y = (Γ,∆, QY, EY, iY, FY, λY, ρY)

be weighted transducers defined over a commutative semiring S, where the output
alphabet of X is equivalent to the input alphabet of Y . Then Z = X ◦Y results in

a wFST Z = (Σ,∆, Q,E, i, F, λ, ρ) such that for any pair of input, output strings

(x, y) such that x ∈ Σ∗, y ∈ ∆∗, we have

[Z](x, y) =
⊕
z

[X](x, z)⊗ [Y](z, y). (2.3)

2.2.2 Computing the composition of wFSTs

To make use of composition, we need to be able to compute the composition

efficiently. In the case where both transducers are free of transitions with ε labels,

we can use the algorithm from Mohri (2005), slightly modified to fit our definition

of a wFST, as shown in Figure 2.3. This algorithm creates states from the space

QX ×QY , which refer to a pair of states in X and Y . Starting with state (iX , iY),

the algorithm traverses all possible paths by keeping a queue of newly found state

pairs, and finding all possible new state pairs from the current pair. The possible

new state pairs are found by going through the transitions starting from the current

pair of states and checking whether any output from the transition of X matches

the input of a transition of Y . For each matching pair of transitions, a new state

pair is created using the next states, and added to the queue if the state pair has

not already been seen. A transition is created and added to the output transducer

as seen in line 18.

When ε labels are used, more factors must be considered. The ε label in

a weighted transducer, when placed as the input symbol of a transition, indicates

16

1: procedure Compose(X, Y)

2: Q← (iX , iY)

3: S ← (iX , iY)

4: i← (iX , iY)

5: λ← λX ⊗ λY

6: while S ̸= ∅ do
7: (q1, q2)← Head(S)

8: Dequeue(S)

9: if (q1, q2) ∈ FX × FY then

10: F ← F ∪ {(q1, q2)}
11: ρ(q1, q2)← ρX(q1)⊗ ρY (q2)

12: end if

13: for each (e1, e2) ∈ E[q1]× E[q2] such that o[e1] = i[e2] do

14: if (n[e1], n[e2]) /∈ Q then

15: Q← Q ∪ {(n[e1], n[e2])}
16: Enqueue(S, (n[e1], n[e2]))

17: end if

18: E ← E ∪ {((q1, q2), i[e1], o[e2], w[e1]⊗ w[e2], (n[e1], n[e2]))}
19: end for

20: end while

21: return (Σ,∆, Q,E, i, F, λ, ρ)

22: end procedure

Figure 2.3: Algorithm based on Mohri (2005) for composing two weighted

finite-state transducers, assuming no ε transitions

17

that no input is consumed when traversing the transition. When placed as the

output symbol of a transition, it indicates that no symbol is output when traversing

the transition. The ε label can be used to denote various errors such as the deletion

of an intended word, the insertion of an unintended word, or the replacement

of n words with a different number of words. Usage of the ε label introduces

some complexity to the previous composition algorithm. Efficient composition of

weighted transducers which contain ε labels is discussed in Mohri et al. (1996).

In the paper, the authors present a way to transform the weighted finite-state

transducers being composed so that the first transducer has no ε output transitions,

and the second transducer has no ε input transitions. This will let us use the

compose algorithm above. We use an example to show how the transformation

is done. Suppose we are trying to compose the transducers X and Y as shown

in Figure 2.4. We can change X and Y so that all ε input transitions in Y are

changed to temporary input symbol ε2, and all ε output transitions in X are

changed to temporary output symbol ε1. An ε input transition is then added

to each state in X such that the input is ε and the output is ε2, and an ε output

transition is added to each state in Y , such that the output is ε and the input is ε1,

creating our transformed transducers X ′ and Y ′ as shown in Figure 2.5. Since we

no longer have any ε output labels in X ′, and ε input labels in Y ′, we can now use

our previous compose algorithm. Composing X ′ and Y ′ results in the transducer

shown in Figure 2.6. Unfortunately, the resulting transducer has multiple paths

which lead to the same input/output transitions. Each path corresponds to a

different selection order of the epsilon transitions. For the weights to be correct,

we need only one path, or the weight of each path will be added multiple times.

To avoid these multiple paths, we can add a filter which removes the redundant

paths. This filter can be represented as a transducer G, shown in Figure 2.7. Using

this filter, we now calculate

X ′ ◦G ◦ Y ′. (2.4)

which results in the transducer shown in Figure 2.8. Since the filter only allows

one of the paths, the composed weight is identical to the composed weight of the

18

Figure 2.4: Example of finite-state transducers X and Y with ε input and ε

output transitions

original transducers, and thus is equivalent to X ◦Y . A more detailed explanation

of the algorithm is given in Mohri (2009).

The composition operation can be used to combine our language model and

noise models, and also confine the output of a wFST to a specified string, which

we will explain in Section 2.2.6.

2.2.3 Base language model

The base language model is a bigram model implemented by using a weighted

finite-state transducer (wFST). An example is shown in Figure 2.9. The bigram

model is implemented as a wFST using the following method. Each state in the

wFST represents a bigram context, i.e. the previous word, with the exception of

the end state. The arcs of the wFST correspond to having the next word as output,

given the previous word. The weights of each arc are the bigram probability of the

output word given the previous word specified by the from state. The input word

is set to be the same as the output word. The to state of the arc is the context

state of the output word. Thus, given a set of n words in the vocabulary, the

language model wFST has one start state, from which n arcs extended to each of

their own context states. From each of these nodes, n arcs extend to each of the

n context states. Transition to the end state gives the probability of the sentence

ending, given the last word. In Figure 2.9, these transitions have been denoted as

19

Figure 2.5: Finite-state transducers X and Y from Figure 2.4 transformed to

eliminate ε output transitions on X and ε input transitions on Y

Figure 2.6: Result of X ′ ◦ Y ′ from Figure 2.5.

20

Figure 2.7: Filter for restraining multiple paths due to epsilon transition

orderings. The ‘x’ corresponds to any word in the alphabet.

Figure 2.8: Result of X ′ ◦G ◦ Y ′ using the filter G in Figure 2.7 to restrain

multiple paths occurring from epsilon transitions

21

Figure 2.9: Example of a bigram language model containing the 3 words a, an

and cat.

22

epsilon transitions, as we are not taking the sentence delimiter, such as a period or

question mark, into account. Thus the number of states in the language model is

n+2 and the number of arcs is n2+2n. Creating language models with 105 words

(the BNC has over 6× 105) means we would need to create over 1010 arcs, which

would quickly fill up our memory. To decrease our memory usage, only bigrams

whose words are found in the observed sentences, or are determined to be possible

candidates for the correct words of the original sentence (due to the noise mod-

els) are used. While we use a bigram model here for simplicity, any probabilistic

language model having a tractable composition with wFSTs could be used.

The bigram model parameters are learned from the British National Cor-

pus, which was modified to use American English spellings. Due to the sparsity

problem, there are many bigrams which have a count of zero. Thus, if we are using

maximum likelihood to calculate the bigram model parameters, and c(x) denotes

the count of all appearances of x, so that our bigram model parameters are

pML(x) =
c(x)

c(e)

there will likely be many bigrams which appear in our observed data but have

pML(x) = 0 because they did not appear in our training data (BNC). To ad-

dress this problem of data sparsity, a common approach is to use smoothing.

Smoothing is used to give probability mass to events which have not been ob-

served. Various types of smoothing algorithms have been proposed for n-gram

models, such as additive smoothing (Lidstone, 1920), Good-Turing estimation

(Good, 1953), Jelinek-Mercer smoothing (Jelinek and Mercer, 1980), Katz smooth-

ing (Katz, 1987), Witten-Bell smoothing (Bell et al., 1990; Witten and Bell, 1991),

absolute discounting (Ney et al., 1994), Kneser-Ney smoothing (Kneser and Ney,

1995), modified Kneser-Ney smoothing (Chen and Goodman, 1998), Church-Gale

smoothing (Church and Gale, 1991), Bayesian smoothing (Nádas, 1984; MacKay

and Peto, 1995), etc. Most of these approaches can be classified as either using

backoff or interpolation. Backoff smoothing models use the higher-order distribu-

tion when the count is nonzero, and use the lower-order distribution only when

the count of the n-gram is zero, whereas interpolation models take the linear in-

23

terpolation of higher-order and lower-order n-gram models, without regard to the

distribution of the current n-gram. In our language model, smoothing is done using

modified Kneser-Ney, as proposed in Chen and Goodman (1998). Chen and Good-

man show that modified Kneser-Ney significantly outperforms regular Kneser-Ney

smoothing, as well as several other tested methods. Modified Kneser-Ney takes

the original Kneser-Ney smoothing technique and makes two changes. First, in-

terpolation is used instead of backoff. This is a simple switch, and can be done

by interpolating the lower-order distribution with all words, instead of just those

with zero counts. The second modification splits the single discount parameter

D into three discount parameters, D1, D2 and D3+. The discount parameter D

is set to D1 for n-grams with a count of one, D2 for n-grams with a count of

two, and D3+ for n-grams which have a count of three and above. This change is

made due to empirical evidence that the ideal average discount for n-grams with

one count or two counts is significantly different from the ideal average discount

for n-grams of three and above. With these changes, using the notation used in

Chen and Goodman (1998), the modified Kneser-Ney smoothed probabilities can

be calculated as

pKN(wi|wi−1
i−n+1) =

c(wi
i−n+1)−D(c(wi

i−n+1))∑
wi
c(wi

i−n+1)
+ γ(wi−1

i−n+1)pKN(wi|wi−1
i−n+2)

where D(c) is defined as

D(c) =

0 , if c = 0

D1 , if c = 1

D2 , if c = 2

D3+ , if c ≥ 3

and

γ(wi−1
i−n+1) =

D1N1(w
i−1
i−n+1•) +D2N2(w

i−1
i−n+1•) +D3+N3+(w

i−1
i−n+1•)∑

wi
c(wi

i−n+1)

given the definitions of N1(w
i
i+n−1•), N2(w

i
i+n−1•) and N3+(w

i
i+n−1•) as

24

Figure 2.10: Partial example of noise model for article choice error

N1(w
i−1
i−n+1•) =

∣∣{wi : c(w
i−1
i−n+1wi) = 1

}∣∣
N2(w

i−1
i−n+1•) =

∣∣{wi : c(w
i−1
i−n+1wi) = 2

}∣∣
N3+(w

i−1
i−n+1•) =

∣∣{wi : c(w
i−1
i−n+1wi) ≥ 3

}∣∣ .
The default parameters D1, D2 and D3+ are calculated by the following estimates

Y =
n1

n1 + 2n2

D1 = 1− 2Y
n2

n1

D2 = 2− 3Y
n3

n2

D3+ = 3− 4Y
n4

n3

.

where n1, n2 and n3 are the total number of n-grams which have one, two and three

count respectively. To process unknown words, or words we observe in our data set

sentences but are not found in the British National Corpus, one randomly chosen

word which appeared once in the corpus was changed to the UNK token. When a

word not found in the BNC vocabulary is observed in our training, development,

or evaluation set, or created from our noise models, it is mapped to the UNK token

just before being composed with the language model.

25

2.2.4 Noise models

For our noise model, we create a weighted finite-state transducer (wFST)

which accepts error-free input, and outputs erroneous sentences with a specified

probability. To model various types of human errors, we created several different

noise models and selectively composed them together, creating a layered noise

model. The noise models we implement are spelling errors, article choice errors,

preposition choice errors, insertion errors, and deletion errors. We explain these

models in more detail later in Chapters 5 and 6.

The design of the more basic noise model wFSTs starts with an initial state,

which is also the final state of the wFST. For each word found in the language

model, an arc going from the initial state to itself is created, with the input and

output values set as each possible word in the vocabulary. These arcs model the

case of no error being made. In addition to these arcs, new arcs representing

human errors are also inserted. For example, in the article choice error model, an

arc is added for each possible (input, output) article pair, such as an:a for making

the mistake of writing an a where an an should be used. The weights of the arcs

are the probabilities of introducing errors (or not, in the case where the input and

output values are identical), given the input word from the language model. For

example, Figure 2.10 shows a noise model in which a will be written correctly with

a probability of 0.9, and will be erroneously changed to an or the with probabilities

0.03 and 0.07, respectively. For this model to work correctly, the parameter values

for each noise model is required. How the parameter values are found is explained

in the following sections.

2.2.5 Expectation-maximization algorithm

To learn the parameters, a process we explain in the next section, we make

use of the expectation-maximization (EM) algorithm (Dempster et al., 1977). The

EM algorithm is an iterative method for solving maximum likelihood estimation

problems, where the model depends on unobserved latent variables. Each iteration

is a two step process: the expectation step (E step), which computes the expected

value of the latent parameters, fixing the log-likelihood function and allowing for

26

the maximization step (M step), which computes the new estimated parameters

which maximize the expected log-likelihood calculated in the E step. The new

estimated parameters are then used for the subsequent E step, starting a new

iteration.

The main idea behind the EM algorithm is to separate the parameters from

the latent variables, and use a guess of the parameters and the observed data to

make the best possible estimate of the latent variables, and then use those results to

find a better estimate of the parameters, iterating this process until the parameter

values converge to a local maxima.

A more rigorous definition of the EM algorithm is as follows. Let X be a

set of observed data, Z the set of unobserved latent data, θ a vector of unknown

parameters, and let L(θ;X,Z) = p(X,Z|θ) denote the likelihood function. Then

our objective is to maximize

L(θ;X) = p(X|θ) =
∑

Z p(X,Z|θ),

the marginal likelihood of the observed data. Optimizing this quantity is often

intractable. Instead, the EM algorithm uses the following two steps iteratively

until the values converge. Before the initial step, we arbitrarily select a value for

θ(0).

The E step Calculate the expected value of the log likelihood function as a func-

tion of θ. This is done with respect to the conditional distribution of Z,

given X and our estimated value of θ, θ(t).

Q(θ|θ(t)) = EZ|X,θ(t) [logL(θ;X,Z)]

The M step Find the parameters that maximize the expected value of the like-

lihood function

θ(t+1) = arg max
θ

Q(θ|θ(t))

27

The EM algorithm can be used when it is easy to calculate the distribution

of possible values of Z given some value of the parameter θ, as is done in the E

step, and it is possible to find an estimate of θ when we know the values of Z.

It can be proven that the EM algorithm will monotonically converge to the local

maximum of the likelihood function, as shown in Wu (1983).

2.2.6 Learning noise model parameters

To achieve maximum performance, we wish to learn the parameters of the

noise models. If we had a large set of erroneous sentences, along with a hand-

annotated list of the specific errors and their corrections, it would be possible to

do some form of supervised learning to find the parameters. We looked at the

NICT Japanese Learner of English (JLE) corpus, which is a corpus of transcripts

of 1,300 Japanese learners’ English oral proficiency interview. This corpus has

been annotated using an error tagset (Izumi et al., 2004a). However, because the

JLE corpus is a set of transcribed sentences, it is in a different domain from our

task. The Chinese Learner English Corpus (CLEC) contains erroneous sentences

which have been annotated, but we found that the CLEC corpus had too many

manual errors, such as typos in both tags and corrections, as well as many incorrect

annotations, making it very difficult to automate the processing. Many of the

corrections themselves were also incorrect. We were not able to find of a set of

annotated errors which fit our task2. Instead, we collected a large data set of

possibly erroneous sentences from Korean ESL students (Chapter 3). Since these

sentences are not annotated, we use an unsupervised learning method to learn our

parameters. By using an unsupervised method, we can use our model in other

domains and languages, and are not restricted to languages and subsets of people

for whom we happen to have an annotated corpus.

To learn the parameters of the noise models, we assume that the col-

lected sentences are random output of our model, and train our model using the

2Work focusing on creating such annotated sets is being pursued as of late, resulting in a

number of corpora including NUCLE which was introduced in Dahlmeier and Ng (2011) and

another data set used in Rozovskaya and Roth (2010).

28

3

4

0

1a:a/0.6

2

an:an/0.4

cat:cat/1

ear:ear/1

Language model

0

a:a/λ[λ,0]

a:an/1-λ[0,1-λ]

an:an/1

cat:cat/1

ear:ear/1

Noise model

Training data
A cat.
An cat.
A cat.

Figure 2.11: A simple example language model (top), noise model (middle),

and a set of sentences (bottom) for training the parameters. The language model

has been reduced from a bigram language model for simplicity, but is sufficient to

illustrate the use of the EM algorithm for training the noise model parameters.

Our noise model has one parameter λ which we wish to optimize. Using

parameter λ, we can calculate the probability of making the error of writing an

instead of a [p(a : an) = 1− λ], or not making an error [p(a : a) = λ]. The vector

of the V -expectation semiring weight is in brackets. The first value of the vector

denotes the expected count of no error being made on writing a, and the second

that of writing an instead of a.

29

expectation-maximization algorithm, as described in the previous section. Efficient

computation of the expected values of the latent variables in our wFSTs given an

estimate of the parameters is done by making use of the V -expectation semiring

(Eisner, 2002). The V -expectation semiring is a semiring in which the weight is

defined as R≥0 × V , where R can be used to keep track of the probability, and V

is a vector which can be used to denote expected arc traversal counts or feature

counts. The binary operations are defined to be:

(p1, v1)⊗ (p2, v2)
def

(p1p2, p1v2 + v1p2) (2.5)

(p1, v1)⊕ (p2, v2)
def

(p1 + p2, v1 + v2) (2.6)

The weight for each of the arcs in the noise models is set so that the real value is the

probability p calculated from the current parameters, and the vector which denotes

the choice of the arc is set to pei where ei is a standard basis vector, indexed on

the type of error or non-error being made. Doing this will set up the wFST so that

the real component of the weight of a path is equal to the probability of that path,

while the vector component will keep track of the expected counts of the times

an arc has been chosen. An example noise model set up to use the V -expectation

semiring is shown in the second wFST of Figure 2.11. In this example, we have

one parameter value λ we wish to optimize, which is equal to the probability of

the article a being written correctly, opposed to a being erroneously written as an

with a probability of 1− λ. By using the expectation semiring, we can keep track

of the probability of each path going over an erroneous arc or non-erroneous arc. 3

Once we have set up our language and noise model, the first step of EM

is to initialize our parameters with some random values. After initializing the

parameters, we can create a generative language-noise model by composing the

language model wFST with the noise model wFSTs. Using our example from

Figure 2.11, and initializing our parameter λ so that λ(1) = 0.95, we show the

result of composition of the language model and the initialized noise model in

Figure 2.12.

3I would like to express my gratitude to Markus Dreyer and Jason Eisner for supplying

unpublished code for using the expectation semiring with OpenFST.

30

3

4

0

1a:a/0.6

2

an:an/0.4

cat:cat/1

ear:ear/1

Language model

0

a:a/0.95[0.95,0]

a:an/0.05[0,0.05]

an:an/1

cat:cat/1

ear:ear/1

Noise model

3

4

0

1
a:a/0.57[0.57,0]

a:an/0.03[0,0.03]

2
an:an/0.4

cat:cat/1

ear:ear/1

Language-noise model

Figure 2.12: Example of language model (top) and noise model (middle) wFST

composition, using the V -expectation semiring. The noise model parameter has

been initialized to λ(1) = 0.95, and the result of the composition is shown in the

bottom wFST.

31

3

4

0

1
a:a/0.57[0.57,0]

a:an/0.03[0,0.03]

2
an:an/0.4

cat:cat/1

ear:ear/1

Language-noise model (1)

20 1
a:a/1 cat:cat/1

Training sentence wFST (2)

20 1
a:a/0.57[0.57,0] cat:cat/1

Composition of wFSTs (1) and (2)

20 1
ε:ε/0.57[0.57,0] ε:ε/1

Input and output removal

0.57[0.57,0]

0

ε removal

Figure 2.13: Example of calculating expectation counts. The top wFST shows

our language-noise wFST. The second wFST is created using the observed

sentence. These two wFSTs are composed, resulting in the middle wFST which

only has the observed sentence as output. For training, we change all the input

and output values to ε, and then use the epsilon-removal operation to find the

total weight of the wFST. The real value of the weight is the total probability of

the model generating the sentence, and we can divide each of the vector index

values by the total probability to find the expected counts for this sentence.

32

After our model is set up for the E step using the initial parameters, we

must compute the expected counts of the noise model arc traversals for use in

calculating our new parameters. To do this, we need to find all possible paths

resulting in the observed sentence as output, for each observed sentence. Once we

have found all paths, for each possible path, we need to calculate its probability

given the output sentence. This will give us the expected counts of going over each

erroneous and error-free arc. We can find a wFST which only contains paths which

output a given observed sentence by composing the language-noise wFST with the

observed sentence wFST. The observed sentence wFST is created in the following

manner. Given an observed sentence, an initial state is created. For each word

in the sentence, in the order appearing in the sentence, a new state is added, and

an arc is created going from the previously added state to the newly added state.

The new arc takes the observed word as input and also uses it as output. The

weight/probability for each arc is set to 1. For example, if our observed sentence

is “a cat”, then we create the second wFST shown in Figure 2.13. Composing the

sentence wFST with the language-noise wFST has the effect of restricting the new

wFST to only allow original sentences which can output the observed sentence from

the language-noise wFST. Using the first wFST in Figure 2.13 as our language-

noise model, we compose the first two wFSTs to get the third wFST. We now

have a new wFST where all valid paths are the paths which can produce the

observed sentence. To find the total weight of all paths, we first change all input

and output symbols into the empty string. Since all arcs in this wFST are epsilon

arcs, we can use the epsilon-removal operation (Mohri, 2002), which will reduce

the wFST to one state with no arcs. This operation combines the total weight

of all paths into the final weight of the sole state, giving us the total expectation

value for that sentence. In our toy example, we can see that the resulting weight

is 0.57[0.57, 0]. 0.57 is the total probability of our observed sentence being output

by our language-noise model. We divide all the expectation semiring vector values

by the total probability, i.e. the sentence marginal probability, to get the expected

counts of going over the a:a arc and the a:an arc. By doing this for each sentence,

and adding the expectation values for each sentence, we can easily compute the

33

expectation step, from which we then can find the maximizing parameters and

update our parameters accordingly. Using our example, the resulting weights from

our three training data sentences in Figure 2.11 will be 0.57[0.57, 0], 0.03[0.0.03] and

0.57[0.57, 0]. Dividing by the total probability for each sentence gives us expected

counts [1,0], [0,1] and [1,0]. In this case, for our M step we can sum the expected

counts vectors to get [2,1], which means that the expected count for (a:a) is 2

and (a:an) is 1. We use this to maximize the expected value of the log likelihood

function by computing our new estimated value of λ,

λ(2) =
2

2 + 1
=

2

3
.

We are now finished with the first iteration of EM, and can use λ(2) to do our next

iteration. Iterating is done until the parameter value converges, or the difference

between each iteration is lower than some threshold. Because our toy example

is very simple, all of our expected count vectors happened to be identity vectors,

and at first glance it may seem that there is no reason to use the V -expectation

semiring. However, in our application, this is not the case, since smoothing of

the bigram counts will permit all possible word combinations, and various types

of noise models may create different paths to the output sentence. Fortunately,

even when our language model and noise models become more complicated, the

V -expectation semiring will calculate the expectation counts we need.

2.2.7 Finding the maximum posterior probability correc-

tion

Once the parameters are learned for our language model and noise model,

we can use the model to find the maximum posterior probability error-free sen-

tence for any observed sentence. This is done by creating the language model

and noise model with the learned parameters, but this time we set the weights

of the noise model to just the probabilities, and use the log semiring instead of

the V -expectation semiring. Since we only need to find the highest probability

sentence, we do not need to keep track of the expected values. We keep the input

34

strings of the language model arcs the same word as the output, instead of using

an empty string. We create a sentence wFST using the observed sentence we wish

to correct, the same way the observed sentence wFST for training was created.

Once again, the language model, the noise model, and the wFST created using the

observed sentence are composed together in order. As with training, we create the

noise models and language models by backtracking from each observed sentence,

and compose the noise models with the observed sentence first, after which we

compose with the language model. We are now left with a wFST in which each

path denotes a transition from a sentence produced by the language model to the

observed sentence, and the weight is the probability of the sentence production

times the probability of the given changes. Thus, to find the maximum posterior

probability correction, all we need to do is find the shortest path (in minus-log

probabilities) of the new wFST, and the input to that path will be our corrected

sentence.

2.2.8 Performance considerations

Since we are doing exact inference, in practice, the language model and

noise model are very large. Trying to put them into limited memory space is not

an easy task, even with the 142GB memory on the systems we were working on.

In order to fit our models into memory, as well as speed things up, we backtracked

from the observed sentences and added only the necessary arcs of the noise and

language models which would be used in composition. This is done by finding all

possibly appearing original sentence words based on the words seen in the observed

sentence, and then only adding arcs which use those words into our language and

noise models. For example, if the sentence “I like the cat” was observed, and we

were using just the article choice error model, the only possible words that could

be in the original sentence would be the set of words {I, like, the, a, an, cat}. Since
our language model and noise model will be composed with the observed sentence

wFST, it is not necessary to include any arcs which have words which are not in

the set. Thus we can leave those arcs out, which reduces the amount of memory

necessary for the language and noise model. To be more specific, the output

35

vocabulary of any noise model or language model can be restricted to the input

vocabulary of the following model. By starting from the observed sentence, we can

minimize the size of each of the noise and language models by only adding arcs

which have words in the input vocabulary of the following wFST. For maximum

performance, we used small batches of observed sentences and created the noise

model and language models for each batch, and used these smaller models to

calculate the expectation values.

Another optimization we made concerned the order of the composition.

Because of the way the compose algorithm in OpenFST is structured, and also

because of the properties of wFSTs in general, the order of composition has large

effects on the memory usage and running time. We found that it was much faster

to compose the observed sentence wFST to the noise model first, and then com-

pose the output wFST with the language model. This is because the size of the

intermediary wFST would be reduced, which in turn would speed up the composi-

tion process. Also, the sorting of the arcs done before composition also has a large

affect on the performance. Making sure that the FST with the greater out-degree

is sorted can greatly decrease the run time.4

Chapter 2, in part, is a reprint of the material as it appears in Automated

Whole Sentence Grammar Correction Using a Noisy Channel Model in Proceed-

ings of the 49th Annual Meeting of the Association for Computational Linguistics

(ACL-HLT 2011), Y. Albert Park and Roger Levy. The dissertation author was

the primary investigator and author of this paper.

4OpenFST has since been updated, so that if both FSTs to be composed are sorted, it will

choose the optimal transducer to match against (per state pair), so it should be advisable to sort

both.

Chapter 3

Datasets

This chapter explains the methodology used to create our data sets for

training and evaluation of our models.

3.1 Collection of ESL sentences

As described in Chapter 2, we use EM to learn the parameters of the noise

models. This requires observed data, in the form of actual produced noisy sen-

tences. We collected 478,350 sentences written by Korean ESL students, using the

following methodology.

3.1.1 Data acquisition

To train and evaluate the noise models, 25,000 practice essays written by

Korean ESL students preparing for the TOEFL writing exam were collected. The

essays were collected from a free internet web board whose main purpose is for

users to post their TOEFL writing samples and ask for feedback. The users of the

board are Korean ESL students preparing for the TOEFL writing exam. The posts

mainly fall into one of three categories: writing samples, commentative posts, and

edited writing samples. A couple of writing samples are shown in Figures 3.1 and

3.2. As can be seen, the format of the writing samples differs from post to post,

complicating automated extraction of the sentences to some degree. (The board,

36

37

Figure 3.1: TOEFL writing sample

at the time of writing, is located at http://www.gohackers.com/html/?id=essay.

gohackers.com is a community website for Korean students who are studying for

the TOEFL or GRE exam, and is widely used by students wishing to go to graduate

school in the US.)

3.1.2 Sentence extraction

The extraction of sentences from the posts was done through an automated

process. First, all the posts on the web board were downloaded. The downloaded

HTML files were then processed as follows. For each HTML file, the section with

the actual posting content was extracted by deleting the top and bottom portions

38

Figure 3.2: Another TOEFL writing sample

39

with unnecessary HTML content. Next, all instances of “­” were deleted1,

and all instances of “ï” and “é” were replaced with the characters

‘i’ and ‘e’, respectively. The files were then run through a parsing process which

extracted the title, number, user id, etc. of the post. Following the parsing process,

the files were run through html2text to extract the content into text format. Once

this processing was finished, all posts that had a “[re” or “re..” in the title were

discarded. This was done to remove repeating text appearing in edit posts and

commentative posts.

In most but not all cases, when the post was a writing sample, it loosely

followed the following format: a topic question at the beginning, followed by the

writing sample we are interested in extracting, and then maybe a few words from

the writer asking for help at either the beginning or end of the post. Since there

was no obvious marker to automatically separate these items, we used the following

procedure to extract what we deemed were valid sentences from the main content

of each post.

First, each line was preprocessed by looking for instances of various char-

acters which were deemed to be English characters, but in a different encoding

format than the usual ASCII coding. These anomalies were likely introduced by

copying and pasting from various types of editors into web browsers before up-

loading content. The found instances were replaced with their matching ASCII

characters. In addition, all tab characters were changed to blank spaces. After

removing blank characters from the beginning and end of each line, all lines which

did not begin with an ASCII letter were deemed inappropriate and were removed.

After verifying the first character, the following characters were subjected to a test

of being a valid character. The set of valid characters was comprised of all ASCII

letters, a blank space, all ASCII digits, and the characters listed in Table 3.1. The

test was applied to each character starting from the first character to the last, in

order. During this process, if a Korean character was found, the line was removed,

and a counter keeping track of the lines with a Korean character was increased.

1Only 5 HTML files were found to contain “­”, the HTML code for a soft hyphen, and

manual inspection of these cases deemed them to be irrelevant characters.

40

Table 3.1: Allowed characters for line data

Allowed characters
’ , ; : . ! () ” - / & % $ + ? * �

If an invalid character was found and the character was a ‘→’ or ‘[’ character or

the line contained the string “->” or “=>”, the whole post was assumed to be

an edited writing sample and discarded. Otherwise, only the line was removed. If

the number of lines found including Korean characters was greater than 15, the

text was also discarded, under the assumption that the post was not a TOEFL

writing sample, but more likely a commentative post. If the line was made up of

only valid characters, it was then subjected to a test checking whether it was a

TOEFL topic question or the actual writing response. This test simply checked

whether the line contained one of the following strings : “Compare”, “Describe”,

“Do”, “Use”, “Explain”, “Give”, “. use”, or “? use”. If the line contained any one

of the strings, it was deemed to be a TOEFL topic question and was removed.

Once all the valid lines of a post were found, the lines were then concate-

nated together. The concatenated text was then checked to see if it is longer than

500 characters, under the assumption that a TOEFL writing sample would be at

least that length. This was done to remove posts which are not writing samples,

but are questions or comments posted about a few sentences possibly from another

previous post. The concatenated text was then split into sentences by looking for

the punctuation marks ., !, and ?. Sentences with a length of 1 or 2 characters were

removed. This process is very rudimentary, and is especially affected by the mul-

tiple uses of ‘.’. For example, instances of “a.m.” and “p.m.” will create sentence

fragments, as having those words in a sentence will cause the sentence to be cut

into 3 fragments instead of one full sentence. Also, in some cases, students misuse

a ‘.’ in place of a ‘,’, creating sentence fragments instead of full sentences. This is

one area where our data set could use more improvement. Manual evaluation of

1521 randomly extracted sentences returned 17 sentence fragments.

41

3.2 Training, development and evaluation set

For training and evaluation purposes, the data set was split into a training

set, a development set, and an evaluation set. The training set was used to learn

the parameters for the noise models. The development set was used to evaluate

the model performance during development. The final evaluations were done on

the evaluation set. For the development set, we randomly selected 504 and 1016

sentences for the development set and evaluation set, respectively. The remaining

476,829 sentences were used as the training set.

3.2.1 Obtaining reference sentences for evaluation

As we will explain in Chapter 4, we use BLEU and METEOR metrics

to evaluate the performance of our models. These two metrics require corrected

versions of erroneous sentences, or reference sentences. Since the development

set and evaluation set are used to evaluate performance, it is necessary to obtain

manual corrections as reference sentences for the sentences in the two sets. To

do this, the development set and evaluation set sentences were put on Amazon

Mechanical Turk as a correction task. The workers on Amazon Mechanical Turk

were asked to manually correct the sentences in the two sets. Workers had a

choice of selecting ‘Impossible to understand’, ‘Correct sentence’, or ‘Incorrect

sentence’. When ‘Incorrect sentence’ was chosen, they were asked to correct the

sentence so that no spelling errors, grammatical errors, or punctuation errors were

present. Each sentence was given to 8 workers, giving us a set of 8 or fewer

reference sentences for each incorrect sentence. We asked workers not to completely

rewrite the sentences, but to maintain the original structure as much as possible.

Each hit was comprised of 6 sentences, and the reward for each hit was 10 cents,

which resulted in a total payment of $223.52. Only workers based in the US

were permitted to perform the task, as previous tests of this task showed that the

corrections of users outside of the US were highly unreliable.

Despite being based in the US, we still found that many of the workers’

corrections had errors. To remove the erroneous corrections, and ensure the quality

42

Figure 3.3: Partial template of Amazon Mechanical Turk task for collecting

reference sentences for evaluation

43

of our reference sentences, a native English research assistant went over each of

the manual corrections and marked them as being either correct or incorrect. The

original sentence was also marked to be correct or incorrect by our assistant.

Finally, to create our set of reference sentences, we used the following pro-

cess. For each sentence, we looked at each worker’s selected choice. If the choice

was ‘Correct sentence’, then we referred to our assistant’s marking for the original

sentence, and if the original sentence was deemed correct, it was added to the

reference set (if it had not already been added). If the choice was ‘Impossible to

understand’, then we ignored that worker’s input for the sentence, and no refer-

ence sentence was added for that worker. If the worker chose ‘Incorrect sentence’,

then we referred to our research assistant’s labeling for the worker’s correction,

and added the correction only if it had been labeled as being correct by our assis-

tant. Otherwise, we discarded the correction. Thus, some sentences, for example

a correct sentence, having been labeled as such by both the research assistant and

all 8 workers would only have the original sentence as a reference sentence. If one

of the workers had labeled that sentence as incorrect, and changed the sentence to

a different sentence which was still grammatically correct, then our research assis-

tant would have marked the ‘correction’ as correct, and we would have had two

reference sentences. If an incorrect sentence had been corrected by all 8 workers,

but only 3 of the ‘corrections’ were deemed correct by our research assistant, there

would be 3 reference sentences for the incorrect sentence. For sentences which

were deemed incorrect and had no correct ‘corrections’, the reference set size was 0

and these sentences were dropped from the evaluation set. Removing the incorrect

‘corrections’ effectively decreased the BLUE and METEOR scores of the observed

ESL sentences. An observation of the sentences showed that this was mostly due

to the fact that when an incorrect ‘correction’ only partially fixed a sentence, and

left some part of the sentence unfixed in a reference sentence, this would result in

boosting the score of the observed sentence. For many sentences, not all workers

agreed on whether the sentence was a ‘Correct sentence’ or an ‘Incorrect sentence’

or was ‘Impossible to understand’, but despite this our methodology selects all

possible correct reference sentences that we have obtained.

44

We introduce our method for evaluation of automated full sentence gram-

mar/spelling correction in the following chapter.

Chapter 3, in part, is a reprint of the material as it appears in Automated

Whole Sentence Grammar Correction Using a Noisy Channel Model in Proceed-

ings of the 49th Annual Meeting of the Association for Computational Linguistics

(ACL-HLT 2011), Y. Albert Park and Roger Levy. The dissertation author was

the primary investigator and author of this paper.

Chapter 4

Evaluation Method

In the previous chapters, we discussed how to create a system for finding

automated grammar corrections using a probabilistic model. While finding good

corrections is the main part of our task, we still need a way to evaluate the per-

formance of our system.

In the current literature, grammar correction tasks are often manually eval-

uated for each output correction, or evaluated by taking a set of proper sentences,

artificially introducing some error, and seeing how well the algorithm fixes the

error. Manual evaluation of automatic corrections may be the best method for

getting a more detailed evaluation, but to do manual evaluation for every test out-

put requires a large amount of human resources, in terms of both time and effort.

In the case where artificial lesioning is introduced, the lesions may not always re-

flect the actual distribution of errors found in human data, and it is also difficult

to replicate the actual tendency of humans to make a variety of different mistakes

in a single sentence. Thus, this method of evaluation, which may be suitable for

evaluating the correction performance of specific grammatical errors, would not be

fit for evaluating our model’s overall performance.

For evaluation of the given task, we have incorporated evaluation techniques

based on current evaluation techniques used in machine translation, i.e. BLEU and

METEOR. Machine translation addresses the problem of changing a sentence in

one language to a sentence of another. The task of correcting erroneous sentences

can also be thought of as translating a sentence from a given language A, to

45

46

Candidate A boy a boy a boy a a
Reference 1 A boy was playing on the playground with some girl
Reference 2 A boy and a girl were playing on the playground
Reference 3 A couple of kids were playing on the playground

Figure 4.1: Example for BLEU metric calculation

another language B, where A is an ‘incorrect grammar’ language, and B is the

‘correct grammar’ language. Under this context, we can apply machine translation

evaluation techniques to evaluate the performance of our system. We now explain

the BLEU and METEOR metrics.

4.1 BLEU and METEOR

BLEU (Papineni et al., 2002) and METEOR (Lavie and Agarwal, 2007) are

two state-of-the-art evaluation metrics currently being used in the field of machine

translation. Both of these metrics compare a machine translated output sentence1

to reference translations, and try to evaluate the similarity of the translation output

to the reference. The reference translations are a set of high quality translations,

often obtained from various existing translations of the same document, or by

asking several qualified translators to translate a given document. Both BLEU

and METEOR return a score between 0 and 1, where 1 is the best possible score

and a higher score translation is deemed to be better than a lower score translation.

4.1.1 BLEU

The BLEU (Bilingual Evaluation Understudy) metric is based on a modified

form of precision. The unmodified version of n-gram precision is defined in machine

translation to be

P =
m

wt

, (4.1)

1The unit of output used is actually a segment, but usually a segment will be mapped to one

sentence

47

where m is the number of n-grams in the translation output that can be found in

any of the reference sentences, and wt is the number of n-grams in the translation

output. Using precision in this form may have undesirable consequences when a

word is repeated several times. For example, let us consider the case shown in

Figure 4.1, where we are trying to calculate the score of the candidate sentence

given three reference sentences. Our output translation, or candidate sentence, is

the string “a boy a boy a boy a a”. Since both of the words ‘a’ and ‘boy’ are

found in at least one of the reference sentences, the unigram precision has a score

of 8
8
= 1. To address this problem, BLEU uses a modified form of n-gram precision

by constraining repeated n-grams to only be counted up to the max number of

times it appears in any single reference sentence. In our example, each of the three

reference sentences had 1, 2, and 1 instances of ‘a’ and 1, 1, and 0 instances of

‘boy’, respectively. Then the modified unigram precision used in BLEU would be

min(5,max(1, 2, 1)) + min(3,max(1, 0, 0))

8
=

2 + 1

8
=

3

8
(4.2)

instead of 1. The modified n-gram precision for each value of n, up to a selected

N -gram count, is calculated separately and then combined together by taking a

weighted geometric mean of the values, where the weights sum to 1. In our example

above, the modified unigram and bigram precision would be 3
8
and 1

7
, respectively.

Experiments have shown that when N = 4, the BLEU scores correlate most highly

with human evaluation scores.

The use of modified n-gram precision has its benefits, but it still is confined

to the characteristics of precision. Longer sentences may be penalized by the

modified n-gram precision, but only using modified precision allows for very short

translations which omit large amounts of the translation to achieve high scores.

Usually, in these type of cases, recall is used concurrently with precision to get a

better evaluation of the performance. In the case of machine translation, however,

there are often many different ways a sentence can be translated, making the use

of recall a much more complicated task.

To address this problem, BLEU adds in a brevity penalty factor. The

brevity penalty BP is calculated over the whole output, not just each individ-

48

Candidate A boy was on the playground playing with a girl
Reference 1 A boy was playing on the playground with some girl
Reference 2 A boy and a girl were playing on the playground
Reference 3 A couple of kids were playing on the playground

Figure 4.2: Example for METEOR metric calculation

ual sentence. For each output sentence, the sentence with the closest length is

matched, and the sum of the lengths for the matching reference sentences are

summed together to calculate the effective reference corpus length r. The length

c of the candidate translation is used with r to calculate the brevity penalty BP,

which is defined as

BP =

 1 if c > r

e1−r/c if c ≤ r.
(4.3)

Finally, the BLEU score is calculated by multiplying the brevity penalty to the

previously calculated weighted geometric mean as follows:

BLEUscore = BP · exp

(
N∑

n=1

wn log pn

)
. (4.4)

The brevity penalty for our example would be e1−9/8, since our candidate sentence

is 8 words long, and the shortest reference sentence is 9, and our whole output is

just one sentence. We can calculate the final BLEU score for our example using

N = 2 as

e1−9/8 · exp
(
1
2
log 3

8
+ 1

2
log 1

7

)
= 0.2043

We introduce the METEOR metric in the next section.

4.1.2 METEOR

The METEOR (Metric for Evaluating Translation with Explicit Ordering)

metric was designed to improve evaluation performance over BLEU at the sentence

49

Figure 4.3: Example of METEOR alignment

(segment) level. METEOR, unlike BLEU, uses only one reference sentence to

calculate the final METEOR score. The algorithm is run on all reference sentences,

and the reference sentence with the best score is used. METEOR is based on using

word alignments between the output translation and a reference sentence used for

evaluation. Alignments are created by mapping words in the output sentence to

the words in the reference sentence. A mapping is a pairing of one word in the

output sentence to a word in a reference sentence, and an alignment is a set of

mappings, as seen in the example in Figure 4.3. Each word may only be mapped

to one word in the other sentence. The alignment is produced incrementally using

three different modules: the ‘exact’ module, the ‘porter stem’ module, or the ‘WN

synonymy’ module. The ‘exact’ module allows words to be mapped together if

they are exactly the same, while the ‘porter stem’ module maps words if they

are the same after being stemmed using the Porter stemmer (Porter, 1980). The

‘WN synonymy’ module maps words if they both belong to the same ‘sysnet’ in

WordNet (Fellbaum, 1998). The ‘porter stem’ and ‘WN synonymy’ modules help

score translations which may not be the exact same word as that in the reference

sentence, but have captured the meaning of the foreign text to some degree.

Using all possible mappings from the ‘exact’ module, alignments are cre-

ated, and the alignment which maximizes the number of mappings is selected. If

there are several possible alignments with the same maximum size, the alignment

which has the least number of unigram mapping crossings is selected. The align-

ment is then augmented incrementally by adding new mappings using the ‘porter

stem’ module, and then again using the ‘WN synonymy’ module. While the de-

fault ordering of METEOR is ‘exact’, ‘porter stem’, and then ‘WN synonymy’, we

can also change the ordering or use only a subset of the available modules.

50

Once the full alignment has been found, the unigram precision P is calcu-

lated as:

P =
m

wt

(4.5)

where m is the number of unigrams which were mapped in the given alignment,

and wt is the number of unigrams in the output sentence. The unigram recall R

is calculated as:

R =
m

wr

(4.6)

where m is the same as above, and wr is the number of unigrams in the reference

sentence. If we use the alignment in Figure 4.3, the precision and recall values

would both be 9
10
. The precision and recall values are combined together into

Fmean by using a weighted harmonic mean:

Fmean =
PR

αP + (1− α)R
(4.7)

where α is a factor to balance out the importance of precision to recall. In our

example, we can calculate the Fmean value using an α value of 0.9, which gives us:

Fmean =
0.9(0.9)

0.9(0.9) + (0.1)0.9
= 0.9.

So far, the precision, recall, and Fmean values have only been based on the

unigram mappings, and do not have anything to do with the ordering. To add

ordering into consideration, METEOR calculates the fragmentation degree of the

ordering. This is done by dividing the mappings in the alignment into chunks. A

chunk is a set of mappings which map consecutive words from the output sentence

to consecutive words in the reference sentence, in identical word order. An example

is shown in Figure 4.4. The alignment is divided into the fewest possible number

of chunks c, and the fragmentation value frag is then calculated as:

51

Figure 4.4: Example of METEOR chunks

frag =
c

m
(4.8)

where m is the number of mappings in the alignment. In our example, the frag

value is 5
9
. The penalty MP is then calculated as:

MP = γ · fragβ (4.9)

where γ is a factor which determines the maximum penalty (0 ≤ γ ≤ 1) and β

determines the functional relation between fragmentation and the penalty. The

penalty is combined with Fmean to produce the final METEOR score as follows:

METEORscore = (1−MP) · Fmean (4.10)

The values of α, β and γ can be adjusted, and Lavie and Agarwal (2007) reports

various experiments for optimizing these values for various languages. Using α =

0.9, β = 3, and γ = 0.5 for purposes of this example, we can finally calculate the

METEOR score of our example as follows:

METEORscore = (1− 0.5 · 5
9

3
)0.9 = 0.8228

In the next section, we talk about using BLEU and METEOR for grammar

correction evaluation.

52

4.2 Using BLEU andMETEOR for grammar cor-

rection evaluation

For evaluation of the given task, we have incorporated evaluation techniques

based on BLEU and METEOR. In order to use BLEU and METEOR, we need

to have reference translations on which to score our output. As we explained in

Chapter 3, we have collected a set of reference sentences for evaluation. Again,

we point out that collecting reference sentences is not a difficult task, especially

by making use of cheap manual labor through systems like Amazon Mechanical

Turk. Another problem with annotating an evaluation set is that the same error

may be corrected in several different ways. It is not an easy task to list all possible

corrections. Also, the fashion in which one error in a sentence is corrected may

affect the way another error in the sentence must be corrected. For example,

consider the sentence ‘I like book that has pictures.’ to correct. This sentence may

be corrected to ‘I like a book that has pictures’, but it also may be corrected to ‘I

like books that have pictures’. Thus, how we correct the first part of the sentence

influences whether or not the second part of the sentence must be corrected. If both

corrections are in our reference set, we will be fine. But while it may be possible,

it would be much more difficult to assess the performance of the correction when

we only have annotated data on the errors and their corrections. Having a large

number of reference sentences would help mitigate this type of problem to some

degree with regard to the evaluation of such sentences. It is also notable that,

in comparison with machine translation evaluation, collecting corrections for the

sentences is a much easier task than finding various correct translations, since the

task of editing is much easier than translation and there usually exists a much

larger set of qualified people. Instead of having to find people who are fluent in

two languages, we only need to find people who are qualified in a given language

to obtain proper reference sentences.

Using our manually corrected reference sentences, we evaluate our model’s

correction performance using METEOR and BLEU. Since METEOR and BLEU

are fully automated once we have our reference translations (manual corrections),

53

Table 4.1: BLEU and METEOR scores for ESL sentences vs manual corrections

on 686 sentences, averaged by equally weighting each reference sentence

METEOR BLEU
Original ESL sentences 0.8468 0.7644
Manual corrections 0.9702 0.9561

Table 4.2: BLEU and METEOR scores for ESL sentences vs manual corrections

on 686 sentences, averaged by equally weighting each observed sentence

METEOR Better(M) BLEU Better(B)
Original ESL sentences 0.8399 18 0.7513 44
Manual corrections 0.9647 576 0.9475 570

we can run evaluation on our tests without the need for any further manual input.

While these two evaluation methods were created for machine translation, they

also have the potential of being used in the field of grammar correction evaluation.

While these parallels exists, we note that the output of machine translation is

often not at the level of fluency as the sentences needing grammar correction.

Thus, one difference between machine translation and our task is that finding the

right lemma is in itself something to be rewarded in MT, but is not sufficient for

our task. Because of this, evaluation of grammar correction should be more strict.

Using the ‘stemmer’ or ‘synonymy’ modules would actually allow for some of the

exact errors that we are trying to fix. Thus, for METEOR, we use the ‘exact’

module for evaluation of our output sentences. For BLEU, we used a max of 4-

grams, and set the weights for the geometric mean to be uniform (wi =
1
4
). For

METEOR, the parameters were set so that (α,β,γ)=(0.8,0.83,0.28), based on the

parameter performance evaluation of English in Lavie and Agarwal (2007).

To validate our evaluation method, we ran a simple test by calculating the

METEOR and BLEU scores for the observed sentences, and compared them with

the scores for the manually corrected sentences, obtained using the methodology in

Section 3.2.1, to test for an expected increase. The scores for each correction were

evaluated using the set of corrected sentences minus the correction sentence being

54

Table 4.3: Number of sentences which have a higher average BLEU, METEOR

score on 686 sentences. The improvements are significant by the sign test at

p < 0.00001.

METEOR BLEU
Original ESL sentences 18 44
Manual corrections 576 570

Tied 92 72

evaluated. For example, suppose we have the observed sentence o, and correction

sentences c1, c2, c3, c4 and c5 from Mechanical Turk. We run METEOR and BLEU

on both o and c1 using c2, c3, c4 and c5 as the reference set, as shown on the top

part of Figure 4.5. We repeat the process for o and c2, using c1, c3, c4 and c5 as

the reference set, shown in the middle segment of Figure 4.5, and so on, until we

have run METEOR and BLEU on all 5 correction sentences. Using our evaluation

set of 1017 manually labeled sentences, we ran this test. Note that for the test, we

must have at least 2 reference sentences, or corrections which claim the original

sentence to be incorrect. Of the 1016 sentences, 686 had at least two reference

sentences. We calculated the averages for the BLEU and METEOR values by

weighting the result for each reference sentence with the same weight. The average

METEOR score for the ESL sentences was 0.8468, whereas the corrected sentences

had an average score of 0.9702. For BLEU, the average scores were 0.7644 and

0.9561, respectively, as shown in Table 4.1. We also calculated the averages for the

BLEU and METEOR values by equally weighting the average score values for each

observed sentence. The average METEOR score in this case for the ESL sentences

were 0.8399, whereas the corrected sentences had an average score of 0.9647. For

BLEU, the average scores were 0.7513 and 0.9475, respectively, as shown in Table

4.2. We can see that in both cases, the manual corrections score much higher than

the original ESL sentences, for both metrics. To make sure this was not just an

artifact of a few high scores, we also counted the number of sentences for which

the BLEU and METEOR scores had a higher average for the original sentence

compared to the reference sentences, and vice versa, as shown in Table 4.3. Both

55

metrics give us a much higher rate of agreement between the manual references

than with the ESL sentence. The improvements are significant by the sign test at

p < 0.00001. Thus, we have confirmed that the corrected sentences score higher

than the ESL sentence.

We now present each of our noise models and their performance in the

following chapter.

Chapter 4, in part, is a reprint of the material as it appears in Automated

Whole Sentence Grammar Correction Using a Noisy Channel Model in Proceed-

ings of the 49th Annual Meeting of the Association for Computational Linguistics

(ACL-HLT 2011), Y. Albert Park and Roger Levy. The dissertation author was

the primary investigator and author of this paper.

56

Figure 4.5: Evaulation validation method example for the first three reference

sentences and the observed sentence. The top figure shows the BLEU scores

being calculated on the observed sentence o and manual correction c1, using c2,

c3, c4 and c5 as reference sentences. The middle figure shows calculations of the

BLEU score on the observed sentence and manual correction c2, using c1, c3, c4

and c5 as reference sentences, and so on.

Chapter 5

Noise models

In this chapter, we present the various noise models used to emulate the

mistakes ESL students make during English sentence production. Each noise model

represents a type of common mistake made by ESL students. All noise models take

the form of a wFST. As such, these noise models can be cascaded into a combined

noise model simply by composing them together. To do this, we simply need to

define an ordering of the noise models. This is significant in that we can combine

any selection of noise models without much difficulty. Because making changes to

the noise models is not necessary, this process is almost effortless, which allows us

to integrate various noise models at will.

In our explanation of the models below, we make use of the expression

‘w1 → w2’. This expression is used to signify that the input word w1 is changed

by the specified noise model to the output word w2. We use the term backtracking

to denote the creation of a model by setting the output values of the model to the

input vocabulary of the succeeding noise model or observed sentence, as explained

in Section 2.2.6. We use the terms preceding model and following model to denote

the models on the composition chain which come right before and right after the

current model. The language model will always be the first model in the chain,

and the observed sentence wFST will always be the last model of the chain. For

example, if we use a language model L, two noise models N1 and N2, and an

observed sentence wFST S, and decide to order the models in the order L →
N1 → N2 → S, then the preceding model of N1 is the language model L, and the

57

58

following model is N2. We use the term language vocabulary to denote all words

in our language model. The term input vocabulary set denotes the set of words

or strings which are possible inputs of the current wFST, and output vocabulary

set denotes the set of possible output words or strings of the current wFST. All

parameters for our noise models were initialized so that the probability of making

an error was 0.01. When multiple error types were possible at a given choice point

in the transduction, the error probability was equally divided between each type.

5.1 Spelling errors

5.1.1 Model

The spelling error noise model accounts for spelling errors made by writ-

ers. For spelling errors, we allowed all spelling errors which were a Damerau-

Levenshtein distance of 1 (Damerau, 1964; Levenshtein, 1966) and preserved the

first letter. The DL is a string metric, or the “distance” between two strings, and

is equal to the minimal number of operations needed to get from one string to the

other. The possible operations are insertion, deletion, substitution and transpo-

sition (of adjacent characters). While allowing a DL distance of 2 or higher may

likely have better performance, the model was constrained to a distance of 1 due

to memory constraints. The first letter was also preserved for the same reason. We

specified one parameter λn for each possible word length n. Each parameter is the

total probability of making a spelling error for a given word length. For each word

length we distributed the probability of each possible spelling error equally among

all possible error results. For example, the probability of ‘car→cae’ has the same

as the probability as ‘car→can’, which also has the same probability as ‘car→carg’

and ‘pet→prt’. For word length n, and a word with no consecutively repeating

characters, we have n−1 deletion errors, 25(n−1) substitution errors, n−2 trans-

position errors, and 25n+ 1 insertion errors, and the probability for each possible

error is λn

n−1+25(n−1)+n−2+25n+1
. In the case of words with consecutive repeating

letters, the repeating letters decrease the number of possible erroneous outcomes

for deletion and transposition, and the denominator is adjusted accordingly. The

59

maximum word length for spelling errors is set to 22, giving us 22 parameters.

5.1.2 wFST construction

The construction of the wFST for the spelling error model is quite simple.

The wFST is a one state wFST, which is both the start state and the end state.

Using backtracking, we find every string in the input vocabulary set of the following

model. For each word in the set, we create an arc for every possible word in the

language vocabulary which may map to that string, by either being the same (as

in having no spelling error) or having a DL distance of 1. The weight of each arc

is determined by length of the input word and the corresponding parameter, and

is calculated as specified above. For example, if the string ‘cav’ was found, arcs

such as ‘can→cav’, ‘car→cav’, ‘cave→cav’, etc. would be added. The probability

for the first two would be identical, since they both have the same length, and

the probability of ‘cave→cav’ would be dependent on the parameter for four letter

words.

5.1.3 Results

Using a set of 10,000 sentences from the training set, we trained our spelling

error noise model for 15 iterations. The resulting values for each parameter are

shown in Table 5.1. Using these parameters, we found the maximum posterior

probability corrections for the sentences in our evaluation set, as explained in Sec-

tion 2.2.7. This resulted in sentences which achieved higher BLEU and METEOR

scores in comparison to the original sentences, as shown in Table 5.2. We can see

that the evaluation scores from METEOR and BLEU both increase when using

the spelling error noise model to correct the sentences. To make sure the higher

score of our corrections were not due to some random score increases, we checked

the number of sentences which had score improvements, as well as the number of

sentences which had a decrease in score. For BLEU, we can see that 48 out of the

1016 sentences had an increase in score, while only 3 had a decrease in score. The

number of sentences with increasing/decreasing scores is similar for METEOR.

60

Table 5.1: Parameter values for spelling error noise model

Word length Parameter value
1 0.00009289
2 0.0001053
3 0.0007390
4 0.0008533
5 0.002957
6 0.006895
7 0.01133
8 0.01115
9 0.01616
10 0.01285
11 0.01672
12 0.01817
13 0.01650
14 0.01551
15 0.01172
16 0.00000001077
17 0.001044
18 0
19 0
20 0
21 0
22 0

Table 5.2: Average evaluation scores for spelling error noise model run on 1016

sentences, along with counts of sentences with increased (↑) and decreased (↓)
scores.

BLEU ↑ ↓ METEOR ↑ ↓
ESL Baseline 0.715634 0.821000
Spelling 0.721565 48 3 0.824764 45 4

61

We also compared the results of using the spelling error noise model to

the output results of using the GNU Aspell 0.60.6 spelling checker, using our

development data set. The development set was used to restrict any visual access,

i.e. by the researcher, to the evaluation set. Since we are using METEOR and

BLEU for our evaluation metric, we needed to obtain a set of corrected sentences

from Aspell. Aspell lists the suggested spelling corrections of misspelled words in a

ranked order, so we replaced each misspelled word found by Aspell with the word

with the highest rank (lowest score) for the Aspell corrections. One difference

between Aspell and our model is that Aspell only corrects words which do not

appear in the dictionary, while our method looks at all words, even those found in

the dictionary. Thus our model can correct words which look correct by themselves,

but seem to be incorrect due to the bigram context. Another difference is that

Aspell has the capability to split words, whereas our model does not allow the

insertion of spaces.

The results of the experiment are shown in Table 5.3. We can see that our

model has better performance, due to better word selection, despite the advantage

that Aspell has by using phonological information to find the correct word, and the

disadvantage that our model is restricted to spellings which are within a Damerau-

Levenstein distance of 1. Another noticeable difference is that Aspell makes many

incorrect ‘corrections’. The higher score for our model is due to the fact that it

is context-sensitive, and can use other information in addition to the misspelled

word. For example, the sentence ‘However , I couldn’t concentrate on studing for

my subjects because i always thought for him .’ was edited in Aspell by changing

‘studing’ to ‘studding’, while our model correctly selected ‘studying’. The sentence

‘So I can reach the theater in ten minuets by foot’ was not edited by Aspell, but

our model changed ‘minuets’ to ‘minutes’. Another difference that can be seen

by looking through the results is that Aspell changes every word not found in the

dictionary, while our algorithm allows words it has not seen by treating them as

unknown tokens. Since we are using smoothing, these tokens are left in place if

there is no other high probability bigram to take its place. This helps leave the

proper nouns and words not found in the vocabulary intact.

62

Table 5.3: Aspell vs Spelling noise model

BLEU ↑ − ↓ METEOR ↑ ↓
ESL Baseline 0.679113 0.798580
Spelling 0.687684 24 2 1 0.803293 25 1
Aspell 0.683646 26 14 22 0.801122 25 24

Looking into the actual results, we found the following statistics. 63 of the

504 sentences were edited by either Aspell or our model. We found that 26 of

these sentences were edited by both Aspell and our spelling noise model, and 36

were edited only by Aspell, and 1 sentence was edited only by our model. Based

on the BLEU scores of the edited sentences, 14 of the 26 sentences which were

edited by both systems had the same scores. 12 of these sentences had improved

scores, and 2 had the same score with respect to the original ESL sentence. Most

of these sentences had the same edits. In only 3 of the 24 sentences did Aspell

have better scores, compared to 9 sentences for our spelling noise model. Out of

the 36 sentences edited only by Aspell, 10 sentences had improved scores, 9 had

the same score, and 17 had a decreased scores. This shows that Aspell was not

doing well in selecting the correct edit, compared to our system, which leaves the

word alone if it cannot find a substitute with high enough probability.

5.2 Article choice errors

5.2.1 Model

The article choice error noise model simulates incorrect selection of articles.

In this model we learn n(n− 1) parameters, one for each article pair. Since there

are only 3 articles (a, an, the), we only have 6 parameters for this model (a→an,

a→the, an→a, an→the, the→a, the→an).

63

Table 5.4: Calculated probabilities for article choice error noise model

Word length Parameter value
the→the 0.95920
the→a 0.03970
the→an 0.00110
a→a 0.95790
a→the 0.04149
a→an 0.00061
an→an 0.69647
an→the 0.18577
an→a 0.11776

Table 5.5: Average evaluation scores for spelling and article error noise model

run on 1016 sentences, along with counts of sentences with increased (↑) and
decreased (↓) scores.

BLEU ↑ ↓ METEOR ↑ ↓
ESL Baseline 0.715634 0.821000
Spelling only 0.721565 48 3 0.824764 45 4
Spelling & Article 0.722032 53 4 0.825081 50 5

5.2.2 wFST construction

The construction of the wFST for the article choice error model is even

simpler than the spelling error model. Again, the wFST is a one state wFST,

which is both the start state and the end state. Using backtracking, we find every

string in the input vocabulary set of the following model. For each word in the set,

we create an arc for every word in the set, and set the probability weight to 1, with

the exception of the 3 articles a, an and the. For each of these words, we create

3 arcs for each of the possible transitions, and assign the corresponding weights

according to their parameters.

64

Figure 5.1: Full model used for article choice error test. The generation of a

sentence, according to the model, starts with the language model generating a

sentence in the language. This sentence is subjected to the article choice error

model where article choice errors may be introduced, and the output is then

subjected to the spelling error noise model. The output coming from the spelling

error noise model is our observed sentence.

65

5.2.3 Results

Using a set of 10,000 sentences from the training set, we trained our spelling

error and article choice error noise model for 15 iterations. The order of the noise

models was such that article choice error model was directly after the language

model, and followed by the spelling error model, as shown in Figure 5.1. If spelling

errors are introduced, other noise models further down the chain may not be able

to introduce noise due to not being able to find the misspelled word. In reality,

a grammatically erroneous word may also be misspelled, and thus the spelling

error noise model is always put at the end of the chain when more than one noise

model is used. The resulting values for each parameter are shown in Table 5.4.

Using these parameters, we find the maximum posterior probability corrections for

the sentences in our evaluation set, as explained in Section 2.2.7. This results in

sentences which achieve higher BLEU and METEOR scores in comparison to the

spelling model sentences, as shown in Table 5.5. We can see that the evaluation

scores from METEOR and BLEU both increase when using the spelling error noise

model to correct the sentences. Again, we checked the number of sentences which

had score improvements, as well as the number of sentences which had a decrease

in score. For BLEU, we can see that 53 out of the 1016 sentences had an increase

in score, while only 4 had a decrease in score. The number of sentences with

increasing/decreasing scores is similar for METEOR. Overall, we can see that our

model is correcting some errors. Looking through a test run on the sentences in

our development set, we found the following corrections. For the sentence input

‘I thanked for the advertisement which makes me know a existence about various

channel speakers.’, our model correctly edits ‘a’ to ‘the’, improving the quality of

the sentence. Other corrections we found include editing ‘a important decision’ to

‘an important decision’, and ‘a entire stranger’ to ‘an entire stranger’. Counting

through our development set sentences, we found that all 4 incorrect instances of

using ‘a’ instead of ‘an’ were successfully corrected. A case of interest which was

not corrected was the sentence ‘If we living without nature then we must make a

oxgen without a break.’. This is a case where two consecutive words have errors, an

article insertion error followed by a spelling error. In this case, not only is article

66

Table 5.6: 12 most commonly misused prepositions by ESL writers used in

preposition choice noise model

Prepositions list
of, in, for, to, by, with, at, on, from, as, about, since

insertion an error, but also the choice of the erroneous article can also be viewed as

an error. In this case, we might expect our model to edit ‘a’ to ‘an’. While this type

of case could possibly be fixed by our system, in this particular case the bigram

model did not give enough probability to ‘make an oxygen without’, causing our

system to leave the phrase as it was. As for ‘an’, there was only one incorrect

usage of an, in the case it was compounded with another error not covered by our

system (two ‘an’s in a row), and thus was not corrected.

5.3 Preposition choice errors

5.3.1 Model

The preposition choice error noise model simulates incorrect selection of

prepositions. We take the 12 most commonly misused prepositions by ESL writers

(Gamon et al., 2009) and specify one parameter for each preposition pair, as we

do in the article choice error noise model, giving us a total of 12 × 11 = 132

parameters. The prepositions are listed in Table 5.6.

5.3.2 wFST construction

The construction of the wFST for the preposition choice error model is

identical with the article choice error model, except instead of the article arcs, we

do the same process for the preposition arcs.

67

T
a
b
le

5
.7
:
C
al
cu
la
te
d
p
ro
b
ab

il
it
ie
s
fo
r
p
re
p
os
it
io
n
ch
oi
ce

er
ro
r
n
oi
se

m
o
d
el

fr
om
\t
o

-
of

in
fo
r

to
b
y

w
it
h

at
on

fr
om

as
ab

ou
t

si
n
ce

of
0.
94
15

-
0.
01
37

0.
00
73

0.
00
66

0.
00
38

0.
00
55

0.
00
13

0.
00
17

0.
00
74

0.
00
21

0.
00
88

0.
00
04

in
0.
88
44

0.
02
59

-
0.
01
69

0.
01
64

0.
00
83

0.
01
21

0.
00
57

0.
00
53

0.
00
99

0.
00
58

0.
00
81

0.
00
13

fo
r

0.
81
95

0.
04
42

0.
03
24

-
0.
03
49

0.
01
12

0.
01
87

0.
00
69

0.
00
47

0.
00
89

0.
00
61

0.
01
01

0.
00
24

to
0.
98
06

0.
00
32

0.
00
35

0.
00
35

-
0.
00
17

0.
00
23

0.
00
05

0.
00
06

0.
00
13

0.
00
18

0.
00
09

0.
00
01

b
y

0.
80
43

0.
02
92

0.
03
84

0.
02
66

0.
02
67

-
0.
02
89

0.
00
32

0.
00
53

0.
01
68

0.
00
90

0.
00
96

0.
00
21

w
it
h

0.
83
82

0.
02
62

0.
04
25

0.
01
88

0.
02
51

0.
00
91

-
0.
00
57

0.
00
44

0.
00
88

0.
00
78

0.
01
17

0.
00
17

at
0.
49
97

0.
08
91

0.
22
88

0.
04
13

0.
03
82

0.
01
11

0.
03
18

-
0.
01
28

0.
01
88

0.
01
01

0.
01
73

0.
00
10

on
0.
55
66

0.
05
96

0.
12
46

0.
04
56

0.
06
58

0.
01
56

0.
04
91

0.
00
96

-
0.
03
26

0.
01
25

0.
02
59

0.
00
23

fr
om

0.
68
89

0.
06
17

0.
07
30

0.
03
31

0.
05
16

0.
02
26

0.
02
68

0.
00
78

0.
00
67

-
0.
00
71

0.
01
89

0.
00
17

as
0.
85
43

0.
01
31

0.
03
19

0.
01
99

0.
01
24

0.
00
60

0.
01
14

0.
00
36

0.
01
45

0.
00
74

-
0.
00
79

0.
01
77

ab
ou

t
0.
83
67

0.
02
29

0.
02
63

0.
01
33

0.
01
94

0.
01
89

0.
03
36

0.
00
30

0.
00
61

0.
01
55

0.
00
27

-
0.
00
16

si
n
ce

0.
66
22

0.
02
45

0.
08
49

0.
03
40

0.
00
94

0.
01
19

0.
01
00

0.
00
87

0.
05
65

0.
02
69

0.
06
61

0.
00
49

-

68

5.3.3 Results

Using a set of 10,000 sentences from the training set, we trained our spelling

error and preposition choice error noise model for 15 iterations. The order of the

noise models was such that preposition choice error model was directly after the

language model, and followed by the spelling error model. The resulting values for

each parameter are shown in Table 5.7. Using these parameters, we found the max-

imum posterior probability corrections for the sentences in our evaluation set, as

explained in Section 2.2.7. This resulted in sentences which achieved lower BLEU

and METEOR scores in comparison to the spelling model sentences, as shown in

Table 5.9, signaling decreased performance. We can see that the evaluation scores

from METEOR and BLEU both decrease compared to using the spelling error

noise model alone to correct the sentences. Again, we checked the number of sen-

tences which had score improvements, as well as the number of sentences which

had a decrease in score. For BLEU, we can see that 52 out of the 1016 sentences

had an increase in score, which is an increase of 4 sentences over using just the

spelling noise model. However, 7 additional sentences were changed for the worse

when adding in the preposition noise model. The number of sentences with in-

creasing/decreasing scores is similar for METEOR. Overall, we can see that our

model is correcting some errors, but introducing more errors than it is correcting.

A test run on the sentences on our development set returned the corrections in

Table 5.8. We can see that in the first five examples, the noise model is making

incorrect changes. Looking only at the bigram context, the changes look probable,

but using the sentence as a whole, we can see that the changes are incorrect. Thus

the poor performance of the preposition model is due to the lack of sufficient con-

text information for choosing the correct preposition. The last three preposition

changes improve the sentences, showing that this model does have limited success

in correcting preposition errors. Judging from the need of context for prepositions,

a better language model may significantly increase the performance of this error

model.

Chapter 5, in part, is a reprint of the material as it appears in Automated

Whole Sentence Grammar Correction Using a Noisy Channel Model in Proceed-

69

Table 5.8: Original and fixed sentence pairs with preposition changes using the

spelling and preposition error noise model on the development set. The original

observed sentences are denoted Sn, and the corresponding fixed version is

denoted Sn, where n is the sentence number

S1 : Distrust about desire between two have been growing in their . . .
S1 : Distrust of desire between two have been growing in their . . .

S2 : My seat was so remotely located from the stage that. . .
S2 : My seat was so remotely located on the stage that. . .
S3 : . . . and there were many examples about effect on secondhand smoke.
S3 : . . . and there were many examples in effect on secondhand smoke.
S4 : Some people say that listening to the advice of the family . . .
S4 : Some people say that listening to the advice on the family . . .
S5 : . . . rely on parents more and more by accomplishing something alone.

S5 : . . . rely on parents more and more for accomplishing something alone.

S6 : At that time, there were so many sources to handle in internet that I . . .
S6 : At that time, there were so many sources to handle on internet that I . . .
S7 : . . . he only concentrate in math.
S7 : . . . he only concentrate on math.
S8 : . . . makes me know a existence about various channel speakers.
S8 : . . . makes me know a existence of various channel speakers.

Table 5.9: Average evaluation scores for spelling and preposition error noise

model run on 1016 sentences, along with counts of sentences with increased (↑)
and decreased (↓) scores.

BLEU ↑ ↓ METEOR ↑ ↓
ESL Baseline 0.715634 0.821000
Spelling only 0.721565 48 3 0.824764 45 4
Spelling & Preposition 0.721451 52 10 0.824450 49 12

70

ings of the 49th Annual Meeting of the Association for Computational Linguistics

(ACL-HLT 2011), Y. Albert Park and Roger Levy. The dissertation author was

the primary investigator and author of this paper.

Chapter 6

More noise models

In this chapter, we present some of the more complicated noise models. We

use the same terminology as defined in the previous chapter.

6.1 Wordform choice errors

6.1.1 Model

The wordform choice error noise model simulates choosing the incorrect

wordform of a word. For example, choosing the incorrect tense of a verb (e.g.

went→go), or the incorrect number marking on a noun or verb (e.g. are→is)

would be a part of this model. This error model has one parameter for every

number of possible inflections, up to a maximum of 12 inflections. This results

in 11 parameters, since there is no need for a parameter for words with only one

inflection, i.e. itself. For example, the word ‘swim’ has the inflections swim,

swims, swam, swimming, swum. Since it has 4 inflections other than itself, in our

wordform choice noise model ‘swim’ would be associated with the 4th parameter.

Each parameter is the total probability of choosing the wrong inflection of a word,

and the probability is spread evenly between each possible inflection. For example,

if the 4th parameter had a value of 0.04, then the probability of swim→swim

would be 1 − 0.04 = 0.96, and the probability of swim→swims, swim→swam,

swim→swimming, swim→swum would each be 0.04/4 = 0.01. We used CELEX

71

72

Table 6.1: Parameter values for wordform error noise model

Number of forms Parameter value
1 0.0
2 0.020143
3 0.00360
4 0.01334
5 0.00970
6 0.00308
7 0.00027
8 0.00450
9 0.00033
10 1.0
11 0.00112
12 0.00049

(Baayen et al., 1995) to find all the possible wordforms of each observed word.

6.1.2 wFST construction

The construction of the wFST for the wordform choice error model is similar

to the spelling error model. The wFST is a one state wFST, which is both the

start state and the end state. Using backtracking, we find every word in the input

vocabulary set of the following model. For each word in the set, we create an arc for

every possible word in the language vocabulary which may map to that string by

being some form of inflection of that word. The weight of each arc is determined

by the number of inflections of the input word of the arc, and is calculated as

specified above.

6.1.3 Results

Using a set of 10,000 sentences from the training set, we trained our spelling

error and wordform choice error noise model for 15 iterations. The order of the

noise models was such that the wordform choice error model was directly after the

language model, and followed by the spelling error model. The resulting values

for each parameter are shown in Table 6.1. We can see that as the number of

73

Table 6.2: Average evaluation scores for spelling and wordform error noise

model run on 1016 sentences, along with counts of sentences with increased (↑)
and decreased (↓) scores.

BLEU ↑ ↓ METEOR ↑ ↓
ESL Baseline 0.715634 0.821000
Spelling only 0.721565 48 3 0.824764 45 4
Spelling & Wordform 0.722004 69 15 0.824976 67 16

wordforms increases, there is a trend of having a smaller probability of using the

incorrect wordform. One oddity which may catch your eye is the fact that the

parameter value for words with 10 inflections is 1. This is due to the fact that

there is only one word which actually has 10 inflections. Because this word never

appeared in any of our training sentences, but some of its inflections did appear,

the parameter value resulted in a value of 1. We note that placing a prior on the

noise model parameters and using maximum a posteriori (MAP) estimation would

remedy this phenomenon, and would be one way of expanding on this work. Using

these parameters, we found the maximum posterior probability corrections for the

sentences in our evaluation set, as explained in Section 2.2.7. This resulted in

sentences which achieved improved BLEU and METEOR scores in comparison to

the spelling model sentences, as shown in Table 6.2, signaling better performance.

Again, we checked the number of sentences which had score improvements, as well

as the number of sentences which had a decrease in score. For BLEU, we can see

that 69 out of the 1016 sentences had an increase in score, which is an increase

of 21 sentences over using just the spelling noise model. The number of sentences

with decreased BLEU increased by 12 sentence in comparison to just using the

spelling noise model. The number of sentences with increasing/decreasing scores

is similar for METEOR. Overall, we can see that our model is correcting more

errors than it is making, and our overall BLEU and METEOR scores are better

than using only the spelling model. To get a feel for the actual changes, we ran a

test run on the sentences on our development set. The results are shown in Table

6.3.

74

Table 6.3: Original and fixed sentence pairs with wordform changes using the

spelling and wordform error noise model on the development set. The original

observed sentences are denoted Sn, and the corresponding fixed version is

denoted Sn, where n is the sentence number

S1 : As I mention above, I agree the statement that we . . .
S1 : As I mentioned above, I agree the statement that we . . .
S2 : In Korea student spend much money in bookstores, game facilities , . . .
S2 : In Korea students spend much money in bookstores, game facilities , . . .
S3 : . . . daughters who want to get marry with foreigners.

S3 : . . . daughters who want to get married with foreigners.
S4 : Maybe there is people who oppose to live in the big city . . .

S4 : Maybe there is people who opposed to live in the big city . . .

S5 : . . . due to the feelings including satisfactions from win, prides from goal.

S5 : . . . due to the feelings including satisfactions from win, pride from goal.

S6 : First of all, the more time spend with, the more influence give and take.

S6 : First of all, the more time spent with, the more influence give and take.

S7 : . . . shows an idea that a person expresses by putting himself into . . .

S7 : . . . shows an idea that a person expressed by putting himself . . .

S8 : . . . can evaluate students and the student can also appraise teachers.

S8 : . . . can evaluate students and the student can also appraising teachers.

S9 : If their contents are more popular, they can entice more advertisements.
S9 : If their contents are more popular, they could entice more advertisements.

75

The results in Table 6.3 are ordered from best score increase to worst score

decrease, by ratio of the BLEU scores. We can see that the corrections to S1, S2,

and S3 are correct. For S4, we can see that there are many mistakes in the original

sentence. A proper correction might be ‘Maybe there are people who are opposed

to living in the big city . . . ’. Our model has failed to correct ‘is’ to ‘are’, and ‘live’

to ‘living’, but it has identified and changed ‘oppose’ to ‘opposed’, increasing the

BLEU and METEOR scores. If we look at the partial phrase ‘to live in’, we can see

that this phrase, without the preceding context, seems to be a legit phrase. The

probability of this phrase using a bigram model is not something that our model

would calculate to be very low in comparison with ‘to living in’. Thus our model

leaves ‘to live in’ unchanged. Using the bigram model as our language model does

not give us enough information to fix this error. This is also seems true for sentence

S8, in which the change being made is ignorant of the context falling outside of

the bigram window which should restrict it. For sentence S6, the actual meaning

of the sentence itself is not quite clear. For S7 and S9, it is not quite clear whether

the changes are for the better, but they both seem to be acceptable. The BLEU

and METEOR scores, however, decreased, due to the fact that the task used to

collect evaluation sentences specified to use as much of the original sentence as

possible. Through the examples, we can see how using the bigram model restricts

the extent of our corrections, and also how valid changes to words which do not

need changing decreases our METEOR and BLEU scores. We posit that using a

better language model will likely increase the model’s performance.

6.2 Word insertion errors

6.2.1 Model

The word insertion error noise model simulates the addition of extraneous

words to the original sentence. For this error model, one consideration which

we need to take into account is the bigram language model’s bias toward shorter

sentences. Because the bigram model gives higher probabilities to sentences with

fewer words, we find that allowing all words to be possible extraneous words results

76

in the model correcting sentences by removing far too many words from each

sentence. Thus, instead of allowing all words to be inserted, we create a list of

words which we shall call the extraneous word set, by combining the prepositions

and articles found in the article choice and preposition choice errors. We assume

that each of the words on the list has a probability of being inserted erroneously.

There is a parameter for each word, which is the probability of that word being

inserted. Thus we have a total of 15 parameters for this noise model. Only one

word can be inserted between existing words.

6.2.2 wFST construction

The construction of the wFST for the insertion error model is not compli-

cated. The wFST is a two state wFST, the start state and the insertion state.

Both states are end states. Using backtracking, we find every string in the in-

put vocabulary set of the following model. For each word in the set, we cre-

ate an arc from the start state to itself, and set the probability weight to be

1 − (total insertion probabilities). In addition to this arc, we also create an arc

from the insertion state to the start state, with a probability weight of 1. These

arcs guarantee that a max of one word is inserted between words. Finally, we add

an arc for each word in our extraneous word set between the start state and the

insertion state. The input value of the arc is set to the empty string, and the

output value is set to the current word. The probability weight is set to be the

corresponding parameter.

6.2.3 Results

Using a set of 10,000 sentences from the training set, we trained our spelling

error and word insertion error noise model for 15 iterations. The order of the

noise models was such that the word insertion error model was directly after the

language model, and followed by the spelling error model. The resulting values

for each parameter are shown in Table 6.4. The word insertion error model was

restricted to articles and 12 prepositions, and thus did not make many changes,

77

Table 6.4: Parameter values for word insertion error noise model

Word Parameter value
the 0.000826
a 0.000524

an 0.000016
of 0.000130
in 0.000342
for 0.000092
to 0.000262
by 0.000067

with 0.000121
at 0.000072
on 0.000122

from 0.000092
as 0.000130

about 0.000186
since 0.000046

Table 6.5: Average evaluation scores for spelling and word insertion error noise

model run on 1016 sentences, along with counts of sentences with increased (↑)
and decreased (↓) scores.

BLEU ↑ ↓ METEOR ↑ ↓
ESL Baseline 0.715634 0.821000
Spelling only 0.721565 48 3 0.824764 45 4
Spelling & Insertion 0.722218 53 3 0.824928 49 5

78

Table 6.6: A couple of examples of original and fixed sentence pairs with

extraneous word removal using the spelling and insertion error noise model on

the development set. The original observed sentences are denoted Sn, and the

corresponding fixed version is denoted Sn, where n is the sentence number

S1 : Thus, in order to have good grades, people attend the classes mandatorily.
S1 : Thus, in order to have good grades, people attend classes mandatorily.
S2 : . . . that people attend a big event and a exciting place.
S2 : . . . that people attend a big event and exciting place.

but increased the BLEU and METEOR scores when it did, as seen in Table 6.5.

A couple of examples from our development set can be found in Table 6.6. As the

sample set is too small, it is hard to make an analysis of the performance of this

model using the limited examples. The lack of abundance of corrections is likely

due to the very tight restriction on the type of words this model includes. One

thing to note is that since we are using a bigram language model, the language

model itself is biased toward shorter sentences. Since we only included words

which were needed when they were used, we did not run into problems with this

bias. When we tried including a large set of commonly used words, we found

that a very large number of words from the observed sentences were being erased

because of the bigram model’s probabilistic preference for shorter sentences. If

a different language model, one which is not biased toward shorter sentences, is

used, it may be possible to include a much larger set of words, which may increase

the performance of this noise model by increasing the number of corrections it can

make.

6.3 Word deletion errors

6.3.1 Model

The word deletion error noise model models the opposite phenomenon of the

word insertion noise model, i.e. the error of omitting a word. The word deletion

79

noise model has just one parameter, which corresponds to the probability of a

word being deleted. Because of memory constraints, we put two restrictions on

our word deletion error noise model. The first restriction is that if any word is

deleted, the following word is not eligible for deletion. In other words, consecutive

words may not be deleted simultaneously. The second restriction is that, based on

the previous word, only the top 1,000 following words based on the frequency of

the bigram counts from the BNC can be deleted. For example, given the sentence

‘The boy went home .’, and assuming that ‘boy’ was not deleted, ‘went’ would

have a probability of being deleted only if it was one of the top 1,000 words that

follow the word ‘boy’ in terms of counts, per the BNC. These two restrictions keep

the size of our noise model tractable, which we will explain in more detail below.

Each of the words which were deemed eligible candidates for deletion had the same

probability of being deleted, equal to the lone parameter of this model.

Let us consider the case of a deletion error noise model without the above

restrictions. If there is no restriction on consecutive word deletions, the number

of paths which can lead to any observed sentence would be infinite. For example,

the sentence ‘I can go .’ may be derived from the sentence ‘I can not go .’ or it

could be derived form ‘I can not not go .’ or from ‘I can not not not go .’ and

so on. This would make our training problem much more time consuming, with

little perceived benefit. Instead, we restricted deletions of consecutive words. This

means that given an observed sentence with n words, the sentence can be derived

from a sentence with at most 2 × (n + 1) words, making the number of possible

original sentences finite. If we add no other restrictions, for each of the n+1 places

in which a deleted word may have existed we would have to take into account every

possible word in the language vocabulary. This brings about two effects: the input

to the word deletion noise model will be every possible word in the vocabulary,

and the number of arcs from each observed word context state will be the size of

the vocabulary. The first effect makes noise models higher up on the chain much

larger, as their output vocabulary must match the input vocabulary of the lower

level noise model, and this trickles up to the language model, which must then

contain all words in the vocabulary, making the language model much larger than

80

desirable. The second effect makes our noise model quite large, especially when

combined with other models such as the spelling noise model which is already

adding a lot of new words into higher level noise models. Thus, to stave off this

huge increase of noise model vocabulary size, we put a restriction on the words

which may be deleted given the previous context. The restriction, as stated above,

only allows the top 1,000 words that follow the previous context word to be deleted.

This reduces the number of arcs from each observed word state to 1,000, which is

much less than the size of the language vocabulary, and eliminates the need for

the language model to include every possible word.

6.3.2 wFST construction

To construct the word deletion error model, we first use backtracking to

find every string in the input vocabulary set of the following model. Using this set,

we create a start state, an epsilon state, and a state for every word in the input

vocabulary set. All word states and the epsilon state are end states. To insert

the arcs for which no deletion has occurred, we do the following. For each state

s, including the start state and the epsilon state, we add a new arc for each word

w in the input vocabulary set. Given state s and word w, we create an arc from

that s to the word state of w, setting the input and output values to w. If the

current word is not one of the top 1,000 following words given the word context

of s, we set the probability weight to 1. If the word is one of the top 1,000 then

we set the probability weight to 1− parameter value. Note that it does not really

matter how many words we have decided to use, since our parameter refers to the

probability of any deletable word being deleted. If we only have the top 100 words

or would like to do the same for the top 2,000 words following one of the words,

the process would be just the same, and we would set all deletion contestants to

have a probability weight of 1− parameter value. The epsilon state has no word

context, and thus all arcs from the epsilon state have a probability weight of 1.

Finally, we add the arcs representing word deletion errors by doing the last step.

For each state s, excluding the epsilon state, we add arcs from the current state to

the epsilon state for each of the top 1,000 words following the current state word.

81

Table 6.7: Parameter value for word deletion model

Parameter value
0.000003251

Table 6.8: Average evaluation scores for spelling and word deletion error noise

model run on 1016 sentences, along with counts of sentences with increased (↑)
and decreased (↓) scores.

BLEU ↑ ↓ METEOR ↑ ↓
ESL Baseline 0.715634 0.821000
Spelling only 0.721565 48 3 0.824764 45 4
Spelling & Deletion 0.721565 48 3 0.824764 45 4

The input word of the arc is the current word of the 1,000 words, and the output

word is the empty string. The weight of each of the arcs is set to the parameter

value, which is equal to the probability of a word being deleted. For example, for

the word state of go, if back was one of the top 1,000 words following go, and the

parameter was 0.03, then we would add an arc from word state go to the epsilon

state with the input word as back, the output word as ε, and the weight to be 0.03.

6.3.3 Results

Using a set of 10,000 sentences from the training set, we trained our spelling

error and deletion error noise model for 15 iterations. The order of the noise models

was such that word deletion error model was directly after the language model,

and followed by the spelling error model. The resulting value for the parameter

is shown in Table 6.7. As mentioned in the previous section, one thing to note is

that since we are using a bigram model for the language model, the model itself

is biased toward shorter sentences. This means that the model generally gives

higher probability to shorter sentences, and thus will favor not having deletions

than to having them, due to the language model. Thus, for our model to detect a

deletion error of some word wd between words wn and wn+1, given the probability

82

of deletion pd, we find that p(wd|wn) × p(wn+1|wd) × pd must be greater than

p(wn+1|wn) × (1 − pd). Since the probability value found in Table 6.7 is also

very small, this means that p(wd|wn) × p(wn+1|wd) must be much greater than

p(wn+1|wn) to be true, which is not something which occurs often. In Table 6.8, we

can see that our deletion model does nothing to change the sentences, presumably

because of the bias of our language model toward shorter sentences.

6.4 Combined models

6.4.1 Model

In addition to defining various new noise models, one of the advantageous

characteristics of our system is that we can compose various noise models together

into one, as we have already done with our various noise models and the spelling

error noise model. We are not restricted to just 2 noise models, and may compose as

many noise models as we wish, creating noise models which model various types of

error simultaneously (or to be more exact, in a specified order on the given sentence,

allowing multiple types of errors). We are only constrained by the computational

feasibility of the composition of the models. To see the capabilities of composing

various noise models together, we composed a set of four noise models together and

evaluated the performance. We chose the models from the previously described

noise models, allowing all noise models which had an increase in evaluation scores

over the ESL baseline, and in cases where the spelling error noise model was

composed, we used the spelling error noise model as the baseline. The chosen

noise models were the spelling error noise model, the article choice error noise

model, the wordform choice error noise model and the word insertion noise error

model.

6.4.2 wFST construction

To construct the wFST for the combined model, we simply construct each

of the separate noise models as previously described, and compose the noise models

83

BLEU ↑ ↓ METEOR ↑ ↓
ESL Baseline 0.715634 0.821000
Spelling only 0.721565 48 3 0.824764 45 4
Spelling & Article 0.722032 53 4 0.825081 50 5
Spelling & Preposition 0.721451 52 10 0.824450 49 12
Spelling & Wordform 0.722004 69 15 0.824976 67 16
Spelling & Insertion 0.722218 53 3 0.824928 49 5
Spelling & Deletion 0.721565 48 3 0.824764 45 4
Combined models 0.723113 79 18 0.825508 75 18

Table 6.9: Average evaluation scores for various noise models run on 1016

sentences, along with counts of sentences with increased (↑) and decreased (↓)
scores.

together, resulting in our combined noise model. Before we can compose the noise

models, we need to decide on an ordering. For our combined model, we combined

the models in the order ‘word insertion → wordform error → article choice error

→ spelling error model’.

6.4.3 Results

Using a set of 10,000 sentences from the training set, we trained our com-

bined noise model for 30 iterations. We have already specified the ordering in the

previous section.

The results of the combined model are shown in Table 6.9, along with the

scores of the previous models. We can see that the combined noise model shows

the best performance thus far, having the highest BLEU and METEOR scores.

The combined noise model makes the corrections for various also has the largest

number of sentences with increased BLEU and METEOR scores.

Chapter 6, in part, is a reprint of the material as it appears in Automated

Whole Sentence Grammar Correction Using a Noisy Channel Model in Proceed-

ings of the 49th Annual Meeting of the Association for Computational Linguistics

(ACL-HLT 2011), Y. Albert Park and Roger Levy. The dissertation author was

the primary investigator and author of this paper.

Chapter 7

Conclusion

We have introduced a novel way of finding grammar and spelling correc-

tions, which uses the EM algorithm to train the parameters of our noisy channel

approach. One of the benefits of our approach is that it does not require a parallel

set of erroneous sentences and their corrections. This allows us to train on a set of

unedited texts, which are much more readily available. Depending on the domain

one wishes to train on, this may often be quite feasible as we have shown by our

collection of Korean ESL students’ writing samples. Our data set could easily have

been for ESL students of any native language, or could also be a data set of other

groups such as young native English speakers, or the whole set of English speakers

for grammar correction. Data sets from testing agencies of foreign language skill

such as ETS, or essays collected by various educational language centers such as

those in universities created to help foreign students may be used to train our

model, if made available. Using these data sets, we can train our noisy channel

model, as we have shown using a bigram language model, and a wFST for our

noise model. We have also shown how to use weighted finite-state transducers and

the expectation semiring, as well as wFST algorithms implemented in OpenFST to

train the model using EM. Another advantage of our approach is that our model

is not confined to a specific error type. As long as an error model can be built

using a wFST, multiple error models may be added on. All that is needed is an

extra composition step for each model. We have shown that composing various

error models increases the performance of our model. Since our approach finds

84

85

the highest probability path over all possible sentences which are found by back-

tracking from the observed sentence, multiple errors can be fixed in one sentence.

Even better, errors which are compounded on each other and cannot be solved by

looking at just one type of error can be fixed by our system.

For evaluation, we have introduced a novel way of evaluating grammar cor-

rections, using MT evaluation methods, that we have not seen in other grammar

correction literature. The introduction of new corpora for the field of grammar

correction during the last couple of years is very promising. These type of corpora

are valuable because they can be used to find precision and recall values for gram-

mar correction systems, and can be used to pinpoint the performance on specific

types of errors. Unfortunately, there are only a few languages for which such cor-

pora are currently available, and the corpora are very limited in the scope of the

producers. Further research in languages for which such corpora have not been

developed could make use of our evaluation technique.

We wish to note that the machine learning community has also been pon-

dering over the problem of evaluating machine translation output, and this is an

ongoing area of research. Various types of metrics have been proposed, such as

BLEU, METEOR, NIST (Martin and Pryzbocki, 2006), TER (Snover et al., 2006),

ROUGE (Lin and Och, 2004), etc. Research has also been done on developing met-

rics for evaluating the various proposed metrics agreement with human judgment,

called meta-metrics, to see which is a better metric for evaluating machine trans-

lation output (Callison-Burch et al., 2007; Zhang and Vogel, 2010; Amigó et al.,

2006). While BLEU currently seems to be one of the most popular metrics used

in the machine translation field, research is continuously being done in search of

better methods of evaluation, and we believe better metrics may appear in the

future. The main concept we wish to emphasize is that of the parallels between

the task of machine translation and grammar correction. Due to these parallels,

future advances in evaluation techniques by the machine learning community could

also be put to use for evaluating grammar correction performance, in the way we

have done.

The experiment results have shown that our model does succeed in correct-

86

ing some of the erroneous sentences, but it is far from perfect. Further examina-

tion of the produced corrections shows the restrictions of using a bigram language

model. We have seen that the bigram model does not carry enough contextual in-

formation to correct various grammatical errors that are dependent on words that

are outside of the bigram context window. Using a language model which captures

these types of dependencies may allow our system to identify more corrections,

and make better quality corrections with less mistakes. For example, the sentence

‘I prefer being indoors to going outside’ (s1) was incorrectly changed to ‘I prefer

being indoors to go outside’ (s2). Unfortunately, the bigram model gives a much

higher probability to ‘to go outside’ than to ‘to going outside’, since it does not

take the structure of the sentence into consideration. Using a syntactic language

model which is aware of the sentence structure, and also of phrasal structures such

as ‘prefer NP to NP’ so that it assigns a much higher probability to s1 over s2 would

eliminate the change of the original sentence to the erroneous ‘I prefer being indoors

to go outside.’. For example, if the language model generates s1 with probability

0.05, whereas s2 is generated with a probability of 0.0008, and the probability of

the noise model changing go to going is 0.01, whereas the probability of going not

being changed is 0.9, then we can see that p(s1 : s1) = 0.045, which is much greater

than p(s2 : s1) = 0.000008. Thus, our system would not have made the erroneous

correction. Having a better language model will increase the accuracy of our es-

timated probabilities for each sentence, which should increase performance of the

overall system. Some may argue that for speech recognition systems, which often

use a noisy channel approach, n-gram models currently seem to work better than

syntactic models, and this may also be true for grammar correction. But there is

a large difference in the underlying quality of the data for speech recognition and

grammar correction. In speech recognition, figuring out what words a sound wave

maps into is in itself a task, where as in grammar correction, we already start out

with a somewhat understandable sentence, and already have a list of words. Thus

we are starting from a drastically different starting point, in which using syntactic

information is much more feasible, as we have seen our example.

Another area in which it may be possible to increase our system’s perfor-

87

mance is the structure of the noise models. Our current noise models are very

simple, and have a minimal amount of parameters. Adding more parameters and

increasing the complexity of the noise models may also lead to enhancements of

our model. For example, adding various parameters for each type of spelling er-

ror may capture a much better representation of the mistakes a writer will make.

Increasing model complexity does not come without challenges. Computational

constraints must be taken into account, as wFSTs can become very large (as has

already happened in our models, which required over 100GB to run). Our models

have already run into memory size problems that have required optimization, and

the use of machines with large memory capacity.

Our current approach lays the framework for using a noisy channel approach

to the task of automated grammar correction. We have shown that this approach

is feasible and tractable, and produces results which improve the writing of Korean

ESL students.

Bibliography

Ahmad, F. and Kondrak, G. (2005). Learning a spelling error model from search
query logs. In Proceedings of the conference on Human Language Technology
and Empirical Methods in Natural Language Processing, HLT ’05, pages 955–
962, Stroudsburg, PA, USA. Association for Computational Linguistics.

Allauzen, C. and Mohri, M. (2003). Efficient algorithms for testing the twins
property. In Journal of Automata, Languages and Combinatorics, volume 8(2),
pages 117–144.

Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., and Mohri, M. (2007). OpenFst:
A general and efficient weighted finite-state transducer library. In Proceedings
of the Ninth International Conference on Implementation and Application of
Automata, (CIAA 2007), volume 4783 of Lecture Notes in Computer Science,
pages 11–23. Springer. http://www.openfst.org.

Amigó, E., Giménez, J., Gonzalo, J., and Màrquez, L. (2006). Mt evaluation:
human-like vs. human acceptable. In Proceedings of the COLING/ACL on Main
conference poster sessions, COLING-ACL ’06, pages 17–24, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Baayen, H. R., Piepenbrock, R., and Gulikers, L. (1995). The CELEX Lexical
Database. Release 2 (CD-ROM). Linguistic Data Consortium, University of
Pennsylvania, Philadelphia, Pennsylvania.

Bell, T. C., Cleary, J. G., and Witten, I. H. (1990). Text Compression. Prentice
Hall, Englewood Cliffs, NJ.

Bond, F. and Ikehara, S. (1996). When and how to disambiguate? - countability
in machine translation.

Bond, F., Ogura, K., and Kawaoka, T. (1995). Noun phrase reference in japanese-
to-english machine translation. In In Sixth International Conference on Theo-
retical and Methodological Issues in Machine Translation: TMI-95, pages 1–14.

Brill, E. and Moore, R. C. (2000). An improved error model for noisy channel
spelling correction. In Proceedings of the 38th Annual Meeting on Association

88

89

for Computational Linguistics, ACL ’00, pages 286–293, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Brockett, C., Dolan, W. B., and Gamon, M. (2006). Correcting ESL errors using
phrasal SMT techniques. In Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual meeting of the Association
for Computational Linguistics, ACL-44, pages 249–256, Morristown, NJ, USA.
Association for Computational Linguistics.

Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., and Schroeder, J. (2007).
(meta-) evaluation of machine translation. In Proceedings of the Second Work-
shop on Statistical Machine Translation, StatMT ’07, pages 136–158, Strouds-
burg, PA, USA. Association for Computational Linguistics.

Chen, S. and Goodman, J. (1998). An empirical study of smoothing techniques
for language modeling. Technical report, Computer Science Group, Harvard
University.

Chodorow, M. and Leacock, C. (2000). An unsupervised method for detecting
grammatical errors. In Proceedings of the 1st North American chapter of the
Association for Computational Linguistics conference, pages 140–147, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Church, K. W. and Gale, W. A. (1991). A comparison of the enhanced good-turing
and deleted estimation methods for estimating probabilities of english bigrams.
Computer Speech and Language, 5:19–54.

Cucerzan, S. and Brill, E. (2004). Spelling correction as an iterative process that
exploits the collective knowledge of web users. In EMNLP, pages 293–300.

Dahlmeier, D. and Ng, H. T. (2011). Grammatical error correction with alternating
structure optimization. In Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Language Technologies, pages
915–923, Portland, Oregon, USA. Association for Computational Linguistics.

Damerau, F. J. (1964). A technique for computer detection and correction of
spelling errors. Commun. ACM, 7:171–176.

De Felice, R. and Pulman, S. G. (2008). A classifier-based approach to preposition
and determiner error correction in L2 English. In Proceedings of the 22nd In-
ternational Conference on Computational Linguistics - Volume 1, COLING ’08,
pages 169–176, Morristown, NJ, USA. Association for Computational Linguis-
tics.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):pp. 1–38.

90

Désilets, A. and Hermet, M. (2009). Using automatic roundtrip translation to
repair general errors in second language writing. In Proceedings of the twelfth
Machine Translation Summit, MT Summit XII, pages 198–206.

Dreyer, M., Smith, J., and Eisner, J. (2008). Latent-variable modeling of string
transductions with finite-state methods. In Proceedings of the 2008 Conference
on Empirical Methods in Natural Language Processing, pages 1080–1089, Hon-
olulu, Hawaii. Association for Computational Linguistics.

Duan, H. and Hsu, B.-J. P. (2011). Online spelling correction for query completion.
In Proceedings of the 20th international conference on World wide web, WWW
’11, pages 117–126, New York, NY, USA. ACM.

Eeg-olofsson, J. and Knutsson, O. (2003). Automatic grammar checking for second
language learners - the use of prepositions. In In Nodalida.

Eisner, J. (2002). Parameter estimation for probabilistic finite-state transducers.
In Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 1–8, Philadelphia.

Fellbaum, C., editor (1998). WordNet: An Electronic Lexical Database. The MIT
Press, Cambridge, MA ; London.

Gale, W. A., Church, K. W., and Yarowsky, D. (1993). A method for disambiguat-
ing word senses in a large corpus. In Computers and the Humanitzes, volume 26,
pages 415–439.

Gamon, M., Gao, J., Brockett, C., and Klementiev, R. (2008). Using contextual
speller techniques and language modeling for esl error correction. In In Proceed-
ings of IJCNLP 2008.

Gamon, M., Leacock, C., Brockett, C., Dolan, W. B., Gao, J., Belenko, D., and
Klementiev, A. (2009). Using statistical techniques and web search to correct
ESL errors. In Calico Journal, Vol 26, No. 3, pages 491–511, Menlo Park, CA,
USA. CALICO Journal.

Golding, A. R. (1995). A bayesian hybrid method for context-sensitive spelling
correction. In In Proceedings of the Third Workshop on Very Large Corpora,
pages 39–53.

Golding, A. R. and Roth, D. (1999). A winnow-based approach to context-sensitive
spelling correction. Mach. Learn., 34(1-3):107–130.

Golding, A. R. and Schabes, Y. (1996). Combining trigram-based and feature-
based methods for context-sensitive spelling correction. In Proceedings of the
34th annual meeting on Association for Computational Linguistics, ACL ’96,
pages 71–78, Stroudsburg, PA, USA. Association for Computational Linguistics.

91

Good, I. J. (1953). The population frequencies of species and the estimation of
population parameters. Biometrika, 40(3 and 4):237–264.

Han, N.-R., Chodorow, M., and Leacock, C. (2006). Detecting errors in english
article usage by non-native speakers. Nat. Lang. Eng., 12(2):115–129.

Heine, J. E. (1998). Definiteness predictions for japanese noun phrases. In Proceed-
ings of the 36th Annual Meeting of the Association for Computational Linguistics
and 17th International Conference on Computational Linguistics - Volume 1,
ACL ’98, pages 519–525, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Izumi, E., Uchimoto, K., and Isahara, H. (2004a). The NICT JLE corpus ex-
ploiting the language learnersspeech database for research and education. In
International Journal of the Computer, the Internet and Management, volume
12(2), pages 119–125.

Izumi, E., Uchimoto, K., and Isahara, H. (2004b). Sst speech corpus of Japanese
learners’ English and automatic detection of learners’ errors. ICAME (Interna-
tional Computer Archive of Modern and Medieval English) Journal, 28:31–48.

Izumi, E., Uchimoto, K., Saiga, T., Supnithi, T., and Isahara, H. (2003). Auto-
matic error detection in the Japanese learners’ English spoken data. In Proceed-
ings of the 41st Annual Meeting on Association for Computational Linguistics
- Volume 2, ACL ’03, pages 145–148, Morristown, NJ, USA. Association for
Computational Linguistics.

Jelinek, F. and Mercer, R. L. (1980). Interpolated estimation of markov source
parameters from sparse data. In In Proceedings of the Workshop on Pattern
Recognition in Practice, pages 381–397, Amsterdam, The Netherlands: North-
Holland.

Jones, M. P. and Martin, J. H. (1997). Contextual spelling correction using latent
semantic analysis. In Proceedings of the fifth conference on Applied natural lan-
guage processing, ANLC ’97, pages 166–173, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Katz, S. M. (1987). Estimation of probabilities from sparse data for the language
model component of a speech recognizer. In IEEE Transactions on Acoustics,
Speech and Singal processing, volume ASSP-35(3), pages 400–401.

Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language model-
ing. In Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing, volume 1, pages 181–184.

92

Knight, K. and Chander, I. (1994). Automated postediting of documents. In
Proceedings of the twelfth national conference on Artificial intelligence (vol. 1),
AAAI ’94, pages 779–784, Menlo Park, CA, USA. American Association for
Artificial Intelligence.

Kuich, W. and Salomaa, A. (1986). Semirings, automata, languages. EATCS
monographs on theoretical computer science. Springer-Verlag.

Kwon, Y. H., Lee, M. H., and Kim, S.-R. (2009). Effective spelling correction in web
queries and run-time db construction. In Proceedings of the 2009 International
Conference on Hybrid Information Technology, ICHIT ’09, pages 581–586, New
York, NY, USA. ACM.

Lavie, A. and Agarwal, A. (2007). Meteor: an automatic metric for MT evaluation
with high levels of correlation with human judgments. In StatMT ’07: Proceed-
ings of the Second Workshop on Statistical Machine Translation, pages 228–231,
Morristown, NJ, USA. Association for Computational Linguistics.

Lee, J. and Seneff, S. (2006). Automatic grammar correction for second-language
learners. In Proceedings of Interspeech.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions,
and reversals. Soviet Physics Doklady, 10:707–710.

Li, M., Zhang, Y., Zhu, M., and Zhou, M. (2006). Exploring distributional similar-
ity based models for query spelling correction. In Proceedings of the 21st Inter-
national Conference on Computational Linguistics and the 44th annual meeting
of the Association for Computational Linguistics, ACL-44, pages 1025–1032,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Lidstone, G. J. (1920). Note on the general case of the bayes-laplace formula for
inductive or a posteriori probabilities. Transactions of the Faculty of Actuaries,
8:182–192.

Lin, C.-Y. and Och, F. J. (2004). Automatic evaluation of machine translation
quality using longest common subsequence and skip-bigram statistics. In Pro-
ceedings of the 42nd Annual Meeting on Association for Computational Linguis-
tics, ACL ’04, Stroudsburg, PA, USA. Association for Computational Linguis-
tics.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine Learning, 2(4):285–318.

MacKay, D. J. C. and Peto, L. (1995). A hierarchical Dirichlet language model.
Natural Language Engineering, 1:1–19.

93

Mangu, L. and Brill, E. (1997). Automatic rule acquisition for spelling correction.
In Proceedings of the Fourteenth International Conference on Machine Learn-
ing, ICML ’97, pages 187–194, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Martin, A. and Pryzbocki, M. (2006). Nist 2003 language recognition evaluation.

Mays, E., Damerau, F. J., and Mercer, R. L. (1991). Context based spelling
correction. Inf. Process. Manage., 27(5):517–522.

Mohri, M. (1997). Finite-state transducers in language and speech processing.
Computational Linguistics, 23(2):269–311.

Mohri, M. (2002). Generic epsilon-removal and input epsilon-normalization al-
gorithms for weighted transducers. In International Journal of Foundations of
Computer Science 13, pages 129–143.

Mohri, M. (2005). Statistical natural language processing. In Lothaire, M., editor,
Applied Combinatorics on Words. Cambridge University Press.

Mohri, M. (2009). Weighted automata algorithms. In Droste, M., Kuich, W., and
Vogler, H., editors, Handbook of Weighted Automata, Monographs in Theoretical
Computer Science, pages 213–254. Springer.

Mohri, M., Pereira, F., and Riley, M. (1996). Weighted automata in text and
speech processing. In Proceedings of the 12th biennial European Conference on
Artificial Intelligence (ECAI-96), Workshop on Extended Finite state models of
language, pages 46–50, Budapest, Hungary. John Wiley and Sons.

Murata, M. and Nagao, M. (1993). Determination of referential property and
number of nouns in japanese sentences for machine translation into english. In
In Proceedings of the 5th TMI, pages 218–225.

Nádas, A. (1984). Estimation of probabilities in the language model of the IBM
speech recognition system. IEEE Transactions on Acoustics, Speech and Signal
Processing, 32:859–861.

Ney, H., Essen, U., and Kneser, R. (1994). On structuring probabilistic depen-
dences in stochastic language modelling. Computer, Speech and Language, 8:1–
38.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for
automatic evaluation of machine translation. In ACL, pages 311–318.

Pereira, F. C. N. and Riley, M. D. (1997). Speech recognition by composition of
weighted finite automata. In Finite-State Language Processing, pages 431–453.
MIT Press.

94

Porter, M. F. (1980). An Algorithm for Suffix Stripping. Program, 14(3):130–137.

Powers, D. M. W. (1997). Learning and application of differential grammars. In In
Proc. Meeting of the ACL Special Interest Group in Natural Language Learning,
pages 88–96.

Rozovskaya, A. and Roth, D. (2010). Annotating ESL errors: Challenges and
rewards. In Proceedings of the NAACL Workshop on Innovative Use of NLP for
Building Educational Applications.

Rozovskaya, A. and Roth, D. (2011). Algorithm selection and model adaptation for
ESL correction tasks. In Proc. of the Annual Meeting of the Association of Com-
putational Linguistics (ACL), Portland, Oregon. Association for Computational
Linguistics.

Shannon, C. (1948). A mathematical theory of communications. Bell Systems
Technical Journal, 27(4):623–656.

Shichun, G. and Huizhong, Y. (2003). Chinese Learner English Corpus. Shanghai
Foreign Language Education Press.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L., and Makhoul, J. (2006). A study
of translation edit rate with targeted human annotation. In In Proceedings of
Association for Machine Translation in the Americas, pages 223–231.

Sun, X., Gao, J., Micol, D., and Quirk, C. (2010). Learning phrase-based spelling
error models from clickthrough data. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics, ACL ’10, pages 266–274,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Tetreault, J. R. and Chodorow, M. (2008). The ups and downs of preposition
error detection in ESL writing. In Proceedings of the 22nd International Con-
ference on Computational Linguistics - Volume 1, COLING ’08, pages 865–872,
Morristown, NJ, USA. Association for Computational Linguistics.

Tetreault, J. R., Filatova, E., and Chodorow, M. (2010). Rethinking grammatical
error annotation and evaluation with the amazon mechanical turk. In Proceed-
ings of the NAACL HLT 2010 Fifth Workshop on Innovative Use of NLP for
Building Educational Applications, IUNLPBEA ’10, pages 45–48, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Toutanova, K. and Moore, R. C. (2002). Pronunciation modeling for improved
spelling correction. In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics, ACL ’02, pages 144–151, Stroudsburg, PA, USA.
Association for Computational Linguistics.

95

Whitelaw, C., Hutchinson, B., Chung, G. Y., and Ellis, G. (2009). Using the web
for language independent spellchecking and autocorrection. In Proceedings of the
2009 Conference on Empirical Methods in Natural Language Processing: Volume
2 - Volume 2, EMNLP ’09, pages 890–899, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Witten, I. H. and Bell, T. C. (1991). The zero-frequency problem: Estimating the
probabilities of novel events in adaptive text compression. IEEE Transactions
on Information Theory, 37(4):1085–1094.

Wu, C.-F. J. (1983). On the convergence properties of the EM algorithm. Ann.
Statist., 11(1):95–103.

Yarowsky, D. (1994). Decision lists for lexical ambiguity resolution: application
to accent restoration in spanish and french. In Proceedings of the 32nd annual
meeting on Association for Computational Linguistics, ACL ’94, pages 88–95,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Zhang, Y. and Vogel, S. (2010). Significance tests of automatic machine translation
evaluation metrics. Machine Translation, 24:51–65.

