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Over the last several decades, the expansion of commercial 
agriculture has become one of the key drivers of rainfor-
est loss1,2. Concurrently, agricultural production in tropical 

biomes has undergone a dramatic shift that has led to increases in 
the production of crops and wood products from tree plantations3,4, 
defined here as productive monocultures composed of erect trees. 
Numerous studies have reported regional expansions in agricultural 
tree crops (for example, banana, oil palm and rubber5,6) and in tim-
ber and pulp plantations (for example, pine and eucalyptus7,8). This 
expansion of tree plantation area has frequently come at the expense 
of intact forest and grassland ecosystems5–7,9. Despite this risk, many 
countries have prioritized expanding tree plantations as part of their 
international commitments to restore degraded tropical habitats10,11. 
For example, 45% of national commitments to the Bonn Challenge, 
an international goal to restore 350 million ha of land by 2030, con-
sist of expanding tree plantations10.

Despite the availability of national statistics to document these 
trends, consistent, spatially explicit estimates of global increases in 
tree plantation area are lacking12–14. Many efforts to map tree planta-
tions rely on manual delineation of tree plantation boundaries from 
high-resolution satellite imagery and/or field-collected data1,13,15–17. 
These expert delineations cannot consistently detect changes in tree 
plantation area across regions because they focus on areas of inten-
sive production and on a single time period. For example, although 
a recent study of tropical humid forest change ostensibly tracked 
plantation expansion over time, its delineation of tree plantations 
largely relied on single-date expert interpretation and the plantation 
map accuracy was not reported17.

The absence of systematic monitoring of plantation expan-
sion complicates assessments of both forest restoration efforts and 
the impacts of tree plantations on natural ecosystems. Confusion 

between natural forests and tree plantations in forest change maps 
leads to ‘cryptic forest loss’18 and/or overestimates of natural for-
est loss and recovery19,20. This is especially true in the tropics, with 
its rapid tree growth and expansion of tree plantations. National 
reporting indicates net increases in tree plantation cover of 1–2% 
a year21 but tracking net changes in the area of frequently disturbed 
land covers like tree plantations and natural forest regrowth can 
underestimate the occurrence of expansion in new areas as existing 
areas are harvested12. According to the UN Food and Agriculture 
Organization (FAO), the area of planted forests (294 million ha) 
and arborescent (treelike) crops (102 million ha) in 2020 was much 
smaller than that of natural forest cover regenerating from distur-
bances (3.75 billion ha)21,22. However, given that the FAO definition 
of naturally regenerating forest includes existing, selectively logged 
forests, it remains unclear whether natural forest recovery or tree 
plantations are driving expansions in global tree cover.

To address these uncertainties, we undertook a pantropical 
assessment of increases in tree plantation area, with tree plantations 
defined here as monocultures of agricultural or industrial arbores-
cent species established and managed by humans for fruit, wood, 
fibre and other products. We focused on the tropics (25° N to 25° S) 
due to the prevalence of natural forest conversion to commodity 
tree crops across tropical latitudes1 and high rates of potential car-
bon sequestration from tropical tree regrowth23. Our aim was to use 
remote sensing data to accurately distinguish plantation expansion 
from natural forest regrowth and assess recent expansion across 
tropical biomes, biodiversity hotpots and protected areas.

Monitoring plantation expansion
Mapping tree plantations consistently using satellite data is chal-
lenging, especially using the moderate spatial resolution imagery 
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(10–100 m) needed for comprehensive regional coverage. This chal-
lenge arises in part from spectral and structural similarities between 
regrowing natural forest and plantations of trees24–26. Tree planta-
tions are spectrally diverse, with substantial variation in spectral 
signatures across species, age classes, planting pattern and density, 
nutrition and disease status, soil types, understory cover and dis-
turbance intensities24,27–29. Regrowing forests are also spectrally and 
structurally diverse, for similar reasons, especially across distinct 
forest types30,31. These similarities, coupled with geographic varia-
tion in spectral reflectance and phenology and persistent tropical 
cloudiness, make it difficult to consistently distinguish tree planta-
tions from natural forest using satellite imagery5.

Although intra- and inter-regional plantation variability has 
constrained accuracy at larger scales, maps based on automated 
classification of remotely sensed imagery have successfully moni-
tored plantation expansion at regional scales (for example, ref. 
5). However, the accuracy of regional tree plantation maps dif-
fers widely across different geographies and plantation species5,13. 
In general, extensive monocultures of non-native plantation 
species have been more readily distinguished, especially if they 
possess distinct spacing or phenology. For example, rubber and 
oil palm have been mapped with intermediate to high accuracy 
(80–90%+) at local to near-global scales5,32–35. However, other 
tree crop and timber species often are mapped with lower accu-
racy: in Brazil and Chile, country-level mapping of non-native 
eucalyptus and pine plantations has had intermediate levels of  
accuracy (70–89%)15,36.

Research design
In this study, we integrated two different types of satellite imagery, 
optical and microwave, to better characterize the spectral (optical) 
and structural (microwave) properties of regrowing natural forests 
and tree plantations. To estimate recent increases in plantation area 
and in natural forest regrowth, we reclassified a widely used map of 
gains in tree cover between 2000 and 2012 (ref. 37), the Global Forest 
Change (GFC) product. From this dataset, we selected mapped 

gain patches ≥0.45 ha in size that persisted for 4 years after 2012, 
at least through the end of 2015 (n = 6,901,681). Over each result-
ing patch of gain pixels, we extracted spectral and microwave satel-
lite imagery data (Landsat, ALOS PALSAR-2 and Sentinel-1) and 
other ancillary data (for example, GFC tree cover, patch size and 
shape; Supplementary Table 1) for a total of 32 metrics per patch 
(Supplementary Table 1).

We then used labelled training data and machine learning to pre-
dict patch-level land use in 2015. The output was a classification of 
gain patches as either ‘tree plantation’, ‘natural regrowth’ or ‘open’ 
(<10% tree cover); these classes characterize increases in tree cover 
between 2000 and 2012 that persisted through 2015. Then, to assess 
the extent of plantation expansion across the tropics, classified gain 
footprints were intersected with available spatial data on biomes, 
biodiversity hotspots, national borders and protected areas.

Product accuracy
We assessed the classification accuracy of both our machine learn-
ing model and the resulting map of plantation expansion. First, 
model accuracy was independently evaluated by random sampling 
of 2,000 gain patches across the tropics. Next, map accuracy was 
evaluated by stratified random sampling of points across the trop-
ics (n = 4,269); sampling strata included biomes, continents and 
predicted land-use classes (including non-gain areas). For each ref-
erence patch and point, high-resolution imagery was used to deter-
mine a single land-use class. Reference patches with mixed land 
uses were assigned to a class using per cent cover rules (for example, 
majority per cent cover; Supplementary Table 5) and the estimated 
overall model accuracy was 90.6% (±0.1 (95% confidence interval, 
CI); Supplementary Tables 6–8). The map accuracy assessment 
indicated that the GFC gain patches were a subsample of actual tree 
cover increases, for both tree plantations (producer’s accuracy of 
33.3% (±9.8)) and natural regrowth (producer’s accuracy of 15.9% 
(±6.0)). Class accuracies were highest in the humid tropical biome 
and lower and more variable in non-humid biomes (Supplementary 
Table 9a–d).

Table 1 | Estimated expansion area of tree plantations and natural regrowth, 2000–2012

Region Estimated gain area 
(Mha)

Area 95% CI 
(Mha)

Percentage of mapped  
patch area

Mapped patch 
number

Mean patch  
size (ha)

 Africa

Tree plantations 0.4 0.1 25.0 77,046 5.3

Natural regrowth 7.2 8.5 73.5 1,296,932 0.9

Non-gain 2,584.8 8.5 1.5 23,456 1.1

Latin America

Tree plantations 5.8 2.5 58.6 499,042 6.6

Natural regrowth 14.8 7.2 37.7 1,549,391 1.4

Non-gain 1,522.8 7.6 3.7 88,832 2.3

Australasia

Tree plantations 26.0 9.1 75.6 1,415,054 5.7

Natural regrowth 9.5 4.1 24.1 1,928,709 1.3

Non-gain 1,088.0 9.9 0.3 23,219 1.4

Tropics

Tree plantations 32.2 9.4 65.7 1,991,142 5.9

Natural regrowth 31.6 11.9 32.8 4,775,032 1.2

Non-gain 5,195.6 15.1 1.5 135,507 1.9

The estimated area is accuracy-corrected (left two columns: mean ± 95% CI), while the mapped patch area is a subsample of total estimated area and not accuracy-corrected (right three columns). The 
non-gain areaestimate (left two columns) includes both the background area and the area of mapped tree cover gain estimated to be not forested (‘open’). The non-gain estimates in the right three columns 
refer to mapped open patches.
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Despite the conservative nature of the GFC product, low rates of 
commission error permitted relative comparisons of the distribu-
tion of tree plantations and robust adjusted estimates of the overall 
area of tree plantations (user’s accuracy of 90.7% (±5.1)) and natu-
ral regrowth (user’s accuracy of 84.5% (±4.6)). This far exceeds the 
accuracy of a recent tropical moist forest product17, which coupled 
comparable omission errors with very high rates of commission error 
(mean gain class user’s accuracy of 33.9%, Supplementary Table 10).

Global expansion patterns
Between 2000 and 2012, persistent gain in tree cover associated with 
tree plantations was comparable to the persistent gain in tree cover 
associated with natural forest regrowth. Pantropically, there were 
~32.2 (±9.4) Mha of additional tree plantations and 31.6 (±11.9) Mha 
of additional natural regrowth (Table 1, Fig. 1 and Supplementary 
Figs. 4–9). Although observed patches of natural regrowth far out-
numbered plantation patches, individual plantation patches were 
~4.9× larger than areas of forest regrowth (Table 1). Across conti-
nental regions, tree plantations were predicted to increase across the 
most area in Asia, followed by Latin America (Table 1 and Fig. 2). 
The concentration of plantation expansion there is probably driven 
largely by the production of relatively few tree crops (oil palm, rub-
ber and acacia in Australasia; oil palm, eucalyptus and pine in Latin 
America)12. Africa had the smallest predicted plantation expansion 
but plantations still made up a sizeable fraction of the area of several 
African countries (Supplementary Table 11) and Africa is a nascent 
frontier for oil palm expansion35.

Our findings show that expansion of tropical tree plantations 
was significantly higher in the humid tropical biome (Fig. 2 and 
Supplementary Table 9a–d). Although area estimates ranged widely 
in non-humid tropical biomes because of the relative rarity of tree 

plantations there, predicted plantation areas in non-humid biomes 
were robust due to high user’s accuracy. Matching concerns about 
recent afforestation in arid regions38,39, new plantations were a 
common (14% of predicted global plantation area; Fig. 2) form of 
increasing tree cover in arid biomes, particularly in tropical grass-
lands, savannas and shrublands in eastern Africa and southeast 
Latin America. Furthermore, predicted plantation expansion was 
concentrated in designated biodiversity hotspots, particularly the 
Sundaland (southeast Asia), Cerrado (southern Brazil) and Atlantic 
Forest (southeast Brazil) hotspots (collectively 92.8% of total planta-
tion area; Supplementary Fig. 11). By contrast, natural regrowth was 
relatively evenly distributed among biomes and hotspots, although 
natural regrowth was slightly more abundant and plantations less 
abundant, in ecoregions with high remnant natural forest cover 
(Supplementary Table 11, P < 0.0001).

We show that predicted plantation expansion was concen-
trated (82.8%) in four large countries (Indonesia, Brazil, Malaysia 
and China) but tree plantations were widespread, occurring in 
78 of 112 tropical countries with detected increases in tree cover 
(Supplementary Table 12). Relative to natural regrowth, predicted 
tree plantation patches were distributed in a distinct geographic 
manner. Tree plantation expansion was more likely than natu-
ral regrowth to be found near navigable waterways (P < 0.0001, 
Supplementary Fig. 12a), probably reflecting the role of global trade 
in influencing the expansion of plantations. Similarly, new tree plan-
tations were more likely to be found in highly human-dominated 
landscapes40 than was natural regrowth (P < 0.0001, Supplementary 
Fig. 12b), reflecting the global distribution of natural regrowth 
along deforestation frontiers (Fig. 1). Locations where plantation 
expansion accompanied natural regeneration were relatively spa-
tially constrained (for example, Indonesia and western Africa).
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Expansion in protected areas
Tree plantation expansion into protected areas (PAs) was not com-
monly observed across the tropics, affecting 4.2% of PAs (PAs 
with ≥5 ha of expansion) (Fig. 3 and Supplementary Table 13). 
However, expansion was more common in PAs located in the 
humid tropical biome (5.5% of PAs) especially in PAs there with 
above-average accessibility and human influence40 (9.2% of affected 
PAs). Furthermore, plantation expansion often occurred in close 
proximity to tropical PAs (<1 km outside), affecting 7.8% of all PAs, 
11.4% of humid tropical biome PAs and 16.2% of humid PAs with 
high human influence (Supplementary Tables 13 and 14). Notable 
concentrations of plantation expansion into PAs include south-
east Asia, southeast Brazil and western and eastern Africa (Fig. 2). 
Plantation expansion was rarely widespread within PAs, with only 
2.1% of PAs experiencing ≥50 ha of tree plantation expansion. But 
where it occurred inside PAs, plantation expansion was a dominant 
mode of increasing tree cover, making up 49.5% (±38.5%, s.d.) of 
observed gains in cover within affected PAs. In Africa, parks with 
stricter protected status (IUCN category) were less likely to expe-
rience plantation expansion (P < 0.0001; Supplementary Table 15). 
However, in Latin America and Asia, protected status was unrelated 
to the presence of plantations within parks (P > 0.05), potentially 
reflecting greater encroachment pressure in these regions.

Product limitations
There are several known limitations of this product. First, its accu-
racy in characterizing increases in tree cover depends on the accu-
racy of the original GFC product37. The original product contained 
relatively high errors of omission in predicting tropical tree cover 
gain (capturing ~50% of observed gain; Supplementary Table 10). 
Our map product shares that trait, resulting in variable estimates 
of the area of tropical tree cover gain. Therefore, it is possible that 
either tree plantations or natural regrowth are relatively more  

abundant, with tree plantations estimated to make up between 34.4% 
and 67.8% of total tree cover gain (95% CI, Table 1). Regardless, 
our results clearly indicate that tree plantation expansion is wide-
spread across all tropical regions and biomes. The estimated relative 
dominance of plantations does not arise solely from differential per-
sistence of detected plantations and natural regrowth over time or 
from patch size thresholds, as predicted plantation expansion is at 
least 40.4% of the original GFC gain area (Supplementary Fig. 13).

The GFC product also tends to underestimate tree cover in arid 
biomes41,42. Consequently, outside the humid tropical biome our 
product may misestimate both total tree cover gain area and the rel-
ative importance of plantations. Our product was also not designed 
to distinguish rarer land uses intermediate between tree plantations 
and natural regrowth, such as assisted natural regeneration. Further, 
because our product was derived from both optical and microwave 
data, local variation in topography and forest structure affected clas-
sification accuracy. Our product tended to have lower accuracy in 
mountainous areas (where microwave returns vary) and in natural 
regrowth patches where structure or colour resembled row-planted 
monocultures. For example, visual inspection showed more fre-
quent errors in open natural regrowth affected by fire or selective 
logging and in single-species dominated natural regrowth patches 
with a smooth canopy (for example, riparian regrowth in the west-
ern Amazon). In certain cases, natural regrowth within plantations 
was underestimated: when mixed gain patches occurred, containing 
both tree plantations and natural regrowth, whole gain patches were 
labelled according to their majority land-use class.

When we compared our estimates of increases in plantation cover 
to those reported by tropical countries to the FAO between 2000 
and 2010, we found that our accuracy-adjusted estimates of total 
plantation expansion area (32.2 ± 9.4 Mha) were higher than the 
total net increase in plantations reported for this period (21.1 Mha). 
As FAO-reported plantation area is a net (losses subtracted  
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from gains), our corrected estimate of plantation expansion should 
be higher than the FAO estimate. However, for most countries, 
our unadjusted map predictions were actually lower than the 
FAO-reported area of timber and agricultural plantations, most 
notably in India, Bangladesh and Africa (Supplementary Fig. 13). 
This is probably due to both high errors of omission in the original 
GFC gain dataset (ref. 37, Supplementary Table 10) and definitional 
differences (for example, orchard crop fields can be <5 m in height 
and not meet the GFC tree cover definition). Thus, our map pre-
dictions of the relative abundance of plantation expansion across 
countries are likely to be conservative.

Discussion
Tree plantations are a key element of ambitious policy proposals to 
restore ecosystem services and address climate change, including 
the Bonn Challenge, the Trillion Tree initiatives and the UN Decade 
on Ecosystem Restoration43. Given their potential impacts on biodi-
versity, fire risk and human well-being, tree plantations are contro-
versial38,44. This controversy has largely proceeded in the absence of 
global data on plantation expansion, and the net impact of planta-
tion expansion has thus been difficult to assess, especially in under-
studied regions like Africa. In this context, our findings provide a 
few useful insights for future policy and research.

First, tree plantations make up a large proportion of recent 
increases in tropical tree cover. This indicates that many global- and 
country-level estimates of tropical forest loss and gain are potentially 
biased by the presence of tree plantations, which have disturbance 
rates distinct from those of natural forests. Distinguishing tree plan-
tations from natural regrowth enables assessments of their relative 
persistence over time45, the spatiotemporal clustering of expansion 
and replanting12 and the displacement of previous land uses by plan-
tation expansion46. In the absence of these analyses, countries domi-
nated by plantations will be unable to forecast production or limit 
its impact on biodiversity or smallholder agriculture.

Second, the abundance of natural forest regeneration relative to 
plantations was much lower than predicted by nationally reported 
statistics, suggesting that they potentially do not accurately track 
forest expansion through natural regrowth. This is most probably 
because the area of selectively logged tropical forest far exceeds that 
of natural regrowth47 but may also result in part from rapid reclear-
ing of natural regrowth45 and inconsistent national reporting of 
regrowth in agricultural landscapes48. Understanding the fate of the 
large number of natural regrowth patches identified here is critical 
to determining the long-term climate mitigation potential of tropi-
cal forests49. Countries making international climate and restoration 
commitments would benefit from annual monitoring of natural 
regeneration. Using data on tree height50 and carbon uptake23,51, 
future research could estimate annual carbon sequestration rates for 
tree plantations and natural regeneration during this period.

Third, the widespread expansion of plantations into arid biomes 
and tropical PAs indicate that economic considerations frequently 
took precedence over conservation policies and interests during 
this time period. The net benefits of planting trees—for carbon, 
biodiversity and food security—entirely depend on the types of  

ecosystem they replace7. Thus, tracking plantation expansion is 
essential to improve estimates of net global carbon sequestration 
and available agricultural area and to assess the net impacts of prog-
ress towards restoration commitments. Using new data on tropical 
forest loss and regrowth17, products like this one could be annually 
updated. If plantation expansion continues at the observed pace 
in the coming decades, achieving tropical conservation and food 
production goals will be increasingly difficult. Given current wide-
spread international interest in tree planting, it is critical to moni-
tor going forward how proposed expansions in plantation cover will 
affect remaining natural ecosystems.

Methods
Study region and patches. We focus on recent areas of increase in tree cover 
or ‘gain’, between the years 2000 and 2012, delineated in a previous study of 
global forest change (ref. 37, GFC data v.1.5). We examined all mapped patches 
of contiguous gain pixels (30 m resolution) between 25° N and 25° S that met our 
minimum patch size criteria (≥0.45 ha). Then, because our preliminary analysis 
indicated that false-positive identification of tree cover gain was more common in 
small patches and in patches that showed ephemeral vegetative gain (gains followed 
by losses), we set criteria for minimum forest persistence. We selected only gain 
patches >0.45 ha in size that persisted at least 4 years after 2012. These minimum 
patch size and persistence criteria acted as a conservative forest filter, eliminating 
non-forest error patches, and their derivation is described in more detail in the 
Supplementary Methods. Contiguous gain patches were generated, updated by 
removing forest loss and converted to polygons in Google Earth Engine, with a 
unique ID number assigned.

Patch-level data. For each resulting gain patch (n = 6,904,335), several 
characteristics were calculated, including patch area, patch perimeter length, the 
patch perimeter:area (P:A) ratio and a patch compactness index based on area and 
perimeter52. In addition, two additional patch metrics were derived: the distance to 
the nearest patch with a high P:A ratio (in the top 1% of patches) and the distance 
to the nearest patch with a high compactness index (in the top 1% of patches). 
Patch characteristics were calculated in the native projection of the original raster 
dataset (WGS-84) using the sf and geosphere packages in R v.3.5.1.

To distinguish natural regrowth and tree plantations, we used two different 
types of coincident satellite remote sensing data: optical and radar data. 
Moderate-resolution Landsat optical imagery have been used for many studies 
of forest and land cover due to the availability of free, consistent observations 
over several decades13,37. However, as an optical sensor, Landsat data are severely 
influenced by the presence of clouds, particularly in the tropics53,54. Furthermore, 
the spectral resolution of single-date Landsat data has often not been sufficient 
by itself to separate forest and tree plantations13,55. Radar data, in contrast, are less 
sensitive to cloud cover and potentially more sensitive to differences in structure 
between natural and anthropogenic tree cover56,57. Although until recently radar 
data had relatively limited availability compared to Landsat56, global mosaics of 
PALSAR-1 (2007–2010), PALSAR-2 (2015+) and Sentinel-1 (2014+) data are now 
freely available.

In this analysis, we used the global Landsat spectral mosaics available from the 
GLAD laboratory (v.1.3)37, covering the entire globe for the nominal year of 2015. 
For coincident radar data that were as close as possible to the 2012 end date for 
gain patches, we used the 2015 global mosaic of L-band PALSAR-2 data available 
from JAXA58 and a 2015 global mosaic of C-band Sentinel-1 data from the ESA59. 
Details on optical and radar data band selection and processing are available in the 
Supplementary Methods.

In addition to spectral, radar and patch-characteristic data, we included 
several satellite-derived land cover datasets as input data in this analysis. These 
data consisted of GFC tree cover in the year 2000, GFC loss year and a 1 km 
dataset on crop extent (https://developers.google.com/earth-engine/datasets/
catalog/USGS_GFSAD1000_V1). For each patch, we calculated the patch-level 
mean and standard deviation of all pixels that intersected with the patch boundary. 

≥50 ha in PA

≥5 ha in PA

<5 ha in PA

Fig. 3 | Expansion of plantations into tropical protected areas. PAs are colour-coded by estimated plantation expansion area (2000–2012).
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The patch-level mean and standard deviation calculations for each band included 
pixels that overlapped with individual patch boundaries but all calculations 
weighted individual pixels according to their area, following a standard Google 
Earth Engine algorithm.

The resulting dataset included 35 different variables for each individual patch 
(Supplementary Table 1); all variables were used in further analyses. Missing 
Sentinel-1 or ALOS Palsar data values were detected in 0.038% of patches, mainly 
due to lack of data coverage over small, remote islands. These patches were omitted 
from further analysis and are mapped as no-data in the final dataset (final patch 
n = 6,901,681).

Reference data labelling. Tree plantation reference data came from two 
main sources: the World Resource Institute (WRI) and manual delineation of 
plantations. We used the WRI tree plantation polygons to select all Hansen 
gain polygons that intersected their boundaries, with postintersection filtering 
described in the Supplementary Methods. Due to the lack of quality plantation 
training data in Africa, Australia and mainland southeast Asia, we also manually 
delineated a variety of plantation species across these regions using freely available 
time series of high-resolution imagery (Google Earth, Bing and ArcGIS basemap). 
Gain patches were selected in this process by intersection with manually created 
polygons, including only patches dominated by obvious plantation species.

Criteria for distinguishing plantation species included (1) domination by a 
single commercial tree species (consistent colour and uniform canopy shapes) 
and (2) the clear presence of rows of trees at some point in the imagery time series 
(pattern). Clear evidence of human disturbance over time, extractive infrastructure 
and regular patch edges often facilitated identification of potential plantation 
patches but by itself was not diagnostic of plantations due to farm and plantation 
abandonment. Common commercial plantation species (oil palm, rubber, 
eucalyptus, pine) were recognizable and distinct in high-resolution imagery, 
as were many unknown plantation species in Africa and Australia. Diverse 
polyspecies plantations and agroforestry stands were omitted by this methodology. 
We did not manually delineate plantation systems with a mixed set of species or 
those that lacked a row structure (for example, some agroforestry). In addition, 
globally rare plantation types with distinct species, cultivars and/or conditions (for 
example, insect infestation) are likely to have been omitted.

Natural forest regrowth reference data were derived from three main sources: 
the Intact Forest Landscapes dataset (IFL, ref. 60); the World Database on Protected 
Areas (WDPA v.1.4, ref. 61); and manual delineation of natural regrowth. The 
WDPA polygons were edited to include only patches clearly dominated by natural 
regrowth, as is described in more detail in the Supplementary Methods. Gain 
patches were then selected and labelled in this process by intersection with IFL, 
WDPA and manually created polygons. Our initial reference data sample, based on 
intact forest landscapes and PAs, had gaps in spatial coverage of secondary forests 
in southeastern Amazonia, southern Mexico, Africa and southeast Asia. To address 
these gaps, we manually delineated natural regrowth patches across these regions 
using freely available time series of high-resolution imagery (Google Earth, Bing 
and ArcGIS basemap). Natural regrowth was distinguished by several criteria, 
including a diversity of tree crown shapes, colours and/or sizes, irregular patch 
edges, the absence of human infrastructure and/or no evidence of tree planting or 
rows in the imagery time series (Supplementary Fig. 1). Some natural stands did 
not meet several of these criteria but could be distinguished from plantations by 
one or more attribute.

Training data processing. The resulting training data included 729,092 gain 
patches, consisting of natural regrowth, 15 different known plantation species 
and several unknown plantation species (Supplementary Table 2). Oil palm and 
eucalyptus dominated the initial training sample, making up 82% of all plantation 
training data. Plantation training data were unevenly distributed across continents, 
with Africa having the smallest number of samples (Supplementary Table 2). 
By contrast, the training data for natural regrowth were more evenly distributed 
across continents (Supplementary Table 2). With no a priori information on the 
relative abundance of different plantation species and natural regrowth across the 
globe, the initial training dataset was an unbalanced mixture of different plantation 
species and natural regrowth patches. To balance the training the plantation 
training data, we first resampled the existing data, which is described in more 
detail in the Supplementary Methods. We then randomly withheld 10% of the 
processed training data as internal validation data (n = 72,908).

Second, given that the relative global proportion of plantation and regrowth 
was unknown, we created 11 different final training datasets through subsampling 
(and where necessary to increase sample size of a particular class, sampling 
with replacement). Each training sample was created with different proportions 
(balancing) of plantations and regrowth (total sample n = 559,580–839,370), 
covering a range of proportions that preliminary analysis indicated changed 
the predicted outcomes of classification models (Supplementary Table 3 and 
Supplementary Methods).

Machine learning classification models. For each of the 11 different balancings 
of the training data, we fit 5 types of binary classification models, totalling 55 
classification models. The binary classes predicted were natural regrowth and tree 

plantation and the independent predictors are summarized in Supplementary 
Table 1. All classification models were implemented in the R interface to the H2O 
machine learning environment (https://www.h2o.ai, v.3.26.0.5), with default model 
parameter and grid search settings. The five types of classification models were: 
(1) gradient boosting machines (GBM), (2) logistic general linear models (GLM), 
(3) distributed random forest (DRF), (4) extremely randomized trees (XRT) and 
(5) feed-forward deep-learning neural networks (DL). To facilitate grid searches 
for parameter values and conduct direct model intercomparison, we used the H2O 
automated machine learning (h2o.autoML) algorithm with default values62. At the 
end of each autoML run, the most accurate model (highest AUC) for each model 
type was saved (Supplementary Methods).

The resulting best models in terms of AUC in each of the five model families, 
for each of the 11 training datasets (55 models in total), were each used to 
predict the binary class of the internal validation data (n = 72,908). The resulting 
predictions included the binary class prediction and the likelihood of that predicted 
class, which ranged from 0 to 1. The likelihood of the plantation class was selected 
as a variable for further analysis, with 55 total classification model predictions. All 
of these 55 classification model predictions, along with the internal test class labels, 
were used as input data to a stacked ensemble machine learning model.

Stacked ensemble classification. Stacked ensemble machine learning models63 
were used to predict the binary land-use class (natural regrowth or tree plantation) 
of each patch, using all of the individual classification model predictions as input 
data. Stacked ensemble predictions used the random forest algorithm as a final 
classifier, with model parameters set to the H2O modelling environment defaults 
(ntrees = 50, mtries = 7 (the square root of the number of predictor variables)). 
The internal validation data were used as the input labelled training data. A 
separate stacked ensemble model was developed for three main tropical regions: 
Latin America, Africa and Australasia (Asia, Australia and Oceania), leading to 
different input training data proportions for each region (Supplementary Table 4). 
The resulting stacked ensemble models, one for each tropical region, were used to 
predict the binary land-use class of all patches within their region.

Masking and postprocessing. Postclassification analysis of the predicted 
product indicated two main quality issues. First, because GFC gain patches in 
mangrove patches were quite rare globally64 and thus rare in the training data, 
misclassification of low-diversity mangrove gain patches as tree plantations was 
common in southeast Asia. To address this issue, a high-quality global mangrove 
extent map (ref. 65, 90% overall accuracy) was used to correct our product. All 
gain patches that intersected with the 2015 mangrove extent were reclassified as 
the natural regrowth class, unless they exceeded 20 ha in size and had less than 
5% of their area overlapping the mangrove map. This low per cent area threshold 
excluded the majority of tree plantation patches that bordered mangroves.

Second, visual inspection of the final product indicated that a small proportion 
of gain patches (1.3% of the independent testing data) were non-forest by 2015, 
with low levels of tree cover (<10% cover). Patches with low tree cover in 2015 were 
generally typified by low levels of greenness (patch-level mean NDVI < 0.48) and 
low biomass (patch-level mean PALSAR HV decibel return <1,800). Thus, these 
two manually determined thresholds were used jointly to classify gain patches with 
very low tree cover as a separate third land-use class, ‘open‘. These thresholds readily 
captured bare ground and open water but sometimes included short plantations 
and secondary forests in arid regions with seasonal deciduousness.

Accuracy assessment. To permit assessment of how accurately patches of tree 
plantations and natural regrowth were distinguished across the tropics, we 
generated two different sets of labelled testing data. We first assessed model 
accuracy using randomly selected reference polygons (n = 2,000; Supplementary 
Fig. 2) sampled with respect to stratum weight (patch area), with replacement. 
Next, we assessed map accuracy (the gain polygons together with the background, 
non-gain area) using randomly located reference points (n = 4,269; Supplementary 
Fig. 3). Random points were stratified by biome, continent and land-use class, 
with distinct sampling densities within the humid (n = 2,981) and non-humid 
(n = 1,288) biomes. In each polygon and at each point, land use for the year 
2015 was separately identified by two trained analysts using freely available 
high-resolution imagery (Google Earth, Bing and ArcGIS basemap).

Reference polygons (which consisted of whole gain polygons) were categorized 
into one of three broad land-use categories (natural regrowth, tree plantations and 
open) for accuracy assessment, on the basis of a set of rules evaluating per cent 
tree cover, land use and land cover (Supplementary Table 5) for the year 2015. 
See Supplementary Methods for details. We then calculated the area-weighted 
accuracy of our final model for the global study area (Supplementary Table 6)66. 
Derived confusion matrices show the count of reference data in a particular class 
(Supplementary Table 6) but the associated per cent accuracy statistics are polygon 
area-corrected estimates, following ref. 66. We report overall model accuracy both 
including and excluding very large polygons (Supplementary Tables 6–8).

To allow for observed geolocation error in high-resolution imagery, the 
occurrence of tree plantations or natural regrowth within 30 m (one Landsat pixel) 
of the reference points was recorded (with ‘no-gain’ as the third possible land-use 
class). We then calculated area-corrected estimates of map accuracy and class 
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area, following best practices for stratified random sampling67,68. Sampling strata 
included both tree cover gain classes and the non-gain class and sampling was 
further stratified by biome and continent. To limit the impact of the large no-gain 
class on our estimates, we defined a regrowth-possible ‘buffer class’69 for accuracy 
assessment (described further in the Supplementary Methods).

In a separate analysis to assess the comparative accuracy of the GFC and TMF17 
products, we assessed land use at random points (n = 2,536) across the humid 
tropical biome for the period 2000–2012. See Supplementary Methods for details.

Patch-level analysis. Using the centroid of each observed patch of tree cover gain 
to locate patches in space, we examined the distribution of tree plantation and 
natural regrowth patches (Supplementary Figs. 5–10) with respect to (1) navigable 
bodies of water and (2) a metric of human influence (the human impact index 
(HII)40). Both the 2009 HII and water map rasters were created by Venter et al. 
40 and had a spatial resolution of 1 km2; the water data included navigable rivers, 
lakes and the ocean. A raster of Euclidian distance to the nearest navigable water 
was calculated using Guidos Toolbox. For each patch, we extracted (1) distance to 
water and (2) HII for the centroid point as response variables. We then tested for 
significant differences in the distribution of the two focal land-use classes (tree 
plantations and natural regrowth) using a separate Kruskal–Wallis rank sum test 
for each response variable.

Country-level analysis. We summarized the predicted plantation and regrowth 
area in each tropical country by intersecting the centroids of predicted land-use 
polygons with a national border database70. Both polygon area and country 
area between 25° N to 25° S were calculated using the WGS-84 projection in 
the geosphere R package71. We compared our predicted plantation expansion 
(plantation gain patches between 2000 and 2012, surviving to 2015) in each 
country with the area of increase in plantations and tree crops reported to the FAO 
for the period 2000–2010.

Biome- and hotspot-level analysis. We also summarized the estimated plantation 
and regrowth area in each tropical biome72 and biodiversity hotspot (ref. 73, 
v.2016.1). We intersected the centroids of predicted land-use polygons with 
published biome and hotspot datasets. Terrestrial hotspot areas were selected for 
analysis and the biome dataset contained ecoregions as a biome subunit. Polygon 
area, country area and biome area between 25° N to 25° S were calculated using the 
WGS-84 projection in the geosphere R package71. For each biome, ecoregion and 
hotspot, we calculated the total and percentage area of observed natural regrowth 
and tree plantation expansion. Additionally, in each ecoregion, we calculated the 
per cent of area occupied by intact forests in 2013 (ref. 74, ‘intact forest dominance’). 
To assess how well ecoregion area and intact forest dominance predicted the total 
area of tree plantations and natural regrowth in each ecoregion, we conducted a 
multiple linear regression, with all area variables log-transformed. The type of tree 
cover gain was a categorical predictor which interacted with ecoregional area and 
intact forest dominance, respectively.

Protected area analysis. Protected area data (boundary, location and status) 
were derived from the 2018 World Database on Protected Areas (WDPA v.1.4, 
ref. 61) and details on WDPA data preprocessing and analysis are available in 
the Supplementary Methods. To examine how tree plantation expansion and 
natural forest recovery affected PAs across our study region, we quantified the 
area of plantation and regrowth located inside PAs and outside but near PAs 
(≤1 km from the border). To limit the impact of misclassification (commission) 
error on estimates of plantation area within PAs, only PAs containing >5 ha of 
plantation area were considered to be affected by plantations; in our dataset, 
5 ha is the approximate estimated mean size of tree plantations in Africa. We 
then used high-resolution imagery (see above for methods) to manually inspect 
all PAs with >5 ha of plantation expansion and removed incorrectly predicted 
plantation polygons from the affected PA’s area estimate. To quantify the effect of 
human influence and accessibility on PAs, we calculated the HII40 for each PA and 
compared the degree of plantation occurrence across PAs. The effect of IUCN PA 
ranking on the occurrence of plantations in PAs was also examined, across three 
plantation area thresholds (0, 5 and 50 ha). Due to marked differences in mean 
IUCN rank across continents and data nonlinearity, we compared the mean IUCN 
rank between parks with and without plantations (binomial response variable) 
using Kruskal–Wallis one-way analysis of variance tests. Tests were done separately 
for each continent and threshold.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting summary linked to this article.

Data availability
All data needed to replicate our results are available in the article, online or the 
supplementary information. Manually generated training data are available 
from the corresponding author, M.E.F., upon reasonable request. Predicted map 
outputs can be downloaded from the Global Forest Watch data repository: https://
data.globalforestwatch.org/content/pantropical-tree-plantation-expansion-2000
-2012/about

Code availability
All Python code needed to replicate our input data from Google Earth Engine are 
available on github at https://github.com/dohyung-kim/plantation. All R code for 
data analysis are available from the corresponding author, M.E.F., upon reasonable 
request, with the main R scripts available on github.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Google Earth Engine and QGIS version 3.10 were used for data collection in this study, along with several publicly available data sources listed 
in the Methods and Supplementary Information.

Data analysis Data analysis was completed using Python 2.7 and R 4.0.3. Our code is available following our code availability statement: "All Python code 
needed to replicate our input data from Google Earth Engine are available on github at https://github.com/dohyung-kim/plantation.  All R 
code for data analysis are available from the corresponding author, MEF, upon reasonable request, with the main R scripts available on 
github."

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data needed to replicate our results are available in the article, online, or the supplementary information.  Manually-generated training data are available from 
the corresponding author, MEF, upon reasonable request.  Predicted map outputs can be downloaded from the Global Forest Watch data repository: https://
data.globalforestwatch.org/content/pantropical-tree-plantation-expansion-2000-2012/about
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This is a machine learning study conducted with training, testing, and validation data to output and assess a map.  The training and 
testing sample sizes are very large (>10,000 samples), and the independent validation data was large relative to the region of interest 
(n=4269).  All statistical analyses were conducted using either standard unbiased estimators (for map area and accuracy) or 
nonparametric ANOVAs (analyzing trends across the map, or protected areas).  

Research sample For our analyses, the map units we predicted and sampled from consist of mapped patches of tree cover gain identified by Hansen et 
al. (2013).  Sample size varied depending on the analysis, but generally exceeded 10,000 samples across all analyses.

Sampling strategy Only two sets of analyses used statistical inference.  For our estimates of map area, we based our sample size on the resulting 
confidence intervals around our area estimates, as well as estimates of further improvements if we increased sample size.  For our 
statistical analyses, we used all available data (not sub-samples).  

Data collection Our training and testing data was derived by trained analysts.  Our validation data was derived independently, by a team of at least 
two analysts, with the PI making the final call in cases of confusion.  See our Supplementary Information for more details.

Timing and spatial scale The spatial scale is the global tropics, between 25 degrees North and South.  The timing is the years 2000-2012, persisting to 2015.  

Data exclusions No data were excluded from our analyses.

Reproducibility Our global-scale predictions of tree plantation area were consistent across numerous different machine learning algorithms.  

Randomization Our validation data was a stratified random sample across continents, biomes, and land cover classes, with sampling density 
proportional to the area of the strata.

Blinding Our validation data labels were derived without reference to the predictions of the machine learning model.  

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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