UC Irvine

SSOE Research Symposium Dean's Awards

Title

2019 AIAA Design/Build/Fly

Permalink

https://escholarship.org/uc/item/82v3r3f6

Authors

Yeung, Nathan Sevilla, Marlon Chen, Brian et al.

Publication Date

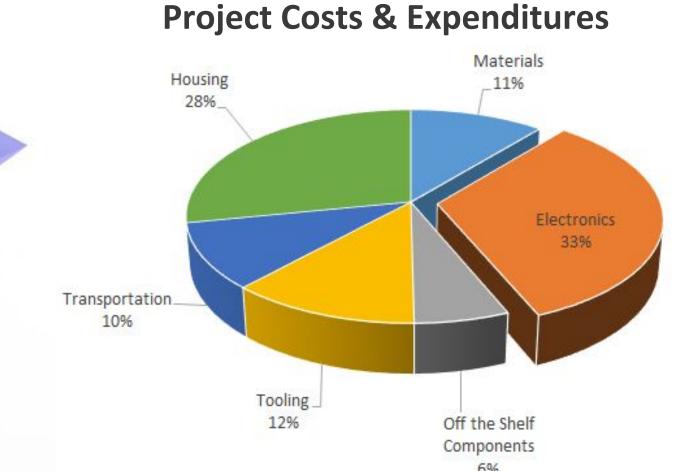
2019-03-15

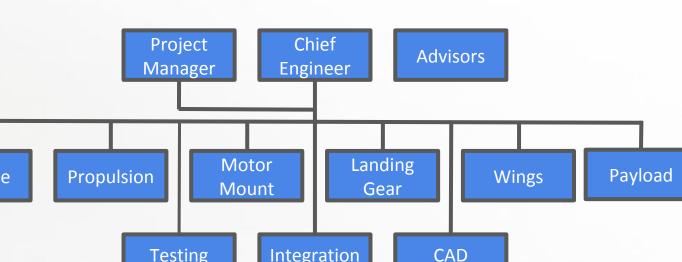
Peer reviewed

AIAA Design/Build/Fly

Faculty Adviser: Professor Robert H. Liebeck

Advisers: Colin Sledge, Paul Parcell, Joseph Hsieh


UCI Samueli School of Engineering



Grand Total: \$4200

Team Structure

Team Members

James Bechler	Tina Nguyen
Brian Chen	Aakash Patel
Adrienne Dao	Andrew Reuter
Erick Hernandez	Marlon Sevilla
Sam Hince	Nathan Yeung

For further inquiry, contact:

For more information, visit http://www.aiaadbf.org

Project Manager Marlon Sevilla Chief Engineer Nathan Yeung

Email: dbf.uci.sdp@gmail.com

marlonps@uci.edu

nhyeng@uci.edu

What is Design/Build/Fly?

AIAA Design/Build/Fly is an annual international remote-controlled aircraft competition that allows teams to apply their analytical skills and showcase their cooperative efforts in building real-world aircrafts. Students must design, manufacture, and demonstrate the flight capabilities of an aircraft that can perform in a series of different flight scenarios.

Goals and Objectives

- Design an aircraft based on the given rules and constraints
- Develop and apply innovative, practical, and affordable fabrication techniques
- Document and compile design, manufacturing, and testing process into industry-standard written report

Requirements and Constraints

- Must have a minimum wingspan of 4 feet
- Aircraft must fit in a 3x2 foot box in stowed condition
- Takeoff within a 10 ft on a ramp
- o Must be capable of carrying at least 4 stores

Balsa Wing

- o Laser cut balsa ribs ensure consistent and quick production
- Can fold and unfold remotely
- o Lightweight, able to withstand over 4Gs of force during flight

Competition Mission Objectives

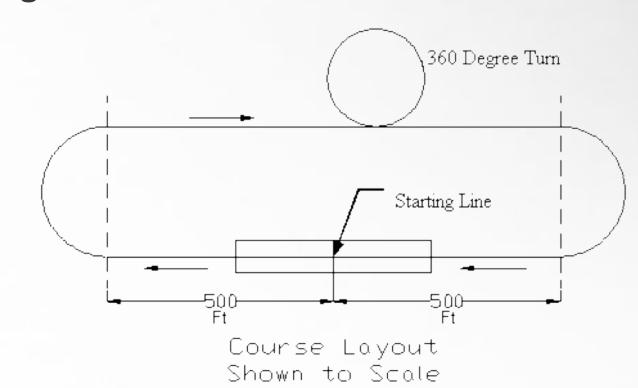
Ground Mission

Assemble the radome and stores onto the plane as fast within 5 minutes.

as possible

Fly 3 laps with no payload

Mission 1


Mission 2

Fly 3 laps as fast as possible while carrying the radome within 5 minutes.

Fly one lap for each store carried and drop one store per lap within 10 minutes.

Mission 3

Flight Course

Motor Mount

- 3D printed mold for easy part release post-curing
- Lightweight, carbon fiber based motor mount
- Able to withstand vibrations and forces from propulsion

Timeline

October 31, 2018 **Submit Proposal**

February 22, 2019 Submit Design Report

Payload 2

12 x 2 oz. stores

April 11-14, 2019 Contest Fly-Off

Payload 1

o 1.55 oz. radome