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This dissertation investigates the task of quickly and accurately learning possibly time-

varying information about a system by making binary and noisy measurements that yield insight

into its current state. This problem arises in beam alignment for millimeter-wave (mmWave)

communication where the active learning of the location of a transmitter relative to the receiver is

necessary to establish communication. In the problem of spectrum sensing for cognitive radio, active

learning of the spectrum occupancy is used for opportunistic communication. These applications

motivate our study of the problem of searching for a target(s) among a discrete set of locations by

probing different locations with the caveat that probing larger areas leads to more incurred noise.

The problem of binary search has been extensively studied and we are inspired by information-
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theoretic principles to apply to practical problems in communication systems for enabling improved

learning acquisition. Our methodology can be summarized by two central paradigms: active and

sequential design of measurements, and dynamic tracking of a Bayesian posterior belief.

First, we cast the problem of searching for stationary, yet unknown, target locations as the

problem of channel coding with state and feedback. We apply adaptive and sequential codes, i.e.

measurement design, based on posterior matching to the problems of beam alignment and spectrum

sensing to study these from a fundamental limit point of view. Our results characterize significant

improvements in performance obtained by using adaptive measurements over non-adaptive ones,

which is especially critical in the regimes of low signal-to-noise ratio. In the second half of this work,

we generalize our work for learning time-varying measurement gains and dynamic target locations.

We complement our strategies of active and sequential measurement design with simultaneous

estimation of the measurement gains, which enables handling time-varying fading in mmWave beam

alignment for example. Lastly, we enable handling stochastic mobility in mmWave beam alignment

by incorporating predictive Bayesian filtering to dynamically evolve the posterior belief and by

adaptively allocating pilots based on analysis of the mutual information and spectral efficiency.

Combined, this dissertation moves towards solutions for the general and practical target search

problem characterized by mobile and non-uniform targets.
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Chapter 1

Introduction

Consider the general problem of recovering an unknown random vector Xt œ RB

” via a

sequence of noisy binary observations. Mathematically, this is the problem of estimating Xt via

observations Yt, where an agent has control over the binary measurement vectors At œ {0,1}B

” ,

and all observations are impacted by an additive measurement-dependent noise. Specifically, the

observations have the form

Yt = A|
t Xt +Nt(At) (1.1)

An agent has the objective of finding a sequence of measurement vectors that minimize the prob-

ability of error in estimating Xt subject to a very low number of measurements available. Here

we note two salient features of our formulation: 1) each observation is subject to additive noise

Nt(At) that is affected by the choice of measurement At, and 2) the measured signal is stochastic

and potentially time-varying. Our problem formulation addresses the task of quickly and reliably

learning potentially time-varying information about a system (summarized in Xt) by making bi-

nary noisy measurements that yield insight into its current state. This set-up recovers the general

problem of noisy binary search rooted in the work of [1] and extensively studied since in [2–5].

The feature of measurement dependent noise is studied from an information-theoretic perspective

where many works have established a connection to the problem of channel coding over a binary

input channel with [4–6] and without [7] feedback and the problem of joint-source channel coding
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for dynamical systems [8]. Existing strategies propose to sequentially design measurements in

response to accumulated belief, referred to as posterior matching, and have been shown to provide

theoretical guarantees in performance [6, 9]. We draw on these works, leveraging the connection

to channel coding, to develop our methodologies of active and sequential measurement design

based on dynamically evolving our belief in response to observations or side information about the

dynamic system. The following sections introduce two practical applications in communication

systems that motivate this formulation.

1.1 Application to Beam Alignment in mmWave

Consider the problem of estimating channel state information (CSI) for establishing commu-

nications at millimeter-wave (mmWave) frequencies and above [10–12]. Prior to data transmission,

the receiving base station and user equipment (UE) are tasked with aligning the transmitter and

receiver antennas in the angular space through beamforming, which is enabled by acquiring an

estimate of the CSI. The most general set-up of this problem may include deciphering the CSI for

multiple potentially mobile UE’s and subject to time-varying channel fading conditions. Xt can

be thought of as the noiseless beam space representation of the channel, summarizing the UE path

directionality and channel fading information. A measurement vector At can be interpreted as a

particular beam pattern probing the angular space B µ (0,360¶) with narrowest beam resolution ”.

Furthermore, beam patterns with varying beam widths (in the angular domain) are associated with

effects in perceived signal-to-noise ratio (SNR). That is, while narrow beams exploit antenna gains,

wide beams with the same allocated power inherently achieve lower gains [13, 14] (where the gain

is inversely proportional to the angular beam width). This effect results in lower perceived SNR for

wider beams, and thus a higher probability of error in detecting a synchronization signal. This effect

of beam width on the SNR motivates our model of measurement-dependent noise, where Nt(At).

The problem of CSI acquisition is considered throughout this work, it is formally introduced in

chapter 3 with details of the state of the art.
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1.2 Application to Spectrum Sensing for Cognitive Radio

Consider the problem of spectrum sensing for cognitive radio [15], which aims to increase

data transmission rates by allowing secondary users to monitor the occupancy of frequency bands

in order to detect vacant subbands. Due to fluctuations in frequency subband occupancy by primary

users, at a given time some frequency subbands may be left unused and eligible for unlicensed user

transmissions. Xt can be thought of as a discrete representation of the spectrum occupancy over a

total bandwidth of B with subbands of bandwidth ”. In this problem, a secondary user desires to

locate vacant subbands quickly and reliably by making measurements about Xt through probing

vectors At at every time t. We consider the energy-based detection [16] where joint multi-band

detection is employed. Specifically, we are inspired by the group testing-based techniques for

cognitive radio presented by [17] where a signal occupancy measurement is acquired by jointly

deciding the occupancy of a group of subbands. Sequential measurements are made with a fixed

sampling rate, i.e. a fixed power consumption. Due to noise folding effects caused by sub-Nyquist

sampling [18] at each time instant t, the noise intensity depends on the number of subbands

probed as dictated by a measurement vector At. Thus, the noisy observation Yt is a function of

measurement dependent noise Nt(At). The resolution of the search, ”, can be limited by energy

detection technology, while the accessible bandwidth space B is subject to change depending on the

needs of the secondary user and is potentially unbounded. The problem of noisy spectrum sensing

is considered in chapter 2 with details of the state of the art.

1.3 Overview

The following chapters are an exposition of our investigations that consider several cases

of the unknown random vector Xt. Combined, this work moves towards solving the most general

problem (1.1). As our first step, in chapter 2 we consider the problem of recovering the unknown yet

time-invariant support of a random vector Xt œ RB

” . That is, an agent has the objective of finding

a sequence of binary measurement vectors that minimize the probability of error in estimating
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supp(Xt) subject to a very low number of measurements available and under the assumption of

sparse Xt. This problem arises in the example applications discussed above under stationary channel

conditions for beam alignment for mmWave, and stationary vacant subbands with known magnitude

for noisy spectrum sensing. This particular set-up is related to the problem of sparse Bayesian

Learning and more closely to the problem of joint sparse support recovery, where the goal is to

reconstruct a sparse common support vector via noisy compressed data [19–25]. We cast this

problem as a target search problem under measurement-dependent noise and connect it to problems

of channel coding with feedback. This connection to the problems of channel coding is crucial

to our approaches and enables us to apply and analyze, from a fundamental limit point of view,

existing codes or strategies with previously guaranteed performance. Under the additional condition

of extreme sparsity Îsupp(Xt)Î0, we characterize a gain in performance achieved by implementing

adaptive measurement selection over non-adaptive or random methods, and we propose a scheme

based on principles of posterior matching [6] for selecting measurements sequentially.

In chapter 3 we formally introduce the practical application of our work to the problem of

initial alignment for mmWave communications. First, we formulate the CSI acquisition as active

learning of the angle of arrival (AoA) of the UE signal subject to noisy measurements to propose a

new adaptive and sequential beamforming strategy. This approach draws heavily from the results of

our prior work in establishing a connection to channel coding with feedback of chapter 2, with the

practical constraint of contiguous measurements. We develop an active and sequential algorithm

for designing practically feasible measurements on the basis of posterior matching and analyze the

proposed strategy to characterize fundamental limits and demonstrate the first possible work for

standalone mmWave communication. In order to handle dynamic channel conditions, we propose

a simple, yet mismatched solution for estimating the channel fading. While extremely successful

under static or very well estimated channel conditions, our proposed scheme is shown to be sensitive

to knowledge about the time-varying fading coefficients.

As a direct follow up, our work in chapter 4 continues our investigation into the problem

(1.1) by studying the cases where the unknown random vector Xt can be decomposed into a
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time-invariant common support, W = supp(Xt) and a vector of stochastic coefficients Xt, i.e.

Xt = XtW. As demonstrated in chapter 3, enabling learning of unknown channel gains (denoted

by Xt) is crucial for handling dynamic channel conditions via sequential measurement selection.

Our approach is to augment the learning of the AoA (denoted by W) with a simultaneous online

estimation of the channel fading coefficients Xt. We propose two algorithms for adaptively

and sequentially selecting measurement vectors for jointly learning the common support and the

unknown stochastic coefficients. For both the general formulation (1.1) and the application of

mmWave beam alignment, we empirically show improvements over non-adaptive algorithms that

design randomized measurements a priori.

The remainder of this dissertation is focused on the dynamic case of the unknown random

vector Xt where the supp(Xt) changes in a stochastic fashion. We are influenced and motivated

by the problem of mmWave beam alignment under the additional challenges of mobility, such as

in cellular-enabled unmanned aerial vehicle (UAV) systems. We consider Xt to be a beam space

representation of the CSI, thus UAV mobility can be thought of as a changing support in Xt. More

specifically, we assume that mobility translates into variations of the AoA, which we model as

stochastic, thus the CSI (or equivalently supp(Xt) under no fading) must be constantly acquired

or estimated online. In chapters 5 and 6 we propose a comprehensive communication scheme for

enabling robust beam tracking under stochastic mobility. In chapter 5 we propose an active and

sequential beam selection algorithm based on dynamically evolving the posterior in response to

observed signals and mobility information. Numerically, we focus on a simplified channel model

receiving pilots only to analyze the performance in terms of achievable beamforming gain. We

show improvements in AoA estimation as well as significant increases in average beamforming gain

compared to existing tracking strategies. In chapter 6 we propose a primarily computational method

for adaptively allocating pilots to trade-off pilot enabled channel estimation and data transmission.

We introduce a method for adaptively triggering pilots by maximizing an information reward which

we define to consist of the mutual information and spectral efficiency terms of each communication

phase. Our proposed dynamic tracking of the posterior, which enables simultaneous learning of the
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AoA (both in the data transmission and pilot phases), is inspired by the reward optimization learning

paradigm of reinforcement learning algorithms [26]. We empirically demonstrate our ability to

maintain AoA alignment over time, which results in high average beamforming gains, as well as

reduced pilot overhead compared to existing strategies.

1.4 Notations

We use boldface letters to represent vectors and matrices. ÎAÎ is the l2 norm of A. A(j)

is the jth element of a vector. ÎAÎ0 denotes the l0 norm, i.e. sum of non-zero entries of A. For a

complex number c = a + ib, i.e. c œ C, |c| =
Ô

a2 + b2 is the absolute value or complex modulus.

R(c) and I(c) denote the real and imaginary parts of c. Let {0,1}M denote the set of all M ◊ 1

vectors made up of elements with values equal to 0 or 1. On the other hand, let [0,1]M denote

the set of all M ◊ 1 vectors made up of elements with values between 0 and 1. {e1,e2, . . . ,en}

is the set of basis vectors for Rn, where ei(j) = 1, if and only if j = i, and 0 otherwise. Let

[g]a = g if g Ø a otherwise [g]a = 0. For any positive integer M , let IM := { 1
M

, 2
M

, . . . ,1} and let

[M ] = {1,2, . . . ,M}. Let 1A denote the indicator function defined on set X indicating membership

of an element in a subset A of X, with value 1 for all X in A and value 0 for all X not in A.

We denote the space of probability mass functions on set X as P (x). Bern(q) is the Bernoulli

distribution with parameter q. N (µ,‡2) is the Gaussian distribution with mean µ, and variance ‡2.

Let G(x;µ,‡2) denote the probability density function of a Gaussian random variable with mean

µ and variance ‡2 at x. CN (µ,‡2) denotes circularly symmetric complex Gaussian distribution,

where real and imaginary parts are Gaussian distributed with variance ‡
2

2 and mean R(µ) and I(µ),

respectively. CN (x;µ,‡2) is the CN (µ,‡2) probability density function evaluated at x. Logarithms

are to the base 2. h(p) = p log 1
p

+ (1 ≠ p) log 1
(1≠p) denotes the entropy of a Bernoulli random

variable with parameter p, and D(p||(1 ≠ p)) = p log p

1≠p
+ (1 ≠ p) log 1≠p

p
denotes the Kullback-

Leibler (KL) divergence between the distribution of two Bernoulli random variables with parameters

p and (1≠p). The mutual information between random variable X and Y is defined as
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I(X,Y ) = q
x,y p(x,y) log p(x,y)

p(x)p(y) , where p(x,y) is the joint distribution and p(x) and p(y) are the

marginals of X and Y .

In chapter 3 specifically, let I(q;p) denote the mutual information of the input X ≥ Bern(q)

and the output Y of a BSC channel with crossover probability p. C1(p) := D(Bern(p)ÎBern(1≠p))

denotes the error exponent of hypothesis testing of Bern(p) versus Bern(1≠p). Rice(µ,‡2) denotes

and Rician distribution and Rice(x;µ,‡2) := x

‡2 exp
3

≠(x2+µ
2)

2‡2

4
J0(xµ

‡2 ) denotes its probability

density function, where J0(·) is the modified Bessel function of the first kind with order zero.
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Chapter 2

Target Acquisition: An

Information-Theoretic Perspective

In this chapter we introduce our first analysis of the general problem (1.1). We consider

the special case when the random vector Xt has a known magnitude and a time invariant common

support W = supp(Xt). The goal is to recover the unknown support vector W œ {0,1}B

” quickly

and robustly under a limited number of measurements. In the first part of this chapter, we begin our

study of practical communication systems applications under an information theoretic perspective.

We cast the practical problem of spectrum sensing for cognitive radio (briefly introduced in chapter 1)

as the task of searching for multiple targets under measurement dependent noise and formalize the

connection to multiple access channel coding with feedback. As a main consequence, this approach

allows for the characterization of fundamental limits on the speed and the reliability of optimal

multiband spectrum sensing.

In the second part of this chapter, we consider the special case of extreme sparsity ÎWÎ0 = 1

and formalize the connection to the problem of binary input channel coding with state and feedback

subject to codebook dependent Gaussian noise. Leveraging this connection to channel coding, we

propose and investigate sequential acquisition methods for recovering W in an active manner (with

feedback). Most notably, this work characterizes a lower bound on the adaptivity gain in expected
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number of measurements required to acquire W for a desired probability of error. Our theoretical

analysis reveals two distinct asymptotic regimes affecting the adaptivity gain based on the manner

in which the number of locations B

”
grows.

2.1 Part I. Multiband Noisy Spectrum Sensing with Codebooks

In traditional wireless communication systems, licensed primary users are allocated portions

of a spectrum. Due to fluctuations in frequency subband occupancy by primary users, at a given

time, some frequency subbands may be left unused and eligible for unlicensed user transmissions.

Cognitive radio [15] aims to increase data transmission rates by allowing secondary users to monitor

the occupancy of frequency bands in order to detect vacant subbands. This work focuses specifically

on the mulitiband sensing approach in which a secondary user searches across multiple narrow

frequency subbands, searching for vacant subbands. In [27], multiband joint detection is introduced

and shown to increase aggregate throughput and reliability in spectrum sensing for cognitive radio.

Schemes such as [28] and [29] show further gains in performance by using adaptive algorithms.

While heuristic strategies are proposed by [28] and [29], fundamental limits on the expected number

of measurements required by adaptive strategies remain.

We cast the optimal and reliable multiband spectrum sensing problem as a target search

problem with measurement dependent noise, and to show a direct connection to the problem of

channel coding over a Multiple Access Channel (MAC) with feedback. In particular, we show

that the locations of the vacant subbands can be thought of as individual senders and the choice of

searching scheme can be viewed as a set of common codewords used by these "senders," with a

caveat that the channel noise statistically depends on the codebook. Drawing on this connection to

channel coding, non-adaptive and adaptive codes with previously guaranteed performance can be

effectively used as sensing schemes under which bounds on the expected number of measurements

can be obtained.

Here, we note that although this part of the chapter is focused on the practical application
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of spectrum sensing for cognitive radio, beam alignment for mmWave can be similarly cast as a

problem of searching for multiple target with measurement dependent noise (this application is

studied in chapter 3). The deployment of mm-Wave links into a cellular or 802.11 network, the

base station needs to to quickly switch between users and accommodate multiple mobile clients. In

a dense network as such, a received signal at the base station will be corrupted by measurement

dependent noise (due to channel properties) and by neighboring interfering users.

2.1.1 Problem Set-up

!
" = 10

Figure 2.1: Schematic illustration of the occupancy of B
” subbands [27]

Consider r vacant subbands among B

”
total subbands in a wireless spectrum (illustrated in

Fig. 2.1 for r = 2). A user tasked with locating these r vacant subbands searches by conducting a

sequence of noisy measurements, during which the occupancy of each subband remains fixed. At

time t the user probes a group of subbands, denoted by the measurement vector At, simultaneously

and obtains a noisy observation Yt. Let the locations of the r vacant subbands be denoted by a

vector W œ {0,1}B

” , such that W(j) = 1 if and only if subband j is vacant and j = 1,2, . . . , B

”
.

Let the binary measurement vector At œ {0,1}B

” denote the locations of the probed subbands

at time t, where At(j) = 1 if and only if subband j is searched at time t. Therefore, ÎAtÎ0 denotes

the number of subbands that are searched at time t. Let nt be a vector of measurement noise, i.e.

nt(j) is assumed to be i.i.d across time t and subband j, for all t and j, with distribution pz(·).
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Then, the noisy observation is given as

Yt = A|
t (W + nt)

= A|
t W + A|

t nt

(2.1)

The clean signal A|
t W indicates the the number of targets present in the measurement vector At.

In other words, the vector of observations Y1:N = [Y1, ...,YN ] contains noisy information about

the location of targets, given as a result of search matrix A1:N = [A1; ...;AN ]. The objective is to

find the best estimate, Ŵ, of W and the best search matrix A1:N in order to minimize the expected

number of measurements subject to a small error probability Pe = P(Ŵ ”= W|Y1:N ,A1:N ).

Here, we note that the search scheme, or search matrix A1:N , and the total number of

measurements made, N , can be either be selected offline or sequentially as a function of past

observations. More specifically, we say a searching scheme is of variable length if the number of

measurements, N , is a random stopping time with respect to random sequence [Y1,Y2, . . .]. Further-

more, if each column At is selected adaptively as a function of past observations, [Y1, . . . ,Yt≠1],

then the search scheme, A1:N , is said to be adaptive. On the other hand, for a non-adaptive searching

scheme A1:N is populated (potentially randomly) independently of Y1:N . Note that, given the added

complexity of adapting the choice of At, it is very natural to introduce and analyze the effects of

adaptivity, as it pertains to the design of A1:N .

We note that, assuming a uniform prior and a known search scheme A1:N , then upon a set of

observations Y1:N the best estimate, Ŵ, of W is easily derived via the maximum likelihood decoder

over the set:

C := {C : C =
irÿ

i=i1

[A1(i),A2(i); . . . ;AN (i)]}, (2.2)

which is the set of all possible outputs in the absence of noise. Next, we utilize this formulation

of the spectrum sensing problem, given by (2.1), to illustrate the connection to the problem of

communications over a MAC.
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2.1.2 An Information-Theoretic Perspective: Connection to MAC Coding

In the following section, we review channel coding over a MAC and formulate an equivalent

model for comparison to (2.1). We highlight similarities and differences. After establishing a

strong connection between the two problems, we propose a selection of non-adaptive and adaptive

codebooks that, through this connection, may be used as sensing schemes. Finally, we specialize a

maximum likelihood decoder for a general search with Gaussian noise.

Review of MAC

Zn

Yn

Xn(1)

Xn(i)

Xn(2)

!
"

!!(#)

!!(%)

!!(&) "!

#!

Figure 2.2: Diagram of multi-user communication over a multiple access channel (MAC) with
r senders

We begin by reviewing a traditional r-sender MAC, illustrated in Fig. 2.2. The output of the

MAC at for a time slot t is written as:

Yt =
rÿ

i=1
h(i)x(i)

t +Nt, (2.3)

where x
(i)
t , for i = 1,2, . . . , r, represents the input symbol from the ith sender at time t, h(i) is the

channel gain associated with sender i, and Nt is the channel noise. It is often assumed that Nt, is an

i.i.d, random variable. Equivalently, over N slots, x(i)
1:N = [x(i)

1 , . . . ,x
(i)
N

] represents the codeword for

sender i. Given the availability of the codebooks of the senders at the receiver, and upon obtaining a

set of observations, Y1:N , the receiver can detect the most likely codewords transmitted, i.e. decodes
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all x(i)
1:N ’s [30]. Define the probability of error Pe = P(x̂(i)

1:N ”= x(i)
1:N |Y1:N ), for i œ {1,2, . . . , r}.

In this setting, the objective becomes to design a B

”
◊N codebook for each user i = 1,2, . . . , r

in the form:

S

WWWWWWWWWWU

x(i1)
1:N

x(i2)
1:N
...

x(iB/”)
1:N

T

XXXXXXXXXXV

, (2.4)

in order to minimize the expected number of measurements needed to decode all codewords while

ensuring a desirable reliability Pe Æ ‘.

Spectrum Sensing as Coding over a MAC: Similarities and Differences

Recall the binary vector W contains r non-zero elements which indicate the locations of

targets. In other words, we can write

W =
rÿ

i=1
Wi, (2.5)

where Wi œ {e1,e2, . . . ,eM } is in the set of basis vectors for RM , where ei(j) = 1, if and only if

j = i, and 0 otherwise for all i. The output Yt now can be written as :

Yt =
rÿ

i=1
A|

t Wi + A|
t nt. (2.6)

Setting x
(i)
t = A|

t Wi for i = 1,2, . . . , r, and Nt = A|
nnt, observation Yt can be written as

Yt =
rÿ

i=1
x

(i)
t +Nt, (2.7)

which, by comparing to (2.3), can be interpreted as the output of an r-user MAC with the following

properties.

• Channels have unit gain: In (2.7), we note the missing gain elements, h(i), i = 1,2, . . . , r.
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This establishes that all messages, x
(i)
t , in (2.7), have a fixed unit channel gain.

• Matrix A1:N is a common codebook: By comparing the vector [A|
1Wi, . . . ,A|

N
Wi] =

A|
1:N Wi, from (2.6), to the codebook of a MAC user given in (2.4), we see that the rows in

A1:N can be viewed as the B

”
codewords of user i with a caveat that the codebook across

targets i = 1,2, . . . , r is constructed from a single search matrix, A1:N . Hence, when viewed

as MAC encoding, all "transmitters" essentially share a single codebook. Further, the decoder

need not label which transmitter sent which codeword so long as the right set of codewords

are identified.

• Additive noise depends on codebook: Note that, Nt in (2.7), depends on vector At, i.e.

in contrast to (2.3), the measurement noise is dependent on the individual columns of the

codebook. This dynamic codebook dependent noise model differs from a traditional MAC.

• The MAC channel inputs are binary: We note that both Wi and At are binary, and thus the

shared codebook, A1:N , is restricted to binary codes.

Maximum Likelihood Detection for Gaussian Noise

In this subsection we derive the structure of the maximum likelihood decoder when the

additive measurement noise is Gaussian, such that nt(j) ≥ N (0,‡2) is i.i.d accross time t and

subband j and for all t and j. We note that, under i.i.d noise across subbands, the total additive noise

Nt = A|
t nt ≥ N (0,ÎA|0‡2), and thus measurement, i.e. codebook dependent. More specifically,

we show that the optimal decoder can be reduced to finding an element in set C, defined in (2.2),

with the minimum weighted square distance to the observation vector Y1:N . Before formalizing

this, we first remind the reader that C is a set of all possible outputs if the noise is absent. Hence,

it is natural to require that our codebook (searching scheme), A1:N , be such that the sum of any r

codewords is unique. Mathematically, this means that if

irÿ

i=i1

[A1(i),A2(i), . . . ,AN (i)] =
jrÿ

i=j1

[A1(i),A2(i), . . . ,AN (i)], (2.8)
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then for all k = 1,2, . . . , r, then

ik = jk. (2.9)

Lemma 1. Let nt(j) ≥ N (0,‡2) across time t and subband j, for all t and j. Furthermore, let the

codebook A1:N satisfy the unique sum condition given by (2.8)-(2.9). The best estimate, Ŵ, of W

is the unique vector Ŵ such that Ŵ
|
A1:N = Ĉ and

Ĉ = arg min
[CœC]

Nÿ

t=1

|yt ≠C(t)|2
ÎAtÎ0‡2 ,

where recall ÎAtÎ0 is the number of subbands sensed at time t.

2.1.3 Search with a Codebook

In this section, we discuss a variety of searching schemes, in the form of codebooks, that

can be applied to the the sensing problem described by the model (2.1). This general approach of

search using codebooks provides an efficient way to design and compare a slew of non-adaptive and

adaptive codes. Before we proceed with the description of these example schemes, we remind the

readers that the codebooks (hence searching schemes) can be classified based on the variability of

the code-length (number of measurements conducted) as well as the adaptivity of the codebook to

the observed output samples.

Variable Length Random Coding

A variable length random codebook is constructed by drawing the codebook, A1:N , randomly

and without feedback information. In particular, At(j) is chosen according to i.i.d Bern(q) where

parameter q describes the expected proportion of ones in At, i.e. E[ÎAtÎ0
B/”

]. Intuitively, due to

our size dependent measurement noise model, as q is increased, ÎAtÎ0 will be larger on average,

thereby increasing the average size dependent measurement noise. However, if q is too small, for

large B

”
, the expected number of measurements needed to cover all subbands will increase. An

optimal choice of q will trade-off search time and measurement noise.
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Multi-phase adaptive algorithm

The multi-phase algorithm conducts a coarse search in its first phase by using the variable

length non-adaptive code with a fixed parameter q. It resumes when a unique Ŵ is found with high

probability. Upon completion of the first phase, r smaller regions, each believed to contain a single

target with high probability, are individually searched. The second phase has a zooming effect,

which serves the two-fold purpose of reducing the multi-target search into r single target searches

after the first phase, and of reducing measurement noise in each single target search.

Single-arget case with sorted posterior matching

In some instances, there may exist extreme sparsity in the vector w. That is, a search is

conducted to quickly and reliably locate a single vacant subband. In this single-target case we have

a larger set of examples in the domain of point-to-point feedback codes. In particular, the remainder

of this chapter is focused on applying and analyzing adaptive codebooks, from a fundamental

limit stand point. We take inspiration from adaptive strategies based on the posterior matching

scheme [31] which is a fully sequential point-to-point feedback code generalizing many special

cases [1, 2, 32] in the literature. To handle the measurement dependent nature of the noise, we

consider a slight modification of posterior matching under which the size of the search region is

gradually shrunk. Under the adaptive search algorithm, termed sortPM by [9], the observations,

[Y1, . . . ,Yt], are used to first compute the posterior probability over possible single target messages

P{ei|Y1, . . . ,Yt} where ei is one out of B

”
possible single target messages. Search vectors are

selected to "match" to the posterior, in an adaptive manner as uncertainty is reduced by updating

the posterior over time as observations are received. Use of these posterior matching based codes

enables analysis of the spectrum sensing problem from a fundamental limit point of view.

On the other hand, searching for multiple targets with measurement dependent noise is a

significantly harder problem compared to a single target case and achievability strategies for this

problem even in the absence of noise are far more complex [33, 34].
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2.2 Part II: Improved Target Acquisition Rates with Feedback

Codes

This part of the chapter is focused on the special case extreme sparsity of model (1.1),

where ÎXtÎ0 = 1. That is, the objective is to recover the unitary support time-invariant vector

W œ {0,1}B

” via a sequence of noisy linear measurements. Under the known magnitude and unitary

support, this problem can be thought of as a single target acquisition over a search region of width

B with a resolution up to width ”. Noisy linear measurements have the form

Yt = A|
t W +Nt(At), (2.10)

where a binary measurement vector At œ {0,1}B

” denotes the locations inspected and Nt(At) is a

noise term whose statistics are a function of the measurement vector At. The goal is to design a

sequence of measurement vectors {At}·
t=1, such that the target location W is estimated with high

reliability, while keeping the (expected) number of measurements · as low as possible.

In this chapter, we first consider the linear model when the elements of noise per location

searched are i.i.d Gaussian with zero mean and variance ”‡2. That is, Nt(At) in (2.10) are

distributed as N (0,ÎAtÎ0”‡2). For this case we show that the problem of searching for a target

under measurement dependent Gaussian noise Nt(At) is equivalent to channel coding over a binary

additive white Gaussian noise (BAWGN) channel with state and feedback (in Sect. 4.6 of [35]). This

allows us not only to retrofit the known channel coding schemes based on sorted Posterior Matching

(sortPM) [9] as adaptive search strategies, but also to obtain information theoretic converses to

characterize fundamental limits on the target acquisition rate under both adaptive and non-adaptive

strategies. Furthermore, by providing a non-asymptotic analysis of our two stage sorted Posterior-

Matching-based adaptive strategy and our converse for non-adaptive strategy, we obtain a lower

bound on the adaptivity gain.
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2.2.1 Our Contributions

Our main results are inspired by the analogy between target acquisition under measurement

dependent noise and channel coding with state and feedback. This connection was utilized in [36]

under a Bernoulli noise model. In part of the chapter, in Proposition 1, we formalize the connection

between our target acquisition problem with Gaussian measurement dependent noise and channel

coding over a BAWGN channel with state. Here, the channel state denotes the measurement vector.

The channel transition depends on the channel state as N (Xt,ÎAtÎ0”‡2) for input codeword

Xt œ {0,1}. Adapting the codeword to the past channel outputs, i.e. using feedback codes is known

to increase the capacity of a channel with state and feedback. This motivates us to use adaptivity

when searching, i.e., to utilize past observations Y1:t≠1 when selecting the next measurement vector

At. Furthermore, this information theoretic perspective allows us to quantify the increase in the

adaptive target acquisition rate. Our analysis of improvement in the target acquisition rate as well as

the adaptivity gain, measured as the reduction in expected number of measurements, while using an

adaptive strategy over a non-adaptive strategy has two components. Firstly, we utilize information

theoretic converse for an optimal non-adaptive search strategy to obtain a non-asymptotic lower

bound on the minimum expected number of measurements required while maintaining a desired

reliability. As a consequence, this provides the best non-adaptive target acquisition rate. Secondly,

we utilize a feedback code based on sorted Posterior Matching as a two-stage adaptive search

strategy and obtain a non-asymptotic upper bound on the expected number of measurements while

achieving a desired reliability. These two components of our analysis allow us to characterize a

lower bound on the adaptivity gain.

Our non-asymptotic analysis of adaptivity gain reveals two qualitatively different asymptotic

regimes. In particular, we show that adaptivity gain depends on the manner in which the number of

locations grow. We show that the adaptivity grows logarithmically with the number of locations B

”
,

i.e., O
1
log B

”

2
when refining the search resolution ” (” going to 0) and while keeping total search

width B fixed. On the other hand, we show that as the search width B expands (B goes to Œ)

while keeping search resolution ” fixed, the adaptivity gain grows with the number of locations as
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O
1

B

”
log B

”

2
.

The problem of searching for a target under noisy observations has roots in [1]. Our problem

setup is closely related to the problem of sequential estimation of the target location via the noisy

20 questions game studied by Jedynak et al. in [37] and collaborative 20 questions for target

localization by Tsiligkaridis et al. in [38]. However, unlike these problem setups which focus on

measurement independent noise we consider measurement dependent noise and hence focus on

prior work considering the same. The problem of searching for a target under a binary measurement

dependent noise, whose crossover probability increases with the weight of the measurement vector

was studied by [36] and analyzed under sort PM strategy in [9]. In particular, [36] and [9] provide

asymptotic analysis of the adaptivity gain for the case where B = 1 and ” approaches zero. Our prior

work [39] by utilizing a (suboptimal) hard decoding of Gaussian observation Yt, strengthens [36]

and [9] by also accounting for the regime in which B grows. While the analysis in [39] strengthens

the non-asymptotic bounds in [9] with Bernoulli noise it failed to provide tight analysis for our

problem with Gaussian observations. In this part of the chapter, by strengthening our analysis in [39]

we further extend the prior work. We provide the following detailed list of our main contributions

in this part of the chapter:

1. We consider the problem of searching for a target (vacant) narrow band of width ” over

a total bandwidth B via linear binary measurements subject to measurement dependent

Gaussian noise (this model is referred to as noise folding in some literature). We establish the

equivalence of this problem to the problem of binary-input channel coding over an additive

Gaussian channel with state and feedback. This allows us to consider information theoretic

techniques to characterize the fundamental limits of searching as well as construct feedback

codes as effective search strategies (see Proposition 1 and Corollary 1).

2. We propose a simple intuitive two stage adaptive target search strategy inspired by known

feedback codes. This strategy allows us to provide a tight non-asymptotic upper bound on

the expected number of measurements needed by an optimal adaptive search strategy. The

only known upper bound on the expected number of measurements needed by an optimal
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adaptive search strategy in the use of Binary Symmetric Channel (BSC) [9, 36] provides an

upper bound that is very loose in general and particularly loose for Gaussian observations. In

this sense our upper bound significantly tightens the prior analysis (see Remark 3 and Fig. 2.8

and Fig. 2.9).

3. Obtaining tight non-asymptotic upper bounds on the expected number of measurements

needed by an optimal adaptive search strategy allows us to provide better bound on adaptivity

gain (see Theorem 1).

4. Our result extends and significantly improves the prior work in the asymptotic regime of B

goes to Œ:

• Our setup specializes to two practically relevant asymptotic problems given by the

application to beam alignment in mmWave where resolution ” shrinks while search

space width B remains fixed (noise variance shrinking to zero) and by the application

to noisy spectrum sensing where resolution ” is fixed but search space width B grows

(half bandwidth noise variance linearly growing).

• Our two-stage strategy is shown to be asymptotically optimal in the regime where ” goes

to zero and B is fixed. In this regime, our results extends prior work to on BSC [9, 36]

to the Gaussian additive noise case with noise folding. Here we note that the BSC work

in [9, 36] can be viewed as a pessimistic analysis of the Gaussian measurements with

hard-decoding.

• In the asymptotic regime where ” is fixed and B grows, our result significantly improves

prior work [36] in incorporating an optimization of the proposed strategy in terms of a

parameter –. Note that without such optimization, even if one accepts the hard decoding

approximation, all known schemes and analysis fail to provide a non-trivial bound in

the asymptotic regime (see Fig. 2.8).
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Applications

This formulation address the practical applications of beam alignment in mmWave and noisy

spectrum sensing described in chapter 1. Next, we discuss the state-of-the-art in these examples to

highlight the impact of our contributions. Giordani et al. [13] compare the exhaustive search like the

Sequential Beamspace Scanning considered by Barati et al. [40], where the base station sequentially

searches through all angular sectors, against a two stage iterative hierarchical search strategy. In the

first stage an exhaustive search identifies a coarse sector by repeatedly probing each coarse region

for a predetermined SNR to be achieved. In the second stage an exhaustive search over all locations

identifies the target. Giordani et al. show that in general the adaptive iterative strategy reduces the

number of measurements over exhaustive search except when desired SNR is too high, forcing the

number of measurements required at each stage to get too large. We show this through numerical

results. In fact, as confirmed by our simulations random-coding-based non-adaptive strategies

including the Agile-Link protocol [41], outperform the repetition based adaptive strategies.

Past literature on spectrum sensing for cognitive radio [27–29] and support vector recov-

ery [42, 43] have focused on the problem where At can be real or complex, with measurement

independent noise applying both exhaustive search and multiple adaptive search strategies. In

contrast, our work considers a simple binary model, At œ {0,1}B

” , but captures the implications

of measurement dependence of the noise, which is known in the spectrum sensing literature as

noise folding. The problem of measurement dependent noise (known as noise folding) has been

investigated in [18] where non-adaptive design of complex measurements matrix satisfying RIP

condition has been investigated. Our work compliments this study by characterizing the gain

associated with adaptively addressing the measurement dependent noise (noise folding), albeit for

the simpler case of binary measurements. We note that the case of adaptively finding a subset of a

sufficiently large vacant bandwidth with noise folding is considered in [17], where ideas from group

testing and noisy binary search have been utilized. The solutions however depend strongly on the

availability of sufficiently large consecutive vacant band and does not apply to our setting.
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2.2.2 Problem Set-up

We consider a search agent interested in quickly and reliably finding the true location of a

single stationary target by making measurements over time about the target’s presence. In particular,

we consider a total search region of width B that contains the target in a location of width ”. In

other words, the search agent is searching for the target’s location among B

”
total locations. Let

W œ {0,1}B

” denote the true location of the target, where W(j) = 1 if and only if the target is

located at location j. The target location W can take B

”
possible values uniformly at random whose

value remains fixed during the search. A measurement at time n is given by a vector At œ {0,1}B

” ,

where At(j) = 1 if and only if location j is probed. Each measurement can be imagined to result in

a clean observation Xt = W|At œ {0,1} indicating of the presence of the target in the measurement

vector At. However, only a noisy version of the clean observation Xt is available to the agent. The

resulting noisy observation Yt œR is given by the following linear model with additive measurement

dependent noise

Yt = Xt +Nt(At). (2.11)

Here, we assume Nt ≥ N (0,ÎAtÎ0”‡2) which corresponds to the case of i.i.d white Gaussian noise

with ‡2 denotes the noise variance per unit width. Conditioned on the measurement vector At, the

noise Nt is independent over time. Also define ‡2
Total := B‡

2
2 , which denotes the noise intensity

when the agent searches half of the search region B

2 .

A search consisting of · measurements can be represented by a sequence of measurement

vectors A1:· = {A1,A2, . . . ,A· } which yields a sequence of observations Y1:· = {Y1,Y2, . . . ,Y· }.

At any time instant n œ [· ], the agent selects the measurement vector in general as a function of the

past observations and measurements. Mathematically,

At = gt (Y1:t≠1,A1:t≠1) , (2.12)

for some causal (possibly random) function gtAfter observing the noisy observations Y1:· and the
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sequence of measurement vectors A1:· , the agent estimates the target location W as follows

Ŵ = d(Y1:· ,A1:· ) , (2.13)

for some decision function d The probability of error for a search is given by Pe = P(Ŵ ”=

W|Y1:N ,A1:N ) and the average probability of error is given by Pe = P(Ŵ ”= W). Now we define

the measurement strategy:

Definition 1 (‘-Reliable Search Strategy c‘). For some ‘ œ (0,1), an ‘-reliable search strategy,

denoted by c‘, is defined as a sequence of · (possibly random) number of causal functions

{g1,g2, . . . ,g· }, according to which the measurement matrix A1:· is selected, and a decision

function d which provides an estimate Ŵ of W, such that the average probability of error Pe is at

most ‘.

Types of Search Strategies

Every measurement vector At and the number of total measurements · can be selected

either based on the past observations Y1:t≠1, or independent of them. Based on these two choices,

strategies can be divided into four types i) having fixed length versus variable length of sequence of

measurement vectors A1:· , and ii) being adaptive versus non-adaptive. A fixed length ‘-reliable

strategy c‘ uses a fixed number of measurements · predetermined offline independent of the

observations, to obtain estimate Ŵ. On the other hand, a variable length ‘-reliable strategy c‘ uses a

random number of measurements · (possibly determined as a function of the observation sequence

Y1:· ) to obtain an estimate Ŵ. For example, · can be selected such that agent achieves Pe Æ ‘ in

every search and hence · is a random variable which is a function of the past noisy observations.

Under an adaptive strategy c‘ the agent designs the measurement vector At as a function of the past

observations Y1:t≠1, i.e., gt is a function of both A1:t≠1 and Y1:t≠1.

Definition 2. Let CA
‘ be a class of all ‘-reliable adaptive strategies.
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Under a non-adaptive strategy, the agent designs the measurement vector At offline inde-

pendent of past observations, i.e., gt does not depend on A1:t≠1 or Y1:t≠1.

Definition 3. Let CNA
‘ be a class of all ‘-reliable non-adaptive strategies.

2.2.3 Preliminaries

In this section, we review fundamentals of channel coding with state and feedback and

related the information theoretic concepts. The aim is to connect the problem of searching under

measurement dependent Gaussian noise to the problem of channel coding with state and feedback.

We then formulate an equivalent model of channel coding with state and feedback for comparison

to (2.11).

Channel Coding with State and Feedback

Encoder DecoderChannel 
Pt(Ỹt|X̃t, Ãt )Message Estimate 

of 
Message

W̃ X̃1:t Ỹ1:t W′^

Feedback

Figure 2.3: Transmission over a communication channel with state and feedback

A communication channel is specified by a set of inputs X̃ œ X̃ , a set of outputs Ỹ œ Ỹ ,

and a channel transition probability measure P(ỹ|x̃) for every x̃ œ X̃ and ỹ œ Ỹ that expresses the

probability of observing a certain output ỹ given that an input x̃ was transmitted [44]. Throughout

this work, we will concentrate on coding over a channel with state and feedback (in Sect. 4.6 in [35]).

Formally, at time t the channel state, Ãt belongs to a discrete and finite set Ã. We assume that the

channel state is known at both the encoder and the decoder. The transition probability at time t is

specified by the conditional probability assignment

Pt

1
ỸtÃt+1|Ỹ1:t≠1, X̃1:t,Ã1:t

2
= Pt

1
Ãt+1|Ỹ1:t, X̃1:t,Ã1:t

2
P

1
Ỹt|X̃t, Ãt

2
.
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Transmission over such a channel is shown in Fig. 2.3. In general, the channel state Ãt at time t

evolves as a function of all past outputs, inputs, and states,

Ãt = g̃t(Ỹ1:t≠1, X̃1:t≠1,Ã1:t≠1). (2.14)

The goal is to encode and transmit a uniformly distributed message W̃ œ [M ] over the channel. The

encoding function „t at any time t depends on the message to be transmitted W̃, all past states, and

past outputs. Thus the next symbol to be transmitted is given by

X̃t = „t(Ỹ1:t≠1,Ã1:t≠1,W̃). (2.15)

The encoder obtains the past outputs from the decoder due to the availability of a noiseless feedback

channel from decoder to encoder. In this work, we assume that both encoder and decoder know the

evolution of the channel state, i.e., the sequence Ã1:t. After · channel uses, the decoder uses the

noisy observations Ỹ1:· and state information Ã1:· to find the best estimate W̃Õ, of the message W̃.

The probability of error at the end of message transmission is given by Pe = P(W̃Õ ”= W̃|Ỹ1:· ,Ã1:· )

and the average probability of error is given by Pe = P(W̃Õ ”= W̃).

Example 1 (Binary Additive White Gaussian Noise channel with State and feedback). Consider a

Binary Additive White Gaussian Noise (BAWGN) channel with noisy output Ỹt given as the sum

of input X̃t œ {0,1} and Gaussian random variable Z̃t œ R whose distribution is a function of the

channel state Ãt. Specifically, Z̃t is a Gaussian random variable with state dependent noise variance

ÎÃtÎ0”‡2 for some ” > 0. In other words, we have

Ỹt = X̃t + Z̃t(Ãt), (2.16)

where Z̃t ≥ N (0,ÎÃtÎ0”‡2), and the state evolves as Ãt = g̃t(Ỹ1:t≠1,X̃1:t≠1Ã1:t≠1). Transmission

over a BAWGN channel is illustrated in Fig. 2.4.

Proposition 1. The problem of searching under measurement dependent Gaussian noise can be
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Ỹt

Ñt ~ 𝒩 (0, ||Ãt||0𝛿𝜎
2)

X̃t ∈ {0,1}

Figure 2.4: Transmission over a BAWGN channel with binary input X̃t and Gaussian noise Z̃t.

cast as a problem of channel coding over a BAWGN channel with state and feedback. Specifically,

• The true location vector W can be cast as a message W̃ to be transmitted over the BAWGN.

Therefore, by setting W̃ = W there are B

”
possible messages.

• The measurement vector fixes the probability P(Ỹt|x̃t, Ãt) = N (x̃t,ÎAtÎ0”‡2) since noise

distribution is Z̃t ≥ N (0,ÎAtÎ0”‡2) for x̃t œ {0,1}. In other words, by setting Ãt = At the

measurement vector acts as the channel state and fixes the channel transition probability.

• An ‘-reliable search strategy c‘ provides a sequence of {g1,g2, . . . ,g· } such that P(WÕ ”=

W) Æ ‘. Hence, by setting g̃i = gi for all i œ {1,2, . . . ,·}, the search strategy dictates the

evolution of channel states Ãt.

• The sequence of measurement vectors A1:t can be used as the codebook. Specifically, the

codewords and the encoding strategy are obtained by setting

X̃t = „t(Ỹ1:t≠1,Ã1:t≠1,W̃) = W|At. (2.17)

In other words, ‘-reliable search strategy c‘ provides an encoding strategy with at most ‘

probability of error in decoding the true message.
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Corollary 1. The problem of coding over BAWGN channel with codebook dependent state and

feedback can be cast a problem of searching under measurement dependent Gaussian noise when

the codebook dependent state is given as

Ãt = [„t(Ỹ1:t≠1,Ã1:t≠1,W̃(1)),„t(Ỹ1:t≠1,Ã1:t≠1,W̃(2)), . . . ,„t(Ỹ1:t≠1,Ã1:t≠1,W̃(M))]|.

The measurement vector is obtained by setting At = Ãt. Therefore, a channel coding strategy with

P(W̃Õ ”= W̃) Æ ‘ provides an ‘-reliable search strategy over M locations.

The equivalence of problem of searching under measurement dependent noise and the

problem of channel coding with state and feedback, implied by Proposition 1 and Corollary 1,

provides an efficient way to design and compare non-adaptive and adaptive search strategies.

Furthermore, it is known that feedback can improve the capacity of a channel with state [35]. In

other words, adaptive coding strategies provide a gain in rate of transmission over non-adaptive

coding strategies. This motivates our analysis of the gains to be seen when using an adaptive search

strategy over a non-adaptive search strategy. Next we define appropriate figures merit to characterize

the gain in using adaptive strategies for the problem of searching under measurement dependent

noise.

Target Acquisition Rate and Adaptivity Gain

For any ‘-reliable strategy c‘, the performance is measured by the expected number of mea-

surements Ec‘ [· ]. The following definition captures the growth of expected number of measurements

as number of search locations grow.

Definition 4 (Achievable Target Acquisition Rate). A target acquisition rate R is said to be ‘-

achievable, if for any › > 0 and t large enough, there is an ‘-reliable search strategy c‘ which
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satisfies the following

Ec‘ [· ] Æ t, (2.18)
B

”
Ø 2t(R≠›). (2.19)

A targeting rate R is said to be achievable target acquisition rate if it is ‘-achievable for all ‘ œ (0,1).

The above definition is motivated by information theoretic notion of transmission rate over

a communication channel, which captures the exponential rate at which the number of messages

grows with the number of channel uses while the receiver can decode with a small average error

probability. Similarly, the target acquisition rate captures the exponential rate at which the number

of target locations grow with the number of measurement vectors while a search strategy can still

locate the target with a diminishing average error probability.

Definition 5. The BAWGN capacity with input distribution Bern(q) and noise variance ‡2 is defined

as

C
1
q,‡22

:=≠
⁄ Œ

≠Œ

1
(1≠ q)G(y;0,‡2)+ qG(y;1,‡2)

2
log

1
(1≠ q)G(y;0,‡2)+ qG(y;1,‡2)

2
dy

≠ 1
2 log(2fie‡2), (2.20)

where G(x;µ,‡2) denotes the pdf of Gaussian random variable with mean µ and variance ‡2 at x.

Corollary 2. From channel coding over a BAWGN channel with state and feedback, we obtain

that for any small › > 0 and t large enough, there exists an ‘-reliable search strategy c‘ such the

following holds

Ec‘ [· ] Æ t, (2.21)

2t(C( 1
2 ,‡

2
Total)≠›) (a)

Æ B

”

(b)
< 2tC( 1

2 ,”‡
2), (2.22)

where (a) follows by combining our Corollary 1 with Theorem 4.6.1 in [35], and (b) follows by
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combining our Corollary 1 with the converse of the noisy channel coding theorem [44] and using

the fact that the best channel is obtained when noise variance is the least, i.e., ”‡2.

Definition 6 (Target Acquisition Capacity under ‡2
Total Ø fl). The supremum of achievable target

acquisition rates R under ‡2
Total Ø fl is called the target acquisition capacity Cfl under ‡2

Total Ø fl.

Remark 1. Let CNA
fl and CA

fl denote the target acquisition capacity under total noise variance

‡2
Total Ø fl over the class of non-adaptive and adaptive strategies respectively. From [9, 36], the gain

in the target acquisition capacity when using adaptive strategies is given as

CA
fl ≠CNA

fl = 1≠ sup
q

C(q,2qfl) > 0. (2.23)

When the width of the search region B grows the noise intensity ‡2
Total grows unboundedly

and the achievable rate goes to zero. Hence, we first characterize the following notion of adaptivity

gain before we characterize the the improvement in target acquisition rate when using adaptive

strategies over non-adaptive strategies.

Definition 7 (Adaptivity Gain). The adaptivity gain is defined as the best reduction in the expected

number of measurements when searching with an ‘-reliable adaptive strategy cÕ
‘ œ CA

‘ , over an

‘-reliable non-adaptive strategy c‘ œ CNA
‘ . Mathematically, it is given as

min
c‘œCNA

‘

E[· ]≠ min
cÕ‘œCA

‘

E[· Õ]. (2.24)

2.2.4 Main Results

In this section, we characterize a lower bound on the adaptivity gain minc‘œCNA
‘

E[· ] ≠

mincÕ‘œCA
‘
E[· Õ]; the performance improvement measured in terms of reduction in the expected

number of measurements for searching over a width B among B

”
locations under measurement

dependent Gaussian noise. First we characterize a lower bound on minc‘œCNA
‘

E[· ].
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Non-adaptive Strategies

Lemma 2. The minimum expected number of measurements required for any ‘-reliable non-

adaptive search strategy can be lower bounded as

min
c‘œCNA

‘

Ec‘ [· ] Ø
(1≠ ‘) log

1
B

”

2
≠h(‘)

C (qú, qúB‡2) . (2.25)

Proof of the Lemma 2 is provided in Appendix A. The proof follows from the fact that

clean signal Xi and noise Ni are independent over time and independent of past observations for

i œ [n], due to the non-adaptive nature of the search strategy. In the absence of information from

past observation outcomes, the agent tries to maximize the mutual information I(Xi,Yi) at every

measurement. Since Xi ≥ Bern(qi) and Ni ≥ N (0, qiB‡2), the mutual information I(Xi,Yi) =

C
1
qi, qiB‡2

2
is maximized at qi = qú.

Fig. 2.5 shows the behavior of the maximum mutual information for a non-adaptive strategy

C
1
qú, qúB‡2

2
as number of locations grow. When B = 1 and ” goes to zero, C

1
qú, qúB‡2

2

remains same for a given ‡2. On the other hand, when ” = 1 and B grows, C
1
qú, qúB‡2

2
goes to

zero. Furthermore, C
1
qú, qúB‡2

2
goes to zero faster when ‡2 = 0.05 than when ‡2 = 0.001. This

implies non-adaptive strategies need a growing number of measurements as B grows. On the other

hand, an adaptive strategy can reduce the number measurements as follows. Whenever the agent

narrows down the target’s location to some coarse fraction of the total search region (say a section

of width –B) with high confidence, an adaptive strategy can zoom in and search only within –B

section. This reduces the noise intensity in the measurements unlike a non adaptive strategy which

still searches regions of width qúB. Hence, non-adaptive strategies perform poorly in comparison

to adaptive strategies that rapidly zoom in to smaller regions especially when C
1
qú, qúB‡2

2
close

to zero (as shown in Fig. 2.5 for ‡2 = 0.05).
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Figure 2.5: Non-adaptive capacity as number of locations grow for various values of ‡2.

Lower Bound on Adaptivity Gain

The expected number of measurements required to zoom in to a region of width –B with

high confidence is larger when – is small. On the other hand, noise intensity reduces more

significantly after zooming in to a region of width –B, for small – than for large –. This reduces

the expected number of measurements needed to locate the target within the region –B upto a

resolution ” with high confidence. For any adaptive strategy, there is a trade-off between how

rapidly an adaptive strategy can zoom in to and the width of the region to which it zooms in. This

trade-off is controlled by the value of parameter –. Since adaptive strategies observe less noisy

measurements than non-adaptive strategies after zooming, parameter – also controls the adaptivity

gain. This intuition is formalized by the following theorem.

Theorem 1. Let ‘ œ (0,1). For any ‘-reliable non-adaptive strategy c‘ œ CNA
‘ searching over a

search region of width B among B

”
locations with · number of measurements, there exists an

‘-reliable adaptive strategy cÕ
‘ œ CA

‘ with · Õ number of measurements, such that for any ÷ > 0 the

following holds
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min
c‘œCNA

‘

Ec‘ [· ]≠ min
cÕ‘œCA

‘

EcÕ‘ [·
Õ] Ø max

–œI B

”

Y
]

[
log 1

–

g
(1)
‘,÷ (qú,B‡2)

+ log –B

”

g
(2)
‘,÷ (–, qú,B‡2)

≠h‘,÷(”,–,B‡2)
J

,

where

g(1)
‘,÷ (qú,B‡2) =

A
(1≠ ‘)

C(qú, qúB‡2) ≠ 1
C (qú, qúB‡2)≠÷

B≠1
,

g(2)
‘,÷ (–, qú,B‡2) =

Q

a (1≠ ‘)
C(qú, qúB‡2) ≠ 1

C
1

1
2 , –B‡2

2
2

≠÷

R

b
≠1

,

and

h‘,÷(”,–,B‡2) =
log

1
2
‘

2
+log log

1
1
–

2
+a÷

C (qú, qúB‡2)≠÷
+

log
1

2
‘

2
+log log

1
–B

”

2
+a÷

C
1

1
2 , –B‡2

2
2

≠÷
+ h(‘)

C(qú, qúB‡2) ,

qú = argmaxqœI B

”

C(q,qB‡2), and a÷ is the solution of the following equation

÷ = a

a≠3 max
qœI B

”

⁄ Œ

≠Œ

e
≠ y

2
2Bq‡2

Ò
2fiqB‡2

C
2y ≠1
2qB‡2

D

(a≠3)
dy. (2.26)

Proof of Theorem 1 is obtained by combining Lemma 2 and Lemma 3. Theorem 1 provides

a non-asymptotic lower bound on adaptivity gain.The first two terms in the above lower bound

can be viewed as corresponding to two stages. Intuitively, the first part corresponds to the initial

stage of the search, where the agent narrows down the target’s location to some coarse – fraction of

the total search region, i.e., narrows to a section of width –B with high confidence. The second

stage corresponds to refined the search within one of the coarse sections –B obtained from initial

stage. For the first stage, our bound predicts negligible gains in using an adaptive strategy over

a non-adaptive strategy and it is captured by the term 1
g

(1)
‘,÷ (qú,B‡2)

. However, in the second stage

where an adaptive strategy zooms in to a width of –B, a significant gain can be seen especially
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as B grows and it is captured by the term 1
g

(2)
‘,÷ (–,qú,B‡2)

. The following corollary characterizes the

adaptivity gain in the two asymptotic regimes ” going to zero and B growing.

Corollary 3. Let ‘ œ (0,1). For any ‘-reliable non-adaptive strategy c‘ œ CNA
‘ searching over

a search region of width B among B

”
with · number of measurements, there exists an ‘-reliable

adaptive strategy cÕ
‘ œ CA

‘ with · Õ number of measurements, such that for a fixed B the asymptotic

adaptivity gain grows logarithmically with the total number of locations,

lim
”æ0

Ec‘ [· ]≠EcÕ‘ [· Õ]
log B

”

Ø 1≠ ‘

C(qú, qúB‡2) ≠1. (2.27)

For a fixed ”, the asymptotic adaptivity gain grows at least linearly with total number of locations,

lim
BæŒ

Ec‘ [· ]≠EcÕ‘ [· Õ]
B

”
log B

”

Ø (1≠ ‘)”‡2

loge
. (2.28)

Furthermore, we have

lim
BæŒ

minc‘œCNA
‘

Ec‘ [· ]
B

”
log B

”

Ø (1≠ ‘)”‡2

loge
, (2.29)

and

lim
BæŒ

minc‘œCA
‘
EcÕ‘ [· Õ]

B

”

Æ 16”‡2. (2.30)

The proof of the above corollary is provided in Appendix-C.

Remark 2. The above corollary characterizes the two qualitatively different regimes discussed

previously. For fixed B, as ” goes to zero the asymptotic adaptivity gain scales as only log B

”
,

whereas for fixed ”, as B increases the asymptotic adaptivity gain scales as B

”
log B

”
. In other words,

adaptivity provides a larger reduction in the expected number of measurements for the regime

where the total search width is growing than in the case where we fix the total width and shrink the

location widths. In Sect. 2.2.6 we related this phenomenon to the diminishing capacity of BAWGN
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channel when the total noise ‡2
Total grows.

Next we provide the main technical components of the proof of Theorem 1.

Adaptive Search Strategies

Consider the following two stage search strategy.

First Stage (Fixed Composition Strategy c1
‘

2
)

We group the B

”
locations of width ” into 1

–
sections of width –B. Let WÕ denote the true

location of the target among the sections of width –B. Now, we use a non-adaptive strategy to search

for the target location among 1
–

sections of width –B. In particular, we use a fixed composition

strategy where at every time instant t, the fraction of total locations probed is fixed to be qú. In other

words, the measurement vector AÕ
t at every instant t is picked uniformly randomly from the set of

measurement vectors {AÕ œ {0,1} 1
– : ÎAÕÎ0 = Âq

ú

–
Ê}. For the ease of exposition, we assume that

q
ú

–
is an integer. Hence, for this strategy, at every t, Xt ≥ Bern(qú) and Nt ≥ N (0, qúB‡2). For all

i œ {1,2, . . . , 1
–

}, let flÕ
t(i) be the posterior probability of the estimate ŴÕ(i) = 1 after reception of

Y1:t≠1, i.e., flÕ
t(i) := P

1
ŴÕ(i) = 1|Y 1:t≠1

2
and let flÕ

t :=
Ó
flÕ

t(1),flÕ
t(2), . . . ,flÕ

t

1
1
–

2Ô
. Assume that

agent begins with a uniform probability over the 1
–

sections, i.e., flÕ
0 = {–,–, . . . ,–}. The posterior

probability flÕ
t+1(i) at time t+1 when Yt = y is obtained by the following Bayesian update:

flÕ
t+1(i) =

Y
__]

__[

flÕ
t(i)G(y;1,q

ú
B‡

2)
DÕ

t

if AÕ
t(i) = 1,

flÕ
t(i)G(y;0,q

ú
B‡

2)
DÕ

t

if AÕ
t(i) = 0,

(2.31)

where

DÕ
t =

ÿ

j:1{At(j)=1}

flÕ
t(j)G(y;1, qúB‡2)+

ÿ

j:1{At(j)=0}

flÕ
t(j)G(y;0, qúB‡2).

Let ·1 := inf
Ó
n : maxi flÕ

t(i) Ø 1≠ ‘

2
Ô

be the number of measurements used under stage 1.

Note that ·1 is a random variable. Hence, first stage is a non-adaptive variable length strategy. Now,
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the expected stopping time Ec1‘
2
[·1] can be upper bounded using Lemma 7 from Appendix-B.

Second Stage (Sorted Posterior Matching Strategy c2
‘

2
)

In the second stage, the agent zooms into the –B width section obtained from the first

stage and uses an adaptive strategy to search only within this –B section. The agent searches

for the target location of width ” among the remaining –B

”
locations. In particular, we use the

sorted posterior matching strategy proposed in [9] which we describe next. Let WÕÕ denote the

true target location of width ”. For all i œ {1,2, . . . , –B

”
}, let flÕÕ

t (i) be the posterior probability

of the estimate ŴÕÕ(i) = 1 after reception of Y1:t≠1, i.e., flÕ
t(i) := P

1
ŴÕÕ(i) = 1|Y1:t≠1

2
and let

flÕÕ(n) := {flÕÕ
t (1),flÕÕ

t (2), . . . ,flÕÕ
t

1
–B

”

2
}. Assume the agent begins with a uniform probability over

the –B

”
sections, i.e., flÕÕ

0 =
Ó

”

–B
, ”

–B
, . . . , ”

–B

Ô
. At every time instant t, we sort the posterior values

in descending order to obtain the sorted posterior vector fl¿
t . Let vector It denote the corresponding

ordering of the location indices in the new sorted posterior. Define

kú
t := argmin

i

------

iÿ

j=1
fl¿

t (j)≠ 1
2

------
. (2.32)

We choose AÕÕ
t such that AÕÕ

t (j) = 1 if and only if j œ {It(1), It(2), . . . , It(kú
t )}. Note that for this

strategy, at every t, the noise is Nt ≥ N (0,ÎAÕÕ
t Î0”‡2) and the worst noise intensity is N (0, –B‡

2
2 ).

The posterior probability flÕÕ
t+1(i) at time t+1 when Yt = y is obtained by the following Bayesian

update:

flÕÕ
t+1(i) =

Y
__]

__[

flÕÕ
t (i)G(y;1,ÎAÕÕ

t Î0”‡
2)

DÕÕ
t

if AÕÕ
t (i) = 1,

flÕÕ
t (i)G(y;0,ÎAÕÕ

t Î0”‡
2)

DÕÕ
t

if AÕÕ
t (i) = 0,

(2.33)

where

DÕÕ
t =

ÿ

j:1{At(j)=1}

flÕÕ
t (j)G

1
y;1, |AÕÕ

t |”‡22
+

ÿ

j:1{At(j)=0}

flÕÕ
t (j)G

1
y;0, |AÕÕ

t |”‡22
.
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Let ·2 := inf
Ó
t : maxi fl2

t (i) Ø 1≠ ‘

2
Ô

be the number of measurements used under stage 2. Note

that ·2 is a random variable. Hence, the second stage is an adaptive variable length strategy.

The expected number of measurements Ec2‘
2
[· ÕÕ] can be upper bounded using Lemma 10 from

Appendix-B.

Noting that the total probability of error of the two stage search strategy is less than ‘

and that the expected stopping time is EcÕ‘ [· Õ] = Ec1‘
2
[·1] +Ec2‘

2
[·2], we have the assertion of the

following lemma.

Lemma 3. The minimum expected number of measurements required for the above ‘-reliable

adaptive search strategy cÕ
‘ can be upper bounded as

EcÕ‘ [·
Õ] Æ min

–œI B

”

I
log 1

–
+log 2

‘
+log log 1

–
+a÷

C (qú, qúB‡2)≠÷
+log –B

”
+log 2

‘
+log log –B

”
+a÷

C
1

1
2 , –B‡2

2
2

≠÷

Z
^

\ .

Remark 3. Recall that mincÕ‘œCA
‘
EcÕ‘ [· Õ] denotes the minimum expected number of measurements

required by the optimal adaptive strategy non-asymptotically. Lemma 3 provides an upper bound

on mincÕ‘œCA
‘
EcÕ‘ [· Õ] using the two stage adaptive strategy. The sorted posterior matching strategy

proposed in [9] provides another upper bound for mincÕ‘œCA
‘
EcÕ‘ [· Õ]. However, this bound is very

loose. In fact, sorted posterior matching strategy empirically performs significantly better than

the bound predicted by the analysis in [9]. Lemma 3 using a possibly sub-optimal strategy than

sorted posterior matching provides a significantly tighter bound on mincÕ‘œCA
‘
EcÕ‘ [· Õ] as illustrated in

Fig. 2.8 and Fig. 2.9.

Remark 4. In the regime of fixed B and diminishing ”, Lemma 3 together with Corollary 2

establishes the asymptotic optimality of our proposed algorithm.

2.2.5 Generalization To Other Noise Models

The main results presented in this chapter so far consider the setup where the noise Nt

is distributed as N (0,ÎAtÎ0”‡2). In other words, the variance of the noise given by (ÎAtÎ0”‡2)

36



is a linear function of the size of a measurement vector ÎAtÎ0. This model assumption holds

when each target location adds noise equally and independently of other locations when probed

together. In general, due to correlation across locations the additive noise variance can be assumed

to scale as a non-decreasing function f(·) of the measurement vector ÎAtÎ0. In this section, we

extend our model to a general formulation for the noise Nt ≥ N (0,f(ÎAtÎ0)”‡2), where f(·) is a

non-decreasing function of ÎAtÎ0. For example, f(At) = ÎAtÎ“

0 for some “ > 0. Fig. 2.6 shows

that the effect of the noise function f(ÎAtÎ0) on the capacity. The following theorem is an extension

of Theorem 1 to the general formulation of noise. We provide the theorem without a proof since it

closely follows the proof of Theorem 1.

!! "

&! " #

&! "
'! "

,
$ !

"#

Figure 2.6: Behavior of capacity of BAWGN channel with ‡2 = 0.25 over a total search region
of width B = 10, location width ” = 0.1, as a function of the size of a measurement ÎAtÎ0.

Theorem 2. Let ‘ œ (0,1) and let f(·) be a non-decreasing function. For any ‘-reliable non-adaptive

strategy c‘ œ CNA
‘ searching over a search region of width B among B

”
locations with · number of

measurements, there exists an ‘-reliable adaptive strategy cÕ
‘ œ CA

‘ with · Õ number of measurements,

such that for any constant ÷ > 0 the following holds
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min
c‘œCNA

‘

Ec‘ [· ]≠ min
cÕ‘œCA

‘

EcÕ‘ [·
Õ] Ø max

–œI B

”

Y
]

[
log 1

–

g
(1)
‘,÷ (qú,B‡2)

+ log –B

”

g
(2)
‘,÷ (–, qú,B‡2)

Z
^

\ ◊ (1+o(1)),

where

g(1)
‘,÷ (qú,B‡2) =

Q

a (1≠ ‘)
C(qú,f(qúB

”
)”‡2)

≠ 1
C

1
qú,f(qúB

”
)”‡2

2
≠÷

R

b
≠1

,

g(2)
‘,÷ (–, qú,B‡2)

Q

a (1≠ ‘)
C(qú,f(qúB

”
)”‡2)

≠ 1
C

1
1
2 ,f(–B

2”
)‡2

2
≠÷

R

b
≠1

,

and qú = argmaxqœI B

”

C(q,f(qB

”
)”‡2), and o(1) goes to 0 as B

”
æ Œ.

2.2.6 Numerical Results

In this section we provide numerical analysis.

Comparing Search Strategies

In this section, we empirically compare the performance in expected number of measure-

ments Ec‘ [· ] required by four ‘-reliable strategies proposed in the literature. In addition to the

sortPM strategy c2
‘ , and the optimal variable length non-adaptive strategy i.e., the fixed composition

strategy c1
‘ , we also consider two noisy variants of the binary search strategy. The noisy binary

search applied to our search model selects the locations to be searched at time n, i.e. the search

region At, to be half the width of the previous search region At≠1. In particular, it zooms in to the

half region of At≠1 which has accumulated higher posterior probability.

The first variant we consider is the fixed length noisy binary search, which resembles the

adaptive iterative hierarchical search strategy [13]. In this strategy, each measurement is repeated

–‘(At)ÎAtÎ0 number of times, where –‘(At) is a number chosen as a function of At such that

all combined measurements result in an ‘-reliable search strategy. That is, each measurement
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vector At is used –‘(At)ÎAtÎ0 number of times, before the strategy zooms into a region of half the

size. The second variant is a variable length version of the similar noisy binary search where each

measurement vector At is used until we obtain error probability less than ‘p := ‘

logB/”
either inside

or outside of At. Table 2.1 provides a quick summary of the search strategies. Note that Table 2.1

also includes a short summary of our two-stage strategy, although this strategy is studied in the next

section (Sect. 2.2.6).

Table 2.1: Candidate Search Strategies

Strategies c‘ œ C‘ Description of At selection
Optimal non-adaptive • Select At s.t. ÎAtÎ0 = q

ú
B

”

as dictated by strategy c1
‘

Fixed Length Noisy Binary • Select At as dictated by
binary search strategy
• Repeat –‘(At)ÎAtÎ0 times

Variable Length Noisy Binary • Select At as dictated by
binary search strategy
• Repeat · times s.t.
· = min{t : ÎfltÎŒ Ø 1≠ ‘p}

Sorted Posterior Matching • Select At as dictated by
Sort PM strategy c2

‘

Two-stage Strategy • Phase 1: Search among ( 1
–

)
large subsets. Select At fixed
composition s.t. ÎAtÎ0 = q

ú
B

”

• Phase 2: Zoom into region
of size –B, and select At

with Sort PM strategy c2
‘

Fig. 2.7, shows the performance of each ‘-reliable search strategy, when considering fixed

parameters B, ”, and ‘. We note that the fixed length noisy binary strategy performs poorly in

comparison to the optimal non-adaptive strategy. This shows that randomized non-adaptive search

strategies, similar to the one considered in [41] perform better than both the exhaustive search (as

shown in [41]) and the iterative hierarchical search strategy. In particular, it performs better than

the variable length noisy binary search since when the noise variance parameter ‡2 is large, this
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higher noise intensity requires that each measurement is repeated far too many times in order to be

‘-reliable. The performance of the optimal fully adaptive variable length strategies sort PM [9] is

superior to all strategies even in the non-asymptotic regime.

10
-2
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-1

0

50

100

150
Fixed Length Noisy Binary

Optimal non-adaptive

Variable Length Noisy Binary

SortPM

Figure 2.7: Ec‘ [· ] with ‘ = 10≠4, B = 16, and ” = 1, as a function of ‡2 for various strategies.

Two Distinct Regimes of Operation

In this section, for a fixed ‡2 we are interested in the expected number of measurements

required Ec‘ [· ] by an ‘-reliable strategy c‘, in the following two regimes: (1) varying ” while keeping

B fixed, and (2) varying B while keeping ” fixed. Fig. 2.8 and Fig. 2.9 show the simulation results

of Ec‘ [· ] as a function of width B, i.e. regime (1) and resolution ”, i.e. regime (2), respectively. The

empirical performance is studied for the following: for the fixed composition non adaptive strategy

c‘ œ CNA
‘ , for the sort PM adaptive strategy c‘ œ CA

‘ and its respective upper bound (obtained

from the analysis of [9]), for our proposed two-stage strategy along with dominant terms of the

lower bound of Lemma 2, and the upper bound of Lemma 3.. In both regimes, we observe better

performance using the sortPM strategy over our two-stage strategy. However, the upper bound

of the sortPM strategy is extremely loose and fails to guarantee any adaptivity gain. In fact, in
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Fig. 2.9 the sortPM upper bound is approximately 4 times larger in Ec‘ [· ] than the sortPM strategy.

On the other hand, under both regimes of operation, our tighter bounds empirically show positive

adaptivity gain, albeit in distinctly different manners for each regime. For both regimes, we see that

the adaptivity gain grows as the total number of locations increases; however in distinctly different

manner as seen in Corollary 3.
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Figure 2.8: Ec‘ [· ] with ‘ = 10≠4, ‡2 = 0.05, and ” = 1, as a function of B.
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Figure 2.9: Ec‘ [· ] with ‘ = 10≠4, ‡2 = 1 and B = 1, as a function of ”.
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Figure 2.10: Close up of Ec‘ [· ] with ‘ = 10≠4, ‡2 = 1 and B = 1, as a function of ”.

Relating the Regimes of Operation to Capacity

In this section, we attempt to relate these two regimes of operation to the manner in which the

capacity of a BAWGN channel varies. Let noise parameter Nt ≥ N (0,2q‡2
Total), where q = ÎAtÎ0”

B
is

the fraction of the search region measured and ‡2
Total = B‡

2
2 is the half bandwidth variance. Fig. 2.11

shows the effects of the half bandwidth variance on the capacity of a search as a function of q.

Intuitively, the target acquisition rate of the adaptive strategy relates to the time spent searching sets

of size q as q varies from 1
2 to ”

B
. This means for sufficiently small ‡2

Total (Æ 0.025 in this example),

the adaptivity gain is negligible since C(1
2 ,2q‡2

Total) is about 1 for all q. For medium range ‡2
Total

(for e.g., 0.25 in this example), the adaptivity effects the target acquisition rate from C(1
2 ,2qú‡2

Total)

to C(1
2 ,2 ”

B
‡2

Total). When ‡2
Total grows significantly, however, the capacity drops rather quickly to

zero, forcing the non-adaptive strategies to operate close to exhaustive search, whose measurement

time increases linearly in B

”
. This is the regime with most significant adaptivity gain as predicted by

Corollary 3.
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Beyond a Linear Noise Model

In this section, we analyze Ec‘ [· ] under a general noise model, as presented in Sect. 2.2.5.

Recall, Yt ≥ N (Xt,f(ÎAtÎ0)”‡2), where f is a non-decreasing function of the measurement vector

ÎAtÎ0. Fig. 2.6 shows that the behavior of the capacity range of a search with fixed parameters B, ”,

At can be significantly affected by the function f(·). Let us consider the noise function f(·) to be of

the form ÎAtÎ“

0 . Fig. 2.12 shows the plot of dominant terms of the lower bound of Lemma 2, and

the upper bound of Lemma 3 as a function of ‡2 for the values of “ œ {0.5,1,2}. The adaptivity gain

is clearly more significant for larger values of gamma and hence, validates the need for generalizing

the noise function.

2.3 Conclusion

We considered the problem of recovering the time-invariant support of a vector with known

magnitude via a sequence of linear and measurement dependent noisy observations. Under these

assumptions, the problem can be thought of as the task of searching for the unknown location

of multiple targets under measurement dependent noise. In part I. of this chapter we considered
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Figure 2.12: Ec‘ [· ] with ‘ = 10≠4, ‡2 = 0.25 and B = 25, ” = 1, as a function of “ when
Nt ≥ N (0,ÎAtÎ“

0”‡2).

the case of recovering r targets in as few measurements as possible. The problem was shown to

be equivalent to MAC encoding with feedback. In the second part of this chapter we considered

the special case of extreme sparsity, where we have the problem of searching for a single target’s

unknown location under measurement dependent Gaussian noise. We showed that this problem

is equivalent to channel coding over a BAWGN channel with state and feedback. We used this

connection to utilize feedback code based adaptive search strategies. We obtained information

theoretic converses to characterize the fundamental limits on the target acquisition rate under both

adaptive and non-adaptive strategies. As a corollary, we obtained a lower bound on the adaptivity

gain. We identified two asymptotic regimes with practical applications where our analysis shows

that adaptive strategies are far more critical when either noise intensity or the total search width is

large. In contrast, in scenarios where neither the total width nor noise intensity is large, non-adaptive

strategies might perform quite well. The immediate step is the extension of this work to a model

with time-varying support, i.e. mobile targets, or with time-varying or unknown magnitudes.

Chapter 2, in part, is a reprint of the material as it appears in the paper: Nancy Ronquillo

and Tara Javidi, “Multiband Noisy Spectrum Sensing with Codebooks," in the proceedings of the
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Asilomar Conference on Signals, Systems, and Computers, Nov. 2016. The dissertation author was

the primary investigator and author of this paper.

Chapter 2, in part, is a reprint of the material as it appears in the article: Anusha Lalitha,

Nancy Ronquillo, and Tara Javidi, “Improved Target Acquisition Rates with Feedback Codes,"

IEEE Journal of Selected Topics in Signal Processing, Vol.12, no.5, pp. 871 - 885, Oct. 2018. The

dissertation author was the secondary investigator and co-author of this paper.
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Chapter 3

Active Learning and CSI Acquisition for

mmWave Initial Alignment

In chapters 1 and 2 we have formulated the problem of target search with measurement

dependent noise and studied the problem from information-theoretic perspective. In this chapter

we formally introduce the practical application of our work to the problem of initial alignment

for Millimeter-Wave (mmWave) communications and above. Specifically, we cast the problem of

initial alignment as a target search problem under noisy linear measurements with the practical

constraint of contiguous measurements. We develop an active and sequential algorithm for designing

practically feasible measurements on the basis of posterior matching and analyze the proposed

strategy to characterize fundamental limits.

3.1 Introduction

mmWave communication with massive antenna arrays is a promising technique that increases

the data rate significantly, thanks to the large available bandwidth in mmWave frequency bands.

While an inherent challenge for mmWave communication is extremely high pathloss [10]- [11],

resulting in low SNR and high link outage, the small wavelength can be exploited to deploy an

array with a very large number of antennas in a relatively small area. It has been shown [12] that
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massive MIMO mmWave systems can be deployed to form highly directional beams to mitigate

the pathloss and the associated low SNR and high link outage. However, it is important to note

that the realization of highly directional beams requires a precise and reliable estimate of channel

state information (CSI) [45] during the initial access phase. This chapter considers the problem of

actively learning an optimal beamforming vector from a fundamental limit point of view.

With the scale of millimeter wavelength and the half wavelength spacing, a large number of

antennas can be packed into a modest-sized device. For large antenna arrays, however, equipping

each antenna with an RF chain is too hardware costly. This prevents per antenna digital processing.

A hardware friendly proposal for practically implementing large array systems in mmWave bands

deploys a single RF chain where CSI acquisition reduces to finding the optimal analog beamforming

along the dominant direction of the signals between the base station (BS) and the user that is trying

to establish the communication link. In this chapter we consider this practical scenario of mmWave

communication with massive MIMO technology and the practically designed low complexity

hierarchical beamforming codebook of [46] to propose an efficient and adaptive beamforming

algorithm that quickly identifies the optimal beamforming direction under a single dominant

path channel model. Furthermore, we obtain bounds on the performance of this algorithm to

asymptotically match the fundamental information theoretic limits on the speed and reliability of

active learning and CSI acquisition with the given hardware constraints.

The exhaustive linear search, which utilizes beams that scan over all possible directions

to pick the best one, and is proposed in IEEE 802.15 and 5G standards, requires a relatively long

initial access time that linearly grows with the angle resolution (highest resolution being the number

of the antenna elements). On the theoretical front, in contrast, prior work which is based on simple

measurement models noted that the problem of CSI acquisition in mmWave is closely related to that

of noisy search, which itself has been shown to be closely related to the problem of channel coding

over a binary input channel with [6, 47, 48] and without [7] feedback (see chapter 2 for a detailed

description of the connection of initial alignment to channel coding). Under various noise models,

it is shown that the number of measurements can be kept to grow only logarithmically with the

47



angular resolution and target error probability [6] and [48] (discussed in chapter 2)). While these

early studies did not take the practical beam patterns into account, this logarithmic scaling was

later also confirmed and reported in more practical systems with realistic and empirically precise

beam patterns [46, 49, 50] with the caveat of a sufficiently large SNR model. In particular, [46]

carefully developed a hierarchical beamforming codebook which in the noiseless setting allows for

an (adaptive) binary search over the angular space; increasing transmission power and/or time is

then used to combat the measurement noise. The authors in [49,50] showed that similar performance

gains can also be achieved by a non-adaptive strategy. More specifically, the authors of [49] proposed

random hash functions to generate a random beamforming codebook whose acquisition time, they

showed, grows only logarithmically with target resolution/error probability. The logarithmic scaling

(of search time with angular resolution) could also be obtained when viewing the problem as that

of sparse estimation with compressive measurements (see [51] and references therein). Indeed,

the authors of [50] recover the signal direction with a non-negative least square estimate from

Compressive Sensing by measuring the received power via a random beamforming codebook which

hashes the angular directions similarly to [49].

However, to guarantee coverage in low (< 5 dB)1 raw SNR regimes (cell-edge users), these

beamforming techniques (random direction and direct bisection) provide marginal advantage over

the exhaustive linear search as noted in [47]. This limitation of prior work to operate in high

raw SNR makes them unsuitable for cell-edge users in mmWave communication. This has major

practical system design implications, namely the current 5G mmWave communication in 3GPP

standards [52] supports mainly non-standalone mmWave in which the initial access phase is covered

by legacy sub-6G infra-structure which provides higher SNR. This highlights the need for a strategy

that can adaptively improve the measurement quality and is suitable for a low raw SNR regime.
1We note that while [50] provides a system working under ≠30 dB SNRBBF (before beamforming), the system

parameters used in their simulation were such that the SNRBBF is defined differently than raw SNR in our set up. For
a fair comparison we may interpret our raw SNR = SNRBBF

c
where the scaling factor c is proportional to number of

subcarriers and number of RF chains used in their simulation.
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Figure 3.1: The active learning process of the AoA „ is to design the beams wt œ WS adaptively
for the sequential collection of the observations yt, from which at the ending of the collection is
to be used for the estimation of the AoA „.

3.1.1 Contributions

In this paper, we consider the problem of CSI acquisition during the initial access phase for

designing the analog beamforming in an environment with a single-path channel. We formulate

the CSI acquisition as an active learning of the angle-of-arrival (AoA) at the base station (BS) side

where the user’s beamforming vector is assumed to be fixed, as illustrated in Fig. 3.1. We consider

two measures of performance for the proposed search scheme: the (expected) resolved beam width

(AoA resolution) and the (expected) error probability. Based on the nature of the initial access

protocol, we consider two types of stopping criteria: fixed-length stopping, where a fixed amount of

search time is allocated for the initial access phase, and variable-length stopping, where search is

conducted over a random stopping time. The contributions of the chapter include:

• We formulate the initial beam alignment for massive MIMO as active learning of the AoA

through multiple sequential and adaptive search beams. Our approach draws heavily from our

prior work on algorithms for noisy search [9], active learning [53], and channel coding with

feedback [48] (discussed in chapter 2).

• We propose a new adaptive beamforming strategy that utilizes the hierarchical beamforming

codebook of [46]. The proposed adaptive strategy, hierarchical Posterior Matching (hiePM ),

accounts for the measurement noise and selects the beamforming vectors from the hierarchical
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beamforming codebook based on the posterior of the AoA. The design and analysis of hiePM

extends our prior work of sorted posterior matching for noisy search [9] and [48] in that

it restricts the search and the measurements to the practical and hierarchical beamforming

patterns of [46].

• We analyze the proposed hiePM strategy and give an upper bound on the expected acquisition

time of a variable-length hiePM search strategy required to reach a fixed (predetermined)

target resolution and error probability in the AoA estimate. Even when the measurements are

hard detected (1-bit quantized measurements), the achievable AoA acquisition rate and the

error exponent of hiePM are shown (Corollary 5) to be significantly better than those for the

search methods of [46] and the random hashing of [49] in all raw SNR regimes.

• We show, via extensive simulations, that hiePM is suitable for both fixed-length and variable-

length initial access and significantly outperforms the state-of-art search strategies of [46] and

[49]. The numerical simulations show that hiePM is capable of reaching a good resolution

and error probability even in a low (< 5dB) raw SNR regime with reasonable expected search

time overhead, demonstrating the possibility of stand-alone mmWave communication for the

first time

3.2 System Model

We consider a sectorized cellular communication system operating in EHF (30-300 GHz)

bands, where a sector is formed by the BS serving users in a range of angles [◊min,◊max] as depicted

in Fig. 3.2. We focus on the model with one sector and a single user, where the interference from

other sectors are assumed to be negligible. This assumption is justified due to high pathloss in

the EHF bands [10], and the orthogonality (in time or code) of the transmissions from other users

within the sector.

We consider a hardware architecture consisting of multiple antenna elements with a single

RF chain [54] on both the BS and the user sides. Beamforming is applied on the antenna elements
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Figure 3.2: Base Station Serving sector [30o,150o] and a received beam at the BS formed by
uniform linear array

such that the power gain due to beamforming may compensate the high pathloss in the mmWave

communication system. We use a pilot-based procedure where the users send out pilots to the BS

while the BS combines the signal from the antenna elements to the RF chain by the beamforming

vector wt œ CN . We will focus on the procedure of obtaining a good beamforming vector at the

BS, while assuming a fixed beamforming vector at the user which allows us to model the user’s

antennas as a single virtual antenna.

Let N be the number of antennas at the BS,
Ô

P be the combined effect of the transmit power

and the large-scale fading (pathloss and shadowing), and h œ CN be the small-scale frequency flat

fading vector, i.e. hi is the small-scale fading between the single virtual antenna of the user and the

ith antenna element at the BS. For small-scale channel modelling, we use the stochastic multi-path

modelling (see Ch.7 in [55]) assumption with a single dominant path. Furthermore, we assume that

the user’s mobility is negligible, i.e., the channel vector h is time invariant. In summary, we have

the following assumption:

Assumption 1. The small-scale channel can be described as:

h = –a(„), (3.1)
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where – œ C is the fading coefficient and

a(„) := [1, ej
2fid

⁄
sin„, ..., ej(N≠1) 2fid

⁄
sin„] (3.2)

is the array manifold created by the Angle-of-Arrival (AoA) „ œ [◊min,◊max] with antenna spacing

d. Furthermore, we assume that the fading coefficient, –, and the AoA, „, are static in time.

Let time index t = 1,2, ... be the time frame in which the BS can adapt the beamforming

vector wt. Each beamforming slot consists of I samples of finer granularity either of time (e.g.

CDMA) or of frequencies (e.g. OFDM subcarriers). Orthogonal spreading sequences sk of length I

are sent by each of the K users. In other words, we assume:

Assumption 2.

sH

k skÕ =

Y
___]

___[

0 for k = kÕ

1 for k ”= kÕ
(3.3)

With the assumption of orthogonality among users, correlating the pilot codes we can write

the code-matched signal from a particular user as

yt=
Ô

PwH

t (
Kÿ

kÕ=1
hkÕsT

kÕ)sú
k +wH

t Ntsú
k

(a)= –
Ô

PwH

t a(„)+wH

t nt,

(3.4)

where Nt is the N ◊ I spatially uncorrelated AWGN noise matrix across the antenna elements

(rows) and samples (columns). Note that in (a) we used single-path channel model (Assumption 1)

and orthogonality of codes (Assumption 2) from different users as well as the static nature of the

channel, h, over the code resource I . Finally, nt := Ntsú
k

≥ CN (0N◊1,‡2I) is the equivalent noise

vector at the antenna array at the output of the code-matched filter, i.e., such that yt has a raw SNR

equal to P/‡2 when no beamforming is applied.

In many practical scenarios only a partial information about yt is available to the BS. As a
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result, we consider the available signal to BS, zt, to be of the form

zt = q(yt), (3.5)

where q(·) represents a practically motivated partial information processing such as a quantization

function. With the received signal model in (3.4) and (3.5), we are now ready to describe the

sequential beam search problem which adaptively designs the beamforming vectors wt.

3.3 Active Learning and Hierarchical Posterior Matching

In this section we present our main result. In Sect. 3.3.1 we lay out the framework of active

learning for sequential beam alignment. In Sect. 3.3.2 we describe the hierarchical beamforming

codebook. In Sect. 3.3.3 we describe our proposed algorithm: Hierarchical Posterior Matching

for sequentially selecting the beamforming vector from the beamforming codebook. Lastly, in

Sect. 3.3.4 we describe the posterior update for various measurement models.

3.3.1 Sequential Beam Alignment via Active Learning

A sequential beam alignment problem in the initial access phase consists of a beamforming

design strategy (possibly adaptive), a stopping time · , and a final beamforming vector design.

Specifically, we consider a stationary beamforming strategy as a causal (possibly random) mapping

function from past observations to the beamforming vector: wt+1 = “(z1:t,w1:t). Subsequently, the

final beamforming vector selection b(·) is a (possibly random) mapping determining the final beam-

forming vector to be exploited for communication, ŵ = b(z1:· ,w1:· ), as a function of the sequence

of the observations gathered during the initial access phase [1 : · ]. To reduce the reconfiguration

time of the beamforming vector from wt to wt+1, we use a pre-designed beamforming codebook:

Assumption 3. The beamforming vector is chosen from a pre-designed beamforming codebook

WS with finite cardinality.
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Based on the nature of the protocol, we consider two criteria for selection of the length of

the initial access phase:

Fixed-length stopping time: the user transmits a pre-determined number of frames during

which the BS uses the beamforming vectors w1,w2, ...,wT . After the total pre-determined number

of frames, n, the BS makes a prompt decision on the final beamforming vector ŵ

Variable-length stopping time: the user sends out the initial access signal continually until

a certain target link quality can be achieved by the final beamforming vector ŵ with high probability.

Under a variable-length setup, the BS sends an ACK to the user which ends the initial access phase.

In Sect. 3.4, we propose an adaptive beam alignment algorithm with both types of the

stopping rules, while our analysis in Sect. 3.4 focuses on the variable-length stopping time · . Our

numerical studies consider the performance under both stopping rules.

Since the best beamforming vector ŵ = a(„) can boost the SNR by a factor of N , the fading

coefficient – can also be estimated and equalized easily if the SNR at the RF chain (after antenna

combining) is high enough. Therefore, under Assumption 1, one of the major goals of the initial

access phase is to learn the AoA „ so that BS can form a good beam toward that direction. Therefore,

we can treat the sequential beam alignment problem by the methods of active learning [53, 56]

as shown in Fig. 3.1, where the beamforming vector wt is equivalent to the query point and yt is

equivalent to the response in the learning problem. The adaptivity of wt reflects that the query

points are actively chosen as considered in active learning tasks.

The quality of the established link, under a single-path channel model h = –a(„), is

determined by the accuracy of the final point estimate, „̂(y1:· ,w1:· ), of „. In particular, a point

estimate „̂ together with a confidence interval ” provides robust beamforming with a certain outage

probability. Hence, we measure the performance by the resolution and reliability of the final estimate

ŵ:

Definition 8. Under Assumption 1, a sequential beam search strategy with an adaptive beamforming

design “, stopping time · , and final AoA estimate „̂ is said to have resolution 1
”

with error probability
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‘ if

P|„̂≠„| > ” Æ ‘. (3.6)

We note that, given a sufficiently large number of antennas, one can increase the resolution

1/” and decrease the error probability ‘ by increasing the time of sample collection · , or equivalently,

by prolonging the initial access phase. In other words, the effectiveness of an initial access algorithm

shall also be measured by the expected number of samples ·‘,” necessary to ensure a resolution

1/” and error probability ‘. From an information theoretic viewpoint, one can think of a family of

sequential adaptive initial access schemes that achieves acquisition rate R and reliability E:

Definition 9. Under Assumption 1, a family of sequential adaptive initial access schemes achieves

acquisition rate-reliability (R,E) if and only if

R := lim
”æ0

log(1
”
)

E[·‘,”] , E := lim
‘æ0

log(1
‘
)

E[·‘,”] . (3.7)

Remark 1. The final beamforming vector (hence the quality of the established link) is determined

by both the target resolution and the error (”,‘), and is written as ŵ(z1:· ,w1:· ,‘,”). Given a total

communication time frame T , the expected spectral efficiency, under the final beamforming vector

ŵ, is given as

E
C

T ≠ ·

T
log

A

1+ P | –ŵ(z1:· ,w1:· ,‘,”)Ha(„) |2

‡2

BD

, (3.8)

and is an important performance metric from a system point of view. This performance metric,

however, requires a further system optimization over the length of the initial access phase, · , and

the length of the communication phase, T , which is outside the scope of this paper. Therefore, in

our analysis we focus on the parameters ‘ and ”. For a comparison of different initial beam search

algorithms, the system performance of (3.8) is also evaluated in the numerical simulations for some

nominal choice of · and T .
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Figure 3.3: The first 2 levels of hierarchical beamforming codebook with practical beam pattern
formed by 64 antenna elements

3.3.2 Hierarchical Beamforming Codebook

We adopt the hierarchical beamforming codebook WS proposed in [46] with S levels of

beam patterns. The beams divide the space dyadically in a hierarchical manner such that the

disjoint union of the beams in each level is the whole region of interest. The codebook is the set

WS = fiS

l=1Wl, where Wl is all the beam patterns in level l whose main beam has a width |◊max≠◊min|
2l

.

More specifically, for each level l, Wl contains 2l beamforming vectors which divide the sector

[◊max,◊min] into 2l directions, i.e.

[◊max,◊min] =
2l€

k=1
Dk

l , (3.9)

each associated with a certain range of AoA Dk

l
. The beamforming vector w covering the angular

range Dk

l
is designed such that the beamforming gain |wHa(„)| is almost constant for an AoA

„ œ Dk

l
and almost zero for „ /œ Dk

l
.

Note that WS can be represented as a binary hierarchical tree, where each level-l beam has

two descendants in level l +1 such that each level-l beam is the union of two disjoint beams, i.e.,

Dk

l
= D2k

l+1 fiD2k≠1
l+1 . This binary tree hierarchy is illustrated in Fig. 3.3 with the beam patterns of

the first two levels of the codebook. Note that without loss of generality, the beamforming vectors

in the codebook are assumed to have unit norm ÎwÎ2 = 1.
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3.3.3 Hierarchical Posterior Matching

In this section we propose a search mechanism based on the connection between initial

access beamforming, noisy search [9], active learning [53], and channel coding with feedback as

discussed in chapter 2, with the caveat that the beamforming vector is constrained to the practically

feasible beamforming codebook of [46] as in set WS . Instead of using all past observations

wt+1 = “(z1:t,w1:t), hiePM selects wt+1 based on the posterior of the AoA „ at time t, which is

a sufficient statistic. We discretize the problem by assuming that the resolution 1
”

is an integer and

that the AoA „ is from

„ œ {◊1, ...,◊1/”}, ◊i = ◊min +(i≠1)◊ ” ◊ (◊max ≠ ◊min). (3.10)

Such discretization approaches the original problem of initial access as ” æ 0. Under such dis-

cretization, we define w̃[l,k] œ {0,1} 1
” to be the angular space binary vector representation of the

beamforming vector w of level l and k, where w̃[l,k](i) = 1 if and only if ◊i œ Dk

l
. To support

resolution 1/”, the corresponding size of the hierarchical beamforming codebook

S = log2(1/”) (3.11)

is used. With this discretization, the posterior probability distribution can be written as a 1
”
-

dimensional vector fi(t), where the ith component is of the form

fii(t) := P„ = ◊i|z1:t,w1:t, i = 1,2, ...,
1
”

. (3.12)

The posterior probability of the AoA „ being within a range covered by the beamforming vector w

of level l and k, can be computed as

fiw̃[l,k](t) :=
1/”ÿ

i=1
w̃[l,k](i)fii(t). (3.13)
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Figure 3.4: Illustration of the hierarchical posterior matching algorithm. In this example, we
search down the tree hierarchy to levels 2 and 3, where level 3 has the first codeword that
contains posterior lesser than half. Between level 2 and level 3, the codeword in level 2 of
posterior 0.55 is selected since it’s closer to half (0.55 v.s. 0.4).

Now we are ready to present the proposed hiePM algorithm. The proposed adaptive

beamforming strategy, hiePM , chooses a beamforming vector at each time t from the hierarchical

beamforming codebook WS . The main idea of hiePM is to select wt+1 œ WS by examining the

posterior probability fiw̃[l,k](t) of all beams, i.e. for all l = 1,2, ...,S and k = 1,2, ...,2l. Specifically,

let

lút = argmax
l

;
max

k

fiw̃[l,k] Ø 1
2

<
, (3.14)

the proposed hiePM algorithm selects a codeword at either level lút or lút +1 according to Alg. 1

below. Given a snapshot of the posterior at time t, the selection rule is illustrated in Fig. 3.4. The

algorithm runs for a fixed length of time (fixed-length stopping) or until a certain error probability ‘

for resolution 1/” is achieved (variable-length stopping). The final choice of beamforming vector is

determined by ‘ and ”. The details of hiePM are summarized in Alg. 1 below.
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Algorithm 1: Hierarchical Posterior Matching for Beamforming

1 Input: target resolution 1
”
, target error probability ‘, codebook WS (S = log2(1/”)),

stopping-criterion (with stopping time n if fixed-length), algorithm-type
2 Output: Estimate of the AoA „̂

3 Initialization: fii(0) = ” for all i = 1,2, ...,1/”, k = 0
4 for t = 1,2, ... do
5 # Select codeword from WS :
6 for l = 1,2, ...,S do
7 if fiw̃[l,k](t) > 1/2 then
8 # select the larger descendant: lút = l; k Ω argmaxkÕœ{2k≠1,2k} fiw̃[l+1,kÕ](t);

9 else
10 (lt+1,kt+1) = argmin(lÕ,kÕ)œ{(lú

t
,Á k

2 Ë),(lú
t
+1,k)}

---fiw̃[lÕ,kÕ](t)≠ 1
2

---

11 # Selected codeword: wt+1 corresponding to w̃[lt+1,kt+1]
12 # Receive next measurement:

yt+1 = –
Ô

PwH

t+1a(„)+wH

t+1nt+1, zt+1 = q(yt+1) (3.15)

13 # Posterior update by Bayes’ Rule (Sect. 3.3.4) :
fi(t+1) Ω zt+1,fi(t) (3.16)

14 case: stopping-criterion = fixed length (FL)
15 if t+1 = n then
16 break (to final beamforming);

17 case: stopping-criterion = variable length (VL)
18 if maxi fii(t+1) > 1≠ ‘ then
19 break (to final beamforming);

20 # Final beamforming vector design: · = t+1 (length of the initial access phase)
21 case: algorithm-type = fixed resolution (FR)

[l̂, k̂] = (S,argmax
k

fiw̃[S,k](·)) (3.17)

22 case: algorithm-type = variable resolution (VR)

l̂ =

Y
_]

_[

1, maxk fiw̃[1,k̂]
(·) < 1≠ ‘

max{l : maxk fiw̃[l,k̂]
(·) Ø 1≠ ‘}, o.w.

, k̂ = argmax
k

fiw̃[l̂,k]
(·) (3.18)

23 ŵ corresponding to w̃[l̂,k̂]
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Remark 2. The hiePM algorithm can be thought of as a noisy generalization of a bisection search

where the posterior is used to create almost equally-probable search subsets subject to the codebook

WS . Compared with the vanilla bisection method proposed in [46], hiePM allows for significantly

lower SNR search outcomes whose reliability are dealt with over time. This can also be viewed as

water-filling in angular domain.

Remark 3. See chapter 2 for a detailed description of the connection between our beam search

problem and a channel coding problem in data transmission. In this light, the vanilla noise-

compensated bisection method of [46] can be viewed as a repetition coding strategy which is known

to have zero rate, while hiePM can be viewed as a constrained (subject to hierarchical codebook

WS) approximation to the capacity achieving posterior matching feedback coding scheme of [31].

3.3.4 Posterior Update

Let “h : fi(t) æ WS be the hiePM sequential beamforming design given in Alg. 1, i.e. let

wt+1 = “h(fi(t)). By the measurement model in (3.15), the posterior update in Alg. 1 in general

can be written as

fii(t+1) = fii(t)f(zt+1|„ = ◊i,wt+1 = “h(fi(t)))
q1/”

j=1 fij(t)f(zt+1|„ = ◊j ,wt+1 = “h(fi(t)))
, (3.19)

where f(zt+1|„ = ◊i,wt+1 = “h(fi(t))) is the conditional distribution of zt+1 and depends on the

function q(·) as well as the channel state information (e.g. the fading coefficient –) known to the

BS. Here, we give a few examples:

• Full measurement zt = yt:

In the case of static channel (zero mobility), we may assume that the fading coefficient –

is known to the BS. With a full measurement zt = yt, the conditional distribution of zt is a

complex Gaussian, written as

f(zt+1|„ = ◊i,wt+1 = “h(fi(t))) = CN (zt+1;–
Ô

PwH

t+1a(◊i),‡2). (3.20)
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In the case where – is not known, the algorithm is assumed to use an estimate –̂:

f(zt+1|„ = ◊i,wt+1 = “h(fi(t))) ¥ CN (zt+1; –̂
Ô

PwH

t+1a(◊i),‡2) (3.21)

for the posterior update.

• 1-bit measurement zt = 1(|yt| > vt):

For practical high speed ADC implementation, we consider an extreme quantization function

of a 1-bit [51, 57, 58] measurement model zt = 1(|yt| > vt), where at each time instance t

the BS only has 1-bit of information indicating whether or not the received power passes the

threshold vt. Equivalently, we can write the measurement model as

zt = 1(„ œ Dkt

lt
)üut(„), ut(„) ≥ Bern(pt(„)), (3.22)

where ut(„) is the equivalent Bernoulli noise with flipping probability pt(„), and ü denotes

the exclusive OR operator. The setting of the threshold vt and the corresponding flipping

probability pt(„) is given in Lemma 11. In this case, the conditional distribution of zt can

therefore be written as

f(zt+1|„ = ◊i,wt+1 = “h(fi(t))) = Bern(zt+1 ü1(◊i œ Dkt

lt
);pt+1(◊i)). (3.23)

3.4 Analysis

Our analysis for hiePM focuses on the variable-length stopping criteria with fixed resolution

1
”

and a fixed target error probability ‘, where by Alg. 1 the variable-length stopping time ·‘,” can

be written as

·‘,” = min{t : 1≠max
i

fii(t) Æ ‘}. (3.24)
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We will also focus on the 1-bit measurement model described in Sect. 3.3.4. Furthermore, we make

the assumption of an ideal hierarchical beamforming codebook for the analysis:

Assumption 4. The beam formed by the beamforming vector w œ WS corresponding to w̃[l,k] has

constant beamforming power gain for any signal of AoA „ œ Dk

l
and rejects any signal outside of

Dk

l
, i.e.

|wHa(„)| =

Y
___]

___[

Gl, if „ œ Dk

l

0, if „ /œ Dk

l

. (3.25)

Remark 4. Assumption 4 is mainly for better presentation. This assumption is approximately

true when we have massive number of antennas N ∫ 1
”
. The deterioration of performance due to

the imperfect beamforming, such as that resulting from sidelobe leakage, is not the focus of our

analysis. In our numerical simulations, however, we will remove this assumption by investigating

the performance of the algorithms under the actual beamforming pattern with finite number of

antennas.

Under the 1-bit measurement zt = 1(|yt| > vt) with Assumption 4 and the optimal choice

of the threshold vt in Lemma 11, the flipping probability pt(„) of the Bernoulli noise in (3.22) is

independent of the AoA „ and only depends on the beamforming codeword level lt selected at time

t. In particular, we have

pt(„) = p[lt] :=
⁄

vt

0
Rice(x;PG2

l ,‡2) dx, (3.26)

where p[l] > p[l + 1] and p[l] æ 0 since Gl < Gl+1 and Gl æ Œ as l æ Œ (assuming unlimited

number of antenna) by the design of the codebook. Furthermore, we assume that log2(1/”) is an

integer. Now we are ready to give an upper bound of the expected stopping time ·‘,” with resolution

1
”

and outage probability ‘ of the proposed hiePM sequential beam search algorithm:

Theorem 3. By using codebook WS with S = log2(1/”) levels and assuming the perfect beam-

forming assumption (Assumption 4) and the 1-bit measurement model zt = 1(|yt| > vt) with the
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optimal choice of vt in Lemma 11, the expected stopping time of hiePM , of resolution 1
”

and error

probability ‘, can be upper bounded by

E[·‘,”] Æ log(1/”)
Rh

+ log(1/‘)
Eh

+o(log( 1
”‘

)), (3.27)

where Eh = C1(p[log2(1/”)]), Rh = I(1/3;p[lÕ]) with lÕ =
Í

K0Álog log 1
”

Ë
log2 ≠1

Î
and K0 is a constant

defined in Lemma 14.

Proof. See Appendix B.3

Corollary 4. Let, E[·‘,”] = n. For all values of ” such that ” Æ 2≠nRh , the error probability of

hiePM can be approximately upper bounded by

P|„̂≠„| > ” / exp
A

≠nEh

A

1≠ log(1/”)
nRh

BB

(3.28)

when ” is small enough.

Corollary 5. Under the same conditions and by Theorem 3, hiePM achieves acquisition rate

lim
”æ0

log(1/”)
E[·‘,”] Ø lim

”æ0
Rh

= lim
”æ0

I(1/3;pú(”,‘)) = 1
(3.29)

for arbitrarily small error ‘ > 0, and error exponent

lim
‘æ0

log(1/‘)
E[·‘,”] Ø lim

‘æ0
Eh = C1(p[log2(1/”)]) (3.30)

for any ” > 0.

Remark 5. The integer assumption of log2(1/”) is for notational simplicity. If the desired resolution

1/” is not of power of 2, one can simply take a higher resolution 1/”Õ = 2Álog2(1/”)Ë. The corre-

sponding upper bound in Theorem 3 can be written accordingly and the conclusion in Corollary 5

remains true.
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Remark 6. The rate of one in equation (3.29) implies that hiePM performs asymptotically (” æ 0)

in the same manner as a noiseless bisection search which is the optimal usage of the hierarchical

beamforming codebook WS . The asymptotically noiseless behavior is due to the facts that hiePM

shrinks the angular region of the search Îw̃Î0 quickly, and that together with Assumption 4 an

unlimited number of antennas allow the beamforming gain |wHa(„)|2 = fi

|Dk

l
| æ Œ as l æ Œ.

Compared with other beam alignment algorithms, non-adaptive random coding based strategies [49]

are not able to shrink the region of the search beam. Therefore, the corresponding acquisition rate

of [49] rate is strictly lesser than 1. On the other hand, the adaptive noisy vanilla bisection algorithm

in [46] has rate zero even though the region of the search beam shrinks over time. This is due to the

fact that the noisy bisection of [46], in effect, employs repetition coding which has rate zero even

with feedback (adaptivity).

Remark 7. To further compare our theoretical result of hiePM with prior works, we plot Corollary

5 together with error probability upper bounds of [46] and [49] in Fig. 3.5 with E[· ] = 28, 1/” = 128

and |◊max ≠ ◊min| = 120o and the ideal beamforming assumption (Assumption 4). For the bisection

algorithm of [46], we take the upper bound from the author’s analysis for equal power allocation

with fixed fading coefficient – = 1. While for the random hashing of [49], we take an optimization

of the number of directions over Gallager’s random coding bound of BSC as

Pe Æ min
q

exp(≠28◊ERC(q)) , (3.31)

where ERC(q) = max0ÆflÆ1
1
E0(fl, q)≠fl◊ log2(128)

28
2

and

E0(fl, q) =≠ log
33

q(pq)
1

1+fl (1≠ q)(1≠pq)
1

1+fl

41+fl

+
3

q(1≠pq)
1

1+fl +(1≠ q)(pq)
1

1+fl )
41+fl 4 (3.32)

with

p(q) :=
⁄

vt

0
Rice(x;P 3

2q
,‡2) dx, (3.33)
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Figure 3.5: Comparison of the theoretical upper bounds on error probability between hiePM ,
random coding, and the bisection algorithm of [46] as a function of raw SNR P/‡2. The upper
bound on hiePM is given by Corollary 4. While the upper bound on random coding is given
by Gallager’s bound as in (3.31), and the upper bound on the bisection algorithm is provided
by [46].

where again vt is optimally chosen according to Lemma 11. The illustration of Corollary 5 in

Fig. 3.5 predicts the superior performance of hiePM over the prior works [46] and [49]. We

note that for these upper bounds, hiePM and random hashing of [49] assume a 1-bit quantizer,

whereas the bisection method of [46] is favorably given the unquantized amplitude information.

We will further show in numerical simulation (Fig. 3.7) that with practical beam patterns and

unquantized measurements, the actual performance of hiePM is not only indeed better than the

prior works, but in fact achieves a significantly smaller error probability than our theoretical upper

bound. Furthermore, we will see that the non-adaptive random hashing based method in [49] in fact

outperforms the adaptive bisection in [46] due to the lack of good coding in [46].

3.5 Numerical Results

In this section, we compare the performance of our proposed hiePM algorithms against the

bisection algorithm of [46] and an optimized random-code-based strategy, which is taken as an

upper bound on the performance of the random hash-based solution of [49]. Before we proceed
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with this performance analysis, however, we first provide a summary of the simulation setup and

parameters.

3.5.1 Simulation Setup and Parameters

We use the hybrid analog/digital system architecture described in Sect. 3.2, where the BS

has N = 64 antenna elements in a uniform linear array with antenna spacing ⁄

2 , and the user has a

single (virtual) antenna. Furthermore, due to the use of orthogonal spreading sequences, we focus

on the single user case K = 1. The channel consists of a single path with fast fading coefficient –.

The rule-of-thumb [59] estimate of channel coherence time given by

Tc ¥ 0.432
fm

= 0.432c

fcv
, (3.34)

where c is the speed light, fc is the carrier frequency, and v is the user speed. So even for mmWave

communication with 73GHz, at walking speed (< 3 km/hour) the coherence time is

Tc = 0.432◊3◊109 (m/s)
73◊109 (Hz) ◊3 (km/hour)

¥ 8.127 milliseconds. (3.35)

Note that, additionally, narrow beamforming and the existence of a dominant sub-path (e.g. Line-of-

Sight) can both increase the coherence time significantly [60]. Therefore, in Sect. 3.5.3 we assume

that the fading coefficient – is static during the entire initial access duration of 2 milliseconds (ms).

We consider both the case when the fading coefficient – is known exactly –̂ = –, and the case when

it is estimated with the estimation inaccuracy modeled as –̂ ≥ CN (–,‡2
–). In Sect. 3.5.4 we further

study the robustness of hiePM with a static estimate of the time varying fading coefficient –t of

a Rician AR-1 model with a coherence time corresponding to higher user mobility. Finally, we

consider learning the AoA with an angular resolution of 1/” = 128, and an (expected) stopping

time of E[· ] = 28, i.e., with E[· ] selections of beamforming vectors, hence, samples.

To provide a sense for the above normalized parameters, let us consider some candidate

PHY layer solutions. In particular, when using the 5G new radio Physical Random Access Channel
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(PRACH) format B4 [61], the E[· ] = 28 samples translate to less than 2 ms acquisition time for

sub-1-degree angular resolution within a [0¶,120¶] sector. We present our results as a function of

raw SNR P

‡2 to get a sense for reasonable values of SNR. In Fig. 3.6 we compute and illustrate the

expected distance at which a target raw SNR is obtained. We consider a case under the 3GPP TR

38.901 UMi LOS pathloss channel model (summarized in [62]), with 23 dBm maximum user power,

-174 dBm/Hz thermal noise density, 5 dB receiver noise figure at BS, with a bandwidth of 100 MHz.

As seen in Fig. 3.6, one can argue that given our selection of this PHY layer and parameters, the

practical raw SNR regime of interest is within ≠15 dB to 10 dB.
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Figure 3.6: Relationship between raw SNR P/‡2 and distance from BS to user, under the
3GPP TR 38.901 UMi LOS pathloss channel model (summarized in [62]), with 73GHz carrier
frequency, 23 dBm maximum user power, -174 dBm/Hz thermal noise density, 5 dB receiver
noise figure at BS, and a bandwidth of 100 MHz.

3.5.2 Algorithm Details and Parameters

Like the the bisection algorithm of [46], our proposed algorithm hiePM is based on sequential

beam refinement, but implements additional coding techniques. Thus, we focus our comparison

to the bisection refinement of [46] to highlight that the use of this coding strategy differentiates

hiePM from existing beam refinement strategies. For the bisection algorithm of [46], the number of

beamforming vectors in each level is 2, and the power is allocated according to the equal power
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distribution strategy.

For both hiePM and the bisection algorithm of [46], the finite set of beamforming vectors

WS are designed with a hierarchical structure, where individual beamforming vectors w with

corresponding w̃[l,k] are designed with the objective of near constant gain for signal directions with

AoA „ œ Dk

l
and zero otherwise (Assumption 4). In other words, each beamforming vector solves

AH

BSw = Csw̃[l,k], (3.36)

where ABS is the N ◊ (1/”) matrix of array manifolds

ABS = [a(„1);a(„2); . . . ;a(„1/”)] (3.37)

and Cs is a normalization constant. An approximate solution to (3.36), obtained using the pseudo

inverse, is

wú = Cs(ABSAH

BS)≠1ABSw̃[l,k]. (3.38)

The resulting beamforming weight vectors, applied with phase and gain control at each element,

produce beam patterns with improved sidelobe suppression, and near constant gain in the in-

tended probing directions. We can use these vectors in our simulations to ensure that our analytic

Assumption 4 is a matter of analytic simplicity but is not consequential in a practical setting.

To represent non-adaptive algorithms that are a variation of random coding, such as the

random hashing algorithm of [49], we compare to the random search algorithm that randomly scans

the region of interest. The random search algorithm uses a codebook W
q

n with finite cardinality, i.e.

size
1

n

q

2
, which consists of all possible beam patterns with total width q

n
|◊max ≠ ◊min|, where the

region of interest |◊max ≠ ◊min| has been divided into n non-overlapping directions, and q directions

are probed in each beam pattern. At any time instant t, the random search algorithm randomly selects

a beamforming vector wt+1 from the pre-designed codebook W
q

n . A fixed number of measurements

· are taken according to (3.15) and the final beamforming vector is selected according to (3.16)

and (3.17). The discretization parameter is set to n = 1/” = 128, we set · = 28, and we plot various
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values of q. The performance of hiePM over the optimized choice of q is important as it provides a

first order insight into “adaptivity gain."

3.5.3 Simulation Results

In this section, we provide a comparative analysis of our proposed hiePM algorithm against

prior work [46] and [49]. In particular, Fig. 3.7 plots the error probability as a function of raw

SNR. In summary, Fig. 3.7 shows that both fixed-length and variable-length stopping variations

of hiePM outperform the bisection algorithm of [46] as well as random coding, or random-hash

based solutions of [49]. We also note that random beamforming codebooks outperform the bisection

algorithm of [46], as expected by our analysis in Remark 6. By optimizing the coding rate q, and

comparing against hiePM, one can also fully characterize the adaptivity gain. Finally, we note that

our analytic upper bound (in Fig. 3.5) is rather loose and hiePM performs significantly better than

our analysis predicted.

Probability of Error versus Raw SNR

For the system and channel described above, we conduct the simulation scenario where

the average error probability as a function of raw SNR is analyzed. We take the error probability

of the AoA estimation to be the probability of selecting an erroneous final beamforming vector

Prob{ŵ(z1:· ,w1:· ,‘,”) ”= w({„})}.

For clarity, from now on we use the naming convention hiePM(stopping-criterion, resolution-

criterion) to specify the case selections of stopping criteria and resolution-criteria in the proposed

hiePM algorithm (detailed in Alg. 1). To ensure a reasonable comparison, we first discuss hiePM(FL,

FR) which is most comparable to the bisection algorithm of [46] and the random search algorithm

described above. Fig. 3.7 shows the superior performance of hiePM(FL, FR) with fixed and known

fading coefficient – = 1 over both the bisection algorithm of [46] and the random search algorithm.

We also notice that under reasonable tuning of parameter q, even the non-adaptive random search

algorithm achieves better performance than the adaptive bisection algorithm of [46]. As we expected
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Figure 3.7: Comparison of the error probability between hiePM, the random search algorithm,
and the vanilla bisection algorithm of [46] as a function of raw SNR P/‡2. Initial access
length · = 28, achieved under 2 ms using the 5G NR PRACH format B4 [61] (E[· ] = 28 for
variable-length stopping type), is used for acquiring the AoA with resolution 1/” = 128.

from Remark 6, the best performance is achieved by hiePM due to its sequential coding strategy,

while the performance of the bisection algorithm of [46] suffers as it resembles a repetition code.

Improvements in the probability of error are further demonstrated by hiePM(VL, FR) with

targeted error probability ‘ selected such that E[· ] = 28, i.e., the parameter ‘ is strategically chosen

(usually ‘ is large), such that hiePM(VL, FR) has an expected duration of the initial access phase

equal to the duration of the fixed-length variations, this ensures a fair comparison. Of course, ‘

may be selected to be close to zero, thereby ensuring the best error probability and aquisition rate

at the cost of a longer initial access phase duration. The benefit of allowing a variable stopping

time is evident in that it causes a sharp drop in the error probability at approximately -10 dB raw

SNR. The error probability upper bound (Corollary 4) on hiePM(VL, FR) is also plotted. We see in

Fig. 3.7 that this upper bound predicts the sharp slope of hiePM(VL, FR), theoretically guaranteeing

a significant performance improvement in error probability for hiePM(VL, FR) over the bisection

algorithm of [46] and the random search algorithm for large SNR. A further exploration of this

sharp transition in the low (< 0 dB) raw SNR regime is beyond the scope of this paper.
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Investigating effects of imperfect channel knowledge

The bisection algorithm of [46] learns the AoA without any knowledge of the channel. It

combines the procedures of AoA estimation and channel estimation. On the other hand our proposed

algorithm hiePM, requires knowledge of the fading coefficient – in the posterior update of Alg. 1

(3.16). While a channel estimation procedure can be used to learn – preceding hiePM, perhaps in

a short preliminary phase, we explore the performance achieved using an estimate for the fading

coefficient –̂ instead. We find that the improved performance by hiePM over the bisection algorithm

of [46] and the random search algorithm holds even without full knowledge of the fading coefficient

–. To see this we consider the case of a mismatched update rule (3.16) with an estimate for the

fading coefficient –̂ = CN (–,‡2
–). We see that even under a reasonably mismatched estimate of

the fading coefficient (‡2
– = 0.05), all hiePM based algorithms still achieve a lower probability of

error than the bisection algorithm of [46]. In other words, the degradation due to estimation error

is far less significant, saturating in error probability only at very large SNR (> 5 dB). As we can

see in Fig. 3.7 using a mismatched estimate of the fading coefficient – causes the performance of

probability of error to saturate at large SNR (> 0 dB). This reflects the times when the estimate of

the fading coefficient – is very inaccurate, which will occur with a constant probability regardless of

the SNR value, due to our modeling of –̂. In practice, the accuracy of the estimate –̂ will improve as

SNR increases. However, this is beyond the scope of this chapter and we refrain from investigating

such effects.

Spectral efficiency versus Raw SNR

Practically speaking, a more efficient AoA learning algorithm is advantageous in that it

both reduces communication overhead and increases the accuracy of the final beamforming vector.

Next, we empirically analyze the overall performance of a communication link established by

the proposed algorithm hiePM in terms of the data spectral efficiency. The spectral efficiency

is evaluated according to equation (3.8), using the final beamforming vector ŵ(z1:· ,w1:· ,‘,”)

resulting from each algorithm. Due to its dependence on the final beamforming vector ŵ, the
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Figure 3.8: Comparison of the spectral efficiency, given by (3.8), obtained by hiePM, the
random search algorithm, and the vanilla bisection algorithm of [46] as a function of raw SNR
P/‡2. Initial access time · = 28, achieved under 2 ms using the 5G NR PRACH format B4 [61]
(E[· ] = 28 for variable-length stopping).

spectral efficiency encompasses both the design parameters ‘ and ”, which have been the focus of

our analysis, while still providing an intuitive practical measure. We set the total communication

time frame to T = 100 ◊E[· ] (further optimization of this parameter beyond the scope of this

paper).

Fig. 3.8 shows the gain in spectral efficiency obtained by various implementations of

the proposed algorithm hiePM over both the bisection algorithm of [46] and the random search

algorithm for the system and channel described above as a function of raw SNR. The spectral

efficiency when no beamforming is used is provided for reference. Fig. 3.8 shows that all variants

of hiePM outperform the bisection algorithm of [46] significantly in the raw SNR regime of (-5dB

to 5dB). On the other hand, the performance of the bisection algorithm of [46] approaches the

performance of hiePM as raw SNR grows beyond 7dB or so. Fig. 3.8 also shows the benefits

of opportunistically selecting the resolution of the final beam as is done under hiePM(FL, VR)

according to (3.18). This is particularly important in very low raw SNR models (-15dB to -7dB)

where hiePM(FL, VR) adapts the final beamforming vector to the final posterior distribution at
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Figure 3.9: Comparison of the error probability as a function of raw SNR P/‡2 under Rician
AR-1 fading with factor Kr = 10, and g = 0.024451 (i.e. Tc = 2). Initial access length · = 28,
achieved under 2 ms using the 5G NR PRACH format B4 [61] (E[· ] = 28 for variable-length
stopping type), is used for acquiring the AoA with resolution 1/” = 128.

time · , hence setting the angular resolution of the communication beam in an opportunistic manner.

Even more importantly, this significant performance improvement is robust to channel estimation

error and mismatched estimate of the fading coefficient –̂. To understand this phenomenon we refer

to Fig. 3.7, where the error probability of finding the correct beam with resolution 1/”, when SNR

is less than -5dB, is non-negligible under hiePM(FL, FR), and hiePM(VL, FR).

3.5.4 Time varying channel

In this subsection, we will discuss the channel coherence time and how our initial beam

alignment algorithm works in a time-varying channel scenario. We verify our framework by

extending our algorithms to be adapted to a simple Rician AR-1 model. Let us consider a Rician

AR-1 fading channel of factor Kr with perfect knowledge of the operating SNR (large-scale fading)
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Figure 3.10: Comparison of the spectral efficiency, given by (3.8), obtained by hiePM and the
vanilla bisection algorithm of [46] as a function of raw SNR P/‡2 under Rician AR-1 fading
with factor Kr = 10, and g = 0.024451, (i.e. Tc = 2). Initial access time · = 28, achieved under
2 ms using the 5G NR PRACH format B4 [61] (E[· ] = 28 for variable-length stopping).
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as well as perfect frequency/phase synchronization, i.e. the fading coefficient is given as

–t =
Û

Kr

1+Kr

µ+
Û

1
1+Kr

—t, t = 0,1,2, ...,·, (3.39)

where µ = 1 and —t ≥ CN(0,1) is the complex Gaussian diffusion AR process given as

—t+1 = —t

Ô
1≠g + et

Ô
g, t = 0,1,2, ...,·, (3.40)

where et ≥ CN (0,1) is the independent noise term. The correlation parameter g is set such that

1≠ (1≠g)14Tc = 0.5, (3.41)

where Tc is the 50% time of the diffusion —t in ms (recall that we assume a system with 14 beam

slots in 1 ms). Combining (3.39) and (3.40), the Rician AR-1 model can be written as

–t+1 =
Û

Kr

1+Kr

µ+
Q

a–t ≠
Û

Kr

1+Kr

µ

R

bÔ
1≠g + et

Û
g

1+Kr

, t = 0,1,2, ...,·. (3.42)

Fig. 3.9 demonstrates the robustness of hiePM to the Rician AR-1 fading channel model

described above with coherence time Tc = 2 ms of the AR process —t, and a Rician factor Kr =

10 (this is a reasonable value, e.g. indoor mmWave channel models [63]). We again use an

erroneous/mismatched and fixed estimate of the fading coefficient –̂t = –̂0 ≥ CN (–0,‡2
–) for

t = 1,2, . . . ,· . In particular, we compare the performance achieved by our hiePM algorithms with

different degrees of knowledge of the fading estimate (i.e. ‡2
– = 0,0.05,0.1) against the performance

obtained by the bisection algorithm of [46]. As expected, the performance of the probability of

error worsens for both algorithms in a time-varying fading, as compared to the static model – = 1

in Fig. 3.7. However, even under a mismatched and fixed estimate of the fading coefficient –̂t, our

main conclusions still hold. In particular, the performance degradation in spectral efficiency due

to the time-varying channel is almost negligible, as we show in Fig. 3.10. Note that, this is the
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effect of the time-varying channel during the initial access phase, whereas in the communication

phase the spectral efficiency is calculated by (3.8) because our focus is the impact of a time-varying

channel on the initial beam alignment. Our variable resolution algorithm hiePM (FL,VR) (with

opportunistic choice of final beamwidth) is unaffected in terms of spectral efficiency, while the

hiePM (FL,FR) and hiePM (VL,FR) cases incur a small loss of spectral efficiency due to the

degree of the mismatched estimate (correlated to the severity of ‡2
–).

3.6 Conclusion

In this paper, we addressed the initial access problem for mmWave communication with

beamforming techniques. With a single-path channel model, the proposed sequential beam search

algorithm hiePM demonstrates a systematic way of actively learning an optimal beamforming

vector from the hierarchical beamforming codebook of [46].

Using a single-path channel model, we characterize the performance of the proposed learning

algorithm hiePM by the resolution and the error probability of learning the AoA, which are closely

related to the link quality established by the final beamforming vector. We analyze hiePM by

giving an upper bound on the expected search time ·‘,” required to achieve a resolution 1
”

and error

probability ‘ in Theorem 3. As a corollary, we provide an upper bound on the error probability

achieved with a search time E[·‘,”], and resolution 1
”

for hiePM in Corollary 4. We also specialize

our analysis and compare the error exponent obtained by hiePM and the bisection algorithm

of [46]. A higher error exponent is shown across a wide range of raw SNR even when only 1-bit

of information about the measurement is available to hiePM . The numerical simulations show a

significant improvement on the spectral efficiency over the previous vanilla bisection algorithm

of [46] and the random search algorithm modeled as a best case of [49, 50], demonstrating a first

work of possible standalone mmWave communication.

Future directions of this work include generalizing the channel model and considering

multiple paths, as well as learning the fading coefficient together with the direction during beam
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search. On the theoretical end, closing the gap between the upper bound of error probability and

its actual performance (demonstrated in Fig. 3.7) is worth pursuing for theoretical interest. On

the practical side, reducing the computation complexity of the posterior calculations and required

statistics will be helpful for implementation purposes.

Chapter 3, in full, is a reprint of the material as it appears in the article: Sung-En Chiu,

Nancy Ronquillo, and Tara Javidi, “Active Learning and CSI Acquisition for mmWave Initial

Alignment," IEEE Journal on Selected Areas in Communications, vol.37, issue 11, pp. 2474 -

2489,Dec. 2018.The dissertation author was the secondary investigator and co-author of this paper.
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Chapter 4

Measurement Dependent Noisy Search with

Stochastic Coefficients

4.1 Introduction

Recall the general problem of recovering the unknown time-invariant support of the random

vector Xt œ RM via a sequence of noisy linear observations (1.1) discussed in chapter 1. In this

chapter, we consider one step towards solving the more general problem (1.1) by considering a

special case where Xt can be written as XtW, i.e. the product of a stochastic coefficient Xt and

an unknown unit common support vector W = supp(Xt). This model is related to the problem of

sparse Bayesian Learning and more closely to the problem of joint sparse support recovery [19, 24],

where the goal is to reconstruct a sparse common support vector via noisy compressed data, with

the additional caveat of measurement dependent noise. With sufficiently high signal to noise ratio

(SNR), existing sparse recovery methods successfully recover supp(Xt) with no prior information

(see [20–25] and references therein) assuming sufficiently large SNR. These methods focus largely

on the reconstruction of supp(Xt) only while the acquisition measurement vectors At are selected

in an off-line manner, i.e. measurement strategies are not adapted to the observations. However,

under the condition of measurement dependent noise the performance of these methods significantly
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drops with a drop in SNR. Thus, the measurement dependency phenomenon makes sequential

acquisition methods interesting solutions to investigate.

This setup lies at the intersection of sparse recovery, group-testing, and measurement-

dependent noisy search.Common support recovery is addressed by the group testing with noise

literature as in [64,65]. The recovery of W = supp(Xt) under measurement dependent noise is cast

as problem of channel coding over a Multiple Access Channel (MAC) with feedback by considering

a practical target localization problem in multiband spectrum sensing. The special case of extreme

sparsity, i.e. Îsupp(Xt)Î0 = 1, this becomes equivalent to the problem of single target search with

measurement dependent noise where the target is the location of the non-zero element of Xt [6, 66],

we cast this problem as a binary input and Gaussian noise channel with state and feedback in

Sect. 2.2. We propose two algorithms for sequentially designing measurement vectors At, which

augment the learning of W to include simultaneous estimation of Xt in order to mitigate the effects

of unknown stochastic coefficients. The first is a posterior matching-based scheme applied to the

discrete marginal probability estimate of W. In light of excessive computations required to compute

the Bayesian posterior, we develop a heuristic approximation with lower memory complexity. This

second strategy complements the sequential design of the measurement vectors with an estimate

of Xt via a Kalman Filter. Numerically, we show improvements over randomized algorithms that

design (randomized) measurements a priori. This demonstrates the advantage of the sequential

(proposed) strategies in critically small SNR ( 1
‡2 < 20) when the budget of observations is small.

In the second part of this chapter we pose the mmWave initial alignment problem discussed in

chapter 3 as equivalent to the probelm of measurement dependent noise with stochastic coefficients

and extend the proposed algorithms to this context for handling stochastic channel fading, which

consist of two schemes for sequentially selecting beamforming vectors in order to lear the dynamic

channel state information in an active manner.
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4.2 Part I: General Formulation

4.2.1 Problem Set-up

Let W = {0,1}M denote an unknown support vector, and Xt œ R denote a stochastic

multiplicative coefficient. Yt is the observation at time t given by

Yt = XtA|
t W +Nt(At). (4.1)

Binary measurement vectors At œ A = {0,1}M are applied to observations, however they do not

affect W or Xt. In this work we consider a linear model for the measurement dependent noise, i.e.,

observations are subject to i.i.d. Nt(At) ≥ N (0,ÎAtÎ0‡2), where perfect knowledge of the variance

‡2 is assumed. The observation vector Y1:· = [Y1,Y2, . . . ,Y· ] contains noisy information about

the unknown sparse vector W. An agent has the objective of finding a sequence of measurement

vectors A1:· = [A1,A2, . . . ,A· ] that minimize the distortion, as measured by a bivariate distortion

function D(·, ·), in estimating W subject to a fixed number of measurements, i.e.,

minimize E[D(Ŵ,W)|Y1:· ,A1:· ] (4.2)

subject to · = T . In this chapter, we restrict our attention to a 0/1 distortion for the accuracy of the

final estimate Ŵ, i.e. we aim to minimize the probability of error

Pe = P(Ŵ ”= W|Y1:· ,A1:· ). (4.3)

In sparse problem formulations, W is assumed to be sparse with at most k non-zero entries. In this

work we consider the special case where k = 1, which is equivalent to the problem of searching for

the true location of single 1 in W. Thus, we can write more simply W œ {e1,e2, . . . ,eM }.
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Sequential Policy

For the set-up described above, a sequential noisy search procedure consists of selecting the

best measurement vectors At(Y1:t≠1,A1:t≠1) at each time slot t = 1,2, . . . ,· , possibly sequentially

in an adaptive manner as function of prior observations. Observations Yt in (4.1) can be thought of

as the probing of certain locations (indicated by At), which give information about the presence or

absence of the target 1 element of W in these locations. After · measurements, an estimate Ŵ about

the location of the single target 1 is made. In this chapter, we focus on strategies with sequential

refinement of the search space. More specifically, at time t a measurement vector At(Y1:t≠1,A1:t≠1)

is selected sequentially with the aim of probing a fewer number of locations over time.

(Marginal) Posterior Belief

Let us model W and Xt as a random vector with joint probability distribution fW,Xt
(ei,x).

The marginal probability belief of W after reception of Y1:t is fiW(t) œ [0,1]M , where each element

is:

fii(t) := P(W = ei|y1:t) =
Œ⁄

≠Œ
fW,Xt|Y1:t(ei,x|y1:t)dx (4.4)

for i = 1,2, ...,M . We write an update for the posterior probability fiW(t), upon receiving yt, using

Bayes’ Rule:

fii(t) =
fYt|W,Y1:t≠1(yt|ei,y1:t≠1)fii(t≠1)

Mq

iÕ=1
fYt|W,Y1:t≠1(yt|eiÕ ,y1:t≠1)fiiÕ(t≠1)

. (4.5)
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The conditional distribution is:

fYt|W,Y1:t≠1(yt|ei,y1:t≠1)

¥
Œ⁄

≠Œ

1
Gi

fXt|W,Y1:t≠1

3
yt ≠n

Gi

|ei,y1:t≠1
4

fNt
(n)dn

(a)= ≠
Œ⁄

≠Œ
fXt|W,Y1:t≠1(x|ei,y1:t≠1)fNt

(yt ≠xGi)dx

(b)= ≠
Œ⁄

≠Œ
fXt|W,Y1:t≠1(x|ei,y1:t≠1)g

Q

ayt ≠xGi

‡t

R

bdx

(4.6)

where recall Nt(At) ≥ N (0, |At|‡2), and where

Gi = A|
t ei, ‡2

t = ÎAtÎ0‡2, (4.7)

(a) is by a change of variables, (b) follows by assumption of i.i.d Gaussian noise, and g(y≠µ

‡
) is the

density N (0,1) evaluated at (y≠µ

‡
).

Marginal Posterior Matching

Next, we describe a sequential policy based on marginal sorted posterior matching

(marginalPM) adapted from [67], where sequential At(fiW(t ≠ 1)) are selected based on the

marginal posterior probability of W. Upon reception of a new observation Yt, marginalPM

updates the marginal posterior probability fiW(t) according to (4.5) and sorts the values in descend-

ing order to obtain fiW¿(t). Let It denote the ordered location indices corresponding to fiW¿(t).

MarginalPM selects the measurement vector such that locations with accumulated probability

closest to 1
2 are probed, selecting

kú
t

:= argmin
k

------

kÿ

i=1
fiW¿

i
(t)≠ 1

2

------
, (4.8)
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and setting the next At+1(j) = 1 if and only if j œ {It(1),It(2), . . . ,It(kú
t )}. The effect is a

sequential probing of the possible locations {1,2, . . . ,M}, where the number of probed locations,

i.e. ÎAtÎ0, decreases over time corresponding to the accumulated belief about W.

Prior Work

The computation of fiW(t) depends on the one-step prediction fXt|W,Y1:t≠1(x|ei,y1:t≠1)

which itself depends on filtering equation fXt≠1|W,Y1:t≠1(x|ei,y1:t≠1). In other words, while

the main objective is to estimate W, marginalPM and corresponding sequential measurement

strategies depend on the designer’s ability to predict the dynamics of the coefficient Xt, hence are

reminiscent of the general problem of information acquisition and utilization formulated in [66].

The simpler case of known and time-invariant Xt = xú, which can be written as

fXt|W,Y1:t≠1(x|ei,y1:t≠1) =

Y
___]

___[

1, if x = xú

0, otherwise,

(4.9)

recovers the formulation of our prior work [48] on the problem of noisy search with measurement

dependent noise, where xú = 1, discussed in chapter 2. The problem of noisy search with mea-

surement dependent noise has been studied from an information-theoretic perspective where many

works have established a connection to the problem of channel coding over a binary input channel

with [6, 9, 39, 47, 48, 68] and without [7] feedback. Existing strategies based on posterior matching

have been shown to provide theoretical guarantees in performance [6, 9]. Chapter 2 characterizes a

lower bound on the gain in performance achieved by an optimal adaptive strategy over non-adaptive

ones. We draw on these works, leveraging the connection to channel coding, to develop our adaptive

algorithms based on posterior matching expecting a similar adaptivity gain in performance over

non-adaptive strategies [20, 21, 23, 69].
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4.2.2 Proposed Algorithms

Discrete marginalPM

The Bayes’ posterior probability update (4.5) may be formulated for any continuous probabil-

ity density function, however, this may be computationally infeasible. In Alg. 2 we approach the com-

putation of fiW(t) by first discretizing Xt over a finite set. First, let Xt = xj for j = {1,2, . . . , 1
—X

}

denote

Xt œ [xj ≠ —X

2 ,xj + —X

2 ], (4.10)

where xj = xmin + —X

2 + (j ≠ 1) ◊ —X ◊ (xmax ≠ xmin) for the total range Xt œ [xmin,xmax]. We

note that this discretization becomes tight as —X æ 0. A coarser choice of —X reduces complexity

and memory requirements (see Sect. 4.2.4 for a discussion of practical values for these resolution

parameters).

Next, marginalPM is applied to select measurement vectors At(fiW(t≠1)) sequentially

as a function of the discrete marginal posterior belief on W. For a received observation yt, each

element of the discrete marginal posterior update fiW(t) can be obtained by plugging (4.6) into

(4.5)

fii(t) =

1/—Xq

j=1
g

3
yt≠xjGi

‡t

4
P(xj |ei,y1:t≠1)fii(t≠1)

1/—Xq

jÕ=1

Mq

iÕ=1
g

3
yt≠x

jÕGiÕ
‡t

4
P(xjÕ |eiÕ ,y1:t≠1)fiiÕ(t≠1)

. (4.11)

Note, this is equivalent to marginalizing the joint probability fiW,Xt(t≠1) œ [0,1]M◊ 1
—X over Xt,

with knowledge of a one-step prediction from Xt≠1 to Xt, where fiW,Xt(t≠1) has elements:

fii,j(t≠1) = P(Xt = xj |ei,y1:t≠1)fii(t≠1). (4.12)

Alg. 2 requires, at worst, ( 1
—X

◊ M) computations per iteration to update the posterior

(4.11), and the number of iterations (duration) is fixed to · . Here, we note that approximations for

the computing the posterior, such as by variational Bayesian inference [70], may be implemented
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in order to further reduce computational requirements. however this lies beyond the scope of this

chapter.

Algorithm 2: Discrete Marginal Posterior Matching
1 Input: Resolution (M,—X), noise variance ‡2, set of possible measurement vectors A,

duration ·
2 Output: Estimate Ŵ
3 Initialization: prior fiW,X1(0)
4 for t = 1,2, ...,· do
5 # Select measurement by marginalPM Eq. (4.8)

At(fiW(t≠1)) œ A

6 # Observation with measurement-dependent noise

Yt = XtA|
t W +Nt(At)

7 # Marginal posterior update Eq. (4.11)

fiW(t) Ω yt,fi
W,Xt(t≠1)

8 # Final estimate

iú = argmax
i

fii(·) (4.13)

9 Ŵ = eiú

MarginalPM with a Kalman Filter

We propose an alternative method in Alg. 3 which reduces the worst-case arithmetic compu-

tations per iteration for the updates to (M +2) by supplementing marginalPM with the Kalman

Filter [71]. Specifically, Alg. 3 selects measurement vectors At(fiW(t≠1)) sequentially accord-

ing to marginalPM , where the update of fiW(t) incorporates the Kalman filter estimate of Xt.

For this approach, we assume the conditional probability density is Gaussian with a known prior

(µX1(0),‡2
X1(0))

fXt|W,Y1:t≠1(x|ei,y1:t≠1) ≥ N (µXt
(t≠1),‡2

Xt
(t≠1)). (4.15)
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Algorithm 3: Kalman Filter for Marginal Posterior Matching
1 Input: Resolution M , noise variance ‡2, set of possible measurement vectors A,

duration ·
2 Output: Estimate Ŵ
3 Initialization: priors fiW(0) and (µX1(0),‡2

X1(0))
4 for t = 1,2, ...,· do
5 # Select measurement by marginalPM Eq. (4.8)

At(fiW(t≠1)) œ A

6 # Observation with measurement-dependent noise

Yt = XtA|
t W +Nt(At)

7 # Marginal posterior update Eq. (4.11)

fiW(t) Ωyt,fi
W(t≠1),

µXt
(t≠1),‡2

Xt
(t≠1)

8 # Update and predict by Kalman Filter Eq. (4.17)

µXt+1(t),‡2
Xt+1(t) Ω yt,µXt

(t≠1),‡2
Xt

(t≠1)

9 # Final estimate

iú = argmax
i

fii(·) (4.14)

10 Ŵ = eiú

Recall, observations are a linear combination of Xt, i.e. Yt = XtA|
t W + Nt, thus we can derive

the Kalman filter to estimate the unknown state Xt and update it sequentially. Upon receiving a

new observation yt, Alg. 3 uses the one-step prediction estimate of Xt (4.17) to obtain the marginal
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posterior update fiW(t) by plugging (4.6) and (4.15) into (4.5)

fii(t) =

3 Œs

≠Œ
g

3
x≠µXt

(t≠1)
‡Xt

(t≠1)

4
g

3
yt≠xGi

‡t

44
dx fii(t≠1)

Mq

iÕ=1

3 Œs

≠Œ
g

3
x≠µXt

(t≠1)
‡Xt

(t≠1)

4
g

3
yt≠xG

iÕ
‡t

44
dx fiiÕ(t≠1)

=
g

3
yt≠µXt

(t≠1)GiÒ
‡

2
Xt

(t≠1)|Gi|2+‡
2
t

4
fii(t≠1)

Mq

iÕ=1
g

3
yt≠µXt

(t≠1)G
iÕÒ

‡
2
Xt

(t≠1)|G
iÕ |

2+‡
2
t

4
fiiÕ(t≠1)

.

(4.16)

Next, the moments of Xt are updated via the Kalman Filter.

µXt
(t) = µXt

(t≠1)+
‡2

Xt
(t≠1)Ĝ

‡2
Xt

(t≠1)|Ĝ|2 +‡2
t

(yt ≠µXt
(t≠1)Ĝ)

‡2
Xt

(t) = ‡2
Xt

(t≠1) ‡2
t

‡2
Xt

(t≠1)|Ĝ|2 +‡2
t

,

(4.17)

where Ĝ = A|
t fiW(t) is the estimate of the gain (A|

t W).

4.2.3 Specializing Bayes Updates

Even though Alg. 2 and Alg. 3 can be implemented for any Xt, in this section we develop

specifics for the Bayes’ update in Alg. 2 and for the Kalman Filter in Alg. 3 under two density cases

of Xt.

4.2.4 Static Coefficient Xt = X with Gaussian Prior

Here we assume the coefficient X is a random variable that is static over t. In other words,

we have the simplification

fXt|W,Y1:t≠1(x|ei,y1:t≠1) =

fX|W,Y1:t≠1(x|ei,y1:t≠1) ≥ N (µX(t≠1),‡2
X(t≠1))

(4.18)
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with prior (µX(0),‡2
X

(0)).

Apply to Alg. 2

Consider a conservative range for X:

[xmin,xmax] = [µX(0)≠3‡X(0),µX(0)+3‡X(0)], (4.19)

with corresponding resolution parameter —X , which densely covers the Gaussian prior3. To

discretize the prior into 1
—X

bins, let

P(X = xj |ei,y
0) Ã g(xj ≠µX(0)

‡X(0) ), j = {1, . . . ,
1

—X

}, (4.20)

and normalize by c such that
Mq

j=1
P(X = xj |ei,y0)c = 1. The discrete prior update is made without

need for prediction step from Xt to Xt using (4.11), (line 7 of Alg. 2).

Apply to Alg. 3

Under the Gaussian prior (4.18), the mean and variance are updated by the Kalman Filter:

µX(t) = µX(t≠1)+ ‡2
X

(t≠1)Ĝ
‡2

X
(t≠1)|Ĝ|2 +‡2

t

(yt ≠µX(t≠1)Ĝ)

‡2
X(t) = ‡2

X(t≠1) ‡2

‡2
X

(t≠1)|Ĝ|2 +‡2
t

,

(4.21)

and the one-step prediction is not required due to static X . In other words, µXt
(t ≠ 1) = µX(t ≠

1) and ‡2
Xt

(t≠1) = ‡2
X

(t≠1) are used in the Bayes’ update (4.16). (4.21) is used in lieu of (4.17)

to update moments (line 8 Alg. 3).
3A very coarse resolution parameter will reduce complexity but may impact performance, a further investigation is

outside the scope of this chapter.
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4.2.5 i.i.d. Coefficients Xt with Gaussian Prior

Next, we consider an i.i.d. time-varying model for Xt, where we have the simplification

fXt|W,Y1:t≠1(x|ei,y1:t≠1) = fXt
(x) ≥ N (µ

X̃
,‡2

X̃
) (4.22)

is i.i.d for all t with prior (µ
X̃

,‡2
X̃

).

Apply to Alg. 2

Again, we utilize a binned Gaussian prior, as in (4.20), and the added simplification P(Xt =

xj |ei,y1:t≠1) = P(Xt = xj) by assumption of i.i.d. coefficients. Plugging into (4.11), the marginal

posterior update reduces to

fii(t) =

1/—Xq

j=1
g

3
yt≠xjGi

‡t

4
g(xj≠µ

X̃

‡
X̃

)c fii(t≠1)

1/—Xq

jÕ=1

Mq

iÕ=1
g

3
yt≠x

jÕGiÕ
‡t

4
g(x

jÕ≠µ
X̃

‡
X̃

)c fiiÕ(t≠1)
(4.23)

for all t (line 7 of Alg. 2).

Apply to Alg. 3

For i.i.d Xt ≥ N (µ
X̃

,‡2
X̃

), the one-step prediction of the moments is eliminated by µXt
(t≠

1) = µ
X̃

and ‡2
Xt

(t ≠ 1) = ‡2
X̃

. These moments are plugged directly into the marginal posterior

update (4.16) (line 7 Alg. 3). Here we note that under these conditions for Alg. 3, the conditional

probability (4.15) is not an approximation, due to the i.i.d. and Gaussian nature of Xt. Thus, should

result in performance of Alg. 3 comparable to Alg. 2.

4.2.6 Numerical Results

Next, we analyze the performance in terms of the probability of error (4.3) for the proposed

algorithms under the special cases of static and of i.i.d Xt as a function of the SNR 1/‡2. We focus
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on the scenario of low overhead time, and limit total the number of observations to · = {10,30}

and set the dimensions of W to M = 25, where recall |W| = 1. Many reconstruction algorithms,

implementing compressive sensing and/or greedy techniques [20–25] exist in the literature. However,

for ease of exposition we restrict our comparisons to two random-coding-based strategies, which

we believe to be representative of the performance of these random-based schemes. The extensive

study of existing strategies is ongoing and we refer the reader to our future work. The random

strategies we consider build A1:t randomly a priori from a finite codebook Aq. Specifically, Aq is

the finite set of binary vectors {0,1}M probing qM number of locations, resulting in |Aq| =
1

M

qM

2
.

We plot solutions for q = 0.25, probing (0.25◊M ) locations in each measurement, which is on par

with the parameters used in the practical setting of [50] although we note this parameter can be

optimized further. The first scheme considered utilizes the maximum likelihood (ML) decoder [30]

for reconstructing W. The second scheme utilizes a non-negative constrained least squares (NNLS)

solution [25, 50] on the quadratic measurements Y 2
t for reconstructing X2

t W which has the benefit

of not requiring knowledge of ‡2 or any prior on Xt.

Probability of error: static Xt = X

First, we analyze the performance under a static coefficient Xt = X with Gaussian prior

(Sect. 4.2.4) in Fig. 4.1. Our proposed Alg. 2 outperforms the random schemes significantly,

achieving greater reliability in less time. That is, Alg. 2 can achieve almost the same performance

of the NNLS scheme in 1/3 of the duration (· = 10, versus · = 30). The lower-complexity solution

of Alg. 3 similarly achieves improved performance over the random algorithms for a short duration

· = 10, although less so than Alg. 2 for a long duration · = 30 due to the assumptions made in order

to reduce complexity. This suggests that Alg. 2 and Alg. 3 are successful in learning X and W

with sequential measurement vectors, especially with a low overhead duration · . This demonstrates

evidence of an adaptivity gain, i.e. a gain in performance due to sequentially selecting At, achieved

by our adaptive strategies over the non-adaptive random strategies.
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Figure 4.1: Comparison of the probability of error (given by (4.3)) performance between our
proposed algorithms and random algorithms as a function of 1/‡2 under a static Xt = (X ≥
N (1,1)), and resolution —X = 0.01.

Probability of error: i.i.d Xt

Next, we study the performance under a time-varying i.i.d. Xt ≥ N (µ
X̃

,‡2
X̃

) with Gaussian

prior (Sect. 4.2.5). At first thought, any attempt to learn Xt over time may seem fruitless due to the

i.i.d. nature of Xt, however, Alg. 2 and Alg. 3 yield some improvements over the random algorithms

in terms of probability of error as illustrated in Fig. 4.2. Under this i.i.d. condition, Alg. 2 and Alg. 3

incorporate the prior on Xt as an account of the extra uncertainty in the Bayes’ update of fiW(t)

which has the effect of selecting At more conservatively. These conservative adaptive selections

achieve again an adaptivity gain in performance over the random algorithms which do adapt to

the observations, especially in the high noise range (1/‡2 < 20). Under significantly improved

noise (1/‡2 > 20) and longer time · = 30, even the random schemes are robust in this i.i.d. setting,

however, at a significantly lesser rate than Alg. 2 and Alg. 3.
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Figure 4.2: Comparison of the probability of error (given by (4.3)) performance between our
proposed algorithms and random algorithms as a function of 1/‡2 under a time-varying i.i.d.
Xt ≥ N (1,1), and resolution —X = 0.01.

4.3 Part II: Millimeter-wave Communications with Unknown

Fading

Next, we revisit the problem of initial alignment discussed in chapter 3. We are particularly

concerned with enabling robustness to variations of the channel dynamics. For a fixed power

allocation and fixed very low overhead setting existing approaches [49,72,73] can handle alignment

with no prior CSI despite a time-varying fading model with the caveat a sufficiently large SNR,

or custom codebooks for improving SNR. In chapter 3 a fully adaptive initial alignment method

based on posterior matching was proposed, which theoretically characterizes an upper-bound on the

probability of error in the AoA acquisition under a known static fading coefficient –. A significant

improvement over [46] and random beamforming method of [49] in the system communication rate

is shown. For a slightly mismatched estimate of the fading coefficient – (i.e. a very good estimate)

these improvements hold even under a time-varying channel. However, the performance is highly
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dependent on the quality of the channel knowledge. In fact, in the absence of a good estimate of –

and under a time-varying fading model the performance is quite poor.

In this part of the chapter we aim to mitigate the effects of imperfect channel knowledge

under a dynamical channel by augmenting the detection of the AoA to include simultaneous

estimation of – for a given user. We extend the algorithms proposed in part I of this chapter

specifically to the context of mmWave Initial Alignment. The resulting methods simultaneously

and adaptively learn the fading coefficient as well as the AoA. The proposed algorithms are

compared to our prior work [74], included in chapter 3, and the bisection algorithm of [46] using

the performance measures of outage probability and expected spectral efficiency. Numerically, we

show improvements over [46] and [74], which suggests promising performance by our strategies for

combining the learning of the AoA of the fading coefficients in the relevant regime of low (≠10dB

to +5dB) raw SNR.

In this chapter, we extend our prior work by proposing two methods that simultaneously

and adaptively learn the fading coefficient as well as the AoA. The idea is to mitigate the effects of

imperfect channel knowledge under a dynamic channel by augmenting the detection of the AoA to

include simultaneous estimation of – for a given user. We propose two algorithms that work with

the searching methods of prior work [74] in order to fully learn the CSI (AoA and –). Specifically,

the contributions of the chapter are as follows:

• First, we propose a direct extension of our prior work [74] to be robust to a time-varying

fading model by adapting the posterior matching based strategy to include estimation of –.

• In light of excessive computations required to compute a Baysian posterior, we develop

a heuristic approximation with low memory complexity. This strategy compliments the

sequential detection of AoA with estimation of the fading coefficient via a Kalman filter.

• The proposed algorithms are compared to our prior work [74] and the bisection algorithm

of [46] using the performance measures of outage probability and expected spectral efficiency.

Numerically, we show improvements over [46] and [74], which suggests promising perfor-

93



mance by our strategies for combining the learning of the AoA of the fading coefficients in

the relevant regime of low (≠10dB to +5dB) raw SNR.

4.3.1 Problem Set-up

The system model is identical to Sect. 3.2 of chapter 3. We consider a base Station (BS)

equipped with N antennas serving k users (UE), each with a fixed beamforming acting as single

virtual antenna. The active alignment process is summarized in Fig. 4.3. Recall, the code-matched

signal from a particular user is given by

yt = –t

Ô
PwH

t a(„)+wH

t nt, (4.24)

where wt is the receive beam vector, –t œ C is the time-varying fading coefficient, a(„) is the array

manifold created by the Angle-of-Arrival (AoA) „,
Ô

P is the combined transmit power and large

scale fading. Without loss of generality, the beamforming vectors in the codebook are assumed to

have unit norm ÎwÎ2 = 1. Thus, the complex additive noise ÷
t
= wH

t nt ≥ CN (0,‡2). In this work

we focus on relative performance in terms of the raw SNR P

‡2 , although the physical properties

corresponding to this range of raw SNR (like cell size, and bandwidth) can be defined as in Fig. 3.6

of chapter 3.

Sequential Initial Alignment

For the setup considered above, the initial alignment problem consists of finding the best

directional beamforming vector at the receiver in order to establish a link to a given user, it does

so via the process of initial alignment (described in detail in Sect. 3.3.1 of chapter 3). As in part I

of this chapter, we focus on strategies with sequential refinement of measurement vectors. In the

context of mmWave initial alignment, this is equivalent to sequential refinement of the beamforming

vectors, which we achieve by using the hierarchical codebook WS of [46] with practically feasible

beams and finite cardinality (described in Sect. 3.3.2 of chapter 3). More specifically, at any given
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Figure 4.3: Active initial alignment is the process of sequentially selecting the beamforming
vectors wt(yt), for a pilot-based procedure, based on prior observations yt, after which the best
directional beamforming vector for transmission is selected.

time t, a beamforming vector wt œ WS is selected sequentially as a function of previously observed

signals (y1:t≠1). We extend our proposed algorithms in part I of this chapter to the setting of initial

alignment problem with unknown and dynamic channel fading. Our approach is to sequentially

select beamforming vectors based on prior observations in an active manner, to simultaneously

learn the CSI consisting of the AoA „, and the time-varying fading coefficient –t. We utilize the

hierarchical posterior matching (hiePM ) Alg. 1 of chapter 3 (summarized below in Sect. 4.3.1),

where the choice of wt is such that the probability of „ lying in the area covered by wt is closest to

1
2 . The effect is a sequential scanning of the angular space, where the practically feasible contiguous

beamforming vectors become refined over time. First, we briefly review the hiePM scheme of

chapter 3.

Brief Review of hiePM (Alg. 1)

HiePM is a method of sequentially selecting beamforming vectors wt+1 from the codebook

WS based on the posterior probability vector for active learning of the AoA „. We resolve the

AoA with a resolution 1/” from a range of angles [◊min,◊max]. For ease of exposition, we restrict

the AoA to the discretized set „ œ {◊1, ...,◊1/”}, ◊i = ◊min +(i≠1)◊ ” ◊ (◊max ≠ ◊min). The prior
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probability vector of „, is defined as fi„(t) œ [0,1]1/”, where each element is:

fii(t) := P(„ = ◊i|y1:t), i = 1,2, ...,
1
”

. (4.25)

HiePM selects wt+1(fi„(t)) œ WS in a manner that sequentially refines the width of the beam-

forming vectors over time corresponding to the accumulated belief around the correct AoA „ as

described by probability vector fi„(t), which is a sufficient statistic. HiePM selects a codeword at

either level lú or lú +1 based on which codeword has probability closest to 1
2 .

Computing marginal posterior belief fi„(t)

In this section, we define the marginal posterior update (4.5) in the context of the mmWave

communications model (4.24). This definition is an extension to our prior work [74], included in

chapter 3, which accounts for the random yet time-varying fading coefficient –t. Let us model

the channel state at time t as a random vector („,–t) œ [◊min,◊max] ◊C with joint distribution

f„,–
t
(◊,–), such that

1/”ÿ

i=1

Œ⁄

≠Œ

Œ⁄

≠Œ
f„,–

t
(◊i,–)dŸ–d⁄– =

1/”ÿ

i=1
P(„ = ◊i) = 1. (4.26)

The belief vector fi„(t) can be computed sequentially:

P(„ = ◊i|y1:t) =
fYt|„,Y1:t≠1(yt|◊i,y1:t≠1)P(◊i|y1:t≠1)

1/”q

iÕ=1
fYt|„,Y1:t≠1(yt|◊i,y1:t≠1)P(◊iÕ |y1:t≠1)

(4.27)

where

Yt = –t

Ô
PwH

t a(„)+÷
t
. (4.28)
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where recall (÷
t
= wH

t nt) ≥ CN (0,‡2). The conditional distribution is:

fYt|„,Y1:t≠1(yt|◊i,y1:t≠1) ¥
Œ⁄

≠Œ

Œ⁄

≠Œ

1
Gi

f–
t
|„,Y1:t≠1

3
yt ≠÷

Gi

|◊i,y1:t≠1
4

f÷
t

(÷)d÷

(a)= ≠
Œ⁄

≠Œ

Œ⁄

≠Œ
f–

t
|„,Y1:t≠1(–|◊i,y1:t≠1)f÷

t

(yt ≠–Gi)d–

(b)= ≠
Œ⁄

≠Œ

Œ⁄

≠Œ
f–

t
|„,Y1:t≠1(–|◊i,y1:t≠1)g

3
yt ≠–Gi

‡

4
d–

(4.29)

where d÷ = dŸ÷d⁄÷,d– = dŸ–d⁄–,

Gi =
Ô

Pwt
Ha(◊i), (4.30)

and (a) is by a change of variables, (b) follows by assumption of i.i.d noise, and where g(y≠µ

‡
)

is CN (0,1) evaluated at (y≠µ

‡
). f–

t
|„,Y1:t≠1(–|◊i,y1:t≠1) can be obtained as a one-step prediction

from f–
t≠1|„,Y1:t≠1(–|◊i,y1:t≠1).

It follows that computation of fi„(t) depends on knowledge of f–
t
|„,Y1:t(–|◊i,y1:t), a one-

step prediction formulation for each time t, and may require infinite precision. We approach this

computation by considering some special cases discussed in the next section.

4.3.2 Proposed Algorithms for Beamforming

Earlier in this chapter we proposed two strategies for sequentially and jointly learning

stochastic coefficients and a common support vector (Alg. 2 and Alg. 3). In this section we apply

these algorithms to the context of mmWave initial alignment for dealing with channel fading. First,

we discuss some special density cases to consider for the fading coefficient –t.

97



Known and static fading coefficient –t = –ú:

For the case that the fading coefficient is static and known to the BS, we can write

f–
t
|„,Y1:t≠1(–|◊i,y1:t) =

Y
___]

___[

1, if – = –ú

0, otherwise.

(4.31)

Plugging into Eq. (4.27) gives fi„(t) as:

P(„ = ◊i|y1:t) =
g

3
yt≠–

ú
Gi

‡

4
P(◊i|y1:t≠1)

1/”q

iÕ=1
g

3
yt≠–úG

iÕ
‡

4
P(◊i|y1:t≠1)

, (4.32)

which is finite, and does not require a one-step prediction of the conditional density of –. This is

recovers the formulation of our prior work [74], discussed in chapter 3.

i.i.d. complex Gaussian fading coefficient with mean µ–̃ and variance ‡2
–̃.

In this case:

f–
t
|„,Y1:t≠1(–|◊i,y1:t≠1) = f–

t
(–) ≥ CN (µ–̃,‡2

–̃) (4.33)

is i.i.d for all t. Plugging into Eq. (4.27) gives the update fi„(t):

P(„ = ◊i|y1:t) =

3 Œs

≠Œ

Œs

≠Œ
g

3
–≠µ–̃

‡–̃

4
g

3
yt≠–Gi

‡

4
d–

4
P(◊i|y1:t≠1)

1/”q

iÕ=1

3 Œs

≠Œ

Œs

≠Œ
g

3
–≠µ–̃

‡–̃

4
g

3
yt≠–G

iÕ
‡

4
d–

4
P(◊i|y1:t≠1)

=
g

3
yt≠µ–̃GiÔ
‡

2
–̃

|Gi|2+‡2

4
P(◊i|y1:t≠1)

1/”q

iÕ=1
g

3
yt≠µ–̃G

iÕÔ
‡

2
–̃

|G
iÕ |2+‡2

4
P(◊iÕ |y1:t≠1)

.

(4.34)

Note that E.q. (4.34) differs from the perfect knowledge scenario E.q. (4.32) only in

fYt|„,Y1:t≠1(yt|◊i,y1:t≠1). E.q. (4.34) accounts for the uncertainty on the knowledge of the fading

coefficient by increasing the variance by (‡2
–̃|Gi|2), where the effect is a more conservative update.
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Static fading coefficient –t = –

Here we make the simplification that the fading coefficient is static for a period of time, this

is a typical assumption for a duration less than the channel coherence time:

f–
t+1|„,Y1:t(–|◊i,y1:t) = f–|„,Y1:t(–|◊i,y1:t). (4.35)

Of course the Bayes’ joint posterior probability update, detailed in Eq. (4.27), may be com-

puted directly for a continuous density f–|„,Y1:t(–|◊i,y1:t), however, this may be computationally

infeasible. In our first proposed Alg. 2 for a general formulation we approach the computation of

fi„(t) by first discretizing – over a finite number of sets. To do this for the application to beam selec-

tion, let us make the simplification that – = rj + izk for j = {1,2, . . . , 1
—r

} and k = {1,2, . . . , 1
—z

}

denotes that
Ÿ– œ [rj ≠—r/2, rj +—r/2]

⁄– œ [zk ≠—z/2, zk +—z/2],
(4.36)

where
rj = rmin +(j ≠1)◊—r ◊ (rmax ≠ rmin)

zj = zmin +(z ≠1)◊—z ◊ (zmax ≠ zmin),
(4.37)

for Ÿ– œ [rmin, rmax], and ⁄– œ [zmin, zmax]. Under this discretization, the probability is:

P(– = rj + izk|◊iy1:t) = f–(rj + izk)—r—z (4.38)

We note that this discretization becomes tight as —r,—z æ 0. Coarser choices of (—r, —z)

reduce complexity and memory requirements. (see Sect. 4.3.3 for a discussion of practical values

for these resolution parameters used in our simulations).
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Discrete marginalPM for Beam Alignment

Using the practical case of a static fading, i.e. –t = – we develop the proposed algorithms for

beamforming under channel fading. In Alg. 4, we propose beamforming vectors to be sequentially

selected according to hiePM , where the posterior belief on „, fi„(t), is used to make the beam

selection from WS . For a received observation yt each element of the posterior update on the belief

on „, fi„(t), can be obtained by Eq. (4.27) and (4.38):

P(„ = ◊i|y1:t) =

1/—rq

j=1

1/—zq

k=1
g

3
yt≠(rj+izk)Gi

‡

4
P(rj , zk|◊i,y1:t≠1)P(◊i|y1:t≠1)

1/—rq

jÕ=1

1/—zq

kÕ=1

1/”q

iÕ=1
g

3
yt≠(rj+izk)G

iÕ
‡

4
P(rjÕ , zkÕ |◊i,y1:t≠1)P(◊iÕ |y1:t≠1)

(4.39)

Note, here we write the marginal posterior probability in two steps, first with an update

to get the joint probability fi„,–(t), and then a marginalization to get fi„(t). The joint probability

fi„,–(t) œ [0,1]
1
”

◊ 1
—r

◊ 1
—z at all times t, defined as:

fii,j,k(t) = P(rj , zk|◊i,y1:t)P(◊i|y1:t). (4.40)

Thus Alg. 4 has a computational cost on the order of O( 1
—r

◊ 1
—z

◊ log(1
”
)). We also

specialize Alg. 3 for the application of beam selection in order to reduce the computational cost to

O(1
”

◊ log(1
”
)) by implementing the Kalman filter [71]. First, we assume the conditional probability

density Eq.(4.35) is complex Gaussian:

f–|„,Y1:t(–|◊i,y1:t) ≥ CN (µ–,i(t),‡2
–,i(t)), (4.43)

with known prior (µ–,i(0),‡2
–,i

(0)) for all i.

The proposed algorithm (summarized in Alg. 5) selects beamforming vectors sequentially

according to hiePM , where a marginalized probability over „, fi„(t), is used to make the beam se-

lection from WS . Upon receiving a new observation yt+1, the mean and variance of this conditional
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Algorithm 4: Marginal Posterior Matching for Beam Alignment
1 Input: target resolution (”,—r,—z), codebook WS (S = log2(1/”)), · (length of the

initial access phase)
2 Output: Estimate of the AoA „̂

3 Initialization: fi„,–(0) : fii,j,k(0) = ”—r—z ’i, j,k
4 for t = 1,2, ...,· do
5 # Marginal posterior of „, fi„(t):

fii(t+1) =
1/—rÿ

j=1

1/—zÿ

k=1
fii,j,k(t+1). (4.41)

6 # Beam selection according to hiePM Alg. 1:

wt+1(fi„(t)) œ WS

7 # Take next measurement8

yt+1 = –t+1
Ô

PwH

t+1a(„)+wH

t+1nt+1

9 # Joint posterior update by Bayes’ Rule Eq. (4.39)10

fi„,–(t+1) Ω yt+1,fi„,–(t)

11 # Final beamforming vector design12

„̂ = argmax
◊i

fii(·) (4.42)

13 ŵ = w(„̂)

probability are updated by the Kalman filter:

µ–,i(t+1) = µ–,i(t)+
‡2

–,i
(t)Gi

‡2
–,i

(t)|Gi|2 +‡2 (yt+1 ≠µ–,i(t)Gi)

‡2
–,i(t+1) = ‡2

–,i(t)
‡2

‡2
–,i

(t)|Gi|2 +‡2 .

(4.44)
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Next, Alg.4 uses the estimate of the fading coefficient to obtain fi„(t) by Eq. (4.27) and (4.44):

P(◊i|y1:t) =

3 Œs

≠Œ

Œs

≠Œ
g

3
–≠µ–,i(t)

‡–,i(t)

4
g

3
yt≠–Gi

‡

44
d–P(◊i|y1:t≠1)

1/”q

iÕ=1

3 Œs

≠Œ

Œs

≠Œ
g

3
–≠µ

–,iÕ(t)
‡

–,iÕ(t)

4
g

3
yt≠–G

iÕ
‡

44
d–P(◊i|y1:t≠1)

=
g

3
yt≠µ–,i(t)GiÒ
‡

2
–,i

(t)|Gi|2+‡2

4
P(◊i|y1:t≠1)

1/”q

iÕ=1
g

3
yt≠µ

–,iÕ(t)GiÕÒ
‡

2
–,iÕ(t)|GiÕ |2+‡2

4
P(◊i|y1:t≠1)

.

(4.45)

Algorithm 5: Kalman Filter for Marginal Posterior Matching - Beam Alignment
1 Input: target resolution ”, codebook WS (S = log2(1/”)), · (length of the initial

access phase)
2 Output: Estimate of the AoA „̂

3 Initialization:fi„(0) : fii(0) = ” ’i, (µ–(0),‡2
–(0))

4 for t = 1,2, ...,· do
5 # Beam selection according to hiePM Alg. 1:

wt+1(fi„(t)) œ WS

6 # Take next measurement7

yt+1 = –t+1
Ô

PwH

t+1a(„)+wH

t+1nt+1

8 # Update moments by Kalman Filter Eq. (4.44)9

(µ–(t+1),‡2
–(t+1)) Ω yt+1,µ–(t),‡2

–(t)

10 # Posterior update by Bayes’ Rule Eq. (4.45)11

fi„(t+1) Ω yt+1,fi„(t),µ–(t),‡2
–(t)

12 # Final beamforming vector design13

„̂ = argmax
◊i

fii(·) (4.46)

14 ŵ = w(„̂)
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4.3.3 Numerical Results

Our numerical simulations analyze the proposed algorithms using the performance measures

of outage probability and achieved spectral efficiency in the the relevant regime of low (-10dB to

+5dB) raw SNR.

Simulation Scenario

We consider a scenario where the BS is equipped with a uniform linear array with N = 64

antenna elements with spacing ⁄

2 . We focus on the single user case, where the UE has fixed

beamforming acting as a single virtual antenna. We aim to learn the AoA with resolution 1/” = 128.

Even though Alg. 4 and Alg. 5 are developed for the case of static fading in Sect. 4.3.2, we

test their performance under a more practical AR-1 time correlated model, described below. Under

perfect knowledge of the operating SNR (large-scale fading) as well as perfect frequency/phase

synchronization, the fading coefficient is given as:

–t+1 = –t

Ô
1≠g +

Û
kr

1+kr

“

Q

a1≠
Ô

1≠g

R

b + et

Û
g

1+kr

,

where “ = 1, kr is the Rician fading factor, g is the correlation parameter, and et ≥ CN (0,1) is the

independent noise term.

The correlation parameter g is set such that coherence time Tc = 2 ms (equivalent to · = 28

total slots using the 5G NR PRACH format B4 [61]), and a Rician factor kr = 10 (this is a

reasonable value, e.g. indoor mmWave channel models [63]). For these parameters, we assume

a conservative range for –t to be: [rmin, rmax] = [0,2], [zmin, zmax] = [≠0.7,0.7], with resolution

parameters 1
—r

= 1
—z

= 50 Very low resolution parameters will reduce complexity but may impact

performance, a further investigation is outside the scope of this chapter.
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Figure 4.4: Comparison of the error probability performance between our proposed algorithms
and prior works as a function of raw SNR P/‡2 under Rician AR-1 fading. The probability of
error in selecting the correct final beamforming is given by Eq. (4.47).

Probability of error

First, we analyze the performance of our proposed algorithms in terms of the probability of

error in choosing the correct final beamforming vector, defined as:

Prob{w(„̂) ”= w(„)}. (4.47)

In Fig. 4.4 we compare performance to the Bisection algorithm of [46], which utilizes no prior

knowledge of of the fading coefficient, and to our prior work hiePM of chapter 3 which utilizes the

mismatched guess –̂ = (–0 ≥ CN (–0,‡2
–)) for all t. First, we note that while hiePM with mismatch

can be robust to the time-varying fading, this performance is highly dependent on the quality of the

estimate. Our proposed Alg. 4 closely approaches the performance of perfect knowledge –̂t = –t

and outperforms the mismatched estimates of [74] and the bisection algorithm of [46]. This suggests

that Alg. 4 is in fact learning – while simultaneously beamforming to detect „ in the duration · .

Similarly, Alg. 5 also improves on [74] and [46]. However, as expected the performance is not
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a good as Alg. 4 due to the assumption we make about shape of the estimate f–|„,Y1:t(–|◊i,y1:t)

in order to reduce the computation complexity. As a result, the proposed algorithms highlight a

trade-off between computational complexity and performance in terms of probability of error.

Spectral Efficiency

Next, we analyze the practical metric of spectral efficiency. Given a total communication

time frame T (· and T may require further system optimization, however, this is outside the scope

of this work), the expected spectral efficiency achieved using the final beamforming vector w(„̂) is:

E
S

UT ≠ ·

T
log

Q

a1+ P | w(„̂)Ha(„) |2

‡2

R

b

T

V. (4.48)

In Fig. 4.5 we plot the performance in spectral efficiency Eq. (4.48) of our proposed algorithms

compared to hiePM with mismatch estimates of [74] and the Bisection algorithm of [46]. The

results mimic closely the results we observed in performance of probability of error. Our proposed

Alg. 4 and Alg. 5 achieve improvements spectral efficiency over [74] and [46] due to the mistakes

that these make in the selection of the correct final beamforming vector. We see how critical

these mistakes are in the regime low (≠10dB to +5dB) raw SNR where correct selection of the

beamforming vector enables much higher spectral efficiency.

4.4 Conclusion

This work considers the problem of recovering a unit common support vector W with

unknown stochastic coefficients. In part I. we present a scheme, marginalPM , for sequentially

selecting measurement vectors and two corresponding algorithms for recovering W. As a first step to

demonstrate an adaptivity gain over a non-adaptive algorithms, we demonstrate an adaptivity gain for

the case with correlations between measurements with a static Xt = X , and with uncorrelated i.i.d.

Xt. Our ongoing work considers development of a Kalman prediction step for complexity reduction

in Alg. 5 and a prediction formulation in the posterior for Alg. 4 for even better performance under
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Figure 4.5: Comparison of the spectral efficiency between our proposed algorithms and prior
works as a function of raw SNR P/‡2 under Rician AR-1 fading. The spectral efficiency is
given by Eq. (4.48).

other dynamic models. Comparison to existing strategies that utilize non-binary measurement

vectors, or carefully designed recovery techniques is left as a future work. Analysis of the more

complicated model with ÎWÎ0 > 1 is also of practical interest. In part II. of this chapter we revisit

the problem of sequential beamforming design for mmWave initial alignment, with the added

challenge of dynamic channel conditions. We extend the proposed algorithms for learning the

CSI made up of the fading coefficient and AoA. As a first step to demonstrate robustness under a

practical time-varying fading model, our numerical results show that under a practical hierarchical

codebook the proposed algorithms outperform our prior work, hiePM with mismatched estimate

of –, and a strategy for sequential beam refinement in the literature (the Bisection algorithm of [46]).

Comparison to strategies that utilize larger, user specific, or carefully designed codebooks is left as

a future work. Analysis under other types of fading with more complicated models like multi-path

fading, and mobile users is also of practical interest.

Chapter 4, in part, is a reprint of the material as it appears in the paper: Nancy Ronquillo

and Tara Javidi, “Measurement Dependent Noisy Search with Stochastic Coefficients," IEEE
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International Symposium on Information Theory, 2020. The dissertation author was the primary

investigator and author of this paper.

Chapter 4, in part, is a reprint of the material as it appears in the paper: Nancy Ronquillo,

Sung-En Chiu, and Tara Javidi, “Sequential Learning of CSI for MmWave Initial Alignment," IEEE

Asilomar Conference on Signals, Systems, and Computers, 2019. The dissertation author was the

primary investigator and author of this paper.
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Chapter 5

Active Beam Tracking Under Stochastic

Mobility

This chapter includes our final step towards solving the more general problem of recovering

the random vector Xt (1.1). We consider the case where Xt is extremely sparse, i.e. ÎWÎ0 = 1, but

the location of the non-zero element changes over time. In terms of the mmWave beam alignment

problem, we can think of this as the very practical scenario where the transmitter is moving over

time relative to the receiver. In this chapter we propose a novel method of active and sequential

beam tracking at mmWave frequencies and above. We focus on the dynamic scenario of UAV to

UAV communications where the problem is equivalent to tracking an optimal beam vector along the

line-of-sight path. We propose an algorithm for actively and sequentially selecting beamforming

vectors based on a Bayesian posterior with a prediction step to account for the mobility.

5.1 Introduction

Communication at mmWave frequencies and above utilizing antenna arrays with a small

footprint has been been proposed as part of next generation wireless systems, enabling signif-

icantly higher data rates. Numerous yet small antenna arrays can overcome propagation and

atmospheric losses by concentrating power through directional beamforming. In scenarios with
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static or quasi-static channel conditions, many innovative solutions have been proposed to obtain ro-

bust beamforming for communication, even at a low SNR regime (< 5 dB) [47,72,74], as discussed

in chapter 3.

However, we note that these solutions rely on the static or quasi-static nature of the channel

to ensure a robust directional beamforming based on near real-time acquisition of channel state

information. The problem is far more challenging under dynamic channel conditions such as a

cellular enabled unmanned aerial vehicle (UAV) systems. This work proposes an active beam

tracking solution for mobile scenarios where channel state information can vary significantly and

in an unpredictable stochastic fashion. Our work generalizes earlier work on beam tracking under

predictable movement [75], as well as Kalman-based estimation strategies [76–78] for small angle

variations.

Our proposed algorithm utilizes a hierarchical codebook with beams of various widths and

variable achievable gains to sequentially select beamforming vectors. Drawing on a connection

between dynamic measurement dependent noisy search, which we introduced in chapter 2 (see also

[6, 9, 48, 68]), and joint-source channel coding for dynamical systems [8] to account for stochastic

movements. The proposed methodology relies on the key elements of posterior matching [6]

for sequentially selecting beamforming vectors, a corresponding posterior update, and a one-step

prediction of the posterior for beam tracking. We provide closed form solutions of the posterior

update and prediction equations for select Markov movement models, which as a special case

can recover prior work on predictable mobility [75] as well as the Extended Kalman filter [76].

Numerically, we demonstrate the superior performance of our proposed tracking algorithm over

prior work in terms of normalized beamforming gain under various stochastic mobility models.

5.2 Problem Set-up

Consider a UAV to UAV communication system. We consider the general problem of

adaptive processing for a receiving UAV (RX) with a Uniform Planar Array equipped with N ◊M
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Figure 5.1: UAV beamforming setup for AoA �t = („a,t,„e,t).
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antennas and 3-D angular range. However, we note that the proposed algorithm is also suitable for a

2-D set up with a Uniform Linear Array and N antennas, which is discussed in Sect. 5.4.

Each transmitting UAV (TX) has fixed beamforming acting as single virtual antenna. We

consider a low-power set-up where all UAV use a single RF Chain. The RX combines the signal

from the antenna elements to the RF chain by the directional beamforming vector wt at time

t = 1,2, . . . ,· , where t represents a beamforming slot. Fig. 5.1 illustrates the beamforming setup

for an RX tracking a mobile TX across its movement trajectory. In this work we focus on the pilot

training in order to analyze strategies for selecting beamforming vectors wt at each time slot. When

different UAV are simultaneously transmitting, the code-matched signal from a given UAV, k œ K,

can be written as

yk

t =
Ô

PwH

t (
Kÿ

kÕ=1
hkÕsT

kÕ)sú
k +wH

t Ntsú
k. (5.1)

We use the stochastic multi-path modelling assumption with a single dominant path.
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Assumption 5. The small-scale channel can be described as:

h = –ta(�t), (5.2)

where –t œ C is the complex path gain, �t = („a,t,„e,t) is the AoA in azimuth and elevation for

„a,t and „e,t œ [◊min,◊max],

a(�t) :=
Û

1
NM

5
1, ej

2fid

⁄
[sin„a,t sin„e,t+cos„e,t],

..., e
j

2fid

⁄
[(N≠1)sin„a,t sin„e,t+(M≠1)cos„e,t]

6 (5.3)

is the array manifold created by the Angle-of-Arrival (AoA) with antenna spacing d.

Furthermore, we assume orthogonal sequences where a given TX k œ K, sends pilot

sequence sk such that:

Assumption 6.

sH

k skÕ =

Y
___]

___[

1 for k = kÕ

0 for k ”= kÕ
. (5.4)

Under Assumptions 5 and 6, the received signal for a given UAV is simplified to:

yt=
Ô

P–twH

t a(�t)+wH

t nt, (5.5)

where the additive noise vector nt := Ntsú
k

≥ CN (0N◊1,‡2I), under the assumption of normalized

beams ÎwtÎ = 1, without loss of generality. We consider perfect knowledge of the operating

SNR, defined as P

‡2 which is the SNR that would be received with narrowest aligned beamforming.

In this chapter we focus on the adaptive selection of beamforming vectors although the specific

communication protocol is discussed in chapter 6.
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5.2.1 Mobility Model

We consider a UAV mobility model where the AoA trajectory changes according to an

independent increment process consisting of predictable and unpredictable (random) elements. That

is, the AoA �t evolves as

�t+1 = �t +V + r, (5.6)

where the known vector, V , models predictable elements of mobility, for example an AoA position

changing with constant speed. The zero mean random vector r œ R models the unpredictable

components, such as a sudden jump.

5.2.2 Beamforming with a Codebook

We are interested in the selection of beamforming vectors to use at each slot t in order to track

the AoA. Specifically, we consider a stationary beamforming design policy as a causal (possibly

random) mapping function from past observations to the beamforming vector: wt+1 = “(y1:t,w1:t).

Under Assumption 5, the quality of the established communication link depends on the estimate

of channel state information ĥt, which is determined by a current estimate �̂t. In particular, each

estimate provides beamforming wt which results in normalized beamforming gain:

GBF = E
3 |wH

t –ta(�t)|2
|–ta(�t)|2

4
. (5.7)

In other words, the quality of the established communication link over a period of time t = [1 : T ]

strongly depends on a method to robustly and continuously detect and track the AoA �t for t = [1 : T ].

To reduce complexity, it is common to limit wt to a pre-designed beamforming codebook WS with

finite cardinality and hierarchical structure. Such hierarchical codebooks are investigated for UAV

communications in [79] and in [80] for small angle variations. We assume the codebook, WS , has

S levels with kl vectors in each level l œ S that partition the angular search space into contiguous

sectors with increasing resolution kl < kl+1 and finest resolution kS = 1
”a

◊ 1
”e

in azimuth and
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elevation. Let the matrix w̃t œ {0,1}
1

”a
◊ 1

”e be a binary angular space matrix representation of

wt. Beamforming vectors are assumed to be designed with the objective of near constant gain for

intended directions (i.e. the non zero entries of w̃t) and almost zero otherwise.

5.3 Proposed Algorithm

Observations yt given in (5.5) can be thought of as the probing of certain angular locations,

indicated by w̃t, which give information about the presence or absence of the AoA in the angular

space spanned by wt. This allows us to sequentially select beamforming vectors whose angular

width Îw̃tÎ0 matches the accumulated belief about �t.

We propose Alg. 6 which implements an active beamforming policy “ based on Bayesian

posterior updates and predictions, and which achieves sequential refinement of uncertainty on

the time-varying AoA �t. Specifically, we implement hiePM (Alg. 1 of chapter 3) to actively

select each wt based on posterior matching. We build on this algorithm and extend the evolution

of the posterior to incorporate an update and prediction step which enables tracking for handling

mobile UAV. We restrict the AoA point estimate �̂t = („̂a,t, „̂e,t) to the discrete set where „̂(a,t) =

{◊1,◊2, . . .◊1/”a
}, and ◊i = ◊min +(i≠ 1

2)◊ ”a ◊ (◊max ≠ ◊min). „̂e,t is discretized similarly. Let the

probability vector over �t with resolution (”a,”e) be defined as fi(t|t) œ [0,1]
1

”a
◊ 1

”e , where each

element is:

fii,j(t|t) := P(�t = (◊i,◊j)|y1:t), i = 1, ...,1/”a, j = 1, ...,1/”e
(5.8)

and the probability of �t being in the angular range covered by a beamforming vector wt (with

angular span w̃t) is the sum of the posterior entries corresponding to the non-zero entries of w̃t:

fiw̃t
(t|t) :=

ÿ

i,j

w̃t,i,jfii,j(t|t). (5.9)

Upon receiving a new observation yt, the posterior probability is updated and followed by a
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prediction step:

fi(t+1|t) Ω fi(t|t) Ω yt,fi(t|t≠1). (5.10)

A beamforming vector at either level lú or lú +1 is selected for the next beamforming slot based on

the accumulated belief around �t+1 as described by the prediction posterior probability fi(t+1|t),

which is a sufficient statistic. In other words, wt+1(fi(t+1|t)) is chosen as the kth
t+1 codeword in

level lt+1 covering w̃[lt+1,kt+1] where:

[lt+1,kt+1] = argmin
[lÕ,kÕ]

----fiw̃[lÕ,kÕ](t)≠ 1
2

---- . (5.11)

The first step in (5.10) is a Bayesian posterior update:

fii,j(t|t) = P(�t = (◊i,◊j)|y1:t)

= f(zt|�t = (◊i,◊j),wt)fii,j(t|t≠1)
1/”aq

iÕ=1

1/”eq

jÕ=1
f(zt|�t = (◊iÕ ,◊jÕ),wt)fiiÕ,jÕ(t|t≠1)

. (5.12)

where f(zt|�t = (◊i,◊j),wt) is the conditional distribution of zt = q(yt) and depends on the function

q(·) of available information. For a pilot slot with received signal yt (5.5), the full measurement

zt = yt is known to be:

f(zt|�t = (◊i,◊j),wt) = g
3

yt ≠Gi,j

4
, (5.13)

where Gi,j = wH
t a(◊i,◊j) is the gain conditioned on �t = (◊i,◊j) and g(x) is the circularly sym-

metric complex normal distribution with variance ‡2 and assumption of known – = 1, P = 1. We

note that our approach, and specifically the extensions detailed in chapter 4, can handle stochastic

and time varying complex gain through simultaneous estimation of –t. However, in this chapter we

focus only on the performance in terms of recovering and tracking �t by fixing the gain.

It follows that the computational requirements of sequentially designing wt+1 = “(fi(t +

1|t)) at every beamforming slot will include the selection policy “ (5.11), the Bayesian posterior
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update (5.12), and the one-step prediction update. While the first steps of Alg. 6 can be generalized

as above, the one-step posterior update from fi(t|t) to fi(t + 1|t) will depend on the formulation

for a particular movement model (5.6). The computation complexity is dominated by the cost of

the posterior update (5.12) at each beamforming slot t. The worst case cost is O( 1
”a

◊ 1
”e

) if each

element is updated individually. However, this can be reduced to O(log( 1
”a

◊ 1
”e

)) by considering

the geometric constraints on the hierarchical contiguous codebook elements [81].

Algorithm 6: Active beam tracking for mobile AoA
1 Input: target resolution (”a,”e), codebook WS , T (last beamforming slot), Markov

mobility model (5.6)
2 Output: Beamforming vector wt and estimate of the AoA �̂t up to a resolution ” for

each slot t
3 Initialization: uniform fi(1|0)
4 while t Æ T do
5 # Beam selection based on hierarchical posterior matching with variable width

beams (5.11):

wt(fi(t|t≠1)) œ WS

6 # Received output: yt =
Ô

P–twH
t a(�t)+wH

t nt

7 # Posterior update by Bayes’ Rule (5.12)

fi(t|t) Ω yt,fi(t|t≠1)

8 # Posterior one-step prediction

fi(t+1|t) Ω fi(t|t)

9 # Estimate of AoA: �̂t = argmax(◊i,◊j) fii,j(t|t)

5.4 Example Scenarios

In this section, we illustrate the proposed tracking scheme by considering a special case

where we reduce the AoA point estimates to the 2-D angular domain, to study select examples of

Markov mobility in the form (5.6). Assuming the point estimates �̂t = „̂t œ {◊1,◊2, . . .◊1/”} and

◊i = ◊min + (i ≠ 1
2) ◊ ” ◊ (◊max ≠ ◊min). We utilize the hierarchical beamforming codebook, WS ,
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of [46] where vectors in level l œ S = log2(1/”) have angular width Îw̃tÎ0 = 1/”

2l
that is half the

size of the prior level. This is approximately achieved via a pseudo inverse approximation. The

resulting beams are slightly imperfect with reduced gain in angles further from the center beam

directions, however, these effects are fully accounted for in our numerical simulations.

We consider three movement models that fall into two broad categories: predictable and

unpredictable mobility. Predictable mobility consists of fixed and known angular movements, like a

constant velocity, where „t+1 can be calculated from „t. We consider unpredictable mobility to be

modeled by stochastic processes and we look at two examples: Gaussian angular movements and

Bernoulli angular jumps. We show that predictable mobility is equivalent to no movement when the

predictable mobility can be accounted for. On the other hand, stochastic mobility is much harder to

handle, but can be tracked by incorporating side information into the prediction step of (5.10).

For brevity, we only provide the one-step prediction formulation of (5.10) and numerical

results for three example UAV movements. However, the one-step prediction can be similarly

formulated and analyzed for any other stochastic model in the form of (5.6), we leave an in depth

analysis of any other mobility models as potential future work.

5.4.1 Predictable Movement

Fixed Angular Movement

Consider the AoA to change according to a fixed angular velocity:

„t+1 = „t +V (5.14)

where V = ‹”fi summarizes the constant velocity ‹”fi radians per time slot. In this work we assume

that V is known, however, a small preamble to determine an unknown angular velocity is easily

implemented as in [75]. Intuitively, for integer values of ‹ the corresponding one-step prediction in

(5.10) is:
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fii(t+1|t) = fii≠‹(t|t), (5.15)

and for |‹| < 1

fii(t+1|t) = (1≠‹)fii(t|t)+‹fii+sign(‹)(t|t). (5.16)

Remark 8. The one-step posterior prediction fi(t+1|t) is a shifted version of the posterior update

fi(t|t), this is easiest to see for integers ‹, where this is a simple horizontal translation. For any

predictable mobility the one-step prediction will result in a shifting or deterministic rearranging

of the posterior fi(t|t). As a result, we can apply the same fundamental limits as in Sect. 3.4 of

chapter 3 in terms of estimation error probability and time required to obtain a robust initial estimate

of „̂t.

5.4.2 Stochastic Movement

Gaussian Angular Movement

Consider the mobility scenario where the AoA changes with Gaussian angular movements

due to small intractable position changes on the UAV such as with small drones. That is, the AoA

evolves as:

„t+1 = „t +zt
(5.17)

where zt is an i.i.d. zero mean Gaussian with variance ‡2
„

. Intuitively, this is a good model for small

uncertainties about direction or vibrations. Note that in case of a misalignment event, the cumulative

movement results in a linear growth in uncertainty. The corresponding one-step prediction of (5.10)

is:

fii(t+1|t) = Èfi(t|t),g[◊i,‡
2
„

]Í, (5.18)
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where g[◊i,‡
2
„

] œ [0,1]1/” is a probability mass function obtained from a quantized and truncated

Gaussian random variable x ≥ N (◊i,‡2
„
) with resolution ”. Equivalently, each element is given as:

g[◊i,‡
2
„

](n) Ã P[◊n ≠ ”fi

2 Æ x < ◊n + ”fi

2 ], (5.19)

for n = {1, . . . ,1/”}, and normalized such that
qg[◊i,‡

2
„

] = 1.

Bernoulli Angular Jumps

Next, consider the case where the AoA can incur a large random jump from one beamforming

slot to another. We assume the AoA moves according to

„t+1 = „t + bq (5.20)

where b = —”fi is a known probable jump size and q is a Bernoulli random variable with parameter

(p), where p is the probability of a jump. This can occur for example in the cases of blockage

or sudden changes in velocity. This is difficult to handle because the random movement almost

certainly will cause an outage if the beamforming is not updated quickly. As a result of such jumps,

existing tracking methods will likely trigger a reset or re-estimation protocol due to invalid tracking

(i.e. not meeting a minimum tracking quality). If the jump is small enough, a Kalman filtering

strategy may try to update the estimate on the state „t based on observations yt and catch up. In

contrast, our approach is to conservatively account for the uncertainty about „t preemptively, by

widening the posterior in the prediction step. That is, the proposed algorithm accounts for the

likelihood of jumps by increasing the posterior probability in probable jump locations. For integer

estimates of the jump size —, the one-step prediction in (5.10) can be specified as:

fii(t+1|t) =
5
(1≠p) fii(t|t)+pfii≠—(t|t)

6
. (5.21)

In general, the mobility model for a target AoA may differ from the ones considered here. The aim

of this work is to introduce the idea of incorporating mobility information into the the selection of

118



beamforming vectors for tracking, especially for the cases where the movement may be stochastic,

in order to robustly handle outage scenarios. The main idea is to use prior information and adapt

to the uncertainty by widening and shrinking the beam width Îw̃tÎ0 corresponding to probable

movements or a misalignment rather than forcing a reset protocol. We summarize the one-step

predictions for the models discussed in Table 5.1.

Table 5.1: One-Step Posterior Prediction - Markov Movements
Movement „t+1 = One-step Predict fii(t+1|t) =

Static „t fii(t|t)
Constant „t +‹”fi fii≠‹(t|t), ‹ integer

(1≠‹)fii(t|t)+‹fii±1(t|t), |‹| < 1
Gaussian „t +z, Èfi(t|t),g[◊i,‡

2
„

]Í
z ≥ N (0,‡2

„
)

Jumps „t + bq, (1≠p)fii(t|t)+pfii≠—(t|t)
q ≥ Bern(p)

5.5 Numerical Results

Next, we analyze the performance of the proposed beamforming algorithm under the

mobility examples discussed above. We focus on comparisons to beamforming selections by the

the extended Kalman filtering (EKF) algorithm of [76] and the dynamic pilot insertion algorithm

of [75]. Our proposed algorithm provides a methodology for including mobility information when it

is available in an adaptive manner, which incurs a computational and memory cost dominated by the

cost of computing the posterior updates O(log(1
”
)). However, we note that the strategies of [75, 76]

do not require any prior knowledge of the mobility model. Instead, these strategies [75, 76] operate

under the assumption of unknown quasi static AoA, where reset phases are used for dealing with

severe misalignment which are less computationally intensive but may require larger downtime to

recover an estimate. We compare performance in terms of the normalized beamforming gain (5.7)

to assess the validity of our sequential beam selection algorithm and illustrate the gains achievable

by adaptively responding to mobility information.
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Figure 5.2: Average normalized beamforming gain (5.7) obtained by the proposed algorithm
for the various mobility models considered in Table 5.1 at 10dB SNR.

5.5.1 Fixed Angular Movement

The EKF and dynamic pilot algorithms [75, 76] switch between estimation of the AoA (via

exhaustive search) and active tracking. After an exhaustive search over the 1/” possible beams,

an initial estimate „̂1/” is obtained. The next step for the EKF algorithm [76] is to choose beams

based on tracking estimates of the state „̂t with extended Kalman filter updates. In the dynamic

pilot algorithm [75] beams are chosen based on tracking updates that geometrically account for

a constant angular velocity. For both strategies [75, 76], the tracking duration is determined by

a threshold on the quality of tracking. When tracking is no longer valid, a reset is triggered and

the exhaustive beams are used again in order to obtain another estimate of the AoA. The EKF

algorithm [76], imposes a minimum MSE threshold (
Ô

MSE = BW

2 half beam width), while the

dynamic pilot algorithm [75] uses a threshold on the receive power (Pmin). We note that these

tracking thresholds require optimization, thus in the following simulations we generously assume

perfect exhaustive search estimates and try to optimize the tracking parameters empirically in order

to compare performance.

The following simulations consider an RX with N=32 antennas and an angular discretization
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with 1/” = 64. We consider „t œ [≠fi,0] and randomize the starting point „0 to fully account for

cases on the edges of the angular space. We focus on relative comparisons, although physical

properties corresponding to the considered SNR values (like cell size and bandwidth) can be defined

as in Fig. 3.6 of chapter 3.

Fig. 5.2 shows the expected normalized beamforming gain over time achieved by the

proposed algorithm at 10 dB SNR for each of the mobility models considered. We average the

results over 1,000 iterations. We begin by looking at the model of fixed angular mobility (5.14)

with V = ‹”fi, ‹ = {1,4,5}, which is made up entirely of predictable movements. The number of

beamforming slots required by the proposed algorithm to reach a stable gain is a lot fewer than those

required by the exhaustive search (requiring 1/” beamforming slots). Note that Fig. 5.2 verifies

Remark 8 by showing that the performance is invariant to the velocity and thus can be handled by

our algorithm as efficiently as detecting a static AoA (‹ = 0) without compromising beamforming

gain. To get a sense of performance compared to existing approaches in terms of tracking quality, in

Fig. 5.3 we show an AoA trajectory for one instance over time and the corresponding AoA estimates

and beamforming gains achieved by the algorithms considered. The extended Kalman filter and the

dynamic pilot strategy adjust estimates „̂t based on a given to be known speed and can successfully

account for this predictable movement as well as the proposed algorithm. None of the algorithms

are significantly affected by this constant velocity in terms of achievable beamforming gain, other

than slight dips in the gain which are caused when the AoA lies near the edge of a selected beam.

5.5.2 Gaussian Angular Movement

Next, we analyze Gaussian angular movements (5.17) for ‡2
„

= {0.25¶2,0.5¶2,0.75¶2}.

Fig. 5.2 shows that the proposed algorithm can achieve a high and stable beamforming gain quickly

and can maintain this robustly in the long term for up to ‡2
„

= 0.5¶2. Even for mobility with larger

entropy ‡2
„

= 0.75¶2, the achievable gain remains stable, albeit slightly decreased. This suggests that

beams are being selected potentially with larger widths slightly more frequently to ensure tracking

under such high mobility and to prevent and recover from outages. For comparisons to the strategies
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Figure 5.3: Example - Normalized beamforming gain (5.7) at 10dB SNR for constant angular
movement (5.14) with ‹ = 0.1.
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Figure 5.4: Example - Normalized beamforming gain (5.7) at 10dB SNR for Gaussian Move-
ment (5.17) with ‡2

„ = 0.75¶2.
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of [75, 76] in terms of tracking performance, in Fig. 5.4 we look specifically at the most difficult

case of ‡2
„

= 0.75¶2.The proposed algorithm is best able to maintain high beamforming gains with

occasional but quick recoveries, while the other algorithms must resort to the reset protocols when

severe outages occur.

5.5.3 Bernoulli Angular Jumps

Lastly, we analyze occasional Bernoulli jumps (5.20) with jump size b = 5¶ and probabilities

p = {0.01,0.05,0.20}. Such random jumps are very difficult to handle because alignment schemes

(including exhaustive search) will struggle to obtain correct initial estimates if a jumps occurs in this

phase since they operate under the assumption quasi-static AoA. Even if a good beam estimate is

obtained successfully, the duration of following tracking phase will largely depend on the frequency

of the jumps (the entropy), since each jump is likely to cause an outage. Fig. 5.2 shows that

the performance of the proposed algorithm is affected by the entropy of such jumps, where the

achievable gain begins to drop for higher probability of a jump p. However, it maintains stable

beamforming gain for all values of p under the caveat of less than ideal gain for high p values. In

Fig. 5.5 we plot performance comparisons to the strategies of [75, 76], however we note that the

algorithms we compare to are not specifically designed for such mobility. Thus as expected, the

algorithms of [75, 76] respond to sudden jumps by triggering a reset and re-estimation of the AoA.

On the other hand, the proposed algorithm recovers quickly after a jump due to the embedding of

mobility information in the selection of beams following a jump.

5.6 Conclusion

We consider the problem of active and sequential tracking of the CSI for robust beamforming

at mmWave frequencies and above. We are interested in tracking stochastic movements, which may

be especially critical in systems of communication between mobile UAV. Existing beamforming

methods implement approaches which require a reset step in response to outages or low tracking
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Figure 5.5: Example - Normalized beamforming gain (5.7) at 10dB SNR for Bernoulli jumps
(5.20) with jump size b = 5¶ and probability p = 0.01.
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quality. We propose an active beamforming algorithm that incorporates mobility information into

the sequential selection of beamforming vectors based on prior observations. We provide closed

form equations for posterior updates and predictions for a selection of 2-D Markov mobility models.

Our Numerical results show improved performance over the reset-type approaches and appear to

have fewer sensitivities to movements with larger entropy.

Chapter 5, in full, is a reprint of the material as it appears in the paper: Nancy Ronquillo and

Tara Javidi, “Active Beam Tracking Under Stochastic Mobility," IEEE International Conference

on Communications, 2021. The dissertation author was the primary investigator and author of this

paper.
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Chapter 6

Active and Dynamical Beam Tracking

Under Stochastic Mobility

In our presentation of active beam alignment up to chapter 5 we have thus far focused only

on the beamforming selection process and the alignment performance in terms of probability or

error and corresponding beamforming gain. To build a communication scheme, we envision the

proposed algorithm for sequentially selecting beam vectors is suitable for adaptive pilot allocation

as presented in this chapter. We formulate the communication signaling model and highlight the

exploration exploitation dilemma brought on by mobility when aiming for beam alignment and

desiring high data throughput. Our proposed adaptive piloting scheme is based on analysis of the

mutual information and maximum achievable spectral efficiency. We observe bust beamforming

and reduced overhead due to our analysis of the receive power in the data communication phase

which enables power only Bayesian updates.

6.1 Introduction

CSI acquisition for maintaining beam alignment over time in the scenarios of high mobility,

commonly referred to as beam tracking, has been extensively studied in [75–80, 82–86] We restrict

our attention to the cases of beamforming under the practical implementation constraints of a
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beamforming codebook, where the challenge can be thought of as effective beam selection or

management. Existing approaches for handling very high mobility heavily rely on schemes of pilot

allocation, switching between data transmission and pilot phases. More specifically, the pilot phase

is used generally used for CSI and/or mobility estimation, for example by leveraging compressive

sensing or least squares techniques [84]. In the data transmission phase, channel and/or mobility

estimates are used to exploit the best predicted beam.

Some solutions focus on tracking predictable movements, such as a UAV moving at a known

or estimated velocity, or where the AoA or UAV trajectory and position can otherwise be inferred

or predicted according to a model geometry after estimation in the pilot phase [75, 82, 87]. If the

transmitters mobility is unpredictable with random AoA variations, for example movements close

to Gaussian noise with small variance, Kalman filtering based strategies for estimating the AoA can

support tracking [76, 77] - possibly supplemented with geometric calculations for predicting the

position of the transmitter instead [78]. However, for largely unpredictable movements such as large

jumps or changes in trajectory, these solutions operate model-agnostic and handle sudden changes

by implementing a form of adaptive switching between estimation and tracking based on either

recurringly allocating pilots or by constantly evaluating the quality of tracking. Recent works have

studied the benefits of using beams covering wider angular regions, rather than exclusively using

narrow beams, in order to capture fast angle variations and reduce the pilot overhead [80, 86]. The

pilot overhead can be reduced further by focusing on local beams according to current estimates,

the caveat is reduced link quality due to the wider beam width.

We propose a method for actively and dynamically learning the AoA throughout the data

transmission phase as well as adaptively allocating pilots. Specifically, our method actively selects

beamforming vectors based on evolving a Bayesian probability belief dynamically. In the absence

of excess uncertainty and with moderate SNR, posterior updates rely on the signal energy (which

allows the update to be agnostic to the knowledge about the data sequence). When the belief

displays a large variance, in contrast, our algorithm deploys a pre-designed pilot sequence to speed

up learning.
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6.1.1 Contributions

We consider the practical implementation with a single RF chain, and small scale channel

dominated by the line-of-sight (LoS) single path, where CSI acquisition reduces to the problem

of estimation and tracking of the dynamical angle of arrival (AoA). In particular, we view this

problem as an active search for the AoA under the caveat of noisy measurements, whose noise

intensity in dictated by the type of measurement. The problem of noisy search with measurement

dependent noise has been studied from an information theoretic perspective where many works have

established a connection to the problem of channel coding over a binary input channel [6,9,47,48,68],

and to joint-source channel coding for dynamical systems in [8]. Existing adaptive strategies

for measurement selection based on posterior matching have been shown to provide theoretical

guarantees in performance [6, 48, 74]. We draw on these works, leveraging the connection to

channel coding, to develop our adaptive beamforming algorithm based on posterior matching using

a beamforming codebook. Our work generalizes earlier work on beam tracking under predictable

movement [75], as well as filter-based estimation strategies [76–78] for small angle variations. Our

contributions are as follows:

1. Active and Sequential beam selection We propose a method for sequentially selecting

beamforming vectors in an active manner from a practically feasible hierarchical codebook,

with beams of various widths and variable achievable gains based on posterior matching [6].

Our methodology consists of evolving the posterior via Bayesian updates and predictive

filtering in order to incorporate mobility information in a dynamical manner. Our proposed

active and sequential beam selection is restated from chapter 5.

2. Adaptive Pilot Allocation We propose an adaptive pilot allocation strategy to complete the

communication scheme. Specifically, we propose to trade-off the pilot and data transmission

phases by analyzing the mutual information and maximum achievable spectral efficiency

terms. Combined with our active and sequential beam selection and dynamic tracking of

the posterior, our approach trades off the pure exploration of pilot transmission against
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exploitation in the data transmission. Our proposed tracking of the posterior, which enables

simultaneous learning of the AoA (both in the data transmission and pilot phases), is inspired

by the reward optimization learning paradigm of reinforcement learning algorithms [26].

3. Numerical Results We demonstrate via simulations the superior performance of our proposed

communication scheme over prior work in terms of normalized beamforming gain and pilot

overhead under three stochastic mobility models. We show that the case of predictable

mobility can be handled as well as the static case, and thus recovers our prior fundamental

limits on initial beam alignment [74]. We also consider the cases where the AoA has

large Gaussian angular variations or is subject to Bernoulli angular jumps, which we show

are significantly more difficult to handle. Comparing our work against the algorithms of

[75, 76, 80], we demonstrate our robust beamforming and efficient tracking of the AoA with

minimum pilot overhead. In practical terms, and under stochastic mobility, this means that

our algorithm achieves significantly higher average beamforming gains and reduced pilot

overhead.

6.2 Problem Set-up

Consider a UAV to UAV communication set up with adaptive processing for a receiving

UAV (RX) with a Uniform Planar Array equipped with N ◊M antennas and 3-D angular range.1

A transmitting UAV (TX) has fixed beamforming acting as a single virtual antenna. We consider

a low-power set-up where the both UAV use a single RF Chain. The RX combines the signal

from the antenna elements to the RF chain by the directional beamforming vector wt œ CNM at

t = 1,2, . . . ,T , where t represents a beamforming or sampling time slot. Without loss of generality,

we assume normalized beamforming vectors such that, ÎwtÎ2 = 1.

For an air-to-air scenario a transmitting UAV will likely be unobstructed and free of reflectors,
1Beamforming of the receiver can be done with reduced reliance on feedback, and hence is chosen here for its

simplicity. We note that the proposed algorithm is also suitable for a 2-D set-up with a Uniform Linear Array and N
antennas as discussed in Sect. 6.5.
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where we may assume that communication is dominated by the line-of-sight path. Therefore, we

use the stochastic multi-path model (see Ch.7 in [55]) with assumption of a single dominant path.

Assumption 7. The small-scale channel can be described by an NM ◊1 complex vector:

h = –ta(�t), (6.1)

where –t œ C is the complex path gain, �t = („a,t,„e,t) is the AoA in azimuth and elevation for

„a,t œ [◊min,◊max] and „e,t œ [◊min,◊max],

a(�t) :=
Û

1
NM

5
1, ej

2fid

⁄
[sin„a,t sin„e,t+cos„e,t], e

j
2fid

⁄
[(N≠1)sin„a,t sin„e,t+(M≠1)cos„e,t]

6

(6.2)

is the array manifold created by the Angle-of-Arrival (AoA) with antenna spacing d.

We consider communications from a TX to the RX over one beamforming slot to be

characterized by one of two possible phases: pilot training or data transmission. Let the current

phase be denoted by et œ {P,D}. The continuous time received signal over beamforming slot t is

rt(·)=–ta(�t)x(·) (6.3)

where x(·) is the transmitted sequence x(·) = q
Nc

n=1
Ô

PT xnpr(· ≠nTc), consisting of transmitted

symbols xn and a pulse shaping function pr(·) where
s

|pr(·)|2d· = 1, for Nc modulation symbols

with Tc symbol duration. A receive beamforming vector wt is applied for the duration of the

beamforming slot. The discrete time signal at the output of a matched filter for the pulse shaping

function pr(·) is

yt = –t

Ò
PT wH

t a(�t)xt +wH

t nt. (6.4)

where nt ≥ CN (0[NM◊1],‡
2I) is the additive AWGN. We consider perfect knowledge of the

operating SNR, defined as PT

‡2 which is the SNR that would be received with narrowest aligned

beamforming.
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Receive a pilot et = P

During the pilot training phase, i.e. et = P , the transmitted symbols are assumed to be

known at the receiver. Thus, the discrete time detected pilot signal for a beamforming slot t can be

expressed simply as

zt(P ) = –t

Ò
PT wH

t a(�t)+wH

t nt. (6.5)

Recall ÎwtÎ2 = 1, thus ÷t = wH
t nt ≥ CN (0,‡2).

Receive data et = D

On the other hand, in the data transmission phase the transmitted data is unknown. We apply

an additional processing step to the discrete time signal (6.4), where we calculate the received power

(which will be used for the purpose of our tracking algorithm):

zt(D) = |yt|2

= |–t

Ò
PT wH

t a(�t)xt +wH

t nt|2.
(6.6)

In the following sections we continue to describe the system model focusing on the active selection

of beamforming vectors and formulate our algorithm in terms of the signal zt(et), while the specific

communication protocol and pilot allocation is discussed in Sect. 6.4.

6.2.1 Mobility Model

We consider a UAV mobility model where the AoA trajectory changes according to an

independent increment process consisting of predictable and unpredictable (random) elements. That

is, the AoA �t evolves as

�t+1 = �t +V + rt
(6.7)
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where the known vector V models predictable elements of mobility, for example an AoA position

changing with constant speed. The zero mean random vector rt œ R2 models the unpredictable

components such as a sudden jump.

6.2.2 Beamforming with a Codebook

At any given slot t, we are interested in selecting beam vectors for receive beamforming. In

the pilot phase, probing various beams allows the RX to learn about and ultimately track the AoA. In

data transmission phase, the main goal is to select a beam vector covering the TX in its angular range

in order to receive and reliably detect a data sequence. We consider a stationary beamforming design

policy as a causal (possibly random) mapping from past observations z1:t = [z1(e1), . . . , zt(et)] and

past beamforming w1:t to the beamforming vector: wt+1 = “(z1:t,w1:t). Under Assumption 7, the

quality of the established communication link depends on the estimate of channel state information

ĥt, which is determined by a current estimate �̂t. In particular, each estimate provides beamforming

wt which results in normalized beamforming gain:

GBF = E
3 |wH

t –ta(�t)|2
|–ta(�t)|2

4
. (6.8)

In other words, the quality of the established communication link over a period of time t = [1 : T ]

strongly depends on a method to robustly and continuously detect and track the AoA �t for t = [1 : T ].

To reduce complexity, it is common to limit wt to a pre-designed beamforming codebook WS

with finite cardinality and a multi-level structure. We assume the codebook, WS , has S levels with

kl vectors in each level l œ S that partition the angular search space into contiguous sectors with

increasing resolution kl < kl+1 and finest resolution kS = 1
”a

◊ 1
”e

in azimuth and elevation. Let

w̃t œ {0,1}
1

”a
◊ 1

”e be a binary matrix representation of the angular space of wt. More specifically,

the locations of 1’s in w̃t indicate angular regions covered by the beam wt in a corresponding

to an 1
”a

◊ 1
”e

angular grid. Beamforming vectors are assumed to be designed with the objective

of near constant gain for intended directions (i.e. the non zero entries of w̃t) and almost zero
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otherwise. One such structure is achieved by Hierarchical codebooks which are investigated for

UAV communications in and in [80] for small angle variations.

6.3 Active and Sequential Beam Selection

We propose Alg. 7 which implements an active beamforming policy “ based on Bayesian

posterior updates and predictions, and which achieves sequential refinement of uncertainty on

the dynamic AoA �t. Specifically, we implement hiePM of [74] to actively select each wt via

posterior matching, and build on this algorithm to incorporate an update and prediction step for

evolving the posterior dynamically. An overview of the proposed adaptive beamforming algorithm

for mobile UAV is detailed in Alg. 7. Although the true AoA �̂t is continuous, we restrict

the AoA point estimate �̂t = („̂a,t, „̂e,t) to the discrete set where „̂(a,t) = {◊1,◊2, . . .◊1/”a
}, and

◊i = ◊min +(i≠ 1
2)◊ ”a ◊ (◊max ≠◊min). „̂e,t is discretized similarly. Let the probability vector over

�t with resolution (”a,”e) be defined as fi(t|t) œ [0,1]
1

”a
◊ 1

”e , where each element is:

fii,j(t|t) := P(�t = (◊i,◊j)|z1:t), i = 1, ...,1/”a, j = 1, ...,1/”e
(6.9)

and the probability of �t being in the angular range covered by a beamforming vector wt (with

angular span w̃t) is the sum of the posterior entries corresponding to the non-zero entries of w̃t:

fiw̃t
(t|t) :=

ÿ

i,j

w̃t(i, j)fii,j(t|t). (6.10)

To dynamically evolve the posterior, upon receiving a new observation zt(et), fi(t|t≠1) is

updated according to Bayes Rule [30] and followed by a prediction step incorporating the AoA

dynamics:

fi(t+1|t) Ω fi(t|t) Ω zt(et),fi(t|t≠1). (6.11)

A beamforming vector at either level lú or lú +1 is selected for the next beamforming slot based on

the accumulated belief around �t+1 as described by the prediction posterior probability fi(t+1|t),
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which is a sufficient statistic. In other words, wt+1(fi(t+1|t)) is chosen as the kth
t+1 codeword in

level lt+1 covering w̃[lt+1,kt+1] where:

[lt+1,kt+1] = argmin
[lÕ,kÕ]

----fiw̃[lÕ,kÕ](t+1|t)≠ 1
2

---- . (6.12)

To initialize the procedure of (6.11) we assume a uniform posterior fi(1|0) at t = 1, i.e. no

prior knowledge about the AoA is required. The first step in (6.11) is a Bayesian posterior update

calculated as:

fii,j(t|t) = P(�t = (◊i,◊j)|z1:t) = f(zt(et)|�t = (◊i,◊j),wt)fii,j(t|t≠1)
1/”q

iÕ=1

1/”q

jÕ=1
f(zt(et)|�t = (◊iÕ ,◊jÕ),wt)fiiÕ,jÕ(t|t≠1)

. (6.13)

where f(zt(et)|�t = (◊i,◊j),wt) is proportional to the probability of observing zt(et) conditioned

on knowledge of (�t,wt) and depends on the processing step at the receiver, i.e. either pilot (6.5)

or data (6.6). Next we define f(zt(et)|�t = (◊i,◊j),wt) for each phase et.

Receiving a pilot et = P

In the pilot phase, conditioned on a point estimate and beam vector (�t = (◊i,◊j),wt), the

observation zt(P ) ≥ CN (wH
t a(�t),‡2) by assuming –t = 1 and PT = 1 (see Remark 9 below).

Thus, the conditional probability is

f(zt(P )|�t = (◊i,◊j),wt) = g
3

zt(P )≠Gi,j

4
, (6.14)

where Gi,j = wH
t a(◊i,◊j) is the gain conditioned on (�t = (◊i,◊j),wt) and g(x) is the circularly

symmetric complex normal distribution with variance ‡2. In the posterior update of our algorithm,

the Bayes update (6.13) is computed utilizing (6.14) for all t where et = P .

Remark 9. Our approach, and specifically the extensions detailed in [88], can handle stochastic and

time varying complex gain through simultaneous estimation of –t. However, in this chapter we
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focus only on the performance in terms of recovering and tracking �t by fixing the gain. Given

knowledge of the operating SNR PT

‡2 we can assume PT = 1 without loss of generality.

Receiving data et = D

In the data transmission phase of communication (6.14) does not apply since the RX does

not have knowledge of the transmitted data. However, the received power measurement zt(D) can

be used as a proxy for computing the Bayes Rule using the following lemma.

Lemma 4. Let each transmitted symbol xt œ C have minimum energy |xt|2 Ø 1. Then, conditioned

on a point estimate and beam vector (�t = (◊i,◊j),wt), zt(D) follows a scaled non-central chi-

squared probability distribution function zt(D) ≥ ‰2(k,⁄t) with k = 2 degrees of freedom and

time-varying non-centrality parameter ⁄t = 2|Gi,j |2
‡2 . The conditional probability is approximated as

f(zt(D)|�t = (◊i,◊j),wt) = c⁄t
(zt(D)) (6.15)

where c⁄t
is the probability distribution function ‰2(2,⁄t) given as

c⁄t
(x) = 1

‡2 e≠( x

‡2 + ⁄t
2 )

Œÿ

k=0

( x⁄t

2‡2 )k

(k!)2 , x Ø 0 (6.16)

In the data transmission phase, applying a power only Bayesian update (6.13) using Lemma 4

will enable some learning of the AoA without a pilot. That is, the calculated power of a data signal

zt(D) can be used to an extent for confirming (increasing probability of angles covered by w̃t) or

rejecting (decreasing probability of angles covered by w̃t) the current use of the tracking beam wt.

As a result, the duration of the transmission phase may be extended so long as a posterior continues

to increase for the selected beam. Our proposed strategy for determining the tracking duration and

thereby the pilot allocation is discussed in Sect. 6.4.

Remark 10. We note that our proposed approach has computational requirements from the selection

policy “ (6.12), the Bayesian posterior update (6.13), the one-step prediction update, and the
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pilot allocation. While the first steps of the proposed algorithm can be generalized as above, in

order to incorporate mobility information, the one-step posterior update from fi(t|t) to fi(t+1|t) is

formulated according to a particular movement model (6.7). Even so, the computation complexity of

our proposed algorithm is dominated by the cost of the posterior update (6.13) at each beamforming

slot t. The worst case cost is O( 1
”a

◊ 1
”e

) if each element is updated individually. However, this

can be reduced to O(log( 1
”a

◊ 1
”e

)) by considering the geometric constraints on the hierarchical

contiguous codebook elements [81].

6.4 Adaptive Pilot Allocation

Thus far we have discussed a procedure for sequentially selecting beamforming vectors

wt+1 based on the accumulated belief about the AoA in the posterior vector fi(t|t≠1). Next, we

discuss our proposed pilot allocation strategy in order to complement the communication scheme.

We propose an adaptive communication scheme which allocates pilots based on the information

reward of each phase, which we define to be a function of the mutual information between the

channel state and the received signal, as well as the maximum achievable spectral efficiency. Fig. 6.1

is an overview of our pilot allocation approach. To reduce pilot overhead, the mutual information

and spectral efficiency terms are continuously analyzed by the receiver. Furthermore, the active

selection of beams and their width during both the pilot and data transmission phases enables quick

re-alignment around angular regions with accumulated probability, and reduces the need for longer

reset or pilot enabled channel re-estimation to recover alignment.

6.4.1 Information Reward

Let an action et œ {D,P} of whether to trigger data D or pilot P transmission be determined

by a weighted analysis of the expected information reward of each phase. We define the information

reward to be a function of the mutual information between the channel state �t and the received

measurement zt(et), and of the maximum achievable spectral efficiency St(et). That is, an action
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Figure 6.1: Overview of the proposed communication scheme. Adaptive pilot allocation is
based on analysis of the mutual information and achievable spectral efficiency.

et œ {D,P} is chosen at time t according to the following:

et = argmax
etœ{D,P }

E[R(et,fi(t|t≠1),“)]

= argmax
etœ{D,P }

I(�t;zt(et)|wt(fi(t|t≠1)))+“St(et)
(6.17)

Before proceeding with the definitions of the mutual information and spectral efficiency

terms, we note that the optimal choice in (6.17) is dictated by the key parameter “. For “ Ø
I(X(�t,et);zt(P )|wt)≠I(X(�t,et);zt(D)|wt)

St(D) data transmission is more heavily weighted than the poten-

tial learning under a pilot. Thus, “ imposes an exploration-exploitation trade-off by weighing

the importance of communicating data, with reduced learning about �t (exploitation with some

exploration), against the importance of pilot enabled estimation (pure exploration). We will see that

“ ultimately impacts critical performance measures such as the incurred pilot overhead, the received

beamforming SNR, and the spectral efficiency.
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6.4.2 Spectral Efficiency Terms

The maximum achievable spectral efficiency under a beamforming vector wt covering a

range of angles Dkt

lt
, as indicated in the binary vector representation w̃t, is given by

St(et) = E
C

log
A

1+ | wH
t a(�)xt |2

‡2

B

1et=D

D

(6.18)

= P�t œ Dkt

lt
log

A

1+ | Glxt |2

‡2

B

1et=D

= fiw̃t
(t|t≠1) log

A

1+ |Gl|2

‡2

B

1et=D

where |Gl|2 is the expected beamforming gain for a beam wt in level lt = l under the following

assumption of ideal beams.

Assumption 8. The beam formed by the beamforming vector wt œ WS covering a range of angles

Dkt

lt
, as indicated in the binary vector representation w̃t, has constant beamforming power gain for

any signal of AoA � œ Dkt

lt
and rejects any signal outside of Dkt

lt
, i.e.

wH

t a(�) =

Y
___]

___[

Gl, if � œ Dkt

lt

0, if � /œ Dkt

lt

. (6.19)

6.4.3 Mutual Information Terms

Lemma 5. The mutual information term for the pilot phase et = P of (6.17) is

I(�t;zt(P )|wt) = ≠
⁄ Œ

≠Œ

⁄ Œ

≠Œ
f(zt(P )|wt) logf(zt(P )|wt)dR(zt(P ))dI(zt(P )) ≠ log(fie‡2)

(6.20)

where

f(zt(P )|wt) = fiw̃t
(t|t≠1) 1

fi‡2 e≠ |zt(P )≠G
l
|2

‡2 +(1≠fiw̃t
(t|t≠1)) 1

fi‡2 e≠ |zt(P )|2
‡2 . (6.21)
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The proof of Lemma 5 is given in the Appendix C, it follows from Assumption 8.

Lemma 6. The mutual information term for the data transmission phase et = D of (6.17) is

I(�t;zt(D)|wt) = ≠
⁄ Œ

≠Œ
f(zt(D)|wt) logf(zt(D)|wt)dzt(D) ≠h(zt(D)|wt,�t) (6.22)

where

f(zt(D)|wt) = fiw̃t
(t|t≠1) 1

‡2 e≠( zt≠|G
l
|2

‡2 )
Œÿ

k=0

(zt|Gl|2
‡4 )k

(k!)2 +(1≠fiw̃t
(t|t≠1)) 1

‡2 e
≠zt

‡2 (6.23)

and the conditional entropy is given by

h(zt(D)|wt,X(�t, et)) =≠fiw̃t
(t|t≠1)

⁄ Œ

≠Œ

1
2e≠( zt+⁄

2 )
Œÿ

i=0

(zt⁄

4 )i

(i!)2 log 1
2e≠( zt+⁄

2 )
Œÿ

k=0

(zt⁄

4 )k

(k!)2 dzt

≠ (1≠fiw̃t
(t|t≠1))

⁄ Œ

≠Œ

1
2e

≠zt
2 log 1

2e
≠zt

2 dzt.

(6.24)

The proof of Lemma 6 is given in the Appendix C, it follows from Lemma 4 and Assump-

tion 8.

Remark 11. The optimal choice of (6.17) depends on the mutual information terms and thus requires

an additional computational cost per iteration of the proposed algorithm if computed in an online

manner. This cost can be reduced by assuming perfect beams and by approximately calculating

the mutual information terms offline. Under Assumption 8, the theoretical beamforming gains

can be used to approximate the mutual information terms (5) and (6) offline for each level of the

codebook l œ S and for a range of input probabilities qú œ [0,1] (n values chosen uniformly). As a

result, an action (6.17) can be chosen by comparing the pre-calculated mutual information terms

for a given level lt and for a given input probability qú = fiw̃t
(t|t≠1) (by interpolating) and thus

save on the online computational complexity. The additional computational cost per iteration is

O(2 log(log(n))+2) if the mutual information terms are computed offline.
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Algorithm 7: Active beam tracking for mobile AoA
1 Input: target resolution (”a,”e), tracking quality parameter “, codebook WS , T (total

duration), Markov mobility model (6.7)
2 Output: Beam vector wt œ W and pilot allocation et œ {P,D}
3 Initialization: Set fi(1|0) to be uniform, i.e. fii,j(t|t≠1) = ”a”e

4 while t Æ T do
5 # Beam Selection: hierarchical posterior matching with variable width beams (6.12)

wt(fi(t|t≠1)) œ WS

6 # Allocate Pilot or Data slot based on the information reward (6.17)

et = argmax
etœ{D,P }

I(�t;zt(et)|wt)+“St

1
et

---wt,fi(t|t≠1)
2

if et = P then
7 # Receive and compute observation zt(P )
8 # Posterior update by Bayes’ Rule (6.13)

fi(t|t) Ω zt(P ),fi(t|t≠1)

9 else
10 # Receive and compute observation zt(D)
11 # Power only posterior update by Bayes’ Rule (6.13)

fi(t|t) Ω zt(D),fi(t|t≠1)

12 # Posterior one-step prediction based on mobility model (6.7)

fi(t+1|t) Ω fi(t|t)
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6.5 Numerical Results

In this section, we analyze the proposed tracking scheme by considering a special case where

we reduce the AoA point estimates to the 2-D angular domain �̂t = „̂t œ [◊min,◊max] and consider

three examples of Markov mobility in the form (6.7). We utilize the hierarchical beamforming

codebook of [46] where vectors in level l œ S = log2(1/”) have angular width Îw̃tÎ0 = 1/”

2l
that is

half the size of the prior level. This is approximately achieved via a pseudo inverse approximation.

The resulting beams are slightly imperfect with reduced gain in angles further from the center beam

directions, however, these effects are fully accounted for in our numerical simulations.

To analyze the performance, we consider three movement models that fall into two broad

categories: predictable and unpredictable mobility. These examples follow directly from Sect. 5.4

in chapter 5 please see Table 5.1 for a summary.

6.5.1 Simulation Scenario

We consider a simulation scenario where the RX is equipped with N=32 antennas in a

uniform linear array. We utilize the hierarchical beamforming codebook of [46] where vectors in

level l œ S = log2(1/”), for 1
”

= 64, have angular width Îw̃tÎ0 = �
2l

that is half the size of the prior

level. This is approximately achieved via a pseudo inverse approximation. The resulting beams are

slightly imperfect with reduced gain in angles further from the center beam directions, however,

these effects are fully accounted for in our numerical simulations. The transmitted data symbols

have a minimum energy ÎxtÎ Ø 1, which we obtain by using a QPSK constellation [55]. We focus

on relative comparisons to existing tracking strategies in terms of the performance measures of

normalized beamforming gain and pilot overhead for a given SNR, although physical properties

corresponding to the considered SNR values (like distance, cell size, and bandwidth) can be defined

as in (Fig.6 in [74]). More specifically, we compare to the following prior works:

• The Extended Kalman Filtering algorithm of [76] selects beams based on tracking estimates

of the state „̂t with extended Kalman filter updates. The pilot allocation is determined by
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a threshold on the mean squared error, i.e.
Ú
E

Ë
|„t ≠ „̂t|2

È
Ø BW

2 half beam width. When

tracking is no longer valid, a reset is triggered and the exhaustive beams are used again in

order to obtain another estimate.

• In the dynamic pilot insertion algorithm of [75], beams are selected based on predictions of

AoA made using an estimated velocity. The pilot allocation is determined by a threshold on

the normalized receive power
3

E[ÎwH
t a(„t)Î2]

E[ÎwH
· a(„· )Î2] Ø Pmin

4
where · is the first transmission slot

and t > · .

• The beam tracking strategy of [80] employs beams from a certain level of the hierarchical

codebook wt œ WS (we consider either narrow (l = 6) or wide (l = 5) beams). After an initial

estimate of the AoA is obtained, subsequent recurring pilot phases consists of scanning only

the neighboring local beams from the current estimate. The training frequency, i.e. tracking

duration ·max between pilot phases, is determined according to the channel coherence time.

The strategies we compare to utilize the pilot phase for acquiring an aligned estimate „̂TE

(or re-estimation if tracking thresholds are not met) before switching to the transmission phase.

In the absence of a better solution, and under the constraint of a single RF chain, we apply an

exhaustive search over all candidate beams in order to obtain an estimate „̂ for these algorithms.

The duration of the exhaustive search TE will depend on the beam width of the candidate beams;

TE = � for narrow beams and TE = 2l for beams from any other level l of the codebook WS . The

tracking thresholds
Ô

MSE and Pmin, and the tracking duration ·max of the strategy [80] may be

optimized for a given SNR or coherence time. In the following simulations we assume perfect

exhaustive search estimates „̂TE
= „TE

and optimize the tracking parameters empirically as best as

we can in order to compare performance.

6.5.2 Impact of the parameter “

First, we discuss the impact of the parameter “ on the performance measures of pilot over-

head
q

T

t=11et=P , average received beamforming gain E[GBF ] of (6.8), and spectral efficiency
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Figure 6.2: We investigate performance as a function of the choice of “ under the mobility
model of Gaussian angular movements with variance (‡2

„ = 0.75¶2).

E
5
St

1
et

---wt,fi(t|t ≠ 1)
26

. The total time frame is set arbitrarily large, T >> 1
”

at T = 500 beam-

forming slots. In Fig. 6.2 we plot the performance under the mobility model of Gaussian angular

movements with variance
1
‡2

„
= 0.75¶2

2
as a function of the parameter “ for SNR = P

‡2 = 10 dB,

and SNR = P

‡2 = 20 dB. We see that selecting a large “ improves the spectral efficiency and reduces

pilot overhead until these values saturate. This indicates that given high enough signal power,

active and dynamic learning of the AoA in the data transmission phase is sufficient for maintaining

alignment and results in high spectral efficiency even as the pilot overhead is reduced to 0 (in this

example “ > 0.1). Alternatively, to maximize the average beamforming gain “ may be optimized

for each SNR. In this example, for 20 dB SNR “ú = 0.005, and for 10 dB SNR “ú = 0.03.

6.5.3 Fixed Angular Movement

Next, we get a sense of performance of the proposed communication algorithm compared to

existing approaches in terms of tracking quality by analyzing the achieved normalized beamforming

gain (6.8) over time. In Fig. 6.3 we show an AoA trajectory example under the mobility model with

predictable angular movement (5.14) with ‹ = 0.1, i.e. increments V = 0.1”, at 10dB SNR. The

normalized beamforming gains achieved are shown on the left, and corresponding AoA estimates

and pilot allocation are shown on the right. For the proposed algorithm, the AoA estimate „̂t is
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defined as the main lobe pointing direction of the selected beam wt. In this example, all strategies

are able to remain in the data transmission phase so long as the mobility is known or estimated

correctly, i.e. fully predictable mobility. We notice that using wider beams only, rather than

recurring narrow beams, in the Neighborhood search strategy of [80] results in slightly reduced

maximum beamforming gain but achieves longer tracking duration, as expected. Slight dips in the

beamforming gain are caused when the AoA lies near the edge of a selected beam or by using wider

beams. In essence, Fig. 6.3 shows that under predictable mobility only, there is little difference in

the performance by the various algorithms considered. Fig. 6.3 also highlights a strength of the

proposed algorithm in obtaining an initial estimate of the AoA quickly and reliably, thereby initiating

the transmission phase with tracking significantly more quickly than the compared to applying the

exhaustive search for this initial alignment. As a result of this and subsequent short-duration pilot

phases, the proposed algorithm also achieves the highest average beamforming gain.

6.5.4 Gaussian Angular Movement

Next, we analyze the more interesting cases of mobility with stochastic elements, starting

with the scenario of Gaussian angular movements (5.17). In Fig. 6.4 we look a very high mobility

case of incremental Gaussian movements with variance ‡2
„

= 0.75¶2. We plot an example AoA

trajectory along with the corresponding estimates and beamforming gains achieved over time by the

algorithms considered. The algorithms of [76] and [75] have strict quality thresholds that trigger re-

estimation when the random movement overcomes the predictable movement and the performance

drops enough that the tracking is deemed invalid. Under the high mobility scenario considered in this

example, these pilot phases are triggered frequently and a full scan over the potential beamforming

vector pairs is costly resulting in a large amount of time spent in re-estimating the AoA (pilot phase)

compared to tracking (in the data transmission phase)2. The strategy of frequently analyzing local

neighboring beams [80], whether with narrow or wide beams, improves on the other strategies due
2Here we note that both the algorithms of [76] and [75] suggest reducing the overhead of the re-estimation phases

according to current CSI estimates after initial alignment, however, no clear strategies for doing this are provided.
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Figure 6.3: Normalized beamforming gain (6.8) at 10dB SNR for constant angular movement
(5.14) with ‹ = 0.1 at 10dB SNR. For the proposed algorithm “ = 0.03. On the right, the
estimated AoA is compared to the true AoA and pilot allocation is shown.
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Figure 6.4: Normalized beamforming gain (6.8) at 10dB SNR for Gaussian Movement
(5.17)with ‡2

„ = 0.75¶2. For the proposed algorithm “ = 0.03. On the right, the estimated
AoA is compared to the true AoA and pilot allocation is shown.
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to the shorter pilot phases (scanning only neighboring beams). Our proposed algorithm recovers the

benefit of high gains achieved by the tracking strategies of [76] and [75], as well as the benefit of

lower overhead incurred by searching locally based on prior estimates [80] providing an overall

more efficient strategy. Combined, our sequential beam selection and adaptive pilot allocation yield

sustained larger gains overtime. Ultimately, our proposed algorithm enables efficient beam tracking

for high mobility by incorporating mobility information into the sequential beam selection with

variable width beams and into the pilot allocation strategy.

6.5.5 Bernoulli Angular Jumps

Lastly, we analyze the stochastic mobility model of occasional Bernoulli jumps (5.20).

Such random jumps are very difficult to handle on two fronts. First, existing alignment schemes

operate under the assumption quasi-static AoA at least for the duration of the initial alignment phase,

and will struggle to obtain correct initial AoA estimates if a jumps occurs in this phase. Second,

even if a robust AoA estimate is obtained successfully, the duration of data transmission phase

(active tracking) will largely depend on the frequency of the jumps (the entropy of the mobility

model), since each jump is likely to cause an outage that requires re-estimation of the AoA.3 In

Fig. 6.5 we plot an AoA trajectory and corresponding estimates and beamforming gain performance

comparisons for each of the algorithms considered. As expected, under this unpredictable mobility

the adaptive algorithms of [76] and [75] respond to sudden jumps by triggering the pilot phase for

re-estimation of the AoA. We note that the pilot phase frequency and corresponding duration of

the communication phases is correlated to the frequency and spread of jumps, where consecutive

jumps can severely shorten the data transmission phase. A similar effect occurs for the recurring

local search algorithm of [80], where consecutive jumps cause the algorithm under narrow beams

be misaligned more severely4. The local search under wide beams is more robust to frequent
3We note that the Extended Kalman Filter updates of the algorithm of [76] are designed for state estimates of AoA

under Gaussian noise, thus are not specifically designed for this mobility. Updates adapted for this mobility model are
not immediately obvious to us, thus no such extensions are considered in this paper.

4Under unpredictable mobility with large jumps, these recurring or periodical algorithms would benefit from
scanning a larger radius around the current CSI estimates, although though these extensions are not considered here.
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Figure 6.5: Normalized beamforming gain (6.8) at 10dB SNR for Bernoulli jumps (5.20) with
jump size b = 5¶ and probability p = 0.01. For the proposed algorithm “ = 0.03. On the right,
the estimated AoA is compared to the true AoA and pilot allocation is shown.
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jumps, although estimates are less precise and the beamforming gain suffers. On the other hand,

the proposed algorithm recovers quickly after a jump occurs due to the embedding of mobility

information into dynamic evolution of the posterior and the active selection of beams with various

widths.

6.6 Conclusion

We consider the problem of active and dynamical sequential tracking of the CSI for robust

communications at mmWave frequencies and above. We are interested in tracking stochastic

movements, which may be especially critical in systems of communication between mobile UAV.

Existing beam tracking communication schemes implement approaches which require lengthy

or too frequent re-estimation pilot phases in response to outages, and require long coherence

times to maintain tracking quality. We continue our work of chapter 5 on active and dynamical

beam tracking by introducing an information reward based adaptive pilot allocation. To allocate

pilot slots adaptively, we continuously analyze the expected information reward of each (pilot

and communication) phase via analysis of the mutual information and spectral efficiency terms.

This adaptive allocation strategy is driven by a weighting parameter “ which imposes a special

case of exploitation with some exploration vs. pure exploration, and can be chosen based on the

performance measures of pilot overhead, average received SNR, and spectral efficiency. Although

we provide a general formulation for our algorithm, which can be adapted to any stochastic mobility

model, we study a selection of 2-D Markov mobility models in our numerical results. Our Numerical

results show improved performance over existing strategies in terms of sustained beamforming gain,

enabling tracking for movements with larger entropy.

Chapter 6, in full, is currently being prepared for submission for publication of the material.

Nancy Ronquillo and Tara Javidi. The dissertation author was the primary investigator and author

of this paper.

150



Appendix A

For Chapter 2
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A.1 Proof of Lemma 1

Proof. Let C = Ŵ
|
A1:N . We first note that |Yt ≠C(t)| ≥ N (0,ÎAtÎ0‡2), so we can write:

logP[Y1:N |C] = log
NŸ

t=1
P [Yt|C(t)]

= log
NŸ

t=1

1
Ò

2fiÎAtÎ0‡2
e

≠ 1
2ÎAtÎ0‡2 |yt≠C(t)|2

=
Nÿ

t=1
≠1

2 log(2fi‡2)≠ 1
2 log(ÎAtÎ0)≠ |yt ≠C(t)|2

2ÎAtÎ0‡2

= ≠1
2

Nÿ

t=1
log (2fi‡2)+ log(ÎAtÎ0)+ |yt ≠C(t)|2

ÎAtÎ0‡2 .

The maximum liklihood estimate, Ŵ, of W is then given as:

Ŵ = arg max
[CœC]

logP[Y1:N |C]

= arg min
[CœC]

1
2

Nÿ

t=1

|yt ≠C(t)|2
ÎAtÎ0‡2 .

A.2 Proof of Lemma 2

Applying Fano’s inequality [44] to any non-adaptive search strategy that locates the target

among B

”
locations with Pe Æ ‘, we have

log
3

B

”

4 (a)
Æ 1

1≠ ‘
sup
X1:t

tÿ

i=1
I(Xi,Yi)+ h(‘)

1≠ ‘

(b)
Æ 1

1≠ ‘

tÿ

i=1
C

1
qi, qiB‡22

+ h(‘)
1≠ ‘

Æ t

1≠ ‘
max
qœI B

”

C(q,qB‡2)+ h(‘)
1≠ ‘

, (A.1)
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where (a) follows from the fact that Xi and Ni for i = 1,2, . . . ,n are independent over time and

independent of past observations due to the non-adaptive nature of the search strategy. Since

Xi ≥ Bern(qi) and Ni ≥ N (0, qiB‡2), (b) follows from the fact that I(Xi,Yi) = C
1
qi, qiB‡2

2
.

Rearranging the above equation, we have the assertion of the lemma.

A.3 Proof of Lemma 3

Before we provide the proof of Lemma 2, we define quantities required in the proof. For any

q œ IB

”

and under any measurement vector At œ UB

”

such that ÎAtÎ0 = qB

”
we have the following

-----log P(y|At,W(i) = 1)
P(y|At,W(j) = 1)

-----

=

Y
______]

______[

0 if At(i) = 1 and At(j) = 1,

0 if At(i) ”= 1 and At(j) ”= 1,
--- 2y≠1
2qB‡2

--- Otherwise.

(A.2)

Hence, we have

max
i,jœ[ B

”
]

max
AtœU B

”

⁄ Œ

≠Œ
P(y|At,W(i) = 1)◊

◊
-----log P(y|At,W(i) = 1)

P(y|At,W(j) = 1)

-----

1+“

dy

= max
qœI B

”

Y
__]

__[

⁄ Œ

≠Œ

e
≠ y

2
2qB‡2

Ò
2fiqB‡2

-----
2y ≠1
2qB‡2

-----

1+“

dy

Z
__̂

__\
. (A.3)

Therefore, there exists ›B

”

< Œ and “ > 0 such that

max
i,jœ[ B

”
]

max
AtœU B

”

⁄ Œ

≠Œ
P(y|At,W(i) = 1)◊

◊
-----log P(y|At,W(i) = 1)

P(y|At,W(j) = 1)

-----

1+“

dy Æ ›B

”

. (A.4)
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Define

ÂB

”

(a) := max
qœI B

”

Y
__]

__[

⁄ Œ

≠Œ

e
≠ y

2
2Bq‡2

Ò
2fiqB‡2

C
2y ≠1
2qB‡2

D

a

dy

Z
__̂

__\
, (A.5)

and recall that [g]a = g if g Ø a otherwise [g]a = 0. The quantity a controls the maximum jump in

the log-likelihood ratio of the Gaussian observations under all possible search sets determined by

the values of q œ IB

”

and the quantity ÂB

”

(a) controls the tail probability of log-likelihood ratios

whose value is greater than a. Furthermore, we have ÂB

”

(a) is non-increasing in a, and we have

ÂB

”

(a) Æ a≠“›B

”

. Therefore, the tail probability goes to 0, i.e, ÂB

”

(a) æ 0 as a æ Œ. Now we are

ready to provide the proof for Stage I of our two stage strategy.

A.3.1 Stage I

Lemma 7. Under the fixed composition search strategy while searching over a search region of

width B among 1
–

locations such that ÎAÕ
tÎ0– = qú for n Ø 1, the following holds true for all n Ø 1

E
Ë
U(flÕ

t+1)≠U(flÕ
t)|Ft,AÕ

t

È
Ø C

1
qú, qúB‡22

, (A.6)

where define U(flÕ
t) := q 1

–

i=1 flÕ
t(i) log flÕ

t(i)
1≠flÕ

t
(i) .

Proof. The proof follows closely the proof of inequality (9) in [89]. There are 1
–

locations of

length –B and hence query vector ÎAÕ
tÎ0 = 1

–
. At every time instant under the fixed composition

strategy Kú = ÎAtÎ0 = q
ú

–
number of locations are searched. i.e., a region of length qúB is

searched. Let PKú denote the collection of all partitions p of search locations 1 to 1
–

into sets s0:t

and S1:t such that |S1:t| = Kú. The probability of picking a partition p œ PKú is ⁄p =
11/–

Kú

2≠1
.

For simplicity of exposition let M = 1
–

. Also, we have
q

pœPKú ⁄p1{iœS0:t} = fiú
0 := M≠K

ú

M
, and

q
pœPKú ⁄p1{iœS1:t} = fiú

1 := K
ú

M
.

Since a region of qúB is searched at every time instant, the noise variance is fixed at qúB‡2.
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Hence, let Pk = P(Y |X = k, |S1:t| = Kú) = N (k,qúB‡2) for k œ {0,1}. Consider

E
Ë
U(flÕ

t+1)≠U(flÕ
t)|Ft,At

È

=
ÿ

pœPKú

⁄p

Mÿ

i=1

1ÿ

k=0
flÕ

t(i)1{iœSt:k}◊

D

Q

aPk

......

ÿ

j ”=i

1ÿ

l=1

flÕ
t(j)

1≠flÕ
t(i)

1{iœSt:l}Pl

R

b

=
Mÿ

i=1
flÕ

t(i)
1ÿ

k=0
fiú

k

ÿ

pœPKú

⁄p

fiú
k

1{iœSt:k}◊

D

Q

aPk

......

ÿ

j ”=i

1ÿ

l=1

flÕ
t(j)

1≠flÕ
t(i)

1{iœSt:l}Pl

R

b

(a)
Ø

Mÿ

i=1
flÕ

t(i)
1ÿ

k=0
fiú

kD

Q

aPk

......

ÿ

j ”=i

1ÿ

l=1

flÕ
t(j)

1≠flÕ
t(i)

◊

◊
ÿ

pœPKú

⁄p

fiú
k

1{iœSt:k}1{iœSt:l}Pl

R

b

(b)=
Mÿ

i=1
flÕ

t(i)
A

fiú
1D

A

P1

.....
Kú ≠1
M ≠1 P1 + M ≠Kú

M ≠1 P0

B

+ fiú
0D

A

P0

.....
M ≠Kú ≠1

M ≠1 P0 + Kú

M ≠1P1

BD

Ø
Mÿ

i=1
flÕ

t(i)
A

fiú
1D

A

P1

.....
Kú

M
P1 + M ≠Kú

M
P0

B

+ fiú
0D

A

P0

.....
M ≠Kú

M
P0 + Kú

M
P1

BB

(c)= C
1
qú, qúB‡22

, (A.7)
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where (a) follows from Jensen’s inequality (b) follows from the definition of fiú
0 , fiú

1 and

ÿ

pœPKú

⁄p1{iœS0:t}1{jœS1:t}

=
ÿ

pœPKú

⁄p1{iœS1:t}1{jœS0:t} = Kú(M ≠Kú)
M(M ≠1) ,

ÿ

pœPKú

⁄p1{iœS0:t}1{jœS0:t} = fiú
0(M ≠Kú ≠1)

M ≠1 ,

ÿ

pœPKú

⁄p1{iœS1:t}1{jœS1:t} = fiú
1(Kú ≠1)
M ≠1 ,

and (c) is the definition of non-adaptive BAWGN channel capacity with input distribution Bern(qú)

and noise variance qúB‡2.

Lemma 8. Under the fixed composition search strategy while searching over a search region of

width B among 1
–

locations such that ÎAÕ
tÎ0– = qú for t Ø 1, the following holds true for the

expected number of queries while searching with Pe Æ ‘

2

Ec1‘ [·1] Æ
log 1

–
+log 2

‘
+log log B

”
+a÷

C (qú, qúB‡2)≠÷
. (A.8)

Proof is similar to the proof of Lemma 10.

A.3.2 Stage II

Note that BAWGN capacity for all q œ IB

”

with capacity achieving input is

C
31

2 , qB‡2
4

= D
3

N (0, qB‡2)
....

1
2N (0, qB‡2)+ 1

2N (1, qB‡2)
4

= D
3

N (1, qB‡2)
....

1
2N (0, qB‡2)+ 1

2N (1, qB‡2)
4

. (A.9)
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Hence, the following Lemma follows from Proposition 3 in [90].

Lemma 9. Under the sortPM search strategy while searching over a search region of width –B

among –B

”
locations, the following holds true for all t Ø 1

E
Ë
U(flÕÕ

t+1)≠U(flÕÕ
t )|Ft,At

È
Ø C

A
1
2 ,

–B‡2

2

B

, (A.10)

where define U(flÕÕ
t ) := q –B

”

i=1 flÕÕ
t (i) log flÕÕ

t (i)
1≠flÕÕ

t
(i) .

Lemma 10. Under the sortPM search strategy, the following holds true for the expected number of

queries while searching over the search width –B among –B

”
locations with Pe Æ ‘

2

Ec2‘ [·2] Æ
log –B

”
+log 2

‘
+log log –B

”
+a÷

C
1

1
2 , –B‡2

2
2

≠÷
, (A.11)

where a÷ is the solution of the following equation

÷ = a

a≠3ÂB

”

(a≠3). (A.12)

Proof. Fix some a > 0 to be chosen later. Let M = –B

”
. Let fl̃Õ = 1≠ 1

1+max{logM,
2
‘
} . Now, define

U Õ(flÕÕ
0) = U(flÕÕ

0)≠ log fl̃
Õ

1≠fl̃Õ and define U Õ(flÕÕ
t ) as follows: if U Õ(flÕÕ

t ) < 0, then

U Õ(flÕÕ
t+1)

=

Y
__________]

__________[

U(flÕÕ
t+1)≠U(flÕÕ

n)+U Õ(flÕÕ
t )

if U(flÕÕ
t+1)≠U(flÕÕ

t ) < a≠U Õ(flÕÕ
t ),

a

if U(flÕÕ
t+1)≠U(flÕÕ

t ) Ø a≠U Õ(flÕÕ
t ),

(A.13)
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and if U Õ(flÕÕ
t ) Ø 0, then

U Õ(flÕÕ
t+1)

=

Y
__________]

__________[

U(flÕÕ
t+1)≠U(flÕÕ

t )+U Õ(flÕÕ
t )

if U(flÕÕ
t+1)≠U(flÕÕ

t ) < a,

a+U Õ(flÕÕ
t )

if U(flÕÕ
t+1)≠U(flÕÕ

t ) Ø a.

(A.14)

By induction we can show that

log fl̃Õ

1≠ fl̃Õ Æ U(flÕÕ
t )≠U Õ(flÕÕ

t ). (A.15)

We have

E
Ë
U Õ(flÕÕ

t+1)≠U Õ(flÕÕ
t )|Ft

È

= E
Ë
U(flÕÕ

t+1)≠U(flÕÕ
t )|Ft

È

+E
ËË

≠b≠U(flÕÕ
t+1)+U(flÕÕ

t )

≠U Õ(flÕÕ
t )1{U Õ(flÕÕ

t
)<0}

È+
|Ft

6

(a)
Ø E

Ë
U(flÕÕ

t+1)≠U(flÕÕ
t )|Ft

È
≠ a

a≠3ÂB

”

(a≠3)
(b)
Ø C

A
1
2 ,

–B‡2

2

B

≠ a

a≠3ÂB

”

(a≠3), (A.16)

where (a) follows from [3] equation (4.140) and (b) follows Lemma 9. Let · Õ = min{t : U Õ(flÕÕ
t ) Ø 0}

and · ‘

‘
= min{t : U(flÕÕ

t ) Ø log fl̃

1≠fl̃
} where fl̃ = 1≠ 2

‘
. From equation (A.15) and since fl̃Õ > fl̃, we

have

Ec2‘ [· ‘

2
] Æ Ec2‘ |·̃ Õ]. (A.17)
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The sequence U
Õ(flÕÕ

t )
C

1
1
2 ,

–B‡2
2

2
≠ a

a≠3 Â B

”

(a≠3)
≠ t forms a submartingale with respect to filtration Ft. Now

by Doob’s Stopping Theorem we have

U Õ(flÕÕ
0)

C
1

1
2 , –B‡2

2
2

≠ a

a≠3ÂB

”

(a≠3)

Æ E

S

WU
U Õ(flÕÕ

·̃ Õ)
C

1
1
2 , –B‡2

2
2

≠ a

a≠3ÂB

”

(a≠3)
≠ ·̃ Õ

T

XV . (A.18)

Hence, we have

Ec2‘ [·̃ Õ] Æ ≠U Õ(flÕÕ
0)+E[U Õ(flÕÕ

·̃ Õ)]
C

1
1
2 , –B‡2

2
2

≠ a

a≠3ÂB

”

(a≠3)

=
≠U(flÕÕ

0)+ log fl̃
Õ

1≠fl̃Õ +E[U Õ(flÕÕ
·̃ Õ)]

C
1

1
2 , –B‡2

2
2

≠ a

a≠3ÂB

”

(a≠3)
(a)
Æ

log –B

”
+log log –B

”
+log 2

‘
+E[U Õ(flÕÕ

·̃ Õ)]
C

1
1
2 , –B‡2

2
2

≠ a

a≠3ÂB

”

(a≠3)
(b)
Æ

log –B

”
+log log –B

”
+log 2

‘
+a

C
1

1
2 , –B‡2

2
2

≠ a

a≠3ÂB

”

(a≠3)
, (A.19)

where (a) follows from the fact that U(flÕÕ
0) = ≠ log(B

”
≠ 1) and (b) follows from the fact that for

all t < · Õ, U Õ(flÕÕ
t ) < 0 and hence from equation (A.13) we have U Õ(flÕÕ

·̃ Õ) < a. Let ÷ > 0 such that

÷ π C
3

1
2 , –B‡

2
2

4
. Choose a to be the solution of the following

÷ = a

a≠3ÂB

”

(a≠3), (A.20)

i.e., choose a = a÷. We have the assertion of the lemma by combining above equation with

equations (A.17) and (A.19). Note that we control the maximum jump in the one-step evolution

of average U(flÕÕ
t ) by truncating the log likelihood ratio of the Gaussian observations under all

possible search sets by the term a÷. However, truncating the log-likelihood results in a cutback in

our capacity by an amount ÷, i.e., we obtain C(1
2 , –B‡

2
2 )≠÷.
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A.4 Proof of Corollary 2

We make the following sub-optimal choices of a÷ and –(B

”
) to obtain asymptotic bounds.

Choose a÷ = log log B

”
so that ÷ goes to zero as B

”
æ Œ, and choose –(B

”
) = 1

log B

”

. Note that

–(B

”
) goes to 0 slower than ” goes to 0. Combining this with Theorem 1 and using the fact

lim”æ0 C
1

1
2 , 1

2–
1

B

”

2
B‡2

2
= 1, we have equation (2.27). Similarly, note that –(B

”
) goes to 0

slower than B goes to Œ. Using loose approximations C(qú, qúB‡2) Æ loge

B‡2 and C
1

1
2 ,–(B

”
)B‡2

2
Ø

log( B

”
)

16B‡2

3
1≠ log( B

”
)

16B‡2

4
with Theorem 1 we have equations (2.29–2.28).
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Appendix B

For Chapter 3
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B.1 Optimal Threshold for 1-bit measurement model

The complete 1-bit measurement model in Sect. 3.3.4 is written as

yt+1 = –
Ô

PwH

t+1a(„)+wH

t+1nt+1

zt+1 = 1(|yt+1|2 > vt)

= 1(„ œ Dkt

lt
)üut(„), ut(„) ≥ Bern(pt(„)).

(B.1)

Lemma 11. The threshold vt that minimizes the maximum flipping probability pt(„) for all „ is

given by the solution of the following equation

⁄
vt

0
Rice(x;PG,‡2) dx =

⁄ Œ

vt

Rice(x;Pg,‡2) dx, (B.2)

where
G := min

„œD
kt

lt

|wH(Dkt

lt
)a(„)|2

g := max
„œ[◊min,◊max]\D

kt

lt

|wH(Dkt

lt
)a(„)|2.

(B.3)

Proof. Since |yt| ≥ Rice(P |wH
t a(„)|,‡2), we can write the flipping probability pt(„) as:

if „ œ Dkt

lt
,

pt(„) =
⁄

vt

0
Rice(x;P |wH(Dkt

lt
)a(„)|2,‡2) dx

Æ
⁄

vt

0
Rice(x;PG,‡2) dx,

(B.4)

and if „ /œ Dkt

lt
,

pt(„) =
⁄ Œ

vt

Rice(x;P |wH(Dkt

lt
)a(„)|2,‡2) dx

Æ
⁄ Œ

vt

Rice(x;Pg,‡2) dx,
(B.5)

where the upper bound in (B.4) and (B.5) is reached by the minimizer and maximizer in (B.3),

respectively. Since (B.4) is increasing in vt and (B.5) is decreasing in vt, setting them equal gives

the minimax optimizer.
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B.2 Average Log-Likelihood and the Extrinsic Jensen-

Shannon Divergence

Our analysis follows similarly to [9, 67] which analyzed a feedback coding scheme and an

abstract adaptive target search algorithm, respectively. The analysis is based on the behavior of the

posterior of the AoA

fii(t) := Pú„ = ◊i|y1:t,w1:t for i = 1,2, ...,
1
”

, (B.6)

over time t = 1,2, .... Recall that the stopping time of hiePM is given by

·‘,” = min{t : 1≠max
i

fii(t) Æ ‘}, (B.7)

which is the first hitting time of the posterior to the ‘ corner of the probability simplex in R 1
” .

Convex functionals on the probability simplex such as entropy, KL divergence, etc. have

been shown to be useful for analyzing adaptive systems [9, 91–93] with the Bayes’ rule dynamics

on the posterior distribution. Particularly, the functional average log-likelihood [92] has shown its

usefulness in analyzing the behaviour of the posterior in feedback coding systems [67], dynamic

spectrum sensing [48], hypothesis testing [94], active learning [94], etc. Here, we review some

useful concepts through the context of AoA estimation with sequential beamforming:

The average log-likelihood of the posterior fi(t) is defined as

U(t) :=
1/”ÿ

i=1
fii(t) log fii(t)

1≠fii(t)
. (B.8)

For any beamfomring strategy “ : fi(t) æ wt+1, U(t) has the following useful properties

• U(t) is a submartingale w.r.t. fi(t) with expected drift EJS:

E[U(t+1) | fi(t)] = U(t)+EJS(fi(t),“), (B.9)
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where EJS is the Extrinsic Jensen-Shannon divergence, defined as

EJS(fi(t),“) =
1/”ÿ

i=1
fii(t)D

3
Pyt+1|i,“

....Pyt+1| ”=i,“

4
, (B.10)

with

Pyt+1|◊i,“
:= f(yt+1|„ = ◊i,wt+1 = “(fi(t))), (B.11)

and

Pyt+1| ”=i,“ =
ÿ

j ”=i

fij(t)
1≠fii(t)

Pyt+1|j,“ . (B.12)

• The initial value U(0) = ≠ log(1
”

≠1) is related to the resolutuion 1
”

• Level crossing of U is related to the error probability as fii(t) < 1≠ ‘ ’ i ∆ U(t) < log 1≠‘

‘
.

Analyzing the random drift of U(t) from time 0 with the initial value U(0) up to the first

crossing time ‹ := min{t : U(t) Ø log 1
‘
} is closely related to the expected drift given by EJS. In

particular, we can then establish an upper bound on the expected stopping time E[·‘,”] in terms of

the predefined outage probability ‘ and resolution 1/”. Specifically, we have the following theorem:

Fact 1 (Theorem 1 in [92]). Define

fĩ := 1≠ 1
1+max{n, log(1/‘)} . (B.13)

For any feedback coding scheme “, if

EJS(fi(t),“) Ø R ’t Ø 0 (B.14)

and

EJS(fi(t),“) Ø fĩE ’t Ø 0 s.t. max
i

fii(t) Ø fĩ, (B.15)
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the expected decoding time associated with error probability ‘ is bounded by

E[·”,‘] Æ log(1/”)
R

+ log(1/‘)
E

+o(log( 1
”‘

)), (B.16)

where o(·) is such that o(log( 1
”‘

))
log( 1

”‘
) æ 0 as ” æ 0 or ‘ æ 0.

On the other hand, in order to give a lower bound for the EJS divergence, it is useful to

introduce the Jensen Shannon (JS) divergence [95], defined as

JS(fi(t),“) :=
1/”ÿ

i=1
fii(t)D

3
Pyt+1|i,“

....Pyt+1

4
, (B.17)

where Pyt+1 = f(yt+1) = q1/”

i=1 Pyt+1|i,“ .

Fact 2 (Lemma 2 in [92]). The EJS divergence is lower bounded by the Jensen Shannon (JS)

divergence :

EJS(fi(t),“) Ø JS(fi(t),“). (B.18)

B.3 Variable-length analysis of hierarchical Posterior

Matching

Here we provide the variable-length analysis of hierarchical Posterior Matching by using the

EJS. Throughout this section, we will focus on the settings and assumptions in Theorem 3, where

the beam pattern is perfect (Assumption 4) and 1-bit measurements are used. The corresponding

EJS is written as

EJS(fi(t),“h) =
1/”ÿ

i=1
fii(t)D

3
Pŷt+1|i,“h

....Pŷt+1| ”=i,“h

4
(B.19)

with the 1-bit measurement model

Pŷt+1|i,“ := Bern(ŷt+1 ü1(◊i œ Dkt

lt
);p[lt]). (B.20)
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B.3.1 Proof of Theorem 3

Let “h be the hiePM feedback coding scheme. By the same method in [67], the EJS can be

lower bounded by

EJS(fi(t),“h) Ø I(1/3;p[lt+1]), ’ t (B.21)

EJS(fi(t),“h) Ø fĩC1(p[log2(1/”)]), ’max
i

fii Ø fĩ (B.22)

(for completeness, we include the proof of equation (B.21) and (B.22) in Lemma 12). By (B.21),

(B.22) and Fact 1, we immediately have

E[·‘,”] Æ log(1/”)
I(1/3;p[1]) + log(1/‘)

C1(p[log2(1/”)]) +o(log( 1
”‘

)). (B.23)

The gap from I(1/3;p[1]) to I(1/3;p[l]) is done similarly to [9]: we need to further show that

hiePM is able to zoom-in to higher level beamforming and effectively obtain less noisy measure-

ments (p
Ë

K0Álog log 1
”

Ë
log2 ≠1

È
< p[1]) for most of the time during initial access (Lemma 14). Indeed, let

Et = {lt+1 <
K0Álog log 1

”
Ë

log2 ≠1} be the event of using a lower level codeword, and let Fn = tŒ
t=n Et,

by the total expectation theorem and the union bound we have

E[·‘,”] =
⁄

�
·‘,” dP Æ

Œÿ

t=n

⁄

Et

·‘,” dP+
⁄

F
C
n

·‘,” dP

=
Œÿ

t=n

⁄

Et

E[·‘,” | fi(t)] dP+
⁄

F
C
n

E[·‘,” | fi(n)] dP.

(B.24)

By the time homogeneity of the Markov Chain fi(t) together with Lemma 12, we can upper

bound the two terms associated with the “good” event F C
n and the “bad” but low probability event

Et in (B.24) as ⁄

Et

E[·‘,” | fi(t)] dP Æ PEt◊
A

t+ log 1
”

I(1/3;p[1]) + log 1
‘

C1(p[log2(1/”)]) +o(log( 1
”‘

))
B

,
(B.25)
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and ⁄

F
C
n

E[·‘,” | fi(n)] dP Æ

n+ log 1
”

I(1/3;p[lÕ]) + log 1
‘

C1(p[log2(1/”)]) +o(log( 1
”‘

)),
(B.26)

where lÕ := K0Álog log 1
”

Ë
log2 ≠1. Plugging (B.25) and (B.26) back to (B.24) and further with Lemma 13

upper bounding PEt, we have

E[·‘,”] Æ k0e≠nE0

1≠e≠E0

A

n+ log 1
”

I(1/3;p[1]) + log 1
‘

C1(p[log2(1/”)])

B

+n+ log 1
”

I(1/3;p[lÕ]) + log 1
‘

C1(p[log2(1/”)]) +o(log( 1
”‘

))
(B.27)

for n > (lÕ+1)log2
K0

. Finally, letting n = Álog log 1
”‘

Ë in equation (B.27) we conclude the assertion of

the theorem.

B.3.2 Technical Lemmas

Lemma 12. Using the hiePM beamforming strategy “h on codebook WS with S = log2(1/”), we

have

EJS(fi(t),“h) Ø I(1/3;p[lt+1]), ’ t (B.28)

EJS(fi(t),“h) Ø fĩC1(p[log2(1/”)]), ’max
i

fii Ø fĩ (B.29)

Proof. We first prove equation (B.29). By the selection rule of hiePM , the last level beamforming

wt = w(Dkt

S
) is used whenever maxi fii(t) Ø fĩ > 1/2. Therefore,

EJS(fi(t),“h) =
1/”ÿ

i=1
fii(t)D

3
Pŷt+1|i,“h

....Pŷt+1| ”=i,“h

4

Ø fĩD
3

Pŷt+1|i,“h

....Pŷt+1| ”=i,“h

4

= fĩD(Bern(1≠p[S])ÎBern(p[S]))

= fĩC1(p[log2(1/”)]).

(B.30)
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It remains to show equation (B.28). For notational simplicity, let

fl © fi
D

kt+1
lt+1

(t) :=
ÿ

◊iœD
kt+1
lt+1

fii(t) (B.31)

and B0 © Bern(p[lt+1]), B1 © Bern(1≠p[lt+1]). We separate the proof into two cases:

If fl > 2/3, we know that lt+1 = S by the selection rule of hiePM . Therefore, the set Dkt+1
lt+1

contains only 1 angle. Let Dkt+1
lt+1 = {◊ú}, we have

EJS(fi(t),“h) =
1/”ÿ

i=1
fii(t)D

3
Pŷt+1|i,“h

....Pŷt+1| ”=i,“h

4

= flD
1
B1

...B02

+
ÿ

i:◊i ”=◊ú
fii(t)D

A

B0
....

fl

1≠fii(t)
B1 + 1≠fl≠fii(t)

1≠fii(t)
B0

B

(a)
Ø D

3
B0

....
1
2B1 + 1

2B0
4

= I(1/2;p[lt+1]) Ø I(1/3;p[lt+1]),

(B.32)

where (a) is by the fact that D(B1ÎB0) = D(B0ÎB1) and that D(B0Î–B1 +(1≠–)B0) is increas-

ing in – for 0 Æ – Æ 1, together with fl

1≠fii(t) > 2/3 > 1/2.

For the other case where fl Æ 2/3, again by the selection rule of hiePM , we have 1/

3 Æ fl Æ 2/3. Now we can lower bound the EJS as

EJS(fi(t),“h)
(a)
Ø JS(fi(t),“h)

= flD
3

B1
....flB0 +(1≠fl)B1

4

+(1≠fl)D
3

B0
....flB0 +(1≠fl)B1

4

= I(fl;p[lt+1])
(b)
Ø I(1/3;p[lt+1])

(B.33)

where (a) is by Fact 2 and (b) is by the concavity of the mutual information w.r.t the input distribution,

the symmetric of I(fl;p[lt+1]) around fl = 1/2 for symmetric channels, and together with 1/
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3 Æ fl Æ 2/3. This concludes the assertion.

Lemma 13. Using the hiePM beamforming strategy “h on codebook WS with S = log2(1/”), we

have

PEt := Plt+1 Æ l Æ k0e≠E0t (B.34)

for all t > log(l+1)log2
K0

, where k0 = e
K0(l+1)log2

(2l log2+K0)2 , E0 = K
2
0

2(2l log2+K0)2 , and K0 > 0 is a constant

defined in Lemma 14.

Proof. Let fi{l}(t) and U{l}(t) be the nested posterior of level l and its averaged log-likelihood,

defined in Appendix B.4, equations (B.38) and (B.39). Note that U{l}(t) Ø log2 implies that

maxq fi
{l}
q (t) Ø 2/3, and in turn implies that lt+1 > l by the selection rule of hiePM . Therefore, it

suffices to show that

PU{l}(t) < log2 Æ k0e≠E0t ’t > T0. (B.35)

We will show (B.35) using submartingale properties of U{l}(t) with Azuma’s inequality [96].

Indeed, by Lemma 14 in Appendix B.4, U{l}(t)≠K0t is a submartingale. Furthermore, we have

bounded differences for this submartingale, i.e.

|U{l}(t+1)≠U{l}(t)+K0| Æ 2l log2+K0, (B.36)

for all t Ø 0. Hence we have

P(U{l}(t) < log2)

= P
1
U{l}(t)≠K0t≠U{l}(0) < (l +1)log2≠K0t

2

(a)
Æ exp

A

≠((l +1)log2≠K0t)2

2t(2l log2+K0)2

B (b)
Æ k0e≠E0t

(B.37)

for t > log(l+1)log2
K0

, where (a) is by Azuma’s inequality and (b) is by expanding the quadratic terms

and rearrangements.
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B.4 Nested Posterior and its EJS

In this section, we introduce the nested posterior and its EJS lower bound (Lemma 14),

which are used for proving Lemma 13. Let posterior fii(t) with i = 1,2, ...,2S . We define a nested

posterior fi{l} of level l < S with length 2l as

fi{l}
q (t) :=

ÿ

iœbin(q)
fii(t), q = 1,2, ...,2l, (B.38)

where bin(q) := {(q ≠ 1)2S≠l + 1, ..., q2S≠l}. Further, we define the functional log-likelihood on

fi{l} as

U{l}(t) :=
2lÿ

q=1
fi{l}

q (t) log fi
{l}
q (t)

1≠fi
{l}
q (t)

. (B.39)

For any beamforming strategy “ : fi{S}(t) æ wt+1 on the level S posterior, the level l < S log-

likelihood U{l}(t) is a submartingale w.r.t. fi(t). The expected drift can be written as

E[U{l}(t+1) | fi(t)]

= U{l}(t)+EJS(fi{l}(t),“;fi(t)),
(B.40)

where
EJS(fi{l}(t),“;fi(t))

=
2lÿ

q=1
fi{l}

q (t)D
3

Pyt+1|q,“

....Pyt+1| ”=q,“

4 (B.41)

with
Pyt+1|œbin(q),“ := 1

q
iœbin(q) fii(t)

◊
ÿ

iœbin(q)
fii(t)f

1
yt+1

---„ = ◊i,wt+1 = “(fi(t))
2 (B.42)

and
Pyt+1|/œbin(q),“ := 1

q
i/œbin(q) fii(t)

◊
ÿ

i/œbin(q)
fii(t)f

1
yt+1

---„ = ◊i,wt+1 = “(fi(t))
2
.

(B.43)
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Lemma 14. With same assumptions as Theorem 3, using hiePM with codebook WS on fi(t) ©

fi{S}(t), we have

EJS(fi{l}(t),“h;fi(t)) Ø K0 := min
;

I
31

3 ,p[1]
4

,

2
3D

31
3Bern(1≠p[1])+ 2

3Bern(p[1])
....Bern(p[1])

4< (B.44)

for all t > 0, for any l < S.

Proof. Given any l < S, if the selected codeword w(Dkt+1
lt+1 ) is such that lt+1 Æ l, by Lemma

12 we conclude the results. If otherwise lt+1 > l, then for any ◊i œ Dkt+1
lt+1 , i œ bin(qt) for some

qt. For notational simplicity, let fl © fi
D

kt+1
lt+1

(t) := q
◊iœD

kt+1
lt+1

fii(t) and B0 © Bern(p[lt+1]), B1 ©

Bern(1≠p[lt+1]). We have

EJS(fi{l}(t),“;fi(t))

=
2lÿ

q=1
fi{l}

q (t)D
3

Pŷt+1|q,“

....Pŷt+1| ”=q,“

4

(a)
Ø 2

3D(flB1 +(1≠fl)B0ÎB0)
(b)
Ø 2

3D(1
3B1 + 2

3B0ÎB0)

Ø 2
3D

31
3Bern(1≠p[1])+ 2

3Bern(p[1])
....Bern(p[1])

4<
.

(B.45)

where (a) and (b) are by the selection rule of hiePM that fi
{l}
qt

(t) > 2/3 whenever lt > l and that

1/3 Æ fl Æ 2/3. This concludes the assertion.
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Appendix C

For Chapter 6
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C.1 Proof of Lemma 4

We assume –t = 1 and PT = 1, and recall that zt(D) = |yt|2 = R(yt)2 +I(yt)2. Further-

more, R(yt)2 ≥ N (R(wH
t a(�t)xt), ‡

2
2 ) and I ≥ N (I(wH

t a(�t)xt), ‡
2

2 ). Thus conditioned on a

point estimate and beam vector (�t = (◊i,◊j),wt), zt(D) is the sum of two Gaussian random vari-

ables squared, which by definition gives that zt(D) ≥ ‰2(k,⁄t) follows a non-central chi-squared

probability distribution function scaled by the variance ‡
2

2 with k = 2 degrees of freedom and

time-varying non-centrality parameter

⁄t =

3
R(wH

t a(�t)xt)
42

‡2/2 +

3
I(wH

t a(�t)xt)
42

‡2/2

= 2|wH
t a(�t)xt|2

‡2

Ø 2|wH
t a(�t)|2

‡2

(C.1)

We approximate the conditional probability of zt(P ) with the worst possible symbol energy |xt|2 = 1,

i.e by setting ⁄t = 2|wH
t a(�t)|2

‡2 .

C.2 Proof of Lemma 5

Let –t = 1, and PT = 1, thus recall the received measurement model zt(P ) for the pilot

phase is modeled as:

zt(P )=wH

t a(�t)+wH

t nt. (C.2)
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Under Assumption 8, for et = P for a beam wt in level lt = l the conditional probability density

function of zt(P ) is

f(zt(P )|wt) =
⁄ Œ

≠Œ
f(zt(P )|wt,�t)d�t

= P� œ Dkt

lt
f(zt(P )|wt,� œ Dkt

lt
)+P� /œ Dkt

lt
f(zt(P )|wt,� /œ Dkt

lt
)

= fiw̃t
(t|t≠1)CN (Gl,‡

2)+(1≠fiw̃t
(t|t≠1))CN (0,‡2)

= fiw̃t
(t|t≠1) 1

fi‡2 e≠ |zt(D)≠G
l
|2

‡2 +(1≠fiw̃t
(t|t≠1)) 1

fi‡2 e≠ |zt(D)|2
‡2 .

(C.3)

Additionally, for normalized beams ÎwtÎ2 = 1 ÷t = wH
t nt ≥ CN (0,‡2), which yields

h(÷t) = h(R(÷t))+h(I(÷t))

= 1
2 log(2fie

‡2

2 )+ 1
2 log(2fie

‡2

2 )

= log(fie‡2).

(C.4)

The mutual information term for the pilot phase action et = P of (6.17) is

I(�t;zt(P )|wt) = h(zt(P )|wt)≠h(zt(P )|wt,�t)

= h(zt(P )|wt)≠h(÷t)

= h(zt(P )|wt)≠ log(fie‡2)

= ≠
⁄ Œ

≠Œ

⁄ Œ

≠Œ
f(zt(P )|wt) logf(zt(P )|wt)dR(zt(P ))dI(zt(P )) ≠ log(fie‡2).

(C.5)

C.3 Proof of Lemma 6

By Lemma 4 and under Assumption 8 zt(D) ≥ ‰2(k = 2,⁄t Ø 2|wH
t a(�t)|2

‡2 ) scaled by the

variance ‡
2

2 . Under the worst case assumption of |xt|2 = 1, i.e. by setting ⁄t = 2|wH
t a(�t)|2

‡2 , the
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distribution of zt conditioned on a beam wt of level lt = 1 is approximated as

f(zt(D)|wt)

=
⁄ Œ

≠Œ
f(zt(D)|wt,�t)d�t

= P�t œ Dkt

lt
f(zt(D)|wt,�t œ Dkt

lt
)+P�t /œ Dkt

lt
f(zt(D)|wt,�t /œ Dkt

lt
)

= fiw̃t
(t|t≠1)‰2(2,⁄t = 2|Gl|2

‡2 )+(1≠fiw̃t
(t|t≠1))‰2(2,⁄t = 0)

= fiw̃t
(t|t≠1) 1

‡2 e≠( zt

‡2 + ⁄t
2 )

Œÿ

k=0

(zt⁄t

2‡2 )k
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where we dropped (D) on zt(D) for clarity. Additionally, we have the conditional entropy
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where ÷t = wH
t Nt ≥ CN(0,‡2) from our model (6.6). Thus, the mutual information term for an

action et = D of (6.17) is
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= ≠
⁄ Œ
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