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Abstract 

Burns & Krygier (2015) demonstrated that people could exhibit 
a strong bias towards the smaller first digits, in a way similar 
to that described by Benford’s law. This paper sought to 
expand the scope of this phenomenon and to test a possible 
explanation, the Recognition Hypothesis that a Benford bias is 
due to life-long environmental exposure to this statistical 
relationship. Participants completed three numerical tasks: A 
Generation Task requiring answering trivia questions; a 
Selection Task requiring selecting between two numerical 
responses; and an Estimation task requiring estimating the 
number of jelly beans in a jar. The results found no evidence of 
any first digit effect in the Recognition Task, some evidence of 
Benford bias in the Generation Task and strong evidence in the 
Estimation Task.  Future research should focus on alternatives 
to the Recognition Hypothesis and investigate the parameters 
of Benford bias in generation tasks.  

Keywords: Benford’s law, number generation, number 
selection, statistical learning 

Introduction 
Contemporary society often demands that people produce 

numbers when making decisions, for instance, estimating the 
value of an item. Decision making under uncertainty has been 
investigated by looking for heuristics and biases, but little 
research has focused on estimation other than that into 
anchoring (Tversky & Kahneman, 1974). Thus, 
understanding how people generate numerical estimates 
could provide new insights into many types of decisions and 
potential biases in such decisions. To make progress towards 
understanding estimation we need well-established 
phenomena that could serve as investigation tools, but these 
have been lacking. 

 A possible tool arises from research into the extent to 
which people’s estimations fit to Benford’s law. Benford’s 
law is a well-established phenomenon that the first digit 
frequencies of numerous naturally occurring datasets follow 
a log distribution where digit-1 occurs 30% of the time while 
digit-9 has no more than a 5% of occurrence (Miller, 2015). 
Benford (1938) demonstrated this empirically (Figure 1) for 
data but there is now evidence that people spontaneously 
generate a first-digit bias that approximates Benford’s law 
when estimating numbers. The results reported by Burns 
(2009), Burns and Krygier (2015), and Diekmann (2007) did 
not find a perfect fit of human data to Benford’s law, but its 
pattern accounts for a large amount of variance in human first 
digit data. Thus, people appear to have a Benford bias.   

Understanding why people have a Benford bias could 
provide insight into the process of number estimation. A 
potential explanation relies on the assumption that people 
will have been frequently exposed to this statistical 
relationship during their lifetime, given how ubiquitous it is 
for data. The potential for unconscious acquisition of this 
universal law leads to a Recognition Hypothesis. This paper 
will test this hypothesis and try to extend our understanding 
of Benford bias.  

Background of Benford’s law 
Benford’s law for first digits suggests that as long as a 

domain is numerical, spans multiple magnitudes and has no 
assigned boundaries, data’s leading digits frequencies have 
the monotonic decline of a logarithm distribution (Benford, 
1938). Although it applies to other digits, it is known as a first 
digit phenomenon because such its skewness is so large when 
compared to the distributions of the other digit places.  

The Benford’s law distribution has been discovered to 
apply to data from many domains. Classic examples of the 
first digit phenomenon are financial indicators like GDP and 
stock exchange data, mathematics topics like Fibonacci 
numbers and random matrix theory, and physical 
observations such as the energy level of particles (Miller, 
2015). It also applies to human domains such as internet 
traffic records (Arshadi & Jahangir, 2014), criminal rates 
(Hickman & Rice, 2010), counts of friends and followers on 
Facebook (Golbeck, 2015), gambling behaviour (Chou et al., 
2009), and brain activity (Kreuzer et al., 2014). 

 
Figure 1: The percentage of times the digits 1 to 9 are used as first 
digits, as determined from 20229 observations (Benford, 1938).  
 

A practical application of Benford’s law is detecting fraud 
(e.g., Nigrini, 1996). Therefore, it has been incorporated into 
the auditing and accounting process, and used for detecting 
falsified data (Miller, 2015). 
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In short, Benford’s law is a robust phenomenon describing 
the regularities of the leading digits aggregated from the 
unrelated datasets from nature and society.  

Psychological Explorations of Benford’s law 
Although Benford’s law is a well-established phenomenon 

of natural data, whether it is a psychological phenomenon has 
been unclear. Dehaene (1997) examined the role of the 
leftmost digit when trying to answer why words indicating 
small numerals are more frequent than larger ones in many 
languages. He dismissed the potential explanatory power of 
Benford’s law for the findings from his tasks. Earlier research 
also seemed to support this dismissal of Benford’s law as 
relevant to cognitive processes. 

Early evidence against Benford’s law 
Early explorations by behaviourial science of the leading 

digits produced by humans were very few; to our knowledge, 
only four papers were published. The studies from Hsü 
(1948), Hill (1988), Kubovy (2009), and Scott et al. (2001) 
simply asked participants to generate a random number, such 
as a four-digit number created out of their head. Aggregation 
of the frequencies of the first digits created showed 
substantial deviation from a uniform distribution, notably, 
digit-1 was generated more frequently than expected by a 
uniform distribution. However, the patterns were inconsistent 
and the first-digit frequencies did not exhibit the monotonic 
decline suggested by Benford’s law. 

Psychological evidence supporting Benford’s law 
The negative outcome from random number generation 

appeared robust, so the psychological investigation of 
Benford’s law was limited until support emerged from the 
studies of Diekmann (2007) and Burns and Krygier (2015, 
see also Burns, 2009), who employed alternative methods.   

Diekmann (2007) discovered that the first digits of 
published unstandardized regression coefficients closely 
approximated Benford’s law. Following this discovery, he 
asked students in sociology or economics to fabricate 
multiple “plausible values” of regression coefficients in 
response to a set of controversial hypotheses from 
neoclassical economics. This experiment obtained a 
reasonable fit of the first-digit to Benford’s law, although 
there were spikes for digit 5 and 8.  

Independent of Diekmann’s experiments, a study from 
Burns and Krygier (2015) demonstrated the first digit 
phenomenon by asking people to produce numbers in 
meaningful domains. These studies contrasted with the ones 
that failed to find evidence of people generating numbers that 
fit to Benford’s law by asking them to generate non-arbitrary 
numbers. Arbitrary numbers, like the random numbers Hsü 
(1948), Hill (1988), Kubovy (2009), and Scott et al. (2001) 
asked their participants to generate, cannot be estimated or 
calculated. Diekmann’s participants did not know the correct 
regression coefficients and Burns and Krygier (2015) did not 
know the correct answer to questions like “How long is the 
Indus River?” However, they know the question is 

meaningful and the answer is non-arbitrary such that a 
reasonable, though imperfect, answer might be estimated.   

Burns and Krygier (2015) gave participants a set of nine 
non-arbitrary questions from the meaningful domains used in 
Benford’s original observations, like national debts and 
power calculation. The items were scrutinised to avoid well-
known fields and were chosen so that each digit 1 through 9 
was equally often the first digit of the correct answers. Hence, 
both true and random answers should yield a flat first-digit 
distribution. The pattern of the first digits showed a closer fit 
to Benford’s law than to the correct (flat) distribution, except 
for a peak for digit-5. In Burns and Krygier’s second study 
they designed an 81-item pool, structuring the questions from 
nine different meaningful domains (e.g., infant mortality rate) 
with nine different targets (e.g., Afghanistan). Consistent 
with the observations of their first study, a closer fit to 
Benford’s distribution was captured with an elevation of 
digit-5. This replication further validated that Benford bias 
can be detected in behavioural data. The data was not a 
perfect fit to Benford’s law, and it would be a shock if it 
captured all the variance. However, the size of the Benford 
bias can be estimated by calculating the effect size (eta2) for 
the linear contrast weighted by the proportions predicted by 
Benford’s law for the observed proportion of participants’ 
first digits. In Burns and Krygier’s studies this weighted 
linear contrast accounted for 52.1% and 42.7% of the 
variance in observed first digits proportions. 

Explaining Benford bias 
Further replication studies of Benford bias have been made 

(Burns, 2020; Burns, Tripodi, Chi, Krygier, & Birney, under 
revision), so it appears to be a robust phenomenon of non-
arbitrary numerical estimates. What explains this 
phenomenon requires further investigation. 

One possible explanation is captured by what we have 
called the Recognition Hypothesis. This hypothesis assumes 
that if the world surrounds people with data consistent with 
Benford’s law, then people may become sensitive to this 
statistical relationship. Many researchers (e.g., Bargh, & 
Ferguson, 2000; Gigerenzer & Todd, 1999) have emphasized 
the ways that decision making may be influenced by implicit 
knowledge of the regularities in the data they encounter in 
their environment. Thus, the picture this hypothesis presents 
of number estimation is as a process that can be strongly 
driven by our general experience of numbers in our 
environment.  

If the bias towards the smaller first digits can be attributed 
to implicit learning through exposure, then such a preference 
should not be limited to the tasks involving number 
generation. A bias towards smaller first digits should also be 
present when participants are asked to try to recognize correct 
answers, such as when they are given numerical answers and 
asked to select the correct one. Thus, comparing number 
generation to number selection tasks provides a way to test 
the Recognition Hypothesis. 
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Previous empirical research  
To test the Recognition Hypothesis, Burns and Krygier 

(2015) introduced a selection task in their second study. This 
used similar numerical questions as used for their generation 
task. However, instead of producing a number as a response, 
participants chose an answer amongst nine numerical 
options, each with a different first digit. The questions were 
randomly selected from an 81-item pool (nine meaningful 
domains by nine targets), and the leading digits of the correct 
responses to the nine questions were equally distributed. If 
people have Benford bias because of long-term exposure to it 
in the environment, the options with lower first digits should 
more frequently be selected than the ones with higher first 
digits. Contrary to this prediction, except for a small elevation 
for digit-1, the relative frequencies of the first digits chosen 
by participants were close to a flat distribution. It seemed that 
people showed no clear preference for any first digits when 
selecting answers. However, it was argued that a flattened 
distribution might be a result of random answering due to 
providing many options. Iyengar and Lepper (2000) argued 
that increasing the number of choices offered to an unknown 
question might restrain the cognitive process in decision 
making, thus leading to random responding.  

To avoid the possibility of distorting responses by 
providing too many options, Tripodi (2016) in an 
unpublished study gave participants a single answer and 
asked participants if they thought it was correct. For example, 
“Is the total area of Greece 131940 (km2)? Choose ‘yes’ or 
‘no’.” Half of the items presented an incorrect value, and 
participants were told to expect about half the answers to be 
incorrect. Participants answered 18 questions from non-
arbitrary domains (e.g., areas of countries) and 18 from 
arbitrary domains (e.g., specific phone numbers). Neither 
non-arbitrary nor arbitrary domains produced evidence of any 
first-digit preference let alone a monotonic decline from 
digit-1 to digit-9.  

The findings from the selection tasks exhibited a 
remarkably different pattern to the ones obtained from the 
generation tasks and thus they challenged Recognition 
Hypothesis. However, intuitively the Recognition 
Hypothesis is very appealing because of how well it fits with 
other evidence that implicit learning of statistical 
relationships in the environment can influence decision-
making. So before ruling out the utility of the Recognition 
Hypothesis, we wanted to test it with what we considered to 
be the most sensitive paradigm for a selection task by directly 
contrasting the first digits.   

A New Paradigm 
The previous selection tasks offered either nine options or 

a single potential answer, thus, neither of them directly 
contrasted the first digits. So, in the current experiment we 
offer pairs of numbers with a lower and a higher first digit to 
see if people will consistently favour the smaller first digit. 
For example, a forced choice was offered between 1xx and 
3xx where x’s are random digits. 

As well as continuing to examine the explanatory power of 
the Recognition Hypothesis, the present experiment included 
other aspects designed to further expand our understanding 
of Benford bias by manipulating other aspects. As well as the 
selection task, participants completed a number generation 
task similar to Burns and Krygier (2015) in which we tested 
the effect of number type by asking participants to generate 
both non-arbitrary and arbitrary numbers, a distinction we 
also tested in the selection task.  

In addition, we examined whether the bias towards smaller 
digits is a phenomenon of the first digit of a number or a 
phenomenon of the first digit written down. Unlike the 
concept of being the “first digits” of data nature, the Benford 
bias observed from human activities could be alternatively 
interpreted as a result of the initial digit created out of the 
mind. Under certain circumstances, the initial digits produced 
are not always the leftmost digits. For instance, a person at an 
auction of a million-dollar house does not expect the leading 
digit to change too often, so the estimation may focus on the 
second or later digits in the number estimated. Hence, to 
create a situation where the first digit generated is not the first 
digit of an answer, we varied whether participants entered 
their answers normally (from the first digit of an answer) or 
were instructed to enter the answer backwards (from the last 
digit of an answer). Thus, in the backwards condition the digit 
that was the right-most digit of the answer was the initial digit 
produced. By investigating the influence of this backwards 
answering, it might help us to understand the robustness of 
the bias towards the first digit as the leftmost digit of an 
answer. 

Finally, a new task for quantity estimation was introduced 
as another form of number generation. Unlike the trivia 
questions which asked participants to draw on their 
knowledge and memories, participants estimated quantities 
based on visual stimuli, in this case jars of jelly beans. This 
allowed us to test the generalizability of our effects and is a 
form of number generation people encounter more often in 
everyday life. In addition, we manipulated the amount of 
information presented so we could further examine how the 
amount of cognitive processing may affect number 
estimation.  

Methods 

Participants 
173 first-year psychology students participated for partial 

course credit. They had an average age of 20 (SD = 3.608), 
ranging between 18 and 42, with 118 females (68.2%) and 55 
males (31.8%). 48.6 % were English speakers, while 28.9% 
were Chinese speakers. 

Procedure and materials 
Each participant went through a Number Generation Task 

(18 items) followed by a Number Selection Task (50 items) 
and a Number Estimation Task (9 items). 
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Number Generation. This task presented a block of 18 
number generation items. Nine of the items asked questions 
from non-arbitrary domains whereas the other nine were from 
arbitrary domains. The domains asking for non-arbitrary 
numbers consisted of science constants, human/livestock 
populations, shares trading on the NYSE, electricity 
consumption, square roots, GDP, national external debt, area 
by country, and the gross profit of films. The domains for 
arbitrary numbers concerned cheque numbers, postcodes, 
raffle ticket winning numbers, and vehicle registration 
numbers, for which an answer was not calculable. 
   The order of the 18 items was randomized, so questions 
from arbitrary and non-arbitrary domains were mixed. When 
entering their answers, participants saw a line of ten boxes on 
the screen. As they typed a number each digit appeared in a 
box. For half of the participants as digits were typed, they 
filled the boxes left to right. The other half of the participants 
were instructed to produce the number in reversed order (i.e., 
begin with the last digit), so as they typed their number it 
filled the boxes from right to left.  
   Items were randomly drawn from an 81-item pool. For the 
non-arbitrary numbers, the questions were selected so that 
each digit from 1 to 9 was the first digit of the correct answers 
equally often. Examples of items: 

Non-arbitrary numbers 
“What is the total area of Ireland (km2)? ______ “ 

Arbitrary numbers 
“Write the order number of a purchase of a fridge. ______” 
 
Number Selection. This task had a between-subject design 
with 50 forced-choice items from either non-arbitrary or 
arbitrary domains, which were randomly drawn from a 250-
item pool. The domains asking for non-arbitrary numbers 
consisted of national external debt, selling price of a property, 
the square of a number, the water area by country, and 
internet hosts. The domains for arbitrary numbers are 
associated with contact numbers, Australian Business 
Number (ABN), International Standard Book Number 
(ISBN), online post IDs, and IP addresses. The questions 
asked participants to choose an answer from two potential 
alternatives. Examples of items with possible answers were:  

Non-arbitrary numbers 
“How many Internet hosts were listed in Kenya by 2012?”     
[71018] [98280]  

Arbitrary numbers 
“What are the leading digits of the IP address of 
Reddit.com?” [336318719] [520154151]  

Only first digits 1, 3, 5, 7 and 9 were provided as the 
leading digits in the task, which enabled us to give five 
examples of 10 different first-digit pairs.  

 
Quantity Estimation. The task required the participant to 
estimate the number of jelly beans in pictures of nine jars 
presented in a random order. The nine jars were the same size 
and contained precisely 150, 250, 350, 450, 550, 650, 750, 
850, or 950 jelly beans, so that each digit from 1 to 9 was 
equally often the first digit of the correct answer. 

The task had three levels of visual quality: Blurry, 2-D, or 
3-D (see Figure 2). In the Blurry condition a static image of 
the jar blurred the boundaries between the visible jelly beans. 
In the 2-D condition the pictures were static unblurred images 
of the jars. In the 3-D condition a ten-second video started 
with the 2-D image and then swept up in an arc to finish with 
a top view of the jar. This video could be replayed. In this 
way the total amount of information that participants might 
draw upon when making an estimation was varied. 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The example of a Blurry, a 2-D, and a 3-D image.  

Results 

Analysis of Number Selection Task 
If Benford bias applies to the number selection task, then 

we predicted that participants would be more likely to choose 
the number with the lower first digit. Furthermore, this 
preference should be stronger for pairs of lower first digits 
because according to Benford’s law the difference in 
frequency of exposure is greater the lower the first digits are.  

However, overall the proportion of questions participants 
answer by selecting the lower first digit (M = .502, SD = .116) 
was not significantly different to 0.500, t(168) = 0.224, p = 
.823. A one-way ANOVA showed that the number type (non-
arbitrary vs. arbitrary) failed to substantially impact the 
frequencies of people’s choice of a lower first digits, F(1, 
167) = 2.698, ns. 

  

 
Figure 3. The proportions of a higher and a lower First Significant 
Digit (FSD) selected for all ten pairs of choices, compared against 
the equal probability in Number Selection.  
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To investigate if there was any relationship between the 
first digit and the number chosen, we examined the ten pairs 
of first digits in detail (see Figure 3). Only one pair, digit-3 
vs. digit-7 (χ2[1] = 6.277, p < .05), showed a greater 
proportion of choosing the lower first digit over a higher one. 
For two pairs, digit-1 vs. digit-3 (χ2[1] = 4.383, p < .05) and 
digit-1 vs. digit-9 (χ2[1] = 5.952, p < .05), participants slightly 
preferred the choice with the higher first digit. Therefore, 
nine out of ten pairs failed to be consistent with Benford bias 
(see Figure 3). 

Analysis of Number Generation Task 
Figure 4 shows that the distribution of the first digit 

proportion for non-arbitrary numbers was flatter than found 
in previous studies, especially with regards to   digit-1 
(M=.169, SD=.148). A repeated measures ANOVA of first 
digit by number type (arbitrary vs non-arbitrary) found a non-
significant interaction, F(8, 1224) = .637, ns., suggesting that 
the pattern for the non-arbitrary and arbitrary numbers was 
similar. A linear contrast weighted by Benford’s law on 
proportions of responses using each first digit explained 
24.8% variances for non-arbitrary numbers (F[1,153] = 
50.383, p < .001, η2 = .248) and 17.5% variances for Arbitrary 
numbers (F[1,153] = 32.374, p < .001, η2 = .175). So non-
arbitrary numbers failed to produce a statistically reliable 
greater Benford bias than the arbitrary ones.  

The pattern for the smaller first digits in non-arbitrary 
numbers was flatter than that of Benford’s law. This could 
have been due to forward/backwards manipulation of how 
numbers were entered. However, a repeated-measures 
ANOVA failed to produce a significant interaction between 
the answer order and the nine digits for the non-arbitrary 
numbers, F(8, 1216) = .501, ns. 
 

 
 
Figure 4. The proportions of first digits from non-arbitrary and 
arbitrary numbers, compared against Benford’s law and flat 
(correct) distributions in Number Generation.  

Analysis of Quantity estimation Task 
The distributions of first digits produced for the three types 

of images (Blurry, 2-D, or 3-D) are presented separately in 

Figure 5. Overall, digit-1 (M= .244, SD = .169) was the most 
frequent first digit generated by the participants, while digit-
9 (M = .034, SD = .061) was the least frequent first digit. A 
linear contrast analysis weighted by Benford’s law suggested 
the monotonic decline of the first digits did not substantially 
differ across three image types, F (2, 158) = .448, ns. The 
variances in proportions of first digits participants used in all 
three conditions showed strong Benford biases, as indicated 
by large effect sizes for each picture type: Blurry: F(1,51) = 
59.069, p < .001, η2 = .537; 2-D: F(1,54) = 74.580, p < .001, 
η2 = .580; 3-D: F(1,53) = 70.880, p < .001, η2 = .572. So 
athough 3-D images contain more information than 2-D, they 
did not change the first-digit distributions. 
 

 
 

Figure 5. The proportions of the FSDs from the estimates in response to three 
types of pictures, compared against Benford’s law and flat (correct) 
distributions in Number Estimation. 

Discussion 
We found evidence of Benford bias in the number 

generation and quantity estimation tasks, but not in the 
selection task. As Burns and Krygier (2015) and Tripodi 
(2016) also showed, there was no evidence of a systematic 
difference in preferences for any first digit when participants 
were given a number to select as opposed to having to 
generate a number, let alone differences consistent with a 
Benford bias. If people implicitly learned that the lower first 
digits occurred more frequently than the higher ones due to 
exposure to this pattern in the environment, then selected 
responses should have favoured the smaller first digits. Thus, 
we have no evidence that supports the Recognition 
Hypothesis as an explanation for Benford bias. It is possible 
that a different paradigm may find evidence supporting 
Recognition Hypothesis, but after using three different 
methods to test it we believe it is more worthwhile to move 
onto testing other hypotheses for explaining Benford bias.  

One limitation of this selection task was that both possible 
answers had the same magnitude therefore the smaller 
number always had the lower first digit. So a preference for 
larger numbers could counteracted preference for lower first 
digits, but in that case there should still have been differences 
due to which particular digits were paired in a question.  
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In the Number Generation task, the first-digit distribution 
found some evidence of a Benford bias, but the effect size 
was much smaller than in Burns and Krygier (2015) or Burns 
et al. (under revision). Furthermore, we did not find a 
difference between the generation of arbitrary and non-
arbitrary numbers, which was surprising given that Burns et 
al. (under revision) found such a difference. This might be 
due to two changes in the methodology which were 
introduced to investigate other questions about Benford bias. 
First, by not separating the generation of non-arbitrary and 
arbitrary numbers we may have led participants to be more 
likely to treat them the same, thus producing a convergence 
of the processes used to generate the numbers. In particular, 
all numbers appear to have been more likely to be treated as 
arbitrary, which would explain why the pattern for non-
arbitrary numbers diverged substantially from what has 
previously been found. Second, by having participants type a 
number one digit at a time into boxes we may have disrupted 
people’s internal process of producing a number as a whole. 
If the Benford bias is due to the process of generating 
numbers, then changes to that process may alter first-digit 
distributions. The possible impact of these methodological 
issues will be addressed in other studies and could add to our 
understanding of the parameters of Benford bias. 

The responses generated from the quantity estimation task 
were consistent with the observations from Burns and 
Krygier (2015) in finding evidence for a strong Benford bias. 
The first digits of the estimates approximated Benford’s law 
regardless of the amount of information presented in different 
types of pictures. Thus, it appears that the tasks with which 
Benford bias can be demonstrated may be extended to 
quantity estimation with visual stimuli. 

A limitation of the quantity estimation task was that all the 
true jelly bean counts had the same magnitude, thus the 
pattern we found in the first digits could be partly due to a 
systematic underestimation of jelly bean counts. Of course, 
such an underestimation is predicted for these stimuli by 
Benford bias, but it is hard to determine if Benford bias is an 
outcome or a cause of such underestimation. This was a 
limitation of using similar visual stimuli for which it is hard 
to greatly vary magnitude. This problem is avoided in the 
number generation and selection tasks by using a variety of 
different questions that have a variety of magnitudes, so for 
future estimation tasks we may need to use a greater variety 
of visual stimuli. 

The Number Recognition task in the present research was 
the third attempt to demonstrate that the process of selecting 
rather than generating numerical responses yielded different 
effects on the first digit of answers. The failure of the 
Recognition Hypothesis has somewhat surprised us given the 
findings that people are sensitive to learned statistical 
relationships under laboratory conditions (e.g., Fiser & Aslin, 
2002) and how ubiquitous is Benford’s law. This might 
suggest that the mechanism of automatic acquisition of 
statistical relationships requires more research to understand 
the full extent of the constraints on implicit statistical learning 
(Fiser & Aslin, 2002). It is also indicative of a substantial 

difference between the process of number generation and the 
process of number selection.  

Therefore, our results are leading us to explore alternative 
explanations for Benford bias that focus on potential 
mechanisms for number generation rather than awareness or 
sensitivity to the first-digit pattern itself. For example, Burns 
et al. (under revision) proposed an Integration Hypothesis 
suggesting that Benford bias is a product of how people 
combine information when generating numbers. This is 
partly inspired by the mathematical analysis of the conditions 
under which Benford’s law arises (see Berger & Hill, 2015). 

The Benford bias we are detecting in people’s number 
estimations appears to be a consequence of how people 
generate numbers. Therefore, understanding it should 
provide insight into the cognitive processes for producing 
numerical answers. The results for the quantity estimation 
task showed that Benford bias is generalizable beyond just 
knowledge questions. Our results are also revealing other 
new phenomena of number generation, such as the elevation 
of digit-5, which we suspect is unrelated to Benford bias. The 
studies of the effects of anchoring in decision making arising 
from Tversky and Kahneman (1974) point to the importance 
of understanding the number estimation process. However, 
apart from anchoring, there has been relatively little 
examination of number estimation processes. This could be 
due to the lack of good tools for such examination, but our 
results suggest Benford bias could be such a tool.  

In summary, the critical findings of this experiment were 
the continued failure of the Recognition Hypothesis showing 
the need to examine alternatives; the extension of Benford 
bias to the estimation of unknown quantities with the visual 
presentation; and the disruption of first-digit distribution in 
the generation task likely due to methodological changes. 
Therefore, future research is necessary to investigate the 
processes leading to Benford bias, to extend our methods to 
examine other forms of estimations, and to further investigate 
the utility of plausible alternative hypotheses for explaining 
Benford bias and number generation in general.  
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