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ARTICLE OPEN

Construction of ground-state preserving sparse lattice models
for predictive materials simulations
Wenxuan Huang1, Alexander Urban 2, Ziqin Rong1, Zhiwei Ding 1, Chuan Luo3 and Gerbrand Ceder1,2,4

First-principles based cluster expansion models are the dominant approach in ab initio thermodynamics of crystalline mixtures
enabling the prediction of phase diagrams and novel ground states. However, despite recent advances, the construction of
accurate models still requires a careful and time-consuming manual parameter tuning process for ground-state preservation, since
this property is not guaranteed by default. In this paper, we present a systematic and mathematically sound method to obtain
cluster expansion models that are guaranteed to preserve the ground states of their reference data. The method builds on the
recently introduced compressive sensing paradigm for cluster expansion and employs quadratic programming to impose
constraints on the model parameters. The robustness of our methodology is illustrated for two lithium transition metal oxides with
relevance for Li-ion battery cathodes, i.e., Li2xFe2(1−x)O2 and Li2xTi2(1−x)O2, for which the construction of cluster expansion models
with compressive sensing alone has proven to be challenging. We demonstrate that our method not only guarantees ground-state
preservation on the set of reference structures used for the model construction, but also show that out-of-sample ground-state
preservation up to relatively large supercell size is achievable through a rapidly converging iterative refinement. This method
provides a general tool for building robust, compressed and constrained physical models with predictive power.

npj Computational Materials  (2017) 3:30 ; doi:10.1038/s41524-017-0032-0

INTRODUCTION
First-principles density functional theory (DFT) calculations have
established themselves as a routine and reliable tool in computa-
tional materials science research1–4 and have enabled important
advancements in materials discovery.1, 2, 5 Although implementa-
tions with increasing numerical efficiency and growing computa-
tional power have made it possible to simulate ever larger
structures with DFT, the method’s intrinsic scaling with the
number of electrons prevents applications that require large
structures (thousands of atoms) and intensive sampling (millions
of configurations). Approximate energy models fitted to DFT
reference data, such as cluster expansion (CE) lattice models6–9 or
machine learning regression,10, 11 can overcome these limitations
by constructing computationally more efficient models with
accuracies that are close to DFT for a chosen structural and
chemical space. One prototypical application for approximate
energy models is the prediction of ordered ground states based
on an underlying lattice topology.12, 13

The concept of CEs goes back to the Ising model,14 which
describes the magnetic phases of an atomic lattice in terms of pair
interactions. A CE model, or generalized Ising model, is the
discrete sum representation of materials properties in terms of
lattice site topologies and site interactions, such as site pairs,
triplets, quadruplets, and so on. CEs have broad applications in
different fields of science,6, 15 such as magnetism15 and alloy
thermodynamics.6

The key challenge in constructing CE models is to determine
the expansion coefficients, the effective cluster interactions (ECIs),

in a robust fashion through a fit to reference configurations.1, 16, 17

Conventional ECI fitting procedures1, 16, 17 focus on minimizing
the overall difference between the CE fit and the input
configurations with respect to the expanded quantity, such as
the energy. In many cases, that input quantity may be determined
by an accurate ab-intio method such as Density Functional
Theory. One essential requirement that each CE fit must meet
for practical applications is ground-state preservation, i.e., a
physically accurate CE model must reproduce the ground states
of the input if only the input configurations are considered. This
requirement is important as the ground states usually govern the
material properties at relevant temperature,18 such as finite
temperature voltage profiles18 and phase diagrams.18 In this
article, we revisit the ECI fitting problem with a focus on
constraints that guarantee ground-state preservation. We propose
a robust and efficient scheme to construct ground-state preser-
ving CE models based on compressive sensing17, 19 and quadratic
programming.20

The manuscript is organized as follows: First, we briefly
review the CE formalism and define the ECI fitting problem in a
rigorous mathematical manner. We then derive ground-state
preserving constraints that can be used in conjunction with a
quadratic programming solver. Afterwards, we consider the
phase diagrams of two prototypical oxides of practical
relevance as benchmark cases. Finally, we compare the
strengths and weaknesses of our approach with established
methods.
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RESULTS AND DISCUSSION
Compressed sensing and cluster expansion
For a rigorous mathematical introduction to cluster expansions
and their formal relationship to the partition function of crystalline
solids, we refer the readers to references.6, 9, 21 Here, we only
illustrate the key features of cluster expansions that are of
relevance to the present work.17

The general expression of a cluster expansion Hamiltonian is

ECE σð Þ ¼ J0 þ
Xsites
i

Jiσi þ
Xpairs
i; j

Ji; jσiσj þ
Xtriplets
i; j; k

Ji; j; kσiσjσk

þ ::: ¼
X
c2C

Jcσc

(1)

where σ is the spin representation of an atomic configuration in
which each component σi (a spin variable) denotes the occupancy
of site i. Following the Ising model convention, σi takes on values
of ±1 in a binary system, encoding the atomic species on site i.
Each product of spin variables, σiσj... , (spin product) corresponds
to a cluster of lattice sites, and the cluster expansion energy
ECE is a polynomial of the spin variables weighted by the
expansion coefficients J, the ECIs. For brevity, we denote
the set of interacting clusters as C. For any cluster c∈C, Jc is the
corresponding ECI and σc is the corresponding spin product.
Note that typically multiple clusters of the same type exist (e.g., the
point term for each equivalent site or the cluster corresponding to
the nearest-neighbor pair interaction), and symmetry requires the
coefficients of equivalent clusters have to be identical.22 The
summation in Eq. (1) is therefore actually over cluster types, and
the individual spin products can be replaced by their average over
all equivalent clusters, the cluster correlations.
From Eq. (1) it is obvious that the CE energy is linearly

dependent on the ECIs, J, when the configuration σ is fixed. We
can thus write

ECE σð Þ ¼ Π σð ÞJ (2)

where Π(σ) is the row vector of cluster correlations (with
multiplicity incorporated) corresponding to configuration σ. Given
a set of input atomic configurations S and their DFT energies
EDFT,S , the problem of determining the ECIs can then be naïvely
expressed as minimization of the L2 norm

min
J

EDFT;S � ΠSJ
�� ��

2 (3)

where the rows of the feature matrix ΠS are the cluster correlations
of the configurations in S. Note that the L2 norm is the
conventional Euclidean norm, and the general Lp norm uk kp is
defined as:

uk kp ¼
X
i

uij jp
 !1=p

(4)

Simply minimizing the L2 norm in Eq. (3) essentially means that
the ECIs are fitted such that the average squared difference
between the DFT energies and the CE-predicted energies of all
structures is minimized. However, such a direct minimization of
the error function leads to overfitting when the number of ECIs
(the model parameters) exceeds or becomes close to the number
of reference configurations (the fitting parameters), i.e., when the
system of linear equations Eq. (3) is underdetermined. Overfitting
means that the ECIs accurately reproduce the energies of the
reference structures (in-sample data) but deliver poor general-
ization, i.e., the CE model does not reliably predict the energy of
other unseen structures (out-of-sample data). A standard method
to avoid overfitting is regularization,23 i.e., the simultaneous
minimization of the sum of the error function and the magnitude
of the model parameters. Compressive sensing17, 19 implements L1
norm regularization, which has been shown to be a nearly optimal

and robust way to reconstruct signals from a small number of data
points.24 The compressive sensing formulation of the cluster
expansion problem is:

min
J

EDFT;S � ΠSJ
�� ��2

2þμ Jk k1 (5)

where μ is a parameter controlling the sparseness of the fit. A
higher value of μ shifts the weight towards minimizing the L1
norm, when μ is small the minimization of the L2 error dominates.
The L1 norm of a vector is a measure of the vector’s sparseness,24

thus larger μ values result in fewer ECIs not equal to zero and
thereby reduce overfitting. An optimal μ value can be determined
through minimizing the error of the CE model on unseen data.17

Constrained cluster expansion models
For practical applications it is often desirable that a CE model
preserves some invariants on the input data. For example,
predicting the qualitative features of a phase diagram may
require that the energetic order of all structures is exactly
preserved while quantitative errors in the structural energies
might be tolerable.25 This is because the set of ground states and
the ranking of excited states close in energy determines the
topology of a phase diagram more than the actual energies
themselves.26 As the energy difference between competing
structures is typically small, minimization of the average error in
reproducing the DFT energy does not by itself enforce the
structural energy order one wants to preserve. As a result even
very small energy errors in the CE can qualitatively change a phase
diagram when it leads to new ground states.26 We have found
practically that trying to preserve the structural ordering and
ground states by increasing the relative weights of these input
data rapidly leads to overfitting in the CE. In the following, we will
develop a methodology that allows including constraints in the
ECI optimization problem in a systematic, unbiased fashion and
without overfitting.
In recent years, mathematical programming has been a rapidly

growing field that enables the highly efficient, systematic and
rigorous solution of problems in different standard forms.27 One
rapidly growing area is quadratic programming (QP),28 for which
robust solvers exist,20 and a variety of different approaches have
been researched and implemented, such as the interior point
method, the active set method and the augmented Lagrangian
method.28 In essence, quadratic programming is a mathematical
optimization technique for problems of the following specific
form:

min
x

1
2
xTQxþ cTx

s:t: Ax � b

Cx ¼ d

(6)

where Q is a positive semidefinite matrix, A and C are real
matrices, and b, c and d are real vectors. Note that a matrix is
positive semidefinite if and only if for all real vectors X, xTQx≥ 0.
The semidefinite property is essential so that the optimization
problem is convex. Also note that when Q = 0 Eq. (6) reduces to a
standard linear programming problem which was introduced to
CE optimization in reference.25

Our key strategy for CE fitting is to cast the compressive sensing
problem Eq. (5) into a quadratic programming problem Eq. (6)29

and to add constraints that guarantee ground-state preservation.
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Explicitly, Eq. (5) can be rewritten as:

min
J

EDFT;S � ΠSJ
�� ��2

2þμ Jk k1

, min
J

EDFT;S � ΠSJ
�� ��2

2þμ
X
c2C

Jcj j

, min
J;z

EDFT;S � ΠSJ
�� ��2

2þμ
X
c2C

zc

s:t: zc � Jc 8c 2 C

zc � �Jc 8c 2 C

(7)

, min
J;z

JTΠS
TΠSJ� 2EDFT;STΠSJþ μ

X
c2C

zc þ EDFT;STEDFT;S

s:t: zc � Jc 8c 2 C

zc � �Jc 8c 2 C

(8)

In the conversion step in Eq. (7) auxiliary variables zc,
corresponding to constraints on J, have been introduced to
remove the L1 norm of Eq. (5). The equivalence in Eq. (7) holds
because every zc can be independently minimized while it is
constrained to be larger than ± Jc. Note that the QP formulation in
Eq. (6) does not allow absolute value operations, so that two
separate linear constraints are required in Eq. (7), zc≥ Jc and zc≥
−Jc, even though they are in combination essentially expressing
the absolute value constraint zc≥ |Jc|. The conversion step in
Eq. (8) is a direct expansion of the L2 norm into vector
multiplication. Note that ΠS

TΠS is always positive semidefinite
for every vector x, since xTΠS

TΠSx ¼ ΠSxð ÞTΠSx � 0. Hence, we
have arrived at a formulation of the compressive sensing ECI
problem Eq. (5) in terms of a QP problem.
The second key step of our methodology is to include suitable

constraints for ground-state preservation in the QP formulation.
Ground states, i.e., those configurations that are thermodynami-
cally stable at zero temperature (0 K), can be identified by
constructing the lower convex hull of the formation energies.30

When the energy of a configuration is above the ground-state hull
it is thermodynamically unstable with respect to decomposition
into neighboring ground states.
Note that there are 2 different scenarios that lead to

inconsistent ground states from an ECI fit: The first type of
ground-state inconsistency occurs when the energy of some non-
ground-state configuration is underestimated so much that it
erroneously becomes a ground-state of the CE model. This
problem is illustrated in Fig. 1 (labeled with P1), where the energy
of configuration s1 is predicted to be below its decomposition line
in the input data, i.e., below the convex combination of
configurations h2 and h3 (shown as the line connecting the
points). To constrain the QP system such that no inconsistency of
type 1 occurs, we add the first constraint:
(C1) for each configuration that is not on the ground-state hull

(i.e., a configuration that would thermodynamically decompose
into ground states), we require that its CE configuration energy is
greater than its CE decomposition line. To express this condition
formally, we denote the i-th ground-state configuration (i.e., the
i-th configuration on the lower convex hull) by σh,i with i∈ H. With
this notation, the decomposition of an unstable configuration σs

into the stable ground states can be expressed as DecH(σs) =
{(xi(σs),σh,i)i∈H} where xi(σs) is the fraction of σh,i in the decomposi-
tion products. The constraint to remove ground-state inconsis-
tencies of type 1 becomes

Π σsð ÞJ �
X
i2H

xi σsð ÞΠ σh;i
� �

Jþ ε for all unstable configurations σs

(9)

where ε is some small number used as numerical tolerance.
Introducing constraint (C1) in Eq. (9) to the QP problem in

Eq. (8) guarantees that all ground states of the CE model are also
ground states of the DFT input data. However, the converse is not
necessarily true, i.e., a DFT ground-state configuration might not
be a ground-state of the CE model. This scenario is shown in Fig. 1
(P2), where configuration h2 has a greater CE energy than its
convex hull decomposition line defined by h1 and h3. To remove
this second type of ground-state inconsistency, we introduce a
second constraint:
(C2) for each ground-state configuration σh (i.e., for each

configuration σh on the lower convex hull), we require that its
energy is smaller than the energy of a modified hull that results
from removing σh from the set of input ground states. Formally,
given a ground-state configuration σh on the input hull, we
consider its decomposition into a modified ground-state hull as
DecH\h(σh) = {(xi,H\h(σh),σh,i)i∈H\h} where H\h is the index set of all
input hull configurations not including σh, and xi,H\h(σh) is the
fraction of decomposition product σh,i. The constraint to remove
ground-state inconsistencies of type 2 thus becomes

Π σhð ÞJ � P
i2Hnh

xi;Hnh σhð ÞΠ σh;i
� �

J� ε

for all ground state configurations σh

(10)

Constraint (C2) in Eq. (10) guarantees that all ground-state
configurations in the (DFT) input data are also ground states of the
CE model. Consequently, by combining (C1) and (C2), a
configuration is a ground-state of the resulting CE model if and
only if it is a ground-state of the input data. The full quadratic

Fig. 1 Schematic of the two types of ground-state inconsistencies
that may arise during the fit of a cluster expansion (CE) model to
DFT reference data. (P1) illustrates the situation in which one
particular configuration, s1, that is unstable based on the DFT input
data becomes a stable ground-state of the CE model, as its CE
energy is below the convex combination of its decomposition line
defined by the ground-state configurations h2 and h3. (P2) illustrates
the converse situation in which the CE energy of one ground-state
configuration, h2, is greater than the convex combination of the
neighboring ground states, h1 and h3, which causes h2 to be
unstable in the CE model
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programming formulation for ground-state preserving CE fitting is

min
J;z

JTΠS
TΠSJ� 2EDFT;STΠSJþ μ

X
c2C

zc þ EDFT;STEDFT;S

s:t: zc � Jc 8c 2 C

zc � �Jc 8c 2 C

Π σsð ÞJ �
X
i2H

xi σh;i
� �

Π σh;i
� �

Jþ ε

for all unstable configurations σs

Π σhð ÞJ �
X
i2Hnh

xi;Hnh σh;i
� �

Π σh;i
� �

J� ε

for all ground state configurations σh

(11)

Cation ordering in the rocksalt-type lithium transition metal oxide
systems LixFe(1−x)O and LixTi(1−x)O
We demonstrate the effectiveness of the QP approach to cation
ordering in two oxide systems. Rocksalt-type lithium transition
metal oxides, LiMO2 (M = one or more transition metal species),
are the most important class of cathode materials for lithium-ion
batteries in consumer electronics.31 During the last decade,
materials with lithium excess compositions, Li(1+x)M(1-x)O2, have
attracted much interest owing to their high lithium storage
capacities.32, 33 One criterion for the suitability of Li(1+x)M(1-x)O2 as
cathode material is whether the material is a sufficiently good
conductor for Li ions, which critically depends on the cation (Li, M)
ordering in the structure.34, 35 While conventional oxide-based
cathode materials form in ordered crystal structures (such as
layered LiCoO2

36), several cation-disordered lithium-excess mate-
rials with high practical capacities have recently been discov-
ered.35, 37 Some of these new compositions contain Ti38 and Fe37

which makes them attractive for technological applications
because of the metals’ high abundance and nontoxicity. However,
LiTiO2

39, 40 and LiFeO2
41, 42 are the only LiMO2 with single

transition metal species that form in cation-disordered structures

in solid-state synthesis, and consequently their configurational
phase diagrams are challenging to investigate experimentally.
In the following we employ the ground-state preserving QP

methodology developed above to investigate the phase diagrams
of LixFe(1−x)O and LixTi(1−x)O

39–42 to obtain a better understanding
of the relevant atomic configurations. The input consists of 863
and 602 reference configurations for LixFe(1−x)O and LixTi(1−x)O
respectively. DFT calculations for LixFe(1−x)O configurations were
performed within the Hubbard-U corrected Generalized Gradient
Approximation (GGA+U), using the PBE exchange-correlation
functional.43, 44 The U values are taken from the work of Jain
et al.45 DFT calculations for LixTi(1−x)O configurations did not
employ a Hubbard-U correction. For both systems, an initial set of
configurations at x = 0.5 with supercell sizes up to 8 sites was
generated using the enumerating algorithms by Hart et al.,46 and
the reference sets were subsequently refined by including
ground-state configurations of preliminary cluster expansions
determined using a recently published ground-state search
algorithm for lattice models.47 The corresponding ground-state
input hulls are shown in Fig. 2 as black dots and lines. We note
that both systems, LixFe(1−x)O and LixTi(1−x)O, cannot easily be
fitted using the conventional (unconstrained) compressive sensing
technique, as the approach gives rise to a number of spurious
ground states as shown in Fig. 2 (with optimal μ parameter as
will be discussed below). Specifically, some LixFe(1−x)O configura-
tions with x = 1/3, 5/8 and 9/16 and LixTi(1−x)O configurations with
x = 1/8, 1/6, 1/4, 5/9, 3/5, 5/8 are erroneously predicted to be
ground states (i.e., inconsistencies of type 1 as defined above).
These over-stabilized configurations are marked with arrows in
Fig. 2. In addition, the actual LixTi(1−x)O ground-state configura-
tions with x = 1/10, 1/5, 8/15 become unstable in the compressive
sensing CE model (inconsistencies of type 2). These examples
demonstrate that ground-state preservation is not an automatic
feature inherent to the compressive sensing approach, and the
problem needs to be addressed before predictive simulations of
materials systems are possible.
As seen in Fig. 2, the QP fitting scheme achieves ground-state

preservation for both materials and yields CE hulls that are
spanned by the same configurations as the input DFT hulls.
However, it is worth noting that the sparseness parameter, μ, of
Eq. (11) needs to be carefully selected to arrive at this result. In the
following section we will show that μ should be chosen such that
the cross-validation error is minimized. The discussion of the cross-
validation error is essential in that it provides a standard measure
of predictive power of our fitting scheme which sets the method
apart from other approaches for ground-state preservation, such
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Fig. 2 Input hull as obtained from density functional theory (black lines and circles), cluster expansion hull fitted using the conventional
(unconstrained) compressive sensing method (red lines and squares), and ground-state preserving cluster expansion hull fitted with the
quadratic programming method of the present work (green lines and diamonds) for (a) LixFe(1−x)O and (b) LixTi(1−x)O. The input ground-state
configurations for (a) LixFe(1−x)O correspond to FeO, LiFeO2 and Li2FeO3 and for (b) LixTi(1−x)O correspond to TiO, Li1Ti9O10, Li2Ti8O10, Li3Ti6O9,
Li4Ti5O9, Li2TiO3, LiTiO2, Li8Ti7O15 and Li2TiO3. Arrows are used to mark the over-stabilized unstable configurations. The sparseness parameter,
μ, was chosen to be 0.144 for both systems
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as the adjustment of configuration weights, which will also be
shown below.

Cross-validation of the choice of the sparseness parameter
Cross-validation is the standard way to decide the optimal
sparseness of a numerical model, which is generally referred to
as bias variance trade-off in statistical inference.48 To determine
the sparseness parameter μ by means of cross-validation we
randomly split the DFT data, D, into N = 10 equal parts. For each
part Di, we define its complement Di as all the DFT data points
except those belonging to Di (formally, Di � D� Di). Next, the QP
scheme of Eq. (11) is applied to the complement set Di to obtain a
CE fit without the information in part Di, so that an out-of-sample
validation can be performed by calculating the root mean square
error (RMSE) of the unseen data Di. We denote the resulting out-
of-sample RMSE as ei,μ. The cross-validation (cv) score cvμ given a
sparseness parameter μ is then defined as the root mean square of
the out-of-sample RMSE over all N data parts, i.e., formally

cvμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i¼1:::N

e2i;μ=N
r

. Using this definition, the optimal μ resulting

in the model with greatest predictive power can be determined by
plotting cvμ against μ and selecting the value of μ that minimizes
the cv score.
The cross-validation score cvμ of the LixFe(1−x)O system as

function of μ is shown in Fig. 3a for various different numbers of
input clusters. Note that the number of input clusters to draw from
is determined by a maximum interaction order (e.g., triplets) and a
radial cutoff. Across all five curves, the cv score initially decreases
and then increases with increasing μ. We consider the concept of

bias variance tradeoff48 to understand this behavior: The input
DFT energies may conceptually be understood as the sum of an
ideal cluster expansion and a certain degree of noise ε, i.e., EDFT =
Π(σ)J + ε. Here, the noise could originate from numerical errors in
the DFT energies. For small values of μ, the CE fit uses all available
degrees of freedom (i.e., all ECIs) to incorporate the noise ε into
the CE model, resulting in severe overfitting. As the value of μ
increases, the number of non-zero ECIs decreases and the effect of
noise, i.e., the variance in fitting, becomes less severe. However,
when μ becomes too large, the bias that ECIs should tend to 0
becomes dominating over the data itself, resulting in severe
underfitting and thus increasing cv scores. As a consequence, the
cv score has a pronounced minimum allowing to determine the
optimal μ corresponding to the best tradeoff between the
variance and bias during fitting.
As seen in Fig. 3a, for small values of μ where log μð Þ<� 2 the cv

score increases dramatically with the number of input clusters
indicating overfitting as the result of insufficient regularization. As
the sparseness parameter increases above log μð Þ>� 2, the cv
score becomes less sensitive with respect to the number of input
clusters, indicating that the regularization is effective and that
most non-essential ECIs are fitted to zero regardless of the number
of input clusters. The optimal cv scores are found for �1 �
log μð Þ � 0 and are plotted in Fig. 3b for different numbers of
input clusters (labeled “QP methodology”). As seen in the figure,
the optimal cv score decreases from 0.0345 eV/f.u. (formula unit)
for 54 input clusters to 0.0261 eV/f.u. for 625 input clusters. The cv
score stabilizes at 625 input clusters and barely changes for 1184
input clusters (0.0260 eV/f.u.). Hence, we conclude that 625 input
clusters and a sparseness parameter μ = 0.144 result in a CE model
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with optimal predictive power for the LixFe(1−x)O system.
The corresponding analysis for the LixTi(1−x)O system is shown in
Fig. 3c, and the optimal parameters, μ = 0.144 and 411 input
clusters, yield a cv score of 0.0331 eV/f.u.

In-sample ground-state preservation and comparison with
conventional weight adjustment
Per construction, the QP form Eq. (11) guarantees that the CE fit
preserves the ground states of the reference data set. Con-
ventionally, such in-sample gound-state preservation is often
achieved by assigning weights to the reference configurations to
manually bias the fit. In the following, we compare the
performance of the QP methodology with the conventional
weight adjustment technique to further assess the utility of our
approach. Before we detail the weight adjustment method, we
briefly consider how configuration weights can be included in the
QP approach in practice. For this purpose, we define a diagonal
weight matrix W whose diagonal entries wi,i correspond to the
weight of the ith input configuration. With this definition,W can be
incorporated into Eq. (5) to achieve multiplying weights to the in-
sample fitting error:

min
J

W EDFT;S � ΠSJ
� ��� ��2

2þμ Jk k1: (12)

Note that large wi,i result in a strong bias of the fitting error
for the ith input configuration to be 0. The concrete weight
adjustment procedure that we employed in this work is as follows:

(1) Initialize all weights to be 1.
(2) Perform QP to construct a CE model.
(3) Check if the CE model preserves in-sample ground states. If it

does, the ground-state preserving fit is completed. If it does
not, we define the set T of all DFT and CE ground-state
configurations

T � i 2 S : Si is DFTGround state or CE Ground Statef g (13)

Further, we define the maximum CE hull as errhull �
max
j2T

ECE; j � EDFT; j
�� �� and introduce a weight-increment set T′ ≡

{i∈T:|ECE, i−EDFT, i|>0.5errhull}. For each configuration i∈T′, wi,i is
increased

ffiffiffi
24

p
≈ 1.19 times. The procedure is continued with step (2).

This weight adjustment scheme guarantees that in-sample
ground states are preserved, since it iteratively converges
the CE hull to the DFT hull and corrects spurious ground-state
configurations.
A comparison of the optimal cv scores obtained for different

numbers of input clusters using both methods is shown in
Figs. 3b, c. The cv score is, once again, used as a standard measure
for the predictive power of the fits. In case of the LixFe(1−x)O
system, the predictive power of the QP fit is consistently better
than the fit obtained using the weight adjustment technique, and
the improvement of the cv score is generally found to be around
2meV/f.u. or 10%. For the LixTi(1−x)O system, the cv score of the QP
CE fit also improves about 3 meV/f.u. or 10% of the CE fit from
weight adjustment, except for 625 input clusters for which both
methods give equivalent results. However, considering all
numbers of input clusters, the overall best cv score for the QP
method is 1.5 meV/f.u. or 5% better. While absolute energy errors
on the order of a few meV/f.u. are close to the inherent error of
density functional theory, similar errors in the relative energies of
different configurations may add up and thereby give rise to
qualitatively different phase diagrams.
Generally, we observed that the weight adjustment method biases

some configurations by more than a factor of one thousand (wi,i> 103),
resulting in overfitting of those particular configurations, whereas the
QP scheme shows no evidence of such a partial overfitting.
In summary, we conclude that the QP methodology of this work

has significant advantages over conventional weight adjustment

for the preservation of in-sample ground states. However, as will
be demonstrated in the following section, the superiority of the
QP approach becomes truly evident when out-of-sample config-
urations are considered.

Out-of-sample ground-state preservation
Suppose that we are certain that the set of reference configura-
tions available for the construction of the CE model comprises all
physical ground states of the system. This situation could occur
after an extensive exploration of the configurational space or
when the DFT data agrees exceptionally well with experiment.
With such confidence in the reference data set, we would like to
guarantee that the fitted CE model not only reproduces the
ground states of the reference data, but also does not possess any
additional ground states that are not already present in the
reference data. We call this property out-of-sample ground-state
preservation. In the following, we describe an iterative procedure
for constructing CE models that guarantee out-of-sample ground-
state preservation up to a given number of periodic sites. We will
further show that this procedure is generally a useful strategy to
construct CE models even when, initially, it is not known whether
ground states outside of the reference set exist.
The QP formulation established in Eq. (11) provides ground-

state preservation within the set of input data. However, out of
sample ground-state preservation is not guaranteed. In principle, if
the true configuration polytope,49 P, is known for a set of possible
ECIs, i.e., σ∈P can be added and solved within a QP, one could add
the following constraint:

Π σð ÞJ �
X
i2H

xi σð ÞΠ σð ÞJ 8σ 2 P (14)

to Eq. (11) and the corresponding optimization problem will result
in a globally ground-state preserved CE fit. In practice, however,
solving the configurational polytope for an arbitrary CE is an
undecidable problem.50 Although this does not necessarily mean
that finding a ground-state preserving fit is globally undecidable
as well, this fact hints at the intrinsic difficulty of the out-of-sample
ground-state preservation problem.
Instead of determining a priori constraints that guarantee out-

of-sample preservation, we first examine a CE fit with in-sample
ground-state preservation obtained from the QP methodology
with optimal parameters (sparseness, number of input clusters)
and determine all ground states of the CE model up to a defined
system size using the methodology of reference.47 The ground-
state hull defined by the input configurations is denoted as the in-
sample hull whereas we refer to the hull that is based on all
identified ground states as the out-of-sample hull. A comparison of
the in-sample and out-of-sample hulls for LixFe(1−x)O and LixTi(1−x)O
for supercell sizes with up to 16 sites is shown in Fig. 4. For Lix
Fe(1−x)O, one extra ground-state at x = 5/8 is identified that is
predicted to be 6meV below the in-sample hull. Even though the
distance between the in-sample and out-of-sample hulls is small
(6 meV), this CE would produce a qualitatively wrong phase
diagram due to the spurious ground-state at x = 5/8. For Lix
Ti(1−x)O, the discrepancy between the in-sample CE hull and the
out-of-sample CE hull is even more severe, as shown in Fig. 4b.
In the following we would like to arrive at a scheme to construct

a CE that does not lead to additional ground states, i.e., out-of-
sample ground-state preservation. Such scheme is useful in
efficient determination of new ground-state configurations and
self-consistent CE. Instead of determining the true configurational
polytope of Eq. (14), we arrive at a CE model with out-of-sample
ground-state preservation iteratively by determining the global
ground states of preliminary CE models (as above) to identify
those configuration σ∈P for which Eq. (14) is not satisfied.
Afterwards, without additional DFT calculations, the constraint
corresponding to these configurations σ are added to the QP form

Construction of ground-state preserving sparse lattice models
W Huang et al.

6

npj Computational Materials (2017)  30 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



as in Eq. (14). By iteratively calculating the ground-state hulls and
adding further constraints, global ground-state preservation up to
a large supercell size can be achieved. The procedure is illustrated
in Fig. 5a.
To demonstrate the convergence of this iterative refinement,

we applied the procedure to the two model systems for supercell
size of up to 16 sites. The weight adjustment procedure described
above is used for comparison. Small initial weights, 10−4, and
energies of about 1 meV above the hull are assigned to the
predicted new ground states. The results are shown in Fig. 6a for
LixFe(1−x)O and Fig. 6b for LixTi(1−x)O. For reference, the figure also
shows the results of an iterative refinement using the weight
adjustment method. The maximum distance between the in-
sample hull and the out-of-sample hull is plotted in the upper

panel as a measure of the difference between the two hulls as the
iteration progresses. The corresponding cv score is plotted in the
lower panel as a measure of the predictive power of the CE fit.
As seen in Fig. 6, for both systems, LixFe(1−x)O and LixTi(1−x)O, the

maximum distance (defined as the difference of energy under the
same x) between the out-of-sample and in-sample hulls decreases
monotonously to 0 with the QP methodology. The iterative weight
adjustment also converges for LixFe(1−x)O, though the distance
between the hulls fluctuates and does not decay monotonously.
For LixTi(1−x)O the weight adjustment method does not converge.
More importantly, the cv scores of the QP fits are nearly constant
throughout the iterations, whereas the cv score continuously
increases for the weight adjustment algorithms. This means that,
using the QP methodology, out-of-sample ground-state

Fig. 5 a Flow chart of the iterative procedure for constructing out-of-sample ground-state preserving cluster expansion models. b Flow chart
of a combined DFT-CE configurational sampling resulting in the construction of ground-state consistent cluster expansion models
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preservation can be achieved without sacrificing the predictive
power of the CE fit. On the other hand, the weight adjustment
technique that is often used for CE construction is not guaranteed
to converge and rends to achieve gound-state preservation at the
cost of predictive power (increasing cv score). We therefore
conclude that the QP methodology developed in the present work
allows for the systematic construction of CE models with in-
sample and out-of-sample ground-state preservation.
The results above are based on an exact ground-state search for

system sizes of up to 16 sites, however, for the purpose of phase
diagram calculations via Monte Carlo simulations much larger
supercell sizes may be required. To construct CE models that are in
practice ground-state preserving even for sufficiently large system
sizes, the exact ground-state search may be replaced by simulated
annealing simulations, which allow to determine plausible ground
states for larger supercell size (but cannot provide proof that all
ground states have been identified, see ref. 47 for a more detailed
discussion). We repeated the iterative procedure of Fig. 5a for
LixTi(1−x)O for supercell sizes with up to 512 sites using simulated
annealing, and the results are depicted in Fig. 6c.
As shown in Fig. 6a for smaller cell sizes, using the QP

methodology, the distance between the in-sample and out-of-
sample CE hulls decreases monotonously to 0 within 7 iterations,
and the cv score remains nearly constant. As before, for the
iterative weight adjustment algorithm does not achieve complete
convergence even after 18 iterations and gives rise to a dramatic
increase of the cv score. This final example demonstrates again
that the QP methodology is a robust scheme to obtain ground-
state preserving CE fits even for large system sizes that are
suitable for realistic Monte Carlo simulations.
Finally, we point out that the iterative procedure for out-of-

sample ground-state preservation is not only useful, when the
ground states of the system are known a priori. Instead, the
procedure may also serve as a means for the sampling of
the configurational space to generate additional reference data.
For this purpose, the configurations that were identified as
“spurious” ground states may be evaluated with the reference

method (i.e., DFT) to confirm whether any unknown ground-state
has been discovered. By construction, this approach also provides
a good stopping criterion for the cluster expansion fit when no
additional ground states have been identified. This procedure is
illustrated in Fig. 5b. If DFT calculations for all prospective new
ground states are carried out and none of them turns out to be an
actual ground-state, the out-of-sample ground-state preserving fit
has the correct assumption and the resulting CE fit is a valid fit
with consistently low cv errors. No further iteration is necessary,
and the CE fit is finalized. On the other hand, if additional DFT
ground states are found within the proposed set, then the out of
sample ground-state preserving fit would have to be re-started.
To summarize, in this article, we presented a robust and

efficient procedure to obtain ground-state preserving cluster
expansion models. The method is formulated in terms of
quadratic programming and compressive sensing and is mathe-
matically rigorous. We demonstrated the robustness of the
approach by application to the phase diagrams of LixFe(1−x)O
and LixTi(1−x)O that are challenging to describe with conventional
cluster expansion techniques. We further showed that out-of-
sample ground-state preservation can be achieved up to large
supercell sizes. These properties make the presented quadratic
programming approach an attractive tool for the fit of general
constraint lattice models and point the way towards the fully
automated construction of cluster expansion models for materials
simulations.
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