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1 Introduction

One of the most remarkable recent developments in quantum gravity is the realization
that semi-classical Euclidean quantum gravity requires us to sum over ensembles of semi-
classical geometries, at least for two-dimensional Jackiw-Teitelboim gravity [1, 2] and three-
dimensional pure gravity [3, 4]. In the language of holography, such an ensemble average
in the bulk is translated into an ensemble of conformal field theories (CFTs). It is therefore
of great interest to further study ensembles for a simple class of CFTs, and discuss their
holographic interpretations. This will hopefully shed light on the question of when and
how ensemble averages arise more generally in holography. For non-supersymmetric CFTs
we generically do not expect any moduli space. However, there are still known examples
of moduli spaces of CFTs without supersymmetry in the literature [5, 6]. In the recent
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references [7, 8], the ensemble average of toroidally-compactified free bosons has been
considered. The moduli space in this case is the Narain moduli space:

MIIp,p = O(p, p;Z)
∖
O(p, p;R)

/
(O(p;R)×O(p;R)) , (1.1)

where IIp,p denotes the even, self-dual lattice associated with the compactification on the
p-dimensional torus Tp. The resulting average was then interpreted in the holographic dual
as an exotic gravity theory approximated by the Abelian Chern-Simons theory with gauge
group U(1)2p. This holographic duality was studied further in e.g. [9–15]. In this paper we
consider the generalization where the associated CFT moduli space is a more general type
of Narain moduli space associated with an indefinite quadratic form Q of rank p + q and
signature (p, q):1

MQ = OQ(Z)
∖
(O(p, q;R)

/
(O(p;R)×O(q;R)) , (1.2)

where OQ(Z) is a subgroup of O(p, q;Z) preserving the quadratic form Q. The dimension
of this moduli space is

dimRMQ = pq . (1.3)

In the process of generalizing to an arbitrary integral quadratic form Q, we will encounter
many interesting features which were not present in the previous studies. Our discussion
applies to non-self-dual lattices, and additionally to lattices with p 6= q (such as those
arising from toroidal compactifications of the heterotic string theories), where we have
gravitational anomalies. Finally, we are also able to analyze odd integral lattices, where
the partition function is dependent on the choice of spin structure. Our analysis shows that
the partition function after the ensemble average contains spin Chern-Simons invariants for
the handlebody geometries, giving further support to the appearance of the Chern-Simons
term in the holographic dual.

The rest of this paper is organized as follows. In section 2, we discuss the case where the
integral quadratic form Q is even. We find that the ensemble average of the CFT partition
function is equal to an Eisenstein series associated with Q, which can be interpreted as
a sum over geometries in the three-dimensional Chern-Simons theories. In section 3, we
extend the discussion to an odd integral quadratic form. In this case we have a non-
trivial dependence on the choice of spin structure, and we identify the holographic dual
to be a spin Chern-Simons theory. While the discussions in sections 2 and 3 address the
holographic duality after ensemble averaging, in section 4 we discuss holography before
ensemble averages. Finally, section 5 is devoted to a summary and concluding remarks.
We include appendices on technical materials.

1We will also denote p− q as the signature in some parts of this paper. The usage is clear from context.
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2 Ensemble average of bosonic CFTs

2.1 Lattices with even quadratic forms

In this section we consider free boson CFTs with momenta valued in a (p+ q)-dimensional
integral lattice Λ = Zp+q ⊂ Rp+q, equipped with an even quadratic form

Q(`) =
p+q∑
i,j=1

Qij`
i`j (2.1)

with signature (p, q). This quadratic form is said to be even if the value Q(`) is even for
any integral vector `i, of length p + q. This condition implies that Qii is even for any i,
and Qij is an integer for i 6= j; it also implies the integrality of the bilinear form

Q(`,m) := Q(`+m)−Q(`)−Q(m)
2 =

p+q∑
i,j=1

Qij`
imj . (2.2)

Before coming to the discussion of general Q, it is useful to remind ourselves of the
simplest case of the S1-compactification of the free boson. In this case we have p = q = 1,
and the lattice Λ is given by

Λ =
{(

pL = n

2R + wR, pR = n

2R − wR
)
∈ R2

∣∣∣n,w ∈ Z
}
, (2.3)

where the integers n and w represent the momentum and winding, respectively. The radius
R of the circle is the coordinate for the Narain moduli space. The quadratic form for this
example is

Q({n,w}) = 2nw = p2
L − p2

R ∈ 2Z , (2.4)

which determines the so-called II1,1 lattice. Note that Q is independent of the modulus
R, while the choice of the modulus is equivalent to the choice of the decomposition of
the quadratic form Q into two positive definite quadratic forms QL := p2

L and QR := p2
R

defined on one-dimensional subspaces VL, VR of R2. Such a choice is also equivalent with
the choice of a positive quadratic form on the whole of R2:

H({n,w}) := QL +QR = p2
L + p2

R = n2

2R2 + 2w2R2 . (2.5)

Let us now discuss the case of a general even quadratic form Q. The point of the moduli
spaceMQ is again specified by decomposing the quadratic form into left and right-moving
parts QL and QR. Namely, we choose a decomposition Rp+q = VL⊕VR into a p-dimensional
subspace VL (and a q-dimensional subspace VR) together with positive quadratic forms QL
(and QR) on VL (and VR) respectively, such that we have the left-moving and right-moving
momenta pL and pR:

p2
L = QL(`) = Q(`) (` ∈ VL) , p2

R = QR(`) = −Q(`) (` ∈ VR) . (2.6)
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We can simply write this as2

Q(`) = QL(`)−QR(`) = p2
L − p2

R . (2.7)

As in the case of the circle compactification, one can also define a positive quadratic form,
the Hamiltonian H(`) := QL(`)+QR(`), which can also be used as another parametrization
of the moduli space. Note that the positive quadratic form H satisfies H(`) ≥ Q(`) for all
`, and is moreover the minimal such choice;3 for this reason H is called a minimal majorant.

Notice that for any quadratic form Q of signature (p, q), one can apply an element of

GL(p, q;R) to express Q in an orthonormal frame `1, . . . , `p+q: Q(`) =
p∑
i=1

`2i −
p+q∑
i=p+1

`2i .

This clearly leads to VL = {`1, . . . , `p}, VR = {`p+1, . . . , `p+q} and their associated quadratic
forms

QL(`) =
p∑
i=1

`2i , QR(`) =
p+q∑
i=p+1

`2i , H(`) =
p+q∑
i=1

`2i . (2.8)

The moduli space is parameterized by transformations that preserve QL − QR, modulo
those that fix H. We also must quotient by transformations that simply permute points of
the lattice. This explains the double coset in (1.2).

The incompatibility between a general O(p, q;R) transformation and the integrality of
the lattice Λ means that we have VL ∩ Λ = VR ∩ Λ = ∅ at a generic point in the moduli
space. The concepts of “left- and right-moving lattices” therefore do not exist. However,
there are still special sub-loci of the moduli space where VL ∩ Λ or VR ∩ Λ becomes non-
trivial, and this is precisely the locus where the symmetry of the CFT enhances. Indeed,
the moduli space MQ arises from deformations of the Wess-Zumino-Witten models by
currents in the Cartan subalgebras of the left and right current algebra symmetries [16].
The cosetsMQ are submanifolds of MIIp,p where only restricted sets of exactly marginal
operators are turned on.

2.2 CFT partition function

In the majority of this section, we study the genus one CFT partition function. (We will
comment on higher genus partition functions later in section 2.6.) The genus one partition
function of our theory, associated with a pointm of the moduli spaceMQ, can be written as

ZQ(τ, τ ;m) = ϑQ(τ, τ ;m)
η(τ)pη(τ)q , (2.9)

where τ = τ1 + iτ2 is the modulus of the torus, η(τ) is the Dedekind eta function, and ϑQ
is the Siegel-Narain theta function, which is defined as:

ϑQ(τ, τ ;m) :=
∑
`∈Λ

eπiτ1Q(`)−πτ2H(`) =
∑
`∈Λ

eπiτQL(`)−πiτQR(`) . (2.10)

2Strictly speaking, QL(`) was defined previously only on VL, and we have now extended this to the
whole of V by setting QL = 0 on VR. A similar comment applies to QR(`).

3We can define an ordering among the positive definite quadratic forms by defining Q1 ≤ Q2 if and only
if Q1(`) ≤ Q2(`) for all `. A minimal majorant is minimal with respect to this partial ordering.
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We can also write this in the more familiar notation

ϑQ(τ, τ ;m) =
∑
`∈Λ

qp
2
L(`)/2qp

2
R(`)/2 , (2.11)

with q := exp(2πiτ), q := exp(−2πiτ). Note that this function depends explicitly on the
choice of the point m in the moduli spaceMQ.4

We can introduce more general partition functions. Let us denote the dual lattice of
Λ by Λ∗:

Λ∗ :=
{
x
∣∣∣Q(x, `) ∈ Z (∀ ` ∈ Λ)

}
. (2.13)

By definition we have Λ ⊂ Λ∗, but Λ ( Λ∗ unless Λ is self-dual.5 Let us define the
discriminant group D by

D := Λ∗/Λ . (2.14)

The theta function ϑQ,h shifted by a point h ∈ D is defined as:

ϑQ,h(τ, τ ;m) :=
∑
`∈Λ

eπiτ1Q(`+h)−πτ2H(`+h) =
∑
`∈Λ

eπiτQL(`+h)−πiτQR(`+h) , (2.15)

with ϑQ(τ, τ ;m) = ϑQ,h=0(τ, τ ;m). We can define the associated partition function as

ZQ,h(τ, τ ;m) := ϑQ,h(τ, τ ;m)
η(τ)pη(τ)q . (2.16)

From now on we will suppress explicit dependence of non-holomorphic quantities on τ ,
since this dependence should be clear from context.

The modular transformations of the Siegel-Narain theta function ϑQ,h(τ ;m) are [17,
section 4, equation (37)]

T : ϑQ,h(τ + 1;m) = eπiQ(h,h) ϑQ,h(τ ;m) ,

S : ϑQ,h

(
−1
τ

;m
)

= e−iπσ/4√
| detQ|

τ
p
2 τ

q
2
∑
h′∈D

e−2πiQ(h,h′)ϑQ,h′(τ ;m) ,
(2.17)

where σ := p − q is the signature, and T and S are PSL(2,Z) matrices whose SL(2,Z)
representatives we take to be (using the same symbols T and S)

T =
(

1 1
0 1

)
, S =

(
0 −1
1 0

)
. (2.18)

4One might be tempted to rewrite this as a factorized expression into sums over “left- and right-moving
lattices” ΛL,ΛR:

ϑQ(τ, τ ;m) ?=

( ∑
`L∈ΛL

qp
2
L(`)/2

)( ∑
`R∈ΛR

qp
2
R(`)/2

)
. (2.12)

However, as remarked already such left and right-moving lattices do not exist at a generic point of the
moduli space, and therefore the theta function does not factorize into holomorphic and anti-holomorphic
parts.

5A lattice Λ is self-dual if Λ = Λ∗, or equivalently if the associated quadratic form Q has determinant
±1, i.e. | detQ| = 1.
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We have the relation (ST )3 = S2 = 1 in PSL(2,Z). Note that the modular S-transformation
mixes the theta functions ϑQ,h(τ ;m) with different values of h ∈ D . Using the modular
transformation rule for the eta function

T : η(τ + 1) = e2πi/24η(τ) ,

S : η

(
−1
τ

)
=
√
−iτ η(τ) ,

(2.19)

the modular transformation of the partition function ZQ,h can be worked out as

T : ZQ,h(τ + 1;m) = eπiQ(h,h)e−2πiσ/24 ZQ,h(τ ;m) ,

S : ZQ,h

(
−1
τ

;m
)

= 1√
|detQ|

∑
h′∈D

e−2πiQ(h,h′)ZQ,h′(τ ;m) . (2.20)

Note that the partition function is in general not modular invariant. This is not surprising
since we are studying a general choice of the quadratic form Q, and in particular the
theories in general have gravitational anomalies (p 6= q) and also are not invariant under S
unless Λ = Λ∗. As we shall see, this does not affect our discussion of the ensemble average
and the holographic dual. If we impose modular invariance, the even lattice needs to be
self-dual, so that the discriminant group D is trivial. Recall that for the self-dual case,
| detQ| = 1. Therefore, the equations in (2.20) above simplify

T : ZQ(τ + 1;m) = e−2πiσ/24 ZQ(τ ;m) ,

S : ZQ

(
−1
τ

;m
)

= ZQ(τ ;m) ,
(2.21)

meaning that the partition function is modular invariant if σ ≡ 0 modulo 24. This happens,
for example, if Q is one of the 24 positive-definite, even, self-dual lattices of rank 24, known
as Niemeier lattices.

2.3 Ensemble average and the Siegel-Weil theorem

Let us next consider the ensemble average of the CFT moduli spaceMQ. This moduli space
is a discrete quotient of a symmetric space G/K with G = O(p, q) and K = O(p)×O(q),
and has a G-invariant Haar measure [dm], which is unique up to an overall multiplication
by a constant. This measure coincides with the Zamolodchikov metric of the conformal
manifold (described in (A.3) in appendix A). Note that when integrating over the CFT
moduli m the moduli τ of the boundary torus will be kept to be a fixed value.

Let us consider the ensemble average of the partition function

〈ZQ,h(τ ;m)〉MQ
:= 1

Vol(MQ)

∫
MQ

[dm] ZQ,h(τ ;m) , (2.22)

where the normalization factor

Vol(MQ) :=
∫
MQ

[dm] (2.23)
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is the volume of the moduli space.6 Note that (2.22) is independent of the choice of the
overall normalization factor of the measure on the moduli space. Since the eta function
piece of the partition function is independent of the moduli space, this amounts to the
evaluation of the ensemble average of the Siegel-Narain theta function (2.15):

〈ϑQ,h(τ)〉MQ
:= 1

Vol(MQ)

∫
MQ

[dm] ϑQ,h(τ ;m) . (2.24)

For convergence of the right hand side of (2.24), we impose p + q > 4 [17]. A remarkable
theorem by Siegel (see [20, Satz 1] and [17, Section 4, Theorem 12]), later generalized by
Weil [21, 22] and therefore known as the Siegel-Weil theorem, states that when pq 6= 0 the
ensemble average is given by

〈ϑQ,h(τ)〉MQ
= EQ,h(τ) , 〈ZQ,h(τ ;m)〉MQ

= EQ,h(τ)
η(τ)pη(τ)q , (2.25)

where
EQ,h(τ) := δh∈Λ +

∑
(c,d)=1, c>0

γQ,h(c, d)
(cτ + d)

p
2 (cτ + d)

q
2

(2.26)

is the Siegel-Eisenstein series (henceforth referred to simply as Eisenstein series) associated
with the quadratic form Q, and δh = 1 for h ∈ Λ, and δh = 0 for h /∈ Λ. Note that the
constant term is expected for h ∈ Λ since in the limit τ2 →∞, we still have a contribution
from the origin ` = 0 of the lattice Λ in the sum (2.10). The factor γQ,h(c, d) is given by a
version of the quadratic Gauss sum

γQ,h(c, d) := eπiσ/4|detQ|−
1
2 c−

p+q
2

∑
`∈Λ/cΛ

exp
[
−πid

c
Q(`+ h)

]
. (2.27)

Finally, the summation is over a pair of coprime integers c, d satisfying c > 0. Equivalently,
the sum is over all rational numbers d/c. The modular transformations of the Eisenstein
series EQ,h(τ) are

T : EQ,h(τ + 1) = eπiQ(h,h)EQ,h(τ) ,

S : EQ,h

(
−1
τ

)
= e−iπσ/4√

|detQ|
τ
p
2 τ

q
2
∑
h′∈D

e−2πiQ(h,h′)EQ,h′(τ) .
(2.28)

Notice that the modular transformations of the Eisenstein series (2.28) are equivalent to
the modular transformations of the Siegel-Narain theta function described in (2.17), as
expected from the Siegel-Weil formula (2.25).

We can also make contact with the results used in [7, 8]. Let us consider the case of
the (p, q = p) Narain moduli space IIp,p discussed before. We then have (recall again that
|detQ| = 1 for a self-dual lattice, and recall that c and d are coprime)

γQp,p(c, d) = c−p
c−1∑

ni,wi=0
exp

[
−2πid

c
niwi

]
= 1 , (2.29)

6See e.g. [18, 19] for discussion of the volumes of the moduli spaces.
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so that we have a non-holomorphic Eisenstein series

〈ϑ(τ)〉M = EQp,p(τ) :=
∑

c≥0,(c,d)=1
|cτ + d|−p . (2.30)

We now give a simple proof of the Siegel-Weil theorem for an even, indefinite quadratic
form Q. We begin by presenting the idea of the proof, which is similar to the strategy
in [7, 8, 14]. The first step is to show that both sides of (2.26) have the same behavior
at the cusps of the upper half plane, which are the images of τ = i∞ under PSL(2,Z).
Then we will derive a differential equation that is satisfied by both sides of (2.26), and will
proceed to show that a solution to this differential equation is uniquely identified by its
behavior at the cusps. The Siegel-Weil theorem then follows. This argument only relies on
the transformation laws for theta functions, and does not involve explicit integration over
moduli space.

To identify the behavior of the left hand side of (2.26) near a cusp, note that for any
h, the function ϑQ,h is a modular form for Γ(N), where the level N (also the level of the
quadratic form Q) is the smallest integer such that NQ−1 is even [23, 24]. The quotient
H/Γ(N) has cusps at the images of τ = i∞ under PSL(2,Z)/Γ(N) = PSL(2,Z/NZ). The
asymptotic behavior of the theta functions at τ = i∞ is given by δh∈Λ. The asymptotic
behavior of the theta functions at the other cusps is then determined by the modular
transformation of the theta functions. In particular, if a modular transformation g ∈
PSL(2,Z) acts as

ϑQ,h(gτ ;m) =
∑
h′∈D

Uhh′(g, τ)ϑQ,h′(τ ;m) , (2.31)

then the behavior of ϑQ,h(τ) near the cusp τ = g · i∞ is given by

ϑQ,h (τ ;m) ∼ Uh0(g, g−1τ) . (2.32)

The matrix U can be computed from the corresponding formulas for T and S given previ-
ously in (2.17), and its general formula was given in [17]. If g · τ = (aτ + b)/(cτ + d), then
we find

ϑQ,h (τ ;m) ∼ γQ,h(c,−a)
(cτ − a)p/2(cτ − a)q/2

. (2.33)

We see the behavior near each of the cusps is completely determined by the behavior at
the cusp at infinity, and matches the behavior of the Eisenstein series near the cusp.

The next step is to derive a differential equation satisfied by both sides of (2.26). It is
simple to show that(

τ2(∂2
1 + ∂2

2) + p+ q

2 ∂2 + i(q − p)
2 ∂1

)
EQ,h(τ) = 0 . (2.34)

In appendix A, we show that 〈ϑQ,h〉MQ
satisfies the same differential equation. We are

interested in the uniqueness of solutions to (2.34). For this purpose, note that if f(τ) is a
solution to (2.34), then(

�(p−q)/2 + ((p+ q)/4− 1)(p+ q)
4

)
(τ (p+q)/4

2 f(τ)) = 0 , (2.35)

– 8 –
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where the weight k Laplacian is defined by

�k := −τ2
2 (∂2

1 + ∂2
2) + ikτ2∂1 . (2.36)

The minimum eigenvalue for a square normalizable eigenfunction of �k is7

λmin,k = |k|2

(
1− |k|2

)
. (2.38)

Taking p > q, we then have

(1− (p+ q)/4)(p+ q)
4 − λmin,(p−q)/2 = 1

4(2− p)q . (2.39)

We have p > 2 for convergence, so the right hand side is less than or equal to zero. It follows
that there is no normalizable eigenfunction satisfying the differential equation (2.35), except
in the case q = 0 where such a function is allowed.

From now on we fix q > 0. We consider the function

fQ,h(τ) = EQ,h(τ)− 〈ϑQ,h(τ)〉MQ
. (2.40)

Both EQ,h and 〈ϑQ,h〉MQ
are modular forms for Γ(N) with the same eigenvalue λ <

λmin under the Laplacian after rescaling by τ
(p+q)/4
2 . Therefore fQ,h is as well. But the

asymptotics of 〈ϑQ,h〉MQ
and EQ,h are the same at the cusps, so fQ,h is zero at all of the

cusps. Since there cannot be a normalizable eigenfunction of the Laplacian on H/Γ(N)
with eigenvalue λ < λmin, it follows that fQ,h = 0, which completes the argument.

2.4 Bulk interpretation

Having identified the ensemble average, let us now come to the holographic interpretation.
In the holographic bulk we expect a sum over semiclassical geometries which are asymp-
totically AdS3. Such geometries were classified in [25],8 and include geometries labeled by
an element of PSL(2,Z), the so-called “PSL(2,Z) black holes” [26, 27].9 Mathematically,
these are solid tori with torus boundaries (genus one handlebodies), where PSL(2,Z) acts
as the mapping class group on the boundary torus. More precisely, the geometry is labeled
by Γ∞\PSL(2,Z), where Γ∞ ' Z is the Abelian group generated by the matrix T . An

7Let fλ be an eigenfunction for �k with eigenvalue λ, assuming k > 0 without loss of generality.
Integrating by parts, we have∫

H/Γ(N)

dτ1 dτ2
τ2
2

fλ

(
�k −

k

2

(
1− k

2

))
fλ =

∫
H/Γ(N)

dτ1 dτ2
τ2
2

∣∣∣(iτ2(∂1 + i∂2) + k

2

)
fλ

∣∣∣2 . (2.37)

The right hand side is manifestly positive, so the eigenvalue of a normalizable eigenfunction of �k is bounded
from below by (2.38).

8This amounts to the classification of hyperbolic 3-manifolds H3/Γ whose fundamental group is contained
in that of the two-dimensional boundary torus.

9The asymptotically AdS3 boundary condition allows for orbifolds M(c,d)/Zm of PSL(2,Z) black
holes [25]. There is in general no consensus on which geometries we should include in the path integral of
fully quantum gravity. We will not include these orbifold geometries in this paper, since these geometries
are not needed for reproducing our partition functions.
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element of the quotient group Γ∞\PSL(2,Z) can be parametrized by a pair of coprime in-

tegers (c, d) with c > 0, since given such a pair we can uniquely identify an element
(
a b

c d

)
of PSL(2,Z), up to ambiguities in Γ∞. We denote the associated geometry by M(c,d): these
geometries include thermal AdS3 (M(0,1)) and the BTZ black hole (M(1,0)) [28]. Since we
have a sum over essentially the same pair (c, d) in (2.26), we expect to interpret the sum
in (2.26) as a sum over geometries.

One subtlety for us is that our theories in general have gravitational anomalies (since
p 6= q), and hence the partition function is not invariant under the large coordinate trans-
formations in Γ∞. (Relatedly, the BTZ black hole is now rotating with angular momentum
J = σ

24 = p− q
24 [29].) In the discussion of the partition function, we need to be careful

in picking up a representative from the coset Γ∞\PSL(2,Z), since different choices give
partition functions differing by factors of exp(2πiσ/24).

By identifying the δh∈Λ piece as a contribution from matrices with c = 0 (and hence
d = 1), we can write

〈ZQ,h(τ)〉MQ
= 1
η(τ)pη̄(τ)q

∑
(c,d)=1,c≥0

γQ,h(c, d)
(cτ + d)

p
2 (cτ + d)

q
2
, (2.41)

where we defined γQ,h(0, 1) := δh∈Λ. Owing to the modular transformations of the Dedekind
eta function mentioned previously in (2.19), one obtains

〈ZQ,h(τ)〉MQ
=

∑
g∈Γ∞\PSL(2,Z)

e
2πiσ
24 Φ(g)− iπσ4

γQ,h(c, d)
η(g · τ)pη̄(g · τ)q , (2.42)

where g is a PSL(2,Z) matrix of the form
(
a b

c d

)
, and Φ(g) ∈ Z is the Rademacher

function.10 Note that the phase factor exp(2πiσΦ(g)/24) as well as the eta functions
η(g · τ)pη̄(g · τ)q depend on the choice of a representative of the quotient Γ∞\PSL(2,Z),

10The modular transformation rule for the eta function is given by

η
(
aτ + b

cτ + d

)
= exp

(
2πi
24 Φ

(
a b

c d

))
(−i(cτ + d))

1
2 η(τ) c > 0 . (2.43)

Here the Rademacher function Φ(g) ∈ Z is defined by

Φ
(
a b

c d

)
= a+ d

c
− 12s(d, c) c > 0 , (2.44)

and the Dedekind sum s(d, c) for c > 0 is defined by

s(0, 1) := 0 , s(d, c) :=
c−1∑
k=1

((
k

c

))((
dk

c

))
, (2.45)

with

((x)) :=

{
0 (x ∈ Z)
x− [x]− 1

2 (otherwise)
. (2.46)
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as expected from the gravitational anomaly. However, the whole combination does not
depend on such a choice.

Let us next consider the contribution from the thermal AdS3 geometry. While the
graviton has no dynamical degrees of freedom in the bulk of the three-dimensional gravity,
there are boundary excitations, as studied by Brown and Henneaux [30]. In our context,
we can construct boundary Virasoro generators by the Sugawara construction [31] of the
U(1)p+q current algebras, p left- and q right-moving. We therefore expect the partition
function to be

Z[M(1,0)]
?= 1
η(τ)pη̄(τ)q , (2.47)

and by summing over PSL(2,Z) images we might expect

Zbulk
?=

∑
g∈Γ∞\PSL(2,Z)

1
η(g · τ)pη(g · τ)q . (2.48)

In fact, this is precisely the logic which worked for the special case of the IIp,p lattice [8].
In this special case, we have

〈ZIIp,p(τ)〉M =
EIIp,p(τ)
|η(τ)|2p =

∑
(c,d)=1,c≥0

1
|cτ + d|p|η(τ)|2p . (2.49)

and the expression (2.42) has no ambiguities:

〈ϑIIp,p(τ)〉M =
∑

g∈Γ∞\PSL(2,Z)

1
|η(g · τ)|2p , (2.50)

as anticipated in (2.48). Moreover, the contribution from each geometry was identified
with the partition function of the three-dimensional Abelian Chern-Simons theory, whose
gauge group is U(1)p+q and whose Lagrangian (in Euclidean signature) is determined by
the quadratic form Q

SCS =
p+q∑
i,j=1

i

8πQi,j
∫
M
Ai ∧ dAj = i

8π

∫
M
Q(A, dA) . (2.51)

(Recall that Q is even, ensuring the integer quantization of the levels.) Note that the
appearance of the U(1)p+q gauge symmetry in the bulk is expected from the U(1)p+q global
symmetry of the boundary theory, and the existence of the Chern-Simons term is suggested
from the anomalies of the global symmetries. Moreover the eta function contributions
in (2.50) were derived from the one-loop analysis of the Chern-Simons theory, building on
similar computations in three-dimensional gravity [32].11

Our discussion for a general, even quadratic form Q is more involved than the special
case of the IIp,p lattice, as is evident, e.g., from the non-trivial factors γQ,h(c, d) in (2.26).
It turns out, however, that the bulk theory is still described by the Abelian Chern-Simons

11There are, however, potential subtleties associated with the asymptotic boundary conditions of the
fields in the Chern-Simons theory.
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theory (2.51) in our more general setting. While the bulk theory is an exotic theory
of gravity whose complete understanding is beyond the scope of this paper, the Abelian
Chern-Simons theory is a good approximation to the exotic theory and will successfully
reproduce many results, including the phase factor γQ,h(c, d).

Incidentally, in the condensed matter literature these Chern-Simons theories are used
for the classification of topological phases of interacting system in two spatial dimen-
sions [33], where the matrix Q is often called the K-matrix.12 It is remarkable that all
such theories arise from ensemble averages discussed in this paper.

In order to derive the phase factor γQ,h(c, d), let us first recall the canonical quantiza-
tion of the U(1) Chern-Simons theory with integer level13 k is spanned by a set of states
|h〉 (h = 0, 1/k, . . . , (k − 1)/k) corresponding to a path-integral over a solid torus with
an insertion of a charge kh Wilson line inside. The modular group is represented on the
Hilbert space by the operators

T |h〉 = eπikh
2
e−2πi/24 |h〉 ,

S|h〉 = 1√
k

∑
h′∈D

e−2πikhh′ |h′〉 . (2.52)

Note that the phase factor in the action of T represents the framing anomaly of the Chern-
Simons theory [34], while that of S is simply a discrete Fourier transformation. It is
straightforward to work out a similar formula for a more general Abelian Chern-Simons
theory (2.51), so that one has

T |h;m〉 = eπiQ(h,h)e−2πi σ24 |h;m〉 ,

S|h;m〉 = 1√
| detQ|

∑
h′∈D

e−2πiQ(h,h′)|h′;m〉 , (2.53)

where h, h′ are elements of the discriminant group D (2.14). Since SL(2,Z) is generated
by S and T -transformations, one can work out the action of a more general matrix g =(
a b

c d

)
∈ SL(2,Z):

U(g)|h〉 =
∑
h′∈D

(U(g))h,h′ |h′〉 . (2.54)

Now coming back to the discussion of holography, we are interested in the geometry
of the solid torus without any Wilson line insertions, namely in the state |h = 0〉. This
means that we are interested in the matrix element (U(g))0,h, which we find to be related
by complex conjugation to the factor γQ,h(c, d) in the Eisenstein series EQ,h (see also the
discussion around (2.32) and (2.33)):

〈0|U(g)|h〉∗ = 〈h|U(g)−1|0〉 = e
2πiσΦ(g)

24 − iπσ4 γQ,h(c, d) , c > 0 . (2.55)
12In the literature the level of the Chern-Simons theory is often denoted by Q/2, not Q. Our normalization

here is useful when we discuss spin Chern-Simons theory in section 3.
13As in footnote 12, we choose a normalization where the minimal value of the level for the non-spin

(even) Chern-Simons theory is k = 2.
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As this discussion makes clear, the expression (U(g))h,0 in itself can be identified as the
Chern-Simons partition function of the geometry obtained by gluing two solid tori along
the boundary torus by the mapping class group element represented by U(g). This is the
lens space L(c, d), which is defined for c 6= 0 by a discrete Zc quotient of the three-sphere
|z1|2 + |z2|2 = 1 (with complex z1, z2) by

(z1, z2) ∼ (e2πi 1
c z1, e

2πi d
c z2) ; (2.56)

for c = 0 the lens space is defined to be S1 × S2. The Chern-Simons partition function
for lens spaces was computed by Jeffrey in [35], and also in various other papers such
as [36–43]. The parameters h, h′ represent insertions of Wilson lines in each solid torus.
The extra phase factor exp(2πiσΦ(g)/24) represents the effect of the framing anomaly.
The partition functions of the lens spaces, without any Wilson line insertions, are given by
(U(g))0,0, which is expressed as a sum over contributions from flat connections — for each
contribution, the phase represents the η-invariant of the three-manifold [44], or equivalently
the phase in the one-loop determinant for the Chern-Simons theory [34]. In summary,

〈ZQ,h(τ)〉MQ
=

∑
g∈Γ∞\PSL(2,Z)

〈h|U(g)−1|0〉
η(g · τ)pη(g · τ)q . (2.57)

This completes our derivation of the bulk partition function.
In our discussion of the matrix elements of U(g), it was crucial to assume that the gauge

group of the Chern-Simons theory is U(1)p+q, not Rp+q. If we wish to obtain the honest
wavefunction of the U(1)p+q Chern-Simons theory, however, we should rather consider a
sum of the expression (2.57) over large gauge transformations of the gauge fields. We
will then have a theta function in the numerator, to match with the character of the
boundary current algebra. (We will discuss such wavefunctions in a more generalized setup
in section 4.) The choice of the bulk gauge group, U(1)p+q or Rp+q, is therefore a subtle
question (see [8] for related discussion), and we will leave a better concentual understanding
of this subtlety for future works.

It is interesting to notice that quadratic forms with different signatures (p, q) are related
by analytic continuation. In other words, CFT moduli spaces with different signatures are
all included when we analytically continue the gauge group [45] U(1)p+q to (C×)p+q in
the Chern-Simons theory; different choices of the signatures arise by choosing different
integration contours.

2.5 Positive definite case

In the discussion of the Siegel-Weil formula the special case of pq = 0 was excluded when
we stated the formula. In the chiral case (q = 0), the moduli spaceMQ is zero-dimensional
and therefore trivial. It turns out that there is still a formula of the form [46]

〈〈ϑQ(τ)〉〉 = EQ(τ) . (2.58)

However the ensemble average here, represented by the symbol 〈〈−〉〉, is different from
those for the cases pq 6= 0 - instead of fixing a quadratic form we have a sum over different
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quadratic forms in the “class” of Q. To explain this we introduce some terminology. Two
even quadratic forms Q,Q′ are equivalent in a field F if there exists an element g of
GL(p + q;F) such that Q′ = gTQg. We say that Q,Q′ are in the same class if the two
quadratic forms are equivalent in Z. Similarly, Q,Q′ are in the same genus if Q and Q′ are
equivalent in R as well as Zp for all prime p. It is known that Q and Q′ are in the same
genus if and only if we have Q⊕ II1,1 ' Q′⊕ II1,1. There are only a finite number of classes
inside a given genus g(Q), and this is the class number h(Q).

For a given Q we can consider a representative class Q1, . . . , Qh(Q) with the same genus
as Q. Since the Siegel-Narain theta function depends only on the class of Q, the set of
theta functions {ϑQj} do not depend on the choice of representative elements from the
genus of Q.

The ensemble average in (2.58) is defined by a weighted sum

〈〈ϑQ(Z)〉〉 := 1
M(Q)

h(Q)∑
j=1

ϑQj (Z)
|OQj (Z)| , M(Q) :=

h(Q)∑
j=1

1
|OQj (Z)| , (2.59)

where the normalization factor M(Q) is known as the mass of the quadratic form Q. Note
that holography for chiral theories was discussed in [10], see also [11]. It is far from clear
physically, however, why we need to consider such an ensemble average.14 As an example,
for the case p = 24 this ensemble average is a sum over the 24 even self-dual lattices, the
Niemeier lattices.

Since there are no continuous moduli for a positive definite lattice, we can consider
observables such as correlation functions in addition to the partition function. Here we will
give one example, fixing the self-dual case for simplicity. Let P (`) be a polynomial which
is spherical with respect to Q, meaning that Qij∂i∂jP = 0. Then P (∂X) is a primary
operator in the conformal field theory, and we can consider its one-point function on the
torus [48]. This correlation function is equal to a spherical theta function,

ϑQ,P (τ) =
∑
`∈Λ

P (`)eiQ(`)τ . (2.60)

A theorem of Waldspurger [49, 50] computes the ensemble average of ϑQ,P for some specific
spherical polynomials,

〈〈ϑQ,P νm〉〉 = C
(ν)
k |Tm . (2.61)

Here P νm is defined in terms of Gegenbauer polynomials, Tm is the Hecke operator, and C(ν)
k

is known as Cohen’s function (see [49] for details). It would be interesting to understand
the bulk interpretation of these correlation functions.

2.6 Higher genus

We can repeat the discussions above for a higher genus boundary surface Σg. The higher
genus theta function is given by the expression

ϑg
Q,~h

(Ω;m) :=
∑
~̀∈Λg

eπiTr(Ω1Q(~̀+~h))−πTr(Ω2H(~̀+~h)) =
∑
~̀∈Λg

eπiTr(ΩQL(~̀+~h))−πiTr(Ω̄QR(~̀+~h)) ,

(2.62)
14For indefinite cases there is only one class in a given genus [47].
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where Ω = Ω1 + iΩ2 is the period matrix of size g × g that parametrizes the Siegel upper
half plane, and ~̀= (`1, . . . , `g). The averaged partition function, derived in [51], is given by

〈ϑg
Q,~h

(Ω;m)〉MQ
= EgQ,h(Ω) , (2.63)

where
Eg
Q,~h

(Ω) =
∑

γ∈Γ∞\Sp(2g,Z)

γ~h(C,D)
det(CΩ +D)p/2 det(CΩ +D)q/2

(2.64)

is the Siegel-Eisenstein series and we have assumed that p + q > 2g + 2. The expressions
for γ~h(C,D), which generalizes the genus 1 expressions in (2.27), can be found in [51,
Section 12]. The summation in (2.63) is equivalently over the Lagrangian sublattices in
H1(Σg,Z2) [8], and when Σg is connected can be identified with a sum over handlebod-
ies. We then expect that γ~h(C,D) should be matched with the partition functions of the
Abelian Chern-Simons theory (2.51), now on 3-manifolds obtained by gluing two genus g
handlebodies (i.e. 3-manifolds with Heegaard genus g).15 Note that for any choice of p
and q the formula (2.63) holds only for finitely many g’s — since the exotic bulk theory is
“coarse-grained,” it is not surprising that we have access to only finitely many invariants.

3 Ensemble average of fermionic CFTs

In this section we extend the discussion of the previous section to an integral quadratic
form Q which is not necessarily even. While this might look like a minor change, such a
generalization requires us to carefully discuss spin-structure dependence of our holographic
dualities.16

3.1 Review of spin Chern-Simons theory

To explain the spin-structure dependence, let us begin with the bulk Chern-Simons theory.
Let us recall the standard argument for the quantization of the levels of the Chern-

Simons theory. While the Chern-Simons Lagrangian (2.51) is apparently not gauge-
invariant, one can consider a four-manifold N bounding the three-manifold M , to rewrite
the action (2.51) in terms of the gauge-invariant field strength F = dA as

SCS = i

8π

∫
M=∂N

Q(A,F ) = 2π
∫
N

i

8π2
Q(F, F )

2 . (3.1)

While this depends on the choice of N , a different choice N ′ gives an answer which differs
from that of N by

∆SCS = 2πi
∫
N ′∪N̄

1
8π2

Q(F, F )
2 , (3.2)

15In three-dimensional gravity there are classical solutions with conformal boundary which are not handle-
bodies [52]. It seems that these geometries do not contribute to the partition function. The identification of
the bulk geometry is more non-trivial when the boundary geometry Σ has several disconnected components,
see [8] for further discussion.

16See [53] for a recent discussion of spin structures in two-dimensional quantum gravity.
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where N ′ ∪ N̄ is a closed four-manifold obtained by gluing N ′ and N̄ (N with orientation
reversed) along the common three-manifold M . Since Q is even, Q/2 is integral and
Q(F, F )/(2× 8π2) gives an element of the integer cohomology class. This means that the
combination exp(−SCS) is gauge-invariant in the path integral.

This argument does not apply for odd integral Q. We can, however, cure this problem
by requiring that the three manifold M is spin, and by requiring that the bounding four-
manifold N admits a spin structure compatible with that of M [54, 55]. Then the integral

of Q(F, F )
2

1
8π2 over a closed spin four-manifold is now an integer for any integral quadratic

form Q. The resulting theory then depends on both the topology of the three-manifold M ,
as well as a choice of the spin structure on it.17 We call this theory the spin Chern-Simons
theory (associated with an integral quadratic form Q). Notice that while we are expected
to sum over all the possible geometries in the theories of quantum gravity, one can still
restrict the geometries by fixing their spin structures.

In the rest of this section, we will discuss how to incorporate this spin-structure de-
pendence into the framework of ensemble averages.

3.2 Partition functions with spin structure

In the boundary theory, we consider CFTs that are dependent on the choice of the spin
structure, namely fermionic CFTs (spin CFTs).18

There are four spin structures on the boundary two-dimensional torus, which are la-
beled by H1(T2;Z2) = Z2 ⊕ Z2. We will denote this by the Z2-signs ε1, ε2, each of which
takes values in 0 and 1. Following [54] we define the generalization of the theta func-
tion (2.15) to be

ϑε1,ε2Q,h (τ,m) :=
∑

`∈Λ+h+ε1W/2
eiπτQL(`)−iπτQR(`)(−1)ε2(W,`) , (3.3)

where h is an element of D = Λ∗/Λ, just as before. The characteristic class W ∈ Λ∗,
known as the (integral) Wu class [60, 61], is defined by (W, `) ≡ Q(`) mod 2 for ` ∈ Λ.19

This is solved by Wα = Qαα.20 Note that only ϑ0,0
Q,h and ϑ0,1

Q,h are non-vanishing at the cusp
at τ = i∞. The modular transformations of the theta functions are given in appendix B.
Note that the modular transformations mix spin structures, as shown in figure 1.

The theta function above (3.3) (with h = 0) is reminiscent of the free fermion partition
function

θε1,ε2(τ) =
∑

`∈Z+ε1/2
q`

2(−1)ε2`2 . (3.4)

Here ε1 labels the periodicities on the spatial circle (R or NS), and ε2 labels the periodicity
on the thermal circle. In the Narain CFT, we have operators : exp(ikL · X̂L + ikR · X̂R) :.
These are fermions if Q(k) is odd and are bosons if Q(k) is even [62]. Now let us show

17Any compact oriented three-manifold admits a spin structure [56].
18See [57–59] for recent discussion on spin CFTs.
19This condition determines only the element of the quotient [W ] ∈ Λ∗/(2Λ∗).
20We can check this for binary forms, for example. If Q(`) = a`21 + 2b`1`2 + c`22, then Wα = (a, c), so

(W, `) = a`1 + c`2. Reducing mod 2 we see that Q(`) ≡ (W, `).
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(1, 1) (0, 1)

(1, 0)(0, 0)

T

S

T

S
T

T

S S

Figure 1. Change of spin structures under the mapping class group transformations T, S. Three
even spin structures (0, 0), (0, 1), (1, 0) make a triplet, while the odd spin structure (1, 1) is a singlet.

that (3.3) is the partition function of the CFT. The dependence on ε2 is obvious. To derive
the dependence on ε1, recall the mode expansion for a boson,

X̂L = −ip̂L log z + analytic , (3.5)
X̂R = −ip̂R log z + analytic . (3.6)

Therefore as we go around the circle, we have

(X̂L, X̂R)→ (X̂L + 2πp̂L, X̂R − 2πp̂R) . (3.7)

We want to find the analog of a spin field for a free fermion, which makes fermions anti-
periodic on the spatial circle [62]. We make an ansatz of exponential form : exp(ip · X̂) :.
As we go once around the spatial circle, this transforms as

: eip·X̂ : (e2πiz) = e2πiQ(p,p̂) : eip·X̂ : (z) . (3.8)

Now consider the state : exp(ip · X̂) : (z)|`〉, where ` ∈ Λ. When we go around the circle,
this state picks up a phase exp(2πiQ(p, `)). In order for this state to be anti-periodic when
` is a fermion and periodic when ` is a boson, we therefore need 2Q(p, `) ≡ Q(`) mod 2.
But this is precisely the definition of the characteristic class W . Therefore the spin field is
: exp(iW · X̂/2) :. This creates the Ramond sector ground state, and the dependence on
ε1 then follows.

3.3 Ensemble average

Now that we have computed the partition function for a spin CFT, we can define the
Eisenstein series with spin structure (ε1, ε2) as the average of ϑε1,ε2Q,h over the moduli space,

Eε1,ε2Q,h (τ) := 〈ϑε1,ε2Q,h (τ)〉MQ
. (3.9)

As in the even case, we would like to understand the interpretation of this Eisenstein series
in terms of the bulk Chern-Simons theory.
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Let us start with the case of ε1 = ε2 = 0. In this case, the definition (3.3) coincides
with the previous definition in the even case (2.10), except here Q is not necessarily even.
We can cure this problem by writing (3.3) in terms of 2Q and τ/2:

ϑ0,0
Q,h(τ,m) =

∑
`∈Λ+h

eiπ
τ
2 (2QL(`))−iπ τ2 (2QR(`)) = ϑ2Q,h

(
τ

2 ,m
)
. (3.10)

Since this is expressed in terms of the theta function for an even quadratic form, the
ensemble average can be evaluated using the analysis of section 2.3. We find

E0,0
Q,h(τ,m) = 〈ϑ0,0

Q,h(τ,m)〉MQ
=
〈
ϑ2Q,h

(
τ

2 ,m
)〉
M2Q

= E2Q,h

(
τ

2 ,m
)
. (3.11)

In terms of the sum over geometries, we have

E0,0
Q,h(τ) = δh∈Λ +

∑
(c,d)=1,c>0

2(p+q)/2γ2Q,h(c, d)
(cτ + 2d)p/2(cτ + 2d)q/2

. (3.12)

Since 2(p+q)/2γ2Q,h(c, d) = γQ,h(c, 2d), from the definition of γQ,h(c, d) in (2.27), we obtain

E0,0
Q,h(τ) = δh∈Λ +

∑
(c,d)=1,c>0

γQ,h(c, 2d)
(cτ + 2d)p/2(cτ + 2d)q/2

. (3.13)

We can also divide the sum into c odd and c even, to obtain:

E0,0
Q,h(τ) = δh∈Λ +

∑
(c,d)=1
d even
c>0

γQ,h(c, d)
(cτ + d)p/2(cτ + d)q/2

+
∑

(c,d)=1
d odd
c>0

γQ,h(2c, 2d)
2(p+q)/2(cτ + d)p/2(cτ + d)q/2

.

(3.14)
The expression for γQ,h(2c, 2d) reads as

γQ,h(2c, 2d) = (2c)−(p+q)/2eiπσ/4
∑

`∈Λ/(2cΛ)
e−πidQ(`)/c . (3.15)

If we now shift `→ `+ cx, where x is a basis vector with Q(x) odd, then the summand is
multiplied by exp(−iπdc) = (−1)c, where we assumed that d is odd. Therefore for c even
we have γQ,h(2c, 2d) = 2(p+q)/2γQ,h(c, d), and for c odd the sum vanishes. The answer then
reduces to

E0,0
Q,h(τ) = δh∈Λ +

∑
(c,d)=1
cd∈2Z
c>0

γQ,h(c, d)
(cτ + d)p/2(cτ + d)q/2

. (3.16)

This is the same expression for EQ,h (2.26) for even Q, but with the additional constraint
that cd is even.

Now that we have identified the Eisenstein series for the (0, 0) spin structure, we can
generate two more spin structures by the modular transformations (see figure 1).
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Let us start with the case of | detQ| = 1 so that h = 0. Then the other two Eisenstein
series are derived from the modular transformations of the theta functions to be

E0,1
Q,0(τ) = E0,0

Q,0(τ + 1) , (3.17)

E1,0
Q,0(τ) =

eiπσ/4E0,0
Q,0((τ − 1)/τ)
τp/2τ q/2

, (3.18)

and consequently

E0,1
Q,0(τ) = 1 +

∑
(c,d)=1

c(d+1)∈2Z
c>0

γQ,0(c, d− c)
(cτ + d)p/2(cτ + d)q/2

, (3.19)

E1,0
Q,0(τ) = eiπσ/4

τp/2τ q/2
+ eiπσ/4

∑
(c,d)=1

(c+1)d∈2Z
d<0

γQ,0(−d, c+ d)
(cτ + d)p/2(cτ + d)q/2

. (3.20)

Now let us look at the γ’s that appear in the numerator of (3.16), (3.19) and (3.20).
We expect that these expressions should coincide with the Chern-Simons invariants, as
in the case of the even quadratic forms. We will see that this is indeed true in the next
subsection. In this case, we have a spin Chern-Simons theory, and the phase of the one-
loop determinant is given by the fermionic eta invariant, which can be written as a sum
of the spin-independent eta invariant as well as the spin-dependent Arf invariant [63]. For
E0,0
Q,0 (3.16) γQ,h(c, d) is simply the ordinary partition function with no spin structure. For

E0,1
Q,0 (3.19) we have

γQ,0(c, d− c) = c−(p+q)/2eπiσ/4
∑

`∈Λ/cΛ
exp(−πidQ(`)/c)(−1)Q(`) . (3.21)

When Q is rank 1, this matches the nontrivial spin structure invariant in [64].
We can repeat similar computations for higher | detQ| by using the modular transfor-

mations,

E0,1
Q,h(τ) = e−2πi(qW (h)−qW (0))E0,0

Q,h(τ + 1) , (3.22)

E1,0
Q,h(τ) = eiπσ/4

|det Q|1/2τp/2τ q/2
∑

h′∈Λ∗/Λ
e2πi(Q(h,h′)−qW (h′)+qW (0))E0,0

Q,h′((τ − 1)/τ) . (3.23)

Here we have defined

qW (h) := 1
2Q(h, h−W ) + 1

8Q(W,W ) ∈ Q/Z . (3.24)

Note that qW (h) does not depend on the choice of the representative from the quotient
Λ∗/Λ, since for h ∈ Λ∗ and ` ∈ Λ

qW (h+ `)− qW (h) = Q(h, `) + Q(`)−Q(`,W )
2 ∈ Z , (3.25)
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as follows from the integrality of Q and the definition of W . The quadratic form qW on
the discriminant D is a quadratic refinement of the bilinear form on D induced from Q:

qW (h+ h′)− qW (h)− qW (h′) + qW (0) = Q(h, h′) , (3.26)

for h, h′ ∈ D . Here on the right hand side Q is regarded as a bilinear form on the discrim-
inant D = Λ∗/Λ with values in Q/Z.

Notice that we can also compute these Eisenstein series by repeating the proof of the
Siegel-Weil theorem in section 2.3. We can apply the same logic to the Eisenstein series for
the remaining odd structure (1, 1), and we find that E1,1

Q,h vanishes: this follows since the
theta function for the singlet is a modular form for some Γ(N) with eigenvalue less than
λmin, and it is zero at all of the cusps.

The three sums (3.16), (3.22), and (3.23) compute the Eisenstein series for each of the
triplet of even spin structures under the modular group. We can again write these as sums
over geometries, in terms of the corresponding invariants of spin Chern-Simons theories.
In direct analogy to (2.57) we expect

Eε1,ε2Q,h (τ)
η(τ)pη(τ)q =

∑
g∈Γ∞\PSL(2,Z)

〈ε1, ε2;h|U(g−1)|0, 0;h = 0〉+ 〈ε1, ε2;h|U(g−1)|0, 1;h = 0〉
η(g · τ)pη(g · τ)q .

(3.27)
Here we have defined the states |ε1ε2;h〉 with spin structure (ε1, ε2) and charge h. The
logic is the same as in section 2.3: in order to obtain the behavior of the theta functions
at an arbitrary cusp, we perform a modular transformation g on the theta functions near
the cusp at τ = i∞. The two spin structures (0, 0) and (0, 1) are the only spin structures
for which the theta functions are nonvanishing at the cusp at τ = i∞, so the numerator of
(3.27) represents the transformation from τ = i∞ to an arbitrary cusp.

In the next subsection we will check the formula (3.27) in some specific examples.
Before doing so, let us perform a preliminary consistency check. The formulas (3.16), (3.22),
and (3.23) contain various congruence conditions on c and d modulo 2, which should be
reproduced by (3.27). To see how these conditions arise, note that the modular group acts
on the triplet of even spin structures as the permutation group on three elements, as in
figure 1. For example, if c and d are both odd, then up to framing ambiguities we have
g = STS modulo 2. This means that

〈0, 0;h|U(g−1)|0, 0, h = 0〉 = 〈0, 0;h|U(g−1)|0, 1;h = 0〉 = 0 , (3.28)

so that the summand of E0,0
Q,h vanishes. This is consistent with the constraint cd ∈ 2Z

in (3.16). The other congruence conditions follow in a similar manner.

3.4 Spin Chern-Simons invariants

In this subsection, we will show that spin Chern-Simons invariants appear in the novel
Eisenstein series presented in the previous subsection, in a form consistent with (3.27). We
shall follow the approach of Jeffrey [35], who computed the Witten-Reshetikhin-Turaev
(WRT) invariants [34, 65] for non-spin Chern-Simons theory on lens spaces from the action
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of PSL(2,Z) on the Hilbert space on a solid torus. Such an invariant is the partition
function of the Chern-Simons theory, obtained as a matrix element of the gluing matrix
U(g) with g ∈ PSL(2,Z) that glues two solid tori to give a lens space.

In order to compute spin Chern-Simons invariants in an analogous manner, we shall
employ the PSL(2,Z) transformations of elements of the Hilbert space of a general Abelian
spin Chern-Simons theory on T2×R, which was derived explicitly by Belov and Moore [54]
(with minor corrections in [66]).21 Such a Hilbert space is labeled by the characteristic class
W ∈ Λ∗ (where Λ is the integral lattice characterizing the spin Chern-Simons theory) and
a pair of spin structures, ε1 and ε2, defined on the boundary torus. The matrix elements of
an operator O acting from Hε1,ε2,W to Hε′1,ε

′
2,W

are denoted via the notation O h
h′
[ ε1 ε2
ε′1 ε′2

]
,

where h, h′ label elements of the discriminant group D = Λ∗/Λ. In particular, the modular
transformation operators are represented by matrices with the following elements (only
nonzero elements are listed).22 The T operator matrix elements are

T h
h′
[ 0 0

0 1
]

= e−
πiσ
12 e2πi[qW (−h)−qW (0)]δ h

h′ , (3.29)

T h
h′
[ 0 1

0 0
]

= e−
πiσ
12 e2πi[qW (h)−qW (0)]δ h

h′ , (3.30)

T h
h′
[ 1 0

1 0
]

= T h
h′
[ 1 1

1 1
]

= e−
πiσ
12 e2πiqW (−h)δ h

h′ , (3.31)

while the S operator matrix elements are

S h
h′
[ 0 0

0 0
]

= S h
h′
[ 1 0

0 1
]

= | detQ|−1/2e−2πiQ(h′,h) , (3.32)

S h
h′
[ 0 1

1 0
]

= | detQ|−1/2e−2πiQ(h′+W,h) , (3.33)

S h
h′
[ 1 1

1 1
]

= | detQ|−1/2e−2πiQ(h′+W,h)−4πiqW (0) . (3.34)

To compute a spin Chern-Simons invariant, we shall concatenate these operators to
form a gluing matrix, keeping in mind how each operator maps spin structures. In partic-
ular, the inverse of an operator maps spin structures in a direction opposite to that of the
operator, e.g., the inverse of S h

h′
[ 1 0

0 1
]
is (S−1) h

h′
[ 0 1

1 0
]
. The inverse S−1 can be computed

with the help of an identity

| detQ|−1 ∑
h′′∈Λ∗/Λ

e2πiQ(h−h′,h′′) = δh,h′ . (3.35)

We shall first compute a spin Chern-Simons invariant for the lens space L(c, ε) (where
c > 0 and ε = ±1) with trivial spin structure, and show that it takes a form that we expect
from the Eisenstein series E0,0

Q,h. The gluing matrix for this space is

U(g) =
(
ε 0
c ε

)
= SεT−εcS−1 . (3.36)

The matrix element of interest (corresponding to a lens space with Wilson line insertion)
is computed to be

〈00;h = 0|SεT−εcS−1|00;h〉 = e
εciπσ

12 | detQ|−1 ∑
h′∈Λ∗/Λ

e−εcπiQ(h′)e2πiQ(h′,h) , (3.37)

21See [67] for analogous spin-structure-dependent computations of the matrix elements of the mapping
class group action, in a different context of the analytic continuations of a supergroup Chern-Simons theory.

22Our wavefunctions are the complex conjugates of those in [54, 66].

– 21 –



J
H
E
P
0
8
(
2
0
2
1
)
0
4
4

where c must be even to obtain a nonzero answer. This results in the W dependence
cancelling out due to the form of the T transformations. We now make use of the Gauss
reciprocity formula derived in [68], and described in appendix C, which is∑

h′∈Λ∗/Λ
e−εcπiQ(h′)e2πiQ(h′,Ψ) = e−επi

σ
4 |det Q|

1
2 c−

p+q
2

∑
`∈Λ/cΛ

e
ε
c
πiQ(`+Ψ) (3.38)

for c even. Using this formula, we obtain the spin Chern-Simons invariant

〈00; 0|SεT−εcS−1|00;h〉 = e
εcπiσ

12 e−επi
σ
4 |det Q|−

1
2 c−

p+q
2

∑
`∈Λ/cΛ

e
ε
c
πiQ(`+h) , (3.39)

where c is restricted to be even. This is the complex conjugate of the expression γQ,h(c, d)
that appears in the Eisenstein series E0,0

Q,h (cf. (3.16)), for d = ε, multiplied by the complex
conjugate of the overall phase in (2.55). This formula generalizes the result of Okuda et
al. [64] involving a single U(1) gauge group.

Next, we shall show that a spin Chern-Simons invariant appears in E0,1
Q,h. To this end

we shall compute a spin Chern-Simons invariant for the lens space L(c, ε) with nontrivial
spin structure, i.e., we would like to compute

〈01; 0|SεT−εcS−1|01;h〉 . (3.40)

Here, the concatenation of operators begins on the right with (S−1) h
h′
[ 0 1

1 0
]
. Since T h

h′
[ 1 0

1 0
]

is nonzero, there is no restriction on c. Furthermore, for ε = −1, we must end the concate-
nation with

(S−1) h
h′
[ 1 0

0 1
]

= | detQ|−1/2e2πiQ(h′,h+W ) . (3.41)

Then, we obtain

〈01; 0|SεT−εcS−1|01;h〉 = e
εcπiσ

12 | detQ|−1 ∑
h′∈Λ∗/Λ

e−2εcπiqW (−h′)e2πiQ(h′,h) . (3.42)

We can write the right hand side of (3.42) as

e
εcπiσ

12 | detQ|−1 ∑
h′∈Λ∗/Λ

e−εcπi
(
Q(h′)+Q(h′,W )+Q(W,W )

4

)
e2πiQ(h′,h)

= e
εcπiσ

12 e−εcπi
Q(W,W )

4 | detQ|−1 ∑
h′∈Λ∗/Λ

e−εcπiQ(h′)e2πiQ(h′,h− εc2 W ) .
(3.43)

To obtain a familiar expression from this we ought to use a Gauss reciprocity formula.23

For c even, we can use (3.38) (with Ψ = h − εc
2 W ), while for c odd, we ought to use the

more general formula

1√
|det Q|

∑
h′∈Λ∗/Λ

e−πiεcQ(h′,h′)e2πiQ(h′,h− εc2 W ) = c−
p+q

2 e−
πiσ(Q)ε

4
∑

`∈Λ/cΛ
e
πiε
c
Q(`+h− εcW2 ) ,

(3.44)
23See [69] for another discussion of reciprocity formulas in the study of Abelian Chern-Simons theories.
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described in appendix C. Doing so, we find the right hand side of (3.42) to be

e
εcπiσ

12 e−εcπi
Q(W,W )

4 e−επi
σ
4 |det Q|−

1
2 c−

p+q
2

∑
`∈Λ/cΛ

e
ε
c
πiQ(`+h− εc2 W )

= e
εcπiσ

12 e−επi
σ
4 |det Q|−

1
2 c−

p+q
2

∑
`∈Λ/cΛ

e
ε
c
πiQ(`+h)e−iπQ(`+h,W ) .

(3.45)

(For h = 0 and Λ a rank 1 lattice, this agrees exactly with the result of Okuda et al. [64].)
Up to the overall phase in (2.55), this in fact takes the form of the complex conjugate of
γQ,h(c, d− c) that appears in E0,1

Q,h, i.e.,

E0,1
Q,h(τ) = δh∈Λ +

∑
(c,d)=1,

c(d+1)∈2Z,
c>0

c−(p+q)/2|det Q|−
1
2 eπiσ/4

∑
`∈Λ/cΛ e

−πi d
c
Q(`+h)eπiQ(`+h,W )

(cτ + d)p/2(cτ + d)q/2
.

(3.46)
Finally, let us consider E1,0

Q,h, for which the relevant matrix element is

〈00; 0|SεT−εcS−1|10;h〉 = e
εcπiσ

12

| detQ|
∑

h′∈Λ∗/Λ
e−2πiQ(h′,h)−πicεQ(h′)−πiQ(W,h′) , (3.47)

where c is restricted to be odd. To match this to the Eisenstein series, we expand (3.23),

E1,0
Q,h(τ) = eiπσ/4

|det Q|1/2τp/2τ q/2

+ eiπσ/4

| detQ|1/2
∑

h′∈Λ∗/Λ

∑
(c,d)=1

(c+1)d∈2Z
d<0

e2πi(Q(h,h′)−qW (h′)+qW (0)) γQ,h′(−d, c+ d)
(cτ + d)p/2(cτ + d)q/2

.

(3.48)

For ε = d = −1, we have

e2πi(Q(h,h′)−qW (h′)+qW (0))γQ,h′(−d, c+ d) = eπiσ/4|detQ|−
1
2 e2πiQ(h,h′)+πiQ(h′,W )−πicQ(h′) ,

(3.49)
and complex conjugating indeed gives (3.47) up to the overall phase.

4 Holographic dual before ensemble average

We have seen that the CFT partition function gives that of the Abelian spin Chern-Simons
theory after the ensemble average. However, we do not encounter such an ensemble aver-
age in the standard discussion of holography. One might therefore wonder if there exists
a holography before ensemble average, so that the ensemble average of this more “fine-
grained” holography gives the holography of the previous sections as a “coarse-grained”
counterpart after the ensemble average (see also [70]). In this section, we address this
question.
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In order to discuss holography before ensemble averages, we need to incorporate the
dependence on the moduli MQ. Since a point of the moduli space gives a decomposition
into left movers and right movers (recall from section 2.1), one possibility is to perform
such a decomposition to the Chern-Simons theory, so that we have an action

SCS = i
p∑

i,j=1

(QL)ij
8π

∫
M
AiL ∧ dA

j
L − i

q∑
i,j=1

(QR)ij
8π

∫
M
AiR ∧ dA

j
R , (4.1)

where the “left-moving” (resp. “right-moving”) gauge fields A1,...,p
L (resp. A1,...,q

R ) are linear
combinations of the gauge fields A1,...,p+q.

Unfortunately, this does not quite work as it is, since such a linear transformation
among the gauge fields is in general not compatible with the quantization conditions for
the gauge fields (the gauge groups are U(1), not R). This is related to the fact that the
boundary of the Chern-Simons theory always gives a rational CFT, while the boundary
CFT is irrational at a generic point of the CFT moduli space.

In [71] it was recognized that we can realize irrational CFTs on the boundary if we
instead consider a Maxwell-Chern-Simons theory [72, 73]. The theory is defined by the
action

SMCS = 1
16π2

p+q∑
i,j=1

∫
M

(
− 1

2e2λ
−1
ij dA

i ∧ ∗dAj + 2πiQijAi ∧ dAj
)
, (4.2)

where e2 is the coupling which has dimensions of mass, and λ−1 is a dimensionless, symmet-
ric, positive definite matrix with determinant one. Since e2 is dimensionful, the Yang-Mills
term is irrelevant and the Chern-Simons term is expected to dominate in the IR. This
gives the topological limit e2 →∞, leaving only the Chern-Simons term. The effect of the
Yang-Mills term, however, does not quite go away, since the quantization conditions for
the gauge fields in the topological limit depend on the parameters λ, and hence on a point
of the moduli spaceMQ.

We will see that in this setup we can identify a duality between the resulting Abelian
Chern-Simons theory defined with respect to the quadratic form Q, and a CFT associated
with an integral lattice with the same quadratic form, at each point of the moduli space of
the latter. In contrast to the previous discussion that the exotic bulk theories after ensemble
averages are only approximately Chern-Simons theories, here we find that the bulk theory
is given precisely by the Chern-Simons theories. In order to simplify the discussion we
restrict to the case of the trivial spin structure.

The aforementioned quantization of the Maxwell-Chern-Simons theory is performed on
the infinite volume limit of the solid torus, i.e., M = T 2 ×R. Picking a complex structure
τ on the torus with flat metric, the basis of wavefunctions for the topological sector of the
theory was shown in [54, 71] to be

Ψh = |det Q|
1
4 e
− 1

8π

∫
T2
∑

i,j
µijA

i∧∗Aj ϑQ,h(τ, ξ(A))
η(τ)pη(τ)q , (4.3)
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for h ∈ Λ∗/Λ, where µ is a symmetric positive definite matrix defined below, and where
the theta function is defined as

ϑQ,h(τ, ξ(A)) := e
π

2 Im τ
(QL(ξ)+QR(ξ)) ∑

`∈Λ
eiπτQL(`+h)−iπτQR(`+h)+2πiQ(`+h,ξ) , (4.4)

with QL := 1
2(Q + µ), QR := 1

2(−Q + µ), and ξ(A) := − 1√
2π (P−(iImτAz̄);P+(iImτAz)),

where P± := 1
2(1 ± µ−1Q) are projection operators onto left/right movers. The matrix µ

takes the form

µ = λ−1/2O
(

∆+ 0
0 −∆−

)
OTλ−1/2 , (4.5)

where ∆± are diagonal matrices satisfying ∆+
ii > 0 and ∆−ii < 0, and O is a real orthogonal

matrix that diagonalizes λ1/2Qλ1/2 such that

Q = λ−1/2O
(

∆+ 0
0 ∆−

)
OTλ−1/2 . (4.6)

We thus observe that the moduli that enter the theta function in (4.4) arise from the matrix
λ whose elements enter the kinetic term in (4.2).

To elucidate the duality with a CFT before averaging, let us specialize to the case of
gauge group U(1)×U(1) with gauge fields denoted A and B, where e2 = eAeB and

Q =
(

0 k
2

k
2 0

)
, λ =

(
eA
eB

0
0 eB

eA

)
. (4.7)

In this case,

µ = k

2

(
eB
eA

0
0 eA

eB

)
. (4.8)

Now, the vector ξ(A) = − 1√
2π (P−(iImτAz̄);P+(iImτAz)) involves components of the fields

P−A := A− and P+A := A+. If we were to compute the path integral of this Maxwell-
Chern-Simons theory on the solid torus, we ought to obtain a state in the Hilbert space
of the theory as a function of the boundary values of the fields. If we were to choose the
boundary conditions A−z̄ = 0 and A+

z = 0, we find that the basis of wavefunctions simplifies
to

Ψh =
√
k
ϑQ,h(τ, 0)
|η(τ)|2 , (4.9)

which is, up to a factor of
√
k, the CFT partition function (2.16) for p = q = 1, once we

identify µ with the Hamiltonian H. It is in this sense that there is a duality between the
topological sector of Maxwell-Chern-Simons theory and the CFTs studied in section 2.2.

Note that, since the Chern-Simons sector of the action can be recast as SCS =
i

16πk
∫

(A+ ∧ dA+ − A− ∧ dA−), the boundary conditions A−z̄ = 0 and A+
z = 0 resem-

ble the boundary conditions (in Euclidean signature) used by Coussaert, Henneaux and
Van Driel [74] in relating SL(2,R)×SL(2,R) Chern-Simons theory to the SL(2,R) WZW
model. This would indeed be the case if the ratio eB/eA was rational, but not otherwise

– 25 –



J
H
E
P
0
8
(
2
0
2
1
)
0
4
4

since A+ and A− cannot then be defined as nontrivial connections, and would not be truly
independent.

For general Q and λ, the boundary conditions P−Az̄ = 0 and P+Az = 0 lead us to the
same conclusion of a duality before averaging between the topological limit of Maxwell-
Chern-Simons theory and the aforementioned CFTs for each value of their moduli. These
observations, in fact, generalize to the case of spin Maxwell-Chern-Simons theory on higher
genus handlebodies with nontrivial spin structure, whose wavefunctions were derived in [54].
The CFT dual to this theory for genus one was studied in section 3.

The discussion up to this point makes clear one can formulate the holography not only
for the partition functions but also at the level of states inside the Hilbert space. To see
this, first note that the CFT partition function on the two-torus should be regarded as
a wavefunction of the holographic dual on the Hilbert space H(T2) associated with the
two-torus. In order to better represent this fact, we introduce a new bra-ket notation

ZQ,h(τ, τ ;m) |h;m〉 , (4.10)

so that the Hilbert space H(T2) is spanned by |h;m〉 with h ∈ D . Note that we are making
the dependence on Q and τ, τ to be implicit. In this notation, the modular transformation
rules of the CFT partition functions (2.20) coincide with the transformation rules (2.53) in
the holographic dual. In other words, both bulk and the boundary give exactly the same
pair (H,R) of the Hilbert space H(T2) and a representation R of the mapping class group
PSL(2,Z) on the Hilbert space. Moreover, such a pair is independent of the CFT moduli
space, and hence is preserved by the ensemble average.

It is interesting to note that different choices of the quadratic form can generate equiv-
alent representations of the mapping class group, as discussed in [54]. Such a equivalence is
constrained more strongly in our case, since in our partition functions we have dependence
on both the rank p+ q and the signature σ = p− q of the quadratic form, while for (2.53)
only p − q modulo 24 enters into the representation of the mapping class group. There
is no inconsistency in these statements, since two Abelian Chern-Simons theories which
are equivalent in the sense of [54] can still lead to different partition functions when we
consider manifolds with boundary, with different boundary conditions imposed.

5 Discussion

One of the interesting findings in the analysis of the holographic duality in this paper is
that once we have an ensemble average over the CFT moduli space then the sum over
geometries in the bulk is automatically incorporated. We propose that this is a general
lesson for holographies involving ensemble averages. If true, this can have far-reaching
consequences in quantum gravity — instead of summing over geometries (as you would do
in theories of quantum gravity) one can consider the ensemble averages of dual CFTs!

This duality between the CFT moduli space and the moduli space of Riemann sur-
faces is closely related with the mathematical concept of Howe duality and reductive dual
pairs [75–78]: the symmetry of the CFT moduli space G = O(p, q;R) and the mapping class
group for the spacetime surface H = Sp(2g;R) are embedded inside a larger symplectic
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group G] = Sp(2g(p + q);R) (or rather its double cover, the metaplectic group), and are
mutual centralizers inside it. Moreover, the Weil representation of the G] are decomposed
into irreducible components of G and of H, where there exists a one-to-one correspondence
between those of G and of H. The Siegel-Weil formula can be regarded as a reflection of a
more general statement on modular forms of G and H, known as the theta correspondence.
It would be interesting to see if such mathematical discussion sheds further light on the
discussions of holography and quantum gravity.
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A Differential equation for theta functions

In this appendix, we derive the differential equation satisfied by the theta functions dis-
cussed above. To be concrete, we consider p ≥ q. In the derivation of this differential
equation, following [79], we shall assume that the quadratic form is written in terms of a
(p+ q)-dimensional matrix of the form

Q =

 Iq,q
Ip−q,p−q

Iq,q

 . (A.1)

However, the resulting differential equation should also hold for generic quadratic forms
since they are obtained by conjugation with an element of GL(p + q;R). The action of
the quadratic form H, which is the majorant of Q, on a lattice point ` = (ni, lM , wi) is
expressed in terms of moduli {Gij , Bij , AiM} as H(`) = `TG`, where

G =

 Gij −GikANk −GikWkj

−GjkAMk δMN +GmnANmA
M
n AMj +GmnAMmWnj

−W T
ikG

kj ANi +GmnANmW
T
in Gij +AiBA

B
j +GmnW T

inWmj

 . (A.2)

Here we have defined Wij = Bij + 1
2AiMA

M
j . The lowercase Latin indices take on values

{1, . . . , q} while the uppercase Latin indices take on values {1, . . . , p−q}. The target space
metric moduli are symmetric Gij = Gji and the 2-form field moduli are anti-symmetric

– 27 –



J
H
E
P
0
8
(
2
0
2
1
)
0
4
4

Bij = −Bji. We follow the same procedure as [79] and obtain the metric on MQ using
ds2 = −1

2Tr(dGdG
−1), which gives

ds2 = GijGmn(dGimdGjn + dBimdBjn) + 2GijdAiMdAMj + 2GijGmnAiMdAMm dBjn

+ 1
2G

ijGmn
(
AiMAjNdA

N
mdA

M
n −AiMAmNdAMn dANj

)
. (A.3)

A straightforward calculation yields the Laplacian onMQ

∆MQ
= 1

4GmsGnt(∂G̃mn∂G̃st + ∂Bmn∂Bst) + 1
2

(
1− p− q

2

)
Gmn∂G̃mn + δMNGmn

2 ∂mM∂nN ,

(A.4)
where

∂m,M∂n,N =
(
∂AmM + 1

2A
M
k ∂Bmk

)(
∂AnN + 1

2A
N
j ∂Bnj

)
. (A.5)

Here we have introduced the diagonally rescaled metric G̃ij = (1 − δij/2)Gij so that the
derivatives above act as

∂G̃stGmn = δsmδ
t
n + δtmδ

s
n , (A.6)

∂BstBmn = δsmδ
t
n − δtmδsn . (A.7)

With a bit of effort, it is possible to show that the theta functions above satisfy the
differential equation(

− τ2
2 (∂2

2 + ∂2
1)− (p+ q)τ2

2 ∂2 − i
(q − p)τ2

2 ∂1 + ∆MQ

)
ϑQ,h(τ, τ ;m) = 0 . (A.8)

Note that ϑQ,h(τ, τ ;m) stands for theta functions with or without spin structure. Fur-
thermore, upon averaging, the moduli-dependent Laplacian drops out so that the averaged
theta function satisfies the same differential equation as the related Eisenstein series.

For illustration, we can consider the simplest example of (p, q) = (2, 1). Then (A.8)
simplifies to (

τ2
2 (∂2

1 + ∂2
2) + 3τ2

2 ∂2 −
iτ2
2 ∂1 −

R2

4 ∂2
R −

R2

2 ∂2
A

)
ϑQ = 0 . (A.9)

B Theta functions for odd lattices

The theta functions for a given spin structure are not linearly independent. They satisfy
the charge conjugation relations

ϑ0,0,h(τ) = ϑ0,0,−h(τ) ,
ϑ1,0,h(τ) = ϑ1,0,−W−h(τ) ,

ϑ0,1,h(τ) = e2πiQ(h,W )ϑ0,1,−h ,

ϑ1,1,h(τ) = e2πiQ(h+W/2,W )ϑ1,1,−W−h(τ) .

(B.1)
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The modular transformations are
ϑ0,0,h(τ + 1) = exp(2πi(qW (h)− qW (0)))ϑ0,1,h(τ) ,
ϑ0,1,h(τ + 1) = exp(2πi(qW (−h)− qW (0)))ϑ0,0,h(τ) ,
ϑ1,0,h(τ + 1) = exp(2πiqW (−h)))ϑ1,0,h(τ) ,
ϑ1,1,h(τ + 1) = exp(2πiqW (−h)))ϑ1,1,h(τ) ,

ϑ0,0,h(−1/τ) = e−iπσ/4τp/2τ q/2√
| detQ|

∑
h′

e−2πiQ(h,h′) ϑ0,0,h(τ) ,

ϑ0,1,h(−1/τ) = e−iπσ/4τp/2τ q/2√
| detQ|

∑
h′

e−2πiQ(h,h′) ϑ1,0,h(τ) ,

ϑ1,0,h(−1/τ) = e−iπσ/4τp/2τ q/2√
| detQ|

∑
h′

e2πiQ(h,h′) ϑ0,1,h′(τ) ,

ϑ1,1,h(−1/τ) = e−iπσ/4−πi(W,W )/2τp/2τ q/2√
| detQ|

∑
h′

e−2πiQ(h+W,h′) ϑ1,1,h′(τ) .

(B.2)

These transformation rules can be checked explicitly from the definitions with the help of
Poisson resummation.

C Gauss reciprocity formulas

In this appendix, we collect Gauss reciprocity formulas that we use in the main text, based
on the results of Deloup and Turaev [68].

Consider a pair of lattices Λ and Λ′, defined with the quadratic forms Q and Q′

respectively. Let us consider a tensor product Λ ⊗ Λ′ (over Z) with a quadratic form
Q̂ := Q⊗Q′, as well as a Wu class z on it. Theorem 2 of [68] can then be stated as

1√
|A|

∑
x∈A

eπi[Q̂(x,x)−Q̂(x,z)] = 1√
|B|

e
πiσ(Q)σ(Q′)

4
∑
y∈B

e−πiQ̂(y− z2 ,y−
z
2 ) , (C.1)

where A := (Λ∗/Λ)⊗ Λ′ and B := Λ⊗ (Λ′∗/Λ′).
Now, pick Λ′ = cZ, where c > 0 and odd, and Q′ = 1/(εc) where ε = ±1. The Wu

class W ′ ∈ Λ′∗/2Λ′∗ on Λ′ is then given by W ′ = εc, since 1
εcW

′x = 1
εcx

2 for any x ∈ cZ.
Let us choose a Wu class W ∈ Λ∗/2Λ∗ on Λ, and set z := −W ⊗ W ′ − 2Ψ ⊗ 1 with
Ψ ∈ Λ∗. We can verify that z is a Wu class on the tensor product Λ ⊗ Λ′. Since we have
A = (Λ∗/Λ)⊗ c ' Λ∗/Λ and B = Λ⊗ (Z/cZ) ' Λ/(cΛ), (C.1) takes the form

1√
|Λ∗/Λ|

∑
h′∈Λ∗/Λ

eπi[Q̂(h′⊗εc,h′⊗εc)−Q̂(h′⊗εc,z)] = 1√
|Λ/cΛ|

e
πiσ(Q)ε

4
∑

`∈Λ/cΛ
e−πi[Q̂(`⊗1− z2 ,`⊗1− z2 )] .

(C.2)
Using z = (−εcW − 2Ψ)⊗ 1 and Q̂ = Q⊗Q′ with Q′ = 1/(εc), this can be rewritten as

1√
|det Q|

∑
h′∈Λ∗/Λ

eπiεcQ(h′,h′)e2πiQ(h′, εc2 W+Ψ) = c−
p+q

2 e
πiσ(Q)ε

4
∑

`∈Λ/cΛ
e−

πi
εc
Q(`+ εcW

2 +Ψ) .

(C.3)
This is precisely the formula we use in section 3.4. Note that for c even, we have W ′ = 0
and the dependence on W is no longer present, with z = −2Ψ⊗ 1.
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