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We present a numerical method specifically designed for sim-
ulating three-dimensional fluid–structure interaction (FSI) prob-
lems based on the reference map technique (RMT). The RMT
is a fully Eulerian FSI numerical method that allows fluids and
large-deformation elastic solids to be represented on a single
fixed computational grid. This eliminates the need for meshing
complex geometries typical in other FSI approaches and greatly
simplifies the coupling between fluid and solids. We develop a
three-dimensional implementation of the RMT, parallelized using
the distributed memory paradigm, to simulate incompressible FSI
with neo-Hookean solids. As part of our method, we develop
a field extrapolation scheme that works efficiently in parallel.
Through representative examples, we demonstrate the method’s
suitability in investigating many-body and active systems, as well
as its accuracy and convergence. The examples include settling of
a mixture of heavy and buoyant soft ellipsoids, lid-driven cavity
flow containing a soft sphere, and swimmers actuated via active
stress.

3D fluid–structure interaction | incompressible Navier–Stokes equations |
large-deformation solids | lid-driven cavity

F luid–structure interactions (FSI) are at the heart of many
physical and biological problems, including flexible structures

in flow (1, 2), blood circulation in the heart (3, 4), animal lo-
comotion (5, 6), and cilia motion (7, 8). The couplings between
fluid and immersed solids give rise to complex nonlinear dynam-
ics dependent on geometry and boundary conditions, material
constitutive relations, and collective interactions among the solid
objects. Analytical solutions are rare and limited to simplified set-
tings in reduced dimensions; numerical methods for FSI have be-
come indispensable for understanding these problems. Although
methods in reduced dimensions have led to invaluable insights,
more aspects of the rich FSI dynamics await to be revealed and
understood by fully three-dimensional treatments.

In designing numerical methods for fluids and solids, Eulerian
and Lagrangian perspectives are the more convenient choices,
respectively, due to the differences in constitutive responses.
Bridging between the two perspectives is a classic dilemma in
developing numerical methods for FSI. Various frameworks have
been proposed to resolve this dilemma. The immersed boundary
method (IBM) (3, 9) and the family of immersed methods that it
inspires (4, 10, 11) solve fluid on a fixed mesh, use Lagrangian
points to represent the solid, and employ a coupling scheme
between the two. Arbitrary Lagrangian–Eulerian methods use
moving nodes for both phases and reposition the nodes to main-
tain mesh quality (12, 13).

There are also fully Eulerian methods, which typically re-
cast the solid momentum balance equations in the rate form,
matching the Navier–Stokes equation for the fluid, and solve
the coupled equations in the Eulerian space. Formulations of
fully Eulerian methods can be broadly divided into two cate-
gories. The hypoelasticity formulation (14–16) uses linear elas-
ticity, whereas the hyperelasticity formulation employs a general
large-deformation description in the solids. To compute solid
stresses in hyperelasticity, various quantities have been used.
Examples include level-set functions defining the fluid–solid in-
terface (17), the deformation gradient tensor (18), the deforma-

tion tensor (19), and the solid displacements in the undeformed
configuration (20–22).

The reference map technique (RMT) is a fully Eulerian, hy-
perelastic FSI approach that uses the reference coordinates as
the primary simulation variables in the solids. In two dimensions
(2D), the RMT has been demonstrated to simulate compressible
fluid and solids (23, 24), handle contact between multiple solids
(25), and simulate incompressible fluid and solids with complex
geometries and actuation (26). The RMT also has many proper-
ties favorable for addressing computational challenges in three
dimensions (3D). For instance, by using a single fixed regular
grid for fluid and solid, the RMT is well suited to parallelization
and allows for efficient memory usage, since no Lagrangian mesh
topology needs be stored. In many-body problems, the regular
grid structure makes contact among solid bodies easy to de-
tect. Computational meshing of complex geometries is a difficult
problem and an active area of research (27–29). By using level
sets (30, 31) to represent the fluid–solid interfaces we circumvent
the need for meshing, which becomes a compelling advantage in
3D. However, in all prior works on the RMT in the FSI context
(24–26), the fast-marching method (FMM) (16, 31) has been
used to reinitialize the level sets at every time step, as part of
a necessary field extrapolation routine near the interfaces. The
FMM is not well suited for parallel computing since it updates
field values sequentially. Therefore, we developed a method for
extrapolation that removes the need for level-set reinitialization
and can be easily parallelized.

Significance

Fluid–structure interactions are ubiquitous in many natural
and man-made environments. They are difficult to study an-
alytically, and therefore accurate and flexible computational
methods are an indispensable tool in the field. Typically, fluids
are simulated with a fixed background computational mesh,
whereas a solid is simulated with a mesh that moves with
it, making it challenging to couple the two. Here we develop
a three-dimensional computational method where both fluid
and solid can be represented on a fixed computational grid,
which simplifies the coupling between the two phases consid-
erably. Our method can simulate scenarios that are difficult to
do with other methods, such as complex suspensions contain-
ing soft particles that are both heavier and lighter than the
fluid.
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Equipped with these enabling simplifications, we develop a
three-dimensional implementation of the RMT parallelized via
domain decomposition and then apply it to simulate several
difficult FSI scenarios. Inspired by recent work on fluid-filled
soft granular packings (32), we simulate a mixture of deformable
particles, each of which can be either denser or lighter than
the fluid. We also revisit the classic problem of lid-driven cavity
flows (33–35), now containing an immersed deformable sphere,
and provide detailed data to serve as benchmarks. There has
been sustained interest in swimming and biolocomotion in recent
decades, yet reduced-dimension models of the swimmer (36–38)
are often the state of the art. We present a model of a swim-
ming organism using full volumetric actuation, demonstrating
the RMT as a simulation tool for exploring a broader range of
swimming modalities.

Theory and Numerical Method
Hyperelastic Formulation in Solid Mechanics. In the hyperelasticity
framework of solid mechanics (39), a time-dependent mapping
χ(X, t) determines how the undeformed configuration, X, is
transformed to its current physical configuration, x; i.e., x=
χ(X, t) (Fig. 1 A and B). The deformation gradient is defined as
F= ∂χ

∂X
= ∂x

∂X
. A constitutive relation σs(F) defines the Cauchy

stress response in the solid material. The solid momentum bal-
ance equation in rate form is

ρs

(
∂us

∂t
+ (us · ∇)us

)
=∇ ·σs + bs , [1]

where ρs is the solid density, us is the solid velocity, and bs is
a body force density. For an incompressible material detF= 1
and thus solid density is unaffected by the deformation. We
assume that χ(X, t) is sufficiently smooth so that its inverse,
the reference map, can be defined; i.e., X= ξ(x, t) =χ−1(x, t).
The deformation gradient tensor becomes

F=
(
∂ξ
∂x

)−1
= (∇xξ)

−1 , [2]

where ∇x is the gradient operator in physical space. The refer-
ence configuration is constant; therefore, ξ̇(x, t) = 0; i.e.,

∂ξ

∂t
+ (us · ∇)ξ = 0. [3]

We discuss coupling fluid and solid phases and imposing the
incompressibility constraint next.

Blurred Interface Method and Monolithic Governing Equations. Con-
sider a domain Ω containing n immersed solid objects covering
subdomains Ω1, . . . , Ωn . Denote the fluid domain as Ωf and
the solid domain as Ωs = ∪n

k=1Ωk , so that Ω= Ωs ∪ Ωf . The
fluid–solid interface (hereinafter the interface) is denoted by
∂Ωs = ∪n

k=1∂Ωk . We introduce a global velocity u in Ω, shared
by both fluid and solid phases. This implies that the velocity is
continuous and satisfies a no-slip boundary condition at ∂Ωs . The
incompressibility constraints in both phases imply

∇ · u= 0 in Ω. [4]

As a result, we can define a global pressure field p in Ω, and we
need only consider the deviatoric part of the stress tensors, τ , in
both phases. The momentum balance equation becomes

ρ

(
∂u

∂t
+ (u · ∇)u

)
=−∇p +∇ · τ + b in Ω, [5]

where density ρ, stress τ , and body force density b, depend-
ing on the positions in the domain, can belong to the fluid
or the solid phase. In Ωf , τ is the deviatoric viscous stress
of a Newtonian fluid, τ≡τ f = μ

(
∇u+∇uT

)
, where μ is the

fluid dynamic viscosity. In Ωs , τ is the deviatoric solid stress
τ≡τ s =σs− 1

3
tr(σs)1, obtained from hyperelastic formulation

mentioned above. Similarly, ρ and b are defined via ρf ,bf in
Ωf and ρs ,bs in Ωs . Eqs. 3–5 form the governing equations for
the coupled FSI system, satisfying the flow equation and the
elasticity equation, in the fluid and the solid phases, respectively.
While Eqs. 4 and 5 are solved in Ω, to avoid excessive distortions,

Fig. 1. Schematics of the reference map technique. (A) An initially undeformed solid with reference configuration X undergoes a time-dependent mapping
χ(X, t) to its current configuration at time t. (B) A level-set function φ(x, t) distinguishes the two phases that share a global velocity u(x, t). A blur zone
(yellow), defined by |φ| < ε, is used to transition between phases. (C) The order in which ξ(x, t) is extrapolated is defined by layers. The first layer cells (green),
e.g., cell (i, j, k), are noninterior neighbors to the interior cells (yellow), e.g., cell (p, q, r). Subsequent layers, e.g., second layers (red), are constructed in the
same way, until the blur zone is filled or a physical boundary is reached. The 2D schematics are shown for clarity.
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we restrict the solution of Eq. 3 to only the solid domain Ωs

(SI Appendix, section 1).
Across the interface, quantities ρ,τ , and b may be discon-

tinuous and should be carefully treated with an interfacial cou-
pling method. The basic RMT equations work with a variety
of interfacial coupling procedures, including sharp and blurred
interface methods (24–26). In this work we focus on a blurred in-
terface method because it has several advantages over a sharp in-
terface method; e.g., it is more stable to interfacial perturbations,
more amenable to simulating immersed solid–solid contact, and
easier to implement (25, 26). In the blurred interface method,
we make use of a blur zone of width 2ε across the interface. The
width of the blur zone 2ε scales with the grid spacing so that as
grid spacing approaches zero, a sharp interface representation is
recovered.

Without loss of generality, we consider a single solid object
whose boundary ∂Ωs is defined by the zero contour of a signed-
distance function in the undeformed configuration, φ0(X).
We define the time-dependent level-set function φ(x, t) =
φ0(ξ(x, t)) (Fig. 1B). In the blur zone defined by |φ(x, t)|< ε,
the material can be considered to be a mixture, and discontinuous
quantities are blended to smoothly vary across the interface (40–
42). Let Q(x, t) denote a scalar or a component of a vector or
tensor quantity in Ω. Define Qf (x, t) as the fluid value of Q(x, t)
and Qs(x, t) as the solid value of Q(x, t). Omitting (x, t) for
brevity, we blend Qf and Qs by Q =Qs + Hε(φ)(Qf −Qs),
where Hε(φ) is a smoothed Heaviside function that has a
continuous second derivative, defined as

Hε(φ) =

⎧⎨
⎩

0 if φ≤−ε,
1
2
(1 + φ

ε
+ 1

π
sin πφ

ε
) if |φ|< ε,

1 if φ≥ ε.
[6]

The blending procedure is similar to interpolating between Eule-
rian and Lagrangian quantities in the IBM via integration using
approximate delta kernels (3, 9). Due to the stress tensors being
blended in the blur zone, the traction-matching condition is
automatically satisfied at the interface.

To improve numerical stability, we define an artificial viscosity
μa in the solid domain Ωs . If μa scales with grid size, in the
limit of very fine spatial resolution, we recover the undamped
solid equation. If it is set to a grid size-independent constant, it
is equivalent to simulating a Kelvin–Voigt viscoelastic solid. We
also find that to stabilize the interface, it is necessary to apply an
additional multiplicative factor γt to the artificial viscosity in the
blur zone. These modifications give rise to an artificial viscous
stress τ a in the solid domain Ωs and in the blur zone. Over-
all, τ = Hε(φ)τ f + (1− Hε(φ))(τ s + τ a), where τ a = μa(1 +
γtεH

′
ε(φ))(∇u+∇uT) (SI Appendix, section 1.C).

Extrapolation of ξ(x, t). Since ξ(x, t) is defined only inside the
solid, it needs to be extrapolated to several grid cells outside
of the interface to calculate derivatives in Eq. 3 and F near the
interface. We describe our extrapolation method for a single solid
occupying domain Ωs , although it can be easily applied to any
number of objects. First, we simplify the spatial order in which
ξ(x, t) is extrapolated by making use of adjacency rules on a
fixed grid. Consider a Cartesian mesh with grid cells indexed by
i , j , k ; we define neighbors of a central cell as those cells that
share a common face with the central cell (Fig. 1C). We first label
cells with φ < 0 as the interior cells (or 0th layer cells). Then,
for each interior cell, we label its unmarked neighbors as first
layer cells, with index l = 1. We repeat this procedure to find
subsequent layers l = 2, 3, . . ., until we reach a physical boundary
or the maximum number of layers, whichever occurs earlier. This
procedure guarantees that cells in the current layer (e.g., 1st)
are selected from unmarked neighbors of cells in the previous
layer (e.g., 0th). The minimum number of layers should ensure

all cells in the blur zone are extrapolated and necessary finite-
difference operations can be performed near the interface, where
the maximum can be arbitrarily chosen.

The extrapolation is then performed in ascending order of
layers, but it can be computed independently for each cell within
the same layer. To extrapolate ξe = (ξi , ξj , ξk ) at cell (i , j , k) in
layer li,j ,k , we first use weighted least-squares regression to build
a local linear model of the reference map ξ(x, t) as a function
of physical coordinate x. To find data points for the regression,
we search within an rs = 2 box centered at cell (i , j , k), where
rs is the search radius measured in units of grid cells. Reference
map ξd = (ξp , ξq , ξr ) at cell (p, q , r), extrapolated or not, is used
for the regression only if it is marked in a layer and lp,q,r < li,j ,k .
In the case of multiple solid objects, ξd must emanate from the
same object as ξe . If the linear system is degenerate, we increase
rs by 1 and repeat the procedure, but this is rare in practice.
Using appropriate weights is important to ensure the quality of
the extrapolated values, especially when local deformations are
large (SI Appendix, section 1.H).

In multibody simulations, the extrapolation procedure is ap-
plied to each object independently. We require that solid bodies
do not coexist at a grid cell. However, the blur zone of an object
is allowed to overlap with blur zones or interiors of other objects.
Thus, at a single grid cell, there can be several reference maps,
each belonging to a distinct object. Since extrapolated values
are needed only in a small region near the interface, we design
a custom data structure that is tailored to store extrapolated
values efficiently in memory. Besides eliminating the need of
reinitialization, the current extrapolation method has two addi-
tional advantages: 1) Layers can be defined given a definition of
adjacency on the grid, and 2) the method is layer-wise and object-
wise independent and thus easy to be parallelized.

Numerical Procedures and Implementation. The RMT implemen-
tation in 3D (RMT3D) is developed in C++ and parallelized
via domain decomposition using the message-passing interface
(MPI) library. The current second-order accurate, explicit nu-
merical schemes extend our previous work on the RMT imple-
mentation in 2D (26) and follow established discretizations for
solving hyperbolic conservative laws (42, 43). In summary, we
extend the variable arrangement on the grid, the finite-difference
schemes to compute spatial derivatives, and the Godunov-type
upwinding scheme to handle the advective parts of Eqs. 3 and
5 (44). An approximate projection method (43, 45, 46) and
a marker-and-cell projection method are used to enforce the
incompressibility constraint (Eq. 4) on the velocity solution at
each time step and on an intermediate velocity field between two
time steps, respectively. Large linear systems resulting from the
projections are solved using a custom geometric multigrid solver.
See SI Appendix, section 1 for details of the numerical proce-
dures including the time-stepping algorithm, stability and time-
step restrictions, and the Godunov-type upwinding calculations.

Results
In this section, we consider immersed viscoelastic neo-Hookean
solids (constant μa) in various settings. We nondimensionalize
the governing equations using appropriate length, time, and mass
scales and simulate using isotropic grid spacing h in all test cases.

Parallel Computation Scaling. We conduct strong and weak scaling
tests to examine the efficiency of the parallel implementation.
For a system of 2563 grid points, we find that the speedup in
strong scaling tests saturates at a factor of ≈65 as MPI ranks
increase from 1 to 512, while the efficiency in weak scaling tests
drops to ≈20% as MPI ranks increase from 1 to 512. In general,
the extrapolation routines take �1% of the total compute time
for each immersed object, supporting our claims of its efficiency
and of the RMT’s advantage in simulating many-body FSIs. See
SI Appendix, section 2 for more details.
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Convergence: A Prestretched Sphere. We simulate an immersed
sphere with radius 0.2, shear modulus G = 0.1 in a cubic domain
with unit side length and no-slip boundaries. The sphere is pre-
strained with stretches λx ,λy ,λy = 36/25, 5/6, 5/6 in the x , y , z
directions, respectively. At T = 0, the sphere starts to relax to
equilibrium. After initial oscillations, it eventually comes to rest.
We compute convergence rates to be 1.34, 1.44, and 1.04, for
solid surface area, volume, and ‖J − 1‖2, respectively. ‖J − 1‖2,
where J is the determinant of F, measures the deviation from the
incompressibility constraint in the solid. Although our numerical
schemes are second-order accurate when applied to full fluid or
full solid problems, the O(h) errors near the interface reduce the
overall order of accuracy in coupled FSI problems (26). For more
details see SI Appendix, section 3.A.

Settling and Floating. The transport of rigid and deformable par-
ticles in fluid flow is central in many biological and physical
systems. While analytical solutions are available for simple cases
such as a rigid sphere in unbounded creeping flow, more complex
settings, e.g., those with walls and multibody interactions, elude
analytical approaches. As a validation, we apply the RMT to
simulate a rigid sphere settling in a domain with square cross-
section and find good agreement of the position and velocity of
the settling sphere between simulations and experiments (47, 48).
See SI Appendix, section 3.B for details. The RMT requires no
special treatment to simulate (neutrally) buoyant solids, which
is a common numerical difficulty suffered by partitioned FSI
methods (49). This is an important advantage as many FSIs of
interest involve such density ratios in the solid and fluid phases,
e.g., problems in hemodynamics (50) and biomechanics (7). To
demonstrate this, and the RMT’s ability to simulate complex sus-
pensions (51), in Fig. 2 we show 150 ellipsoids settling and float-
ing in a box, where the particle Reynolds number Rep ≈ 12 for the
lighter particles, and Rep ≈ 16 for the heavier ones (Movie S1).

Lid-Driven Cubic Cavity with a Sphere. In computational fluid dy-
namics the lid-driven cavity has long been an important bench-
mark problem (33, 52). Despite its simplicity, it exhibits rich flow
dynamics due to varying geometries, boundary conditions, and
Reynolds numbers. In stark contrast to the extensive studies on
the fluid problem in both 2D and 3D, results on lid-driven cavities
with deformable boundaries and immersed solids are much fewer
(20, 34, 35, 53–55).

Here we investigate a neutrally buoyant deformable sphere in a
lid-driven cavity. Shown in Fig. 3A, the cavity has size Lx×Ly×Lz

and two span aspect ratios, Lz/Lx and Ly/Lx . The lid moves with
velocity utop = (ux , 0, 0) and no-slip boundary conditions are ap-
plied on the other walls. We rescale length and velocity by Lx and
ux , respectively. As a validation, we first simulate lid-driven cavity
flows without a solid. Our results agree well with high-accuracy
benchmarks (33) (SI Appendix, section 3.C and Figs. S6–S10). A
deformable circle in a square lid-driven cavity in 2D has been
investigated by Zhao et al. (34) and widely used as a validation
case in later works (19, 54, 56, 57). In simulating a sphere in
a cubic cavity, we first choose parameters similar to those in
the 2D test case, i.e., Re = 100,G = 0.1, to highlight qualitative
differences in 3D (Fig. 3 B and C). The middle cross-section
of the deformed sphere (Fig. 3B) is similar to the shape of
the deformed circle at long time (54). The distinctions between
the two cases are more apparent in their centroid trajectories.
Although the centroid of a sphere in a cubic cavity (Fig. 3C)
also converges to a stationary point, spirals of its trajectory are
much closer together than of the circle in 2D. There are several
reasons for this, most notably the topological difference between
an infinite cylinder and a sphere. More importantly, the reduced
circulation due to lateral walls in the third dimension (52) allows
the sphere to interact with the moving lid for longer before being
advected back to the center of the cavity.

To show the effect of the lateral walls on the solid deformation,
we simulate a sphere with G = 0.1 initially at (0.6, 0.5Ly , 0.5)
in cavities with Ly/Lx = 0.5–4. Fig. 3 H–J shows two views
of the sphere at the closest approach to the top lid in each
cavity. As the walls become farther apart, the sphere becomes
less stretched lengthwise and less compressed vertically, again
suggesting that a reduced circulation increases the strength of
the interaction between the sphere and the moving boundary.
Additionally, the centroid trajectories in longer cavities more
closely resemble the trajectory in 2D (19) and have farther-
spaced spirals (SI Appendix, Fig. S12).

We also simulate spheres with varying shear moduli. Snapshots
of a simulation with G = 0.03 are shown in Fig. 3A. In Fig. 3 E
and G we show that the shear modulus significantly influences
the centroid trajectory. Fig. 3 D and F offers some intuition for
the qualitative changes. As a stiffer sphere moves toward and
along the top lid, it deforms less and is able to separate earlier

Fig. 2. (A–D) Various stages of 150 ellipsoids settling/floating in a square cylinder (Movie S1). All ellipsoids have major axis R = 0.13 initially aligned with the
z direction, aspect ratio 2:1:1. Half of the ellipsoids are buoyant, ρs/ρf = 0.8 (yellow), and the others are denser than the fluid, ρs/ρf = 1.25 (orange). Other
parameters are (Lx , Ly , Lz, ρf , G, μ,μa, γt , h, ε) = (1, 1, 2, 1, 10−1, 10−3, 10−3, 0, 1/128, 1/128). No-slip boundary conditions are applied on all the walls. (A)
Ellipsoids initially at rest and randomly dispersed in the fluid. In B and C cross-sections at y = 0.5 are shown, and color corresponds to the y component of
vorticity. Fluid–solid interfaces are plotted with a thick black line, and contours of reference map components ξx and ξz are plotted with black and blue
dashed lines, respectively. The particle Reynolds number Rel = ρf ŪlR/μ ≈ 12 for lighter ellipsoids, and Reh = ρf ŪhR/μ ≈ 16 for the heavier ones. Ūl, Ūh are,
respectively, the time average velocity of lighter and heavier particles while they are in motion. They are computed only from particles that approximately
traverse the entire domain vertically. (D) Ellipsoids are fully separated with the lighter ones on top and the heavier ones at the bottom. This simulation was
run with 48 MPI ranks on Intel “Cascade Lake” nodes and took 19 h.
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Fig. 3. Simulations of a sphere in the lid-driven cavity. For all cases, parameters (Lx , Lz, ux , ρs, ρf ,μ, μa, ε) = (1, 1, 1, 1, 1, 10−2, 10−2, 1.5h), γt ∈ [0, 4], h ∈
[1/160, 1/48], and the flow Reynolds number Re = ρf uxLx/μ = 100. The sphere has radius 0.2 and is initially centered at (0.6, 0.5Ly , 0.5). (A) Snapshots
of a 3D simulation at various times, (Ly , G) = (1, 0.03). (B) Contours of the reference map and the interface are plotted against a background of velocity
magnitude (heatmap and contours). A cross-section at y = 0.5 and T = 50 is shown, (Ly , G) = (1, 0.1), h = 1/N. (C) The trajectory of the sphere centroid
from T = 0 to T = 50 of the sphere in B. The color corresponds to the velocity magnitude of the centroid. (D and F) The same as B but for solid shear moduli
G = 0.25 and 0.5, respectively. (E and G) The same as C but for solid shear moduli G = 0.25 and 0.5, respectively. (H–J) The 3D shape of a deformed G = 0.1
sphere at the closest approach to the top in cavity with Ly = 0.5, 1.0, 4.0, respectively. For additional data, see SI Appendix, section 3.C; Movies S2–S5; and
Dataset S1.

from driving flow. Consequently, a stiffer sphere is advected more
toward the center than toward the bottom and thus able to find
the stationary position faster. We do not impose any repulsive
forces on the sphere near the walls to avoid interfering with its
dynamics. For coarse resolution and low G simulations, we find
γt ≥ 0 is necessary to stabilize the interface near the boundaries
(SI Appendix, Table S6).

Swimming. Swimming has been an FSI problem of interest for
decades (58–60). To address the difficulty of resolving the full
FSI, especially motions of the phase boundary, modelers often
apply simplifications such as asymptotic analysis and scaling ar-
guments. A related, widely applied numerical approach in the
low Reynolds number regime is to abstract the swimmer into
a one-dimensional collection of regularized singularities, which
yields good approximations the swimmer’s far field (6, 38, 61–64).
However, this method requires specialization when the near field
is of prime importance, such as swimming in crowded or confined
environments (65, 66). We now use the RMT to simulate a finite-
size swimmer in a small no-slip box, showing the method naturally
resolves the near field.

Consider a neutrally buoyant swimmer with a cylindrical flag-
ellum of length L and radius R and a spherical head of radius
Rh > R as shown in Fig. 4A. We decompose the solid devia-
toric stress into passive and active parts τ s = τ (p) + τ (a), where
τ (p) = τ (p)(F) is the elastic stress tensor from previous sections.
We seek to define a time-dependent active stress field τ (a) =

τ (a)(t ,ξ,F) as a function of body position to induce cyclic defor-
mation in the form of a planar bending wave traveling along the
swimmer’s body. First, we specify how body orientation is deter-
mined in the deformed frame. We assume the reference frame’s
coordinate system is centered on the flagellum and aligned with
the swimmer. Denoting the associated orthonormal basis as {ẽI },
I ∈ {X ,Y ,Z}, we orient {ẽI } so ẽX points along the body
toward the head and ẽZ vertically up. The directions of these
vectors in the deformed space, {eI }, where eI = F · ẽI /‖F · ẽI ‖,
are also body aligned as shown in Fig. 4A.

Next, we define the active stress in terms of the reference map
components X (x, t) = ẽX · ξ(x, t) and Z (x, t) = ẽZ · ξ(x, t),
which denote the reference distance along the flagellum
and above the midplane, respectively. Since bending mo-
ments are induced by axial stresses τ

(a)
XX = eX · τ (a) · eX of

opposite signs about the midplane, as shown in Fig. 4B,
we set τ

(a)
XX = τ0Z . Setting the full deviatoric tensor, we let

τ (a) = 3Z τ0
(
eX ⊗ eX − 1

3
1
)
/2, where τ0 ∝ cos(kX − ωt)

for some wavenumber k and frequency ω. We introduce an
amplitude parameter W = B/3GIk2, where I is the cylinder’s
cross-sectional area moment of inertia and B a bending-moment
magnitude, to compare bending moments across a range of R.
Finally, we let τ0 = 3WGk2 cos(kX − ωt).

Nondimensionalizing position, time, and stress as x← kx/2π,
t ← ωt/2π, and τ ← τ/G , we simulate swimmers with varying
R, W, and L at constant ρf , ρs , μ, and Rh . We calculate the swim
speed U (Fig. 4C) and active power P = 〈−

∫
Ωs

τ (a):∇udV 〉,
where 〈∗〉 denotes time averaging over many cycles of oscil-
lation. These give rise to an approximate Lighthill efficiency
e = CU 2/P (Fig. 4D), where C is a drag coefficient used to
estimate the force required to tow the swimmer at velocity U
(67). At large W, the efficiency scales as e ∼W 2, consistent
with U ,P ∼W 2. Midstroke body shapes for three swimmers are
shown in Fig. 4 E–G. We find that there is effectively no motion at
L= 1, suggesting a minimum length is required for locomotion.
Swimming speed U and efficiency e increase as the swimmer
body size increases. This may be due to the scaling of Reynolds
number Res describing the time-averaged motion, since it grows
as Res ∼W 2 over the range of simulated W values. The swimmer
gait Reynolds number Reo varies more slowly as Reo ∼W . Both
Res ,Reo ∈ [10−4, 0.1] for the results in Fig. 4. For more details,
see SI Appendix, section 3.D and Movies S6 and S7.

Discussion
The reference map technique is a flexible numerical method for
FSI problems and is a useful complement to other numerical
FSI approaches. The strengths of the method are in simulating
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Fig. 4. Swimming of flagellar objects driven by active bending moments. (A) Schematic of a swimmer. Swimmers have a spherical head of radius Rh and
a cylindrical body of length L and a body radius R < Rh. The body is actuated by a traveling wave of bending moments B applied to vertical cross-sections
(marked in red). (B) Expanded view showing the active in-plane stresses τ(a)

XX directed along the body’s long axis ẽX . The stress magnitude varies linearly with
the height above the horizontal midplane (dashed blue line). (C and D) The swim speed U (C) and efficiency e (D) as a function of W, the bending wave
amplitude, are presented for a variety of body shapes. Simulations in C and D, Top vary R with L = 1.5, and those in C and D, Bottom vary L with R = 0.15.
(E–G) Body shapes, midstroke, are shown for several R, L combinations (Movies S6 and S7). Steady-state measurements are taken at time t = 10. For all cases,
(Lx , Ly , Lz, Rh, ρ, G, μ, μa, γt , h, ε) = (3, 1, 1, 0.25, 1, 1, 10−2, 10−2, 0, 1/128, 1/256).

volumetric elasticity, in handling complex geometries, and in
many-body contact. It is also well suited to coupling to other
physical processes that are naturally simulated on an Eulerian
grid.

To understand the relative merits of the RMT, we compare
it to the family of immersed boundary methods (3, 9) for sim-
ulating the lid-driven cavity problem with an elastic sphere on
an N × N × N grid. For the same resolution, the computational
requirements for simulating the fluid and solid are likely similar,
although the RMT would not require the solid mesh topology
to be stored. The largest difference between the two methods
is in interphase coupling. At each solid node in the IBM, it is
necessary to transfer information to the fluid grid via a smoothed
delta kernel, usually via a 4× 4× 4 set of grid points, creating a
O(N 3) amount of work. In the RMT it is necessary to perform
extrapolation at the boundary of the solid, creating an O(N 2)
amount of work. Thus, as the grid is refined, the overhead of
the RMT will be lower, highlighting its advantages for efficiently
solving problems involving volumetric elasticity.

By contrast, the RMT currently cannot handle reduced-
dimensional elastic structures (10, 36) that are straightforward

with the IBM. Furthermore, the implicit description of the inter-
face makes it less suited to problems that have large gradients
near the interface, such as flows at high Reynolds number. A
possible future direction is to formulate the RMT using adaptive
mesh refinement, which may mitigate this issue. Alternatively,
it may be possible to formulate the RMT using a high-order
sharp-interface approach (68), which would extend the range of
applicability of the method.

Data Availability. All study data are included in this article and/or
SI Appendix.
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