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Abstract

Among patients on dialysis, cardiovascular disease and infection are leading causes of 

hospitalization and death. Although recent studies have found that the risk of cardiovascular 

events is higher after an infection-related hospitalization, studies have not fully elucidated how the 

risk of cardiovascular events changes over time for patients on dialysis. In this work, we 

characterize the dynamics of cardiovascular event risk trajectories for patients on dialysis while 

conditioning on survival status via multiple time indices: (1) time since the start of dialysis, (2) 

time since the pivotal initial infection-related hospitalization and (3) the patient’s age at the start of 

dialysis. This is achieved by using a new class of generalized multiple-index varying coefficient 

(GM-IVC) models. The proposed GM-IVC models utilize a multiplicative structure and one-

dimensional varying coefficient functions along each time and age index to capture the 

cardiovascular risk dynamics before and after the initial infection-related hospitalization among 

the dynamic cohort of survivors. We develop a two-step estimation procedure for the GM-IVC 

models based on local maximum likelihood. We report new insights on the dynamics of 

cardiovascular events risk using the United States Renal Data System database, which collects 

data on nearly all patients with end-stage renal disease in the U.S. Finally, simulation studies 

assess the performance of the proposed estimation procedures.
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1 Introduction

As of 2010, end-stage renal disease affected more than 570,000 adults in the United States. 

Of these, more than 400,000 were on dialysis, a life-sustaining treatment (United States 

Renal Data System Annual Data Report [USRDS ADR], 2012). End-stage renal disease is 

associated with premature death, and cardiovascular disease is the leading cause of death in 

this population (USRDS ADR, 2012). An area of particular interest is whether infection 

contributes to the high risk of cardiovascular disease observed in this population, as 

infections are relatively common in patients on dialysis (Dalrymple et al., 2010; USRDS 

ADR, 2012). Previous studies have used an interval Poisson model, a Cox proportional 

hazards model and case-series analysis to support the notion that infection may contribute to 

a higher risk of cardiovascular disease in both the general population (Smeeth et al., 2004) 

and in the dialysis population (Foley et al., 2004; Ishani et al., 2005; Dalrymple et al., 2011; 

Mohammed et al., 2012). However, to date, studies have not fully elucidated how the risk 

(probability) of cardiovascular events changes over time for patients on dialysis and 

furthermore how the risk trajectory depends on individual characteristics.

Our primary objective is to understand how the risk of cardiovascular events dynamically 

evolves over time, and, in particular, how the changes depend simultaneously on multiple 

key time indices of: (a) time since the start of dialysis (vintage), (b) time since the initial 

infection-related hospitalization during dialysis and (c) baseline age at dialysis. While the 

dynamic cardiovascular risk trajectories as a function of the multiple time indices are of 

main interest, it is also important to characterize the effects of baseline covariates, which 

may potentially depend on baseline age. Baseline covariates of interest include demographic 

characteristics (sex, race), comorbidities (diabetes, coronary heart disease, congestive heart 

failure, peripheral vascular disease), body mass index (BMI) and estimated glomerular 

filtration rate (eGFR).

In addition to modeling risk trajectories over multiple indices, an important methodological 

challenge in the analysis of longitudinal data from USRDS is follow-up truncated by death. 

This is particularly relevant to the dialysis population because nationally, the annual 

mortality in the dialysis population is 20–25% (USRDS ADR, 2012). For the analysis of 

infection and cardiovascular risk in the dialysis population (USRDS data), the predominant 

dropout is due to death and it is certainly related to cardiovascular events (outcome). A 

cardiovascular event is defined as myocardial infarction, unstable angina, stroke, or transient 

ischemic attack; for a more detailed description, see Web Appendix B. When dropout is due 

to death, analysis demands careful consideration of the relevant target of inference. Kurland 

and Heagerty (2005) and Kurland et al. (2009) have considered truncation by death in 

longitudinal studies of geriatric populations, including studies examining disability or 

cognitive function outcomes and have proposed a ‘partly conditional’ target of inference 

where the analysis is conditional on being alive. Authors argue that an unconditional target 

of inference as is commonly used in drop-out or missing data literatures may not be a 

meaningful target when the missing data is due primarily to truncation by death, since it 

concerns a population where there are no deaths. Instead, more relevant scientific questions 
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can be addressed through a partly conditional model for the dynamic cohort of survivors. 

Some overall questions of particular clinical relevance for our study include:

a. What is the cardiovascular risk trajectory during the course of dialysis for the 

dynamic cohort of survivors and how does it depend on baseline age or other 

baseline covariates?

b. What is the cardiovascular risk at, for instance, 2 years after dialysis for patients 

who survive at least 2 years on dialysis without an infection?

c. What is the cardiovascular risk for patients who acquired an infection at 2 years 

after dialysis and who survive 2 or more years?

To address the aforementioned modeling objectives, we propose generalized multiple-index 

varying coefficient (GM-IVC) models for generalized outcome data that (a) accommodate 

several time indices, (b) utilize one dimensional varying coefficient functions along each 

time index to facilitate ease of interpretability similar to standard varying coefficient models, 

(c) allow for multiple cross-sectional and longitudinal covariates and (d) target a partly 

conditional inference, conditional on survival status. It is known that modeling time-varying 

effects with multiple indices generally is unreasonably difficult because of the curse of 

dimensionality. To address the curse of dimensionality, we utilize a multiplicative structure 

for the multiple-index varying effects that is able to capture several time-dynamic 

cardiovascular risk trajectories. As detailed in Section 2.1, the proposed GM-IVC models 

are adaptive to the time period before and after the pivotal initial infection-related 

hospitalization. That is, the cardiovascular risk is modeled as a function of vintage for 

patients who never experience the pivotal infection and for patients who do experience the 

pivotal infection before their initial infection-related hospitalization. The GM-IVC models 

then shift to the time period after the initial infection-related hospitalization to estimate the 

cardiovascular risk as a function of time since the initial infection. Furthermore, since the 

cardiovascular risk as a function of these two time indices (vintage and time since infection) 

is associated with baseline age at dialysis, the models allow for baseline age as a third index.

We note that the literature on the standard varying coefficient models (Cleveland et al., 

1991; Hastie and Tibshirani, 1993), generalized varying coefficient models (Cai et al., 2000; 

Zhang et al., 2004; Qu and Li, 2006), and their adaptations for analyzing longitudinal data 

(e.g., see Hoover et al., 1998; Wu et al., 2000; Chiang et al., 2001; Fan et al., 2000; 2003; 

Huang et al., 2002; Huang et al., 2004; and references therein) are limited to a single time 

index for the varying coefficient functions due to the curse of dimensionality. When 

understanding how the response trajectory changes with respect to each index is not of 

interest, a dimension reduction approach where a linear combination of several indices serve 

as a one-dimensional index of the varying coefficient model was proposed by Fan et al. 

(2003). Although these approaches are very useful in their respective areas of applications, 

they are not directly applicable to our objective of modeling/understanding cardiovascular 

risk over multiple indices.

We also note that although the proposed GM-IVC models are motivated by our goal to 

better understand the dynamics of cardiovascular risk over several time and age indices for 

patients on dialysis with the initial infection-related hospitalization as the pivotal exposure, 
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the models are sufficiently general for a variety of other potential applications. In many 

longitudinal investigations, a pivotal exposure of interest marks the shift to a new ‘time’ 

index for modeling the response trajectory. The remainder of this paper is organized as 

follows. We introduce our proposed generalized multiple-index varying coefficient model 

along with model interpretation and assumptions in Section 2. Section 3 outlines the 

proposed estimation algorithm based on local maximum likelihood. In Section 4, we 

examine the aforementioned cardiovascular risk trajectories in older patients on dialysis with 

data from the USRDS. Section 5 contains simulation studies to demonstrate the efficacy of 

the proposed estimation method, followed by concluding remarks in Section 6.

2 Proposed Generalized Multiple-Index Varying Coefficient Model

2.1 Model Specification

Let ai denote the age of the ith patient at the initiation of dialysis and Si denote the survival 

time of the ith patient. While ti will be used to denote overall follow-up times after initiation 

of dialysis, t0i and t1i will specifically track follow-up times before and after the potential 

infection-related hospitalization, respectively. Hence for patients who had a pivotal initial 

infection-related hospitalization at time Zi, we note that ti = t0i {ti < Zi}+(Zi+t1i) {ti ≥ Zi}, 

where {A} denotes the indicator function for event A. For patients who do not experience a 

pivotal infection during follow up time, Zi = 0 and ti = t0i. To examine the changes in 

cardiovascular event probability (risk) while conditioning on survival status over these time 

indices, we model the binary indicator of having a cardiovascular event within a three month 

follow-up interval. We consider a binary outcome instead of a count outcome in our 

modeling, since having more than one cardiovascular event in a three month interval is very 

rare; it is less than 0.1% in our data. The goal is to model the expected outcome, denoted

where Yi(ai, ti, t0i, t1i) is the indicator of a cardiovascular event for subject i in a three month 

time interval centered around a fixed value of t0i or t1i; Zi is the vintage till first infection-

related hospitalization given that the ith patient has at least one infection-related 

hospitalization (Zi = 0 for patients who do not experience an infection-related 

hospitalization); (ti) denotes a subject-specific time-varying indicator of infection-related 

hospitalization prior to time ti (i.e. equals 1 for Zi > ti and zero otherwise); Xi is a vector of p 

− 1 additional baseline covariates. A link (transformation) function, denoted g(μi), connects 

the conditional expected outcome (cardiovascular event risk) to the time-varying effects and 

age-varying effects corresponding to the multiple time indices and the covariates. More 

precisely, our proposed generalized multiple-index varying coefficient model has the form:

(1)

where the term γ0(ai)α0(t0i) jointly captures vintage- and age-varying effects; the term 

γ1(ai)α1(t1i) captures the age- and time-varying effects since the initial infection-related 
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hospitalization; the age-varying coefficient functions βr(ai), r = 1, …, p, correspond to 

vintage prior to the first infection-related hospitalization and baseline covariates. For 

formality, the supports for the varying coefficient functions in (1) are: t0i ∈ [0, T0i], t1i ∈ [0, 

T1i], T0i ≤ T, T1i ≤ T and ai ∈ [A0, A1], where T is the maximum follow-up duration along 

each time axis. In our application, we model the cardiovascular event risk during a 

maximum follow-up period along each time axis with T = 5 years, both after the initiation of 

dialysis and after the initial infection-related hospitalization. We estimate the age-varying 

effects for ai ∈ [65, 90] = [A0, A1]. The target population is older patients on dialysis since 

the cardiovascular event probability is expected to be higher in this cohort.

Note that for our application, the outcome Yi(ai, ti, t0i, t1i) is binary so that μi = Pr{Yi(ai, ti, 

t0i, t1i) = 1|Zi, Xi, (ti), Si > ti} and we use the logit link function, logit(μi) = log{μi/(1 − μi)}. 

Finally, we note that a classical generalized varying coefficient model with a single time 

index is a special case of our proposed GM-IVC model (1). More specifically, when α0(t0i) 

and α1(t1i) are constant functions, model (1) reduces to a standard generalized baseline age-

varying coefficient model with cross-sectional covariates (Xri’s) and longitudinal covariates 

(namely, (ti) and Zi (ti)),

Other simplifications such as parametric forms can be considered for the varying coefficient 

functions. The proposed model is given for the most general setting for potentially complex 

features of the varying coefficient functions in diverse applications allowing for 

nonparametric forms along each time index.

2.2 Model Interpretation and Assumption

The proposed GM-IVC model (1) adapts to the follow-up time periods of patients before 

and after a potential infection-related hospitalization in order to model changes in the 

cardiovascular event risk over several time and age indices. This aspect is illustrated in 

Figure 1. With respect to vintage, model (1) reduces to

(2)

Note that for modeling infection-free vintage, times from subjects who had no infection-

related hospitalization during their entire follow-up and times prior to the initial infection-

related hospitalization for patients with at least one infection-related hospitalization 

contribute to model (2). Hence, before a potential infection-related hospitalization, the risk 

of a cardiovascular event is modeled as a function of baseline age ai (at the start of dialysis), 

vintage t0i and baseline covariates, whose effects are allowed to vary with baseline age. On 

the other hand, for those subjects with at least one infection-related hospitalization, after 

their initial infection-related hospitalization, model (1) shifts to
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(3)

Therefore, after the initial infection-related hospitalization, we model the cardiovascular 

event risk primarily as a function of baseline age ai and time since the initial infection-

related hospitalization t1i (along with baseline covariates). Thus, the infection-related 

hospitalization introduces an additional time index, namely time since the initial infection-

related hospitalization. Note that model (3) also accounts for vintage till the initial infection-

related hospitalization (Zi). The time varying indicator, namely (ti), in model (1) allows the 

switch between models (2) and (3) determined by the time of the initial infection-related 

hospitalization during a patient’s course of dialysis. This flexibility will allow us to study the 

longitudinal effects of a pivotal initial infection-related hospitalization on the cardiovascular 

event risk and also compare these effects with the longitudinal effects along the time since 

dialysis index. In this respect the proposed model does have similarities with a change point 

varying coefficient model with subject specific change points at the potential initial 

infection-related hospitalizations. However the main innovation of the proposed GM-IVC 

model remains in that it can accommodate multiple time indices which is also novel in the 

change point models for survival or longitudinal data.

Model (1) addresses the curse of dimensionality from accommodating multiple time indices 

via the multiplicative forms γ0(a)α0(t0) and γ1(a)α1(t1). Hence, effects along the two time 

indices and age are modeled through one-dimensional coefficient functions, rather than 

bivariate varying coefficient functions (e.g., h0(a, t0) and h1(a, t1)); this leads to easier 

interpretation and more straight forward comparisons along different time indices. The 

proposed multiplicative forms in model (1) are not identifiable without restrictions, hence 

we assume the following identifiability conditions:

(4)

These identifiability conditions imply that the estimated effects along the time indices, t0 

and t1, are normalized and that the estimated coefficients, α0(·) and α1(·), carry the shapes of 

the regression effects, while the magnitude and the sign of the effects are reflected through 

the coefficient functions, γ0(a) and γ1(a). We note that the assumed multiplicative forms 

along with the proposed identifiability conditions imply that the cardiovascular risk 

probabilities as a function of vintage and time since the initial infection-related 

hospitalization, for patients initiating dialysis at different ages, share a common shape 

captured by α0(t0) and α1(t1), respectively. Also, the magnitude of these trajectories are 

allowed to change as functions of baseline age at dialysis. We will illustrate in the analysis 

of the USRDS data in Section 4 that the plausibility of the assumed multiplicative forms can 

be easily assessed graphically during the implementation of the proposed estimation 

algorithm.
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3 Two-Step Estimation Via Local Maximum Likelihood

For estimation in the GM-IVC model, we propose a two-step estimation algorithm that 

utilizes an extension of the local maximum likelihood estimator of Cai et al. (2000) to 

longitudinal data. In the first step, we target α0(t0) and α1(t1) based on the observation that 

for fixed a, the proposed model reduces to a generalized varying coefficient model in t0 and 

t1, both indexing the longitudinal follow-up of each subject. We bin patients according to 

baseline age a and obtain stratified estimates of the varying coefficient functions within each 

bin. This is equivalent to estimating slices of the two dimensional surfaces h0(a, t0) = 

γ0(a)α0(t0) and h1(a, t1) = γ1(a)α1(t1) at fixed a values. Hence we estimate features of the 

two-dimensional surfaces by estimation in one dimension. Since the stratified estimates 

share a common shape according to our identifiability conditions (4), we combine and 

normalize the stratified estimates to obtain our final estimators for α0(t0) and α1(t1). The 

second step of the proposed estimation algorithm utilizes the observation that for known 

α0(t0) and α1(t1), the proposed model reduces to a baseline age-varying coefficient model in 

a with longitudinal and cross-sectional covariates. Thus, using the estimated α0(t0) and 

α1(t1) from the first step, we estimate γ0(a), γ1(a) and {βr(a); r = 1, …, p} of the baseline 

age-varying coefficient model in the second step of the estimation algorithm.

3.1 Step I: Estimation of α0(t0) and α1(t1)

We begin by binning the subjects according to their baseline age ai. In our application to the 

USRDS data, we use two year intervals. Denote by { ; j = 1, …, J} the disjoint sets of 

patient indices that partition the cohort. Next, in each age bin , we partition each patient’s 

follow-up period into disjoint three month intervals both after the start of dialysis and after 

the initial infection-related hospitalization if the patient has at least one infection-related 

hospitalization. For time since dialysis, patients are followed up to their initial infection-

related hospitalization or to the end of follow-up (for patients with no infection-related 

hospitalization). For time since the initial infection-related hospitalization, patients are 

followed to the end of their follow-up.

In our application we consider five year maximum follow-up periods, T = 5 in model (1), 

both after the start of dialysis and after the initial infection-related hospitalization, since the 

median follow-up in the entire cohort is approximately 2 years. Define t0ik and t1ik′ to be the 

midpoints of the kth and k′th three month time intervals since dialysis start and time since 

the initial infection-related hospitalization intervals, respectively. Also, let i(j) denote the ith 

patient in the age bin . We define the binary response variable Y0,ijk ≡ Yi(j)(ai, ti(j) = t0i(j) = 

t0i(j)k) = 1, if the ith patient in baseline age bin  had at least one cardiovascular event in the 

kth three month interval after the start of dialysis. Similarly, Y1,ijk′ ≡ Yi(j)(ai, ti(j) = Zi(j) + 

t1i(j), t1i(j) = t1i(j)k′) = 1 if the ith patient in age bin  had at least one cardiovascular event in 

the k′th three month interval after the initial infection-related hospitalization. In addition, we 

denote by Xri(j) and Zi(j) the value of the rth baseline covariate and the vintage until the 

initial infection-related hospitalization of patient i in age bin , respectively.

We note that for a fixed age a, for patients within the age stratum/bin , the proposed GM-

IVC model (1) reduces to the following varying coefficient model in the longitudinal follow-

up time (ti(j), t0i(j) and t1i(j) all tracking longitudinal time),
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(5)

where μi(j) ≡ E{Yi(j)(ai(j), ti(j), t0i(j), t1i(j))|Zi(j), Xri(j), (ti(j)), Si(j) > ti(j)}, g(·) is a known link 

function, α0j(t0i(j)) ≡ γ0(ai(j)) α0(t0i(j)), α1j(t1i(j)) ≡ γ1(ai(j)) α1(t1i(j)), b1j ≡ β1(ai(j)) and {brj 

≡ βr(ai(j)); r = 2, …, p}. Model (5) is fitted via local maximum likelihood. For details of the 

fitting procedure including the adopted Newton-Raphson algorithm, see Web Appendix A.

Note that the stratified estimators from different ’s target α0j(t0) ≡ γ0(aj)α0(t0) and α1j(t1) 

≡ γ1(aj)α1(t1), and that they share the same shape as α0(t0) and α1(t1), respectively. Hence, 

to arrive at our final estimators for α0(t0) and α1(t1), we aggregate the stratified estimators 

coming from different age strata using the identifiability conditions via

where  and  denote the indicator functions for  and .

Note that the number of bins selected does not need to be large as long as there is enough 

sample size to obtain stable estimates from the fitted generalized varying coefficient models 

in each age bin. There are a couple of factors that play a role in determining adequate 

sample size for fitting a generalized varying coefficient model: 1) nature of the response 

(e.g. continuous or binary), 2) number of predictors in the model, 3) amount of truncation by 

death. For a more detailed discussion of selection of number of bins, readers are referred to 

Web Appendix D.

3.2 Step II: Estimation of γ0(ai), γ1(ai) and βr(ai)

For estimation of the γ’s and β’s, we observe that for known α0(t0) and α1(t1), the proposed 

GM-IVC model reduces to a varying coefficient model in the single age index a. Therefore, 

we use the estimators of α0(t0) and α1(t1) from step I to target the γ’s and the β’s in the 

baseline age-varying coefficient model

(6)

in the second step of the estimation algorithm. We fit model (6) via maximum likelihood; 

see Web Appendix A for details of the maximization algorithm.
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4 Multiple-Index Cardiovascular Event Risk Trajectories in Older Patients 

on Dialysis

4.1 Description of the Study Cohort

We use data from the United States Renal Data System (USRDS), which collects data on 

nearly all patients with end-stage renal disease in the U.S. The USRDS is a national database 

that collects and maintains standard analytic files, including data on inpatient 

hospitalizations submitted to Medicare, patient demographics, dialysis modality, 

comorbidities and laboratory measures at the start of dialysis (USRDS, 2011). The defined 

population of inference in our study are patients aged 65 and older who newly initiated 

dialysis between January 1, 2000 and December 31, 2007 without a prior history of renal 

transplant. For detailed descriptions of the study cohort of n = 294, 511 patients and 

variables used in modeling including baseline covariates and definitions of a cardiovascular 

event and the infection-related hospitalization, see Web Appendix B.

4.2 Results: Cardiovascular Event Risk Trajectories

We begin our proposed estimation procedure for the GM-IVC model (1) by obtaining the 

age-stratified α0j and α1j estimates. For this, we bin patients into 2 year baseline age strata, 

where bins are a little wider at 3 years for strata above age 84, to obtain stable estimates at 

very high ages, yielding a total of 11 bins. A sensitivity analysis has been run where the total 

number of bins were selected as 8 and 14; data analysis results were very similar and readers 

are referred to Web Appendix D for details. The age-stratified estimates (α̂0j’s and α̂1j’s) are 

plotted as a function of vintage and time (years) since the pivotal initial infection-related 

hospitalization in Figure 2(a) and (b), respectively. The plotted age-stratified estimates 

roughly share a similar increasing pattern, indicating that the multiplicative assumption of 

model (1) is reasonable in our application.

The final estimated time-varying coefficient functions over the two time indices, namely 

α̂0(t0) and α̂1(t1), along with the age-varying coefficient functions γ̂0(a) and γ̂1(a) are 

displayed in Figure 2(c) and (d), respectively. Also provided along with the cardiovascular 

event risk trajectories are percentile bootstrap confidence intervals based on 200 bootstrap 

replications formed by resampling from subject trajectories with replacement. The 

bandwidths used (h = 1.5 years for {α̂0(t0), α̂1(t1)} in the first step and h = 4 years for 

{γ̂0(a), γ̂1(a), β̂r(a)} in the second step of the local maximum likelihood estimation 

procedure) were chosen by the 20-fold cross-validation, similar to Cai et al. (2000). To 

reduce boundary effects, a bandwidth of h = 2.5 years was used at grid points close to 5 

years in estimation of α̂1(t1). Recall (from Section 2.2) that in assessing the estimated 

varying coefficient functions, α̂0 and α̂1 do not carry the sign or the magnitude of the 

regression effects, and they should be compared based on their shapes. Because γ̂0 and γ̂1 

are negative (Figure 2(d)), the general increasing patterns of α̂0 and α̂1 (in Figure 2(c)), with 

respect to both time indices (t0 and t1), imply decreasing cardiovascular event probabilities 

after the start of dialysis and after the initial infection-related hospitalization for the dynamic 

cohort of survivors. Consistent with the slight convex pattern of α̂1, around 0, we estimate a 

faster decrease in cardiovascular event probabilities after the start of dialysis compared to 

follow-up after the initial infection-related hospitalization. From Figure 2(d), it can be seen 
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that the estimated age-varying coefficient function γ̂1(a) is greater than γ̂0(a); this implies 

that cardiovascular event risk is nominally higher across all ages conditional on survival 

status after the initial infection-related hospitalization compared to after the start of dialysis. 

Furthermore, both γ̂1(a) and γ̂0(a) are increasing with age a and converging together as age 

a approaches 90; this suggests, not surprisingly, that cardiovascular event risk increases with 

age generally.

To compare the cardiovascular event risk trajectories directly, as a function of vintage, time 

since the initial infection-related hospitalization and patient age at dialysis, Figure 3 

provides the cardiovascular event probabilities and their respective bootstrap confidence 

intervals over both time indices for baseline ages of 65, 78 and 90. The following 

observations can be made about the cardiovascular risk trajectories from the results in Figure 

3.

1. The risk is significantly greater across the five year follow-up time after the pivotal 

initial infection-related hospitalization compared to the time after the start of 

dialysis conditional on survival of the patient.

2. The highest risk is near the time of dialysis start and the time of the initial 

infection-related hospitalization and declines with both time indices.

3. The risks over both time indices increase with increasing baseline age.

4. The effect of baseline age on the risk of cardiovascular event is much more 

pronounced for time after the start of dialysis compared to the time after the initial 

infection-related hospitalization. Furthermore, from Figure 2(d), the increasing 

cardiovascular event probability among the dynamic cohort of survivors after the 

initial infection-related hospitalization plateaus after baseline age 72.

5. However, the difference in risks for time since dialysis and time since the initial 

infection-related hospitalization declines with increasing baseline age at dialysis.

The later two points are made transparent by Figure 3(d), which overlays the estimated 

cardiovascular event probabilities across baseline ages. To illustrate the pattern of 

cardiovascular risk dynamics above, we selected the estimates for white male patients with 

diabetes and average levels of eGFR and BMI to display in Figure 3.

Figure 4 displays the estimated cardiovascular event risk trajectories for both time indices 

simultaneously, with the initial infection-related hospitalization occurring at 3, 2 and 1 

year(s) after the start of dialysis; similar to Figure 3, the risk trajectories are provided with 

bootstrap confidence intervals for individuals with baseline ages of 65, 78 and 90 (Figure 4: 

left, middle and right column, respectively). The increased cardiovascular event probabilities 

remain elevated and do not decrease to their original levels; for example, even after one year 

from the initial infection-related hospitalization. This appears to hold independent of when 

the initial infection related-hospitalization occurred (1, 2 or 3 years after the start of 

dialysis). Also, consistent with impact of baseline age at dialysis described above, the 

sustained elevated risks are particularly pronounced for relatively younger patients at the 

start of dialysis (e.g., age 65 and 78 compared to age 90). For the effects of baseline 

covariates, see Web Appendix B.
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5 Simulation Studies

We carry out simulation studies to examine the efficacy of the proposed estimation 

procedure to target the true time- and age-varying coefficient functions when there is 

truncation by death. Similar to the model used for the data analysis of Section 4, we consider 

the following GM-IVC model

for t0i ∈ [0, T0i], t1i ∈ [0, T1i], T0i ≤ T, T1i ≤ T, T = 5, ai ∈ [65, 90] and g(·) the logistic link 

function. For details of the simulation study design where the response and the survival time 

are generated jointly, see Web Appendix C.

To study the performance of the proposed estimation procedure for the GM-IVC, we utilize 

a relative mean squared deviation error (MSDE) defined as

for the time-vary function α0(t0). The MSDEs for the other time- and age-varying 

coefficient functions, namely MSDEα1, MSDEγ0, MSDEγ1, MSDEβ1, MSDEβ2 and 

MSDEβ3, are defined similarly. Table 1 gives the median, first quartile and third quartile of 

the estimated MSDE values in percentage for the varying coefficient functions over 200 

Monte Carlo runs. Results are presented at two sample sizes n = 3000 and 5000 with 

bandwidth chosen by 20-fold cross-validation as described in Cai et al. (2000). Bandwidths 

used were chosen in a preliminary simulation study yielding h = (1.5, 1.5) for α̂0(t0), α̂1(t1) 

and h = (3.75, 2.5) for β̂0(a), β̂1(a), β̂2(a) for n = 3000 and n = 5000, respectively. Overall, 

the MSDE values reported are small and get smaller with increased sample size. In addition, 

Figure 5 displays the estimated median, 5th and 95th percentile varying coefficient functions 

overlaying the true curves at the sample size n = 3000. The estimated functions track the true 

varying coefficient functions. Overall, the simulation studies illustrate that the proposed 

estimation procedure for the GM-IVC models is effective in capturing the true time- and 

age-varying dynamics for data truncated by death.

6 Discussion

Infection and cardiovascular disease remain the leading causes of hospitalization and death 

in patients on dialysis in the United States (USRDS 2011). Understanding the complex 

cardiovascular risk trajectories is important for potential strategies to target cardiovascular 

risk reduction, including implementation of overall infection control or prevention 

strategies. The results highlight the significant impact of the first infection-related 

hospitalization on cardiovascular event risk and the dependence of this effect on age at the 

start of dialysis. An important finding is that the infection-related hospitalization results in 

sustained increases in cardiovascular event risk among the dynamic cohort of survivors; for 

instance, even one year after the infection-related hospitalization, the cardiovascular event 
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probability is still higher than the cardiovascular risk at the start of dialysis, a time of high 

cardiovascular risk with respect to vintage. This pattern of cardiovascular risk dynamics, 

with respect to vintage (t0) and time since the pivotal initial infection-related hospitalization 

(t1), holds for most older patients starting dialysis, although the difference in cardiovascular 

event probabilities before and after the infection declines with increasing baseline age at 

dialysis. The difference in cardiovascular risk converges (equalizes) only for very elderly 

patients starting dialysis, near 90 years of age.

From a technical perspective, the proposed GM-IVC models add important and necessary 

flexibility to the current varying coefficient modeling toolkit by the introduction of 

additional time (and age) indices. We achieved this by employing a sensible multiplicative 

structure to capture the multiple time- and age-varying effects, and at the same time, 

avoiding the curse of dimensionality, a known limiting factor in modeling dynamic, varying 

effects. The multiplicative structure assumption can be assessed in the first step of the 

proposed estimation algorithm via assessing whether the binned estimators of α0(t0) and 

α1(t1) share a common shape. If this does not seem to be a plausible assumption, the more 

general two dimensional regression surfaces h0(a, t0) and h1(a, t1) need to be targeted. Also, 

as illustrated with our USRDS data application, the GM-IVC models provide natural 

graphical displays of time- and age-varying dynamics that are fairly easy to interpret; thus, 

retaining a popular feature of standard/classical varying coefficient models. We believe the 

proposed GM-IVC models are widely applicable since characterizing the outcome 

trajectories over multiple indices, including time since a pivotal exposure event is often of 

interest in longitudinal analysis. Finally due to a large percent of truncation by death, we 

developed a model targeting a partly conditional inference target, conditional on the survival 

status of the patients. Partly conditional models was originally proposed for generalized 

linear models (Kurland and Heagerty, 2005); the current work extends them to varying 

coefficient models incorporating multiple indices. Investigation of the theoretical properties 

of the proposed estimators is an open problem. We provide R codes for our GM-IVC model 

in Web Appendix E.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example of follow-up data for a subject (a) without and (b) with an infection-related 

hospitalization along with the proposed models for cardiovascular risk before (light gray) 

and after (dark gray) the infection-related hospitalization. Note that the model for 

cardiovascular risk after the initial infection-related hospitalization appropriately accounts 

for vintage until the infection-related hospitalization (term β1(ai)Zi). See Section 2 for 

details.
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Figure 2. 
Baseline age-stratified varying coefficient function estimates after the (a) start of dialysis 

(vintage t0) and (b) initial infection-related hospitalization (t1). Final varying coefficient 

function estimates as a function of (c) vintage and time since the initial infection-related 

hospitalization and (d) baseline age at dialysis. 90% bootstrap confidence intervals are given 

as dashed lines in (c) and (d).
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Figure 3. 
Estimated probabilities of cardiovascular (CV) events for white male patients with diabetes 

and with average levels of eGFR and BMI (with the vintage until the first infection-related 

hospitalization of Z = 1.4 years) with baseline ages (a) 65, (b) 78 and (c) 90. Plot (d) 

overlays/combines the estimated probability trajectories from the three baseline ages. 90% 

bootstrap confidence intervals are given as dashed lines in (a), (b), and (c).
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Figure 4. 
Estimated probabilities of cardiovascular (CV) events during the course of dialysis for 

patients experiencing the pivotal initial infection-related hospitalization at 3, 2 and 1 year 

after the start of dialysis with baseline ages of 65, 78 and 90 (columns left, middle and right, 

respectively). 90% bootstrap confidence intervals are given dashed.
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Figure 5. 
Simulation results for n = 3000. The cross-sectional median curves of the proposed 

estimates are given along with 5% and 95% cross-sectional percentiles (dotted) overlaying 

the true varying coefficient functions (solid).
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