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Abstract  
There has been a great deal of interest in how 
generalizations and exceptions are learned, with 
particular interest in how speakers learn to avoid 
overgeneralizations. Do overgeneralizations disappear 
only because exceptions become more strongly 
represented or does the generalization itself become 
suppressed? Novel labels were constructed by 
combining 56 syllables with one of two prefixes, and 
each label was assigned a unique image. Most labels with 
the first prefix were paired with images from a 
generalization category, whereas exceptional labels were 
paired with images from a different semantic category. 
All labels with the second prefix appeared with a third 
category (“baseline”). Participants used a computer 
mouse to choose one of two images for each label. 
Mouse-tracking results show that the generalization 
itself became suppressed over time in the context of 
exceptional labels. A post-test demonstrated that 
exceptions were learned with item-specific precision.  
 
Keywords: language acquisition, generalization, 
exceptions, overgeneralization, mouse-tracking  
 

Introduction  
In order to speak a language fluently, it is critical to 
learn subclasses of exceptions within otherwise broad 
generalizations. For instance, in Spanish, words 
ending –a are generally grammatically feminine, but 
roughly half of the words that end in –ma are 
masculine (e.g., el drama). The present work 
investigates how these sorts of generalizations and 
exceptional subclasses interact with one another 
during the learning process. In particular, we 
investigate whether competition between a 
generalization and a subclass of exceptions persists to 
the same degree throughout learning.  

Competition between generalizations and 
exceptions is widely recognized to affect language 
processing (Bates & MacWhinney 1987; Christiansen 
& Chater 1999;  McClelland, &  Rumelhart 1986; 

Goldberg 2019). However, less attention has been 
focused on how the process of learning exceptions 
might affect memory for the generalization. One 
possibility is that the generalization and exceptions are 
represented independently, and learning the 
exceptions has no effect on memory for the 
generalization. According to this perspective, the 
generalization and exceptions may operate in parallel 
and race to provide the correct form during production 
(Pinker 1999), or they may operate as sequential rules 
(Yang 2016). Both of these proposals are consistent 
with the idea that speakers learn to avoid 
overgeneralizations because exceptions become more 
strongly represented. No change in the representation 
of the generalization is required. 

A third possibility we investigate here is that the 
generalization becomes suppressed in the context of 
exceptions. Support for this hypothesis comes from 
the literature on how competition between memories 
drives learning. Numerous studies have found that, 
when memories (semantic or episodic) compete, the 
“losing” memories (i.e., memories that are partially 
activated, but less than the memory that is fully 
retrieved) become harder to subsequently access, 
compared to memories that do not undergo 
competition. (Anderson et al., 1994; Anderson et al., 
2000; Bäuml, 1998; Bäuml 2002; Johnson & 
Anderson, 2004; Levy et al., 2007; Murayama et al., 
2014; Lewis-Peacock & Norman 2014; Kim et al., 
2014).  

For example, in Anderson et al. (1994), participants 
memorized a set of word pairs, some of which shared 
a semantic category (fruit: orange; fruit: apple) while 
other items were part of an unrelated category (tool: 
hammer). During the retrieval practice phase, 
participants were given a semantic cue and asked to 
recall a subset of the items (fruit: ap___). Note that the 
semantic category fruit can be expected to activate 
orange, but orange would lose in competition to apple 
because it is inconsistent with the partial cue “ap___”.  
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That is, the cue ensures that apple wins in a 
competition with orange (and other prototypical 
fruits). At the final test phase, unsurprisingly, 
participants recalled practiced items (apple) best. 
Critically, items in the same category which were not 
themselves practiced (e.g., fruit: orange), had a lower 
recall rate than unrelated baseline items (tool: 
hammer), an effect known as retrieval-induced 
forgetting (RIF).  

Anderson et al., (2000) emphasized the role of 
competition during retrieval in RIF. They  found that 
simply repeating an item (e.g., apple) without the 
semantic cue (fruit: ap____) that could be expected to 
partially activate competitors such as orange, did not 
result in the subsequent suppression of orange. In this 
case where there was no competition-inducing cue, the 
repeated item (i.e., apple) was strengthened but the 
other word from the same category (i.e., orange) was 
not less likely to be recalled than words from other 
categories (like, hammer). These results demonstrate 
that it is not merely the strengthening of the more 
activated memory that resolves the competition. 
Rather, competition also leads to suppression of the 
less activated memory.   

In the domain of language learning, we hypothesize 
that exceptions serve to delimit the domain of a 
generalization, suppressing its activation and carving 
out a space of their own so that the generalization and 
exceptions become more differentiated over the course 
of learning. The alternative hypothesis is that 
exception learning is the strengthening of the 
exception alone, with no change to the generalization. 
We aim to evaluate these hypotheses by exposing 
participants to a mini-artificial language that contained 
a generalization and a subclass of exceptions. We then 
used a mouse-tracking design, as it provides a 
sensitive way to detect competition between two 
alternatives in a forced choice task.  

The mini-artificial language consisted of two 
prefixes and 56 syllables and images. One prefix 
appeared with 40 syllables paired with images of one 
semantic category (the generalization) and 8 other 
syllables paired with a second semantic category (the 
exceptions). The second prefix consistently appeared 
with 8 instances of a third semantic category and 
served as a baseline. For example, as presented in 
Figure 1, a subset of participants witnessed the prefix, 
abber, paired with 40 unique syllables and unique 
faces and 8 different syllables and unique scenes. The 
other prefix, belling, was then paired with 8 unique 
syllables and unique objects. The combination of 
semantic category (faces, scenes, objects) and prefix 
(abber, belling) was counterbalanced across 
participants, and additionally, the pairing of each 
syllable and image was randomized for each 
participant. However, for ease of description, we refer 

to the assignment of categories and prefixes 
represented in Figure 1 throughout the paper. 

Participants were first exposed to all 56 <prefix+ 
syllable> pairs (hereafter, labels) and images. In the 
main task, participants heard each label and decided 
which of two images on the screen matched that label 
(vs. the other “lure” image) by using a computer 
mouse to move from the bottom of the screen to the 
chosen image (Spivey, Grosjean, & Knoblich, 2005; 
Spivey & Dale, 2006). These mouse-tracking trials 
were repeated over 8 blocks in order to investigate 
learning over time. Only correct trials are included in 
the main analysis. But the dependent measure used 
was deviation toward the distractor image (the “lure”), 
weighted by time, which captures the degree to which 

participants were lured by the incorrect category 
(Figure 2).  

Specifically, the distance between the cursor’s 
position and a straight line to the correct response was 
measured at 30 millisecond intervals. To the extent 
that participants drew a relatively straight line from the 
start to the correct target, the deviation measure was 
low, indicating that the lure was not active in their 
minds. On the other hand, if participants drew an arc 
that trended toward the lure, we can conclude that the 
lure was activated by the label to some degree 

Since our interest was in the relationship between a 
generalization and a subclass of exceptions, it might 
be tempting to focus on trials that included both an 
image from the generalization category and an image 
from the exception category. However, it would be 
impossible to determine in that case whether the 
trajectory was due to being lured by one image or by 
avoidance of the other. Specifically, an 
overgeneralization may be captured by a strong pull 
towards the generalization lure image or a lack of pull 
towards the correct exception image.  

Therefore, in order to investigate how generalization 
activation changes without contamination from the 
lure of an exception image, a second trial type was 
introduced, “Scrambled-Image” trials (Figure 3). On 
these trials, participants were told to always select the 
scrambled image, regardless of what label was heard 
or which other image was available. For these 

Figure 2: Example 
mouse-tracking 
trajectory sampled 
every 30 ms to 
determine the 
strength of the lure 
category (here, the 
face image).  
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scrambled-image trials, the trajectory indicated how 
much participants activated the lure image category 
without the confound of preference toward the chosen 
image, since this was held constant across all 
scrambled-image trials. In order to avoid over-learning 
of the scrambled-image task (i.e., participants 
becoming good at going straight to the scrambled 
image without consideration of the lure), this type of 
trial was only included in blocks 3 and 8.  

 Blocks with two intact-image trials (blocks 1,2, & 
4-7) each had 80 trials per block. Blocks 3 and 8 had 
two intact-image trials intermixed with scrambled-
image trials for a total of 120 trials (Figure 3). Thus, 
in total, there were 720 trials, 11.11% of which were 
scrambled-image trials. Participants were not given 
any indication of the block structure of the task, except 
that they were given a rest after block 4, half way 
through the experiment.  

By comparing performance on scrambled-image 
trials in blocks 3 and 8, the activation of lures over the 
course of learning can be detected. See Figure 3 for 
experimental design. 

The scrambled-image trials, along with the mouse-
tracking measure, allowed us to home in on the 
activation of a particular category for a particular 
label and how it changed over the course of learning. 
This enabled us to test the following hypothesis: a 
generalization becomes suppressed over time in the 
context of exception labels.  
 

Method  
The sample size and the main analysis were 
preregistered on Aspredicted.org, prior to data 
collection. 

 
Participants  
 

42 undergraduate students from Princeton University 
were compensated with course credit and up to an 
additional $5, depending on task performance. 

 

Stimuli  
 

The 2 prefixes (abber and belling) and 56 syllables 
(e.g., zip, ber, and za) were all phonotactically regular. 
The labels (prefix + syllable) were presented auditorily 
without pauses between the prefix and the syllable, 
and each lasted approximately 800 ms. Each 
scrambled image was created by scrambling the pixel 
locations of the lure image used in the same trial. 
 
Procedure  
 

Participants were given general instructions at the 
beginning as well as 6 practice trials for the 2AFC 
mouse-tracking task. They were told to pay attention 
to the pairing of the labels and images, but were not 
told about the structure of the stimuli (i.e., that the 
labels were a combination of a prefix and a syllable, 
nor the general distribution of categories). They were 
instructed to make their choices as quickly as possible 
and to move the cursor as directly to the target as 
possible while trying to avoid errors. The entire 
experiment lasted 1.5-2 hours, including a short rest 
period.  
 
Initial exposure phase: Each label-image pair was 
presented once, for a total of 56 trials (40 
generalization items + 8 exception items + 8 baseline 
items), with order of presentation randomized for each 
participant. 
 
Mouse tracking task: Blocks 1-8: Participants were 
instructed to choose the image that matched the label 
they heard, except on scrambled-image trials in which 
they were instructed to always choose the scrambled 
image. For the intact-image trials, the two images 
always came from different categories, so participants 
could perform at ceiling by recognizing which 
category each label belonged to, without necessarily 
learning which face, scene or object each label 
corresponded to. For the scrambled-image trials, one 
of the images was created by scrambling the pixel 

Figure 3: Exposure 
phase, followed by 8 
blocks of 2AFC 
trials. Blocks 3 and 8 
also contained 
scrambled-image 
trials in order to 
measure the strength 
of lures as directly as 
possible. Lastly, 
there was an item-
knowledge task. 
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location of the other intact image. All other procedures 
were equal between intact image trials and scrambled-
image trials.  

The label was played through headphones. Once it 
was finished, participants could click the white button 
at the bottom of the screen, causing 2 images to be 
displayed. Participants then moved their cursor to the 
image that was associated with the label and clicked 
on the blue button underneath that image. In order to 
encourage participants to respond as quickly as 
possible, a score appeared on the center of the screen, 
calculated according to the trajectory of the mouse and 
speed of response. When the score was displayed, the 
incorrect image would disappear, leaving the correct 
image only. If participants had chosen incorrectly, 
they had to move their cursor to the correct image and 
click, before continuing to the next trial. After block 4, 
participants were given a mandatory 5-10-minute 
break before continuing with block 5. 
 
Item-knowledge task: After the 8 blocks of the 
2AFC task, participants performed a short task 
designed to test whether they had incidentally learned 
to associate particular exception labels with particular 
images within that category. The 2 images in this task 
were both instances of the exception category (e.g., 2 
different scenes), requiring participants to identify the 
item-specific association of label and image. 
Participants were unaware they would be tested on 
item-specific knowledge for this task. 
 

Results  
All 42 participants exceeded the preregistered 
threshold of 75% accuracy on the mouse-tracking task 
(M = 87.14, SD = 0.0085), and none were excluded (N 
= 42). 3.25% of all trials were excluded because 
participants took > 2 seconds to click the start button 
or > 5 seconds to make a choice between images.  
 
Accuracy on intact image trials 
 

For trials in which participants decided which one of 
the two intact images matched the label they had heard, 
we can look at their accuracy against chance (50%) to 
see how well they knew the label-image pairings. 
Participants were above chance on all trial types in the 
first block after exposure (t = 22.95, p < 0.0001, M = 
0.89), except for exception-label trials. On exception-
label trials, participants heard an exception label and 
had to choose between an image from the exception 
category (e.g., scene, the correct choice) and the 
generalization category (e.g., face, the incorrect 
choice). Initially, accuracy on exception-label trials 
was significantly below chance (block 1), indicating 
that participants were systematically choosing the 
generalization image (t = -2.13, p = 0.039, M = 0.43). 

Accuracy for exception-label trials quickly rose, 
however, becoming significantly above chance in 
block 2 (t = 2.43, p = 0.020, M = 0.59). By block 8, 
accuracy for exception-label trials was as high as that 
for other trial types (t = 1.30, p = 0.20, M = 0.93 for 
exception trials, M = 0.96 for other trials).  
 
Trajectory toward lure 
 

The dependent measure for each trial was the area 
underneath the trajectory weighted by reaction time 
(area x RT). To calculate the area x RT, we compared 
the trajectory against the most direct, straight line 
connecting the starting point and the end point. The 
starting point was the position the participant had to 
click at the start of the trial and the end point was 
where the participant clicked when they made a choice 
(one of two blue circles). We measured points on the 
actual trajectory every 30 ms and calculated the 
distance between each of these points from the straight 
line. The sum of these distances is the area x RT. Note 
that the farther participants moved their cursor away 
from the straight line and the longer it stayed there, the 
higher the area x RT was. We had preregistered the 
dependent measure to be the maximum distance from 
the straight trajectory, and the result of the 
preregistered main analysis does not qualitatively 
differ when the maximum distance is used. However, 
after preregistering, we decided that area x RT was 
more appropriate and sensitive, allowing us to take 
both speed and deviation into account.  

We report the results from the trajectory of the 
scrambled-image trials because it is the most direct 
measure of the activation of a category (i.e., the lure 
image category) given a label. For all analyses we used 
a maximal multilevel model with trial type or an 
interaction of trial type and block as the fixed effects 
and random intercepts and slopes for subjects and 
items where convergence would allow (Barr, Levy, 
Scheepers, & Tily 2013), using the lmerTest library (R 
Development Core Team 2008). 

First, to confirm that highly activated lure images 
would indeed yield greater deviation and thus higher 
area x RT measures, we compared trials in which the 
label matched the lure image (e.g., the label was paired 
during the training phase with a specific scene and the 
lure image is that specific scene) and trials in which 
the label did not match the lure image or its category 
(e.g., the label was paired with a scene and the lure 
image is a face). As expected, we found that matched 
trials had a higher area x RT than unmatched trials (β 
= -0.69, t = -11.06, p < 0.0001).  

Recall our hypothesis: that generalization activation 
(e.g., face image activation) would decrease over time 
for exception items (e.g., for labels that are paired with 
scenes). Thus, the critical preregistered comparison 
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was the change of activation of the lure from block 3 
to block 8 on trials when an exception-label was heard. 
We compared trials in which the lure image was the 
generalization (e.g., the label was paired with scene 
and the lure was a face image) against the baseline 
(e.g., the label was paired with a scene and the lure was 
an object image). The model found a significant 
interaction of trial type and block (β = 0.23, t = 2.66, 
p = 0.010). In other words, for exception items, the 
generalization activation became suppressed over time, 
more so than did baseline activation. In Figure 4, the 
far-most left panel shows the key generalization 
suppression from block 3 (light purple) to block 8 
(dark purple). There is no suppression over blocks for 
baseline activation (green). Thus, generalization 
suppression cannot be attributed to general 
improvement over time or to general improvement on 
scrambled image trials. 

Another critical part of the hypothesis is that the 
generalization was suppressed due to competition 
from learned exceptions. For exceptions to compete 
with the generalization, exceptions must be activated 
to some degree. In other words, exception-labels must 
be identified as exceptions and activate the correct 
exceptional category (scene) for competition to occur. 
Results additionally provide evidence that, as early as 
block 3, participants had learned which labels were 
exceptional. In particular, when an exception-label 
was heard, the matched exception image (scene) 
exerted a strong pull away from the scrambled image 
(third panel, light orange bar). In fact, the area x RT 
for matched exceptional images was higher than that 
for generalization images (face images) at block 3 (β 
= 0.42, t = 2.10, p =0.038). This means that the 
generalization suppression we observe occurred after 
participants had already learned the exceptions to 
some degree.  

An alternative explanation for generalization 
suppression over time for exception-label trials could 
be that the generalization (e.g., face images) became 
less of a lure across the board, for exception items as 
well as baseline items. To investigate this possibility, 
we compared area x RT towards generalization lure 
images for exception-label trials against baseline-label 
trials. If (as hypothesized) generalization suppression 
is unique to exception labels (because of the 
competition from sharing a prefix), there should be no 
generalization suppression for baseline labels (where 
a prefix was never shared, and thus no competition 
took place). We again found a significant interaction 
of trial type and block (β = 0.19, t = 2.37, p = 0.018). 
In other words, generalization suppression over time 
was evident only in the context of exception items, not 
baseline items. In Figure 4, the far-most right panel 
shows no change of generalization activation over 
time for baseline items (purple bars). This also rules 
out the possibility that generalization suppression for 
exception items was specific to an image category 
(e.g., generally disliking faces over time).  
 
Item-knowledge task 
 

Despite high accuracy in the main task being 
achievable based purely on recognition that certain 
labels were exceptional (i.e., were associated with the 
non-dominant category for the prefix), the final task 
demonstrated that participants nevertheless learned 
with near-ceiling level accuracy which specific scene 
was paired with which specific label (M = .9494; t = 
29.19, p < 0.0001).  

 
Discussion and Conclusion  

This experiment assessed how the activation of a 
generalization changed in the context of exceptions 

Figure 4: Deviation measure 
toward lure in block 3 (lighter 
color) and block 8 (darker 
shade), for exception-label 
trials with generalization 
image lures (left purple), 
exception-label trials with 
baseline lures (green), 
exception-label trials with 
exception lures (orange), and 
baseline-label trials with 
generalization lures (right 
purple). The correct choice in 
all cases was a scrambled 
image.  
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over the course of learning. By using mouse-tracking 
to measure lure activation, we were able to isolate the 
activation of the generalization from the activation of 
the exception for a given label. Results demonstrate 
that the competing probabilistic generalization was a 
strong lure for the exceptions early on, but the 
generalization became suppressed over time in the 
context of exceptions. That is, the suppression of the 
generalization over time was evident only for 
exception labels. Because accuracy on exceptions was 
already high and exception lures were already even 
stronger lures early on, we suggest that the suppression 
was caused by competition from learned exceptions. 
Results of a post-test demonstrated that exceptions 
were learned with item-specific precision even though 
ceiling performance was possible by reliance on 
category membership only.  

Importantly, our claim is not that learning 
eliminated all competition between generalizations 
and exceptions in this study. We know that 
comprehension is incremental, so we fully expect that 
listeners activated multiple options that were 
consistent with the input they witnessed until the point 
of disambiguation (Jurafsky, 1996; McQueen, 2007; 
Rayner & Clifton, 2009; Swinney, Prather, & Love, 
2000); hearing abber should trigger a competition 
between exceptional items (e.g., abber zip) and other 
items that begin with the same prefix (e.g., abber fep), 
even after learning takes place. Rather, our main 
hypothesis pertains to what happens after the 
disambiguating syllable (zip) is heard: Would learning 
of exceptions affect the activation of the generalization, 
specifically in the case of exceptions like abber zip? 
We found that it did: the generalization became a less 
powerful lure as exceptions became more easily 
identified.  

This work was motivated, in part, by the effects of 
competition on memory observed during studies of 
retrieval-induced forgetting (RIF). Consistent with 
RIF findings in the memory literature, the linguistic 
generalization became suppressed (“forgotten”) in the 
context of exceptions. At the same time, it is important 
to point out a key difference between our study and the 
way RIF is usually tested. Most RIF studies look at 
final recall to measure memory performance. Our 
study, on the other hand, considered the change in 
activation over the course of learning. This difference 
led us to use a different baseline for determining 
whether suppression occurred. In standard RIF studies, 
suppression is measured by how much lower the 
memory for competing items is, compared to baseline 
items which had not been in competition with the 
practiced items. In our studies, suppression was 
measured by how much lower the activation for the 
generalization became over time. We found that 
generalization activation significantly decreased over 

time for exception items, much more than it did for 
baseline items. However, we did not find that 
activation levels of the generalization fell below 
baseline activation; as such, we did not find RIF in the 
classic sense. Nonetheless, our results are consistent 
with the idea that competition leads to suppression of 
the less activated memory.  

We selected the “prefix plus syllable” structure for 
the labels to allow for prediction of the category given 
the prefix. The prefix plays the role of a classifier (i.e., 
a grammatical element that selects for nouns of certain 
semantic categories; Dixon 1986) As noted in the 
introduction, linguistic categories, including classifier 
categories, often have subclasses of exceptions, as in 
the present experiment. However, the finding in this 
study is not, in principle, specific to words. For 
example, similar competitive mechanisms may serve 
to suppress grammatical overgeneralizations through 
what has been called statistical preemption (e.g., 
Goldberg, 2019; Perek & Goldberg 2017; Robenalt & 
Goldberg, 2015). Future work will build on these 
results to explore how generalizations and exceptions 
compete in other domains, how the underlying neural 
representations change, and how these competition-
driven changes relate to behavior.  
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