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Infragravity (IG) waves (periods ∼ 25 s to 250 s) are known to dominate wave energy inside

many shallow, bar built estuaries. However, beyond their importance for sediment buildup at the sill,

little is known about the impact of IG waves on these shallow estuaries. I use observations from a focused

deployment in Los Peñasquitos Lagoon in Southern California during a period of large wave forcing to

understand the impacts of IG waves, with a particular focus on the turbulence generated through bottom

friction. In Chapter 2, I describe the field deployment in detail and use initial observations to link IG

waves to sediment transport and oscillations of salinity and temperature in the estuary. In Chapter 3, I

develop new methods for despiking Accoustic Doppler Velocimeter (ADV) data and calculating turbulent

dissipation from velocity measurements in the presence of IG waves. In particular I develop a new inertial

subrange fitting method to improve turbulent dissipation measurement accuracy in any measurement

conditions. In Chapter 4, I use those dissipation measurements to develop a new method for predicting

turbulent dissipation in the wave boundary layer. I verify this method with a numerical model and
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observations, and use it to show that IG waves significantly increase turbulence in the estuary during neap

tides and at the beginning of flood tide. I also reflect on increasing pressure for scientists to work closely

with lagoon managers in the development of their questions and conduct a study of academic culture

to understand how ongoing changes in the US academic science system are affecting coastal physical

oceanographers. In Chapter 5, I conduct 15 interviews of coastal physical oceanography professors in the

United States. Using these interviews, I show that a disconnect between a relatively slowly changing set of

well understood standards and relatively swiftly changing external pressures have led to increased stress

and a general over commitment of time especially for new professors in the field.
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Chapter 1

Introduction

Estuaries play important ecologic and economic roles such as supporting fisheries and endan-

gered species, providing recreation, altering pollution transport, and supplying sediment fluxes to the

coast (Valle-Levinson, 2010; Pendleton, 2010; Clark and O’Connor, 2019). Many estuaries worldwide lie in

Mediterranean climates with minimal, seasonal rainfall, or have small, steep watersheds. In such climates,

shallow, low freshwater inflow (low-inflow) estuaries are common (Behrens et al., 2009; Largier, 2010,

2023). These estuaries are often located near population centers and recreational beaches. They capture

urban runoff and pollution; play a role in sediment budgets; provide critical habitat for many species of

fish, plants, invertebrates, microorganisms, and migratory birds despite their relative small size;provide

environments for aquaculture and oyster farming; provide coastal resilience against sea-level-rise and

flooding; and facilitate carbon sequestration (Lowe and Stein, 2018). However, shallow, low-inflow estuaries

have only recently become a focus of study within the estuarine fluid dynamics community (Williams and

Stacey, 2016; Largier, 2010, 2023). With the work that has been done to date, we have learned that many

of the classical theories (i.e., theories developed for estuaries that are often deeper and have persistent

river inflow) for exchange flow apply to shallow, low inflow estuaries, with the addition that exchange flow

can become inverse with sufficient evaporation (Winant and de Velasco, 2003; Harvey et al., 2023). At the

same time, several studies have found processes unique to these estuaries that merit further investigation

including constrictions due to a sill at the mouth, mouth closures, and wave-current interactions (Williams

and Stacey, 2016; Bertin and Olabarrieta, 2016; Bertin et al., 2019; Harvey et al., 2023).

Low-inflow estuaries that experience significant mouth morphodynamic alterations can experience

intermittent mouth closure. These intermittently closed estuaries, sometimes referred to as bar-built

estuaries, experience unique dynamics and can be found globally (McSweeney et al., 2017). The California

coast is dotted with low-inflow estuaries. Many of these estuaries have historically been intermittently

closed tidal inlets with mouths that migrated along the coast with varying forcing conditions. In Southern
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California, human development and coastal structures have prevented the migration of estuary mouths

and altered the frequency of mouth closure, leading to dramatic changes in tidal wetland ecosystems (Lowe

and Stein, 2018; Largier et al., 2019). This forces managers to make decisions on whether, when, and

how much a historically intermittently closed estuary should be connected to the ocean. Such decisions

lie within complex systems that require an understanding of the interplay between coupled human and

natural factors. Restoration projects cannot simply return systems to their historical state. Instead,

project planners must determine what functions they want an estuary to serve, from endangered species

habitat to flood protection and water purification to community recreation opportunities, all while keeping

in mind project feasibility. Furthermore, who should be involved in and responsible for a given estuary’s

management is not always clear due to the complex patchwork of policies and regulatory bodies around

California’s estuaries (Pratt, 2014).

Decisions made in mouth management of historically intermittently closed estuaries are particularly

important because the mouth determines the amount of ocean forcing that affects the estuary and thus

many aspects of water quality such as freshwater content, hypoxia, biogeochemstry and much more

(Gale et al., 2006; Largier et al., 2019; Harvey et al., 2023). Currently, Southern California managers

primarily think about tidal prism and tidal flushing effects when considering ocean forcing. The Tijuana

River National Estuarine Research Reserve focuses on restoring tidal prism as a main goal in its 2010

Comprehensive Management Plan, while the environmental impacts report for the recently approved

Buena Vista Lagoon Enhancement Project only considered tidal and mean water level forcing from the

ocean when analyzing the hydrodynamic effects of opening the currently closed lagoon (Roper, 2010;

AECOM, 2017; ESA, 2018). However, questions remain about whether this is the best perspective for

estuaries where closure might play an important role in marsh waterway connectivity (Clark and O’Connor,

2019).

When an estuary is closed to the ocean, it not only loses an exchange of ocean water, but also two

major oceanic physical forcing mechanisms - tides and waves. Tides affect estuaries in five important ways.

First, they dramatically change water levels. Second, tidal straining and mixing change stratification,

which impacts subtidal estuarine exchange flow with the ocean (Geyer and MacCready, 2014). Third,

tidal flushing can change residence times that determine how long pollutants and other tracers stay inside

the estuary (Largier, 2010). Fourth, they play an important role in net sediment transport into and out of

estuaries, affecting net deposition and accretion. (Roper, 2010). Finally, they affect oxygen, salinity, and

nutrient distributions that play an important role in ecosystem health (Clark and O’Connor, 2019).

While tides are the highest energy oceanic forcing, recent studies have shown that shallow tidal
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inlets located within the surf zone are also strongly affected by waves, particularly infragravity (IG)

waves (periods of about 25 s to 250 s) (Bertin and Olabarrieta, 2016; Bertin et al., 2019). Primarily, IG

waves have been implicated in sediment transport into the estuary mouth and contributing to mouth

closures (Behrens et al., 2013; Bertin and Olabarrieta, 2016; Bertin et al., 2019; Mendes et al., 2020).

Other studies have also shown that shallow sills can act as low-pass frequency filters, leading to oscillations

within estuaries dominated by IG frequencies (Harvey et al., 2023; McSweeney et al., 2020). IG energy

inside shallow estuaries is set by relative water levels between the estuary and ocean along with tidal and

river flows. When IG waves propagate into low inflow estuaries they can at times induce orbital velocities

that are on the same order of magnitude as tidal velocities (Williams and Stacey, 2016; McSweeney et al.,

2020; Harvey et al., 2023). Such large velocity amplitudes suggest that IG oscillations likely play an

important dynamical role. However, few studies to date have examined the effects of IG waves within

shallow estuaries outside of sediment transport, nor have they discussed dynamical mechanisms for their

contribution to sediment transport.

The first three chapters of this dissertation focus on answering the question of how IG waves affect

shallow estuaries after propagating past the mouth. Chapter 2 describes an observational field deployment

to evaluate the impacts of IG waves in Los Peñasquitos Lagoon (LPL), a low-inflow, intermittently closed

estuary in Southern California. After outlining the goals of the field deployment and the data gathered,

Chapter 2 describes the IG wave characteristics in LPL to provide context for later chapters. Chapter

2 also shows evidence of IG waves transporting sediment upstream of the mouth, and IG frequency

oscillations salinity and temperature resulting from the movement of a stratified interface developed during

the ebb tide.

We next focus on how IG waves affect bottom boundary layer generated turbulence in shallow

estuaries. Turbulence is the primary mechanism through which IG waves can increase mixing and

can be directly related to bottom stress, which plays an important role in sediment suspension and

transport (Winterwerp and Van Kesteren, 2004). Chapter 3 focuses on how to use the Accoustic Doppler

Velocimeters (ADV) from our deployment to measure turbulent dissipation. The presence of large IG

frequency oscillations required modifications of existing signal despiking algorithms as well as the existing

methods for calculating the wavenumber velocity power spectrum, which is a key step in the inertial

sub-range approach for calculating turbulent dissipation. We also modify the inertial sub-range fitting

method for calculating turbulent dissipation to provide more robust results with well defined uncertainties

that is applicable to any situation (not just in the presence of large IG oscillations).

Chapter 4 uses the turbulent dissipation values calculated in Chapter 3 to evaluate IG wave affects
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on turbulent dissipation levels in LPL. We find that existing turbulence theories fail to explain the elevated

turbulent dissipation measurements in the presence of IG waves. We use a wave boundary layer height

based scaling to show how the frequency range of IG waves in shallow water requires the construction of a

new approach for predicting turbulent dissipation values. We construct this new approach and verify it

with an idealized numerical model and our observations. Using the results of the new approach, we then

specify when IG waves significantly increase turbulent dissipation in LPL.

For Chapter 5, we take a step back and examine the context in which academic research takes

place. The complex systems in which estuary managers work makes the translation of new research to

new management practices difficult to understand and navigate. To try and solve problems like this, there

are increasing calls for researchers to work directly with end users in the formation of research questions

and throughout the research process. Along those lines, an initial goal for this dissertation was to work

with LPL managers and communities living near LPL to identify potential directions of current and future

research. However, for various reasons, we failed to effectively engage with the community and managers

to the degree we originally aimed for. The challenges we faced seemed to be a single example of many

challenges that members of our community are facing due to ongoing changes in US academic science. So,

Chapter 5 aims to characterize how coastal physical oceanographers are experiencing changes in academia

and the resulting challenges they are facing. Through a series of 15 interviews on expectations with US

professors in coastal physical oceanography, we find a disconnect in the rate of change of external forces on

academic science and the culture of physical oceanographers. This disconnect leads to an overburdening of

professors attempting to meet several different expectations simultaneously. Through Chapter 5, we hope

to support a discussion on how academia is changing and how professors need to be supported through

this change.
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Chapter 2

Characterizing Infragravity Waves in a Low
Inflow, Intermittently Closed Estuary - Los
Peñasquitos Lagoon

Infragravity (IG) waves were first observed by Walter Munk in 1949 as surf beats (Munk, 1949).

Since then, IG waves have been largely accepted as ocean surface waves with frequencies between 0.04

and 0.004 Hz (periods between 25 s and 250 s) that are generally the result of nonlinear interactions

between higher frequency sea and swell (SS) waves (Longuet-Higgins and Stewart, 1962; Hasselmann, 1962;

Symonds et al., 1982; Schäffer, 1993; Herbers et al., 1995; Janssen et al., 2003; Battjes et al., 2004). IG

waves are particularly important in coastal waters, and Bertin et al. (2018) provides an effective overview

of our current understanding of IG waves from their relevance in harbor oscillations to beach run-up

and sediment transport. More recently, IG waves have become a focus of research for their impacts on

intermittently closed estuaries.

Several researchers have observed dynamically relevant IG oscillations in intermittently closed

estuaries, suggesting that IG waves are common and important to the dynamics of these types of estuaries

around the world. Williams and Stacey (2016) observed large IG frequency velocity oscillations in the

Pescadero estuary in northern California while focusing on characterizing the hydrodynamics of the

estuary. Uncles et al. (2014) observed large IG frequency velocity oscillations in the Ŕıa de Santiuste in

northern Spain, linking them to oscillations of a salt wedge in the estuary. Bertin et al. (2019) showed the

importance of IG waves for transporting sediment and promoting closure at the inlet of the Albufeira

Lagoon in southwest Portugal. McSweeney et al. (2020) observed IG waves during open periods in the

Aire and Anglesea rivers, two intermittently closed estuaries in Victoria, Australia. Roco et al. (2024)

observed IG waves propagating into the Maipo River in central Chile.

In agreement with these observations in similar estuaries, Harvey et al. (2023) observed large IG
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waves while studying the hydrodynamics of Los Peñasquitos Lagoon (LPL) in southern California. Harvey

et al. (2023) showed how SS dominated waves offshore transform as they propagate into the estuary,

leading to enhanced IG energy in the surfzone and a dominance of IG frequencies over SS frequencies

inside the estuary. The energy of the IG waves in the estuary depends on the offshore wave height, the

height of the offshore water level compared to the sill height, and the tidal current velocity. In particular,

because LPL frequently has a sill level that is above the lower low water level offshore, the estuary can

become perched above the ocean during low tides, preventing any wave energy from entering.

Overall, Harvey et al. (2023) was able to show when IG waves enter LPL and link the waves to

increased turbidity in the water column. However, more detailed study of the behavior of the waves inside

the estuary and their impacts on estuarine dynamics were not possible due to the type of data obtained.

Therefore, to more closely study IG waves in LPL, we conducted a focused field campaign to collect

detailed data along the main channel during a period with large wave events. With this data, we describe

the main characteristics of IG waves throughout the estuary, provide a more explicit link to increased

turbidity and potential sediment suspension, and describe IG driven oscillations of a pycnocline in LPL.

2.1 Observations

Los Peñasquitos Lagoon, shown in Figure 2.1, is a low-inflow, bar-built estuary in Southern

California with a mouth that has been heavily modified due to the presence of a road. During lower

water levels, the estuary can become perched behind a sill, while complete closures at all water levels

occur seasonally due to wave-driven sediment accretion. High riverine discharge and large spring tides

can naturally breach the sill and open the closed mouth, however most years the mouth is mechanically

reopened at least once during the spring to prevent mosquito breeding and the development of extended

hypoxic conditions. When submerged, the shallow sill acts as a low pass frequency filter where larger sea

and swell waves dissipate in the surfzone while IG waves propagate into the estuary Williams and Stacey

(2016); Harvey et al. (2023). The channel itself is shallow (less than 4m deep), winding, and approximately

2.5 km long.

Several long-term monitoring focused instruments have collected continuous time-series for several

years. The National Estuarine Research Reserve (NERR) system has several water quality loggers

throughout the lagoon, of which the northwest (co-located with other deployments at Location 7) and

northeast (Location 9) are most relevant for this project. The Giddings Lab has maintained a bottom-

mounted, upward looking RDI workhorse Accoustic Doppler Current Profiler (ADCP) along with top

and bottom seabird SBE 37 CTD’s (Conductivity, Temperature, and Depth) ∼ 0.75 km upstream of the
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Figure 2.1. Map of deployment at Los Peñasquitos Lagoon. (a) shows the California coast with the
domain of (b) in the pink box. (b) shows the San Diego coastline with the estuary watershed outlined in
blue and the domain of (c) in the red box. (c) shows the estuary bathymetry with the locations of various
instruments deployed for the experiment as well as sketches of the moorings at locations 5 and 7 with
distances between the bottom and the ADV heads. Note that the NERR meterological station is located
on the bank next to station 7.

mouth (Location 8) since December 2014. In addition, the Giddings Lab has taken CTD casts during

most field deployments since 2014. Every winter, the Giddings Lab also deploys an offshore Acoustic

Doppler Velocimeter (ADV) (∼ 8 m depth, Location 1) and two buried Paroscientific pressure sensors

(Location 2 - surf zone, and Location 3 - just inside the estuary mouth) to capture wave forcing effects.

The primary data used for this dissertation were obtained during a January - March 2020 field

deployment aimed at understanding IG waves within LPL. The deployment was timed to coincide with a

large ocean wave event on February 3rd. During this deployment, the ocean tides ranged from -0.43 m to

2.12 m NAVD88, leading to water levels in the estuary at location 7 (see Figure 2.1c) between 0.65 m

and 2.18 m NAVD88 and water depths measured with a pressure sensor at location 5 between 0.17 m

and 1.7 m. The 0.17 m depth is estimated based on the water level at location 7 because 0.17 m is below

the 0.5m pressure measurement height at location 5. Data collected at the locations shown in Figure 2.1

during this deployment are summarized in Table 2.1.

Locations 1-3 are part of regular deployments each winter aimed at quantifying wave energy

entering Los Peñasquitos Lagoon. Location 1 contains an upward looking ADV that was deployed on
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Table 2.1. Summary of instrument deployments.

Site Location Instrument Sampling Rate First Sample Duration Sampling height

1 8 m contour ADV 2 Hz 12/03/2019 78 days 1 m
2 Surfzone Pressure 2 Hz 11/25/2019 132 days Buried
3 Mouth Pressure 2 Hz 11/25/2019 132 days Buried

4
180 m

upstream
Aquadopp 1 Hz 02/03/2020 29 days

10 cm bins
20 cm blanking

Upper ADV 16 Hz 02/02/2020 11 days 50 cm
Lower ADV 16 Hz 02/02/2020 14 days 30 cm

OBS 16 Hz 02/02/2020 14 days 68 cm
CTD 4 Hz 02/02/2020 11 days 50 cm

MiniDOT 5 seconds 01/31/2020 32 days 68 cm

5
300 m

upstream

Thermistor 1 minute 01/31/2020 32 days 30 cm

Signature 4 Hz 02/02/2020 32 days
20 cm bins

10 cm blanking
6

435 m
upstream Thermistor 1 minute 01/31/2020 32 days bottom

Upstream ADV 16 Hz 02/02/2020 14 days 1 m
OBS 16 Hz 02/02/2020 14 days 27 cm7

535 m
upstream

Thermistor 1 minute 01/31/2020 32 days 27 cm

8
750 m

upstream
Workhorse 4 seconds 01/31/2020 101 days

15 cm bins
15 cm blanking

December 3rd, 2019 and stopped logging on February 19th, 2020. The ADV was located at the 8m depth

contour offshore of the estuary mouth and measured velocity and pressure at 2 Hz. At Locations 2 and 3

Paros pressure sensors were buried just inside and outside the estuary mouth from November 25th, 2019

to April 5th, 2020. Location 2 was deployed to be located inside the surfzone for most of the tide.

At location 4, a Nortek Aquadopp 2-MHz current profiler was deployed in two successive deploy-

ments in the same location 180 m upstream of the mouth. The Aquadopps sampled at 1 Hz with a 10-cm

bin separation and 20-cm blanking distance, placing the first bin centered at 30 cm above the bottom.

The first Aquadopp was deployed on February 3rd and recovered on February 12. The second Aquadopp

was deployed on February 12th and recovered on March 3rd. Due to the dramatic sand movement near

the mouth, this location was selected because the bottom had cobbles instead of sand. However, because

the cobbles were very shallow, the Aquadopps were out of the water for many of the lower tides.

At location 5, we deployed a sawhorse frame, seen in Figure 2.1c, from January 31st to March 3rd

that was secured into the bed with sand anchors 300 m upstream of the mouth. Two synced Accoustic

Doppler Velocimiters (ADVs) (Nortek Vectors) with a synced optical back-scatter sensor (OBS), an

RBR Concerto CTD, a miniDOT oxygen sensor, and a Seabird SBE 56 thermistor were mounted to the

sawhorse frame (see diagram on Figure 2.1). The RBR sampled at 4 Hz, 50 cm above the bottom from

February 2nd until it ran out of battery power on February 13th. The miniDOT sampled at 5-s intervals,
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68 cm above the bottom. The thermistor sampled at 1-min intervals, 30 cm above the bottom. The two

ADVs sampled the water 30 cm and 50 cm above the bottom, and the OBS sampled 68 cm above the

bottom starting on February 2nd. The ADVs and OBS sampled at 16 Hz, with 5-s breaks every hour.

The upper ADV stopped sampling on February 11th due to memory limitations, while the lower ADV

and synced OBS had low batteries that led to shortened and irregular bursts starting on February 14th.

Note that even at 50cm above the bottom, the CTD was out of the water during particularly low tides.

At location 6, we deployed a bottom mounted Nortek Signature 1000 current profiler and another

thermistor from January 31st to March 3rd 435 m upstream of the mouth. The thermistor had the same

sampling scheme as the sawhorse thermistor. The Signature sampled from February 2nd to February

21st at 4 Hz. The Signature was programmed with a few sampling schemes. First 4 beams sampled with

20-cm bins and a 10-cm blanking distance. Second, the vertical 5th beam sampled in a high resolution

mode with 2-cm bins and a 10-cm blanking distance. Finally, 2 echosounder measurements were taken

with 3-mm bins and a 10-cm blanking distance. This site is just upstream of where the channel becomes

deeper and the bed changes from sand to mud.

At location 7, we deployed a bottom mounted upward looking ADV (Nortek Vector) with another

synced OBS and another thermistor about 535 m upstream of the mouth (see diagram on Figure 2.1) from

January 31st to March 3rd. The thermistor had the same sampling scheme as the other thermistors and

sampled about 27 cm above the bottom. The ADV and synced OBS sampled starting on February 2nd

with the same sampling scheme and duration as the lower ADV on the sawhorse, with the ADV sampling

about a meter above the bottom and the OBS sampling at the same height as the thermistor. This

deployment is in the deepest part of the main channel and about 10 m away from the NERR northwest

logger.

At location 8, we deployed a bottom mounted RDI Workhorse current profiler. The workhorse

was deployed as part of a long term monitoring program and sampled continuously from January 31st to

May 11th at 4 second intervals with a 15-cm blanking distance and 15-cm bin size.

After recovery, all data were processed for quality control according to manufacturer recommen-

dations. All pressure was corrected for atmospheric pressure changes using a nearby NERR meteorological

station and converted to depth using the Python GSW package McDougall and Barker (2011). All velocity

data were rotated to along and across channel directions using a principal axis rotation for each instrument

independently.
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2.2 Characterizing the IG Waves

Using the detailed wave data collected during periods of large wave focing, we first examine the

typical behavior of waves inside Los Peñasquitos Lagoon. When waves enter the estuary, they propagate

from the surfzone where sea and swell waves are dissipated. This means that IG frequencies dominate

wave energy everywhere inside the estuary (Harvey et al., 2023). Additionally, the IG waves enter the

estuary from the surfzone with non-linear bore-like shapes and observable, broken, white water fronts.

This initial behavior can be seen in 2.2, which shows example of an IG wave propagating into LPL at

the very beginning of a small flood tide on February 3rd. As the IG waves propagate and dissipate

upstream, they become progressively more linear. During this analysis, we pay close attention to potential

implications for the analysis of wave driven turbulence in later chapters.

Figure 2.2. An IG wave propagating through the mouth of LPL on February 3rd, 2020 at 4:42pm

To understand this evolution, we calculate the significant wave height, peak frequency, skewness,

and the ratio of the wave height to water depth at locations 4-7 in 30min, detrended bursts. We calculate

the significant wave height as 4 times the standard deviation of the IG frequency bandpass filtered water

level: HIG = 4σηIG
, where ηIG is the IG bandpass filtered water level in meters and σ represents the

standard deviation (Becker et al., 2016). We calculate the peak frequency, fp, as the location of the

maximum of the variance preserving spectrum of the water level signal. For skewness, we calculate
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skIG =
〈
(ηIG − ηIG)

3
〉
/σ3

ηIG
. Finally, we use HIG/h, where h is the average water depth over each 30min

burst, as a non-linearity parameter. The results of these calculations over a single representative tidal

cycle are shown in Figure 2.3 along with the raw water depth measured by the RBR and raw velocity

measured by the lower ADV at location 5 and the ADV at location 7. Positive velocities represent flood

tides (i.e., into the estuary). In addition, the dotted line in Figure 2.3d shows HSS = 4σηSS
at location

4, where ηSS is the Sea/Swell (SS) frequency (6-s to 25-s periods) water level signal, to highlight the

dominance of IG energy throughout the tidal cycle.

The horizontal dashed lines on the fp plot in Figure 2.3c outline the IG frequency band. This

shows that IG frequencies dominate at all points inside the estuary throughout the entirety of flood tide.

The magnitude of this IG frequency dominance is further highlighted in Figure 2.3d, where HSS is always

smaller than HIG at location 4. We note that there are a few time periods where HSS can get as high as

50% of HIG. These time periods are always during strong tidal currents where turbulence is well explained

by a tidally driven quasi-steady boundary layer.

HIG in Figure 2.3d shows a dramatic decrease between location 4, closer to the mouth, and

location 5, further upstream, after the first major channel bend and a split in the channel. After location

5, the waves are smaller and decay at a slower rate (note that HIG at locations 6 and 7 are nearly the

same so the line for location 6 is sometimes hidden behind location 7). This pattern is reflected in the

nonlinearity parameter HIG/h in Figure 2.3e, which is largest near the mouth and at the beginning of

flood tide when the mouth is particularly shallow. Additionally, at location 5 and further, HIG/h is

consistently well below the 0.42 value at which wave heights become depth limited (Thornton and Guza,

1982).

These patterns correspond to the visually observed presence of turbulent bores at the front face

of IG waves at location 4, as shown in Figure 2.2, that relax by the time waves reach location 5. The

reduction in HIG and corresponding relaxation to a more linear state between locations 4 and 5 are

likely due to a combination of frictional wave decay, channel widening, channel curvature, and a fork

in the channel that occurs just before location 5, splitting the wave energy. This relaxation indicates

that turbulence at location 5 and further into the estuary is likely due to bottom generation with limited

surface generation of turbulence. It is also possible that the asymmetric wave shapes caused by the

relaxation of the turbulent bores affect the sediment transport discussed in Section 2.3.

Sill driven wave blocking and ebb tide driven wave current interaction can be seen after hour 19

in Figure 2.3. The peak frequency, fp, only leaves the IG band at the end of the time shown when current

blocking and low ocean tides prevent waves from entering the estuary at all. Similarly, the nonlinearity
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Figure 2.3. (a-b) Water depth at location 5 and along-channel velocity at locations 5 and 7 for the
higher high tide on February 10th 2020, with positive velocities representing flooding velocities. (c-f)
peak frequency (fp), IG significant wave height (HIG), HIG divided by water depth, and IG skewness
(skIG) respectively at locations 4-7 for the same time period. The dashed lines in (c) outline the 0.004-Hz
to 0.04-Hz IG frequency band. The dotted line in (d) shows HSS at location 4. HSS is similarly small
relative to HIG at all locations but is not included on (d).

parameter drops as the wave height decreases due to wave blocking. Just before this blocking effect, skIG

in Figure 2.3f increases at all locations as the ebb tide picks up, likely due to wave/current interactions.

Note that periods of high skIG also indicate non-normal surface elevation distributions that violate the

assumptions in the HIG calculation.
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Beyond characterizing waves, Figure 2.3b also reveals an important characteristic in the mean

velocity at location 5. Specifically, during several tidal cycles, including the one shown here, the flood

current weakens for about an hour before reaching peak flows. This signal also appears to a smaller degree

at location 6, but does not appear in the ADV velocity at location 7. The lack of this signal at location 7

leads us to believe that an eddy is set up under certain tidal conditions near locations 5 and 6. This is

likely caused by the proximity of locations 5 and 6 to channel curvature as well as a split in the main

channel just before location 5.

2.3 Sediment Transport

This chapter focuses on how IG waves affect bottom boundary layer generated turbulence in

shallow estuaries. Turbulence is the primary mechanism through which IG waves can increase mixing.

Turbulence parameters can also be directly related to the bottom stress, which plays an important role in

sediment suspension and transport (Winterwerp and Van Kesteren, 2004). Therefore, by understanding

how IG waves interact with tides and other processes to increase turbulence, we can determine when IG

waves are likely to be dynamically important in shallow estuaries.

We next look at potential IG wave driven contributions to sediment transport in LPL. Shallow

water waves can significantly increase bottom stress, which plays an important role in sediment suspension

and therefore transport (Grant and Madsen, 1979; Winterwerp and Van Kesteren, 2004). A few studies

have already shown that IG waves contribute to mouth closure and sediment transport at the mouths of

shallow estuaries (Bertin et al., 2019; Mendes et al., 2020; Harvey et al., 2023). To add to this picture, we

look at the turbidity signal from our OBS instruments at locations 5 and 7 under individual IG waves.

While our turbidity measurements are not calibrated and converted to concentration, increased turbidity

can still be used as a proxy for increased suspended sediment with the recognition that the relationship is

nonlinear, site specific, and subject to influences from other suspended particles (Minella et al., 2008).

Figure 2.4 shows the (a) velocity and (b) turbidity at locations 5 and 7 for 25 min on February

3rd. Comparing the signals at location 5, we see that while the turbidity signal does not increase for

every wave, there is a clear correspondence of specific turbidity spikes with specific IG waves. Meanwhile,

comparing signals at location 7, we see that while there seems to be some correspondence of turbidity

peaks with waves, the signal to noise ratio is small. This suggests that IG waves do contribute to sediment

transport at location 5, 300 m upstream of the mouth, but by the time waves propagate 500 m upstream

of the mouth, their contributions to sediment transport are small. This is consistent with the fact that

the waves themselves are significantly dissipated between location 5 and 7, as seen in Figure 2.3, and with
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Figure 2.4. 25 minutes of (a) velocity and (b) turbidity data from (dark blue) location 5 and (light blue)
location 7 on February 3rd 2020. The vertical dotted lines are spaced by 1 minute to allow for comparison
of peak spacing between the subplots.

the decreased velocity amplitude in Figure 2.4a. The IG waves at location 7 are less energetic, leading

to significantly lower velocity and the lower turbulent dissipation values calculated in Chapter 3. We

also note that about halfway between locations 5 and 7, the bottom changes from sand to mud. We

hypothesize that this transition might correspond to where typical IG waves in the estuary decay to the

point where they no longer significantly increase turbulence and thus sand transport upstream is no longer

possible.

Finally, we note that there is a small time delay between wave velocity peaks in subplot (a) and

turbidity peaks in subplot (c). To explore this further, we perform a lagged correlation on the full time

series of velocity and turbidity data. We find that the first peak in the correlation occurred at a lag of

around 45 s, with repeated peaks at lags spaced by 1-2 min. The first lagged peak could be because of a

lag between peak bottom stress and water velocity, or because of the time it takes for sediment to mix up

to the sensor height of 68 cm after being lifted from the bottom. The subsequent peaks spaced by 1-2 min

are further indicative of the IG frequency waves themselves directly influencing the sediment transport.
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2.4 Salinity, Temperature, and Oxygen Oscillations

In addition to the distinct turbidity peaks aligned with individual IG waves, we observed large

IG frequency salinity and temperature oscillations aligned with individual IG waves. These oscillations

are more common in salinity, but frequently also occurred in temperature for our measurement period.

We also observed the occasional IG frequency dissolved oxygen (DO) oscillation, however the timing of

these oscillations are not associated with the salinity and temperature oscillations. Figure 2.5 shows

temperature, salinity, dissolved oxygen (DO), velocity, and water level (above the bottom) measurements

taken at Location 5 for the first 5 days of the deployment and zoomed in for 30 minutes with particularly

large temperature oscillations. As can be seen, the temperature and salinity oscillations occurred on

roughly 1 minute intervals and had amplitudes of up to 6 degrees Celsius and 25 PSU in very shallow

total water depths, approximately 0.76 m. In addition, the timing of the oscillations appear to directly

correspond to individual IG wave peaks seen in the water level and velocity data. The DO signal shows

some clear oscillations during the wave event on February 4th, but few other periods of oscillations and

no clear IG frequency during the zoomed in time period on February 5th.

Similar IG frequency oscillations in salinity and temperature have been observed before by Uncles

et al. (2014). In that case, the oscillations were caused by horizontal advection of a salt wedge in the

estuary past stationary measurements. While Harvey et al. (2023) has shown that LPL can develop a salt

wedge, this typically occurs during a high river flow event, which was not occurring at the time of our

measurements. Rather than horizontal advection of a salt wedge, we hypothesize that these oscillations

were caused by vertical modifications of a stratified interface near the surface of the water.

Paying close attention to the salinity signal in Figure 2.5c, the salinity oscillations always occur

at the very beginning of the flood tide, after waves have begun entering the estuary and while water levels

are low. The strongest waves, seen in the velocity and water level signals, shown in Figure 2.5e and g,

typically occur during the highest tides, just before the beginning of ebb tide. However, by the time the

waves reach their largest, the salinity oscillations have stopped, suggesting that early flood tide timing

and low water levels are important as well as the presence of waves for creating these salinity oscillations.

These oscillations are most prominent in the salinity signal. However, with only one instrument

measuring salinity at Location 5, we are unable to well characterize salinity gradients. That said, when

there are temperature oscillations, they are well correlated with the salinity oscillations, allowing us to use

our many temperature measurements to characterize temperature gradients and potential corresponding

salinity gradients. Figure 2.5a and b begins to demonstrate the presence of measurable temperature
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Figure 2.5. Temperature (row 1), salinity (row 2), dissolved oxygen (row 3), velocity (row 4), and water
level above the bottom (row 5) at Location 5 for the first 5 days of 2020 deployment (column 1) and a
zoom in on 15 minutes of data (column 2). The first row contains data from the thermistor, RBR CTD,
and miniDOT to highlight the oscillations in the RBR data. The heights in the legend are given in meters
above the bottom and colors are picked to correspond to the colors shown in Figure 2.6b. Otherwise, the
salinity and water level data are from the RBR CTD, the dissolved oxygen is from the miniDOT, and
the velocity is from the lower ADV. The vertical red lines in the first column outline the 15 minutes in
the second column (solid lines) and the 4 hours of data shown in Figure 2.6 (dotted lines). The vertical
dotted black lines in the second column are spaced by 1 minute to allow for comparison of peak spacing
between the subplots.

gradients by including the temperature measured by a thermistor below the RBR and a miniDOT above

the RBR. As can be seen, the RBR signal appears to be oscillating directly between the temperatures

measured by the thermistor and miniDOT.

Figure 2.6 allows us to further explore potential temperature gradients by focusing on a 4 hour

period at the very beginning of the major flood tide on February 5th, as outlined by the dotted red lines

in Figure2.5. Figure 2.6a shows the temperature measurements from the bottom most instruments at

Locations 4-8 and the NERR sensors at Locations 7 and 9. The line colors represent distance upstream of

the mouth. Figure 2.6b shows all temperature measurements from instruments at Location 5. The line

colors represent elevation of the measurements in NAVD88.

Focusing on Figure 2.6a, the bottom temperature is coldest near the mouth and progressively

warmer the further upstream measurements are taken. There are a few instruments that vary from this

pattern, however this variation is likely due more to differences in how close to the bottom each instrument
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Figure 2.6. (a) temperature from the closest to bottom instruments at Locations 4-8 and from the
NERR loggers at Locations 7 and 9 for the 4 hours outlined by the dotted red lines in Figure 2.5. The
line colors represent distance upstream of the mouth as shown by the colorbar and the numbers in the
legend refer to the location of the instrument. (b) All temperatures measured at Location 5 for the same
4 hours. The line colors represent height in NAVD88 as shown by the colorbar. The solid black line is the
air temperature measured at the NERR meteorological station near Location 7.

is more than an inconsistent horizontal temperature gradient. The horizontal gradients suggested by these

instruments are likely not responsible for the temperature oscillations we see in the RBR signal. The

strongest horizontal gradient possible from these measurements is about 2 degrees Celsius per 130 meters.

This would require an orbital excursion of 400 meters from an IG wave to produce the temperature

variations we see. Furthermore, the total variation in bottom temperature across the entire estuary is less

than the 6 degrees Celsius oscillation amplitude measured by the RBR.

Turning to Figure 2.6b, we see the warmest temperatures at the lowest instrument, with progres-

sively colder temperatures towards the surface. This is a temperature inversion and provides evidence of a

strong salinity gradient driving stratification at the end of ebb tide, consistent with documentation by

Harvey et al. (2023) of strong salinity-dominated stratification due to tidal straining at the end of ebb

tides. The temperature inversion itself is a result of the particularly cold air temperatures (San Diego

rarely reaches 0 degrees Celsius) during the night of these measurements. This cold air combined with

the salinity driven stratification led to a strong cooling effect on the surface of the water column. On

other days with warmer air temperatures, this effect would be weaker, explaining the lack of temperature
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oscillations during other tides when salinity oscillations remain present.

Paying attention to the RBR oscillations in Figure 2.6, we see that the amplitudes are directly

modified by the temperature difference between the instruments above and below the RBR. While the

IG waves produce much stronger horizontal motions than vertical motions, these vertical temperature

gradients reach at least as strong as 1 degree Celsius per 5 cm. This would require a vertical motion of

30 cm to produce the largest oscillations we see. At this point, we note that 30cm is still significantly

greater than the 2 cm wave amplitudes observed at the time of the oscillations. Additionally, the vertical

velocities during this time period are no bigger than our 1 mm per second noise floor.

It is important to note that these strong gradients are only present near the top of the water

column. Looking at the end of the 4 hour period, we see that as the water level rises, all temperature

measurements converge to the temperature of the lowest instrument. This is evidence of a rising of the

interface above our instruments rather than a mixing of the water column. If the gradients were present

throughout the water column and mixed away throughout the flood tide, the measurements would have

converged instead to an intermediate temperature. Moreover, the salinity oscillations also cease as the

water level rises. Finally, because the miniDOT is above the RBR, it is possible that the period with

DO oscillations on February 4th is a period where the pycnocline is above the RBR, but not above the

miniDOT. On February 5th, the pycnocline is likely below the miniDOT as shown by the largely constant

temperature in Figure 2.5b that then increases with the rising tide along with a corresponding decrease in

DO in Figure 2.5f.

All of this evidence suggests that a strong salinity gradient near the surface of the water column

allows IG waves to drive strong salinity oscillations at the beginning of flood tide. These oscillations also

appear in temperature during tides where particularly cold air temperatures cause the surface layer to be

colder than the rest of the water column. We further hypothesize that the IG frequency DO oscillations

on February 4th correspond to a pycnocline that is above the RBR but not above the miniDOT. However,

we cannot determine whether or not these oscillations are a direct result of advection under individual IG

waves or internal waves generated by the IG waves and propagating along the strongly stratified interface.

We suggest that internal waves along the interface are a distinct possibility because of the relatively weak

velocities and small wave heights during the examined large oscillations. These weak waves are unlikely

to have caused the oscillations purely through vertical advection even in the presence of the remarkably

strong gradients.
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2.5 Conclusion

In this chapter, we have outlined a field deployment in Los Peñasquitos Lagoon (LPL) starting in

February 2020. This deployment collected detailed velocity and pressure measurements at several points

along the main estuary channel in order to provide a detailed picture of the impacts of IG waves. Over

the 11 days with the most detailed measurements, we captured days with both strong and weak waves as

well as a transition from neap to spring tides. At the beginning of the deployment, the sill of LPL was

unusually high and close to complete closure, while the spring tides later in the deployment lead to a

decrease in sill height.

Using these data, we show that during flood tides, wave energy is dominated by the IG frequency

band. We also show that, while these IG waves enter the estuary with turbulent, broken fronts and

large wave heights relative to water depth, the significant wave height rapidly decays. By the time these

waves reach Location 5, 300 m upstream of the mouth and just after a turn and a split in the main

channel, the wave heights have decayed significantly and all but the largest waves have relaxed into linear,

non-breaking, waves. By the time the waves have reached location 6, 435 m upstream of the mouth and

just after another large turn, rate of decay of the waves has decreased significantly.

Using the turbidity measurements at Locations 5 and 7, we show that turbidity spikes correspond

directly to individual IG waves identified with velocity measurements. The peak correlation lag between

turbidity and velocity is at 45 seconds. We also show that the the turbidity spikes apparent at location 5

are no longer clear at location 7. We observe that Location 7 is after the IG waves have lost most of their

energy and after a transition in the bottom composition from sand to mud, suggesting that at Location 7,

a majority of IG waves are no longer strong enough to suspend sediment high in the water column.

Finally, we examine strong IG frequency salinity and temperature oscillations seen in the RBR at

the beginning of most flood tides. We show that the temperature oscillations are at times larger than

the total along channel variability in bottom temperature in LPL. We also show that the temperature

oscillation magnitudes are consistently estimated by the difference in temperature between the instruments

directly above and below the RBR. These temperatures all converge to the temperature of the lowest

instrument as the water level rises, suggesting that the oscillations are due to the movement of a very

strongly stratified layer near the surface of the water column. However, the magnitude of the oscillations

still suggest a vertical motion that is greater than expected from the IG waves measured at the time. We

hypothesize that this suggests the presence of potential internal waves propagating along the stratified

interface and generated by the IG waves.
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In the next two chapters, we build on this general picture of the impacts of IG waves in LPL

by focusing on the turbulence generated by bottom friction under the large orbital velocities of the IG

waves. Chapter 3 describes methods for observing turbulent dissipation in the presence of IG waves using

the velocity measurements at Locations 5 and 7. Chapter 4 then uses those observations to build on

wave boundary layer generated turbulence theory and determine the relative contribution of IG waves to

turbulent dissipation in LPL when compared with the tidal currents.

2.6 acknowledgements

We thank members and volunteers of the Giddings and Merrifield labs and the Center for Coastal

Studies field crew at UCSD for their help with data collection. We thank the Los Peñasquitos Lagoon
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Chapter 3

Measuring Turbulent Dissipation with Acous-
tic Doppler Velocimeters in the Presence of
Large, Intermittent, Infragravity Frequency
Bores

3.1 Abstract

This chapter presents several improvements to methods for despiking and measuring turbulent

dissipation values with Acoustic Doppler Velocitmeters (ADVs). This includes an improved inertial

sub-range fitting algorithm relevant for all experimental conditions as well as other modifications designed

to address failures of existing methods in the presence of large infragravity (IG) frequency bores and other

intermittent, nonlinear processes. We provide a modified despiking algorithm, wavenumber spectrum

calculation algorithm, and inertial sub-range fitting algorithm that together produce reliable dissipation

measurements in the presence of IG frequency bores, representing turbulence over a 30 minute interval.

We use a semi-idealized model to show that our spectrum calculation approach works substantially better

than existing wave correction equations that rely on Gaussian based velocity distributions. We also find

that our inertial sub-range fitting algorithm provides more robust results than existing approaches that

rely on identifying a single best fit and that this improvement is independent of environmental conditions.

Finally, we perform a detailed error analysis to assist in future use of these algorithms and identify areas

that need careful consideration. This error analysis uses error distribution widths to find, with 95%

confidence, an average systematic uncertainty of ±15.2% and statistical uncertainty of ±7.8% for our final

dissipation measurements. In addition, we find that small changes to ADV despiking approaches can lead

to large uncertainties in turbulent dissipation and that further work is needed to ensure more reliable

despiking algorithms.
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3.2 Significance Statement

Turbulent mixing is a process where the random movement of water can lead to water with

different properties irreversibly mixing. This process is important to understand in estuaries because the

extent of mixing of freshwater and saltwater inside an estuary alters its overall circulation and thus affects

ecosystem health and the distribution of pollution or larvae in an estuary, among other things. Existing

approaches to measuring turbulent dissipation, an important parameter for evaluating turbulent mixing,

make assumptions that fail in the presence of certain processes, such as long period, breaking waves in

shallow estuaries. We evaluate and improve data analysis techniques to account for such processes and

accurately measure turbulent dissipation in shallow estuaries. Some of our improvements are also relevant

to a broad array of coastal and oceanic conditions.

3.3 Introduction

In recent years, Acoustic Doppler Velocimeters (ADVs) have proven valuable tools for measuring

turbulent statistics in various environments. With their fast sample rates, relatively accurate measurements,

and ability to measure in shallow water, ADVs have led to improvements in our understanding of surf zone

and shallow estuarine turbulence (e.g., Feddersen, 2012; Jones and Monismith, 2008). Key to this success

has been the development of reliable data processing techniques for despiking ADV data and calculating

wavenumber spectra from ADV velocity data in the presence of surface gravity waves (e.g., Goring and

Nikora, 2002; Shaw and Trowbridge, 2001). Building off the dynamic importance of Infragravity (IG)

frequency oscillations highlighted in Chapter 2, this chapter looks to use the ADVs deployed at Locations

5 and 7 in Figure 2.1 to observe turbulent dissipation in the presence of IG waves in Los Peñasquitos

Lagoon (LPL). Understanding turbulence in the presence of IG motions can help tease out how IG

velocity oscillations interact with other sediment transport mechanisms and how they affect mixing within

estuaries.

To address turbulence in the presence of IG motions, ADVs appear to be the ideal tool, as IG

waves are often most dominant in particularly shallow waters. However, many of the existing methods for

analyzing ADV data in the presence of waves make assumptions that fail in the presence of IG motions.

In particular, the irregular IG motions introduce non-stationary turbulence with unpredictable changes in

velocity variance that interfere with despiking algorithms, and the asymmetric behavior of the oscillations

lead to changes in spectral slope when using standard frozen turbulence assumptions. To be clear, we use

the term oscillations instead of waves because the data presented here are asymmetric and the result of
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the relaxation of turbulent bores. Such oscillations match observations from other experiments in shallow

estuaries (e.g., Williams and Stacey, 2016; McSweeney et al., 2020) and are most accurately described as

IG frequency bores. Therefore, we will use this terminology for the rest of the paper. Harvey et al. (2023)

and Figure 3.1e have raw ADV time-series that provide visualizations for these oscillations.

This chapter closely examines and adapts existing techniques for despiking ADV data and

measuring turbulent dissipation in the presence of large IG frequency bores in a shallow estuary. We

identify where current algorithms fail and suggest alterations in order to deal with the unique challenges

presented by dominant IG oscillations. We note that the effects we correct for are not unique to IG

frequency bores, meaning that many of the techniques presented here have the potential to be applied

to a wider range of situations. In addition, our modifications to inertial sub-range fitting methods are

improvements even in the absence of non-linear dynamics. We provide tolerance calculations and an error

analysis framework with the goal that future researchers may use these techniques to more easily evaluate

turbulence using ADVs. This error analysis examines variables not traditionally considered in final

turbulence calculations, allowing us to identify areas where ADV processing for turbulence calculations

needs careful consideration and further work to produce reliable results.

The data used for the analyses presented were obtained during the field deployment described in

Chapter 2 in Los Peñasquitos Lagoon. Specifically, we use the two synced ADV’s (Nortek Vectors) at

Location 5, measuring 30cm and 50cm above the bottom, and the ADV at Location 7, measuring 1m

above the bottom. Initial cleaning of the velocity data used a correlation cutoff of 70% and signal to

noise ratio (SNR) cutoff of 10 dB for any beam, based on initial data inspection as recommended by the

manufacturer (Nortek, 2018).

3.4 Despiking

The first challenge when using ADV field measurements is despiking. Due to phase shift ambiguities

caused by contamination from previous pulses reflecting off air bubbles and other reflective surfaces

suspended in the water, spikes can appear in ADV velocity records (e.g., Goring and Nikora, 2002). These

spikes can contaminate otherwise valid data, leading to errors in later averaging or turbulence calculations.

3.4.1 Existing Methods

Perhaps the most common method for eliminating these spikes is the Goring and Nikora (2002)

method. This approach assumes that valid points collected by an ADV, after removing the low frequency

signal, are clustered in a dense ellipsoid in phase space. Here, phase space is defined by using the measured
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velocity (u), first time derivative (du/dt), and second time derivative (d2u/dt2) to form 3 independent axes.

The outer limits of the valid data ellipsoid are determined using the universal threshold,
√
2 log n∗σ, which

is an upper bound on the maximum expected value in a sample of size n taken from a Gaussian distribution

with standard deviation σ. Goring and Nikora (2002) use the universal threshold to define an ellipse for

each of the 3 2d projections of phase space. Any points outside any one of those ellipses are replaced and

the algorithm is repeated until no new spikes are detected. Goring and Nikora (2002) also note that due

to the different spike numbers in vertical vs. horizontal velocities, each velocity component should be

despiked independently. Wahl (2003) built on this approach, showing that the standard deviation based

universal threshold could be biased by outliers and suggesting the median of the absolute deviation from

the median (MAD) as a robust alternative.

Further modifications to the phase space method came from Parsheh et al. (2010), who noticed

that particularly large spikes could introduce a bias in the derivative, making normal data points appear

as spikes in phase space. The proposed fix used the MAD based threshold to perform an initial screening

based only on velocity magnitude before continuing to the phase space method. In addition, Parsheh et al.

(2010) suggested that replacing spikes with the last valid data point prevented the extended contamination

of cleaned data from yet to be detected spikes found when using other interpolation methods.

Upon examination of our data, we find that the distributions for our velocities and derivatives are

noticeably non-Gaussian, with long tails that extend beyond the universal threshold and MAD threshold

cutoffs (see Figure 3.1a). As a result, the use of unmodified versions of the methods proposed by Goring

and Nikora (2002), Wahl (2003), and Parsheh et al. (2010) misidentifies too many valid data points as

spikes. These tails are likely a direct result of non-stationary turbulence leading to changes in the variance

of our data over our burst length (30 minutes). In addition, this non-stationary effect appears to be

related to the passage of IG frequency bores, which come in at largely irregular and unpredictable intervals

and can be seen as the low-pass signal in Figure 3.1e and 3.1f. This short term increase in turbulent

energy with passing bores is very similar to what Simpson et al. (2004) observe in the presence of a tidal

bore propagating up a shallow estuary. As a result, simply changing the burst length for our despiking

algorithm was not an option.

Since Goring and Nikora (2002), several new methods of despiking have been proposed that we

also find inappropriate for our situation. Cea et al. (2007) explore how correlations between different

velocity components can be used to create a different 3d space for detecting spikes in a similar way to

the phase space approach. However, the lack of temporal derivatives (e.g. du/dt) misses an essential

element of spike detection for our situation. In data with varying velocity amplitudes, as in the presence
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Figure 3.1. Comparing the Gaussian based cutoff with expanding cutoffs for a burst with IG energy. All
data shown - except low-pass data in (e) and (f) - have the low-pass filtered signal (20 seconds) removed.
In all plots, black corresponds to the original data, dark blue corresponds to the Gaussian based cutoff,
and cyan corresponds to the Expanded cutoffs. (a) shows a histogram and corresponding kernel density
estimate (black line) of the raw data along with a Gaussian distribution that has the same mean and
standard deviation as the results of the expanded cutoff algorithm (dark blue). The dashed, dark blue
bars showing the universal threshold cutoffs encompass the Gaussian data but cut short the extended
tails of the true data. The solid, cyan bars showing the expanded cutoffs relax the restrictions, keeping
more data. Note that the y axis has been expanded between 0 and 0.2 to highlight the extended tails
of the data. (b) - (d) show the 2d projections of phase space with the Gaussian and expanded cutoff
based ellipses. (e) shows the results of the two different despiking algorithms. The expanded limits appear
to keep more data during periods with higher high-pass velocity (solid black line) variance that tend to
correspond with large positive low-pass velocities (dashed black line). Because this particular time period
has weak tides, the low-pass velocity largely corresponds to IG frequency oscillations. (f) shows a zoom in
on one and a half minutes of (e) to highlight why we believe the Gaussian based limits are throwing out
real data. Note that the Gaussian limits are always more strict than the expanded limits, so anywhere
light blue is seen represents time periods where the expanded limits keep data while the Gaussian limits
throw out data. Similarly, black represents time periods where both limits throw out data.

of large IG frequency bores, some spikes have magnitudes that are no bigger than other points in the same

burst of data. These spikes must then be identified by how much they stand out from their immediate

neighbors, which is captured by a temporal derivative. In addition to Cea et al. (2007), Razaz and

Kawanisi (2011) propose an improved wavelet based despiking algorithm that decomposes data into

wavelet packets. Sharma et al. (2018) suggest a modified singular spectrum analysis approach that
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identifies key eigenvectors which describe the data and can be used for reconstructing a spike free signal.

However, inherent in both the Razaz and Kawanisi (2011) and Sharma et al. (2018) approaches is a

reliance on stationary data that is broken by the presence of IG frequency bores. To adapt either of these

approaches would be very dependent on the individual characteristics of the IG frequency bores in each

deployment, preventing the creation of a widely usable algorithm.

For replacing detected spikes, Jesson et al. (2013) tested a variety of proposed methods in

combination with many of the above despiking methods. Their results show that the optimal replacement

method depends on the detection method used, and verified the conclusions of Parsheh et al. (2010) that

the last valid data point method was optimal for the modified phase space method.

3.4.2 Expanding Cutoff Algorithm

Based on the variety of approaches above, we determine that the best approach is to use the Goring

and Nikora (2002) algorithm with a modified cutoff to account for our non-Gaussian data distribution.

Because the Goring and Nikora (2002) universal threshold is too strict for our data, we modify the phase

space approach with an expanding cutoff algorithm, similar to the one used by Islam and Zhu (2013).

This approach uses the basic observation by Goring and Nikora (2002) that valid ADV data falls within

a tight ellipse in phase space. However, rather than using a Gaussian distribution based cutoff, we use

the density of points in phase space to determine where the ellipse ends. Islam and Zhu (2013) use a

bivariate kernel density function to create a density map of the data in each 2d phase space projection.

The threshold is then determined by where the gradient in the density levels off (indicating an end to the

dense cluster in phase space). However, Islam and Zhu (2013) found that the particular implementation of

the bivariate kernel density function appears to heavily influence the mean velocity of their data. Because

Islam and Zhu (2013) do not provide an explicit sensitivity analysis on the frequency spectrum of their

data, the sensitivity of the mean currents suggests that this approach would not be a robust and easily

adaptable algorithm for turbulence calculations, thus here we use a modified expanding cutoff algorithm.

We begin by linearly interpolating any data already marked as bad and removing the 1/20 Hz

low-pass filtered data so that we are only despiking the high frequency signal (appendix A, steps 1 and 2).

Then, for our modified cutoffs, we start with the universal threshold from Goring and Nikora (2002) as an

initial estimate (appendix A, step 4). While these thresholds are inaccurate in magnitude, the relative

magnitudes (and therefore the shape of the ellipsoid) are well represented by the standard deviation of

the data, as can be seen in Figure 3.1b-d. To determine the overall magnitude for a given 2d projection of

phase space, we then increase the corresponding cutoff limits by 1% repeatedly, keeping the ellipse axis
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ratio constant throughout (appendix A, step 5). For each expansion, we then calculate an elliptical ring

density of points as the number of data points that lie between the ellipses defined by the new cutoff and

the previous increment divided by the corresponding area (appendix A, steps 6 and 7). The modified cutoff

is then chosen as the point at which the elliptical ring density of points in the ring between sequential

cutoffs decreases by more than 95% of the previous value (appendix A, steps 8 and 9) (see Figure 3.1b-d).

We do this expansion for each 2d projection of phase space independently. Figure 3.1 shows how these

expanded cutoffs keep more valid data points than the original Goring and Nikora (2002) cutoffs, allowing

us to produce a more complete despiked timeseries in the presence of non-stationarity.

Including these modified cutoffs, our full final despiking algorithm is as follows. We begin by

linearly interpolating any NaNs in our data (appendix A, step 1) and then follow the Goring and Nikora

(2002) algorithm exactly until the point of specifying cutoffs (appendix A, steps 2 - 4). We next use our

expanding algorithm to define the modified cutoffs as described above (appendix A, steps 5 - 9). From

here, we follow the modified phase space approach suggested by Parsheh et al. (2010) and Jesson et al.

(2013) for replacing spikes. First, we check if there are any points that explicitly exceed the velocity

threshold, marking those as spikes and replacing them with the last valid point (appendix A, step 10).

We use the last valid point, because both Parsheh et al. (2010) and Jesson et al. (2013) show that this

replacement method produces a more accurate spectrum than other interpolation methods when paired

with the modified phase space approach introduced by Parsheh et al. (2010). If we identify spikes this

way, we return to the beginning of the iteration process (appendix A, steps 11, 18, and 19), allowing us

to remove particularly bad spikes that might lead to valid points being detected as spikes later on. If

we do not identify spikes this way, we identify spikes using the full phase space ellipses, being careful to

use the rotated ellipse for u-d2u/dt2 space as in Goring and Nikora (2002), and again replace identified

spikes with the last valid point (appendix A, steps 12 - 18). Finally, we iterate until no new data points

are identified as spikes, add back the low frequency signal, and return any original NaN values that were

interpolated at the beginning back to NaN (appendix A, step 20). This iteration occasionally gets stuck

on repeatedly identifying the same points as spikes, so we impose a limit of 100 iterations to prevent an

infinite loop. Similar to Goring and Nikora (2002), we despike each velocity component independently as

shown in Figure 3.1b-d. This phase space despiking algorithm with modified expanding cutoffs could be

used on any dataset, but is particularly well suited when the data is non-Gaussian due to non-stationary

turbulence over the burst length. Examples include irregular waves and bores such as these, but also the

passage of fronts.
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3.5 Spectral Estimation

Once the velocity has been effectively despiked, the next major challenge in measuring turbulent

dissipation with an ADV is calculating a wavenumber power spectrum of the vertical velocity while

properly accounting for the presence of oscillating velocities.

3.5.1 Existing Methods

The standard approach to calculating dissipation from velocity measurements is based off the

inertial turbulence sub-range. For wavenumbers small compared to the energy generation scales, but still

much larger than the viscous dissipation scale, i.e., the Kolmogorov scale, the vertical velocity, horizontal

wavenumber energy density spectrum follows (Pope, 2000)

Sww(κ1) = C ′
1ϵ

2/3κ
−5/3
1 , (3.1)

with S representing a directional energy spectrum, the subscripts ww indicating a vertical velocity auto-

spectrum, the functional dependency on κ indicating a spectrum in wavenumber space, the subscript 1

representing the along-flow direction, ϵ representing dissipation, and C ′
1 = 4/3 ∗ 18/55 ∗C ≈ 0.65. C = 1.5

is Kolmogorov’s constant, 18/55 is a conversion factor for the one dimensional spectrum in the direction of

the mean current, and 4/3 is a further conversion factor for the spectrum in the direction perpendicular to

the mean current (Pope, 2000). Note that we are using vector notation whenever we refer to the velocity

components used in calculating a spectrum and index notation whenever we refer to the direction of the

wavenumbers calculated. By plotting the spectrum in log space, a line with slope −5/3 can be fit to

observed data, and the y intercept of that line can be used to calculate the turbulent dissipation (e.g.,

Burchard et al., 2008; Bluteau et al., 2011; Rusello and Cowen, 2011).

Since velocity measurements are often taken at one point in space over time, rather than over

space at one point in time, initial spectra calculated are frequency spectra. Using Taylor’s Frozen

Turbulence Hypothesis, the mean current during the observation period can then be used to convert

observed frequencies to observed wavenumbers (e.g., Rusello and Cowen, 2011; Lumley and Terray, 1983).

To reduce spectral noise, spectra are calculated over minutes long batches of data, where windowing

and segmentation can be used to produce high degrees of freedom for reduced errors. Because the turbulence

is assumed constant over the averaging time-scale, a robust fit to the low noise spectrum will accurately

determine the turbulent dissipation. However, in the presence of waves with periods smaller than the

observation period, the advection of turbulence past the sensor by wave orbital velocities can bias energy
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spectra high for frequencies higher than the wave frequency. This is because using the mean velocity to

convert frequency to wavenumber is no longer an accurate assumption (e.g., Lumley and Terray, 1983;

Rosman and Gerbi, 2017).

Past attempts to adjust for this wave bias have employed spectral based corrections. By assuming

a random, linear wave field that leads to roughly Gaussian distributed wave velocities, an analytical

solution for the correlation of measured turbulent velocities can be found. Using this correlation, one can

calculate the expected difference between the measured spectrum and the ideal inertial sub-range. Such

corrections were first introduced by Lumley and Terray (1983), built on by Trowbridge and Elgar (2001)

and Feddersen et al. (2007) among others, and have most recently been generalized to a wide range of

cases by Rosman and Gerbi (2017).

3.5.2 Semi-Idealized Model

Because the above methods are based on linear surface gravity waves with Gaussian distributed

velocities, we evaluate their effectiveness in the presence of IG frequency bores using a semi-idealized

model based on the approach in Rosman and Gerbi (2017). We start with an idealized turbulent spectrum

with a known dissipation, an inertial sub-range, and roll-offs near the generation (L) and Kolmogorov (η)

length scales, as specified by Rosman and Gerbi (2017) and Pope (2000):

Sww(κ1) =
1

2

(
Suu(κ1)− κ1

dSuu(κ1)

dκ1

)
,

Suu(κ1) =

∫ ∞

κ1

E(κ)

κ

(
1− κ21

κ2

)
dκ,

E(κ) = Cϵ2/3κ−5/3fL(κL)fη(κη),

fL(κL) =

(
κL√

(κL)2 + 4π2

)5/3+p0

,

fη(κη) = exp[−cβ([(κη)4 + c4η]
1/4 − cη)],

(3.2)

with E representing a non-directional energy spectrum, fL(κL) representing the low wavenumber roll-off,

fη(κη) representing the high wavenumber roll-off, C = 1.5, p0 = 2, cβ = 5.2, and cη = 0.40. Here we use a

generation length scale of 2 meters, which reflects our shallow water, but is also large enough to resolve a

significantly large inertial sub-range. In addition, the Kolmogorov lengthscale is calculated as

η =

(
ν3

ϵ

)1/4

, (3.3)
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where ν is the temperature dependent kinematic viscosity of water.

We convert this spectrum to Fourier coefficients with random phases and perform an inverse

Fourier Transform to obtain an idealized spatial turbulent vertical velocity dataset for that chosen

dissipation value. We then sample from this idealized data at a fixed location in space at 16 Hz, while

advecting the data with our IG frequency bore containing measured horizontal velocities. The resulting

semi-idealized (idealized turbulence field with a fixed dissipation value advected by a realistic IG bore

containing velocity field) temporal dataset then represents the vertical velocities that we would measure

with our field instruments if the vertical velocities followed the initial idealized turbulent spectrum.

From this semi-idealized data, we can test different approaches to reconstruct the initial idealized

turbulent spectrum and the associated dissipation value. The following subsections describe the 2 main

approaches that we test with this method.

3.5.3 Full Rosman and Gerbi Correction

First, we are interested in testing the high frequency limit of the correction originally presented

by Lumley and Terray (1983) and most recently explored by Rosman and Gerbi (2017). This correction

consists of dividing a single constant,

I(
σwave

uc
) =

1√
2π

∫ ∞

−∞

∣∣∣∣1− σwave

uc
ζ

∣∣∣∣2/3 e−(1/2)ζ2

dζ, (3.4)

which we call the wave correction constant, into the average spectrum to correct the magnitude when

converting from a temporal spectrum (Sww(ω)) to a spatial spectrum (Sww(κ)) as

Sww(κ) =
Sww(ω) ∗ uc
I(σwave/uc)

. (3.5)

Note that the functionality of the wave correction constant I is explicitly included for clarity (see

Equation 3.4) to demonstrate that the wave correction constant (I ) depends only on the ratio of the

standard deviation of the waves (σwave) to the mean current (uc). In addition, the relation betwen

wavenumber and frequency in Equation 3.5 is κ = ω/uc.

Figure 3.2 shows that when we use I given by Equation 3.4, the resulting spectrum appears

to have the correct amplitude, but the wrong slope when compared to the initial ideal spectrum. This

implies that the non-linear aspects of the IG frequency bores introduce a slope variation in the frequency

spectrum not predicted by, and therefore not corrected by, the linear theory assumed by the above methods.

Therefore, to avoid wave bias from IG frequency bores, we must find a different approach.
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Figure 3.2. The idealized turbulence spectrum used to produce our test data and the resulting reproduced
spectra show that, in the presence of IG frequency bores, a segmented approach performs better than
traditionally used wave correction methods. The semi-idealized spectrum (section 3.5.2) is in black,
the Rosman and Gerbi (2017) Correction (section 3.5.3) is in cyan, individual 10 second spectra from
our method (section 3.5.4) are in light blue, and the average corrected spectrum resulting from our
method (sections 3.5.4) is in dark blue. Note that the 10 second spectra overlap a lot, so they are mostly
transparent here to highlight where there is more overlap. The dashed vertical lines show the generation
and Kolmogorov length scale derived boundaries of the inertial sub-range.

3.5.4 Segmented Approach

Here, we adapt a method first introduced by George et al. (1994). By splitting the velocity data

into short enough segments (as defined below), we ensure that the velocity varies linearly or not at all

within any particular segment, thus enabling the use of Taylor’s Frozen Turbulence Hypothesis. Then, the

resulting spectra can be averaged in wavenumber space, resulting in an accurately reproduced wavenumber

spectrum. We use this approach over a 30 minute burst of data to produce a final 30 minute averaged

spectrum that is minimally impacted by the phasing of individual IG oscillations. While 30 minutes is

long enough for our 30 seconds to 2 minutes long oscillations, the averaging interval will need to be

adjusted for datasets with different dominant frequencies. Also, because the inertial sub-range scales as

ϵ2/3, our final dissipation values will be composed of the 30 minute average of instantaneous dissipation

values raised to the two thirds power, then raised to the three halves power to maintain proper units, e.g.(∑N ϵ2/3

N

)3/2
. We will refer to this as the representative dissipation for the rest of the manuscript and

discuss its implications in section 3.9.

For each 30 minute burst of vertical and horizontal velocity, we first linearly interpolate any NaNs

to produce consistently spaced data (appendix B, step 1) before splitting the horizontal velocity signal
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into low (ũ) and high (u′) frequency components (appendix B, step 2) such that

u = ũ+ u′. (3.6)

We separate the frequencies by low-pass filtering with a cutoff frequency of 1/5 Hz, which we find is

higher than the frequency of our IG bores while smaller than the frequency of our large scale turbulence.

This cutoff will generally work so long as there is a distinct separation between the bore frequencies

and turbulent frequencies. After filtering the data, we split the low and high frequency horizontal and

unfiltered vertical velocity data all into 10 second segments (appendix B, step 3) and calculate the mean

advection speed for each segment as cseg =
√
U2
seg + V 2

seg, where Useg and Vseg are the average low

frequency horizontal velocity components for each segment. Next, we rotate the horizontal velocities

into the direction of the mean velocity, as determined by the low frequency signal for each segment

independently, such that γseg, γ̃seg, and γ
′
seg represent the unfiltered, low frequency, and high frequency

velocities in the direction of the mean current respectively (appendix B, steps 4 - 7). We find that 10

seconds is sufficiently short compared to the minutes long IG frequency bore period while being long

enough to calculate spectra that resolve the inertial sub-range. For our data, the advection speeds of these

10 second segments range from 0.05 mm/s to 76 cm/s, giving resolved length scales ranging from to 5mm

to 3m.

Before we can calculate spectra for these 10 second segments, we must now use the low frequency

and high frequency components of the horizontal velocity to filter out segments that break Taylor’s Frozen

Turbulence Hypothesis or those where the advection velocity significantly changes over the 10 second

segment. First, for Taylor’s Frozen Turbulence Hypothesis to hold, the turbulent fluctuations must be

much smaller than the mean advection velocity (e.g., Bluteau et al., 2011; George et al., 1994). Following

George et al. (1994), to satisfy this condition, we use the standard deviation of the rotated high frequency

velocity oscillations to characterize the turbulent fluctuations (appendix B, step 8). We then require the

standard deviation of the high frequency velocity component in the direction of the mean velocity to be

less than 1/5 of the mean velocity magnitude (i.e., 5σγ′

seg ≤ cseg), throwing out any segments that do not

satisfy this condition (e.g., George et al., 1994) (appendix B, step 9).

For the second condition, the advection velocity cannot change too much over the 10 second

segment. To satisfy this, George et al. (1994) modified a criteria first suggested by Lin (1953) to only keep

segments where the variation of the advection velocity was much less than the mean. This criterion would

lead us to throw out most of our segments, However, we can relax this condition using the results of an
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idealized test with the model introduced in section 3.53.5.2. Noting that the low frequency component of

most of the 10 second segments is a roughly linearly changing advection velocity, we test the effects of a

linear advection velocity on idealized data. Even though a linear advection velocity is not an oscillating

velocity, we choose to test the correction used in equation 3.5 because it is designed for the high frequency

limit where the turbulent frequencies are much higher than the advection frequencies. Our low frequency

signal is defined as anything below 1/5 Hz, so we use the standard deviation of the linear advection

velocity when applying the wave correction constant to our test cases (e.g. σwave = σγ̃
seg). In doing so,

we find that the wave correction constant accurately corrects the magnitude of the resulting spectrum

but fails to adjust for changes in the spectrum slope, much like the result of using the wave correction

constant on IG oscillation velocities as shown in Figure 3.2. However, we find that the slope error is the

same order or smaller than the magnitude error and that by ensuring the change from using the wave

correction constant is smaller than 5% (i.e. I between 0.95 and 1.05) we can guarantee a slope error

under 5%. Plotting Equation 3.4 for σγ̃
seg/cseg > 0 shows that I is between 0.95 and 1.05 so long as

σγ̃
seg/cseg ≤ 1.025. This allows us to relax the George et al. (1994) criterion and instead only require 10

second segments to satisfy σγ̃
seg/cseg ≤ 1.025 (appendix B, step 9).

Based on work by Feddersen (2010), we also eliminate segments that have too many unoriginal

points. These unoriginal points can be due to interpolating NaNs or from replacing spikes as described

above. Feddersen (2010) showed that if more than 1% of the data is unoriginal, the effects of individual

spike replacement techniques start to become important. Therefore, we eliminate the 10 second segments

with the largest number of unoriginal points until less than 1% of the total points in all remaining segments

of the 30 minute burst are unoriginal (appendix B, steps 10 and 11). It is important to note here that we

do not place a limit on the number of consecutive unoriginal points or unoriginal points in a given segment.

This is because including such cutoffs has little impact on the final calculated dissipation values beyond

the conditions we already use and we choose to limit the number of subjective cutoffs used. Further

discussion on the sensitivity of different subjective cutoffs (e.g. 5σγ′

seg ≤ cseg, σ
γ̃
seg/cseg ≤ 1.025, 1% of

total points in all remaining segments, etc.) is given in section 3.73.7.3.

Once we have eliminated bad segments, we detrend, apply a hanning window, and calculate a

power spectrum of the unfiltered vertical velocity for each segment (Thomson and Emery, 2014b) (appendix

B, step 12). We then use the local mean horizontal velocity with Taylor’s Frozen Turbulence Hypothesis

to convert each segment to wavenumber space independently and correct the spectrum magnitude using I

as in Equation 3.5 (appendix B, step 13). The resulting individual wavenumber spectra can be seen as

the thin blue lines in Figure 3.2.
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After converting each spectrum to wavenumber space, we remove the lowest and highest wavenum-

bers to avoid low frequency contamination or aliasing of high frequency energy. On the low end, the

semi-idealized model indicates an apparent biasing of individual spectra high and that removing the 2

lowest wavenumbers is sufficient to eliminate this bias (appendix B, step 14). On the high end, we assume

the presence of an inertial sub-range. If the spectrum follows a −5/3 slope, we can calculate a wavenumber

cutoff,

κcutoff = (κ−5/3
max ∗ 4)−3/5, (3.7)

where we expect the spectrum to be 4 times larger than the spectrum at the Nyquist (κmax) wavenumber

(appendix B, step 15). Eliminating any points above this cutoff means that any remaining points are

theoretically at least 4 times larger than the spectrum at the nyquist frequency and can therefore never be

biased by more than 25% due to aliasing, which the semi-idealized model indicates is sufficient to prevent

substantial alteration of the inertial sub-range slope. It is important to note that both of these cutoffs are

based on our observations from looking at individual 10 second spectra and the resulting impacts on final

average spectra. Therefore, we include these cutoffs in the sensitivity analysis in Section 3.7. In addition,

the bias resulting from this high wavenumber cutoff is detailed in our semi-idealized error analysis in

Section 3.7a.

After cleaning the spectrum of each segment, we consider individual spectral density values as

independent estimates of the true spectral value at their given wavenumber. We bin the N spectral values

in increasing order by wavenumber into bins of at least Nmin = 50 as evenly as possible, as explained in

appendix B, steps 16 - 17. We choose 50 as a balance between providing sufficient degrees of freedom

that we achieve a low noise spectrum and having enough bins that the final spectrum has enough data

points for us to perform a robust fit. The exact number may need to be adjusted based on the noise level

and size of each dataset and is included in the sensitivity analysis in section 3.73.7.3. We then average

the values in each bin together to obtain a low noise spectrum without wave bias (appendix B, step 18).

Because we expect the spectral estimates to vary as κ−5/3, we estimate the wavenumber of each average

spectral density value (appendix B, step 19) as

κav =

(
Nbin∑
i=1

κ
−5/3
i

Nbin

)−3/5

, (3.8)

where the index represents each individual estimate being averaged in the bin and Nbin represents the

total number of spectral estimates in a bin. Each resulting averaged spectral estimate then has 2 ∗Nbin
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degrees of freedom. Note, we find that a maximum N for our dataset is 5760 (180 10 second segments *

32 kept wavenumbers per spectrum) and that a minimum N for successful dissipation calculations in our

dataset is 768. Generally, if grouping individual values into bins of at least Nmin, Nbin will range from

Nmin to 2Nmin, but successful dissipation calculations will require many bins that will as a result be

more evenly distributed and generally close to Nmin. For our data, Nbin ranges from 50 to 96 due to how

the remainder of N/50 distributes into the bins, but only ranges from 50 to 53 for bursts with successful

dissipation calculations.

In summary, our spectrum calculation starts by interpolating NaNs and splitting the horizontal

velocities into a low and high frequency portion (using a 1/5 Hz cutoff) before splitting both the filtered

horizontal and unfiltered vertical velocity data into 10 second segments (appendix B, step 2). We then

rotate both the low and high frequency horizontal signals into the direction of the mean velocity for each

10 second segment independently (appendix B, steps 4 - 7). Next, we eliminate any segments where the

standard deviation of the low frequency horizontal signal is greater than 1.025 times the mean speed or

the standard deviation of the high frequency horizontal signal is greater than 1/5 times the mean speed,

all calculated in the mean velocity direction (appendix B, steps 8 and 9). We also eliminate segments with

the most unoriginal points until less than 1% of the total points in all remaining segments are unoriginal.

After eliminating, we take a spectrum of the unfiltered vertical velocity of all the remaining segments,

convert the spectra to wavenumber space individually, including the wave correction factor (I ) in Equation

3.4, and trim the 2 lowest wavenumbers along with the wavenumbers above κcutoff to avoid aliasing.

Finally, we bin the N resulting spectral estimates as evenly as possible into floor(N/Nmin) groups by

wavenumber and average each bin to obtain an averaged spectrum. It is important to note that because

we assume an inertial sub-range at several steps in our spectrum calculation, we only expect the final

result to be accurate within the inertial sub-range. Figure 3.2 illustrates the method’s success in the

inertial sub-range.

3.6 Dissipation Calculations

In order to use Equation 3.1 to calculate dissipation, we must fit a line to the logarithm of the

wavenumber spectrum within the inertial sub-range. This poses two distinct problems: 1) how to fit a

line, and 2) where to fit a line. The details of how to approach these two problems have varied slightly in

the literature, with no consensus on what approach is best. The issues and modifications we explain in

this section are not specific to non-linear or intermittent dynamics such as IG frequency bores and are

therefore helpful over a broad range of observational conditions.
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3.6.1 How to fit

For fitting a line, a least squares error approach is commonly used (e.g., Feddersen, 2010; Jones

and Monismith, 2008). However, the least squares error approach originates from the Maximum Likelihood

Estimation (MLE) method specific to data with Gaussian errors (e.g., Leo, 1994). As Bluteau et al. (2011)

point out, the errors on a spectrum follow a χ2 distribution, meaning that a MLE approach (rather than

a least squares error) would be more appropriate as it accounts for the χ2 distribution. Unfortunately,

the solution suggested by Bluteau et al. (2011) requires constant degrees of freedom over the entire

spectrum (not guaranteed by our approach) and the use of computationally costly non-linear minimization

algorithms. Here, we choose to use a weighted least squares approach with some modifications to account

for the affects of a χ2 distribution.

Considering our spectral calculation method, every 10 second segment estimate of a spectrum

comes from taking the square magnitude of a calculated Fourier coefficient. The real and imaginary portion

of each Fourier coefficient are sampled from a Gaussian distribution with a mean of 0. Therefore, the

spectrum estimate is sampled from (S(κ)/d) ∗χ2
d, where S is the true spectrum value, d = 2 is the number

of degrees of freedom, and χ2
d is a standard χ2 distribution with d degrees of freedom (See Thomson and

Emery (2014b) for more details). Because the mean of a χ2 distribution is [χ2
d] = d, we expect the mean

of multiple spectrum estimates to approach the true spectrum value (Thomson and Emery, 2014b). When

we bin our spectrum estimates into groups of Nbin ≥ 50 and average them together, we are adding Nbin

χ2
d=2 variables. The resulting averaged spectrum is then sampled from the same distribution with higher

degrees of freedom, dbin = 2Nbin ≥ 100.

When performing our dissipation fit, we work in log space with the observations

Âi = log(Ŝi), (3.9)

taken from the distribution

Aκi(dbin,i) = log

(
C ′

1ϵ
2/3κ

−5/3
i

dbin,i
∗ χ2

dbin,i

)
, (3.10)

where C ′
1 is defined in Equation 3.1, [ˆ] indicates a single sample of a random value and the subscript

i denotes a specific spectral observation being used in the fit. While a χ2 distribution is skewed, large

degrees of freedom lead to a more Gaussian distribution and logarithms tend to further suppress skewness.
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Therefore, we choose to model Aκi(dbin,i) as a Gaussian with expected value

Āκi(dbin,i) = log(C ′
1ϵ

2/3κ
−5/3
i ) + ψ(0)(dbin,i/2)− log(dbin,i/2) (3.11)

and variance

σ2
A(dbin,i) = 2/dbin,i. (3.12)

ψ(0)(dbin,i/2)− log(dbin,i/2) is negligible for high degrees of freedom and comes from the expectation of a

log χ2 distribution, with ψ(0) representing a digamma function (e.g., Lee, 2012). Equation 3.12 comes from

standard error propagation of the standard deviation of a χ2 variable through Equation 3.10 (Thomson

and Emery, 2014a). Modelling the log of our spectrum as a Gaussian allows us to use a weighted least

squares fit with the inverse variances as the weights (e.g., Thomson and Emery, 2014a; Leo, 1994). We

solve for a and b in ŷi = axi + b, where

ŷi = Âi + log(dbin,i/2)− ψ(0)(dbin,i/2) = log(Ŝi) + log(dbin,i/2)− ψ(0)(dbin,i/2), (3.13)

xi = log(κi), (3.14)

and the errors in the fit are weighted by σ2
y(dbin,i) = 2/dbin,i. Note that we have defined ŷi in Equation

3.13 with correction terms such that the expected value for y, ȳκi(dbin,i) is then

ȳκi(dbin,i) = Āκi(dbin,i) + log(dbin,i/2)− ψ(0)(dbin,i/2) (3.15)

which, plugging in Equation 3.11, becomes

ȳκi(dbin,i) = −5

3
log(κi) + log(C ′

1ϵ
2/3). (3.16)

Therefore, if we require a and b in ŷi = a log(κi) + b to match the linear fit to theory, then a = −5/3 and

b = log(Cϵ2/3). Using these values, and applying a least squares fit to ŷi (as in Leo, 1994), we can use a

to determine the location of the inertial sub-range (as described in section 3.63.6.2) and we can estimate

the dissipation as

ϵ = [exp(b)/C ′
1]

3/2
. (3.17)

To confirm that our approach is satisfactory, we generate a test inertial spectrum, add random

χ2 noise, and calculate the dissipation from the spectrum. When repeating this many times, we find
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negligible differences between our approach and the full non-linear approach of Bluteau et al. (2011), even

for degrees of freedom as low as 10. We then proceed with confidence that our simplification to Gaussian

uncertainties will not affect our final result.

3.6.2 Where to fit

When deciding what portion of the spectrum to fit as the inertial sub-range, a variety of approaches

have been suggested. Trowbridge and Elgar (2001) and Feddersen (2010) fit to a constant, pre-specified

frequency range, eliminating spectra that did not satisfy a misfit cutoff. Jones and Monismith (2008) and

Bluteau et al. (2011) fit to all portions of the spectrum longer than a minimum frequency range, and

select the fit that has the smallest misfit. Bluteau et al. (2011) use large scale flow properties and the

Kolmogorov length scale to define bounds to restrict where the final fit could be located, employing an

iterative procedure to account for the Kolmogorov length scale being a function of the dissipation itself.

To quantify the misfit, Jones and Monismith (2008) use the total squared error from the least

squares fit of a −5/3 line to the spectrum. Feddersen (2010) uses two misfit tests. First, after performing

a least squares fit of a line with unspecified slope, Feddersen (2010) uses the difference of the fitted slope

from −5/3, normalized by the uncertainty of the fitted slope. Second, Feddersen (2010) uses the ratio of

the horizontal and vertical spectra to test for isotropic turbulence. Bluteau et al. (2011) use the same

condition as Jones and Monismith (2008), with an additional criteria based on the maximum absolute

deviation of their fit and a χ2 distribution.

After performing several tests with the semi-idealized model, we find a common problem with

all of the methods suggested above. The statistical uncertainties from our fitting method consistently

underestimate the error of our calculated dissipation values compared to the dissipation used to create the

initial ideal spectrum. This is because slight changes in noise can change what portion of the spectrum

is fit and dramatically change the final dissipation value. The first two rows of Figure 3.3 show two

bursts where the best and second best fits for two different measurements of best fit result in dramatically

different dissipation values. The first row uses the total error as used by Jones and Monismith (2008)

while the second uses the average error because we found that the total error preferentially selected shorter

fits. We therefore conclude that specifying a specific portion of the spectrum as the best fit can introduce

unnecessary uncertainty. To solve this problem, we instead calculate a kernel density estimate of the

dissipation values from all possible fits to determine the most likely true dissipation value, as shown in

Figure 3.3 and described in the following paragraphs.

We employ a similar iterative procedure as used by Bluteau et al. (2011), starting by identifying
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Figure 3.3. Examples of inertial sub-range fitting method. First column depicts histograms from
three different bursts of dissipation values from each individual fit. The thin gray lines show Gaussian
kernel-density estimates. The vertical lines represent dissipation values from different fitting schemes: the
most likely dissipation value selected as in appendix C, step 13 (black), the best fit according to metrics
defined in row titles (dotted dark blue), and the second best fit according to the same metric (dashed light
blue). The second column depicts the mean spectrum from each burst, with corresponding fits plotted
over all wavenumbers used to produce the histograms (i.e. any wavenumbers over which there was a
successful fit). The thin vertical lines denote theoretical wavenumber limits based on the generation and
Kolmogorov scales. The third row shows the same burst as in Figure 2. Note the axes limits are different
and the x-axis of the right column is non-radian wavenumber (κ/(2π)).

the theoretical bounds of the inertial sub-range. As a lower bound, we set

κmin = 2 ∗ 2π

L
, (3.18)

where L is the generation length scale, which we set to 1 meter based on our shallow water depth. As an

upper bound, we set

κmax =
1

60
∗ 2π

η
, (3.19)
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where η is the Kolmogorov length scale defined in Equation 3.3. These theoretical bounds can be seen by

the vertical lines in Figure 3.3b, d, and f. The factor of 1/60 introduced in equation 3.19 is an empirically

derived value from laboratory experiments (e.g., Pope, 2000), however, the factor of 2 in equation 3.18

is relaxed from the empirical value of 6. This relaxation is supported in part because the laboratory

experiments covered low Reynolds numbers when compared to our measurement conditions and because

the water column depth changes over the sampling period. This relaxation of the low wavenumber scaling

factor can also be thought of as using a larger generation length scale and reflects the fact that we likely

have longer horizontal turbulent length scales than implied by the depth of the water column. Such

extended horizontal scales are common in shallow water, as discussed by Stacey et al. (1999), Kirincich

et al. (2010), and Amador et al. (2022). We also verified that this relaxation was appropriate because

roughly a quarter of our final dissipation measurements exhibit a well defined inertial sub-range well past

the more strict cutoff.

For the iterative procedure, we begin by guessing a high dissipation of ϵtest = 10−3 to start with a

very high upper bound (appendix C, step 1). After setting the bounds based on Equations 3.18 and 3.19,

we take every possible continuous subsection of the spectrum within those bounds that contains at least

10 data points and wavenumbers that span at least a quarter of a decade (appendix C, step 2). For each

of these subsections, we fit a line as described above, first calculating the slope and slope error (Leo, 1994)

to determine what subsections to eliminate (as described below), then fixing the slope at −5/3 to obtain

the y intercept and calculate the resulting dissipation (Equations 3.13-3.17 and appendix C, steps 3-9).

We do not use the total error of the fit to eliminate subsections because we find that the spectrum

noise varies between bursts, requiring arbitrary cutoffs greater than the statistical errors suggested by

our degrees of freedom. We also do not use the comparison of the vertical to horizontal spectra because

it would require removing noise from the horizontal data. The noise is primarily Doppler white noise

from the instrument, which varies with flow conditions, and is much larger for the horizontal velocity

components than the vertical (e.g., Voulgaris and Trowbridge, 1998). The most common method for

evaluating noise levels requires our spectra to flatten, and alternatives, such as those suggested by Durgesh

et al. (2014), require stationary data. Neither of these are true for our data, so we choose to focus on the

lower noise vertical velocity data. Similar to the misfit used by Feddersen (2010), we choose to ignore

spectrum subsections where -5/3 lies outside the 95% confidence interval of the fitted slope (appendix C,

step 7).

In addition, some of our calculated spectra (∼ 6%) appear to have a peak at around 1.3 Hz, which

maps to a 1 - 10 cm wavelength with our frozen turbulence conversions (the exact location varied). These
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peaks tended to appear at periods when the instruments were measuring close to the surface, and the

shallower instrument measured a much higher energy than the deeper instrument. These observations,

along with the additional presence of the peaks in the pressure spectrum, leads us to believe that they

were caused by local wind-generated waves. To avoid these peaks causing inaccurate fits, we take the

residual of each fit,

yresi = ŷi −
(
−5

3
xi + b

)
, (3.20)

and calculate the prominence of each peak as well as the prominence of each minimum (or, equivalently,

the prominence of each peak of the negative of the residual) using the SciPy peak prominences function

(Virtanen et al., 2020) (appendix C, step 10). If the largest prominence is greater than 0.8 (note, because we

are working in log space, this corresponds to a little over a factor of 2), we assume that the corresponding

spectrum subsection contains a peak and ignore that dissipation value (appendix C, step 11). We want to

note that for datasets in deeper water, we expect that these high frequency waves will not be present.

However, most other datasets will not be in an estuary that filters out larger surface gravity waves. In

such conditions, we recommend using the Shaw and Trowbridge (2001) or a similar method to remove the

high frequency waves from the vertical velocity data before calculating the spectrum with these or any

other method.

After eliminating invalid subsections, we treat the remaining dissipation values as samples from

a probability distribution. Using the SciPy gaussian kde function (Virtanen et al., 2020) and Scott’s

Rule for determining bandwidth (Scott, 2015), we calculate a 1d Gaussian kernel-density estimate (KDE)

of the log10 of the dissipation values (appendix C, step 12). Scott’s rule sets a bandwidth, h = m−1/5,

based on the number of points used, m, that estimates the theoretical bandwidth that would produce a

zero bias density estimate (Virtanen et al., 2020; Scott, 2015). The KDE itself is a smoothed estimate

of the continuous probability density function for the dissipation. Because it is continuous, we find the

dissipation value corresponding to the peak probability of the KDE and select the calculated dissipation

value closest to that peak. (appendix C, step 13). Three examples of a histogram and KDE can be seen in

Figure 3.3a, c, and e, including the burst shown in Figure 3.1, which can be seen in the last row (Figure

3.3e).

This dissipation allows us to redefine our theoretical maximum wavenumber bound using Equation

3.19 (appendix C, step 14). If any of the spectrum subsections used have more than one wavenumber

outside of the new bounds, we then repeat the process until the subsections used to estimate the dissipation

value satisfy the bounds set by that dissipation value (appendix C, step 15). We specify having more than
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one wavenumber outside of the bounds in order to allow fits slightly outside of theoretical bounds, similar

to the approach taken by Bluteau et al. (2011). In addition, if an iteration leads to a higher dissipation

value than the last, we force another iteration (appendix C, step 16) to include the new sections allowed

by the relaxed upper bound (forcing a hard cutoff after 5 iterations with an increasing dissipation to avoid

infinite loops).

3.7 Error Analysis

Inherent in our dissipation calculation methods are several sources of error, both statistical and

systematic. Tracking each individual source of error is difficult, however, here we present 3 different

approaches to identify and quantify many of these errors and biases. This approach not only provides

detailed error quantification, it also addresses the generalization of our methods by indicating which

parameters may need adjustment under different environmental conditions and identifying overall areas

for future improvement.

3.7.1 Semi-idealized Model Based Errors

For testing our spectrum calculation and dissipation fitting methods, we can use our semi-idealized

model to reveal general patterns and determine an estimate of the total error.

We start by establishing the idealized spectrum and associated spatial data for dissipation values

of ϵideal = 10−8, 10−7, 10−6, 10−5, 10−4, and 10−3 m2s−3, using Equation 3.2. For each dissipation value,

we then use the observed along channel velocity of each 30 minute burst from all 3 ADVs to generate

semi-idealized temporal data as in Section 3.5.2, calculate a wave corrected spectrum as in Section 3.5.4,

and calculate a dissipation value as in Section 3.6. This gives us semi-idealized dissipation values with our

methods (ϵcalc) for every data burst and each dissipation level used for generating an ideal spectrum. To

compare across dissipation levels, we calculate the fractional error as

error =
ϵcalc − ϵideal

ϵcalc
. (3.21)

We choose to use the observed dissipation in the denominator rather than the ideal dissipation to better

match what is obtained from real data. As Figure 3.4a shows, a histogram of these errors from all

dissipation values tested and all measured advection velocities collapse to close to a Gaussian distribution

with a mean error of 2.3% and a standard deviation of 7.4%. To determine a statistical error on our

measurements, we use the half-width of the middle 95% of the error distribution in Figure 3.4a. This gives
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Figure 3.4. Results of semi-idealized model based error analysis. (a) Histogram of all errors, along with
a Gaussian of the same mean and standard deviation. The vertical lines denote the mean errors of all tests
derived from a single initial ideal dissipation value (by color). The thin dotted vertical lines represent the
15.2% error when centered around 0. (b) Fractional errors scattered by the corresponding mean advection
speed and colored by the initial ideal dissipation value with darker colors representing higher dissipation.
The horizontal dotted black lines again represent the 15.2% error.

us an uncertainty on our dissipation measurements of 15.2%, or slightly more than twice the standard

deviation. The 15.2% is our best estimate of the methodological error of our dissipation values.

Breaking out these test dissipation calculations by the ideal dissipation value used and the average

advection speed, Figure 3.4b further shows that our method introduces some systematic biases. Generally,

higher advection speeds and higher dissipation values introduce a bias high. This bias also introduces the

skewness of the distribution compared to the Gaussian in Figure 3.4a. The source of these high biases

is aliasing, which, because we convert each 10 second spectrum to wavenumber space with a different

advection velocity, gets spread out across the entire spectrum. We do correct for aliasing in Equation

3.7, but we only limit the aliasing bias to less than 25%. We do not limit the bias further because our

tolerance test in Table 3.1 for the Nyquist Threshold Factor shows that using a more strict cutoff would

lead to more noise. We also find that the strict cutoff would lead to 128 fewer final dissipation values.

So, we instead note that a majority of these biases are within the 15.2% error and are accounted for in

our data analysis except for particularly high dissipation values with high advection speeds. We also

observe that while the bias high is consistent for very high dissipation values (O10−3 m2/s3), such high

dissipation values are rarely observed in our data.

There is also a low bias at low dissipation values. Because of our shallow water, at particularly
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low dissipation values, the idealized inertial sub-range practically does not exist. As a result, our fitting

algorithm for the idealized spectrum is fitting to the roll off portions of the spectrum when our dissipation

values are low, which biases these low dissipation values lower. This bias is generally smaller than the

bias high at high dissipation, so further corrections are not required. In addition, these low biases occur

for particularly low dissipation values (on the order of 10−8 m2/s3), which are also rarely observed in our

data.

3.7.2 Noise Based Errors

Because of the ideal spectrum used, our semi-idealized model fails to capture two important

sources of error. First, non-turbulent physical processes and errors in our despiking methods can introduce

increased noise into the spectrum over the ideal χ2 distribution. Second, white noise from the instrument

can bias the entire spectrum high (e.g., Voulgaris and Trowbridge, 1998).

To account for the former, our KDE dissipation fit approach provides a built in estimate of the

variation introduced by spectrum noise. We take the half-width of the middle 95% of the final dissipation

distribution used for estimating the KDE as an initial estimate of the uncertainty. This is effectively an

estimate of the statistical uncertainty on our measurement. The average statistical uncertainty for our final

dissipation estimates is around 7.8%, which is comparable the 15.2% methodological uncertainty, suggesting

that these error estimates should be combined. However, these two uncertainties are not independent,

because the semi-idealized model is already using the KDE dissipation fit approach. Calculating the

corresponding statistical uncertainty of the semi-idealized model, we find an average contribution of

4.5% to the calculation of the methodological uncertainty, which is significant enough to make these

uncertainty calculations dependent. Therefore, we record these two uncertainties separately and note that

the summation in quadrature of the two as if they were independent provides an upper bound on the error

while the maximum of the statistical or methodological uncertainty provides a lower bound on the error.

For the bias introduced by white noise, we first recall that we are using the vertical velocity

component, which is the component with the lowest noise contribution for ADV’s (e.g., Voulgaris and

Trowbridge, 1998). While we cannot identify an accurate noise level for many our bursts, about 20% of

our bursts from all 3 ADVs do exhibit a spectrum flattening, equivalent to spectrum noise of typically

10−9, and occasionally 10−8 m2s−3. Subtracting this noise level from our spectra and re-calculating

dissipation values, we note that noticeable effects only occur for dissipation values close to the noise level

and become negligible for dissipation values greater than 1.5 orders of magnitude larger than the noise

value (dissipations around 10−7 m2s−3). For the lower dissipation values, the bias can be on the same
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order of magnitude or larger than the upper bound of our error range, which is on average 18.7% for all of

our data.

Because the white noise might bias our spectrum high while the semi-idealized model indicates a

bias low at the same dissipation values, it is impossible to truly quantify the net bias affects on our low

dissipation values. Ultimately the error on our low dissipation values (<= O10−7 m2/s3) may be greater

than the uncertainty we use. Therefore, we determine that care must be taken interpreting dissipation

values below 10−7 m2/s3 in our particular dataset.

In summary, the total errors due to methodology and noise place an absolute lower bound on

the error of 15.2% and an average upper bound on the error of 18.7%. Because the statistical error is

sometimes greater than the the systematic error, the lower bound for any given dissipation measurement is

the maximum of systematic and statistical error, which on average for our dataset is 17.5%. We also find

an occasional burst with significant statistical error that slightly increases our average errors. Thus the

average error could be reduced if a maximum statistical error limit were imposed. Finally, particularly high

dissipation values (>= O10−3 m2/s3) can be biased high by up to 25% due to aliasing and particularly

low dissipation values (<= O10−7 m2/s3) can have larger errors than calculated here due to a mixture of

white noise and the effects of fitting to the roll off of the inertial sub-range.

3.7.3 Sensitivity Analysis

In addition to the sources of errors mentioned above, our methods also introduce several changeable

variables whose impact on the final results need to be understood. For each of these variables, we test

them by selecting a high and low value with which to redo our analysis to understand how our final results

on all 3 ADVs change. A summary of these changes can be seen in Table 3.1.

For the expanding cutoff despiking algorithm (section 3.4.2), we use 3 predetermined constants.

First, we choose to filter out the low-pass signal with a cutoff frequency of 1/20 Hz. Second, we

incrementally expand the phase space cutoffs by 1% of the universal threshold. Third, we choose the

stopping point of the expansion where the density of points between sequential cutoffs decreases by more

than 95% of the previous value.

For our segmented spectrum calculation algorithm (section 3.5.4), we use 8 predetermined

constants. For separating turbulent from advection velocities, we use a frequency cutoff of 1/5 Hz and

segment the data into 10 second long segments to avoid wave contamination. When eliminating segments,

we require the mean current to be larger than 5 times the turbulent standard deviation and the advection

standard deviation to be less than 1.025 times the mean current. We further require that less than 1% of
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the points used for calculating a spectrum be replaced spikes. We then eliminate the 2 lowest wavenumbers

and any wavenumbers where we expect the spectral values to be less than 4 times the spectral value at

the Nyquist frequency assuming a -5/3 slope. Finally we bin average with bin sizes of at least 50 points.

For the KDE based inertial subrange fitting (section 3.6), we further introduce 6 predetermined

constants. For determining the bounds on the inertial sub-range we multiply the generation length-scale

by a factor of 1/2. When identifying possible spectrum subsections to fit an inertial sub-range to, we

require the subsection to contain at least 10 data points and have wavenumbers that span at least a factor

of 2.5 (a quarter of a decade). For determining valid fits, we require -5/3 to be within the 95% confidence

interval of the slope and that the maximum peak prominence of the data in the fit be smaller than 0.8.

When determining the final dissipation value, we use Scott’s Rule with no alterations to determine the

bandwith for calculating the KDE (Scott, 2015).

Reviewing the results in Table 3.1 shows that the dissipation is not very sensitive to a majority of

the variables when compared to the 15.2% uncertainties we have already identified. One notable exception

is the expansion step size factor in the despiking algorithm. For this particular variable, we tested smaller

incremental changes than shown in Table 3.1 and found that there is a roughly consistent linear relationship

between the change in expansion step size factor and the average dissipation change. This consistent

and relatively strong relationship between expansion step size and dissipation bias indicates that careful

consideration must be given to initial despiking to properly evaluate final dissipation uncertainty. We

chose our particular step size by closely examining plots similar to Figure 3.1(a-d) for many of our bursts,

which does not guarantee the selection is appropriate for other datasets. Such sensitivity also points to an

area for potential future methodological improvements, which we elaborate on in the discussion.

A few other variables introduce large average absolute changes. Altering segment size when

calculating spectra seems to generally increase uncertainty in dissipation value. This reflects the fact

that too short of a segment reduces the resolution of the inertial sub-range while too long of a segment

introduces stronger IG frequency bore driven bias. Similarly, reducing the bin size during the spectrum

calculation introduces large dissipation changes, likely because of the presence of stronger noise in the

final spectrum values due to lower degrees of freedom. Finally, reducing the minimum range between the

minimum and maximum wavenumbers of the spectrum subsections when fitting the inertial sub-range

introduces changes due to the fitting algorithm becoming much more sensitive to the high frequency

portion of the spectrum, which contains a large density of data points.

Two other variables with substantial sensitivities that might be of interest to readers are the

turbulence variance cutoff and number of unoriginal points allowed. Both of these cutoffs were chosen to
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match cutoffs used in other methods. The turbulence variance cutoff is chosen to match that used by

George et al. (1994), and shows sensitivity because relaxing this cutoff increases the number of segments

with large variance included in calculating the spectrum. This increase in dissipation also likely includes

segments where the frozen turbulence hypothesis is invalid, which is why we keep the George et al. (1994)

cutoff. The number of unoriginal points allowed matches the fraction determined by Feddersen (2010)

as the point past which the specific interpolation method used begins to matter. This sensitivity then

tells us that our particular interpolation method would start to bias our dissipation high if we had more

unoriginal points included in the spectrum calculation.

3.8 Verifying Dissipation Measurements

While the dissipation calculation methods presented give accurate turbulent dissipation measure-

ments, they do not guarantee that the dissipation is due to bottom generated turbulence from the IG

oscillations and tidal currents that we aim to evaluate. In this section, we check to ensure that there are

no wake effects of the instrument frame artificially increasing the turbulence. To do so, we examine the

general behavior of the dissipation measurements resulting from using all 3 methods presented in this

chapter together.

Figure 3.5a shows the dissipations measurements for the lower and upper instruments at Location

Figure 3.5. Final results of despiking, spectrum calculation, and dissipation fitting algorithms combined.
(a) shows the dissipation values from each of the two co-located instruments that are separated vertically
by 20cm. (b) shows the despiked, unfiltered, along channel velocity from the lower ADV.
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5 for the duration of the ADV deployments. Figure 3.5b shows the despiked along channel velocity signal

from the lower instrument at Location 5. As can be seen, the dissipation values are consistent between

the two instruments, which are vertically separated by 20cm. These values display expected high values

during strong tidal flows around February 7th and later. They even show elevated levels in the presence

of large IG wave oscillations, even with weak tidal currents as on February 3rd. We also see that the

methods used are unable to produce turbulent dissipation measurements when flows are weak, due to a

low signal to noise ratio.

To ensure that these turbulent dissipation measurements are due to tidal currents and IG oscillation

generated turbulence, we calculate an estimate of the energy input into the water column from the IG

oscillations by calculating an energy flux convergence. Following Sheremet et al. (2002), we calculate the

wave energy flux away from ocean, F+, and towards ocean, F−, as

F± =
√
gh

∫ 2∗fp

fp/2

1

2

[
1

2
ρgSf (η, η) +

1

2
ρhSf (u, u)± ρ

√
ghSf (η, u)

]
df, (3.22)

where g = 9.81 m s−1 is the gravitational acceleration constant and Sf (a, b) is the frequency co-spectrum

between a and b evaluated at frequency f . Written this way, the first term in the brackets represents the

potential energy and the second term represents the kinetic energy. The third term in the brackets uses

the cospectrum between velocity and pressure to differentiate waves propagating towards and away from

the ocean.

To estimate the energy input into the water column by the waves, we can use F i
+ − F i

− as the

amount of incoming energy at location i that is not reflected and therefore dissipated upstream of location

i. Then, the average wave energy dissipated between two locations is

ϵi,jest =
(F i

+ − F i
−)− (F j

+ − F j
−)

ρh∆xi,j
, (3.23)

where ∆xi,j represents the distance in meters between locations i and j. In Figure 3.6, the x axis shows

the ratio between our observed turbulent dissipation measurements during the flood tide and the wave

dissipation calculated between locations 5 and 6, ϵ5,6, from Equation 3.23. This ratio is plotted against

(|u| − |σu|)/(|u|+ |σu|), which represents the relative dominance of the mean current and wave orbital

velocities represented by the standard deviation of the velocity, σu, on they y axis. We could not use ϵ4,5est

for this comparison because it includes all of the energy dissipated in the secondary channel that splits

between locations 4 and 5. Similarly, we cannot compare ϵ6,7 to location 7 because most of the energy
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Figure 3.6. The ratio of observed turbulent dissipation divided by wave dissipation scattered against the
relative dominance of waves to the mean current. Wave dissipation is the depth averaged wave energy
flux convergence calculated according to Equation 3.23 between locations 5 and 6. The horizontal black
line represents when waves and tidal currents are equally sized while the vertical line represents when
observed dissipation and wave dissipation are equal. Measurements contain values from both the lower
ADV (circles) and upper ADV (stars) at location 5 during flood tide.

loss between locations 6 and 7 happens at the corner in the vicinity of location 6.

Figure 3.6 gives us confidence that our dissipation measurements are accurately capturing the

dissipation generated by the waves and tides off the rough bottom. This is because a majority of points

lie in the upper right and lower left quadrants. The upper right shows points during tidally dominated

time periods (above the horizontal line) where the observed turbulent dissipation is consistently higher

than the wave dissipation (to the right of the vertical line). The lower left shows wave dominated points

(below the horizontal line) where the observed turbulent dissipation is lower than the wave dissipation (to

the left of the vertical line).

While we might expect points in the lower left to lie closer to the vertical line, the wave dissipation

that does not contribute to turbulent dissipation at location 5 likely indicates that more energy dissipates

near the turn at location 6 than near location 5, that some wave energy goes into sediment transport
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instead of turbulent dissipation, or both. The points substantially to the right of the vertical line in

the lower right quadrant raise questions about where the excess turbulent dissipation comes from if not

the mean current. After examining the time periods of these specific points, we find that they largely

correspond to the time periods of the eddy explained in Section 2.2. During these time periods, there is

another clear source of turbulence. Overall, Figures 3.5 and 3.6 give us confidence that the dissipation

measurements obtained accurately reflect the dynamics in LPL and are not a result of wake effects from

the instrument frames.

3.9 Discussion

In this section, we highlight a few key results that we believe should be considered in future work

measuring turbulence using ADV data, including applicability of our methods to other types of datasets

and important directions for future work.

For our despiking algorithm, we adapted the Islam and Zhu (2013) expanding cutoff phase space

method to reduce the number of tune-able parameters while still preventing the elimination of real data

as spikes during time periods of intermittent variance. While our final algorithm is simplified relative to

Islam and Zhu (2013), our tolerance tests show significant sensitivity to one parameter. Islam and Zhu

(2013) also show significant sensitivity where the mean velocity changes by over 15% with their bandwidth

tests. This is not equivalent to our sensitivity tests on the final dissipation value. For a more direct

comparison, we find that our mean velocities change by less than 1% for all of our despiking sensitivity

tests, albeit over a smaller parameter change. With this in mind, our despiking algorithm is a successful

simplification of the Islam and Zhu (2013) method that results in a relatively robust algorithm for use in

complex environmental conditions.

While our mean velocities are relatively stable, the sensitivity of our final dissipation values

highlights the inherent subjectivity of despiking ADV data and how that subjectivity can introduce hidden

biases in turbulence calculations. The subjectivity can be seen more clearly when looking at Figure

3.1(f), where our expanded cutoffs appear to eliminate some valid data for this particular data burst.

So, while we find the presented algorithm to be the most reliable in the presence of large IG frequency

bores, or any other process that leads to unpredictably intermittent velocity variance, we recommend

extra caution when determining the uncertainties of turbulence calculations when using any despiking

algorithm. Further, we look forward to future improvements in ADV despiking by other researchers. We

believe that the expanding cutoff approach has inherent limitations and that another promising approach

would be an adaptive algorithm that can identify varying length bursts of data with consistent variance
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over which to apply despiking rather than sticking with a predefined burst length.

The segmented spectrum calculation approach here is very specific to the presence of low frequency

velocity oscillations. However, the result that our non-linear velocity oscillations can change the shape

of a frequency spectrum, even at high frequencies, suggests that careful consideration should be given

to the calculation of the spectrum before converting to wavenumber space in situations with non-linear

processes. Therefore, we recommend that future surf-zone turbulence measurements, or measurements in

the presence of other non-linear processes, carefully examine the assumptions of the spectrum calculation

methods used and consider applying our segmented spectrum calculation in the case of non-linear and

non-stationary velocity oscillations.

Our method for fitting an inertial sub-range to a wavenumber spectrum was not specific to the

presence of IG frequency bores. As a result it can apply to any situation where dissipation estimates

from spectra are performed, and is likely the most widely applicable result of this paper. While the χ2

adjusted, weighted least squares approach helps better account for non-Gaussian errors, we believe the

more important improvement is the use of all possible fits to collectively determine the final dissipation

value through a KDE estimation. This avoids any reliance on a single goodness of fit measurement, which

could be more easily affected by random variations not captured by standard error analysis.

We also want to briefly mention that the presence of horizontal length scales in the inertial sub-

range that are longer that the water depth theoretically implies a level of anisotropy. To our knowledge,

any field deployment observing turbulent dissipation generated by bottom boundary layers in shallow

water would find similar levels of anisotropy. However, we are not aware of any existing work to understand

the impacts that this has on inertial sub-range derived dissipation values. Therefore, while we believe

our measurements are accurate and comparable to past methods for measuring turbulent dissipation, we

also believe that future work examining the impacts of anisotropic length scales on the inertial sub-range

would be valuable.

When we put all 3 methods together, we successfully produce representative dissipation values

that are consistent between co-located instruments that are vertically separated by 20cm, lower and upper,

and can be seen in Figure 3.5. These values display expected high values during strong tidal flows, and

even show elevated levels in the presence of large IG wave oscillations. The typically 15.2% uncertainty

gives us confidence in our results. We note the caveat that dissipation levels around 10−7m2/s3 and below

possibly have higher errors, however, these make up a relatively small fraction of our data. Specifically,

1.4% of the dissipation values from the 2 co-located ADVs shown in Figure 3.5 and 15.1% of all the

dissipation values when including the 3rd ADV. The percentage increases when we include the third ADV
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because it is located further upstream in deeper water, where the turbulence is generally weaker.

Finally, our goal for this work was to measure turbulent dissipation in the presence of large IG

frequency bores. However, by necessity, our calculations were performed in 30 minute bursts, resulting in

representative dissipation values that are the average of instantaneous dissipation values raised to the

two thirds power, then raised to the three halves power as in
(∑N ϵ2/3

N

)3/2
. When considering how the

two thirds power affects an average, the representative dissipation will consistently slightly underestimate

the average dissipation. Therefore, it is important to note that one of our hypotheses, and a focus of

future work, is that the IG frequency bores are increasing turbulence in bursts as the bore passes the

measurement location. If this is true, then we are measuring a representative dissipation that is likely a

lower bound on the turbulent energy produced by the IG bores.

3.10 Conclusion

Using data from a deployment in Los Peñasquitos Lagoon in February, 2020, we develop several

new algorithms to calculate reliable turbulent dissipation values in the presence of large IG frequency

bores. We implement an expanded phase space cutoff to remove spikes from non-stationary data. Then

we use a segmented spectrum approach to account for non-linear bore biases in producing wavenumber

spectra from a stationary instrument. Finally, we use a Gaussian KDE approach for fitting an inertial

spectrum to avoid unnecessary errors arising from selecting a single portion of the spectrum to fit to for

calculating dissipation values. The final 30 minute representative dissipation values for two vertically

separated, co-located ADVs, using these methods, can be seen in Figure 3.5. The code and data presented

in this paper have also been published to the UC San Diego Library Digital Collections (Wheeler et al.,

2021) and to GitHub.

The despiking and spectral estimation methods introduced here can be applied in other situations

where nonlinear oscillations and non-stationary data limit the application of more standard approaches.

The KDE dissipation calculation approach can be applied to any dataset where the inertial sub-range

must be located and fit to and provides a robust methodology to finding an optimal fit. The error analysis

presented provides a rigorous approach to assessing dissipation calculations and highlights the need for

further careful consideration of despiking when measuring turbulent dissipation with ADVs. Finally,

successful observations of representative dissipation values under large IG frequency bores opens the

door for future studies to understand turbulent processes and the potential importance of these bores in

nearshore and estuarine systems.
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Chapter 4

Infragravity Frequency Wave Driven Bot-
tom Boundary Layer Turbulence in Shallow
Estuaries

4.1 Abstract

Infragravity (IG) waves (periods ∼ 25 s to 250 s) are known to dominate wave energy inside many

shallow, bar built estuaries. However, beyond their importance for sediment buildup at the sill, little

is known about the impact of IG waves on these shallow estuaries. Here, we use turbulent dissipation

measurements from Los Peñasquitos Lagoon to determine how and when IG waves increase turbulence

due to bottom friction. IG waves fall in an intermediate frequency (IF) range between low frequency (LF)

flows that can be treated as quasi-steady (e.g. tidal flow) and high frequency (HF) waves (sea and swell

waves). Turbulence models developed for the LF and HF time scales invoke assumptions not strictly valid

for IG waves. We develop a new approach for predicting turbulent dissipation associated with IG waves

that combines a LF regime at the bottom of the water column and a HF regime above the wave boundary

layer. Using a numerical model and our observations from Los Peñasquitos Lagoon, we find that the

new approach allows for calculation of average turbulent dissipation rates throughout the entire water

column and performs better than existing methods when calculating turbulent dissipation within the wave

boundary layer. At our study site, the observations indicate that IG waves cause a significant increase

in turbulent dissipation when the mean current amplitude is less than 3/2 of standard deviation of the

current (over 30 min time spans). These conditions typically occur during neap flood tides or at the very

beginning and end of spring flood tides and occurs more frequently with larger waves. In addition, we

find that the height of the wave boundary layer can be estimated from the instantaneous bottom stress in

a way consistent with existing scaling approaches. Finally, we show that the IG wave induced increase in

turbulence is likely associated with sediment transport inside the estuary.
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4.2 Plain Language Summary

When an estuary meets the ocean inside the surfzone, normal ocean waves break and do not

enter the estuary. Instead, long waves that do not break as easily in shallow water enter the estuary. In

this work we look at how these long waves increase the overall energy and random water movements

within a specific estuary in Southern California, Los Peñasquitos Lagoon. Using observational data and a

numerical model, we find that because these waves are long, they interact differently and more strongly

with the bottom than shorter waves. Using a new formulation we develop to account for this impact,

we can then determine when long waves significantly increase turbulence in the estuary and have the

potential to affect other dynamics such as sediment movement.

4.3 Introduction

This chapter focuses on how IG waves affect bottom boundary layer generated turbulence in

shallow estuaries. Turbulence is the primary mechanism through which IG waves can increase mixing.

Turbulence parameters can also be directly related to the bottom stress, which plays an important role in

sediment suspension and transport (Winterwerp and Van Kesteren, 2004). Therefore, by understanding

how IG waves interact with tides and other processes to increase turbulence, we can determine when IG

waves are likely to be dynamically important in shallow estuaries.

Specifically, we use the 30 min averaged point measurements of turbulent dissipation obtained

in Chapter 3 to examine how and when IG waves significantly increase turbulence levels in a shallow

estuary. The frequencies of the IG waves dominating these observations are low enough that the wave

boundary layer, where wave velocities are affected by the instantaneous bottom stress, frequently occupies

a large portion of the water column. As a result, our point measurements are sometimes inside the wave

boundary layer and sometimes above the wave boundary layer. Existing theories, which assume either

that velocities are in a quasi-steady state (e.g. tides) or that the wave boundary layer is very thin and

beneath any observations (e.g. sea and swell [SS] waves), fail to explain our observations when they are

inside the wave boundary layer. Therefore, we must develop a new approach for estimating turbulence

inside the wave boundary layer.

To better describe the changing conditions of our observations, we define 3 distinct frequency

regimes: Low Frequency (LF), High Frequency (HF), and Intermediate Frequency (IF). These regimes

are characterized based on the height of measurements (z) compared to the wave boundary layer decay

length scale (lw), not just the wave frequency. To emphasise this point, we refer to Figure 4.1. Figure 4.1
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Figure 4.1. Diagram of velocity profiles and the depth regions of the 3 frequency regimes under tidal
(left, low frequency), sea/swell (middle, high frequency), and infragravity (right, intermediate frequency)
waves. The lower and upper dashed grey lines represent the boundary layer length scale (lw) and boundary
layer height (zw) respectively.

shows the wave velocity profiles under different wave frequencies along with the depths of the 3 frequency

regimes, lw, and the wave boundary layer height (zw), which we determine is zw = 4lw in Section 4.5.

The wave boundary layer is defined as the region where wave velocities feel bottom friction

(Trowbridge and Lentz, 2018). In shallow water theory, linear waves have depth constant velocities. In

reality, this is only true above the wave boundary layer. Inside the wave boundary layer, wave velocities

decrease in amplitude to satisfy a no-slip bottom boundary condition. In addition, the wave boundary

layer introduces a phase shift in velocities that make calculating full velocity profiles difficult (Cowherd

et al., 2021).

Because of the significant impacts of the wave boundary layer, we define different prediction

methods for bottom generated turbulence under oscillating velocities based on where our point observations

are with respect to the wave boundary layer. In the LF regime (z/lw << 1), the wave boundary layer

is fully developed and substantially taller than the height of measurements. In this case, we can treat

velocities as quasi-steady with a logarithmic profile, as is typically done for tidal currents. In the HF

regime (z/lw >> 1), measurements are taken far above the wave boundary layer. In this case, we can

consider wave velocities as depth uniform, as is true for most measurements of swell waves. In the IF

regime (z/lw ∼ O(1)), measurements are within the wave boundary layer, such that they are not depth

uniform, but are not so far below the boundary layer height that velocities can be treated as quasi-steady.

We refer to these as frequency regimes, because for a given wave amplitude, the primary driver of

boundary layer height is wave frequency. If measurements are taken at a consistent height, lower frequency

waves will lead to a taller wave boundary layer, potentially shifting observations from the HF to the IF or

LF regime. That said, observations at different heights in the same wave conditions can be in different
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regimes, and increasing wave amplitude can increase the growth rate of the wave boundary layer, also

potentially changing the frequency regime.

In the sections that follow, we first review existing bottom boundary turbulence theories for the

LF regime and HF regime (Sections 4.4.1-4.4.2). We then propose an approach for handling observations

in the IF regime as is frequently the case for our observations in a shallow estuary under IG waves (Section

4.4.3). Next we check the assumptions and regions of validity of all 3 frequency approaches for predicting

turbulent dissipation through a simple numerical model(Section 4.5). Finally, we apply these theories to

observations collected from a field experiment in Los Peñasquitos Lagoon near San Diego, CA (Section

4.6) and explore the resulting implications on our understanding of wave boundary layers and the dynamic

importance of IG waves in shallow estuaries (4.7).

4.4 Bottom Generated Turbulence Theory

To theoretically estimate turbulent dissipation, ϵ, from limited observations, researchers often

simplify the turbulent kinetic energy balance to assume that turbulent dissipation equals turbulent

production, P. This results in an equation for dissipation in terms of Reynolds stress (ũ′iu
′
j) and velocity

shear,

ϵ = P = −ũ′iu′j
∂ũi
∂xj

, (4.1)

where ui is the ith component of the velocity with corresponding indices implying Einstein notation, (...′)

denotes a turbulent quantity, and (.̃..) represents a Reynolds averaging time interval that averages out

turbulent frequencies but keeps wave oscillations of a targeted frequency and lower frequencies. In later

sections, we will use (...) to indicate a Reynolds averaging time interval that averages out those targeted

frequencies. This simplification to a balance between turbulent dissipation and turbulent production

neglects buoyancy and wave production terms in the turbulent kinetic energy equation. In Section 4.6.4,

we explore the implications of ignoring buoyancy terms in an estuary that is stratified on the ebb tide.

Data from Egan et al. (2019) indicates that the wave-coherent term is not always negligible, and poses a

potential error moving forward.

For our estuary study site, We assume a one-dimensional open channel flow and use an eddy

viscosity model for the Reynolds stress (Nezu and Nakagawa, 1993). This results in

ϵ = νt

(
∂ũ

∂z

)2

, (4.2)

where νt is the turbulent eddy viscosity, z is the vertical distance from the bottom, and u is the horizontal
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velocity. Thus, Equation 4.2 requires a model for νt and an estimate of the wave-current horizontal

velocity profile.

In 1D boundary layer problems, a simple eddy viscosity model is the mixing length scale model,

νt = l2
∣∣∣∣∂ũ∂z

∣∣∣∣ , (4.3)

where l is the mixing length scale that represents the upper bound of turbulent eddy sizes, defined based

on the geometry of a problem (Pope, 2000). For open channel flows, the mixing length scale can be

derived from a steady state logarithmic profile as

l =
zκ
√
1− z

h

1 + πΠ z
h sin

(
πz
h

) , (4.4)

where κ ≈ 0.41 is the von Kármán constant, Π ≈ 0.2 is Cole’s wake parameter, and h is the total water

column depth (Coles, 1956; Nezu and Nakagawa, 1993). This length scale is linear with distance from the

bottom for small z, decays to 0 at the surface, and has a correction to account for free surface wake effects.

To determine the vertical profile of the horizontal velocity, we begin with the relevant terms of

the Reynolds-averaged momentum balance,

ρ
∂ũ

∂t
+
∂p̃

∂x
=
∂τ

∂z
, (4.5)

where

τ = ρν
∂ũ

∂z
− ρũ′w′ = ρ(ν + νt)

∂ũ

∂z
(4.6)

is the stress, ρ is density, p is pressure, ν is molecular viscosity, and w is vertical velocity. Any further

simplifications of the momentum balance are then dependent on what frequency regime we are in and are

explored in the following subsections.

4.4.1 Low Frequency Regime

If we assume that the frequency of any velocity oscillation is sufficiently small such that the wave

boundary layer is much taller than the observation height, as in the case of tidal currents, we are in the

LF regime. In this regime, the velocity is effectively steady and the time dependent acceleration term (∂ũ∂t )

in Equation 4.5 can be ignored. Substituing the eddy viscosity model, Equation 4.3, into the momentum

balance, Equation 4.5, and searching for a steady state solution gives a logarithmic profile with surface
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corrections (Nezu and Nakagawa, 1993),

ũ(z) =
u∗lf
κ

[
ln

(
z

zo

)
+ 2Π sin2

(π
2

z

h

)]
. (4.7)

In this equation, u∗ is the shear velocity which represents the bottom stress, τ0 = ρ|u∗|u∗, the subscript

lf denotes a shear velocity parameterization that only applies for the low frequency regime, and zo is

the bottom roughness length scale representing the height at which the velocity goes to 0. Combining

Equation 4.7 with Equations 4.2-4.4, we find the equation

ϵlf =
|u∗lf |u2∗lf

κz

(
1− z

h

) [
1 + πΠ

z

h
sin
(πz
h

)]
. (4.8)

This formulation for dissipation leaves one undetermined parameter, u∗lf , which is directly related to

the bottom stress boundary condition. The bottom stress is often parameterized with a quadratic drag

law (Nezu and Nakagawa, 1993; Valle-Levinson, 2010),

τ0lf = ρCD|ũ|ũ = ρ|u∗lf |u∗lf . (4.9)

ũ is typically measured one meter above the bottom or using a depth averaged velocity, and CD is a

constant drag coefficient that depends on bottom roughness and what measurement of ũ is used (Rosman

and Hench, 2011). For a point velocity measurement at a specified height, z1, Equations 4.7 and 4.9 can

be combined to define the drag coefficient as

CD =
κ2[

ln
(

z1
z0

)
+ 2Π sin2

(
π
2
z1
h

)]2 . (4.10)

Observations are typically in the low frequency regime when there are mean currents such as consistent

river flow or there is a quasi-steady tidal flow where other literature replaces the (.̃..) with (...) notation

to indicate the quasi-steady nature of the driving flows.

4.4.2 High Frequency Regime

In the case of SS waves on top of a quasi-steady background flow, the SS wave boundary layer

height is often on the order of centimeters. In such a case, observations are frequently far above the wave

boundary layer and in the HF regime. Outside of the LF regime, the time dependent acceleration term

(∂ũ∂t ) in Equation 4.5 cannot be neglected, making the velocity profile more complicated. However, in

61



the HF regime, we can largely avoid this problem by separating the depth dependence from the time

dependence and noting that

ũ(z, t) =
u∗hf
κ

[
ln

(
z

zo

)
+ 2Π sin2

(π
2

z

h

)]
+ f(t), (4.11)

is a solution to Equation 4.5. Equation 4.11 does not satisfy the instantaneous no slip bottom boundary

condition, instead relying on a more complicated profile inside the wave boundary layer to satisfy the

boundary condition. Here we introduce the subscript hf to indicate the high frequency theory and that

the shear velocity uses a different parameterization as explained below. The logarithmic profile term in

Equation 4.11 represents the profile of quasi-steady background currents that experience an increased

bottom stress boundary condition due to the HF velocity oscillations. The f(t) term represents the wave

orbital velocity, which is depth uniform far above the wave boundary layer in shallow water. Because

the time dependent portion of this velocity profile is depth uniform, the turbulent dissipation is entirely

due to shear in the modified quasi-steady background flow. Additionally, the stress gradient term in the

Reynolds-averaged momentum balance (Equation 4.5) must be time independent. Therefore, acceleration

term in the momentum balance must be balanced entirely by the time dependent portion of the pressure

gradient above the boundary layer as

−
(
∂p

∂x
− ∂p

∂x

)
= ρ

∂ũ∞
∂t

, (4.12)

where ũ∞ represents the Reynolds-averaged velocity outside of the influence of the wave boundary layer.

As long as measurements are above the wave boundary layer height, Equation 4.11 can be used

to derive ϵhf , which follows the same profile as in Equation 4.8 because f(t) has no depth dependence,

ϵhf =
|u∗hf |u2∗hf

κz

(
1− z

h

) [
1 + πΠ

z

h
sin
(πz
h

)]
. (4.13)

Note, the only difference between Equations 4.13 and 4.8 is in the bottom stress parameterization. The

modified drag law notes that the instantaneous bottom stress is changing with the wave velocities, but

that the average bottom stress can be calculated as

τ0hf = ρCD|ũ| ũ = ρ|u∗hf |u∗hf , (4.14)

and is commonly used for understanding the effect of waves on a bottom boundary layer (Feddersen et al.,
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2000; Lentz et al., 2018; Davis et al., 2021). Here (...) implies a time averaging interval that is much longer

than the wave period.

4.4.3 Intermediate Frequency Regime

The effects of intermediate frequency velocity oscillations, such as for IG waves, on bottom

generated turbulence have not been closely studied. In the case of IG waves, the wave boundary layer

height grows taller than for SS waves. If the boundary layer grows tall enough, it is possible that

observations will be in the IF regime where logarithmic velocity profiles are no longer accurate as shown

in Figure 4.1. To understand how we can address this, we first note that time averaging the momentum

balance, Equation 4.5, shows that the time average stress profile is linear in depth, just like the linear

stress profile that gave rise to a logarithmic velocity in the mean current case. We also note that time

averaging, then depth integrating from the bottom to the surface shows that

∂p

∂x
= −τ0

h
. (4.15)

However, in this situation, we are concerned with dissipation, which is the stress multiplied by

the vertical derivative of the Reynolds-averaged velocity. Therefore, we must find an alternate model

that accounts for increases of turbulent dissipation inside the wave boundary layer. The log layer derived

dissipation profile from Equation 4.8 relies on assumptions that the flow has reached a steady state and

the only important parameters are the mixing length scale and the bottom stress. If we consider the

flow as z → z0, the timescale for adjustment of the flow to the bottom scales with distance from the

bottom. Therefore, in the limit as measurement height goes to 0, the oscillating current can be treated as

quasi-steady and the LF dissipation profile, Equation 4.8, can be treated as the limit of the IF dissipation

profile towards the bottom of the water column. Similarly, for continuity of the velocity and turbulent

dissipation profiles, the IF regime must approach the HF limit, Equation 4.13, at the top of the wave

boundary layer and above.

Here we use these upper and lower limits to propose the following model for the average dissipation

profile within the wave boundary layer,

ϵ̄ =
1

κz

(
1− z

h

) [
1 + πΠ

z

h
sin
(
π
z

h

)] [
|u∗hf |3

(
1− e

−z
lw

)
+ |u∗|3e

−z
lw

]
, (4.16)

where we consider an exponential decay from the average of a time varying dissipation that depends on

the instantaneous bottom stress (i.e., the low frequency regime which sets the bottom boundary condition)
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to a time constant dissipation that depends on the average bottom stress (i.e., the high frequency regime

which represents the top of the wave boundary layer). We define decay length scale of the wave boundary

layer, lw, following the scaling from Grant and Madsen (1979), as

lw = κ
u∗abs
ω

, (4.17)

where

u∗abs =

√
|τ0|
ρ
, (4.18)

and τ0 is the instantaneous bottom stress. With Equation 4.16, we can now determine the average

turbulent dissipation throughout the water column if we know the time dependent bottom stress. In

Section 4.5, we use a numerical model to verify the accuracy of this dissipation profile.

In the context of field observations, Equation 4.16 presents a challenge because obtaining direct

time dependent bottom stress measurements is very difficult. In both the HF and LF regimes, we approach

this problem by using a bottom stress parameterization that allows us to use the velocity measured at

a known depth along with a fitted drag coefficient. This does not work for the IF regime, because the

instantaneous velocity has not fully adjusted to the instantaneous bottom stress. We therefore seek an

alternative method for determining the instantaneous bottom stress from velocity measurements higher in

the water column to enable a direct comparison between the LF, HF, and IF approaches.

To understand variations in the bottom stress, we integrate the Reynolds-averaged momentum

balance, Equation 4.5, from the bottom to the surface of the water column. Substituting the pressure

gradient in this integration with acceleration far above the boundary layer and average bottom stress as

shown in Equations 4.12 and 4.15, we find

τ0 = τ0hf + ρ

∫ h

z0

∂

∂t
(ũ∞ − ũ) dz. (4.19)

We use the subscript hf for the average bottom stress to indicate that we solve for average bottom

stress using the high frequency regime quadratic drag law, Equation 4.14. Equation 4.19 shows that the

instantaneous bottom stress depends on the time dependent component of the full velocity profile.

Here we turn to Grant and Madsen (1979) for analytical solutions of the time dependent component

of the wave boundary layer velocity profile. The Grant and Madsen (1979) (GM) solution assumes a

time constant eddy viscosity that is linear with depth. Cowherd et al. (2021) show that, while these

simplifications lead to errors, the GM profiles can be treated as a reasonable approximation. Furthermore,
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while using the GM profiles to calculate dissipation directly will introduce increased errors due to taking a

vertical derivative, these errors are reduced when calculating bottom stress because of the vertical integral

in Equation 4.19. The resulting GM analytical solution can be written as

ũ = ℜ
{
Aũ∞e

iωt

[
1− K0(z)

K0(z0)

]}
, (4.20)

with

Kn(z) = kern

(
2

√
z

lw

)
+ ikein

(
2

√
z

lw

)
, (4.21)

where kern and kein are the real and imaginary components of the nth order Kelvin function and Aũ∞ is

the amplitude of the velocity oscillations outside of the influence of bottom friction. We can calculate the

time dependent component of the instantaneous bottom stress by inserting the analytical GM velocity

profile, Equation 4.20, into the integral in Equation 4.19, while using Equation 4.20 to solve for Aũ∞

in terms of observations at a height z1. The time constant portion of the bottom stress can then be

calculated with the high frequency drag law in Equation 4.14 while using the relationship between the

drag coefficient and bottom roughness length scale in Equation 4.10. Combining the time constant and

time dependent components, we can then calculate the instantaneous bottom stress as

τ0 =
ρκ2|ũobs|ũobs[

ln
(

z1
z0

)
+ 2Π sin2

(
π
2
z1
h

)]2 +

√
lw
2
ρωAũobs

ℜ
{
eiωt(i− 1)

√
z0K1(z0)−

√
hK1(h)

K0(z0)

}
∣∣∣1− K0(z1)

K0(z0)

∣∣∣ . (4.22)

A more detailed derivation of Equation 4.22 can be found in Appendix D. We note here that the average

bottom stress parameterization used becomes inaccurate when z1 ≲ lw/10. Our observed velocities are

never this far into the wave boundary layer.

At this point, if we have measured a velocity oscillation amplitude and frequency at a known height,

z1, and know the bottom roughness length scale, z0, we can solve Equation 4.22 for the instantaneous

bottom stress and then use the IF dissipation profile, Equation 4.16, to solve for the average turbulent

dissipation profile.

4.5 Verifying Theory with a Numerical Model

To verify the assumptions made in deriving the dissipation profile and bottom stress in the IF

regime, we combine Equations 4.3-4.6 to obtain a momentum balance using the mixing length scale eddy
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viscosity model that we can numerically solve,

∂ũ

∂t
=

∂

∂z

[(
ν +

κ2z2
(
1− z

h

)[
1 + πΠ z

h sin
(
πz
h

)]2 ∣∣∣∣∂ũ∂z
∣∣∣∣
)
∂ũ
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]
− 1

ρ

∂p

∂x
. (4.23)

To solve this equation we use Matlab’s PDEPE function with 200 grid points spaced as

zn = h

(√
z0
h

+ n
1−

√
z0
h

200

)2

, (4.24)

to give higher resolution near the bottom. We set z0 = 0.01, to reflect the typical order of magnitude for

z0 in estuaries (Bo and Ralston, 2020), and use a no stress surface boundary condition,

∂

∂z

[(
ν +

κ2z2
(
1− z

h

)[
1 + πΠ z

h sin
(
πz
h

)]2 ∣∣∣∣∂ũ∂z
∣∣∣∣
)
∂ũ

∂z

]
z=h

= 0. (4.25)

For the time constant portion of the pressure gradient, we first pick a desired mean velocity and oscillating

velocity amplitude for a given model run. We then solve Equation 4.14 to calculate the average bottom stress

for the chosen velocities and use Equation 4.15 to relate the average bottom stress to the average pressure

gradient. Rather than use a time dependent pressure gradient, we perform a variable transformation such

that the pressure gradient is time-constant and the bottom boundary condition is oscillating,

u(z0) = −Aũ∞ sin(ωt). (4.26)

We find that doing this results in faster model convergence while producing the same results as using a

time dependent pressure gradient.

Using the default time-stepper, we start with a logarithmic profile initial condition and numerically

integrate until the average velocity profile over a single oscillation and the instantaneous profile at a

specific wave phase change by less than 0.1% in 10 oscillations. This way we ensure that any transients

have decayed and we have reached a steady oscillating solution.

To check the validity of our assumptions in the intermediate frequency theory, we first check the

effectiveness of Equation 4.16 at reproducing the mean dissipation profile. Figure 4.2a shows average

dissipation profile calculated directly from the numerical model using Equations 4.2-4.4 along with the

corresponding IF regime profile calculated using Equation 4.16 and the bottom stress calculated directly

from the numerical model. We examine two different wave frequencies, with both cases using a wave

current amplitude of 0.4 m/s and mean current of 0.1 m/s, chosen as characteristic of our field data. As
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Figure 4.2. (a) average turbulent dissipation profiles calculated from the numerical model using Equations
4.2-4.4 (black) and calculated using the IF profile in Equation 4.16 (red) for a 60 second period wave
(solid) and a 10 second period wave (dotted). The HF profile in Equation 4.13 (purple, dashed) provides
reference for when the wave boundary layer increases dissipation beyond the background quasi-steady
flow. (b) instantaneous velocity profiles from the numerical model (black) and calculated using the Grant
and Madsen (1979) solution in Equation 4.20 (grey) for different phases of a 60 second period wave. All
cases shown have a wave current amplitude of 0.4 m/s and a mean current of 0.1 m/s.

can be seen, the upper and lower limits of Equation 4.16 are very accurate, while the exponential decay

between these two limits captures a majority of the profile changes introduced by differences in wave

conditions. Figure 4.2a also shows the HF regime profile using Equation 4.13, which provides a reference

for when the exponential decay in the IF profile increases the turbulent dissipation in the wave boundary

layer. This emphasizes how the lower frequency waves lead to a taller wave boundary layer.

We next check the effectiveness of using the GM solution for parameterizing the bottom stress.

Figure 4.2b shows the velocity profile produced by the numerical model at various phases of a 60 second

period wave with 0.4 m/s amplitude in a 0.1 m/s mean current along with the corresponding GM profiles.

The GM solution generally recreates the phase leading effect within the wave boundary layer, but we find

similar errors in the GM profiles as found by Cowherd et al. (2021). Therefore, we must further examine

the errors introduced by using the GM derived bottom stress, Equation 4.22, for calculating the bottom

limit in Equation 4.16.

Figure 4.3 shows the error of the dissipation predictions for each of the three regimes compared

to the numerical model calculated dissipation. Figure 4.3a scatters this error with z/lw, the height of the

observed velocity and dissipation as a fraction of the wave boundary layer decay length scale defined in

Equations 4.17 and 4.18. Figure 4.3b scatters the error with the ratio of the wave velocity amplitude (Aũ)
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Figure 4.3. Error of turbulent dissipation predictions compared to dissipation calculated from numerical
model (NM) velocity profile, plotted against (a) distance from the bottom normalized by the boundary
layer decay length scale and (b) the relative size of the wave velocity amplitude (Aũ) and mean current
amplitude (u). The red shows the intermediate frequency (IF) theory when calculated using the bottom
stress taken directly from the the numerical solution (filled) and when using the GM derived bottom stress
from a point velocity measurement at the height of the dissipation calculation (empty). The purple and
orange show the high frequency (HF) and low frequency (LF) prediction errors respectively. The vertical
line in (a) shows z = 4 ∗ lw, where the HF predictions start to perform as well as the IF predictions.

to the mean current amplitude. In both plots, different points represent a different combination of wave

frequency, wave velocity amplitude, mean current, and measurement height.

Figure 4.3a shows how the HF predictions are very accurate above the wave boundary layer, as

expected, but heavily underpredict turbulence levels within the wave boundary layer. Importantly, the

vertical line shows that the HF predictions become accurate at around z = 4 ∗ lw. This allows us to define

a more specific wave boundary layer height zw = 4 ∗ lw for determining what regime observations are in.

Figure 4.3a also shows that the LF predictions overestimate turbulence outside of the wave

boundary layer, as expected. Within the boundary layer, the LF predictions perform better than the HF

predictions, but still underestimate the average dissipation. This reflects the increases introduced by the

acceleration term. It is not until z ≲ lw/10 that we see the LF predictions improve in accuracy, reflecting

that the LF regime is the limit that the average dissipation profile approaches as z/lw → 0.

For the IF predictions, we see that using the GM derived bottom stress increases the error, but

that both bottom stresses lead to the IF predictions performing better than the LF predictions within the

wave boundary layer and just as well as the HF predictions outside of the wave boundary layer. To better

understand what is driving the increased error when using the GM derived bottom stress, we turn to
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Figure 4.3b.

In Figure 4.3b, we see that all of the predictions converge to the numerically modeled value when

there are no oscillations, showing that all methods are accurate if the waves are much smaller than the

mean current. As the size of the waves increase relative to the mean current however, we see that both the

HF and LF predictions become increasingly inaccurate. The HF predictions increasingly underestimate

because bigger waves will only result in a larger wave boundary layer. The LF error increases in magnitude,

but the sign of the error depends on the height of the measurement.

The IF predictions using the GM derived stress on the other hand underestimate for waves similar

to the size of the mean current, then overestimate for waves much bigger than the mean current. This

likely reflects the ways in which Equation 4.20 is wrong, and bears further investigation. However, because

these biases are all within half an order of magnitude, which is smaller than the scatter of our observations,

we do not address it here. With the GM derived bottom stress only introducing a small error to the

IF theory, we next turn to observations of turbulent dissipation in shallow water under IG frequency

waves to evaluate the IF approach and determine the relative impact of IG waves on turbulence in shallow

estuaries.

4.6 Comparing Turbulence Theories With Observational Data

To evaluate the different bottom boundary layer turbulence approaches observationally, we use

the turbulent dissipation observations from Los Peñasquitos Lagoon (LPL) calculated in Chapter 3 for

the Accoustic Doppler Velocimeters (ADVs) at Locations 5 and 7 in Figure 2.1. These dissipation values

are average values calculated over 30-min bursts and show the turbulence generated by tidal currents and

IG waves in LPL. The observations have an average systematic uncertainty of ±15.2% and an average

statistical uncertainty of ±7.8%, giving enough accuracy to evaluate the effectiveness of each bottom

boundary layer theory described above.

We start by calculating predicted turbulent dissipation based on the velocity measurements at

locations 5 and 7. We use the same 30-min bursts of data used to calculate observed turbulent dissipation

to calculate 30-min averaged predicted turbulent dissipation. We can then fit a drag coefficient or bottom

roughness to produce the best agreement between predicted and observed dissipation and evaluate the

effectiveness of that fit. Because the drag coefficients depend on the depth at which velocity is measured

(Rosman and Hench, 2011) and our dissipation profiles already contain the depth dependence of dissipation,

we use the velocity from the lower instrument for calculating the predicted dissipation for both the upper

(50cm above the bottom) and lower (30cm above the bottom) instruments at location 5. This allows us to
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directly compare results between the two co-located instruments.

4.6.1 Calculating Predicted Dissipation in the LF and HF Regimes

The LF and HF regimes use the same log layer derived dissipation profile with different bottom

stress parameterizations (Equations 4.8 and 4.13). The LF parameterization, Equation 4.9, uses the

Reynolds-averaged velocity to calculate a time varying bottom stress. For Reynolds averaging, we use two

different approaches. First, we calculate an average velocity over the full 30-min burst of data and use

that to calculate an average dissipation. This corresponds to the turbulence generated by tidal currents in

the absence of IG or SS waves. We call this the predicted mean current (MC) dissipation and can use it to

evaluate how much IG waves are increasing turbulence above what would otherwise be generated by tides.

In addition to using a 30-min Reynolds average, we also use a 1/5 Hz low pass filter to obtain

a Reynolds average velocity that separates turbulent motions from the IG oscillations that dominate

our measured velocities. Using this with the LF parameterization (Equation 4.9) gives a time varying

dissipation that we then average over the full 30 minute burst to get a 30 minute average dissipation

prediction that we call the LF dissipation. This represents the turbulent dissipation we might expect if

our observations are very far below the wave boundary layer height, z
lw
<< 1.

For the HF parameterization, Equation 4.14, we use the 1/5 Hz low pass Reynolds-averaged

velocity to calculate a bottom stress that we average over the full 30-min burst. This average bottom

stress then gives us an average dissipation, which we call the HF dissipation, that represents the turbulent

dissipation we might expect if our observations were above the wave boundary layer height, z
lw
> 4.

For both the LF and HF regime, the dissipation scales linearly with C
3/2
D . This allows us to

perform a linear fit, minimizing the squared error in log space. The solution to such a linear fit is

CD =

[
exp

(
log

[
ϵobs

ϵpred,CD=1

])]2/3
, (4.27)

where ϵpred,CD=1 is the predicted dissipation using the MC, LF, or HF approach and a drag coefficient of

1. For uncertainties on the fitted frag coefficient, we use twice the standard deviation of the logarithm

being averaged as a 95% confidence interval and propagate it through to obtain upper and lower CD limits.

This allows us to account for dynamics outside of our theory that might introduce uncertainties greater

than our observational uncertainties. We perform these fits during the flood tide to avoid stratification

that is common during the ebb tide (Harvey et al., 2023) and only for observed dissipation values above

10−7 m2 s−3 to avoid noise floor effects (see Chapter 3).
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4.6.2 Calculating Predicted Dissipation in the IF regime

The challenge in calculating a predicted IF dissipation lies in estimating the Grant and Madsen

(1979) based bottom stress, Equation 4.22. Because the GM solution is derived assuming a single frequency

sinusoidal wave, we must first calculate a representative velocity oscillation amplitude and frequency

for each burst. For frequency, we use a co-located pressure sensor to calculate a pressure spectrum and

use the frequency of the peak of the variance preserving pressure spectrum (the frequency at which the

pressure signal has the highest variance). For the velocity amplitude, we use the velocity corresponding to

a specified percentile that depends on the velocity measurement location and acts effectively as another

fitting parameter in addition to the bottom roughness length scale. E describes how we choose the most

effective velocity percentile.

With a specified frequency and velocity amplitude defined for each burst, we must then find the

bottom stress to satisfy Equation 4.22. Because the right hand side of Equation 4.22 depends on lw, which

in turn depends on the bottom stress, we use a non-linear root finding algorithm. Once an instantaneous

bottom stress is calculated, we can then use it with Equation 4.16 to calculate an IF predicted dissipation.

While the MC, LF, and HF dissipations have clear linear relationships with the fitting parameter,

the IF dissipation depends non-linearly on z0. Therefore, we use the Python SciPy package’s minimize

function to non-linearly fit a z0 that minimizes the total squared error of observed dissipations from

predicted IF dissipations. We note here that because z0 influences how τ0 affects lw, the bottom stress

root finding must be rerun for every iteration of the non-linear minimization. Again, we perform these fits

during the flood tide and only for observed dissipation values above 10−7 m2 s−3.

To calculate uncertainties on the fitted roughness length scales, z0, we use the standard deviation

of the error of the predicted dissipations from the observed dissipations as a measurement of the uncertainty

of the theory prediction. We propagate this error uncertainty to get an error on the minimized total

square error value. We then set twice this uncertainty as a 95% confidence interval and run a root finding

algorithm to determine for what upper and lower z0 bounds the total square error crosses that 95%

confidence interval.

4.6.3 Comparing Predicted with Observed Dissipation Values During
Flood Tide

Figure 4.4 scatters predicted dissipation on the x axis with observed dissipation on the y axis for

all bursts for each instrument and each prediction method. Negative values on the x axis represent ebb

tide periods while positive values represent flood tide periods. The black lines indicate a 1:1 line where
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predictions exactly match observations. The horizontal dark grey bar at the bottom marks low energy

observations that are heavily influenced by instrument noise and not included in the fits. The vertical

light grey bar in the middle indicates predictions of turbulence levels below instrument noise suggesting

the prediction is not accounting for the primary driver of turbulence.

Figure 4.4. Observed turbulent dissipation compared to predicted dissipation at all 3 vectors for the
(a) mean current (MC) predictions, (b) intermediate frequency (IF) predictions, (c) high frequency (HF)
predictions, and (d) low frequency (LF) predictions. The negative values on the x axis represent ebb tide
while the positive values represent flood tide. The black lines represent a perfect 1 to 1 correspondence.
The horizontal dark grey region represents observations below the 10−7 noise floor cutoff for points
used in the fit. The vertical light grey region represents predictions lower than the 10−7 noise floor but
observations above the noise floor. Statistics for the fits are shown in Table 4.1 and fit residual histograms
are shown in Figure 4.5.

Table 4.1 shows the results of the fits. We convert all drag coefficients from the MC, LF, and

HF fits to roughness length scales (z0), using Equation 4.10, to enable direct comparison between all

instruments and prediction methods. The r2 value, defined here as

r2 = 1−
∑

(log[ϵobs]− log[ϵpred])
2∑(

log[ϵobs]− log[ϵobs]
)2 , (4.28)

shows how much of the observation variance is explained by the predictions. This can be negative because

we are not performing a linear fit. We choose to use r2 rather than a χ2 test because our data scatter

is bigger than our observational uncertainty, suggesting that dynamics not captured by our theory are
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driving the variability in the errors to our fit. To ensure this variability is sufficiently normal, we also

perform a Kolmogorov-Smirnov test of the residuals. A high K-S test p-value indicates a high probability

that the residuals are taken from a normal distribution.

Table 4.1. Summary of Fit Statistics. P-values are from the Kolmogorov-Smirnov test of the residuals,
with a high p-value representing a high probability the residuals have a normal distribution.

Instrument Prediction Method z0 (m) z0 upper limit z0 lower limit r2 p-value

Mean Current 0.0446 0.0675 0.0264 -1.08 0.01
Low Frequency 0.0007 0.0009 0.0005 0.87 0.48
High Frequency 0.0053 0.0078 0.0034 0.61 0.004

Location 5
Lower

Intermediate Frequency 0.0020 0.0035 0.0011 0.83 0.71
Mean Current 0.0652 0.0942 0.0404 -0.69 0.35
Low Frequency 0.0028 0.0042 0.0018 0.79 0.996
High Frequency 0.0133 0.0205 0.0080 0.46 0.25

Location 5
Upper

Intermediate Frequency 0.0079 0.0157 0.0035 0.66 0.09
Mean Current 0.0095 0.0176 0.0047 -1.63 0.005
Low Frequency 0.0021 0.0033 0.0013 0.20 0.33
High Frequency 0.0038 0.0061 0.0022 -0.09 0.51

Location 7

Intermediate Frequency 0.0037 0.0159 0.0005 -0.08 0.42

Figure 4.5 shows histograms of the residuals for the HF, IF, and LF fits to the instruments at

location 5. By splitting these histograms into strong and weak wave conditions we can identify how well

the different prediction methods account for increases in turbulence due to the waves and identify the

reasons for some of the discrepancies in fitted z0 values seen in Table 4.1. We define the cutoff between

strong and weak wave conditions as when u/σu = 3/2. We choose this number based on when the LF and

MC predictions differ by a factor of 2 as described in Section 4.7.

The MC predictions in Figure 4.4a show significant scatter above the 1:1 line compared to all

other methods for both instruments at location 5. This suggests that IG waves in Los Peñasquitos Lagoon

can significantly increase turbulence above tidal current driven turbulence and are biasing the z0 fit high.

Table 4.1 shows the high biased z0 fit values along with low r2 and p-values, reinforcing this conclusion.

The consistency in Figure 4.4 and fitted z0 values across prediction methods for location 7 indicates

that the IG waves have decayed enough by location 7 that they do not contribute to turbulence at the

measurement height. We also note that all prediction methods show relatively low r2 values at location 7.

Such low values are likely due to the location having significantly less energy (both less wave and less

tidal energy), with dissipation values near the noise floor. The lower energy can be explained by the

measurements being further away from the bottom in deeper water, the along-channel decay of the waves

as shown in figure 2.3, and generally smaller tidal velocities. During one particularly strong flood tide,

the currents decayed from 0.7 m/s at location 5 to 0.2 m/s at location 7.
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Figure 4.5. Histograms of fit residuals for lower (left column) and upper (right column) instruments
at location 5 using the high frequency (HF, top row), intermediate frequency (IF, middle row), and low
frequency (LF, bottom row) prediction methods. Residuals to the left of 0 represent underpredictions
while residuals to the right represent overpredictions. The blue histogram represents all residuals and
is the combination of the yellow and red histograms which represent strong and weak wave conditions
respectively. The cutoff between strong and weak waves is when the current standard deviation is 2/3 of
the mean current for a given burst.

Focusing on the lower instrument at location 5 we note that the HF predictions have noticeable

scatter above the 1:1 line in Figure 4.4c. While less than the MC predictions, this still indicates

underpredictions of turbulent dissipation and a potential high bias in the z0 fit. Looking to Table 4.1,

the HF fit does have a slightly elevated z0 over the IF fit. Additionally, while the r2 value is strong,

the HF fit has a low p-value as a result of the outliers where the HF predictions are much lower than

observed dissipation. Examining Figure 4.5a, we see that these outliers are during periods of high wave

energy, suggesting that our observations are likely inside the wave boundary layer where we expect the

HF predictions to be underpredictions.

Comparing Figures 4.4b and 4.4d, we see that the IF and LF predictions both successfully reduce

the scatter during high wave energy time periods. However, comparing the fitted z0 values for the lower

instrument at Location 5 in Table 4.1 we see that the LF predictions use a much smaller z0 than the

IF predictions. To understand this, we refer to Figure 4.5e. By splitting the residuals from the fit into

large wave conditions and small wave conditions, we see that the LF predictions are overestimating the

impact of waves, leading to a smaller fitted z0, which then underpredicts turbulence during small wave
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conditions. This is an indicator that our observations are near the top of the wave boundary layer where

the LF predictions will overestimate the impact of the time dependent bottom stress.

Looking at the fits to the upper instrument at location 5 in Table 4.1 shows a more complicated

story. The MC and HF fits still result in underpredictions and a high z0, but the IF fit now shows

an elevated z0 and a low p-value. Meanwhile the LF fit now shows a very large r2 and p-value along

with a z0 that closely matches the IF fit to the lower instrument. Referring to Figure 4.5d, we see that

residuals to the IF fit are skewed by several points that are underpredicted. Examining these points

further we note that these are time periods of shallow water with very weak tidal currents where the upper

instrument measures a higher turbulent dissipation than the lower instrument. We believe this indicates

near-surface sources of turbulence that are not present at the lower instrument. This also explains how

the LF predictions, which should produce stronger overestimates for instruments further from the bottom,

appear to fit an accurate z0 for this instrument while the IF and HF predictions do not.

4.6.4 Understanding the Ebb Tide

In addition to our fit analysis of the flood tide data, Figure 4.4 clearly shows an ebb/flood

asymmetry. Specifically, all approaches consistently overpredict the observations, show dramatic differences

between instruments, and perform roughly the same as each other for those overpredicted points. We

attribute these discrepancies to a combination of stratification and wave blocking.

As described in Chapter 2, at low tides the estuary sill is generally above the offshore water level,

leading to a complete separation between the estuary and the ocean, blocking transmission of all waves.

In addition, Figure 2.3 shows that during ebb tide, wave-current interactions become important, reducing

HIG and increasing skIG until physical separation completely blocks the waves. The resulting lack of

waves is the reason that most of the points during the ebb tide for each instrument collapse onto a single

line, even for the mean current model. There are time periods at the very beginning and end of ebb tide

where waves are able to propagate into the estuary. This is shown in the scattered points near the 1 to 1

line, where we again see that the LF and IF predictions best collapse the data.

The fact that all approaches consistently overpredict the ebb tide dissipation values when using

the fitted values from the flood tide suggests a couple of potential causes. First, it is possible that

asymmetric bed forms can lead to a different drag coefficient between the flood and ebb tides (Fong et al.,

2009). However, the stronger effect is likely due to stratification. Observations from Harvey et al. (2023)

combined with CTD casts (using a SonTek CastAway CTD) taken during field work days since 2016 show

that the estuary at location 8 is more stratified during the ebb tide, with a pycnocline depth that varies
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from ∼ 10 cm below the surface near the beginning of ebb tide to ∼ 1 m below the surface at the end of

ebb tide. Furthermore, the CTD at location 5 shows significant freshening from a salinity of ∼ 33 during

the flood tide to as low as ∼ 25 at the end of ebb tide. This freshwater indicates a stratified water column

that can suppress the growth of turbulence away from the bottom. Increased stratification can also change

the vertical eddy viscosity profile making the assumptions in Section 4.4 invalid (Burchard and Hetland,

2010; Geyer and MacCready, 2014). This is most apparent in the fact that the upper instrument at

location 5 shows a much larger tidal asymmetry than the lower instrument at location 5. That difference

means our approaches failed to capture the vertical variation in dissipation, which is most likely due to a

stronger prevalence of stratification during the ebb tide.

4.7 Evaluating Wave Impacts on Turbulence

With an understanding of how the LF, IF, and HF prediction methods differ and why, we can

begin to evaluate when and how waves impact bottom generated turbulence for periods when we don’t have

direct turbulence observations. Our first order question is when do waves increase turbulent dissipation.

We can determine this by comparing the LF, IF, and HF predictions to the MC predictions that do not

account for waves. Figure 4.6a shows the ratios between these prediction methods, normalized by their

limits for high |u|/σu, plotted against the ratio of the mean current amplitude to the current standard

deviation for the instruments at location 5. We normalize the ratios because some of the fitted predictions

have biased z0 values that shift the ratio and we know that when σu << |u|, all prediction methods

converge given the correct z0 value.

From Figure 4.6a, we see that the LF and HF predictions can be taken as approximately the

upper and lower limit on the IF predictions. This is expected because the LF and HF regimes represent

the boundary conditions of the IF regime. The numerical model (Figure 4.3) shows that it is possible for

the IF prediction to be higher than the LF prediction when z/lw = O(10−1); however, we rarely encounter

this situation in our field site. To determine when waves might increase turbulence, we can then take

the LF prediction as the largest potential turbulence induced by waves without knowledge of frequency

regime. Therefore, we look for when the ratio between the LF predictions and MC predictions is above

some cutoff as an indicator of potential for significant wave contribution to bottom generated turbulence.

One cutoff possibility is to use the distribution of the observed dissipation values about the best

fit IF predicted dissipation, shown in Figure 4.5e. Using a 95% confidence interval, the lowest possible

observed dissipation value is about 1
6 of the predicted dissipation, suggesting we want a ratio cutoff of 6.

Another option is to use the lower z0 limit from Table 4.1. Using the z0 values from the IF fit to the lower
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Figure 4.6. (a) Normalized ratios of the low frequency (LF, orange), intermediate frequency (IF, red),
and high frequency (HF, purple) turbulent dissipation predictions to the mean current (MC) predictions
plotted against the ratio of the along channel mean current amplitude to the current standard deviation.
The solid black line indicates a ratio of 1 while the horizontal dashed line indicates a ratio of 2. The
vertical dotted line indicates where the low frequency predictions exceed the mean current predictions
by a factor of 2 at |u|/σu = 3/2. (b-e) The mean current, standard deviation, ratio of the mean current
amplitude to the current standard deviation, and ratio of the observation height to wave boundary layer
decay length scale respectively for the along-channel current at the lower instrument at location 5 plotted
over 8 days of the deployment. The dotted line in (d) shows the same as in (a) and the shading shows the
time periods where (d) drops below the dotted line. The dashed-dotted lines in (e) outline the IF regime
with the upper line showing when z/lw = 4 and the lower line showing when z/lw = 0.01.

instrument at location 5, we find that a ratio of 1.42 indicates when the low frequency model predicts

an average dissipation that is significantly greater than the mean current prediction. These cutoffs give

qualitatively similar results and the specific option depends on the use case of the final dissipation values.

Therefore, we use a middle cutoff value of 2 for determining significant ratios as shown by the dotted and

dashed horizontal line in Figure 4.6.

In Figure 4.6a, there is a strong functional relationship with |u|/σu for all 3 ratios plotted, with

some scatter to smaller values for the IF and HF based ratios. The low value outlying points for the

HF and IF based ratios highlight an important difference between the HF and LF regimes. Specifically,

the HF regime averages the bottom stress, a vector that oscillates between positive and negative values,

while the LF regime averages the dissipation, a scalar that is always positive. This means that when

the standard deviation of the velocity is high relative to the mean current amplitude, the magnitude of
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HF predictions and the IF predictions near the top of the wave boundary layer depend heavily on the

wave shape. In some cases with particularly big waves, a wave skewness that opposes the mean flow can

lead to a predicted dissipation that is less than the MC prediction. In our case, these outliers typically

correspond to when the HF predictions are underestimating the observed dissipation because we are not

measuring far above the wave boundary layer.

Using the functional scatter for the LF/MC ratio in Figure 4.6a, we can determine the wave

velocity ratios for which we expect the low frequency model based ratio to exceed the ratio defined above.

When using a cutoff of 6, 2, and 1.42, we find the u/σu cutoff is 9/10, 3/2, and 5/2 respectively. The

LF/MC cutoff 2 and u/σu cutoff 3/2 are shown by the horizontal dashed line and vertical dotted line

respectively in Figure 4.6a. These u/σu cutoffs can then be used to evaluate the time periods during

which we expect IG waves to be important for bottom generated turbulence in Los Peñasquitos Lagoon.

Figures 4.6b-d show u, σu, and u/σu respectively for the lower instrument at location 5 for the

first 8 days of the deployment before data became sparse due to sill conditions. The shading indicates

when u/σu drops below the 3/2 line in Figure 4.6d and waves are likely generating a significant increase in

turbulent energy. By examining the shading in Figures 4.6b and 4.6c, we see that the importance of waves

at this location is primarily driven by the magnitude of the mean flood current, except for the particularly

large wave event on day 3. That is, during weak flood tides, the waves are frequently strong enough to

increase the turbulence. During strong flood tides, however, the waves only increase the turbulent energy

during the very beginning and end of the flood tide when mean currents are weak.

4.7.1 Identifying the Frequency Regime

After identifying when waves increase turbulence, the next question is by how much. This question

depends heavily on what regime our observations are in. Therefore, we use the ratio of observation

height to wave boundary layer decay length scale z/lw to evaluate which regime our observations lie in.

Figure 4.6e show this ratio plotted for the lower instrument at location 5 during the shaded periods where

u/σu < 3/2. Because we define the wave boundary layer decay scale using Equation 4.17 and the GM

derived bottom stress that relies on the peak frequency, which is difficult to define during low wave energy

periods, we do not show this ratio outside of the shaded regions and only show the ratio when data is high

enough quality to calculate reliable spectra. The horizontal dashed-dotted lines outline the IF regime

cutoffs estimated using the numerical model in Figure 4.3a. The upper line shows the z/lw = 4 cutoff

where the HF predictions become accurate, while the lower line shows when z/lw = 0.01, where the LF

predictions become accurate. Based on Figure 4.6e we see that our observations frequently shift between
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the HF and IF regime and are never in the LF regime. This indicates why our fits in Section 4.6.3 show

that only the IF predictions successfully handle both the high and low wave energy time periods for the

lower instrument at location 5.

We note here that the wave boundary layer height we identify, zw = 4lw, is based on a scaling

analysis from Grant and Madsen (1979), which uses a time constant and depth linear eddy viscosity.

Therefore, we look to other methods for estimating zw. Ramaprian and Tu (1983) and Scotti and

Piomelli (2001) use a scaling based on drawing a parallel to the laminar Stokes problem and compare

their scaling to experimental (Ramaprian and Tu, 1983), as well as DNS and LES (Scotti and Piomelli,

2001) measurements to find that z ≳ 4κu∗
ω denotes when the unsteady flow is not affected by the boundary.

This cutoff exactly matches the factor of 4 we find, with the only difference being that both Ramaprian

and Tu (1983) and Scotti and Piomelli (2001) define u∗ using the mean bottom stress rather than the

instantaneous bottom stress. If we use the mean bottom stress to calculate our wave boundary layer

height, we find that all of our observations would be in the HF regime, which is inaccurate. The reason

for this discrepancy is that both Ramaprian and Tu (1983) and Scotti and Piomelli (2001) study waves

that are smaller than the mean current and never encounter a sign changing bottom stress. Therefore we

suggest that the wave boundary layer scaling introduced by both of these papers is accurate, but that it

must use the average of the absolute value of the bottom stress rather than the average bottom stress for

situations where the velocity oscillations are greater than the mean current.

4.8 Conclusion

In this chapter we have outlined 3 distinct frequency regimes for understanding bottom generated

turbulence in shallow water open channel flows: low frequency (LF), intermediate frequency (IF), and

high frequency (HF). These regimes are defined based on the ratio between the measurement height and

wave boundary layer decay length scale (z/lw). We reviewed existing approaches for predicting turbulent

dissipation in the LF and HF regimes and proposed a new approach for the IF, Equation 4.16, based on

exponentially decaying from the LF regime to the HF regime.

Because the IF dissipation equation relies on the instantaneous bottom stress, we further showed

how to use the Grant and Madsen (1979) velocity profile, Equation 4.20, to calculate the time dependent

bottom stress and then mean dissipation profile from a point velocity measurement. To confirm that the

approximations required in this calculation are accurate, we used a numerical PDE solver to model a

mixing length-scale eddy viscosity based Reynolds-averaged momentum balance, Equation 4.23. With

this numerical model, we confirm that the IF prediction successfully links the LF and HF regimes and
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that the GM based bottom stress introduces only small errors. We further find that when using Equation

4.17 to calculate wave boundary layer decay length scale, zw = 4lw is an effective estimate for the height

of the wave boundary layer and when the HF begins. This is in good agreement with the boundary layer

scaling from Ramaprian and Tu (1983) and Scotti and Piomelli (2001), when using the time averaged

absolute value of the bottom stress for cases with large waves compared to the mean current.

Using data from Los Peñasquitos Lagoon, we then examine how to determine which regime

observations lie in and when waves increase bottom generated turbulence. We find that the HF predictions

underpredict our turbulence observations at one location where our instruments are frequently within the

wave boundary layer and the IF regime. We also find that the LF predictions overpredict because our

observations are near the top of the wave boundary layer. Furthermore, we find that the IF predictions

successfully collapse the wave dominated and tidally dominated periods into a single z0 fit of 2mm with a

range of 1.1 - 3.5mm.

Using the differences between prediction methods, we find that waves can contribute significantly

to turbulence levels when u/σu < 3/2. Our data show that at a near-mouth estuarine location, IG waves

meet this cutoff and increase turbulence during neap flood tides. During spring tides, waves only increase

turbulence at the very beginning or end of flood tide when mean currents are small. Using the z/lw

regime indicator, we also find that the IG waves are sufficiently low frequency that during periods of wave

dominance, our instrument at a height of 30cm is frequently inside the wave boundary layer.

While we do not have concurrent stratification data, tidal and vertical asymmetries in our turbulent

dissipation values are consistent with increased stratification during most of ebb tide as observed in prior

work. These observations warrant further investigation into the potential destruction of stratification by

wave induced turbulence at the very beginning of flood tide.

The largest source of uncertainty in the IF prediction lies in estimating the bottom stress using the

GM solution and simplifying a complicated time series into a single frequency and oscillation amplitude.

Therefore, we suggest that future work focus on estimating the instantaneous bottom stress from a velocity

time series above the wave boundary layer. This would allow for more accurate predictions of lw and more

accurate IF based predictions of turbulence within the wave boundary layer.

4.9 Data Availability Statement

The data used for this project can be found in the UCSD Library Digital Collections under the

doi https://doi.org/10.6075/J0J67H27 (Wheeler et al., 2023). The dissipation calculation code can also be

found at the following GitHub repository: https://github.com/dcwheeler/IG-Dissipation-Processing-Code.
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Chapter 5

Turbulent Times in the Academic Culture
of Coastal Physical Oceanography

5.1 Introduction

There is an ongoing discussion on how the academic natural science system and research are

changing. This discussion takes many forms, from the relation between academia and industry, to the

purpose of science, the funding of research, and even the role of an academic scientist (Godin and Schauz,

2016; Sarewitz et al., 2016; Arnott et al., 2020; Gehrke and Kezar, 2015). Researchers and policy makers

are asking why is the scientific system changing, what should it change to, and how can we guide this

change? One question that remains largely unaddressed asks how are these rapid changes affecting faculty

right now? Some work has been done on this question through survey based research, such as that done

by Schuster and Finkelstein (2006), which outlines systematic impacts on academic faculty in the United

States (U.S.) broadly.

In this chapter, we add to the discussion by taking an interview based approach to understand

how system wide transitions interact with the individual experience within a specific discipline. We do

so through interviews with 15 U.S. based academic coastal physical oceanographers. We focus on the

field of coastal physical oceanography both because of its familiarity to the interviewer and because the

field is at the focus of several key transitions currently happening in academia. By narrowing in on this

specific discipline we first identify how larger transitions in U.S. academia are reflected in the field. We

then qualitatively analyze the experiences of the 15 participants in the context of those changes. This

analysis allows us to show how a consistent set of standards in the discipline are disconnected from ongoing

transitions in the academic natural science system, leading to increased stress on academic scientists in

the field.

Because many of the terms used in this chapter have definitions that vary depending on context,
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we define our particular usage of these terms here. We use natural science to refer to a body of knowledge

about the natural world, including physics, chemistry and biology. By academic natural science system,

we then mean the framework through which educational institutions contribute to the scientific body of

knowledge and the sharing and use of that knowledge within the natural sciences. Because educational

institutions vary across countries, we focus specifically on the U.S. academic science system. We use

research to refer to the process through which scientists seek answers to questions and contribute to the

body of scientific knowledge. For our interview subjects, coastal physical oceanographer broadly means

those studying the physics of the ocean in the coastal environment. This can range from studying the

exchange of water between estuaries and the ocean to studying beach erosion and developing prediction

models for flooding events. Coastal physical oceanography research is typically placed within oceanography

or environmental engineering departments, and our interview subjects held appointments in both.

In the first part of this article, we provide a brief summary of existing research and understanding

of the historical context for transitions that have happened and are happening in the U.S. academic

natural science system. We focus on two key transitions that are impacting coastal physical oceanography.

First is the shifting balance of research, teaching, and service responsibilities for professors in a historically

research focused field. Second is the increasing pressure for actionable science, which is particularly

relevant for interview participants with focus sites near coastal communities. These historical overviews

provide the context for and some explanation of the core conceptions that our interview participants have

about academic science and research.

In the second part of this article, we focus on our interview analysis, identifying patterns in how

individual experiences reflect and conflict with changes in the discipline. We find three core conceptions

within the discipline that reflect our historical review of the field in the mid to late 20th century.

1. The ideal of an academic scientist as primarily a researcher devoted entirely to advancing their field.

2. The dichotomy between and interaction of basic and applied research.

3. The valuation of certain kinds of science as being more physics based and therefore more valuable

than others.

These core conceptions lead to a commonly understood standard that our interview participants strive

for as academic scientists and researchers. We find that the pace of change of these core conceptions

are disconnected from the pace of change in the external forces on the academic science system and

the discipline. This disconnect means that the standards already in place are not decreasing even while

new expectations and pressures are placed on academic scientists. We outline the resulting conflicts
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and examine how different scientists grapple with compounding expectations. Through this analysis we

provide context for the struggles that academic physical oceanographers experience and highlight how

those struggles, while unique in specifics, follow common patterns.

5.2 Transitions in the Academic Natural Science System

The development of the academic natural science system in the U.S. has been well studied in

many contexts. Focusing on two historic and ongoing transitions particularly relevant to our interview

participants’ experiences within coastal physical oceanography, we overview studies and reports relating

to the role of an academic scientist and different perspectives on the purpose of research. These

transitions are not exclusive to coastal physical oceanography and can provide context through which to

connect our conclusions within coastal physical oceanography to other disciplines. After summarizing the

general context within the academic natural sciences system, we focus on how these transitions relate to

developments and changes in coastal physical oceanography. This focused view provides context for the

origins of some core conceptions that repeated through our interviews.

5.2.1 Role of an Academic Scientist

The role of academic faculty in the United States is closely tied to the formation of the research

university. At the end of the 19th century, science experienced rapid specialization with the formation of

specific disciplines and departments within universities that grew in importance through the beginning of

the 20th century (Higham, 1980; Geiger, 1986). Along with this specialization, growing private funding

and professionalization of research led to the first universities recognizable as modern research universities

(Geiger, 1986). Faculty at these research universities had field specific knowledge and were responsible for

both conducting research and teaching within their area of expertise (Gehrke and Kezar, 2015). Over

the same time period, governing structures within these research universities shifted, with the formation

of committees where professors made decisions collectively and the dedication of administrative roles

separate from the faculty (Geiger, 1986; Gehrke and Kezar, 2015).

U.S. Universities next experienced rapid change in their funding structure as philanthropic,

endowment, and tuition funding sources declined in the 1930’s due to the depression, and federal funding

increased starting in the 1940’s due to World War II (Geiger, 1986). In 1945 Vanevar Bush released Science,

the Endless Frontier, a report arguing for the continuation of war time science funding levels during the

postwar era. This report guided the creation of the U.S. federal science funding structure post World War

II, creating an era of robust academic research funding (Bush, 1945). Gehrke and Kezar (2015) outline
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how this increase in research funding, along with a corresponding increase in undergraduate enrollment

beginning with the GI Bill, led to a separation of research and teaching roles. Schuster and Finkelstein

(2006) further outline the changes and rapid growth in the U.S. academic system during the latter half

of the 20th century, stemming from continued growth in federal research funding. The importance of

teaching for faculty reached a minimum in the 1980’s, while the number of faculty participating in research

and publication increased. Faculty perception of the importance of research and publication for promotion

to tenure increased steadily from 39.9% in 1969 to 65.0% in 1997 (Schuster and Finkelstein, 2006). At the

same time, the average publication rate of new researchers increased every decade from 1950 to 2010 (Fire

and Guestrin, 2019).

The development of the responsibilities for academic researchers from the 1990’s to the present is

more ambiguous. Schuster and Finkelstein (2006) show a resurgence of the importance of teaching at

the end of the 1990’s, but also outline how this coincides with a shift in how teaching is done due to

technology and the increasing prevalence of part-time and other teaching-focused roles (Schuster and

Finkelstein, 2006). The growth of journal publications coincides with a larger burden of peer review,

which has driven a discussion on the effectiveness of and changes in the peer review system in recent years

(Mulligan et al., 2013; Severin and Chataway, 2021). Evaluations of other academic roles are difficult due

to lack of data, but recent surveys show that service can occupy up to a quarter of a research university

professor’s time(Link et al., 2008).

Along with all of these shifts, federal funding of research peaked in 2010, with consistent decreases

since then (Zimmermann, 2023). This decrease in funding likely relates to a trend we observed from our

interviews of decreasing researcher appointments and increasing mixed teaching and research professor

appointments within the field of physical oceanography. Furthermore, while the full impacts of this

reduction in federal funding of research remain to be determined, similar funding trends in Europe have

led researchers to search for funding from increasingly diverse sources with various effects (Whitley et al.,

2018).

5.2.2 The Purpose of Research

In order to argue for continued post-war federal funding of research, Vanevar Bush’s Science, the

Endless Frontier outlined an explicit social contract for science. Bush (1945) argued for the protection of

scientists’ freedom on the premise that curiosity driven research would eventually lead to the generation

of knowledge that would form the foundation for future technological and social advances. This sentiment

was reinforced at the creation of the National Science Foundation (NSF) in 1950 with the explicit goal to
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promote basic research (NSF, 1950). Beginning in its first few years, the NSF separated basic research,

in which scientists had freedom to pursue curiosity driven questions, from applied research, in which

scientists were directed towards solving specific problems. The NSF highlighted how a majority of federal

funding went towards applied research and focused on expanding funding for the under supported basic

research ecosystem (NSF, 1953). This emphasis on basic research continued throughout the period of

increasing federal funding of science and prioritization of research for academics that persisted through

the 1980’s.

Major shifts in these discussions began in the 1990’s. Gibbons et al. (1994) first proposed Mode

2 research as a way to describe increasing trans-disciplinary work and interaction between knowledge

production and application. In 1997, Stokes published Pasteur’s Quadrant: Basic Science and Technological

Innovation, outlining the inaccuracy of Bush’s core argument. Rather than basic research leading to

the generation of knowledge that is then used in applied research, Stokes (1997) argued that research

motivation and new knowledge generation are essentially orthogonal to each other. Stokes (1997) explained

this by defining a third classification of research, use-inspired research, that aims to generate new knowledge

with the goal of contributing to a specific problem. In the same year, the NSF task force on merit review

first recommended the use of broader impacts as a decision metric when reviewing grant proposals (NSF,

1997). These developments were an early part of the shift in conversations about science away from the

separation of knowledge generation and application (basic vs. applied research).

A major recent discussion point focuses on the idea of actionable science. That is, how can

scientists produce knowledge that decision makers can use in dealing with problems such as climate change

and environmental protection (Kirchhoff et al., 2013). Towards this goal, another dimension of research

has emerged considering how to engage potential end users of knowledge in the knowledge generation

process itself (Kirchhoff et al., 2013; McNie et al., 2016; Lemos et al., 2018). This is particularly relevant

for research fields with direct ties to the challenges facing society, such as environmental science. Beyond

discussions about how to best support actionable science, various government agencies have even started

experimenting with their funding structures to better direct scientists towards new methods of knowledge

production that might better produce actionable science (Arnott et al., 2020).

While not all funding organizations are focusing on actionable science, this trend has led scientists

to face different demands from different funding sources. When considering the reduction in federal funding

of research and the corresponding reliance on a larger diversity of funding sources, many researchers now

have to deal with competing models of science at the same time (Zimmermann, 2023; Whitley et al., 2018).

The necessity of pitching projects to multiple funding sources with different goals then further erodes
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the stability of old research paradigms, as Calvert shows in her study of how the term basic research is

actually used by various groups (Calvert, 2006).

5.2.3 Transitions in Coastal Physical Oceanography

This history of the transitions in the academic natural science system is reflected clearly within the

field of physical oceanography. Physical oceanography is a relatively young discipline. While observations

and descriptions of the ocean can be traced back centuries, the foundation for oceanography as a scientific

field in the U.S. begins in the early 20th century (Han, 2010). For physical oceanography as a specific

discipline, quantitative study of the physics of the ocean began in the mid 20th century with refinement

and expansion occurring throughout the remainder of the century (Malanotte-Rizzoli, 2023). Therefore,

the trends in U.S. academia in the mid 20th century are particularly relevant for understanding the field

and providing context for our interviews.

In particular, physical oceanography developed during the period of increasing emphasis on the

research role of academics between 1969 and 1997, as shown by Schuster and Finkelstein (2006). This

means that physical oceanography as a discipline has been research focused historically, and the trend of

increasingly mixed teaching and research positions we observed from our interviews is a recent transition

and new for the field. Corresponding with the emphasis on research, this time period was also a period

with heavy emphasis on basic research, where scientists were free to pursue their interests.

Apart from the NSF pushed national dialogue on basic research, the field of physical oceanography

also received a large amount of funding from the Department of Defense (DOD) and the Office of Naval

Research (ONR) specifically. In her book, Science on a Mission: How Military Funding Shaped What

We Do and Don’t Know about the Ocean, Naomi Oreskes explains how oceanographers reacted to the

military emphasis associated with increasing federal funding of their science. Concerned with the loss of

their scientific freedom, many oceanographers fought to ensure they worked on basic research questions

and were not forced to work on military applications while still obtaining funding from the ONR and

other parts of the DOD (Oreskes, 2021). These discussions worked to reinforce an apparent competition

between basic and applied research in physical oceanography and focused on scientists’ freedom to work

on curiosity driven questions.

The shift in conversations, starting in the 1990’s, about science away from the separation of basic

and applied science were particularly prescient for fields relating to growing climate and environmental

problems (Lubchenco, 1998). In particular, coastal physical oceanographers work close to ecosystems

and communities threatened by erosion and sea level rise. More than the location of their work, coastal
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physical oceanographers often work in interdisciplinary contexts and on problems that are at closely

related to the recent discussions around actionable science, making this transition particularly relevant for

several of our interview participants.

5.3 Interview Methodology

Having summarized the historical perspectives and national context for the U.S. academic science

system and coastal physical oceanography, we next narrow our scope to the experiences of 15 individuals.

For this project, we performed and analyzed 15 1-hour long interviews of academic scientists past the

post-doc stage working within the United States. All participants identified as being in the field of coastal

physical oceanography. Of the 15 participants, 6 were early career (pre-tenure), 4 were late career (started

their first faculty or researcher position before 2000), and 5 were mid career. They had a range of teaching

loads from 0% to well over 50% and held a range of appointments in engineering, physics, earth sciences,

and oceanography departments. All participants were found by emailing the networks of the authors and

asking respondents to email their respective networks.

Before beginning the 15 interviews, we ran practice interviews with members of the lead author’s

lab to determine the best interview approach. We refined our interview questions over a series of iterations

to effectively encourage our participants to reflect deeply on their experiences. We found that a semi-

structured approach with a few broad questions and interview specific follow-ups allowed participants to

direct the conversation to focus areas that were most relevant to their experiences, while still reaching the

details we were looking for. We also determined that handing out a project explanation with the major

interview questions in advance produced the most productive conversations. This handout is shown in

Appendix F and the project description reflects the initial project aims and hypothesis. While our final

conclusions vary from these initial aims, the project description helped our participants better understand

the interview format and engage in the conversation.

Each interview began by asking about the participant’s background and proceeding to ask “What

expectations do you feel are placed on you as a researcher?” As the interview proceeded, follow-up questions

were asked to encourage reflection on where these expectations came from and clarify the meanings of

different terms used, such as basic research. In the second portion of the interview, participants were

asked “What challenges do these expectations place on how you do your work?” Follow up questions here

focused on how participants handled these challenges and again clarifying any terms that might have

different meanings to different participants. Finally, participants were asked “Do you feel that any of these

expectations conflict with each other?” Follow up questions followed a similar pattern as before with the
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addition of clarifying any conflicts that the interviewer identified in earlier portions of the interview but

were not raised by the subject. Finally, if there was time left, the interviewer discussed with participants

what potential changes they would suggest in academia to improve some of the challenges and conflicts

they face.

Interviews were transcribed using Otter.ai and checked for accuracy. Then interviews were read

individually for significant concepts and collated into general trends across interviews on a second read

through. When idea saturation was reached, main topics were identified and interviews were re-read for

participant specific views on each main topic. The sections that follow focus on the three main themes that

we identified and how those themes are reflected in the individual experiences of our interview participants.

5.4 What Is an Academic Scientist?

A recurring theme throughout our interviews was the importance of research for the career of

an academic scientist. More than just a component of an academic scientist’s role, we found that our

interview subjects considered a passion for research in a specific specialization as the defining characteristic

of being an academic scientist. This conception aligns well with the development of physical oceanography

as a field in the mid to late 20th century, but contrasts with many of the changes outlined in section 5.2.

Devotion to research also conflicts with scientists’ lives outside of work. These contradictions manifested

in several different topics of conversation during our interviews.

One of the most common topics that arose during our interviews focused on the conflict between

research and teaching responsibilities. Six interview participants referred to large teaching loads as it

interfered with research. Most importantly, these discussions did not revolve around formal research

requirements. The two interview participants with primarily teaching responsibilities referred to feelings

of inadequacy that are not reflected in how they are treated by others. Instead of worrying about their

promotion or feeling excluded at conferences, they highlighted their feelings of not keeping up with peers

or meeting some minimum amount of research that they felt defined a scientist. Even those with a larger

fraction of research responsibilities in their positions tended to discuss having to readjust their idea of

what was enough research. Habitually, these academics felt that scientists should have large labs, produce

a large number of publications, and meet a certain level of rigor in their research. When they couldn’t

match such ideals due to their teaching responsibilities they had to learn to readjust their own expectations

and remind themselves that it wasn’t a failure on their part as a scientist.

Different interview participants achieved this re-framing to varying degrees of success. The

following quote from a professor at a liberal arts, teaching focused, undergraduate university highlights
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how an academic who has explicitly chosen to focus on teaching and enjoys their job overall can still

struggle with this implicit direct association between academic scientist and research.

I am primarily a teacher. And so when people sort of refer to me as a researcher, I’m like,
‘Well I’m a scientist, technically.’ ... I think of myself as a scientist on the four days a
year that I’m actually strapping a canoe to the top of my car. I literally strap the canoe
to the top of my car and drive down to the beach to go do my research. And for those
four days of the year, I am a scientist, and it is the best thing in the world. And maybe
the week or two that I do analysis on the data that I got from those deployments, right,
that is the time when I’m still a scientist. The rest of the time, I’m a teacher, and it’s
a different job. But, to the world at large, that distinction isn’t as clear. Like, I’m a
professor, that’s what professors do. They teach and they do research and they are one
in the same. And for me, they are two very different identities ... I feel like I’m not living
up to what I think of as the expectations of what a scientist would do. And so, working
through that is something I actually still struggle with.

Throughout this quote, the participant struggles with how others perceive them as a scientist. To them,

being a scientist means actively working on research, with teaching being a separate job. They have built

a separation between themselves and the physical oceanography community that they came from while

simultaneously recognizing that their own conception of this distinction does not match how they are

perceived by others.

Another focus of several interviews was the struggle to balance family obligations with being

a scientist. Four interview participants mentioned currently taking care of children and their struggles

around protecting time to engage with their family. All of these professors contextualize their struggle

in terms of their peers. Some reflect on how they don’t feel like they are keeping up with the expected

research output. Others frame it purely as a time problem, where they aren’t putting in the same amount

of time as their mentors did or their peers are unless they work late into the night. In a couple cases, our

interview participants had even received derogatory comments from other professors for taking family

leave or picking up their kids after school.

The implication of each of these experiences is that professors need to put all of their time into

their work to accomplish their research, at the expense of anything else. As our participants with children

are experiencing, such an expectation is incompatible with current family structures and spending time

with children. Of our late career participants, two made a point of describing how they or their colleagues

who had children also had a spouse who took the role of primary caregiver, enabling them to devote

their time to research, fieldwork, and being a professor. With the increasing importance of non-research

activities and the increasing prevalence of dual-earner and working single-parent households, such a model

is no longer possible (Kim, 2020).

Beyond competition with non-research obligations, the concept of an academic scientist as a fully
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devoted researcher with specific expertise still introduces challenges. Multiple interviewees reflect on how

changing research topics or working on interdisciplinary projects reduced their ability to publish efficiently

and establish themselves as an expert. One participant described this as problematic for securing funding

and finding a faculty position. Another even described themselves as a “bad scientist” purely because

they viewed science as a job and weren’t passionate about a specific focus area.

Throughout all of these examples, we see a common understanding of what it means to be an

academic scientist grounded in a reality that no-longer exists. While scientists individually understand

that the demands on an academic are changing, they instinctively hold themselves and each other to an

unobtainable standard of time devotion, research focus, and specialization. This leads some academic

scientists to a repeating internal debate about whether or not they are performing their responsibilities

adequately. It leads others to performing research beyond what might be otherwise expected at the

expense of their personal time.

5.5 The Basic and Applied Research Dichotomy

The mid 20th century social contract where curiosity driven basic research generates knowledge

that is then passed to applied research appears throughout our interviews. Among the late career

participants, this did not present any particular problems. One participant talked about evaluating

scientists based on fundamental work, which they defined at points based on novel understanding and

at other points as not use-inspired. Another framed their thoughts about science utility in terms of

time-frame, arguing that curiosity driven research is very important for society, but with a long-term payoff.

Two other participants described their careers as starting in curiosity driven questions and eventually

partially moving to applied or interdisciplinary problems based around their developed expertise.

Of particular note, one of these late career participants described the progression of their career

in a way that mirrors the transition to current discussions around actionable knowledge.

There’s sort of a standard progression that you start off, earlier in your career, you’re
more discipline specific, like just doing physical oceanography, and just doing basic science.
Then as you get further on in your career, you’re able to do basic science, but interacting
with other people, with an interdisciplinary group ... And then, at least this is the way it’s
worked out historically, or in recent history, is that later in your career, having mastered
those skills of basic science that’s both disciplinary and interdisciplinary, then you’re
qualified to do applied science.
...
I’ll just say, having gotten to where I can do applied science feels good. And it’s not just
gruntwork. It brings up new scientific questions that are really interesting and they’re not
ones I would have asked otherwise. But they’re just as interesting as any other stuff. So
they bring me to new basic science questions, but I have a better idea of how a resource
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manager might actually use the knowledge I generate.

At first, their career focused on basic research with the idea that application would come later. Then,

as they began to work on applied problems and again returned to novel knowledge generating research,

they found that incorporating their interactions with end users allowed them to do their fundamental

research in a way that better helps resource managers. This transition happened relatively smoothly as

they progressed through their career in line with increasing desire for actionable research.

For the 11 mid and early career participants, the basic and applied dichotomy plays an important

role, even if it does not match their experiences. Of the 11, 8 associated novelty directly to the quality

of science. While not always explicitly stated as basic research, this is directly associated with the idea

that the social value of basic research is in producing new knowledge that will be useful in the future. In

several cases, the concept of novelty was explicitly used to distinguish science in general from engineering,

transforming the basic and applied dichotomy to a science and engineering dichotomy. While not as

common as references to novelty, many of our participants also defined the output of basic research or

good science as being general. Science is not supposed to be specific to a particular place or problem,

and so the generality of a result became important to ensure that it could be used in a range of potential

future problems.

This direct association of novel and general to what counts as quality science presented challenges

to our mid and early career participants in range of ways. One participant who held an appointment in

an engineering department described themselves as having one foot in the oceanography world and one

in the engineering world. They described an interdisciplinary problem where what was valued by their

engineering peers was not valued by their oceanography peers. So, while they explicitly described finding

new connections between fields as a valuable contribution to knowledge, they also classified most of their

projects as explicitly engineering or oceanography.

Even those who were not trying to satisfy the demands of multiple fields tended to divide their

projects between fundamental and applied research. One participant works at a state funded facility that

asks explicitly for applied research focused on problems the state is facing. Even so, they described a

portfolio of projects with some being fundamental and focusing on advancing knowledge in the field to

remain a respected member of their research community. Another participant holds a partial appointment

at a government lab that asks for community engaged research. They described being able to move some

of their work to this space only because they had already done a substantial amount of fundamental

research to establish themselves as a respected researcher.

A few other participants reflected on their attempts to respond to increasing calls to engage with
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communities and do their research differently. As one described,

Communities usually want a particular problem solved, which makes sense. But that’s not
necessarily the same as basic science. Addressing a particular instance is different than
trying to get at basic processes, mechanisms and so forth, which are more transferable.
It takes effort to do both, it takes smart people with good ideas to do both, but they’re
different. And for good reason. Different funders have different priorities.

Our participants struggle with community engaged projects, not because they viewed the projects as

bad or unworthy, but because the projects differed from their past understanding of research and the

type of science they would be evaluated on by their peers. This suggests that academic coastal physical

oceanographers face a challenging decision between not doing community science and focusing on more

traditional basic science or attempting to do both simultaneously. Such a challenge is true whether a

scientist personally wants to do community work or is doing so to satisfy the requirements of a specific

funding source.

Throughout our interviews we find scientists experiencing a changing social and funding environ-

ment where they are increasingly called to do research differently, from doing traditional applied work

to directly engaging with communities. At the same time, to establish themselves as scientists among

their peers, our interview participants recognize the continued importance of traditional basic research.

As a result many scientists are attempting to do all of these types of research simultaneously. While

we saw success stories of late career scientists managing this in balance throughout their career, those

earlier in their career struggle to combine all styles of research and results over the course of one or two

grants. Particularly in an environment where quantity of research output is prioritized, these researchers

are finding themselves without enough time and resources to effectively engage with communities or the

ability to take the risks and put in the deep thought required to develop the new and general knowledge

they feel is necessary to produce.

5.6 The Physics Part of Physical Oceanography

More specific to the field of physical oceanography, the concept of physics played a key role in

our interviews. Physics came up naturally in all of our interviews because our participants identified

themselves as physical oceanographers. However, when asked to explicitly define what they meant by

physics, our participants frequently expressed frustration and discomfort. In some cases, physics was

explicitly tied to the idea of basic research, but for many it also held a deeper and more significant

meaning.

Among the descriptions of physics not based in typical understandings of basic research, we found
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two common qualities. The first was the idea of from first principals. That is, there are a few foundational

accepted principals for how the world works, and all new physics knowledge should be built off of these

foundations. The second description was analytical. That is, physics knowledge should be able to be

written down as an equation with a solution. Analytical is also closely associated with describing work as

theoretical in physics. In most cases, physical oceanographers will give the example of starting with the

Navier-Stokes equation, which is an equation that uses the basic principal of conservation of momentum

to describe how fluids move. A contribution to physics knowledge would then be making simplifying

assumptions based on the system of concern and finding a solution to the resulting equation.

These descriptions of physics were not universal and often uncertain. Some participants described

it as having a recognizable “look and feel” or questioned their own definitions as they talked. Others chose

to distinguish the qualities of analytical as “hardcore” physical oceanography or “old fashioned” physics

rather than physics in general. The qualifications and uncertainty presented by our participants were

generally an acknowledgement that the field of physical oceanography is changing and hard to condense

into a single explanation.

The ideas of from first principles and analytical do a good job of describing many of the classes

that physical oceanographers take, including geophysical fluid dynamics and wave mechanics. They even

do a good job of describing many of the foundational physical oceanography papers that came out of the

mid to late 20th century. However, several participants identified that many of the physics questions

in coastal physical oceanography have been answered and current work is more interdisciplinary, too

complicated for analytical solutions, and less strictly tied to the descriptions above.

One late career participant determined that the kinds of knowledge that will help coastal

communities with erosion is not the same as what has been traditionally considered physics. In this case

they had no difficulty separating their work from their definition of physics, saying

I believe my definition of physics is reasonable. Now, is it a reasonable expectation to be
able to do physics to solve real world coastal environmental problems? No. I wanted to
do that. As soon as I started trying to deal with sediment transport by breaking waves, I
went ... physics is done.

However this ease of separation was not true across our interviews. An early career participant described

how their work with communities took away from their time to do “hardcore” physics. Another participant

described how some scientists value theoretical or analytical based work over more empirical work. These

responses highlight how a relatively narrow definition of what work is considered physics adds another

dimension to the list of standards that our participants are striving to satisfy, even if that dimension does

not necessarily reflect the types of questions they are working on as physical oceanographers.
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In this section, we see coastal physical oceanographers struggle to define how their field relates to

physics. This uncertainty is grounded in an expanding and changing field that doesn’t follow a consistent

style of research. However, it also results in an uncertain prioritization of what work is more valuable than

others. While our participants seem to be comfortable in this ambiguity on its own, it most often appears

in the context of community engaged and actionable knowledge oriented work. In these cases, even if

community needs might lead knowledge producing research, it might not lead to the type of research that

is most valued in the physical oceanography community. Then, especially for earlier career professors, the

implicit definition of physics that all of our participants instinctively understand, becomes yet another bar

to meet at the same time as everything else discussed above.

5.7 Conclusion

While reviewing existing research on transitions in the U.S. academic science system, we find

that the field of coastal physical oceanography developed during a pivotal time during the mid to late

20th century. Rapidly increasing federal research funds led to the separation of research and teaching

roles among academic scientists, making research the highest priority for physical oceanographers. At the

same time, Federal science funding policy and a push from faculty to maintain independence from funding

priorities created a dichotomy between basic and applied science. In more recent years, the prioritization

of research is decreasing for new academic positions and the funding environment is leading to a variety of

demands from funding organizations that defy the basic vs. applied dichotomy.

Through our interviews, we find that our participants, even those in primarily teaching roles,

tend to link their identity as a scientist to their performance in and passion for research. This leads some

to an internal struggle in their interactions with their peers and others to attempt as much research as a

full time researcher to establish their scientific reputation. We also find that our interview participants

tend to associate the qualities of basic research, such as curiosity driven, novel, and general, with science

in general. So, while working on the community engaged or actionable knowledge focused work that

funding organizations now ask for (and some of the participants find valuable), they simultaneously look

for ways to work on more traditionally basic research projects. This is further exacerbated by an implicit

conception of physics that prioritizes certain types of research and results over others.

Collectively, the emphasis on dedication to research along with the prioritization of novelty,

generality, and specific types of physics research form a normative standard in coastal physical oceanography.

This normative standard is then disconnected from the new standards of increased teaching focus and

community engaged or actionable knowledge focused research that result from ongoing transitions in
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the academic science system. We find that this disconnect can lead scientists to work on many types of

projects and assume many responsibilities simultaneously. The most common topic from our interviews

focused on time management and being unable to fill all responsibilities and meet all standards at the same

time. Furthermore, by trying to fill numerous roles, many of our participants felt that their performance

in any given area was reduced and did not meet their personal expectations.

At this point it is important to note that additional variables can exacerbate these problems.

Early career participants still working to establish their reputation tend to have less security in focusing

on only one style of research. Those faculty with children have further responsibilities outside of work

that do not match the ideals of a fully dedicated researcher. Underrepresented faculty receive less support

from the community and feel more responsibility to do diversity related service work that only adds to

their overall workload. There is a robust literature around parenthood and diversity in academia, and we

suggest Lantsoght et al. (2021) and Social Sciences Feminist Network Research Interest Group (2017) for

helpful literature reviews.

While our goal here is not to propose solutions or changes, we did ask participants to suggest one

change they would make to U.S. academia. We found it illuminating that the most common suggestion was

a modification of evaluations for promotion and hiring. So, in conclusion we want to highlight that these

results are not necessarily surprising to individuals with the experiences we describe. Our participants

generally recognized that the increasing facets to what is required of a successful academic scientist meant

they were dividing themselves too thinly and believed that a more flexible definition of success that did

not have to include everything would enable them to focus more effectively.
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Chapter 6

Conclusion

In this Dissertation, I demonstrate the importance of Infragravity (IG) waves (periods ∼ 25 s to

250 s) to the dynamics of Los Peñasquitos Lagoon (LPL) in southern California. In Chapter 2, I show that

IG waves enter the estuary as turbulent, non-linear bores and decay rapidly such that they are mostly

linear and non-breaking 300 m upstream of the mouth, just after the split in the main channel. I further

show that these waves can be linked directly to increased turbidity that is likely a result of sediment

suspension at Location 5, but that the waves have mostly decayed by Location 7 and no longer increase

turbidity. I hypothesize that this decay of waves between Locations 5 and 7 is linked to the change in

bottom type from sand to mud between these 2 locations, as the IG waves are no longer able to carry

sand further upstream. I also show that the IG waves are linked to IG frequency oscillations of a strong

salinity stratified interface near the surface of the water column.

In Chapter 3, I develop three new algorithms for calculating turbulent dissipation in the presence

of IG waves that can also apply to other situations. I first modify the Goring and Nikora (2002) phase

space despiking method with an expanding cutoff algorithm to allow for ADV despiking of signals with

unsteady variance. I then develop a segmented approach for calculating a wavenumber velocity power

spectrum to minimize the effects of non-linear oscillating advection velocities on the frozen turbulence

hypothesis. Finally, I employ a statistical distribution approach for identifying the most likely turbulent

dissipation value when fitting the inertial sub-range of a velocity spectrum in any situation. These methods

combined result in 30 minute average tubulent dissipation measurements with a systematic uncertainty of

±15.2% and statistical uncertainty of ±7.8%.

In Chapter 4, I outline 3 distinct frequency regimes for understanding bottom generated turbulence

in shallow water open channel flows: low frequency (LF), intermediate frequency (IF), and high frequency

(HF). These regimes are defined based on the ratio between the measurement height and wave boundary

layer decay length scale (z/lw). I develop a new approach for predicting average turbulent dissipation in
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the IF regime, and verify the effectiveness of this approach using a numerical model and the turbulent

dissipation measurements from Chapter 3. I then use the IF approach to demonstrate that the wave

boundary layer height scales as zw = 4lw and that waves can contribute significantly to turbulence levels

when u/σu < 3/2. This cutoff is typically reched by waves during neap tides and at the very beginning of

flood tides in Los Peñasquitos Lagoon.

In Chapter 5, I use interviews of 15 coastal physical oceanography professors in the United States

to study academic culture. I show that the culture within the discipline are not matching pace with

ongoing changes in the relative balance of research and other responsibilities for professors in the discipline

or the increasing demand from society and funding agencies to perform science in more engaged ways

with potential end users. As a result, Professors are often trying to maintain historic levels of research

while managing increasing teaching and service responsibilities, or pursuing historically basic science

questions at the same time as attempting to engage with communities that have no interest in those types

of questions. This disconnect leads to increased levels of stress and workloads that appear unsustainable

for extended periods of time.
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Appendix A

Expanding Cutoff Despiking Algorithm

1. Use linear interpolation to fill any NaNs in data (from correlation and SNR based filtering or time

periods where the instrument was out of water), and store the location of those NaNs.

2. Remove low-pass filtered signal to avoid contamination from large non-turbulent signals. In our case,

we found that using a 1/20 Hz, 4th order Butterworth filter effectively eliminated contamination

from IG waves without introducing negative effects from filtering particularly large spikes.

3. Use central differences to calculate the first (u(1)) and second (u(2)) derivatives for locating each

point in phase space as in Goring and Nikora (2002, equations 7-8), where in their notation the first

and second derivatives are ∆u and ∆2u respectively.

4. Calculate the universal threshold cutoffs, c0, using the total number of data points, n, and the

standard deviations, σ, for the corresponding derivative as in Goring and Nikora (2002, equation 2):

c0u(k) =
√
2 lnn ∗ σu(k) , (A.1)

where k is denoting the number of derivatives.

5. Define the ith expanded cutoff for each dimension as

ciu(k) = (1 + 0.01 ∗ i) ∗ c0u(k) . (A.2)

6. Starting with u—u(1) space, as a first step before calculating the elliptical ring density, define the
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number of points within the ith expanded ellipse as

P i
u—u(1) =

n∑
j=1

u2j

ciu
2 +

u(1)
2

j

ci
u(1)

2 ≤ 1, (A.3)

where j is an index that iterates over all points.

7. Then, for the ith expanded ellipse, define the elliptical ring density of points in the ring between

sequential cutoffs as

ρiu—u(1) =
P i
u—u(1) − P i−1

u—u(1)

π ∗ (ciuciu(1) − ci−1
u ci−1

u(1))
. (A.4)

8. To determine when to stop expanding the cutoff, first calculate the fractional change in elliptical

ring density between sequential cutoffs as

∆ρiu—u(1) =
ρi−1
u—u(1)

− ρi
u—u(1)

ρi−1
u—u(1)

. (A.5)

9. Then, determine the last expanded cutoffs for u—u(1) space, Cu
u—u(1) and Cu(1)

u—u(1) , as the cutoffs

before the fractional ring density change exceeds 0.95:

Cu(k)

u—u(1) = ciu(k) | ∆ρi+1
u—u(1)

≥ 0.95. (A.6)

10. Mark any points where the velocity exceeds the final Cu
u—u(1) cutoff as spikes. This is a first pass,

as described by Parsheh et al. (2010), to avoid large spikes influencing the derivatives at nearby

data points and causing valid data to look like more spikes.

11. If spikes are found, skip to step 18 for replacing those spikes. If no spikes are found, proceed to step

12 to use the full phase space detection method.

12. Mark any points that are outside the ellipse with major and minor radii defined by Cu
u—u(1) and

Cu(1)

u—u(1) as spikes.

13. Repeat steps 6 - 9 and 12 for u(1)—u(2) space. Note, steps 10 and 11 are skipped because the initial,

velocity only based spike detection is only done for the u—u(1) based cutoffs.
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14. Because of the correlation between the velocity and the second derivative, calculate the principle

axis rotation angle, θ, between the velocity and second derivative as in Goring and Nikora (2002,

equation 9).

15. Rotate u—u(2) space to α—β space with the principle axis rotation angle, where

z = (u+ i ∗ u(2)) ∗ e−iθ, (A.7)

α = Real(z), (A.8)

and

β = Imag(z). (A.9)

16. Calculate the initial cutoffs for the rotated ellipse using the solutions to the equations found in

Goring and Nikora (2002, equations 10 and 11) as

cα =

√
(cu cos θ)2 − (cu(2) sin θ)2

cos4 θ − sin4 θ
, (A.10)

and

cβ =

√
(cu(2))2 − (cα sin θ)2

cos2 θ
. (A.11)

17. Repeat step 5 for the ciα and ciβ cutoffs, then repeat steps 6 - 9 and 12 for α—β space to complete

the full phase space spike detection.

18. Replace each spike with the value of the last valid point.

19. If spikes were identified, return to step 3 in order to repeat the phase space spike detection and

spike replacement until no more spikes are detected. On rare occasions, this loop will continue for a

very long time, so we recommend a maximum number of iterations allowed (we use 100).

20. Record the location of any spikes that were replaced through all iterations, add back the low

frequency signal, return NaNs removed in step 1, and finish.
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Appendix B

Segmented Spectrum Algorithm

1. Linearly interpolate any NaNs in the vertical and horizontal velocity data.

2. Separate the high frequency turbulent velocities (u′) from all other lower frequency advection

velocities (ũ) with an appropriate filter. In our case, we use a 1/5 Hz, 4th order Butterworth

filter that separates low frequency advection velocities, ũ, which include IG and lower frequency

oscillations, from the high frequency turbulent velocities (u′ = u− ũ). These separated signals will

be used for identifying bad segments and correcting the magnitude of the spectrum.

3. Split the vertical velocity data along with both the low and high frequency horizontal velocity data

into short segments with Nseg data points each such that the velocity varies little over each segment.

We found that 10 seconds worked well for our data, which, with our 16 Hz sampling rate, gives

Nseg = 160.

4. Calculate the average low frequency horizontal advection velocities, Useg =
∑Nseg

i=1
ũi

Nseg
and Vseg =∑Nseg

i=1
ṽi

Nseg
, for each segment.

5. Calculate the advection speed for each segment as cseg =
√
U2
seg + V 2

seg.

6. Calculate the advection direction for each segment as θseg = tan−1
(

Vseg

Useg

)
.

7. Rotate the low and high frequency horizontal velocities of each segment into the mean advection

direction, keeping the primary components as γ̃ and γ′.

8. Calculate the standard deviations of the low and high frequency rotated primary velocities for each

segment (σγ̃
seg and σγ′

seg).

9. Eliminate any segments that fail to satisfy either of the relations

σγ̃
seg ≤ 1.025 ∗ cseg. (B.1)
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or

σγ′

seg ≤ cseg/5. (B.2)

10. Count the number of unoriginal data points in each segment, nbadseg .

11. Eliminate the segment with the largest nbadseg until the total number of bad points is less than 1% of

the total remaining points:
k∑

i=1

nbadi < 0.01 ∗Nseg ∗ l (B.3)

where l is the number of segments left.

12. For each remaining segment: de-trend, multiply by a Hanning window, fourier transform, and

calculate a power spectrum of the vertical velocity in frequency space (Sww(ω)), where ω is the

radian frequency. Thomson and Emery (2014b) provides a good discussion for the effects of

de-trending and windowing on spectra.

13. Convert each remaining spectrum to wavenumber space and correct magnitude as

Sww(κ) =
Sww(ω) ∗ cseg
I(σγ̃

seg/cseg)
, (B.4)

and

κ =
ω

cseg
, (B.5)

where I is calculated according to Equation 3.4.

14. Eliminate the two lowest wavenumber spectral values for each segment to avoid low frequency bias.

15. For each segment, eliminate any spectral values for wavenumbers that are higher than

κcutoff = (κ−5/3
max ∗ 4)−3/5, (B.6)

where κmax is the highest wavenumber estimated for that spectrum. This avoids significant aliasing

from frequencies above the Nyquist frequency.

16. Sort each remaining spectral value from all remaining segments in increasing order by wavenumber.
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17. Group sorted spectral values as evenly as possible into M = floor(N/50) bins, where N is the total

number of spectral values left.

18. Calculate the mean spectral value for each bin. The degrees of freedom for these average estimates

is then 2 ∗Nbin, where Nbin is the number of spectral values in the bin.

19. Calculate the corresponding wavenumbers of the averaged spectral values, assuming an inertial

sub-range, using Equation 3.8.
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Appendix C

KDE Dissipation Fit Algorithm

1. Calculate the minimum and maximum wavenumber cutoffs using Equations 3.18 and 3.19, assuming

a dissipation of 10−3 m2/s3. This gives an initial estimate of where the inertial sub-range can be.

2. Find all possible continuous subsections of the spectrum with wavenumbers (κi, i ∈ [1, Nsec]) inside

the wavenumber cutoffs (κmin < κi < κmax), with at least 10 spectral values (Nsec ≥ 10), and for

which the wavenumbers span at least a quarter of a decade (κNsec
/κ1 ≥ 2.5). Here, Nsec refers to

the total number of spectral values in a given subsection and i refers to a specific spectral value in

the subsection.

3. For each subsection, convert spectrum to log space (x-y space) using Equations 3.13 and 3.14.

4. For each subsection, Calculate the variance, σ2
y(dbin,i) = 2/dbin,i, from the degrees of freedom, dbin,i,

of each converted spectral value (ŷi).

5. For each subsection, calculate a weighted least squares fitted slope (asec, where the subscript refers

to the specific subsection) to xi and ŷi, using the inverse of the variances from step 4 as the weights.

We follow the approach used by Leo (1994).

6. Calculate the error on the fitted slope (σasec). Again, we follow Leo (1994).

7. Discard any subsection where |asec + 5/3|/σasec
≥ 1.960, with 1.960 coming from the 97.5 percentile

of the standard normal distribution.

8. For each remaining subsection, assume a slope of −5/3, and use the weighted least squares approach

to calculate the y intercept (bsec).

9. Using those y intercepts, calculate dissipation values for each remaining subsection (ϵsec) following

Equation 3.17.
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10. Calculate the largest peak or valley prominence, using the SciPy peak prominences function (Virtanen

et al., 2020), of the residual from Equation 3.20 for each subsection.

11. Further discard any dissipation values from subsections where the maximum prominence is ≥ 0.8.

The remaining dissipation values are now referred to as valid dissipation values.

12. Using the valid dissipation values (ϵvalidsec ), calculate a Gaussian KDE of log10 ϵ
valid
sec .

13. Select the valid dissipation value that is closest to the peak of the Gaussian KDE as the calculated

dissipation value (ϵcalc).

14. Repeat step 1 using the new dissipation value and Equation 3.19 to obtain a new maximum

wavenumber cutoff.

15. If any of the subsections used to calculate the dissipation values used for the Gaussian KDE have

more than one wavenumber outside of the new wavenumber cutoffs, select the subset of the valid

dissipation values coming from subsections entirely within the new cutoffs and repeat steps 12 - 14

until none of the subsections used have more than one wavenumber outside of the final cutoffs. Note,

we do not need to repeat any of the other steps, because we have already calculated all possible

potential dissipation values with the original non-strict cutoffs. The repeat of steps 12-14 merely

changes the number of valid subsections included in the calculations due to the refined cutoff values.

16. If the final dissipation value is larger than the previous dissipation value calculated, again repeat

steps 12 - 15 until the final dissipation value is smaller than the previous dissipation value calculated.

Note, this step has the potential to loop infinitely, so we stop if this condition is used 5 times.
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Appendix D

Deriving Instantaneous Bottom Stress

To derive the instantaneous bottom stress in Equation 4.22, we begin by plugging Equation 4.20

into Equation 4.19, finding

τ0 = τ0hf + ρ

∫ h

z0

∂

∂t
ℜ
{
Aũ∞e

iωt

[
1− K0(∞)

K0(z0)

]}
− ∂

∂t
ℜ
{
Aũ∞e

iωt

[
1− K0(z)

K0(z0)

]}
dz. (D.1)

Because both ker0 and kei0 go to 0 as z → ∞, this simplifies to

τ0 = τ0hf + ρωAũ∞ℜ

{
ieiωt

K0(z0)

∫ h

z0

K0(z)dz

}
. (D.2)

Expanding K0(z) according to Equation 4.21, we now must solve the integral

∫ h

z0

ker0

(
2

√
z

lw

)
+ ikei0

(
2

√
z

lw

)
dz. (D.3)

Performing a change of variable to α = 2
√

z
lw
, we find the integral

lw
2

∫ α2

α1

α[ker0(α) + ikei0(α)]dα, (D.4)

where α1 = 2
√
z0/lw and α2 = 2

√
h/lw. Using the digital library of mathematical functions (DLMF,

10.71.1) ∫
αker0(α)dα = − α√

2
[ker1(α)− kei1(α)] (D.5)

and ∫
αkei0(α)dα = − α√

2
[kei1(α)− ker1(α)] . (D.6)
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Using Equations D.5 and D.6 to solve the integral in D.4 then gives

lw
2

[
α√
2
(−1 + i)(ker1(α)− kei1(α)

]α2

α1

. (D.7)

Evaluating the limits and re-arranging, we get

lw

2
√
2
[(1 + i)(α1[ker1(α1) + ikei1(α1)]− α2[ker1(α2) + ikei1(α2)])] . (D.8)

Changing the variable back to z and returning to the notation in Equation 4.21, we get the solution to

the integral in D.3, √
lw
2
(1 + i)

[√
z0K1(z0)−

√
hK1(h)

]
. (D.9)

Inserting this integral solution into Equation D.2, we now have

τ0 = τ0hf +

√
lw
2
ρωAũ∞ℜ

{
eiωt(i− 1)

√
z0K1(z0)−

√
hK1(h)

K0(z0)

}
. (D.10)

At this point, we need an expression for Aũ∞ as a function of our observed velocity. For this, we take the

amplitude of the GM velocity profile in Equation 4.20 and plug in z1 for z to find

Aũobs
= Aũ∞

∣∣∣∣1− K0(z1)

K0(z0)

∣∣∣∣ . (D.11)

Finally, to determine the high frequency parameterized average bottom stress, we use the drag coefficient

from Equation 4.10 with the high frequency parameterization, Equation 4.14, to find that

τ0hf =
ρκ2|ũobs|ũobs[

ln
(

z1
z0

)
+ 2Π sin2

(
π
2
z1
h

)]2 . (D.12)

Plugging Equations D.11 and D.12 into Equation D.10, we then obtain

τ0 =
ρκ2|ũobs|ũobs[

ln
(

z1
z0

)
+ 2Π sin2

(
π
2
z1
h

)]2 +

√
lw
2
ρωAũobs

ℜ
{
eiωt(i− 1)

√
z0K1(z0)−

√
hK1(h)

K0(z0)

}
∣∣∣1− K0(z1)

K0(z0)

∣∣∣ , (D.13)

which matches Equation 4.22. It is important to note that the average bottom stress parameterization is

intended for velocities measured outside of the wave boundary layer. A more accurate parameterization

would use a similar correction to the correction found in Equation D.11. However, this correction would
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depend on how the details of the wave shape affects the calculation of |ũobs|ũobs. Because our observations

are never far enough into the wave boundary layer that orbital velocity amplitudes are significantly

decreased, the lack of this correction has minimal impact on our final calculations. For future studies we

recommend that at least one measurement be taken of wave velocities above the wave boundary layer if

possible.
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Appendix E

Selecting Velocity Amplitude For Bottom
Stress Calculation

To calculate the time dependent bottom stress, τ0, we use Equation 4.22, which is derived using

the Grant and Madsen (1979) velocity profile. The right hand side of Equation 4.22 contains the bottom

roughness length scale, z0, as well as the wave boundary layer height, zw, the observed velocity oscillation

amplitude, Aũobs
, and velocity oscillation frequency, ω. Given z0, Aũobs

, and ω, we can solve for τ0 using

a root finding algorithm because zw is exactly determined by τ0 and ω. To determine z0 we perform a fit

to observed turbulent dissipations and to determine ω we use the frequency with the highest variance

from the observed pressure time series. This leaves Aũobs
as the remaining value to be determined from

the observed velocity time series.

To determine the best approach for selecting Aũobs
, we perform the z0 fit for a range of methods

and examine the residuals. We tried 2 main methods. First we used the velocity variance, drawing a

parallel to typical methods for calculating significant wave height (Becker et al., 2016). We tested using

the total signal variance and the variance in the IG frequency band. For all variance based methods, we

found that predictions during periods with a few very large waves underestimated dissipation. Therefore,

we decided to instead use a specified velocity percentile to determine Aũobs
. This would allow us to account

for particularly large waves that will increase the average dissipation without significantly affecting the

overall velocity variance.

Figure E.1 Shows the results of the z0 fit using whole percentiles from 99% to 91%. The top two

plots show the r2 and Kolmogorov-Smirnov (KS) test p-value for each of the fits. These 2 tests show

different peak percentiles, suggesting that the best percentile lies between 98% and 95%. The histograms

show the same as Figure 4.5 for each percentile. In these, we see that for very high percentiles, such as

99%, wave impacts are occasionally overpredicted, skewing the distribution. Similarly, for lower percentiles,

like 91%, wave impacts are occasionally underpredicted, again leading to a skewed distribution. To pick a
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best percentile, we look for the distribution that leads to the full residual distribution, distribution of

high wave periods, and distribution of low wave periods all having peaks near 0. This implies that the

wave prediction method during periods of high wave energy fits the same z0 as the well established mean

current cases.

Figure E.1. (a) r2 value of the intermediate frequency regime fit for the lower instrument at Location 5
plotted against the velocity percentile used as the observed velocity oscillation amplitude when calculating
the time dependent bottom stress. (b) the Kolmogorov-Smirnov (KS) test p-values for the same fits.
(c)-(k) histograms of the residuals of those same fits with all data points shown in the purple histogram
and the data points split between strong wave periods and weak wave periods shown in the yellow and
red histograms respectively.

Based on all of these factors, we choose the 97th percentile of the velocity time series as the best

estimator for Aũobs
at the lower instrument for location 5. We also find that this estimator works well for

the instrument at location 7. For the upper instrument at location 5, we find that the variance based

estimators work better. This is likely due to the surface effects discussed at the end of Section 4.6.3, and

we therefore use the same 97% estimator as for the other instruments.

We highlight that it is important to do these tests for each location independently as there is no

clear reason why the same percentile would be true at all locations. Furthermore, the fitted z0 increases

as the percentile is decreased creating the potential for a miss-characterization of bottom roughness if an

incorrect velocity amplitude is chosen. For our data, we considered 98% through 95% as potential choices.

The fitted z0 for these percentiles varies from 0.0016m to 0.0027m. all of these lie within the upper and
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lower limits shown in Table 4.1, suggesting that we could have reasonably chosen any of the percentiles

that fit the criteria presented above.
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Identifying Academic Cultural Conflicts in Coastal Physical Oceanography
I want to start by giving you some background on my project to introduce you to why I

am asking the questions I am asking.
Over the past few years of my Physical Oceanography PhD, I have found it surprisingly

difficult to identify a physics theory-based research question that is grounded in working towards
solving a societal problem as much as I want it to be.

In thinking about this, I have come to understand it as a conflict between two different
parts of my life. First, I have learned from my family to view science as a method for finding
solutions to practical social concerns. Second, my theoretical physics education has taught me to
heavily value novelty over most other research aspects.

For this project I want to understand whether similar conflicts are common in coastal
physical oceanography broadly. To approach this question, I am examining the expectations that
people feel are placed on them from a variety of places. I will ask you what expectations you feel
are placed on you as a researcher, and will ask follow up questions to encourage you to think
about formalized workplace expectations, informal expectations placed on you by your peers,
what you expect from yourself, or any other source you can think of.

During the Interview, we will ask the following questions, along with relevant follow ups.

1. Can you tell me a little bit about your background, who you are, and what you do? Aim to

summarize this in a few minutes.

2. What expectations do you feel are placed on you as a researcher?  Can you identify the

source/s of these expectations?

3. What challenges do these expectations place on how you do your work? What

invitations do they offer?

4. Do you feel that any of these expectations conflict with each other? How?

5. Are there things about academia that you would change to address these challenges?

What would you change?  What would you not change?

Appendix F

Pre-Interview Handout
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ESA, 2018: Los peñasquitos lagoon enhancement plan. Tech. rep., Los Peñasquitos Lagoon Foundation.
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