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RESEARCH ARTICLE

Generation of tissue-engineered small intestine using embryonic
stem cell-derived human intestinal organoids
Stacy R. Finkbeiner1,2, Jennifer J. Freeman2,3, Minna M. Wieck4, Wael El-Nachef4, Christopher H. Altheim1,
Yu-Hwai Tsai1, Sha Huang1, Rachel Dyal5, Eric S. White5, Tracy C. Grikscheit4, Daniel H. Teitelbaum2,3 and
Jason R. Spence1,2,6,*

ABSTRACT
Short bowel syndrome (SBS) is characterized by poor nutrient
absorption due to a deficit of healthy intestine. Current treatment
practices rely on providing supportive medical therapy with parenteral
nutrition; while life saving, such interventions are not curative and
are still associated with significant co-morbidities. As approaches to
lengthen remaining intestinal tissue have been met with only limited
success and intestinal transplants have poor survival outcomes, new
approaches to treating SBS are necessary. Human intestine derived
from embryonic stem cells (hESCs) or induced pluripotent stem cells
(iPSCs), called human intestinal organoids (HIOs), have the potential
to offer a personalized and scalable source of intestine for
regenerative therapies. However, given that HIOs are small three-
dimensional structures grown in vitro, methods to generate usable
HIO-derived constructs are needed. We investigated the ability of
hESCs or HIOs to populate acellular porcine intestinal matrices and
artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds, and
examined the ability of matrix/scaffolds to thrive when transplanted
in vivo. Our results demonstrate that the acellular matrix alone is not
sufficient to instruct hESC differentiation towards an endodermal or
intestinal fate. We observed that while HIOs reseed acellular porcine
matrices in vitro, the HIO-reseeded matrices do not thrive when
transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds
thrive in vivo and develop into tissue that looks nearly identical to adult
human intestinal tissue. Our results suggest that HIO-seeded PGA/
PLLA scaffolds are a promising avenue for developing the mucosal
component of tissue engineered human small intestine, which need
to be explored further to develop them into fully functional tissue.

KEY WORDS: Human intestinal organoids, Tissue-engineered
intestine, Matrix, Scaffold

INTRODUCTION
Short bowel syndrome (SBS) is characterized by poor nutrient
absorption due to a deficit of healthy intestine after surgical removal

of diseased tissue and is associated with a loss of greater than 50% of
normal intestinal length (Spencer et al., 2005; Sukhotnik et al., 2005;
Wales and Christison-Lagay, 2010). SBS often affects neonates and
children and has mortality rates up to 10–30% (Hess et al., 2011;
Spencer et al., 2005; Vanderhoof and Langnas, 1997). Within the
pediatric patient population, necrotizing enterocolitis is becoming
the most common disease leading to SBS (Modi et al., 2008;
Spencer et al., 2008; Wales et al., 2005). In addition to the high
mortality and morbidity, there are high, long-lasting costs of care for
SBS patients (Spencer et al., 2008). Current treatment practices
focus on a multidisciplinary approach to providing supportive
medical therapy with supplemental or total parenteral nutrition
(TPN) (Sulkowski and Minneci, 2014). While such measures have
generally improved survival and parenteral weaning rates (Hess
et al., 2011; Modi et al., 2008), there are still complications
associated with TPN including metabolic complications
(hyperglycemia, hypophosphatemia), liver failure and catheter-
related morbidity and sepsis (ChrisAnderson et al., 1996; Sulkowski
andMinneci, 2014). Therefore, treating diseases that lead to SBS is a
major challenge in pediatric gastroenterology (Goday, 2009).

The length of remaining healthy tissue is a key determinant of
patient outcomes in SBS. After surgery, the intestine adapts and
increases in circumference and length in an attempt to compensate
for the loss of tissue (Dekaney et al., 2007; Garrison et al., 2009;
McDuffie et al., 2011; Seetharam and Rodrigues, 2011). Surgical
lengthening procedures have been explored to exploit this
phenomenon but result in far less than a 2-fold increase in length
(Chang et al., 2006; Khalil et al., 2012; Oliveira et al., 2012; Scott
et al., 2015). Intestinal transplants are an alternate approach;
however, graft rejection rates near 60% within five years post
surgery (Seetharam and Rodrigues, 2011). Therefore, new
approaches are to treat SBS needed. We have described a system
that allows us to efficiently differentiate human embryonic stem
cells (hESCs) and induced pluripotent stem cells (iPSCs) into three-
dimensional intestinal tissue, called human intestinal organoids
(HIOs) in vitro (Finkbeiner and Spence, 2013; McCracken et al.,
2011; Spence et al., 2010), and have demonstrated that HIOs
develop adult architectural and molecular features when placed into
an in vivo environment such as a mouse kidney capsule (Finkbeiner
et al., 2015; Watson et al., 2014). Since induced pluripotent stem
cells can be generated from patient cells through cellular
reprogramming (Takahashi et al., 2007), iPSCs are a valuable
source of patient-specific tissue that could be used for tissue
engineering approaches aimed at generating autologous small
intestine for transplantation.

While HIOs may be a viable approach to treat SBS, how to scale
small HIO constructs into viable intestine remains a challenge. Here,
we explored two distinct approaches to create scaffolds for tissue
engineering the small intestine: (1) decellularized porcine intestinalReceived 10 August 2015; Accepted 8 September 2015
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ECM scaffolds and (2) porous polyglycolic/poly L lactic acid
(PGA/PLLA) scaffolds (Barthel et al., 2012; Grant et al., 2015;
Levin et al., 2013; Sala et al., 2011; Wulkersdorfer et al., 2011). We
reasoned that either of these approaches, if successful, would be
scalable in order to generate a tissue engineered small intestine
(TESI) construct suitable for transplantation. Moreover, PGA/
PLLA scaffolds have been successfully used to generate TESI
constructs from human cells and donor tissue (Costello et al., 2014;
Grant et al., 2015; Levin et al., 2013).
Here, we demonstrate that decellularized porcine intestine is a

tractable substrate for reseeding with HIOs in vitro, but proves less
promising for use in vivo or for providing lineage-specific
differentiation cues for human pluripotent stem cells. In contrast,
use of a PGA/PLLA scaffolds supports HIO growth in vivo and
results in the development of a tissue that is strikingly similar to the
native adult human intestine, with characteristic architectural
features and cell types with the correct spatial organization of
intestinal cells relative to adult human small intestine. However,
HIO-seeded scaffolds lack important elements required for full
functionality such as an enteric nervous system, which is involved in
motility. We demonstrate as proof-of-principle that additional
cellular inputs are able to provide neuronal components, which
integrate into the scaffold adjacent to HIO-derived epithelium.
Taken together, our results suggest that HIOs can be successfully
used to generate TESI constructs, and that PGA/PLLA scaffolds are
suitable for further tissue engineering approaches to develop
functional intestine.

RESULTS
Successful seeding of a scaffold with HIOs or precursor cells is the
first step in developing a transplantable tissue-engineered intestine.
A necessary complement to this first step is determining which cells
are capable of reseeding the scaffold and how those cells behave on
the scaffold over time. Tissue-engineered intestine suitable for
transplantation will need to exhibit the characteristics of normal
intestine by containing all of the appropriate differentiated intestinal
cell types including enterocytes, goblet cells, Paneth cells, intestinal
stem cells (ISCs), enteroendocrine cells and intestinal mesenchymal
cells, while lacking other lineages that are not present in the
intestine. We took a multi-pronged approach to generating TESI
utilizing native and engineered scaffolds and starting with both
embryonic stem cells (hESCs) and human intestinal organoids
(HIOs) (Finkbeiner and Spence, 2013; McCracken et al., 2011;
Spence et al., 2010). Native scaffolds were prepared by
decellularizing both porcine and human small intestine following
a protocol that has been previously used to prepare acellular lung
scaffolds (Booth et al., 2012) (Figs 1, 2, Fig. S1). Following
decellularization, acellular intestinal matrix was reseeded with two
different cell sources: hESCs (Fig. 1A) and HIOs (Fig. 1B).
Collagen substrates have been shown to support maintenance and
expansion of epithelial cells and an artificial scaffold made of
polyglycolic/poly L lactic acid (PGA/PLLA) has previously been
shown to be a successful substrate for generating TESI from minced
human small intestine (Grant et al., 2015; Jabaji et al., 2014, 2013;
Levin et al., 2013). Therefore, we also tested this approach by
seeding HIOs onto PGA/PLLA scaffolds (Fig. 1C).

Decellularization of intestinal matrix
Segments of porcine and human small intestine were subjected to a
series of detergent washes followed by DNase treatment in order to
remove all cellular components from the extracellular matrix (ECM)
(Fig. 2A). Acellular scaffolds were also acid-treated for sterilization.

Human intestine was challenging to decellularize due to copious
visceral fat associated with the mesentery (Fig. S1). Thus, while we
were able to successfully decellularize the human intestine, we
chose to focus on the use of porcine intestine, as it is also a more
readily available source of matrix. DNA content was measured at
various stages during the decellularization process and efficient
removal of cells and DNA from the intestinal tissues was confirmed
(Fig. 2B). Intestinal matrix was sectioned and examined using
nuclear DAPI stain to visually confirm the removal of all nuclear
material from host cells (Fig. 2C). To ensure that our
decellularization process does not substantially alter the
architecture of the intestinal matrix, we also examined histological
sections of matrix using hematoxylin and eosin. The gross
architecture appears to be in tact given that villus projections are
still visible (Fig. 2D). Furthermore, extracellular matrix proteins
laminin, collagen II and IV, which are expressed in the intestine
(Barnes et al., 2011; Simon-Assmann et al., 1995), are detectable
after decellularization (Fig. 2E).

Acellular intestinal matrix does not induce differentiation of
human pluripotent stem cells
We wanted to explore the possibility that native acellular intestinal
extracellular matrix could provide instructive cues to promote
differentiation of human embryonic stem cells (hESCs) into
intestinal tissue and thereby present an option for reseeding these
scaffolds. To test this possibility, we seeded H9 hESCs onto small
(∼3 mm×3 mm) full-thickness sections of acellular porcine matrix
and monitored their growth in vitro for up to 4 weeks with daily
changes of mTeSR™1 stem cell media. Gross analysis based on
media utilization suggested that the stem cells adhered to the matrix
and were able to be maintained for up to 4 weeks in culture. hESC-
seeded matrices were collected and examined by histology at
weekly intervals. Sections of hESC-seeded matrix showed clumps
of adherent cells present on the surface of the matrix (Fig. 3A,B).
Cells did not appear to migrate/infiltrate into the matrix. Moreover,
cell clumps appeared to be a heterogeneous population after
4 weeks with only some of the cells expressing the epithelial cell
marker E-cadherin (ECAD) (Fig. 3B). The observation that seeded
hESCs were heterogeneous suggested that some of them had
differentiated.

To examine the identity and potential differentiation state of
hESCs seeded onto matrix, RNA was collected at weekly intervals
for 4 weeks post-seeding. hESC-seeded matrices were examined
for markers of pluripotency (OCT4, NANOG, SSEA1) as well as
markers of the three germ-layers that the hESCs could become:
endoderm (SOX17, FOXA2, PDX1, CDX2), mesoderm (FOXF1,
VIM, T, HAND1), and ectoderm (SOX1, NES, TUJ1, OTX2)
(Fig. 3C) and compared to the expression of these genes in
conditions where stem cells were directed to become endoderm,
followed by hindgut (HG), followed by HIOs (Fig. 3D, note
differences in y-axes). Collectively, our results demonstrate that
hESCs seeded onto acellular porcine intestinal matrix did not
undergo lineage-specific differentiation, suggesting that the matrix
alone does not provide instructive cues for differentiation. We
observed that stem cell genes OCT4 and NANOG are highly
expressed on hESC-seeded matrices throughout the 4 weeks in
culture though SSEA1 is more variable in expression and appears
to decrease over time (Fig. 3C, top panel). This was in contrast to
directed differentiation, which showed reduced expression of stem
cell genes at different stages (Fig. 3D, top panel). Endodermal
markers SOX17 and FOXA2 which are highly expressed in
endoderm were not highly expressed at any time point in the
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Fig. 1. Schematic of approaches to generating bioengineered intestine. (A) Porcine or human small intestinewere harvested and processed through a series
of detergent washes followed by treatment with sodium deoxycholate and DNase in order to remove cells and remaining nuclei and DNA content. The acellular
scaffolds were then reseeded with human pluripotent stem cells and analyzed for the ability of the cells to efficiently reseed the matrix and whether the
matrix could push them towards and intestinal identity while being culture in vitro. (B) Porcine or human small intestine were harvested and processed through a
series of detergent washes followed by treatment with sodium deoxycholate and DNase in order to remove cells and remaining nuclei and DNA content. The
acellular matrix was then reseededwith HIOs and analyzed for the ability of the cells to efficiently reseed thematrix andwhether different intestinal cell populations
were present. They were analyzed after both in vitro culturing and after implantation into an immunocompromised mouse. (C) Nonwoven polyglycolic acid
scaffolds were wrapped around a glass pipette and treated with poly-L-lactic acid and chloroform to secure the tubular structure. They were then sterilized and
treated with collagen. HIOs were seeded onto the outside of the scaffold and then immediately implanted into an immunocompromised mouse and analyzed for
the ability of HIOs to reseed the scaffold and for the presence of different intestinal cell types.
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hESC-seeded matrices and there was no detection of PDX1 or the
intestinal transcription factor CDX2 that are both highly expressed
in HIOs, suggesting that the matrix itself cannot induce
differentiation of hESCs into endodermal lineages or intestine
(compare second panel Fig. 3C versus Fig 3D). In hESC-seeded
matrices, mesodermal markers were generally low with the
exception of VIM, whereas directed differentiation cultures
showed expression of different mesenchymal markers, consistent
with the fact that these cultures possess small portions of mesoderm
due to inefficient differentiation (Spence et al., 2010) (compare third
panel Fig. 3C versus Fig 3D). Lastly, hESC cultures showed
variable expression of ectoderm markers whereas directed
differentiation cultures had reduced expression of these markers at
each stage indicating lineage-specific differentiation (compare third
panel Fig. 3C versus Fig 3D). Collectively, these data show that
hESCs seeded onto acellular porcine intestinal matrix were not
driven down any specific lineage pathway. In addition, it did not
appear that hESCs re-seed the matrix with high efficiency.
Together, this data supports the notion that hESCs are not a good
cell source for TESI using an acellular scaffold.

HIOs efficiently reseed acellular intestinal matrix in vitro
Following a step-wise, directed differentiation approach that mimics
signaling events occurring during normal intestine development
in vivo (Fig. 1A), we are able to generate HIOs (Finkbeiner and

Spence, 2013; McCracken et al., 2011; Spence et al., 2010). HIOs
contain an outer layer of mesenchymal cells that surrounds a
complex epithelium. The epithelium contains the major
differentiated cell types found in the small intestine, including
absorptive cells (enterocytes), secretory cell lineages (Paneth,
goblet, enteroendocrine), as well as putative intestinal stem cells.
The intestinal identity and presence of both epithelium and
mesenchyme suggest HIOs might be an ideal cell source of
scalable tissue for reseeding acellular native matrices. Therefore we
generated HIOs according to our standard protocol (McCracken
et al., 2011). HIOs were cut in half and placed on the luminal
(epithelial) side of full thickness acellular matrix and cultured for up
to 4 weeks in vitro. HIOs attached to the matrices and both epithelial
(ECAD+) and mesenchymal (VIM+) cells were present (Fig. 4A).
In comparison to the hESCs, which remained on the surface of the
matrix, HIOs appeared to infiltrate the matrix. To evaluate the extent
of infiltration, serial cross sections were taken through an HIO-
seeded matrix and evaluated for the presence of cells (Fig. 4B,C).
The thickness of the matrix is∼1000 μm and cells could be detected
down through ∼600 μm. The remaining ∼300–400 μm on the
serosal side of the matrix lacked cells.

On reseeded matrices, epithelial cells were often observed along
the luminal surface of the matrix with an underlying layer of
mesenchymal cells beneath (Fig. 4D, upper left). Staining for
human nuclear antigen (HuNu) confirmed that the cells present on

Fig. 2. Decellularization of porcine small intestine. (A) Porcine small intestine is shown starting from whole tissue and then after subsequent stages of the
decellularization protocol resulting in the final acellular matrix that has a translucent appearance. (B) Small pieces of porcine intestine were collected at
various stages of the decellularization protocol to measure DNA content confirming that the protocol successfully removes existing DNA as there is a significant
reduction after the detergent washes and then the DNA content reaches zero by the final step of DNAse treatment. N=3 for each group. *P<0.05 based on
an unpaired t-test usingWelch’s correction, error bars represent s.e.m. (C) Porcinematrix was DAPI stained to confirm a lack of nuclei and co-stained with laminin
to outline the matrix. (D) Hematoxylin and eosin staining of a cross section of the matrix shows the preservation of the matrix structure with finger-like projections
into the lumen, which presumably represent the inner extracellular matrix cores of what were previously villi. Scale bar: 1 mm. (E) Serial cross sections of matrix
were stained for extracellular matrix proteins to further confirm the integrity of the acellular matrix. Collagens and laminin are still present even after
decellularization suggesting the decellularization process does not remove all extracellular matrix proteins.
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the matrix were of human origin and therefore not an artifact of
incomplete decellularization (Fig. 4D). HIO-seeded matrices were
further examined to determine the status of proliferation and
differentiation of the cells. As expected, a heterogeneous population

of cells was present on the matrix. Some were proliferating based on
Ki67 staining and other expressed markers of differentiated cell
types. Enterocytes (VILLIN+) and goblet cells (MUC2+) were both
readily detected (Fig. 4D). The intestinal transcription factor CDX2
was also readily detected suggesting the HIO-derived cells seeded
onto the matrix retain an intestinal phenotype.

Given the success in reseeding acellular matrices with HIOs and
culturing them in vitro, we next implanted HIO-reseeded matrices
into immunocompromised (NOD-SCID IL2Rgamma null) mice
(Ito et al., 2002) in order to evaluate the ability of the TESI construct
to engraft and survive in vivo. Matrices were reseeded with HIOs
and cultured in vitro for 2 weeks before being implanted
subcutaneously, into the omentum or under the kidney capsule.
These regions were chosen for preliminary in vivo experiments
because they are highly vascularized, and are often used as sites for
tissue transplantation (Raghavan et al., 2011). Seven HIO-seeded
porcine matrices were implanted into 5 mice. Matrices were
retrieved and analyzed 14 weeks after implantation. Only 2/7
matrices contained human cells as confirmed by staining for human
specific β2 microglobulin (Fig. 4E). One was implanted
subcutaneously and the other into the kidney capsule. The human
cells were restricted to single large patches on each matrix. These
cells were ECAD+; however, they were not positive for the
intestinal transcription factor CDX2 (Fig. 4E), nor were they
positive for the intestinal differentiation markers MUC2 or VILLIN
(data not shown). From these data it was evident that very few HIO-
derived cells persisted on the matrix and those that no longer had an
intestinal phenotype. It should also be noted that multiple initial
implantation experiments were conducted for shorter lengths of
time (2–4 weeks) under various conditions (with and without
pumps to infuse the growth factor PDGF), but no human cells were
detected on the matrices in these experiments (data not shown).
Therefore, although HIO-seeded native matrices thrive in culture
they do not survive as in vivo implants under the experimental
conditions reported here.

HIOs seeded onto PGA/PLLA scaffolds thrive in vivo and
develop intestinal architecture
It has been demonstrated that the use of polymer scaffolds made
from PGA/PLLA is promising for generating human TESI when
seeded with minced human small intestinal tissue (Levin et al.,
2013). Given the limitations of acquiring patient-specific intestinal
tissue and the chance of rejection if using heterologous tissue, we
wanted to explore the use of HIOs as an alternative source of
intestinal cells on PGA/PLLA scaffolds. To test this possibility, we
seeded HIOs onto PGA/PLLA scaffolds using previously reported
methods (Barthel et al., 2012; Levin et al., 2013; Sala et al., 2011).
HIOs were seeded onto PGA/PLLA scaffolds and immediately

Fig. 3. Acellular porcine matrices seeded with pluripotent stem cells.
(A) H9 human pluripotent stem cells (hPSCs) are able to reseed acellular
porcine matrix but do not penetrate into the matrix very well as examined after
4 weeks post seeding. (B) Some stem cells that were seeded onto the matrix
expressed Ecad when analyzed 4 weeks post seeding suggesting that at least
a portion of the hPSCs had begun to differentiate. (C) hPSC-seeded porcine
matrices were analyzed by qRT-PCR at different time point to examine the
expression of stem cell, endoderm, mesoderm, and ectoderm markers. From
this analysis, it does not appear that porcine matrix drives hPSCs in any
specific direction of differentiation. (D) Cells were examined at different stages
during the development of HIOs to provide a reference for part C. As expected,
pluripotency markers are low and endodermal markers go up during the
development process. Note scale differences of the y-axes between C and D
for some genes. N=3 for each sample type. *P<0.05 based on an unpaired
t-test using Welch’s correction, error bars represent s.e.m.
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Fig. 4. Acellular porcine matrices seeded with HIOs. (A) HIOs are able to reseed acellular matrices and grow in vitro as shown by staining for epithelial
(ECAD+) andmesenchymal (VIM+) cells at 4 weeks post seeding. (B,C) Serial sections progressing from the luminal to serosal surface of amatrix show that HIOs
are able to migrate into the matrix and do not solely reside on the surface of the matrix. (D) HIO-seeded matrices show appropriate spatial orientation in
which epithelial cells line the luminal surface of thematrix andmesenchymal cells are oriented underneath (upper, right). Human nuclear antigen staining confirms
that the cells present on the matrices are of human origin and therefore derived from HIOs (lower, right). VILLIN and MUC2 staining show that HIO-seeded
matrices support at least some differentiated intestinal cell types, enterocytes and goblet cells respectively (upper, middle and right). Ki67 staining shows
proliferating cells present on the matrix and CDX2 staining further confirms that the cells are of an intestinal identity (lower, middle and right). (E) HIO-reseeded
matrices were implanted into immunocompromised mice and analyzed 14 weeks later. β2 microglobulin staining revealed that some matrices retained human
cells (top left). ECAD staining showed that these cells were epithelial (top middle) but the lack of CDX2 staining demonstrates they were not intestinal cells
(top right). Images from human intestine are shown for comparison (bottom row). Scale bars: 50 μm in A, D, (except upper left), E (lower right); 100 μm in E
(except lower right), D (upper left); 200 μm in C.
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implanted into NSG mice. Scaffolds were harvested and analyzed
after 12 weeks. Unlike with HIO-seeded porcine matrices, which
did not dramatically change size during the implantation period,
HIO-seeded PGA/PLLA scaffolds started out a similar size as
porcine matrices when implanted but were much larger at the time of
harvest (Fig. S2). Immunohistochemical analysis of HIO-seeded
PGA/PLLA scaffolds revealed efficient seeding of the scaffold
resulting in impressive intestinal architecture demonstrated by the
presence of epithelial (ECAD) lined villi containing mesenchymal
(VIM) positive cores (Fig. 5A versus Fig. 4E, lower panel).
β2 microblobulin and CDX2 staining confirm the human and
intestinal identity of the cells on the scaffold, respectively (Fig. 5A).
Markers of the major differentiated cells types located in the small

intestinewere detected on the HIO-seeded scaffolds. These included
goblet cells (MUC2), enterocytes (VILLIN), and enteroendocrine
cells (CHGA) (Fig. 5B). Furthermore, the HIO-seeded scaffolds
also contained crypt domains as evidenced by the presence of
mature Paneth cells marked by alpha-defensin 5 (DEFA5) staining,
proliferating Ki67+ cells, and intestinal stem cells marked by
OLFM4 (Fig. 5C). It should be noted that experiments in which the
scaffolds were recovered after only 4 weeks lacked prominent
intestinal architecture suggesting that longer transplant times were
important to obtain intestinal architecture (data not shown).
However, when provided enough time, the HIO-seeded scaffolds
developed into tissue that appears nearly indistinguishable from
healthy human adult small intestine.
Fully functional tissue engineered intestine will require cellular

components other than just the mucosa. For example, normal human
small intestine contains glia (S100b+) and neurons (NeuN+) in the
submucosal and myenteric plexi (Fig. 6A,D), which are involved in
intestinal motility (Bassotti et al., 2007). An additional experiment
was carried out to evaluate the presence of neuronal cell types in
HIO-seeded PGA/PLLA scaffolds. PGA/PLLA scaffolds seeded
with HIOs lacked S100b or NeuN positive cells (Fig. 6B,E).
However, supplementation of HIO-seeded PGA/PLLA scaffolds
with previously described organoid units (OU) (Barthel et al., 2012;
Levin et al., 2013; Sala et al., 2011) prepared from actinGFP mice
resulted in GFP+/S100b+ glia in the myenteric plexus (Fig. 6C) and
GFP+/NeuN+ neurons predominantly in the submucosal layer
(Fig. 6F). The S100b+ and NeuN+ cells were negative for human
mitochondrial staining (hMito) confirming they are derived from the
murine organoid units as indicated by the GFP signal. Importantly,
GFP+ neuronal elements were adjacent to hMito+ epithelium
suggesting that the neuronal elements integrated into the scaffold
with the HIO-derived epithelium. This indicates that while
transplantation of HIOs in PGA/PLLA scaffolds results in
impressive architectural development, they are still lacking
neurons, and will need to be paired with additional cellular inputs
to completely recapitulate human small intestine.

DISCUSSION
We pursued multiple approaches to generating tissue engineered
human small intestine starting from hESCs or HIOs and either
acellular intestinal matrices or artificial polymer scaffolds. We
showed that we could successfully decellularize porcine intestine in
order to use it as a substrate for seeding HIOs to create tissue
engineered small intestine. A perceived advantage of using acellular
intestinal matrices is that the matrix itself may retain cues to promote
intestinal differentiation or cell survival. However, stem cells seeded
onto porcine matrices were not induced to take on an endodermal or
intestinal phenotype, suggesting that decellularized matrix prepared
via our described protocol lacked the required signals for stem cell

differentiation. Porcine matrices could be readily reseeded and
maintained in vitro with HIOs. However, these reseeded matrices
did not perform well once placed in an in vivo context as few
matrices retained any human cells and the few human cells that did
remain were not intestine. It is unclear why this was the case as we
have previously shown that HIOs that are implanted on their own
into mice will grow and develop crypt-villus architecture (Watson
et al., 2014). One possible hypothesis is that the matrix actually
blocked infiltration of necessary cells, such as the vasculature, that
are required to provide critical support to maintain the HIOs in vivo.
It is also possible that our method of decellularization removed
important growth factors or other cues that could promote cell
survival and engraftment in vivo. Indeed, in future experiments it is
possible that different decellularization methods may prove to
enhance in vivo engraftment.

Although HIOs can develop intestinal architecture on their own
when placed in vivo, they grow as small closed spheres, or as small
multi-luminal structures, and therefore would ultimately be difficult
to connect with existing small intestine, especially when scaling up
to generate a construct that could be used to effectively treat a
patient. Therefore, a tubular shaped scaffold that has the ability to be
reseeded by multiple HIOs alleviates some of these challenges. We
demonstrated that HIOs grow quite well in vivo on a tube-shaped
PGA/PLLA scaffold and the resulting mucosal tissue is nearly
indistinguishable from normal adult human small intestine and
components of the enteric nervous system can be identified when
supplemented with additional cell types. Our results demonstrate a
proof-of-principle that HIOs in combination with a PGA/PLLA
scaffold offer a promising approach to generating tissue engineered
human intestine but that further inputs will be required to generate
fully functional tissue. Future work will be required to test the
scalability of this approach and to further test the functionality of
these bioengineered tissues and ability to connect them with
existing intestine.

MATERIALS AND METHODS
Culturing of hPSCs and generation of HIOs
H9 human embryonic stem cells (Wicell International Stem Cell Bank,
Wicell Research Institute; Madison, WI, USA) were cultured under feeder-
free conditions in mTeSR1® (StemCell Technologies; Vancouver, BC, CA)
following standard protocols (Yermen, 2014). HIOs were generated as
previously described (McCracken et al., 2011; Spence et al., 2010; Xue
et al., 2013). The University of Michigan Human Pluripotent Stem Cell
Research Oversight (HPSCRO) committee approved all work using hESCs.

Decellularization of native intestinal matrices
Human intestine was obtained from deceased donors to theMichigan Gift of
Life program. Institutional IRB approval was obtained for use of human
tissues (University of Michigan IRB #HUM000105750). All animal
experiments (pig, mouse) were approved by the appropriate animal care
use committees (PRO00004854, PRO00004296). The decellularization
protocol was adapted from a protocol used to decellularize lungs (Booth
et al., 2012). Briefly, ∼6–8 inch-long intestinal segments were flushed with
PBS hourly for 8 h and then left rocking overnight in PBS. After overnight
washing in PBS, intestinal segments were rinsed again in PBS and flushed
with 0.1% Triton X-100 (Sigma-Aldrich, St Louis, MO, USA) hourly for
8 h and left rocking in the solution in between flushings. Intestinal segments
were then flushed with 2% sodium deoxycholate (Sigma-Aldrich) and left
rocking for 4 h. Segments were washed with PBS and flushed with 1 M
NaCl (Sigma-Aldrich) for 1 h to lyse nuclei followed by one 4 h treatment
with DNase (10,000 units; Life Technologies, Carlsbad, CA, USA) in
1.3 mMMgSO4 (Life Technologies) and 2 mM CaCl2 (Life Technologies).
After DNase treatment, matrices were sterilized in 0.18% peracetic acid and
4.8% ethanol (Sigma-Aldrich) for 30 min, washed three times in sterile
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Fig. 5. PGA/PLLA scaffolds seeded with HIOs. (A) PGA/PLLA scaffolds were seeded with HIOs, implanted into immunocompromised mice, and analyzed
13 weeks later. HIOs successfully reseeded PGA/PLLA scaffolds and developed villus structures (top left). β2 microglobulin (top middle) and CDX2 (top right)
staining confirmed the human and intestinal identities of the cells, respectively. (B) Staining confirms that cells found on the HIO-seeded PGA/PLLA scaffolds
include goblet cells (MUC2; top left), enterocytes (VILLIN; top middle), and enteroendocrine cells (chromogranin A, ChgA; top right) which are all cells types that
normally reside on the villi. Normal human small intestine is shown for comparison (bottom row). (C) HIO-seeded scaffolds develop crypts where Paneth cells
(DEFA5; top left) and proliferating cells (Ki67; top middle) including intestinal stem cells (OLFM4; top right) are concentrated. Normal human small intestine
is shown for comparison (bottom row). Scale bars: 50 μm.
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PBS, and then stored in sterile PBS containing fungizone (2.5 μg/ml, Life
Technologies) and penicillin/streptomycin (100 μ/ml, 100 μg/ml, Life
Technologies).

In vitro seeding experiments
See Fig. 1 for a summary of in vitro seeding experiments. Decellularized
intestines were cut open and divided into ∼3 mm×3 mm-square sections.
Each matrix section was then placed into a single well of a 96-well tissue
culture treated plate with the mucosal surface facing up to be reseeded with
either stem cells or human intestinal organoids (HIOs).

To reseed matrices with stem cells, H9 hESCs (Wicell International Stem
Cell Bank, Wicell Research Institute; Madison, WI, USA) growing under
feeder-free conditions were treated with dispase (Invitrogen, Carlsbad, CA,
USA) and mechanically released from tissue culture dishes using a cell
scraper. Colonies were broken into smaller sized aggregates of stem cells as
is normally done for splitting of stem cells. Fragmented colonies totaling
∼100×104 stem cells were pipetted directly onto the mucosal surface of each
3 mm×3 mm matrix and allowed to adhere for 30 min before the matrices
were completely covered with mTeSR1® (StemCell Technologies,
Vancouver, BC, Canada) stem cell media. The following day, matrices
were transferred to a fresh 96-well in order to completely remove the
matrices from any remaining unattached stem cells. Matrices were then fed
on a daily basis with fresh mTeSR1® (StemCell Technologies) and collected
for analysis at 1, 2, and 4 weeks post seeding.

To reseed matrices with HIOs, 1–2 month old organoids were removed
from matrigel and cut in half using a scalpel. Excess matrigel was also
trimmed away from the HIOs. Using forceps, the organoid halves were
placed epithelial side face down onto the mucosal surface of the matrices.
HIOs used for these experiments were generally all approximately the same

size and 5 halves were placed onto each matrix. HIO-seeded matrices were
placed in a tissue culture incubator for 1 h without any media to allow the
HIOs to attach to the matrix prior to covering them with the standard growth
media for HIOs. Media was replaced every 2–3 days as needed and HIO-
seeded matrices were collected at 1 day, 1 week, 2 week, and 4 week time
points post seeding.

Implants of native matrices
Immediately before implantation, implants were marked with a 6-0 prolene
stitch in the corner to assist with identification at explant. After induction of
appropriate anesthesia, mice underwent either a midline or right subcostal
incision. Mice with midline incisions had implants placed in the omentum
and subcutaneously. Mice with subcostal incisions had implants placed in
the renal capsule and subcutaneously. Reseeded scaffolds were left in host
for 14 weeks and mice were euthanized immediately prior to removal.

Generation of PGA/PLLA scaffolds
As previously described (Sala et al., 2011), the scaffold consisted of 2 mm
thick nonwoven polyglycolic acid with a porosity of >95% (Concordia
Fibers). This polymer was wrapped around a 1.5 mm diameter glass
capillary pipette and then treated with 5% poly-L-Lactic acid (Durect
Corporation, Cupertino, CA, USA) in chloroform (Sigma-Aldrich), thus
allowing it to retain a tubular form. The scaffold was sterilized with 75%
ethanol and then coated with 0.4 mg/ml type I collagen (Sigma-Aldrich) at
4°C for 20 min. After rinsing with sterile phosphate buffered saline, the
polymer was stored in a desiccator at room temperature to prevent
hydrolysis and degradation. On the day of the experiment, 3 mm-wide
sections of the tubular polymer were cut prior to being seeded with
intestinal organoids.

Fig. 6. PGA scaffolds seeded with HIOs and GFP OU. The first group of PGA scaffolds were seeded with HIOs alone and the second were seeded with HIOs
supplemented with OU derived from actinGFPmice. All constructs were implanted into the omentum of adult NOD/SCID mice and then harvested at 12 weeks.
(A) Normal human small intestine contains glia (S100b) in the submucosal and myenteric plexi. (B) Staining tissue engineered intestine from HIO alone
demonstrated no S100b+ glia. (C) Supplementation with murine GFP OU resulted in GFP+/hMito−/S100b+ glia predominantly in the myenteric plexus.
(D) Normal human small intestine contains neurons (NeuN) in the submucosal and myenteric plexi. (E) Tissue engineered intestine derived from HIO alone
demonstrated no NeuN+ structures. (F) Supplementation with GFP OU resulted in GFP+/hMito−/NeuN+ neurons predominantly in the submucosal layer. Scale
bars: 100 μm; 50 μm in C and F, insets.

1470

RESEARCH ARTICLE Biology Open (2015) 4, 1462-1472 doi:10.1242/bio.013235

B
io
lo
g
y
O
p
en



Implants of PGA/PLLA scaffolds
Intestinal organoids were removed from matrigel and their normal growth
media and were individually transferred by gentle pipetting onto the outer
surface of the scaffold, for a total of 20 HIOs per scaffold, with a total of 4
scaffolds. For experiments involving organoid units, organoid units were
derived from actinGFPmice, prepared as previously described (Barthel et al.,
2012; Levin et al., 2013; Sala et al., 2011), and mixed with HIOs prior to
seeding on each scaffold. Similarly to a previously used implantation
protocol (Barthel et al., 2012), each seeded scaffold was surgically
implanted within the omentum of a host NOD/SCID gamma mouse
(Jackson Laboratories, Bar Harbor, ME, USA) (Ito et al., 2002) irradiated
with 350 cGY prior to implantation to prevent immunologic rejection.
The omentum was retracted from the mouse peritoneum, wrapped around
the seeded scaffold, and sealed by suturing to securely contain the implant.
The implant/omentum unit was then reduced back into the peritoneal cavity
and the surgical incision was sutured closed. Post-operative treatment
included 3 days of 2 ml ibuprofen (100 mg/5 ml; Major Pharmaceuticals,
Livonia, MI, USA) and 12 weeks of 2 ml of sulfamethoxazole (200 mg/
40 mg/5 ml; Qualitest Pharmaceuticals, Huntsville, AL, USA) per 200 ml
autoclaved drinking water. After 12 weeks, host mice were euthanized
within a CO2 chamber and implants were harvested and fixed in formalin
prior to preparation in paraffin for histologic evaluation.

DNA extraction
Tissues were weighed prior to extraction and then DNAwas extracted using
a DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA, USA) following
the manufacturer’s protocol. DNA concentrations were measured using a
Nanodrop Instrument and normalized to the starting tissue weight.

Immunofluorescence
Paraffin sections were stained following standard histology and
immunofluorescence protocols as previously described (Dye et al., 2015;
Spence et al., 2010). Primary antibodies used are listed in Table S1. Images
were collected using an Olympus IX71 epifluorescent microscope
(Olympus Corporation, Center Valley, PA, USA). All post acquisition
image processing (brightness and contrast) was applied uniformly to all
comparable images. Image adjustments were made for clarity and do not
obscure, eliminate or misrepresent the original data.

qRT-PCR
RNA was extracted from re-seeded matrices and HIOs alone using Trizol
(Life Technologies) and following the manufacturer’s protocol.
SuperScript®Vilo™ reverse transcriptase (Life Technologies) was used to
generate cDNA and qRT-PCR reactions were carried out using QuantiTect
Sybr® Green (Qiagen). Reactions were run under the following conditions:
40 cycles of 95°C for 15 s, 55°C for 30 s, and 72°C for 45 s, followed by a
melt curve of 95°C for 15 s, 60°C for 1 min and then increasing temperature
up to 95°C at 0.5° increments. Primer sequences were provided in the
Human qPrimerDepot (http://primerdepot.nci.nih.gov/) and are listed in
Table S2.
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