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Global Warming and the Population Externality

Henning Bohn and Charles Stuart∗

April 22, 2011

Abstract

We calculate the harm a birth imposes on others when greenhouse gas emis-

sions are a problem and a cap limits emissions damage. This negative popu-

lation externality, which equals the corrective Pigovian tax on having a child,

is substantial in calibrations. In our base case, the Pigovian tax is 21 percent

of a parent’s lifetime income in steady state and 5 percent of lifetime income

immediately after imposition of a cap, per child. The optimal population in

steady state, which maximizes utility taking account of the externality, is about

one quarter of the population households would choose voluntarily.
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seminar participants at Georgetown University, Lund University, the Norwegian School of Economics

and Business Administration (Bergen), and UCSB.
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We study a simple idea: if greenhouse gas emissions are a problem, then so is pop-

ulation. Specifically, we quantify the harm a birth imposes on others (the population

externality). That population matters is not novel; a novelty is to put numbers on

how much it matters if total emissions are a problem.

The mechanism of the population externality depends on whether policy restricts

emissions. Because the externality may be very large if emissions are a serious problem

but are left unrestricted,1 we study a cap. This avoids exaggerating the population

externality. Under a binding cap, total emissions are constant and equal per-person

emissions times population, so a marginal birth requires lower per-person emissions.

This reduces everyone else’s living standards.2

A consequence is that the optimal population, which maximizes the utility of the

representative household taking account of the externality, is lower than the natural

population, which is the population households would choose without any population

policy to balance the externality.

We use a balanced-growth setting in which output is produced from labor and

greenhouse gas emissions. To avoid assuming away part of the emissions problem,

we assume factor productivities grow exogenously at constant rates as in Solow-

1Without a binding cap, a birth directly means more emissions and emissions damage borne by

others. Calculating the population externality then requires taking a stand on the economic damage

from marginal emissions. Marginal-damage assumptions are unnecessary under a cap.

The literature closest to the current paper is David Kelly and Charles Kolstad (2001), who study

the case without a cap. They argue that the assumptions in integrated assessment models that pro-

ductivity and population growth fall exogenously to zero are empirically unrealistic and reduce the

emissions problem. They also calculate of the welfare cost of a marginal birth assuming productivity

and population growth fall exogenously to zero.
2This logic is general: if the true state of the world is that greenhouse gas emissions cause no

external damage and a cap is nonetheless imposed, then a population externality is still induced.
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type models. Population and hence labor are determined endogenously by dynastic

households with Barro-Becker (1988, 1989) preferences who choose fertility optimally.

To model the arrival of knowledge about global warming, we divide time into two

stylized eras. The first is an “exponential-growth era” in which the possibility of

global warming is unrecognized, emissions are unrestricted, and population and emis-

sions grow exponentially. The second is a “cap era” in which people know emissions

might do damage and government imposes a cap that eventually binds. The cap era

is Malthusian in that population growth reduces incomes which in turn restrains pop-

ulation growth, but is non-Malthusian in that living standards rise over time because

of exogenous productivity growth.

We assume the transition between eras occurs at an instant, which sidesteps learn-

ing. We calibrate the model to the exponential-growth era and study the natural

and optimal populations in the cap era, calculating the sequence of Pigovian taxes on

having a child (optimal child taxes). These taxes measure the size of the population

externality as well as the policy incentives needed to get households voluntarily to

choose the optimal population. Both the population externality and the difference

between the natural and optimal populations are large in calibrations. Thus if emis-

sions are a serious enough problem so a cap is warranted, then too many people is

also a serious problem.

The optimal child policy in the model is at odds with current tax, welfare, and

schooling policies that subsidize children. A policy of discouraging fertility is also at

odds with calls to encourage population growth in order to maintain the solvency of

public pension systems such as social security.

The finding of negative population externalities contrasts with findings in new

growth theory (e.g. Michael Kremer, 1993; Charles Jones, 1999) that human capital

may generate scale or spillover effects, which amount to positive population external-

ities. It is an open question whether the sum of all population externalities is positive
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or negative.

Our analysis follows Jon Harford (1998), who shows that when fertility is endoge-

nous and people do things that generate negative externalities, then efficiency requires

optimal child taxes in addition to taxes on the underlying externality. In our case, a

cap is equivalent to a tax on emissions.

We model the essential details of a population externality under a cap in section

I. Section II describes the natural population in the exponential-growth era. Section

III describes the natural population in the cap era. Section IV describes the optimal

population and child taxes in the cap era. In section V, we extend the model by adding

time costs of children, a more general technology, and exogenously-given productivity

growth, which are important for calibrations. Section VI contains calibrations. Proofs

are in an unpublished appendix, to be available online.

I. SETTING

Denote the time-t adult population by Nt and aggregate labor by Lt = ltNt where

lt is per-capita labor. (Per-capita means per-adult.) A representative firm produces

output Yt under perfect competition from labor and Et units of greenhouse gas emis-

sions according to Yt = F (Lt, Et)(1 − δt), where F captures the productivities of

labor and emissions as inputs and δt is the share of output lost (damage) from global

warming at t. We add exogenously-growing factor productivity in section V.

We assume F has constant returns so F (L,E) = Lf(e), where et ≡ Et/Lt is the

emissions ratio and f is output per unit of labor. We assume f(0) = 0 for now but

relax this in section V. The marginal product of emissions must be driven to zero if

emissions are unrestricted so we assume there is a positive value e+ < ∞ at which

f ′(e+) = 0 with f ′(et) > 0 and f ′′(et) < 0 for 0 ≤ et < e
+, as in figure 1.3 Thus the

emissions ratio is constant at e+ in the exponential-growth era and input growth is

3Production resembles production in the Solow model, with E replacing K.
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balanced: E = e+L grows at the same rate as L. In the cap era with a binding cap,

on the other hand, total emissions are constant so growth in population and hence

labor causes e to decline, driving down output per unit of labor as indicated by the

arrows in the figure. In this way, a binding cap introduces a Malthusian force.

Figure 1. Input Distortion, and Geometry of the Real Population Externality

Although knowledge of how marginal damage depends on emissions is needed to

determine the optimal sequence of caps, it is not needed to determine the population

externality if the caps keep emissions low enough to avoid damage. We assume this:

the cap Ê <∞ is constant over time and holds damage to zero so δ drops and

Yt = F (Lt, Et) = Ltf(et) (1)

in both eras. The cap Ê may be optimal or suboptimal.4

4A constant cap Ê is optimal if damage is low up to Ê and rises sharply enough when emissions

exceed Ê. A constant cap eliminates interactions between changes in the cap and the population

externality. The assumptions that Ê is constant and that δt = 0 when a cap is in place could

be generalized by adding environmental state variables such as air temperatures and specifying a

process in which damage results from changes in the environmental state variables, which themselves
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Starting in a period indexed t = 0, government implements a cap by creating and

auctioning Ê permits each period, each permit allowing one unit of emissions in the

period so Et ≤ Ê for t ≥ 0. Treating permits as valid for a single period is in line

with U.S. legislative proposals that state that permits are not property rights and

that nothing restricts future government from terminating or limiting an emission

allowance.5

In the market for emissions permits, the government is the supplier and the rep-

resentative firm is the demander. The firm maximizes profits Ltf(et)− ptEt − wtLt,

where pt is the price of permits and wt is the wage. The first-order conditions are

pt = f ′(et) and wt = w(et) ≡ f(et)− etf
′(et).

The quantity of permits demanded at pt = 0 is e+Lt. If e+Lt < Ê, the cap

does not bind, pt = 0, and et = e+. If e+Lt > Ê, the cap binds, pt > 0, and

et = Ê/Lt < e
+. (If e+Lt = Ê, then pt = 0 and et = e+.) Compactly, the emissions

ratio is e(Lt) ≡ min(e+, Ê/Lt) for any Lt.

Because Lt = ltNt, a cap means the emissions ratio depends on population:

et = e(ltNt) = min(e+,
Ê

ltNt
). (2)

To highlight the dependence, we assume for now that per-capita labor is fixed and

normalized to one. Then labor equals population, per-capita emissions equal e(Nt),

and per-capita output equals f(e(Nt)).

depend on current and past emissions. The optimal cap in the transition to steady state would then

generally change over time and the magnitude of the changes would depend on detailed properties

of the damage process, about which knowledge is imperfect.
5We show in the appendix that the population externality would be internalized by parents if

current government can and does establish iron-clad permanent private property rights to the public

revenue stream from all permits to t = ∞. This is an interesting idea but is difficult to achieve

in practice. Permanence fails if government later changes policy to expropriate the “permanent”

rights. The U.S. legislative proposals acknowledge that this cannot be prevented.
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Population in turn depends on fertility nt ≥ 0. A large number of representative

dynastic households each contain a single adult who chooses nt continuously to max-

imize utility. When all households choose nt, the population growth factor is also nt,

that is, Nt+1 = ntNt.

Adults trade off own consumption and number of children. An adult’s consumption

ct ≥ 0 is per-capita income yt less the output cost of having and raising children to

adulthood, so ct = yt − χnt where χ is the output cost of a child. Maximum feasible

fertility is yt/χ.

We follow Robert Barro and Gary Becker’s (1988, 1989) specification of household

preferences. A period-t adult’s utility Ut is the sum of utility u from own consumption

plus utility from children:

Ut = u(ct) + β(nt)Ut+1, (3)

where children are identical and utility from children is the utility of a child times a

weight β that depends on the number of children.

We assume power utility with parameter θ > 0:

u(c) =
1

1− θ
c1−θ; (4)

the power form is needed later to allow for balanced growth. We also assume β is a

power function with parameters b0 > 0 and b > 0:6

β(n) = b0n
1−b. (5)

In Barro and Becker’s original specification, u is positive so θ < 1, and β is increas-

ing and concave. These ensure that parent’s utility rises at a decreasing rate with

the number of children. Larry Jones and Alice Schoonbroodt (2007) and Jones et al

6Power β has a sensible property: it is equivalent to assuming the utility an adult derives from

grandchildren, β(nt)β(nt+1)Ut+2, is independent of the number of children–see appendix.
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(2008) show that parent’s utility also rises at a decreasing rate with the number of

children if utility is negative so θ > 1, as long as β is decreasing and convex; they

argue this case may better explain historical fertility trends. We therefore consider

two cases: a Barro-Becker case with θ < 1 and b < 1, and a Jones-Schoonbroodt case

with θ > 1 and b > 1.7

From (3) - (5), the contribution of children’s consumption to parent’s utility is

β(nt)u(ct+1) = b0
ω(1−b)

(ntc
ω
t+1)

1−b where ω ≡ 1−θ
1−b

is the weight a parent places on

per-child consumption relative to the number of children. Equal curvatures (θ = b, so

ω = 1) mean the contribution depends on children’s aggregate consumption, ntct+1.

We do not rule out ω greater or less than one, but ω ≈ 1 seems reasonable because

children’s aggregate consumption may be an economic resource for the parent. Values

far less than one (parents care little about their children’s consumption relative to the

number of children), on the other hand, may be difficult to square with small families

in which parents devote substantial resources to ensuring children’s consumptions.

In choosing fertility, a household takes its income as well as the incomes and fer-

tilities of future generations as given. The latter determine the utility of children.

Generically (dropping time subscripts), the household maximizes

V (n, y, U) ≡ u(y − χn) + β(n)U

by choice of n ∈ [0, y/χ] given y > 0 and finite U, where U > 0 in the Barro-Becker

case and U < 0 in the Jones-Schoonbroodt case.

The first-order condition balances the costs and benefits of children:8

Vn(n, y, U) = −u′χ+ β ′U = 0. (6)

7Utility (3) is infinite if discount factors given by β are too great. In the Barro-Becker case we

assume β < 1 at maximum feasible fertility to ensure β(n) < 1 for all feasible n, so utility is finite.

In the Jones-Schoonbroodt case, we assume b0 < 1 so there is an n◦ < 1 at which β(n◦) = 1 with

β(n) < 1 for all n > n◦. This implies finite utility on paths with constant population.
8The second-order condition, Vnn = u′′χ2 + β′′U < 0, holds by assumptions on primitives.
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Because β and u are a power functions, the marginal value of children becomes

infinite so Vn → ∞ as n → 0, and the marginal cost of children becomes infinite so

Vn(n, y, U)→ −∞ as n→ y/χ (that is, as c→ 0). Continuity of Vn then implies that

for any finite y > 0 and finite U, there is a unique optimal fertility strictly between

zero and y/χ.

Income and children’s utility drive fertility. The partial elasticity of fertility with

respect to income is

εn,y ≡
y

n

∂n

∂y
= −

yVny
nVnn

=

[
b

θ
·
c

y
+
χn

y

]−1
. (7)

This elasticity is positive by assumptions on primitives. Note that child quality

(Becker, 1960) is constant at this point so (7) does not capture changes in fertility

associated with changes in child quality. We add an exogenous trend in child quality

in section V.

The sign of β′ determines how fertility changes with children’s utility, because

∂n
∂U

= β′

−Vnn
. In the Barro-Becker case, β ′ > 0, so fertility rises with U . In the Jones-

Schoonbroodt case, β ′ < 0, so fertility falls with U .

We close the model by assuming government redistributes revenue from emissions

auctions as equal lump sums to households. Per-capita income is therefore wages plus

transfers, TRt = ptEt/Nt = ptet. From the firm’s first-order conditions, per-capita

income equals output per unit of labor: yt = wt + ptet = f(et).

The combination of a permit auction with revenue redistribution to households can

represent a range of policies that restrict emissions. The combination is equivalent

here to: (i) issuing and giving permits to households who then sell them at price pt;

(ii) issuing and giving permits to firms owned by households; and (iii) imposing a tax

on emissions at rate f ′, which would just hold total emissions to Ê, and redistributing

the revenue to households.

In sum, the model describes an endogenous population-growth process. In the
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exponential-growth era, output per adult is f(e+), which leads to time paths of fer-

tility and population. When a cap is imposed and population growth is positive, et

and f(et) eventually fall as depicted by the arrows in figure 1. This alters the time

path of population. The exact path after a cap is imposed depends on how fertility

responds to induced changes in income and children’s utility.

II. POPULATION IN THE EXPONENTIAL-GROWTH ERA

A perfect-foresight solution in the exponential-growth era is a steady state with

constant fertility and utility that solves the household’s first-order condition. In any

steady state, (3) implies

U =
u(f(e)− χn)

1− β(n)
. (8)

The steady-state relationship between emissions and natural fertility is found by

substituting (8) into the first-order condition (6) to eliminate U :

S(n, e) ≡ −u′(f(e)− χn)χ +
β ′(n)

1− β(n)
u(f(e)− χn) = 0. (9)

With no cap, the emissions ratio is e+. Steady-state fertility n+ is the fertility that

solves S(n+, e+) = 0. Such an n+ exists and is unique.9 Steady-state utility U+ is the

value of (8) at (n+, e+).

In general, n+ may be greater or less than one. It is greater than one as long as

child costs are not too great a fraction of output. To focus on equilibria in which

9As n → f(e+)/χ, u′ →∞, so S(n, e+) → −∞. In the Barro-Becker case as n → 0, β′ →∞, so

S(n, e+) → ∞. Because S is continuous, S(n+, e+) = 0 for some n+ ∈ (0, f(e+)/χ). In the Jones-

Schoonbroodt case, 1/(1− β(n)) →∞ as n → n◦ from above (where β(n◦) = 1), so S(n, e+) →∞.

Because S is continuous, S(n+, e+) = 0 for some n+ ∈ (n◦, f(e+)/χ). (For n < n◦, β(n) > 1, so

S < 0.) From (9), ∂S
∂n

= u′′χ2 − β′u′χ
1−β + β′′(1−β)−(β′)2

1−β u, which reduces to u′′χ2 + β′′u at n such

that S = 0. Because β′′ < 0 and u > 0 in the Barro-Becker case, and β′′ > 0 and u < 0 in the

Jones-Schoonbroodt case, ∂S
∂n

< 0. Hence S crosses zero only once.
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population and emissions (Et = e+Lt) grow, we assume

χ < φf(e+) where φ ≡ 1/

(
1 +

(1− θ)(1− b0)

(1− b)b0

)
< 1. (10)

Equation (10) rearranges to S(1, e+) > 0, which ensures n+ > 1. Population and

emissions then grow without bound at constant rate n+ − 1 > 0.

III. NATURAL POPULATION IN THE CAP ERA

Population cannot grow without bound after a cap is imposed because this would

eventually drive output per unit of labor f(e) below χ so fertility would fall below

replacement. Under a regularity condition described below, the natural population

instead converges monotonically after a cap is imposed to a unique steady-state level

Nss. (Subscripts ss denote a variable’s steady-state value.)

A perfect-foresight path in the cap era satisfies (3) and the household’s first-order

condition (6) for all t, which can be written as pair of first-order difference equations

in {Ut, Nt}t≥0:
10

Ut = u(f(e(Nt))− χ
Nt+1
Nt

) + β(
Nt+1
Nt

))Ut+1, (11)

Vn(t) ≡ β ′
(
Nt+1
Nt

)
Ut+1 − u

′

(
f(e(Nt))−

Nt+1
Nt

χ

)
χ = 0. (12)

Steady state is a pair (Uss, Nss) that satisfies (11) and (12) with Ut = Ut+1 = Uss and

Nt = Nt+1 = Nss. The latter implies that steady-state fertility equals replacement:

nss = 1. In the cap era with nss = 1 and ess = e(Nss), the steady-state condition

is S(1, ess) = 0. We show in the appendix that S(1, e) crosses zero exactly once

on [f−1(χ), e+] so ess exists and is unique. Thus Nss = Ê/ess exists and is unique.

Because S(1, e+) > 0, it must be that ess < e
+ so the cap binds in steady state.

10The system depends on Ê through e, but we suppress the dependence notationally except when

considering how alternative values of Ê affect the economy.
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If fertility is too sensitive to changes in population then a population increase from

t to t+ 1 can reduce fertility so much that population decreases from t+ 1 to t+ 2.

To rule out such “overshooting,” we restrict the sensitivity of fertility to changes in

population by assuming

εnt,yt

(
f ′(et)et
f(et)

)
< 1, (13)

at the steady state and at all t.11 We show in the appendix that the system (11) and

(12) is then saddle-path stable and that population converges monotonically to Nss

from any initial population N0 > 0.

Fertility along the perfect-foresight natural path (natural fertility, η) is a function

of population and the level of the cap, nt = η(Nt | Ê). Because Ê enters the model

only through (2) as a determinant of et, natural fertility is homogeneous of degree

zero: η(Nt | Ê) = η(ξNt | ξÊ) where ξ > 0 is a constant. In words: natural fertility at

population Nt under cap Ê equals fertility at population ξNt under cap ξÊ, because

both have the same et.

In the Barro-Becker case, natural fertility lies below n+ and falls with Nt to the

steady state at Nss, as in figure 2a. To understand this, a cap has no effect on

income as long as Nt ≤ Ê/e
+ so the cap does not bind, but reduces income once it

binds. Reduced income in turn reduces fertility increasingly as Nt rises above Ê/e+.

Because the cap eventually binds and utility is determined recursively, utility is less

than U+ as soon as a cap is imposed, which also acts to reduce fertility for all Nt in

the Barro-Becker case.

In the Jones-Schoonbroodt case (figure 2b), natural fertility lies above n+ and rises

11In (13), εnt,yt is the partial elasticity of fertility with respect to income (7) and the factor share

f ′(et)et/f(et) is also the elasticity of income with respect to population. Note that (13) is not very

strong. Because f ′(e)e < f(e), (13) holds if εn,y ≤ 1,which holds in turn if b ≥ θ. On the other

hand, if εn,y > 1 then fertility tends to fall off sharply as a declining emissions ratio reduces income

so the factor share remains small, and (13) can still easily hold.
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Figure 2. Natural Fertility

as long as the cap does not bind, then peaks and falls below n+ as Nt becomes closer

to Nss. This reflects opposing income and utility effects. As in the Barro-Becker case,

income declines as Nt rises above Ê/e+ and utility is less than U+. In the Jones-

Schoonbroodt case, however, reduced utility raises fertility. This lifts fertility above

n+ when a cap is imposed and causes fertility to rise with Nt for Nt ≤ Ê/e
+ and also

slightly above Ê/e+. For Nt sufficiently close to Nss, the income effect dominates and

fertility lies below n+. Because fertility first rises in the Jones-Schoonbroodt case,

steady-state population tends to be greater in it than in the Barro-Becker case.

Population dynamics after a cap is imposed follow from the natural fertility func-

tion. Figure 3 illustrates in the Barro-Becker case. To minimize clutter, we choose

units so e+ = 1 and N0 = 1. Consider a freeze, meaning a cap at the emissions level

that would otherwise occur in the exponential-growth era at t = 0, which is e+N0 = 1.

Without a cap, fertility would be n+ in period 0, at a. When the cap is imposed,
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fertility instead jumps down to η(N0 | 1) = η(1 | 1), at b. In period 1, the economy is

therefore at c with population N1 = η(N0 | 1)N0 = η(N0 | 1) and fertility η(N1 | 1).

The economy then iterates down the fertility function and converges to population

Nss with fertility η(Nss | 1) = 1.

Figure 3. Population Dynamics under an Emissions Freeze

Natural fertility functions for caps other than a freeze can be derived from fertility

for a freeze. A 25-percent cut, for instance, is Ê = 0.75. Because η is homogeneous

Figure 4. An Emissions Cut Versus a Freeze

of degree zero, nt = η(Nt | 0.75) = η(Nt/0.75 | 1), that is, fertility at population Nt

and cap Ê = 0.75 equals fertility at population Nt/0.75 and Ê = 1. Graphically, this

means the fertility function for a 25-percent cut, η(· | 0.75), is the function for a freeze,
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η(· | 1), shifted 25 percent of the distance to the vertical axis, as in figure 4. (Because

Nss = Ê/ess is proportional to Ê, steady-state population given a 25-percent cut is

also 0.75 times steady-state population under a freeze.) Similarly, fertility functions

for caps that do not immediately bind lie to the right of η(· | 1).

Any cap eventually binds and leads to the same steady-state emission ratio ess. The

impact effect of imposing a binding cap is to reduce e0 from e+ to Ê/N0; subsequent

dynamics take et the rest of the way to ess. The greater the value of Ê and hence the

lower the impact reduction in e0, the greater is the adjustment of et after period 0.

IV. OPTIMAL POPULATION IN THE CAP ERA

A household is small compared with total population so in maximizing utility, it

ignores the external reduction in the emissions ratio and hence in everyone’s future

income caused by its having a child. We characterize the optimal population sequence,

which maximizes the utility of the representative household taking account of the

population externality.12

The optimal population problem for arbitrary t and hence given Nt > 0 is to

maximize Ut by choice of future populations Nt+1, Nt+2, .... The problem can be

written as a dynamic programming problem with Bellman equation

V ∗(Nt) = max
nt+1

{u(f(e(Nt))− χnt+1) + β(nt+1)V
∗(Nt+1)}, (14)

where nt+1 = Nt+1/Nt and where the value function V ∗ captures the dependence

of Ut+1 on Nt+1. This is not a “standard” dynamic programming problem because

the discount factor β(nt+1) is endogenous. Alvarez (1999) shows that solutions can

nonetheless be obtained by solving the transformed problem of maximizing U◦t ≡

β(Nt)Ut, which has the same optimal policy.

In detail, U ◦t ≡ β(Nt)[u(ct)+β(nt+1)Ut+1] = β(Nt)u(ct)+b0β(Nt+1)Ut+1 = u◦(Nt, Nt+1)+

12Parents care about offspring so this includes utility from future generations’ consumptions.
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b0U
◦
t+1 where u◦(Nt, Nt+1) ≡ β(Nt)u(f(e(Nt))−χNt+1/Nt), so the transformed prob-

lem has Bellman equation

V ◦(Nt) = max
0≤Nt+1≤

1

χ
Ntf(e(Nt)

{u◦(Nt, Nt+1) + b0V
◦(Nt+1)}, (15)

with 0 < b0 < 1.13 Solutions to this problem exist for all (θ, b). (Technical claims in

this section are proved in the appendix.)

To compare the optimal and natural steady states, let stars denote optimal values.

For any (θ, b), steady-state optimal population N∗
ss satisfies the optimal steady-state

condition S∗(Ê/N∗
ss) = 0, where

S∗(e) ≡ (1− b0)S(1, e)− b0u
′(f(e)− χ)f ′(e)e.

The optimal and natural steady-state conditions thus differ by a term that reflects

the population externality. A root e∗ss = Ê/N ∗
ss that solves S∗(Ê/N∗

ss) = 0 exists

and lies strictly between ess and e+.14 Because ess < e∗ss, the steady-state optimal

population N ∗
ss is less than the steady-state natural population Nss.

If ω = 1−θ
1−b

≤ 1, the value function V ◦ is unique, strictly concave, and differentiable,

and optimal population is a single-valued continuous function Nt+1 ≡ H(Nt | Ê) that

also maximizes V ∗(Nt) = V ◦(Nt)/β(Nt).
15 The optimal population sequence {N ∗

t }t≥0

starting at t = 0 from given N0 > 0 is obtained by iterating on H. Moreover, e∗ss

is unique and the elasticity condition (13) is sufficient for the optimal population to

converge monotonically to N ∗
ss from any initial N0 > 0. If ω > 1, matters are more

complicated but similar results hold if ω is not too great.16

13In footnote 7, we assumed b0 < 1 in the Jones-Schoonbroodt case and β(n) < 1 for all feasible

n in the Barro-Becker case. Using (10), the latter implies b0 < 1.
14The details are that S∗ is continuous, S∗(ess) = −βu′f ′e < 0 (because S(1, ess) = 0 and

ess < 1), and S∗(e+) > 0 (because S(1, e+) > 0 and f ′(e+) = 0).
15Applications of the Barro-Becker model commonly assume ω ≤ 1 (e.g. Jones and Schoonbroodt,

2007). This helps ensure strict concavity of V ◦ by ensuring that u◦ is concave. We allow ω > 1.
16For instance, suppose (13) holds and 1/ω > 1 − εnt,ytκ(e) for e ∈ (f−1(χ), e+), where κ(et) ≡

15



Fertility along the optimal path (optimal fertility, η∗) follows from the optimal

population as η∗(Nt | Ê) ≡ H(Nt | Ê)/Nt. As with natural fertility, optimal fertility

is: (i) homogeneous of degree zero in population and the level of the cap; (ii) jumps

when a cap is imposed, from n+ to η∗(N0 | Ê); and (iii) approaches n∗ss = 1 as

population converges to N ∗
ss.

The Population Externality: Comparing Natural and Optimal Populations

We evaluate the population externality using the Bellman equation (14). Because

the value function V ∗ in (14) is differentiable, optimal fertility satisfies:

V ∗n ≡ −u′(c∗t )χ + β′(n∗t )V
∗(N ∗

t+1) + β(n
∗
t )N

∗
t

dV ∗

dN
(N∗

t+1) (16)

= Vn(n
∗
t , f(e(N

∗
t )), V

∗(N ∗
t+1)) + β(n

∗
t )N

∗
t

dV ∗

dN
(N∗

t+1) = 0,

using the definition of Vn in (6). The household sets Vn = 0 so optimal and natural

paths differ. The term β(n∗t )N
∗
t
dV ∗

dN
(N ∗

t+1) is ignored by households; it measures the

population externality in units of parent’s utility.

To evaluate dV ∗

dN
(N ∗

t+1), the envelope theorem applied to (14) implies:

dV ∗

dN
(N ∗

t+1) = −u(c∗t+1)f
′(e(N ∗

t+1))
e(N ∗

t+1)

N∗
t+1

+ β(n∗t+1)n
∗
t+1

dV ∗

dN
(N∗

t+2). (17)

Reapplying (17) iteratively to eliminate successive future derivatives of V ∗, the future

terms collapse into the discounted sum

dV ∗

dN
(N ∗

t+1) = −
1

N ∗
t+1

∞∑

i=1

[
i−1∏

j=1

β(n∗t+j)

]
u′(c∗t+i)f

′(e(N∗
t+i))e(N

∗
t+i). (18)

−f′′(e)e2

f(e) > 0 measures the contribution from concavity of f . Then N∗

ss is unique, the optimal

population sequence converges monotonically to N∗

ss from any N0 > 0, and V ◦ is strictly concave

for Nt ≥ Ê/e+ so H is single-valued and V ◦ and V ∗ are differentiable. If the cap binds when it is

imposed (Ê ≤ e+N0), the optimal population path is also unique. (If Ê > e+N0, the optimization

problem (15) may not be concave when ω > 1 so it is difficult to rule out multiple optimal population

paths.)
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As in Harford (1998) the infinite sum reflects the fact that a birth at t creates a new

dynasty whose members increase populations after t+1 and also generate externalities.

The terms f ′(et+i)et+i in (18) are aggregate real population externalities measured

in units of output or equivalently in units of descendants’ consumption at t+ i. Re-

maining terms convert the real population externalities into units of parent’s (period-

t) utility. The negative sign shows the externality reduces utility.

There are three interpretations of a real term f ′(et+i)et+i. First, the market value

at price f ′ of the emissions produced by a person born at t + i − 1, which come

at the expense of emissions by everyone else under a cap. Second, the loss of per-

capita output caused by a person born at t + i − 1: output f(e(Nt+i)) is lower by

f ′(et+i)et+i/Nt+i; summing over the population at t + i gives an aggregate loss of

f ′(et+i)et+i. Third, the dilution of rents from auction revenue. When government

auctions Ê permits, it receives total revenue pt+iÊ = f ′(et+i)Ê that it redistributes

as equal lump sums so each person indirectly receives emission revenue f ′(et+i)et+i.

With an additional birth at t+i−1, the population at t+i loses the revenue f ′(et+i)et+i

that goes to the additional person.

Because any cap eventually binds, the discounted externality sum dV ∗

dN
(N ∗

t+1) is

strictly negative for all Nt in the cap era, even if population is initially so low that

the cap does not yet bind so f ′(e(Nt)) = 0.17 Thus starting from any population Nt,

the optimal population at t+ 1 is always less than the natural population.18

17Formally: e(N∗

t ) → e∗ss < e+ implies f ′(et) > 0 for some t so dV ∗

dN
(N∗

t+1) < 0.
18Formally: dV ∗

dN
(N∗

t+1) < 0 plus concavity of V (see footnote 8) imply that the fertility n∗t that

solves (16) is strictly less than the fertility nt that satisfies the household first-order condition

evaluated along the optimal path, Vn(nt, f(e(N∗

t )), V ∗(N∗

t+1)) = 0.

17



Pigovian Taxes on Having Children

To compute the sequence of child taxes needed to change fertility and popula-

tion from natural to optimal levels, we assume child-tax revenue is redistributed to

households as equal lump sums. Let τ t denote a tax per child and let n̄t denote the

average over households of nt in t, so each household pays child taxes τ tnt and receives

lump-sum revenue τ tn̄t.
19

With child taxes, overall child costs include taxes and overall transfers includes

lump-sum redistributions of child-tax revenue, so the household generically maximizes

u(w + TR − χn − τn) + β(n)U taking w, TR = pE/N + τn̄, and τ as given. The

first-order condition is

Vn(n,w + TR,U |τ ) ≡ −u′(w + TR − χn− τn)(χ+ τ ) + β′U = 0. (19)

To implement the optimal population sequence, each optimal tax τ∗t must be set

so n∗t , which solves (16), also solves (19). Setting V ∗n from (16) equal to Vn from (19)

and noting that wt + TRt− τ
∗
tn
∗
t = f(e(N ∗

t )) and Ut+1 = V ∗(N ∗
t+1) along the optimal

path, τ∗t must satisfy u′(f(e(N ∗
t ))− χn

∗
t )τ

∗
t = −β(n∗t )N

∗
t
dV ∗

dN
(N∗

t+1). From (18),

τ ∗t =
β(n∗t )N

∗
t

u′(c∗t )

(
−
dV ∗

dN
(N∗

t+1)

)

=
β(n∗t )

n∗t

∞∑

i=1

[
i−1∏

j=1

β(n∗t+j)

]
u′(c∗t+i)

u′(c∗t )
f ′(e(N∗

t+i))e(N
∗
t+i). (20)

Because the externality sum dV ∗

dN
(N ∗

t+1) is strictly negative, optimal taxes are strictly

positive for all t ≥ 0. Optimal child taxes are Pigovian, as in Harford (1998): the

19There may be obstacles to implementing a given sequence of child taxes. Extracting taxes

from parents may be difficult, for instance, and some ways of preventing population growth may be

ethically unacceptable. On the other hand, a range of policies that include filing-status differences,

personal exemptions, public-school spending, and welfare programs currently subsidize children.

Because the issue of pre-existing child subsidies is complex, we adopt the conservative approach of

assuming that τ t = 0 before a cap is imposed.
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optimal tax equals the discounted present value of the externalities generated by

a child and all descendants of the child. The terms in (20) other than the real

externalities f ′(e(N∗
t+1))e(N

∗
t+1) can be interpreted as the number of descendants in

a future period times products of single-period discount factors.20 Overall, the τ ∗t

measure population externalities in units of parent’s consumption.

V. EXTENSIONS

To make calibrations more meaningful, we extend the model in three ways:

Time costs of children

Parents devote substantial time to children. To include time costs, we assume

having a child requires a constant amount of parental time, ψ, in addition to output

χ. Time spent having a child reduces labor supply so lt = 1−ψnt depends on fertility,

total labor supply Lt = (1 − ψnt)Nt differs from population Nt, and the emissions

ratio depends on fertility: et = min
(
e+, Ê/[(1− ψnt)Nt]

)
.

With time costs, the cost of a child becomes χ + ψw(et), the sum of the output

cost and foregone wages. The household takes the wage and transfers of permit

revenue TRt = ptEt/Nt as given in maximizing utility so these replace income as

determinants of fertility. In equilibrium, household income is the sum of wage income

20In detail,

β(n∗t )

n∗t



i−1∏

j=1

β(n∗t+j)


 u′(c∗t+i)

u′(c∗t )
=



i−1∏

j=1

n∗t+j





i−1∏

j=0

β(n∗t+j)

n∗t+j

u′(c∗t+j+1)

u′(c∗t+j)


 ,

where
∏i−1
j=1 n∗t+j = L∗t+i/L∗t+1 is descendants at time t + i per child born at time t + 1. The terms

β(n∗t+j)

n∗
t+j

u′(c∗t+j+1)

u′(c∗
t+j

) can be interpreted as single-period discount factors. Specifically, if individuals

could trade consumption loans that are settled by their children,
β(n∗t+j)

n∗
t+j

u′(c∗t+j+1)

u′(c∗
t+j

) would be the

market-clearing price in period j of a loan that pays one consumption unit in period j + 1.
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and transfers, and equals labor times output per unit of labor, so yt = (1−ψnt)w(et)+

f ′(et)Et/Nt = (1 − ψnt)f(et). The generic household first-order condition becomes

Vn(n,w, TR, U) ≡ −u′ ((1− ψn)w + TR − χn) · (χ + ψw) + β ′U = 0.

These changes carry through the resulting dynamics and are easily incorporated

into calibrations. Notably, the function S defined in (9) gains terms and becomes

S(n, e) ≡ −u′((1− ψn)f(e)− χn)(χ + ψw(e))

+
β ′(n)

1− β(n)
u((1− ψn)f(e)− χn). (21)

Roots of the resulting steady-state conditions S(n+, e+) = 0 and S(1, ess) = 0 exist as

before. The roots are the steady-state values of fertility in the exponential-growth era,

n+, and the emissions ratio in the cap era, ess. Condition (10), which ensures n+ > 1,

gains a time-cost term ψf(e+) and becomes χ+ ψf(e+) < φf(e+). The steady-state

natural population is Nss = Ê/[(1− ψ)ess]. The optimal population with time costs

similarly implies a steady-state optimal emissions ratio e∗ss with ess < e
∗
ss < e

+, and

steady-state optimal population N∗
ss = Ê/[(1− ψ)e∗ss] < Nss.

21

Backstop Technology

A common assumption in integrated assessment models is that a “backstop” tech-

nology may permit output to be positive without emissions.22 If there is a positive

backstop output level f(0), steady-state natural and optimal populations exist as

above if f(0) is low enough, specifically, if f(0) < fB ≡ χ

φ−ψ
.23

If f(0) > fB, however, income loss from a cap is insufficient to reduce fertility

21The optimal steady-state condition is now S∗(e∗ss) = 0, where S∗(e) ≡ (1− b0)S(1, e)− b0(1−

ψ)u′((1−ψ)f(e)−χ)f ′(e)e. Note that uniqueness of ess and e∗ss requires regularity conditions that

are detailed in the appendix and are satisfied in calibrations below.
22e.g. William Nordhaus and Joseph Boyer (2000), Kelly and Kolstad (2001).
23If f(0) < χ/(1− ψ), then there is an e = f−1(χ/(1− ψ)) > 0 at which the marginal utility of

consumption is infinite so S(1, f−1(χ/(1− ψ))) < 0 with S as defined in (21), and the steady-state
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to replacement so the natural population does not converge to a steady-state value.

Instead, fertility converges to the unique root nss > 1 of S(nss, 0) = 0, population

grows without bound, et → 0, and f(et) → f(0). In the limit, concavity implies

f ′(e)e → 0 so the population externality vanishes and optimal fertility converges to

the same limit nss as natural fertility.
24 For all finite periods, however, the population

externality exists so the optimal child tax is positive, and natural fertility exceeds

optimal fertility so the natural population exceeds the optimal population at all t

and in the limit.25

The backstop output level f(0) is key to knowing the economy’s fate under a cap.

As long as f(0) < fB, a cap ultimately leads to a steady state with output low enough

to choke off population growth. This true even if the cost of eliminating almost all

emissions is small: fertility then would remain high so e would continue to drop, until

output is low enough so nss = 1.

Exogenous Growth in Factor Productivity

To add exogenous productivity growth, we assume production is

Yt = F (Ltλ
t, Etα

t), (22)

where λ ≥ 1 is an exogenously given growth factor for labor productivity and α ≥ 1

is an exogenously given growth factor for emissions productivity. Greater emissions

productivity αt means fewer emissions are needed to produce a given output from a

analysis in section III holds, mutatis mutandis. Moreover if f(0) ≥ χ/(1 − ψ) but f(0) < fB ,then

S(1, 0) < 0, and again the reasoning of section III implies there is a unique steady-state natural

emissions ratio ess > 0 defined by S(1, ess) = 0.
24Because etltNt = Ê, a value et = 0 is inconsistent with Ê > 0. Thus there is no meaningful

ess = 0, but allocations with et > 0 in which et → 0 are meaningful.
25In the non-generic case with f(0) = fB, et → 0 and nt → 1 so all natural and optimal limit

conditions reduce to S(1, 0) = S∗(0) = 0, where S∗ was defined in footnote 21.
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given amount of labor.

We assume the output cost of a child grows with labor productivity λt, so the

household budget becomes ct = yt − λ
tχnt. The idea is that greater productivity

means more human capital, which requires that more resources be put into each

child. Put differently, λt captures an exogenous trend in child quality that raises the

cost of a child and tends to make fertility fall as productivity rises.26

An economy with growing productivity is equivalent to an economy with stationary

values of productivity-adjusted variables, marked with tildes. The key state variable

is growth-adjusted population, Ñt ≡ Ntλ
t/αt. Also define ñt ≡ ntλ/α; this is the

growth factor for productivity-adjusted population and for total emissions, which rise

because of population and labor-productivity growth, and fall because of emissions-

productivity growth.

With variables and parameters defined in growth-adjusted terms27:

u((1− ψnt)wt + TRt − (λtχ+ τ t)nt) + β(nt)Ut+1

= λ(1−θ)t
[
u((1− ψ̃ñt)w̃t + T̃Rt − (χ̃+ τ̃ t)ñt) + β̃(ñ)Ũt+1

]
,

so choosing n to maximize u((1−ψn)w+TR−(χ+τ)n)+β(n)U with given (w, TR,U)

is equivalent to choosing ñ to maximize u((1− ψ̃ñ)w̃+ T̃R− (χ̃+ τ̃ )ñ) + β̃(ñ)Ũ with

given (w̃, T̃R, Ũ).

The equivalent problem has the same form as the problem without productivity

growth except that growth-adjusted (tilde) variables replace regular variables. All

analysis from previous sections goes through with growth-adjusted variables and pa-

26We do not model the demographic transition, however: the proportionality of the output cost of

a child to λt simply ensures that child costs do not vanish or explode as a fraction of income merely

because productivity grows, which ensures balanced growth.
27Specifically: ẽt ≡ min(e+, Ê

(1−ψ̃ñt)Ñt

), ỹt ≡ (1 − ψ̃ñt)f(ẽt) = yt/λt, w̃t ≡ f(ẽt) − f ′(ẽt)ẽt,

χ̃ ≡ χα/λ (so χ̃ñt = χnt), ψ̃ ≡ ψα/λ (so ψ̃ñt = ψnt), β̃(ñt) ≡ λ(1−θ)β(ñtα/λ) = λ(1−θ)β(nt), Ũt ≡

Ut/λ(1−θ)t, τ̃ t ≡ τ t(α/λ)/λt, and T̃Rt = f ′(ẽt)Et/Ñt + ñtτ̃ t. (Note that TRt = f ′(et)Et/Nt + ntτ t.)
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rameters replacing regular variables and parameters:

In the exponential-growth era, the emissions ratio is ẽt = e+ and household income

follows y+t ≡ (1−ψ̃ñt)f(e
+)λt. A perfect-foresight solution is pair (ñ+, Ũ+) with Ũ+ =

u((1− ψ̃ñ+)f(e+)− χ̃ñ+)/(1− β̃(ñ+)), where ñ+ is optimal given Ũ+. In any solution,

growth-adjusted population grows at rate ñ+ − 1. Because Et = ẽt(1− ψ̃ñ
+)Ñt and

ẽt = e
+, emissions also grow at rate ñ+ − 1. We assume χ̃+ ψ̃f(e+) < φ̃f(e+) where

φ̃ = 1/
(
1 + (1−θ)(1−β̃(1))

(1−b)β̃(1)

)
< 1, so ñ+ > 1.28

In the cap era, growth-adjusted population converges to steady-state value Ñss.

Unless α = λ, actual population Nt therefore changes over time. Specifically, ñss =

nssλ/α = 1 implies that actual fertility is nss = α/λ. This is a balanced-growth condi-

tion.29 An intuition is that growth in labor productivity (λ) introduces an increasing

trend in each person’s emissions footprint and growth in emissions productivity (α)

introduces a decreasing trend, so exogenous productivity growth overall introduces

per-capita emissions growth with factor λ/α per period. To hold total emissions con-

stant in steady state, this means population must grow with factor α/λ. Similarly,

steady-state optimal fertility is n∗ss = α/λ.

Four growth factors describe steady state in the cap era. Natural and optimal

populations grow with factor α/λ, as just noted. Outputs per person and living

standards grow with factor λ because ỹss = yt/λ
t and ỹ∗ss = y∗t /λ

t are constant. Total

output, the product of population and output per person, grows with factor α, the

product of α/λ and λ. Finally total emissions are constant, as output grows with

28Emissions have increased historically, consistent with ñ+ > 1. If future fertility were to fall

sufficiently due to changes in tastes or if α/λ were to fall sufficiently, then ñ+ could fall below one.

Then emissions and the emissions problem would eventually vanish.
29The production function (22) implies that output growth arises from growth in the inputs ltNtλ

t

and Etα
t. In steady state with actual fertility constant at nss, effective labor (1 − ψnss)Ntλ

t has

growth factor nssλ. Because emissions are capped at Ê, the input Etα
t has growth factor α. Balanced

growth requires nssλ = α, or nss = α/λ.
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the emissions-productivity growth factor α. The outcome is Malthusian modified for

productivity growth: living standards continue to grow as long as λ > 1; total output

continues to grow as long as α > 1; and population grows (or shrinks) unless α = λ.

Taxes in the transformed economy, τ̃ t ≡ τ t(α/λ)/λ
t, are taxes per growth-adjusted

child. To express the optimal taxes τ̃ ∗t as taxes per actual child (τ∗t ), it is necessary

to divide out the growth-adjustment correction (α/λ)/λt. The actual tax grows with

factor λ, as does actual income along the optimal path, y∗t ≡ (1− ψ̃ñ∗t )f(ẽ
∗
t )λ

t. In the

calibrations below we remove the growth factors by reporting optimal taxes as shares

of income30

{τ/y}∗t ≡
τ∗t
y∗t

=
τ̃ ∗tλ/α

(1− ψ̃ñ∗t )f(ẽ
∗
t )

.

VI. CALIBRATIONS

To assess the population externality, we calibrate the model to a growing world

economy with annual steady-state population growth of 1.4 percent, per-capita output

growth of 1.7 percent, and aggregate emissions growth of 1.8 percent, which were

actual rates over 1990-2005.31 A period equals 30 years, so n+ = 1. 52, ñ+ = n+λ/α =

1.72, α = 1.48, and λ = 1.67.32 The value of b0 is chosen so the household’s first-order

condition holds given these growth rates. We choose units so ẽ+ = 1, f(1) = 1, and

Ñ0 = 1. Unless noted, all variables except child taxes are growth-adjusted.

We consider two production functions. Cobb-Douglas production is f(ẽ) = f0ẽ
f1(f2−

30To interpret the tax in a real-world with two-adult households, the mother and father can each

be seen as paying one-half of the tax so the tax on any single child as a share of household income

is one-half of {τ/y}∗t . For the couple to replace themselves takes two children, so each would pay

{τ/y}∗t for replacement. (Note that we abstract from mixing of dynasties.)
31see World Resources Institute (2008).
32Specifically n+ = exp(30 · .014) = 1. 52. Per-capita income grows with factor λ so λ = exp(30 ·

.017) = 1. 67. Total emissions grow at the same rate as productivity-adjusted population, so ñ+ =

n+λ/α = exp(30 · .018) = 1.72. This implies α = n+λ/ñ+ = 1.48.
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ẽ)1−f1 , where f0, f1 ∈ (0, 1), and f2 are parameters.33 With Cobb-Douglas produc-

tion, the factor share of emissions rises monotonically from zero at e+ to f1 as ẽ falls

to zero. For any f1, units choices pin down f0 and f2: ẽ
+ = 1 implies f ′(1) = 0 so

f2 = 1/f1, and f(1) = 1 implies f0 = [f1/(1−f1)]
1−f1 . To set f1, we assume it costs 3

percent of output to reduce emissions by 25 percent, so f(0.75) = 0.97. This implies

f1 = 0.483. A 3-percent cost is in the range of estimates in Stern (2007). We also

evaluate a 2-percent cost below, with f1 = 0.371.

Cobb-Douglas production does not allow a positive backstop. To study a backstop

and get a sense of how sensitive results are to the form of production, we also consider

the abatement-cost specification used in many integrated assessment models: f(ẽ) =

1−(1−g0)(1−ẽ)
g1, where g0 and g1 are parameters and backstop output is f(0) = g0.

34

When we assume no backstop (g0 = 0), we set g1 by again assuming it costs 3

percent of output to reduce emissions by 25 percent, so g1 = 3.32. With a positive

backstop, we leave the curvature g1 unchanged and simply assume a positive g0, which

proportionately reduces abatement costs at any ẽ.

We assume children have an output cost of χ = 0.138 and a time cost of ψ =

33The form may be derived from three primitive assumptions: (i) labor is used to produce two

intermediate goods in amounts y1 and y2 according to the linear technology y1+ y2 = f2; (ii) a unit

of good 1 generates a unit of emissions so ẽ = y1, whereas good 2 generates no emissions; and (iii)

output per unit of labor is a Cobb-Douglas function f0y
f1
1 y1−f12 . The Cobb-Douglas form matters.

If output per unit of labor were a CES function of y1 and y2 with an elasticity other than one, the

factor share of emissions would approach either zero or one as ẽ → 0, which may be undesirable to

impose.
34An interpretation is that a unit of labor gives a unit of output and a unit of emissions if no

resources are devoted to abatement, and the cost of abating 1−ẽ units of emissions is (1−g0)(1−ẽ)g1

units of output. The factor share of emissions in abatement-cost cases has a knife-edge, which partly

motivates why we use Cobb-Douglas for most calibrations. Without a backstop, the factor share

rises monotonically from zero at ẽ = 1 to one at ẽ = 0, but with any positive backstop, the factor

share rises from zero at ẽ = 1 to a peak, then falls to zero at ẽ = 0.
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0.110. The output cost is from the sum of expenditures by families on children plus

expenditures on K-12 and college education. The time cost assumes the difference

between male and female labor-force participation rates is due solely to time devoted

to having children so that with zero children, the average participation rate would

equal the current male rate (0.76) instead of the current average of male and female

rates (0.685). Details are in the appendix.

The time cost implies that per-capita labor in the exponential-growth era is 1 −

ψ̃ñ+ = 0.833 and per-capita income is ỹ+ = (1− ψ̃ñ+)f(e+) = 0.833.

Base Case

Our base case is a Barro-Becker case with equal utility curvatures (θ = b), Cobb-

Douglas production, and a cap that freezes emissions. A reasonable range of estimated

Table 1. Steady States

Case Regime Ñss ẽss ỹss f ′ẽ/f {τ/y}∗ss

Barro-Becker (base case), θ = b = .8 natural 9.16 .101 .408 .457

optimal 2.39 .386 .721 .365 .211

Jones-Schoonbroodt, θ = b = 2 natural 44.1 .021 .195 .469

optimal 11.1 .083 .373 .478 .957

Barro-Becker, θ = b = .4 natural 4.97 .186 .529 .432

optimal 1.43 .644 .835 .250 .106

Barro-Becker, θ = .95, b = .8 natural 9.90 .093 .394 .459

optimal 7.32 .126 .452 .450 .068

Jones-Schoonbroodt, θ = 1.25, b = 2 natural 28.7 .032 .239 .475

optimal 21.7 .042 .273 .472 .155

2 percent cost of 25% emission cut natural 15.6 .059 .418 .357

optimal 3.96 .233 .665 .311 .180
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θ values is 0.5−5.0 (see e.g. Masao Ogaki and Carmen Reinhardt, 1998; Ravi Bansal

and Amir Yaron, 2004). For the Barro-Becker case the range is 0.5 − 1.0, so we set

θ = b = 0.8 in the base case.

Population is normalized so Ñ0 = 1, and 1 − ψ̃ñ+ = 0.833, so emissions at t = 0

would be 0.833 without a cap. Thus a freeze means Ê = 0.833.

Steady-state results are in table 1. In the base case, the growth-adjusted natural

population in steady-state is 9.16 times Ñ0, and the steady-state emissions ratio is

0.101 times the emissions ratio without a cap. A cap substantially lowers incomes:

per-capita output falls from ỹ+ = 0.833 to ỹss = 0.408.

Figure 5. Base Case Fertilities

The growth-adjusted optimal population in steady state is 2.39 so the natural

population is almost four (9.16/2.39) times the optimal population. The optimal

emissions ratio of 0.386 is almost four times the natural emissions ratio. Per-capita
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optimal output, 0.721, exceeds per-capita natural output and is 13.5 percent below

output at t = 0.

The natural fertility functions (figure 5a) imply that the natural and optimal pop-

ulations converge smoothly from Ñ0 = 1 to steady-state values.35 After fivegenera-

tions, Ñ5 = 6.84, for instance, and after ten generations, Ñ10 = 8.97, close to the

steady-state value of 9.16.

Figure 6 shows the actual (not adjusted) natural and optimal populations. In the

exponential-growth era, population increases exponentially. With a cap in steady

state, the natural and optimal populations grow at rate (α− λ)/λ = −0.113 so both

actual populations peak after a cap is imposed and then fall. From the figure, world

population under a cap would peak at about four times its current level with no

population policy and would peak slightly above its current level under the optimal

population policy.

Figure 6. Populations

Permit revenue is 45.7 percent of output in the natural steady state and 36.5

percent of output in the optimal steady state. These numbers are large given that

the Federal spending share over 1990-2005 averaged about 20 percent of output.

Emissions revenue is small right after the cap is imposed but increases sharply as the

35The appendix describes the numerical procedures. In the figure, slopes of the natural and

optimal fertility functions become more positive (or less negative) around N = 1 because the cap

begins to bind so the wage and hence the time cost of children start to fall as N rises above one.
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emissions ratio falls below one. With the freeze, for instance, revenue jumps from 0.7

percent of output at t = 0 to 27.1 percent of output at t = 1.

The optimal child tax in steady state is 21.1 percent of per-capita income.36 To

get a sense of this, personal income in the U.S. is (very) roughly $55,000 per adult

per year, which may be interpreted as uncapped income (ỹ+) measured in dollars per

year. Steady-state optimal income (ỹ∗ss), which is 13.5 percent less than uncapped

income, would then be about $48,000. Thus a child tax of 21.1 percent is equivalent

to a tax of about $10,000 each year for 30 years (the length of a generation in the

model) for each child.37 An alternative sense is that the annual cost of a child is

about $13,000, of which about $6,000 is time costs. The optimal child tax therefore

raises the full cost of a child in steady state by about three-quarters, from $13,000 to

$23,000, to just under half ($23,000/$48,000) of income.

Optimal child taxes in steady state are independent of Ê, but optimal child taxes

along the path from t = 0 depend on Ê as shown in table 2. In the base case with

a freeze (row one), the tax is 5.2 percent of income at t = 0, about a quarter of the

steady-state value, and 11.6 percent of income at t = 1, a bit more than half the

steady-state value. With a more restrictive cap, optimal child taxes are higher after

imposition and with a less restrictive cap optimal child taxes are lower, as illustrated

by a 25 percent cut in row two and a cap that is 25 percent slack in row three.

36Income excludes redistributions of child-tax revenue, so a tax of 21.1 percent of income is equiv-

alent to a tax of 17.4 (= 21.1/1.211) percent of income plus redistributions of child-tax revenue.
37Kelly and Kolstad (2001) calculate welfare costs from a marginal child in the range $200-$800.

Such costs are tiny compared with costs of $10,000 per year for 30 years. Kelly and Kolstad implicitly

assume a backstop output of f(0) = .93 and also assume that population grows at an exogenously

given rate that itself decreases at an exogenously given rate. With their production function in our

model, the optimal policy would be to drive the emissions ratio to zero in steady state. This does

not happen in their calculations because they assume growth slows enough so the backstop is never

reached.
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Table 2. Time Paths of Optimal Child Taxes

Case {τ/y}∗0 {τ/y}∗1 {τ/y}∗2 {τ/y}∗3 {τ/y}∗4 {τ/y}∗ss

base case (Ê = .833) .052 .116 .152 .174 .188 .211

Ê = .62 .122 .155 .176 .189 .197 .211

Ê = 1.04 .028 .083 .133 .162 .180 .211

abatement cost, f(0) = 0 .055 .141 .195 .223 .237 .249

abatement cost, f(0) = .4 .037 .101 .142 .166 .179 .201

abatement cost, f(0) = .6 .026 .079 .093 .100 .098 0

Sensitivity Analysis—Utility

Table 1 also reports sensitivity analyses of individual base-case assumptions. First

is a Jones-Schoonbroodt case with θ = b = 2. Fertility paths are in figure 5b.38

Steady-state population is substantially greater, income is lower, and optimal child

taxes are higher than in the base case. In steady-state, the natural population is

44.1 times the transition population, income is ỹss = 0.195, and the child tax is

95.7 percent of income.39 The implied ratio of the natural to optimal steady-state

populations Ñss/Ñ
∗
ss is still about four, however. In the transition, the optimal child

tax is 10.3 percent of income at t = 0 and 18.1 percent of income at t = 1. Assuming

high values of θ and b might make sense if one believes fertility is insensitive to

economic incentives, but this is a pessimistic assumption here.

With low enough θ, on the other hand, fertility would respond elastically to changes

in population so a cap would act like a switch that turns off fertility, and the optimal

38The transition from the exponential-growth to the cap era lowers children’s utility, which raises

fertility in the Jones-Schoonbroodt case. A greater income reduction (higher population) is then

needed to reduce fertility to replacement.
39This is equivalent to a tax of 48.9 (= 95.7/1.957) percent of income plus redistributions of

child-tax revenue.
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child tax could be quite small. To see whether this happens with reasonable parameter

values, we consider θ = b = 0.4, at the low end of empirical estimates of θ. The

resulting Ñss is still 4.97 times the transition population (and Ñ ∗
ss = 1.43 so Ñss/Ñ

∗
ss =

3.47), and the optimal steady-state child tax is still 10.6 percent of income. To obtain

steady-state Pigovian taxes below 10 percent, it would be necessary to assume an even

lower θ.

The population externality is thus large because empirically reasonable utility as-

sumptions imply that the desire to have children remains strong as et falls below e+,

so et ends up being driven a fair bit below e+. The real population externality in a

period f ′(et)et, also depends on the form of f as shown in figure 1. The real exter-

nality would be small if the slope f ′ is always small, but this would mean the entire

emissions problem could be eliminated at little cost by simply restricting emissions

to zero. Similarly the population externality would be small if f were to decline only

slightly below f(e+) until et is small, so almost all emissions could be eliminated at

little cost. Sufficiently far in the future when population grows enough, however,

incomes would still be low.

We also consider the equal-curvatures assumption, ω = 1. Because ω measures how

much parents care about per-child consumption relative to the number of children,

and the population externality is a loss from lower per-child consumption, a lower ω

tends to reduce the utility value of the externality. Thus real reductions in children’s

utility and the real population externality might be substantial, but with low ω,

parents would simply not care much about this.

To judge the size of the effect, we assume ω = .25 in modifications of the base case

and the Jones-Schoonbroodt case. The modified Barro-Becker case has θ = .95 and

b = .8, which results in a ratio of natural to optimal steady-state populations of

1.4 and a steady-state child tax of 6.8 percent. The modified Jones-Schoonbroodt

case has θ = 1.25 and b = 2, which results in a ratio of natural to optimal steady-
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state populations of 1.3 and a steady-state child tax of 15.5 percent. Even in these

cases the population externality is substantial, although there are (θ, b) pairs with

low enough ω so the population externality would be small. As noted in section I,

however, values ω ≈ 1 seem plausible and values substantially less than one may be

difficult to square with small families in which parents devote substantial resources

to ensuring children’s consumptions.

Sensitivity Analysis—Technology

The true cost of reducing emissions is uncertain. Table 1 reports steady-state results

when f is parameterized assuming it costs 2 percent of output to reduce emissions by

25 percent (f(0.75) = 0.98), instead of 3 percent as in the base case. This reduces the

population externality but not greatly: the optimal child tax falls from 21.1 percent

in the base case to 18.0 percent. The reason is that when it is less costly to reduce

emissions, incomes and hence fertility are higher at any given population, and steady

state is reached only when population is so high and the emissions ratio so low that

incomes are close to incomes in the base case. That is, the income reductions needed

to choke off population growth doesn’t change much when the output cost of reducing

emissions falls.40

Finally, we examine the abatement-cost specification. Under base-case utility as-

sumptions, the critical backstop is fB = 0.507 so we consider backstops of 0, 0.4, and

0.6. Comparing the first two rows of table 3 with the first two rows of table 1 shows

40In detail, steady-state natural income is slightly higher than in the base case, 0.418 instead

of 0.408, but steady-state optimal income is lower, 0.665 instead of 0.721. (The smaller difference

between ỹ∗ss and ỹss means the real externality terms f ′(e)e in (18) are lower.) Steady-state emission

ratios are much reduced, however: ẽss is only 0.059 instead of 0.101 in the base case, and ẽ∗ss is 0.233

instead of 0.386. Consequently, Ñss and Ñ∗

ss are roughly two-thirds greater than in the base case,

but their ratio remains about four.
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the effects of changing from a Cobb-Douglas to an abatement-cost specification with

no backstop. Steady-state natural and optimal populations fall by a bit less than half

and factor shares of emissions rise, but optimal child taxes change little, rising from

21.1 percent to 24.9 percent of income.

Table 3. Steady States with Abatement-Cost Production at Different Backstops

Case Regime Ñss ẽss ỹss f ′ẽ/f {τ/y}∗ss

f(0) = 0 natural 4.84 .190 .374 .842

optimal 1.58 .586 .805 .431 .249

f(0) = .4 natural 15.6 .059 .438 .168

optimal 2.84 .325 .702 .348 .201

f(0) = .6 natural ∞ 0 .532 0

optimal ∞ 0 .532 0 0

Comparing rows of table 3, a higher backstop means smaller income reductions as

well as lower population externalities, but the effect is not great as long as f(0) <

0.507 (so adjusted population is constant in steady state). From table 3, the ratio of

the natural to the optimal steady-state populations varies between about three and

five when f(0) < 0.507.

If f(0) > 0.507, adjusted population grows forever and the population externality

vanishes in the limit, quite a different long-run outcome than when f(0) < 0.507.

The paths of the economy for the first few periods after transition, however, can be

remarkably similar. Table 2 shows this. With f(0) = 0.6, abatement costs at any ẽ

are reduced by 60 percent compared with abatement costs with f(0) = 0, and the

optimal child tax in the transition period is similarly about half of the tax when

f(0) = 0. With f(0) = 0.6, the tax peaks in the third period after transition at 10

percent, which is still about half the tax in the base case, then goes to zero in steady

state.41

41In the effective-backstop case with f(0) = 0.6, both Ñss and Ñ∗

ss go to infinity but their ratio
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CONCLUSION

In Malthus, consumption tends to subsistence and total population tends to a

constant. In Solow-type neoclassical growth models, additional population produces

additional output under constant returns so total population can rise without bound.

In the current paper, output is produced under constant returns from labor and

total emissions, but a cap makes emissions a fixed common-property resource. This

introduces a Malthusian element: as population and hence labor grow, the relative

amount of the fixed factor falls, which drives down per-capita output and limits

population growth.42

Without productivity growth, living standards and population under a cap converge

to steady-state constants. With exogenous factor-augmenting productivity growth,

living standards rise over time and population may rise or fall in steady state.

The focus of the current paper is on the population externality when a cap limits

total emissions. The corrective Pigovian tax is about 10 percent of a parent’s lifetime

income per child in steady state given utility curvatures at the low end of those

estimated empirically. The Pigovian tax rises sharply with utility curvatures, so

that even relatively moderate curvatures imply Pigovian taxes substantially above 10

percent of a parent’s lifetime income per child in steady state.

converges to about 3.4. Also, population growth remains positive as the emissions ratio converges

to zero: ñt converges to 1.16 and actual (not adjusted) population growth nt = ñt(α/λ) converges

to 1.03. In the limit, n∗t converges to the same limit of 1.03. This is substantially lower than actual

population growth of n+ = 1.52 in the uncapped economy.

42The logic is general. If land is a fixed common-property resource, greater population would raise

the ratio of labor to land and could reduce per-capita income.
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