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Abstract

Modeling of Human Decision Making via Direct and Optimization-based Methods for
Semi-Autonomous Systems

by

Theresa Lin

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

In the generation where progression in technology have propelled the research of human-
machine intelligent systems, it is becoming increasingly important to study the fundamental princi-
ples behind human behaviors from a computational point of view. This thesis aims to use advanced
technologies, combined with advanced modeling methodologies and modern control algorithms, to
study the principles behind the modeling of human decision making for two purposes. First, to use
computational modeling frameworks to better understand the mechanisms and factors which affect
decision making in different problem contexts, both from the controls design and psychology per-
spective. Second, to introduce a unifying framework for integrating human policies into controller
design in order to improve the performance of human-machine intelligent systems. Models are
grouped into either the direct method or the optimization-based method. Direct methods map ob-
servations to decisions directly through stored function maps and are associated with lower-level,
reflexive and repetitive behaviors. Optimization-based methods, associated with higher-level plan-
ning behaviors, require extra cognitive effort to generate state predictions in search for a solution
that satisfies a set of criterions.

To support the proposed modeling frameworks, both game-based and real-world experiments
are conducted with the aid of advanced test apparatus and sensor technologies. Driving experi-
ments on real roads and simulators explored driver behavior in everyday driving on the highway,
extreme driving on slippery surfaces, and distracted driving with obstacles. Game-based experi-
ments involving a projectile and a dual-task game were performed to collect consistent data in a
controlled setting, and also designed to parallel the driving contexts in the real-world.

Results from the experiments showed that in extreme driving, a piecewise-affine switched
model with two modes was used to differentiate the behavior in the linear and saturation region of
the tire. Simulations from a model predictive approach also showed that drivers need to be aware
of the nonlinearity in the tire dynamics in order to follow a learned reference trajectory. Simi-
larly, results from the projectile game also revealed that subjects adopted switched strategies due
to the nonlinearity and uncertainties involved in the problem. In particular, subjects used switched
strategies depending on whether it was an old or new scenarios. In the old scenario, subjects likely
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used a linear feedback strategy mapping errors directly to the change in control input. In the new
scenario, subjects used an optimization-based strategy which minimized a combination of time to
hit target and change in the control inputs in order to minimize the effect of uncertainty on the state
trajectories.

To validate the conjecture that humans perform mental simulations of states for the optimization-
based algorithms, eye-tracking glasses were used to better estimate the cognitive states of the sub-
jects. Eye-tracking on the driver during curve negotiation showed switching between a far-point
and a near-point, and eye-tracking on the juggler revealed an early shift in gaze to the predicted
apex of the ball. Both results supported how humans will perform mental simulations with some
form of a forward model.

In addition to the continuous decisions associated with the previously discussed applications,
the discrete decision making of attention allocation in a dual task problem was also investigated
and modeled as a Markov decision process (MDP). Simulation and inverse reinforcement learning
showed that subjects first adopted a conservative approach and later converged to a riskier strategy
as they interacted with better certainty in the game. A similar framework was applied to a real
texting while driving context on the highway. Results from eye-tracking showed that attention
duration on the phone decreased as vehicle speed increased, which agrees with the predictions of
the MDP model.

Lastly, to integrate the advanced modeling methodologies into intelligent systems, the frame-
work of model predictive control was modified to include driver models in the predictions. Con-
troller intervention is minimized such that the semi-autonomous vehicle behaves more like the
driver. This has led to shared control algorithms with better integration of human models.
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Chapter 1

Introduction

The topic of human behavioral modeling is a multidisciplinary research field ranging from cogni-
tive psychology to computer science. With the advancement in technologies, there is an increasing
emergence of human-machine intelligent systems, designed to performed human-centered tasks or
to interact with humans. Therefore, it is important to understand human behaviors and integrate
this knowledge into controller design. Many applications in computer science and engineering use
machine learning algorithms to train robotic systems that are designed to either imitate human be-
havior or behave in a cooperative manner with humans. These data-driven approaches are designed
for efficient identification and simulation of trained behavior, but does not relate to the fundamental
psychological principles. To better understand the underlying principles behind human cognition,
psychologists have used parametric methods, both from the top-down and bottom-up, to model
how humans make inferences about the states of the uncertain world, and how the uncertain esti-
mates about the world is used in decision making.

In the rest of this chapter, we will first discuss the aforementioned topics with detailed ex-
amples, and then summarize the issues associated with the engineering-oriented and psychology-
oriented approaches to modeling human behavior. From these drawbacks, we will present our
motivation and research directions associated with the studies in this thesis, which is to use ad-
vanced modeling frameworks to better understand the mechanisms and factors which affect deci-
sion making in different problem contexts, and attempt to connect psychological principles with
engineering-oriented models. In addition, introduce a unifying framework for integrating human
policies into controller design in order to improve the performance of human-machine intelligent
systems.

1.1 Importance of behavioral modeling for human-machine
intelligent systems

The progression in technology has propelled an increased research of human-centered intelligent
systems to improve efficiency and quality of life. The advancements in computational power [1],
sensor technologies [2], and computational algorithms such as sensor fusion [3] and machine learn-
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ing [4] has enhanced the implementation of applications which involve human-machine interac-
tions or machines designed to performed tasks that were traditionally done by the human [5].

Examples include the growing interest on intelligent vehicle systems, both from academic re-
search and the automotive companies in the industry, as well as from the National Highway Traffic
Safety Administration (NHTSA) for the purpose of reducing the number of fatal accidents on the
road [6]. From the automotive industry, the production of intelligent vehicles and the integration
of assistance features are also increasingly emerging into market [7]. Academic efforts can be seen
in the numerous related conferences and symposiums, such as the IEEE Intelligent Vehicles Sym-
posium, IEEE International Conference on Intelligent Transportation Systems, and International
Symposium on Advanced Vehicle Control.

In particular, the DARPA Grand Challenge has encouraged numerous research institutions to
build driverless vehicles for self-driving and navigation both in the dessert and in urban environ-
ments [8, 9, 10, 11]. In the task of environment mapping for urban self-driving vehicles, it is no
longer sufficient to just estimate passive variables such as the road curvature [12] and surface con-
ditions [13], but it is of great importance to include predictions of future actions of other drivers
because it allows the control algorithm to execute a safer and more effective plan. For example,
conventional adaptive cruise control algorithms follows the front vehicle by maintaining a safety
time gap [14]. Total fuel cost could be reduced if the fuel consumption model is included in the
control algorithm using model predictive control [15], and efficient following can be achieved if
acceleration and deceleration of the front vehicle can be predicted in advance as a longitudinal
driver model [16].

In some applications where the driver is considered as a disturbance [17, 18], with determin-
istically bounded motions, then the worst case scenario is always considered [19], i.e. steering
behavior which could result in sudden lane departure, then vehicles will have to travel far apart
from each other in order to be safe, which may not be the most effective method. Alternatively,
if driver models are more carefully modeled and considered to have a probabilistic distribution
[19, 20], then lane departure scenarios will reduce to a smaller percentage and a more effective
algorithm can be implemented instead [19].

As mentioned prior, the original DARPA Grand Challenges has focused mainly on the task
of driving, but has recently invested more interested in creating and funding challenges involving
robotic system performing human-like tasks. In the 2012 DARPA Robotics Challenge, contestants
were given the task to develop ground robots capable of executing complex tasks in dangerous,
degraded, human-engineered environments [21]. Tasks that may be easy for the human but difficult
for robots, such as walking, getting in and out of cars and manipulation of tools are some examples
included in the challenge. The Atlas by Boston Dynamics is a high mobility, humanoid robot
designed for emergency search and rescue operations in rough terrains [22]. Potentially, these
robotic systems could be applied to substitute humans in dangerous military applications [23]. The
features of performing human-like tasks, manipulating objects and navigating in a human-centered
environment also exists in many humanoid robot applications [5]. For example, the Honda ASIMO
is a humanoid robot designed to assist humans with everyday tasks in the most friendly and least
intrusive manner [24].

The aforementioned applications all involve a robotic system where the behaviors of the human
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are included in the design loop, whether it is to manipulate human-centered tasks or physically
working in cooperation with the human. Therefore, it is important for the intelligent system to
have knowledge of this interaction and understanding of human behaviors and cognitive states in
various scenarios and contexts. In the context of driving, better understanding of driver models has
multiple benefits including reliability issues and driver acceptance of intelligent vehicles [25]. In
the next section, we will discuss the research on human modeling from computer science which
has focused on the data-driven approach.

1.2 Human modeling applications using data-driven methods
In the field of computer science and engineering, many human-centered applications are designed
to either imitate human behavior, or behave in a cooperative manner while working with humans.
With this mindset, control algorithms are treated as a black box and the focus of the model is
placed on the output of the black box. The inner structure of the algorithm and how it relates
to human cognition is not addressed. Emphasis is placed on using a model structure that can be
efficiently identified from extensive data, provide good predictions and simulate the behavior of the
human effectively within the trained context. We generalize these as modeling from a data-driven
approach.

Various machine learning algorithms, such as learning from demonstration [26], have been
used to reproduce human behavior on robotic systems. Demonstrations from both human motor
skills and trajectory planning were used to teach robots how to perform manipulation tasks. For
example, nonlinear differential equations were trained to replicate hand grasping motions on the
Sarcos dexterous robot arm [27], and trajectory transfer through non-rigid registration was used to
teach a PR2 robot how to tie knots [28]. Another example uses dynamical movement primitives,
learned from demonstrated trajectories, as a central pattern generator of a biped robot to reproduce
human locomotion [29]. Humanoid robots were used to imitate the strokes of tennis players, taiko
drummers and robotic juggling [30].

In driving applications, data-driven methods can be used to identify driver behaviors in different
traffic conditions. For example, using Markov models, data from vehicle states, driver input and
traffic conditions can be used to identify and predict lane change behavior [31] and turning at
intersections [32]. Recursive least squares is used to identify driver steering during lane keeping on
the highway in real-time [33]. Gaussian mixture models can also be used to predict lane changing
[34] and longitudinal behaviors with car following [35] on the highway. Potentially these models
can be implemented in autonomous algorithms for driver preference matching [36]. A cluster-
based probabilistic model is used to identify and predict the behavior of a distracted driver [19].
Apprenticeship learning via inverse reinforcement learning was used to imitate driver behavior on
a highway in a virtual game [37].

The above examples of using data-driven methods to imitate human behavior is appropriate if
we only care about the predicted output of the model. However, unlike the consistent performance
of machines, human behavior is highly variable due to uncertainty and multiple factors that are not
account for. Often times the trained models will work well for specific scenarios but cannot be
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generalized to new situations. Therefore, instead of using efficient data-driven methods to match
the output of a specific task, psychologists strive to better understand the general principles that
govern human behavior through the use of parametric methods.

1.3 Understanding human behavior from psychology using
parametric methods

To answer the fundamental questions of human behavior, psychologists have long studied the as-
sociated components which makes us human: our senses, our decisions, our actions, and our social
interactions. Neuroscientists have also mapped out the corresponding components in our brain
using brain imaging techniques. The language and modeling structures used to describe our un-
derstanding of human behaviors have evolved from descriptive theory to computational models.

To be able to simulate human behaviors, the cognitive architectures proposed in [38] attempts
to unify the various results of cognitive psychology into a comprehensive computer model. The
proposed modeling language is suitable to simulate both simple and complex behaviors which in-
volve multiple psychological phenomena such as memory and cognitive attention bottleneck in
applications like highway driving [39] and driving under distraction [40]. The individual modules
dealing with different cognitive aspects of human behavior can either be descriptive or computa-
tional and represented at different levels of abstraction, primarily categorized into the bottom-up
approach and the top-down approach.

Of particular interest in this thesis, is behaviors which involve dynamic relationships of vari-
ables within the scope of the problem. The cognitive processes involved in a dynamic task include
making inferences about the world and making a decision based on these inferences. In the follow-
ing sections, we will first introduce the modeling approaches used at different levels of abstraction,
discuss examples of models used for inference problems, and how uncertain knowledge about the
world are incorporated into the decision making process. In particular we will draw on examples of
sensorimotor learning and control, which has been well-researched in the context of hand reaching.

1.3.1 Level of abstraction: bottom-up vs. top-down
Similar to Marr’s hardware level of human vision [41], the lowest level of abstraction focuses
on the mechanisms at the neuronal level and models how the physical connections between the
neurons can lead to macro-level functional phenomena [42]. This bottom-up approach is different
to the top-down approach which bypasses the physical implementations of our brain and models
observed behavior directly using various computational models. The top-down approach can deal
with the abstract principles that allow agents to solve real-world problems [43], and examples
include probabilistic models like Bayesian reasoning.

Bottom-up approach: In the bottom-up (also known as the connectionist) approach, cognitive
scientists model cognition based on the idea that the knowledge underlying cognitive activity is
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stored in the connections among neurons [44]. In connectionist models, knowledge is acquired
by altering the strengths of connections among neuron-like processing units [44]. The simplest
way to model the neural network in our brain is to treat each neuron as a function node with
different weights [45]. In fact, this computational architecture have also inspired artificial neural
networks used in machine learning [45] and control algorithms [46]. Even more recently, deep
architectures in unsupervised learning, also known as deep learning, has been heavily applied to
represent high-level abstractions such as vision, language, and other AI-level tasks [47, 48]. For
example, using unlabeled images to train deep neural networks to recognize high-level concepts
such as cats [49]. These deep architectures, composed of multiple levels of non-linear operations,
such as neural nets with many hidden layers, can be paralleled to the extremely complicated neural
networks formed inside the human brain. The incredible ability of the aforementioned example in
learning a categorical concept of the world without supervision draws a strong a parallel with how
humans adapt and learn using the neural network in our brains [50].

To further the physical representations of the human brain, functional models of each neural
node in the neural network is replaced with biological cellular models with more complex rep-
resentations. To fully understand and simulate human brain activity, the Human Brain Project
attempts to build biologically accurate models of the brain from first principles, models each neu-
ron individually on an IBM chip, and connects into a giant network, also known as IBMs Blue
Gene supercomputer [51]. In addition, the electrical signal passing between the neural network is
subject to multiple sources of noise [52]. As a precursor to simulating the human brain, [51] has
successfully modeled the entire brain of a 2 week old rat.

Despite the ability of the bottom-up approach to model simple processes and inference prob-
lems, it is still limited to a small range of applications and it is unclear how this can scale up to
decision making scenarios which involve dynamic environments. Therefore, to bypass the limita-
tions of the neural network model while still pertaining to the physiology of the brain, neurosci-
entists have focused on certain regions in the brain i.e. motor cortex for motor control [53]. With
brain-imaging techniques such as the functional magnetic resonance imaging (fMRI) and virtual
reality experiments, researchers can now verify certain concepts and how it correlates to a spe-
cific part of the brain. For example, mirror neurons, initially discovered in the premotor cortex
of monkeys, have recently been shown to respond in both scenarios where in one, a particular
action is performed by a monkey and in the other scenario, the same monkey observes another
monkey performing the same action [54], which supports the simulation theory [55]. A similar
matching system has also been shown to exist in humans. When experts in either classical ballet
or capoeira, or non-experts were individually asked to watch videos of classical ballet or capoeira
actions, fMRI showed greater bilateral activation in the regions of the brain associated with motor
action for subjects who were experts of the movements shown in the video [56]. This suggests that
the human brain understands actions by motor simulation. However, the computational compo-
nent of complex processes like these are hard to model with the bottom-up approach. Instead, the
top-down approach can directly model the observed behavior using computational models.
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Top-down approach: The top-down (also known as the probabilistic) approach, bypasses the
need to consider how the neural connections lead to cognitive concepts, and models behaviors di-
rectly from observations [43]. There are many forms of modeling using the top-down approach.
The most popular approach that have garnered a lot of attention recently is by using Bayesian meth-
ods. The fundamental idea behind Bayesian methods is treating humans as probabilistic decision
makers, which lines naturally with how humans behave with uncertainty. Uncertainties can come
from the environment, our senses, our actions, or even others actions. Integrating and balancing
the uncertain world around us with our own prior knowledge of the world is the core of Bayesian
methods. Many of the Bayesian methods have been applied to inductive reasoning which involves
making inferences about the world. It involves combining noisy observations with prior knowledge
in order to make inferences about the world. For example, probabilistic Bayesian methods like the
Rao-Blackwellized particle filter was used to model state estimation and human visual attention
during multiple object tracking [57]. Inference problems are a necessary component in human
decision making because it provides us with state estimation feedbacks of the systems involved.
Statistical decision theory is another top-down approach that is used to model how we integrate
our uncertain estimates of the world to arrive at the best calculated decision in dynamic problems.
We will discuss this in detail in the next section.

1.3.2 Computational models for decision making
Decision making problem which involve dynamics, or temporal evolutions of states, is an impor-
tant part in understanding human behaviors for intelligent systems. We will introduce examples and
discuss several characteristics related to the decision making of human behaviors which include:
optimality of behavior, forward models and mental simulations, and dealing with state uncertainty.

Human sensorimotor skills can be modeled with concepts borrowed from the controls com-
munity [58]. Reaction times and corrective movements suggests that forward models, similar to
the principles of feedforward control [59], are used in reaching movements to predict sensory
feedback. An affluent copy of the motor command is used to predict future position of the hand.
Inverse models are used to calculate how much force is required to achieve a certain goal [60]. The
ability to perform fast reaching in the presence of sensory feedback delay suggests the use of these
forward models [59]. The activation of mirror neurons during both the action and observation of
identical tasks suggests a connection to the simulation of forward models [61].

Also included in sensorimotor learning is the importance to include the uncertain and noisy
component of human behavior in computational models, since it has been shown both experi-
mentally and computationally that multiple sources of noise contributes to cellular and behavioral
trial-to-trial variability [52]. The different sources of noise in the nervous system, from the molec-
ular to the behavioral level, is also reviewed in [52], and noise enters the control framework in
many forms included in the sensing and actuation [62]. The Kalman filter is a classical linear
systems observer used in many controls applications, and is used to model how humans process
sensory feedback corrupted with noise [62]. For example, Bayesian statistics and optimal con-
trol have also been used to model reaching movements [63]. Subjects are asked to reach towards
a target point with their visual feedback of the hand position occluded. Subjects are provided
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with feedback midway but the virtual feedback has a noise component added to it. The noise is
sampled from a prior distribution. Results are compliant with Bayes rule and models show how
subjects tradeoff between prior belief about the noise distribution and their own belief about the
hand position. To summarize, motor behavior of humans are viewed as a problem of maximizing
the utility of movement outcome in the face of sensory, motor and task uncertainty. [64] discusses
a variety of utility functions that is used by the human in the trajectory planning including cost of
time, minimum energy, speed-accuracy tradeoff, discounted reward, naturalistic versus explicitly
defined cost function etc.

We conclude that human decision making, in tasks which involve temporal evolution of system
states and require trajectory planning, can be viewed as an optimal control problem where the
effects of sensory, motor and task uncertainty is considered. This also implies that in order to find
the optimal solution or trajectory to the planning problem, humans intrinsically possess the ability
to make state predictions during the cognitive processes involved in decision making.

1.4 Conclusions and research direction
Reviewing the discussion in Section 1.1, we have established that there is an increasing interest
on human-centered intelligent systems which involve human-machine interactions or machines
designed to performed tasks that were traditionally done by the human. Therefore, it is important
for intelligent systems to have knowledge of this interaction and understanding of human behaviors
and cognitive states in various scenarios and contexts.

The need to better understand human behaviors for the purpose of designing improved human-
machine systems motivates the following two contributions addressed in this thesis:

• To use computational modeling frameworks to better understand the mechanisms and factors
which affect decision making in different problem contexts, both from the controls design
and psychology perspective.

• To introduce a unifying framework for integrating human policies into controller design in
order to improve the performance of human-machine intelligent systems.

In Section 1.2, we presented the various engineering applications of intelligent systems that
are designed with the purpose to either imitate human behavior, or behave in a manner that can be
integrated to work with humans. Examples included humanoid robots for personal assistance and
military use, as well as self-driving cars. We argued that, although the data-driven models used in
these applications can be efficiently identified from extensive data and capable of providing good
imitations of human behavior, the inner structure of the algorithm and how it relates to human
cognition is not addressed and therefore it is harder to generalize the identified behaviors to new
scenarios.

To better understand the underlying principles behind human cognition, we reviewed in Section
1.3, literature from cognitive psychology and neuroscience and the various parametric methods
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that were used to model these fundamental concepts. We presented the top-down and bottom-
up approaches from the field and established that even though top-down approaches bypasses the
physical implementations of the neural network in our brains, it has the capability to address a
wider range of abstract principles that allow agents to solve real-world problems.

Focusing on the top-down approach, we discussed examples of how probabilistic models are
used to explain the cognitive principles behind inductive reasoning in the uncertain world. To con-
nect this with dynamic decision making, we presented examples in the context of sensorimotor
learning and used hand reaching experiments to identify how the human makes decisions on the
trajectory of the hand in the presence of sensory uncertainties. Literature from various hand reach-
ing experiments have concluded: that humans will act either optimally or sub-optimally in order
to minimize different cost functions under the presence of state uncertainty; and that humans have
intrinsic representations of forward models for improving the performance of motor control.

To draw motivation to our research, we argue that even though the above discussed hand reach-
ing experiments have identified the principles behind continuous decision making with motor con-
trol, it still did not address the issue of decision making that involves manipulation or interaction
with another object in a dynamic environment. Such problem contexts are especially important
for human-machine interactions and has been studied with data-driven approaches of modeling. In
addition, the cognitive states of the human in these experiments were inferred from observed hand
trajectories and reaction times instead of being measured directly.

To integrate the two extremities, this thesis will use advanced test apparatus and sensor tech-
nologies to measure the cognitive states of the human and design experiments which will be able
to draw a connection between the results from psychology to the applications in engineering. We
will approach this by conducting dynamic experiments in the real-world setting such as driving,
and simultaneously design game-based scenarios which parallels the former. We aim to use ad-
vanced modeling methods to identify parametrically the psychological principles, such as optimal
behavior, forward models and dealing with uncertainties in the system, that was discussed in the
hand reaching examples.

In addition to the principles behind decision making in a continuous setting at the lower-level,
many intelligent systems also need to be designed to handle higher-level decision making which
often involves discrete variables. As mentioned in Section 1.2, lane changing and turn detection
has been modeled with data-driven methods. Section 1.3 briefly introduced a descriptive approach
using cognitive architectures to simulate attention allocation in a distracted driving setting. How-
ever, descriptive modeling languages like this is more difficult to integrate into control systems
which adopt computational algorithms. Similarly, we will address this issue and conduct both
real-world driving and game-based experiments involving attention allocation, and use parametric
methods to parallel the associated psychological principles.

Lastly, to address our second contribution, we will introduce an advanced control framework
which is able to seamlessly integrate predictions of human models directly into the control al-
gorithms. With the large variety of computational methods for modeling human behaviors, both
data-driven and parametric, the novelty in our model predictive control framework is the capability
to handle any form of modeling, as long as a sequence of predictions is provided by the human
model.
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Chapter 2

Modeling Framework: Direct and
Optimization-Based Methods of Policy
Functions

To better understand the underlying principles behind human decision making in various contexts,
psychologists have traditionally approached this question from a behavioral perspective [65]. In-
creasingly we are seeing more research efforts applying computational methods to explain specific
behavioral trends at different levels of abstraction. For example, the connectionist approach mod-
els the neural network in the cerebellum [44], probabilistic models for inductive reasoning [43], or
a control theoretic approach to modeling sensorimotor control in reaching [64]. In this chapter, we
follow a similar control-based paradigm and present the different computational models that can
potentially be used to model the decision making process, especially those involving interactions
with a dynamic system.

Borrowing the architecture from the controls community [58], we start by introducing the gen-
eral framework corresponding to the decision making in a dynamic environment, and discuss how
the associated process modules including control and feedback relates to the human. Decision
making is posed as a policy function mapping observed input and goals to the decision. We pro-
pose that the policy function map can be represented by two methodologies: direct methods and
optimization-based methods. Direct methods maps input to output directly, as opposed to the
optimization-based methods which involve state predictions and searching for a solution to satisfy
certain criteria. Direct methods have the advantage that the associated model parameters are much
easier to identify, and therefore is also a suitable candidate for the integration with controller design
of semi-autonomous systems.

We present the mathematical formulations of: direct methods including linear feedback, piecewise-
affine, probabilistic models and support vector machine; and optimization-based methods includ-
ing predictive models and Markov decision process. The models introduced here will be used later
in Chapter 4 for behavioral modeling and identification of specific applications, and also in Chapter
5 for integration into controller design.



CHAPTER 2. MODELING FRAMEWORK: DIRECT AND OPTIMIZATION-BASED
METHODS OF POLICY FUNCTIONS 10

2.1 Framework for modeling decision making in a dynamic
environment

The complexity of human behaviors makes finding a unifying framework a difficult task. Different
frameworks will be selected depending on the purpose of the modeling problem. For example,
cognitive architectures [38] are designed to simulate and integrate all the cognitive processes in-
volved in psychology, however the use of descriptive languages makes it harder to combine with
control algorithms. We will start from the control theoretic point of view and discuss the roles
of the different modules involved in this framework, integrating principles from psychology and
neuroscience and drawing parallels to existing control systems.

Figure 2.1: Control-theoretic framework for modeling the decision making agent and its interac-
tions with a dynamic system. (Image source: [66])

2.1.1 Components in the decision making framework
Presented in the Figure 2.1 is the framework used to describe the interactions between a controller
or decision maker, and the system and the environment. The blocks represent different compu-
tational processes, and the arrows represent the flow of information between them. As shown in
the diagram, the two major components in the framework are two interacting blocks / processes
exchanging information with each other such as state feedback, inputs or decisions.

The first block represents an agent who is the controller and decision maker. An agent can re-
fer to humans, robots or any other intelligent systems such as the control algorithm of autonomous
vehicles. The second block can either be another agent, or it can represent the process or system
that is controlled by the first agent. Systems can refer to simple physical phenomena such as a ball
bouncing on the ground, or more complex processes such as a car been driven on the road. For
simplicity, in this chapter we will confine the discussion of the framework down to an agent con-
trolling a system (and not with another agent), and will focus on discussing the various components
that exists within the agent.
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System / process component: The systems module represents the processes that are being con-
trolled by the controller or the human subject. Often times, this refers to a continuous process
which evolves over time, governed by differential equations i.e. ẋ = f (x). To simplify the analysis
and controller design, linear systems, which has linear matrix representations of the differential
equations, are desirable. Therefore, even with nonlinear systems, linearization techniques are of-
ten used. When modeling a controlled process, the variables which represents the state and inputs
need to be clearly specified. For example, a system which describes the process of a vehicle being
driven: can have the position, velocity, yaw angle, and yaw rate as the states; and the steering wheel
angle, brake pedal, and throttle position as the inputs; and differential equations which govern state
evolutions can be derived from tire force models and kinematic equations [67].

Decision making agent: The human decision making agent can be viewed as an integration of
many different computational modules that internally pass information with each other, as shown
in Figure 2.1. Feedback from the system will be provided by the state observer where the states
of interest are estimated, and the controller algorithm will compute the set of required control
decisions to pass to the actuator in order to achieve a set of goals or set-points provided by the
reference generator. The details of each modules are discussed as follows.

State observer: In order for the controller to accurately track a desired reference, the con-
troller constantly needs information updates on the current states of the system. Once the current
states are compared to the desired values, the controller can compute the next input. To obtain
these state estimates, the agent needs the means to measure and observe the system states. Various
types of sensors can be used to measure the states of the system. For example, in an autonomous
vehicle, inertial measurement units are used to measure the vehicle accelerations, and estimate the
velocities. In addition, in order to map out the states of the environment, lidar and radar systems
are used to detect the states of the surrounding vehicles. Similarly, human agents are born with
sensors in order to observe the physical world around us. Sensory feedback from our eyes, ears,
tactile sensors on our skins etc [68], are all integrated to obtain the optimal state estimates.

However, the sensors that are used do not always have a direct and accurate representation of
the states of interest. Often times, the sensor signals will be corrupted by various level of noise. For
example, for human agents, these noise could be introduced from the sensory input or in the neural
connections [52]. In order to reconstruct the best estimate of these noisy signals, various filtering
and state estimation algorithms can be used. Kalman filtering is a very popular method that is
widely used in many control systems [69]. It can also be used to model how human agents perform
state estimation in the presence of noise [63]. Other methods such as Bayesian inference [43] are
also widely researched to represent human inductive reasoning in the presence of uncertainty.

Reference generator The reference generator refers to the parsing and breaking down of a
high-level goal to smaller lower-level subgoals. For example the goal of driving safely from point
A to point B will be parsed into smaller goals such as route direction and following the curve of the
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highway etc. The references can be generated by a higher-level path planner as in [67], or learned
from experienced and retrieved as memory [70].

Controller algorithm The controller module represents the agent or algorithms that is con-
trolling and reacting to evolutions of the system in order to achieve certain goals. There is a set of
goals or set-points that the agent wants to achieve, provided by the reference generator. Upon re-
ceiving the state feedback of the system, the controller will compute the necessary inputs to apply
to the system in order to achieve these goals. The control algorithm will vary accordingly depend-
ing on the structure of the system, the goals, and any uncertainties or constraints. For example,
for linear systems, it is relatively easy to design a state feedback controller that ensures stability
of the system, and convergence to the setpoint. But if there are uncertainties in the state feedback,
then one might want to use the linear-quadratic-gaussian formulation to control the system [69].
Similarly, if there are constraints in the state and inputs, then one might use a model predictive
control (MPC) approach [71]. We can treat the human subject as the controller when interacting
with a dynamic system such as driving a car. There are certain destinations that the human wants
to reach, constraints such as not deviating from the lane on the highway, and uncertainties such as
the behaviors of other drivers that is taken into consideration.

Actuator: The actuator of the system take input commands from the controller and phys-
ically interact with the system. For example, the actuators in an autonomous vehicle would be
the mechanical systems of the active steering, braking and throttling. In a driver, it could be the
actual neuromuscular system of the arms which interacts with the steering wheels of the car [72].
Often times, there would be discrepancies between the intended control and the actual output of
the actuator due to uncertainties in the perceived model of the actuator [64]. Humans account for
this uncertainty in the forward model with sensory feedback to determine the necessary corrective
actions [63].

2.1.2 Characteristics of the controller model
To model the human agent’s thought processes in a dynamic environment, such as decision making,
control, environment assessment and state estimation, it can be posed as a black box which maps
input to output. The definition of the input and output features will depend on the process that is
being modeled. The realm of problems modeled include all areas of human behaviors that have
been rigorously studied in human factors, psychology and cognitive sciences. As discussed before,
these can be broken down into different levels of abstraction, from low-level muscular control to
high-level decision making such as path planning.

Inductive reasoning is one example that has been heavily studied in the field of psychology. It
involves combining noisy observations with prior knowledge in order to make inferences about the
world. For example, probabilistic Bayesian methods like the Rao-Blackwellized particle filter was
used to model state estimation and human visual attention during multiple object tracking [57].
Methods like these can be used to model the state observer component of the framework shown
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in Figure 2.1. In this thesis, we would like to focus on the controller component of the decision
maker, which maps state estimations of the world to the necessary control commands in order to
achieve a desired goal. We will now discuss the input, output and the policy map in detail with
examples.

Figure 2.2: Controller component in the decision making framework showing input, output and
policy map.

Input vector: As shown in Figure 2.1 and 2.2, the input vector consists of observations and state
estimations of the world, as well as goals or references. The reference r can be state trajectories
such as X-Y coordinates in a path following problem [67], or a desired set-point. State observations
are divided into continuous and discrete variables, x∈Rnc and s∈Nnd respectively. For example, in
driving situations, continuous observations can include the relative velocity and position between
vehicles, and discrete observations can include the signals the other vehicles gives out, like brake
lights, blinkers etc.

Output vector: The output vector represents decisions or control commands which, depending
on the level of abstraction captured by the model, will be inputs to another process module. Simi-
larly, the output vector can be divided into continuous and discrete variables, u ∈Rmc and a ∈Nmd

respectively. Continuous variables are typically used to represent lower-level decisions i.e. neu-
romuscular commands of the agent [72], hand trajectories in reaching [73], or steering wheel
commands to the vehicle [33]. On the other hand, discrete outputs typically refer to higher-level
decisions i.e. lane change decisions and turn signals [31], or attention allocation during driving
[74].

Policy map: The policy map Aθ(·), parameterized by θ, maps the input to output. θ is initially
unknown and its values are identified and assigned during system identification. Model parameters
of the human subject can be time-varying, especially during the learning stage when the subject
is still adapting his policy to new scenarios. The structure of the policy map and how it is param-
eterized by θ will depend on the modeling approach and the nature of the variables involves i.e.
discrete or continuous.
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To computationally represent the policy map, we will introduce two main modeling approaches:
direct method and optimization-based method. Direct methods are associated with reflexive and
repetitive processes which involves minimum cognitive processing. Optimization-based methods
on the other hand, involve state predictions and internally finding a solution which meets a set of
criteria, and therefore require much more cognitive processing.

2.2 Direct methods to modeling human decision making
The first approach to modeling decision making is the direct method where the policy maps are
stored in memory, and making a decision corresponds to looking up a learned function map
given the observations. Direct methods typically involve minimal computational effort, unlike
the optimization-based policies. Following this characteristic, direct methods naturally becomes
a suitable candidate for modeling behaviors which appear to be more repetitive, reflexive, and
associated with lower-level decision making problems, which will be discussed with application
examples later in Chapter 4.

The function maps can also appear as the end product of many policy search algorithms where
the optimal behavior is computed off-line and simplified into direct feedback policies to reduce the
computational complexity of online implementations, i.e. in linear quadratic regulators [69], or
explicit model predictive control [75]. Since we are focusing on modeling the cognitive processes
involved with online decision making, policies computed this way are still categorized under the
direct method even though the original formulations are optimization-based,

We will present the model formulations for: continuous decisions using the linear feedback
model and mode-based models which includes the switched piecewise affine model and the proba-
bilistic clustering model; and discrete decisions using the support vector machine framework. We
will also discuss how the parameters in each model can be identified using various state-of-the-art
identification algorithms.

2.2.1 Linear feedback map
The most widely used method for modeling continuous decisions is the linear feedback model, and
the continuous mapping from input to output f : x→ u is simply an affine mapping u = Ax+ b.
The model parameters for the affine map are A ∈ Rnc×mc and b ∈ Rmc . This is the simplest form
of the direct methods and is often used in many applications for both its simplicity in computation
and identification. For example, driver steering behaviors models can be adapted easily online as
the driver is still driving [33]. The variables of the linear matrix A and b can be easily identified
with collected data using least squares methods or methods with L1 regularization such as LASSO
[76].

Time-varying linear feedback models u = A(t)x+b(t) can be used to capture the adaptive nat-
ural of human behaviors. An example of this could be when a driver is learning how to drive a
car, or even testing out the new car, the amount of steering wheel angle the driver inputs into the
system will change over time as the driver becomes more familiar with the sensitivity of this par-
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ticular vehicle. As mentioned previously, if the mapping is linear, recursive least squares methods
can be used to find this time-varying parameter online [77]. The idea of a time-varying component
in the model parameter is not exclusive to feedback gains but can be applied to any model structure
which takes the adaptive natural of the parameter into account. To avoid repetitions, we will define
the models as time-invariant, but keep in mind, it is easy to introduce the time-varying adaptation
to the framework as well.

2.2.2 Mode-based models
The linear feedback method first introduced in this section focused on mapping continuous input
features directly to the output features through a single mapping function. This is a good way to
model linear behavior or even linear approximations to nonlinear phenomena in the simplest and
quickest way possible. However, given the complexity of human behaviors in many applications,
a simple linear map may not be sufficient to capture its observed nonlinear and/or probabilistic
nature. Therefore, higher fidelity models are required to explore these aspects. One approach
is to use either simple intuition or machine learning to divide the state space and cluster similar
behaviors into modes, within which, simpler relationships can be used to fit the observed behaviors.

Generally speaking, for the mode based framework, the policy selection is two-fold. First, the
mode of operation is selected, then the output is determined by the policy map which corresponds
to that mode. Through the described structure, each mode-based model will need to define the
following,

• M mode of operation

• σ = g(x,s) mode selection map

• u = fσ(x,s) policy map based on mode

The policy map fσ(·) can be of any model structure. The simplest form would be to adopt the
linear feedback model in Section 2.2.1 as the policy map. The mode selection map can be any
function that maps observations to the corresponding mode of operation. We will introduce two
mode-based models: piecewise affine function and cluster-based probability distributions. Other
examples of mode-based maps include hybrid systems [78].

Piecewise affine models

The first mode based model will be a natural extension to the linear feedback maps. Often times
direct feedback methods are sufficient to model a linearized version of a nonlinear relationship
if the nonlinearity is not too extreme. However, for behaviors that are highly nonlinear, a simple
linear gain will fail. The piecewise affine (PWA) framework can be used to approximate a nonlinear
map with smaller segments of linear maps. Different policy maps are simultaneously stored and
selected depending on the values of the input features. We will refer to the different policy maps as
modes. Values of the discrete input can directly specify which mode to operate, or the continuous
input features can be mapped to match the mode conditions.
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For the PWA model, the policy map fσ(·) defined in Section 2.2.2 will be the linear feedback
models introduced in 2.2.1. The mode selection map can be as simple as having the discrete values
indicate the mode, or the continuous variable can be divided into intervals and corresponds to
different modes. For example σ= i if x∈ [ai,bi]. More complex mode selection maps could involve
polytopic computations such as those used in explicit MPC. These are all generic examples of
piecewise affine feedback models. Gain-scheduling is another example where the feedback gains
are pre-computed, stored and selected based on the values of other variables. We present a special
class of PWA models, namely, the PieceWise AutoRegressive eXogenous (PWARX) formulation,
where the switching mechanism is determined by a polyhedral partition of the regressor domain
[79].

Model Formulation: For fixed model orders na and nb, the regressor rk is defined in terms of
the input vectors uk−i ∈ Rp, i = 0,1, ...,nb and past output vectors yk−i ∈ Rq, i = 1, ...,na,

rk = [yT
k−1 ... yT

k−na
uT

k uT
k−1 ... uT

k−nb
]T (2.1)

The current output yk is expressed as a piecewise affine function of rk,

yk = θ
T
σ(k)

[
rk
1

]
(2.2)

where σ(k) ∈ {1, ...,M }, is the discrete state, M is the number of modes. {θi}M
i=1 is the matrix

of parameters defining the system dynamics in each mode. The domain of the discrete modes are
determined by a polyhedral partition of the regressor domain R ⊂ Rd , where d = q× na + p×
(nb +1). The discrete state σ(k) is given by

σ(k) = i iff rk ∈ Ri i = 1, ...,M (2.3)

and {Ri}M
i=1 is a complete partition of R . Each region Ri is a convex polyhedron described by

Ri = {r ∈ Rd : Hi

[
r
1

]
≤ 0} (2.4)

Model Identification: For identification of the parameters in the PWA model, both the linear
parameter {θi}M

i=1 in each mode and the polyhedral partitioning of the regressor space {Ri}M
i=1 need

to be determined in order identify how the modes are defined. Various identification algorithms are
discussed in [79], including those which also determines the number of modes in the polyhedral
partition. In Chapter 4, we used the Hybrid Identification Toolbox [80] to identify the parameters
for our model. As part of tuning, the number of modes need to be predefined prior to running the
cluster-based identification algorithm.
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Probabilistic maps

The previously described modeling framework for the PWA system is an example of mode-based
models which integrates linear policy maps into the different modes of the system. Now we will
consider the approach where each mode is directly associated with a probability distribution, and
able to handle the vast degree of uncertainty that is often observed in human behaviors.

Model Formulation: To define the structure of the probabilistic mode-based framework, con-
sider for each mode σ ∈ {1, ...,M }, there is a set Oσ = {oi}i∈{1,...,|σ|} ⊂ O of observations asso-
ciated with each mode, where |σ| denotes the number of elements in mode σ. Each oi is a vector
composed of observations. The output of the model U is a function of the empirical distributions
that is constructed for each mode separately. The input of the model I is associated with the current
information and determines which mode the input currently belongs to. Formally defined as,

U = Π(P(X |O,I )) (2.5)

To make a prediction using this modeling framework, first the current observation I is used to
determine from Oσ which cluster I belonged to. Then once the mode is identified, the associated
probability distribution of that cluster is used in Π(·) to compute U. For the function Π(·), we can
use expected values as an example for computing the output.

Model Identification: Identification of this mode-based probabilistic model involves two steps.
First the modes are identified from recorded data using clustering algorithms, then an empirical
distribution is constructed within each cluster separately. [81] provides a survey of all the clustering
algorithms. For the driver application in Chapter 5, we used a k-means clustering algorithm [82]
to identify the modes.

2.2.3 Support vector machine
The methodologies introduced thus far has focused on modeling the policy functions for contin-
uous decisions. We will now introduce another direct method of modeling for discrete outputs,
namely support vector machines (SVM) [83], popularly used for many classification problems
across a diverse range of applications i.e. pattern recognition [84], gene selection for cancer clas-
sification [85], and optical character recognition [86] etc. SVM is a form of supervised learning
algorithm which requires the labeling of the training data. The most basic form of SVM is used
to classify a two-class problem, although many extensions has been proposed for using SVM in
multi-class problem as well [87].

Model Formulation: Given a set of data where for each data point i, it is labeled with y =
{−1,1} depending on which one of the two-class the point belonged. We are interested in finding
a function y = f (x) which maps the feature vector x ∈ Rn into the output y = {−1,1}. SVM uses
a hyperplane as the function,

f (x) = (w·x)+b (2.6)
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and interprets positive or negative values of the output to be corresponding to be belonging to that
class.

For non-linear cases where the hyperplane fails to classify, the feature vector of the data set x
can be preprocessed with a nonlinear map x→Φ(x) and now the classification map becomes,

f (x) = (w·Φ(x))+b (2.7)

Model Identification: Given a data set D consisting of m data points where each point consists
of a feature vector x and classification label y, we are interested in finding the values of w and b
which minimizes classification error. Consider the loss function L(y, ŷ), where the value is either 0
or 1 depending on whether y = ŷ, the hyperplane which classifies the most number of points from
D correctly minimizes the loss function, formally defined as,

min
w,b

1
m

m

∑
i=1

L(w·xi +b,yi)+‖w‖2 (2.8)

Without going too much into the details, Equation (2.8) can be reformulated into a quadratic
programming problem with relaxed constraints, and loss function converted to a hinge-loss func-
tion. Other tricks, such as the use kernel functions, can handle nonlinearity in the data. [83] details
the state-of-the-art methods used in identification of SVM. In addition, the SVM field of machine
learning is very well-established and there exists many toolboxes available to use and interfaces
with many different programming languages. LibSVM [88] is one toolbox that is widely used.

2.3 Optimization-based methods to modeling human decision
making

Optimization-based models are policies which require computations that tries to find the optimal
solution. The modeling framework is posed as an optimization problem,

min
x

J(x) (2.9a)

subj.to f (x) = 0 (2.9b)
g(x)≤ 0 (2.9c)

where J(x) in (2.9a) is the cost function, or reward function for maximization problems, f (x) in
(2.9b) is the equality constraint, and g(x) in (2.9c) is the inequality constraint. In the context of the
human controller, the optimization variable x is the output vector of the policy map.

This type of formulation, termed optimal control, is a systematic way of generating an open-
loop set of control sequence that are optimal for a particular cost function. It is widely used in
control systems where the control objective is to minimize some cost or measurement criterion,
which could be a function of the states, and/or control inputs, for example, error from reference
trajectory. The predicted effects of control inputs/decisions on future state evolutions are also
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considered, and states are to be kept within certain constraints. The state predictions could either
be obtained from a look-up table, from motion primitives [89], or from a model of the system
dynamics.

Control examples include control algorithms such as linear-quadratic regulator [69] and model-
predictive control [71]. From a human decision making perspective, optimization models seems to
naturally fit into the higher-level decision making frameworks. For many decision making prob-
lems, we are concerned about optimizing a certain criterion, it could be time, energy, effort, or
error [64]. It could be maximizing the amount of reward you would obtain from a certain task as
well. We would refer to these problems as more of a planning problem that requires more thinking,
planning and therefore, more computational power from the human. So naturally we would like to
model these type of behaviors using the predictive model framework to match the way our mind
interacts with the environment.

However, this approach of modeling is very difficult to identify from collected data, since it
cannot be easily formulated into a machine learning problem like least squares etc. There are
many variables within the optimization framework that can be used as model parameters. For ex-
ample, the optimization objective structure and the respect weights, the parameters in the constraint
formulations. On the other hand, the direct mapping of functions in Section 4.1 is much easier to
formulate into a standard model identification problem, and there exists many tools and algorithms
that processes the data and identify the parameters efficiently.

2.3.1 Model predictive control
A specific case of the optimization model is model predictive control (MPC), or receding horizon
control. MPC takes the model of the system dynamics, typically a set of differential equations,
to generate future state predictions. From an autonomous control perspective, MPC can be im-
plemented to avoid obstacles [67]. In Chapter 5 we will extend this MPC framework to include
predictions of human behaviors. From a human modeling perspective, learning to behave like an
optimal controller involves learning the cost function (i.e. reference trajectory), and also learning
either the motion primitives or the system dynamics (mental model) of the activity. We will fo-
cus on modeling the driver using the latter abstraction. To formally express this framework, we
consider the following optimization problem:

min
Ut

J(ξ̄t ,Ut ,∆Ut) (2.10a)

subj. to ξk+1,t = f (ξk,t ,uk,t) k = t, ..., t +Hp−1 (2.10b)
∆uk+1,t = uk+1−uk k = t, ..., t +Hp−2 (2.10c)
uk,t ∈U k = t, ..., t +Hp−1 (2.10d)
∆uk,t ∈ ∆U k = t +1, ..., t +Hp−1 (2.10e)
ξt,t = ξ(t) (2.10f)
ξN,t ∈ X f (2.10g)
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Hp is the prediction horizon. ξ̄t = [ξt,t ,ξt+1,t , ...,ξt+Hp−1,t ], ξ̄t ∈ Rn×Hp is the sequence of states
predicted at time t, based on the Euler discretized dynamics of the vehicle model (2.10b). uk,t ∈Rmr

(mr is the number of inputs at each time instance) is the kth column of the input sequence matrix
Ut = [ut,t ,ut+1,t , ...,ut+Hp−1,t ]

′. The cost function (2.10a) is defined as
Modeling the policy map for human decision making as an MPC problem has two implica-

tions. First it suggests that humans make decisions based on predicted states in the future for an
extended horizon. Second it suggests that humans are able to solve these complex optimization
problems to find the optimal solution in real-time. Much similar to an MPC formulation that is ap-
plied to vehicle control systems and general solvers [90], the computational complexity can be too
cumbersome to perform efficiently in real-time. So often times, we compromise for sub-optimal
solutions found after a few search iterations. Alternatively, explicit MPC [75] finds polytopic solu-
tions offline similar to the PWA model in Section 2.2.2. We will focus on the online computation
of solutions in the examples later in this thesis.

2.3.2 Markov decision process
Another extension of optimization models is the Markov decision process (MDP), where similar
to the MPC, it involves state transitions and minimizing cost (or maximizing reward) that are
a function of the states and inputs, but different from the continuous nature of MPC, the MDP
framework deals with discrete states and discrete actions/inputs instead. Unlike MPC which finds
optimal solutions to the original formulation online, the discrete nature of the MDP model and
the finite set of states and actions, allows designers to compute and store value functions of the
states offline. The online implementation involves solving just a one-step optimization problem
which maximizes the value of the next state. Intuitively, this makes a connection to how valuable
or costly it is to be in certain states, and aligns with the skill acquisition and learning aspect of
human behaviors, where after becoming familiar with the nature of the task, the subject learn
from experience a preference towards being in specific state configurations in order to maximize
completion of his goal.

A (finite) MDP is a tuple (S,A,T,R,γ) where,

• S ∈ Nn is a finite set of states

• A ∈ Nm is a finite set of actions

• T : S ×S ×A → [0,1] are the state transition probabilities

• R : S ×A → R is the reward function

• γ ∈ [0,1] is the discount factor

In solving for the MDP, the goal is to choose the policy π(s) which maximizes the cumulative
discounted sum of the reward given the state transitions, formally defined as,

π(s) = argmax
a

∞

∑
t=0

γ
tR(st ,st+1) subj.to st+1 = T (s,a) (2.11)
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Optimal policy: There are many algorithms [91] which solve for the optimal policy π(s) for
Equation (2.11), i.e. through dynamic programming, value iteration, policy iteration etc. We will
present the value iteration approach. In value iteration, the value function V (s) at each state is
found by iterating the bellman equation until convergence.

V (s) = max
a

R(s,a)+ γ∑
s′

T (s′|s,a)V (s′) (2.12)

where s′ is the next state. We denote the optimal value function as V ∗(s). The optimal policy π∗(s)
is evaluated as the action that achieves the highest reward.

π
∗(s) = argmax

a ∑
s′

T (s′|s,a)[R(s,a)+ γV ∗(s′)] (2.13)

Once the optimal policy is evaluated, at any given state s, we can determine the optimal action to
take. This optimal action is later compared with the actions of the participants.

Inverse reinforcement learning: The inverse problem, where the reward function which re-
sulted in a given set of observed actions, can be identified through inverse reinforcement learning
[92]. The goal of this problem is to find a reward function R∗(s), such that,

E[
∞

∑
t=0

γ
tR∗(s(t))|π∗]≥ E[

∞

∑
t=0

γ
tR∗(s(t))|π] ∀π (2.14)

In other words, the policy chosen by the participant throughout the experiment should be his/her
optimal policy, therefore the expected reward of this policy should be greater than all available
policies that were not chosen. We use a feature based method and translate the reward as a linear
combination of features, φ(s). By the term features, it refers to what we ”expect” the participant to
use in his/her decision making. Letting R(s) = wT φ(s), the expected reward becomes,

E[
∞

∑
t=0

γ
tR∗(s(t))|π] = wT E[

∞

∑
t=0

γ
t
φ(s(t))|π] = wT µ(π) (2.15)

Now solving Equation (2.14) is equivalent to finding,

w∗ s.t. w∗T µ(π∗)≥ w∗T µ(π) ∀π (2.16)

As discussed in [93], in order to find a feasible solution that is not the trivial solution of w = 0, the
max-margin with slack variables approach is implement. The optimization problem becomes,

min
w

‖w‖2
2 +Cξ (2.17a)

subj. to w∗T µ(π∗)≥ w∗T µ(π)+m(π∗,π)−ξ ∀π (2.17b)

where m(π∗,π) is a structured prediction margin that are larger for policies which are very different
from π∗. ξ are a collection of slack variables that relaxes the constraints.
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2.4 Conclusions
In this chapter, we drew from the field of controls and machine learning to arrive at the frameworks
and methodologies that can potentially be used to model human decision making in a dynamic en-
vironment. From a control-theoretic approach, we presented a framework which paralleled the hu-
man decision making agent as process module consisting of multiple interconnecting sub-modules.
Included in the submodules are: the state observer for estimating the state feedback of the system;
the reference generator responsible for planning a set of goals; the controller for determining the
set of decisions which achieves the goals; and actuators associated with the physiology of the
human.

Focusing on the controller module, we presented two approaches of modeling the policy map
of the control strategy. The direct method models stored function maps in memory, and maps input
to output directly. We presented examples of the direct method, specifically the linear feedback
model, mode-based PWA and probabilistic models, and SVM for modeling discrete decisions.
Along with the various models, we also introduced identification methods that could be used to
identify the best set of parameters to fit the recorded data.

Even with the ease of parameter identification, direct methods lack the capacity to model the
planning and predictive natures of cognitive process which involve high-level planning. Optimization-
based methods are introduced to capture this cognitive phenomenon, where state predictions are
simulated in order to find a suitable solution to meet a set of criteria, including cost function and
constraints. Extensions of the optimization-based methods included MPC which handles continu-
ous decisions and MDP for discrete decisions. Due to the modeling structure of optimization-based
methods, there are no clearly defined algorithms to handle the general parameter identification
problem, and only for very specific contexts. For example, reinforcement learning can be used to
extract the weights of the reward function in the MDP.

We will use the framework and formulations presented here to apply to specific human model-
ing examples in Chapter 4 where we explore a range of human behavior from game-based applica-
tions to real-world driving. In Chapter 5, we will use the methodologies discussed here to present
a unifying framework for integrating human models with controller design. In particular, we will
use MPC to include predictions of driver behavior in semi-autonomous vehicles.
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Chapter 3

Description of Experimental Setups, Test
Scenarios and Dynamics of Associated
Systems

With the various modeling methods laid out in the previous chapter, we will now describe in de-
tail the experiments that are performed as examples of human behavioral modeling applications.
The application context will be derived from the two research motivations emphasized in Chapter
1. In one direction, we will address the interest of modeling human behaviors for the purpose
of improving human-machine intelligent systems. Specifically, we will focus on the modeling
of driver behavior with the intention of applying the resulting model into an autonomous driv-
ing framework. We will approach the other part of the motivation, which is to use the proposed
computational modeling frameworks to better understand the mechanism and factors which affect
human decision making, from the psychological perspective. Therefore, in addition to the analy-
sis of data collected from the context associated with our everyday lives such as driving, we will
also scale down and simplify the problem scenario in order to conduct repeatable and controllable
experiments, collect consistent data, and focus on a smaller subset of principles.

In the driving section, we start off with the simplest case of everyday driving, which includes
lane keeping, lane changing and curve negotiation. Then we introduce complex driving maneuvers
performed in slippery conditions which requires the knowledge that tire-road dynamics have both
linear and saturated regions [94]. This allows us to investigate how drivers can handle operations in
this nonlinear regime. The last example will study the behavior of drivers in a distracted scenario,
i.e. texting while driving, in order to derive an improved semiautonomous system.

In the scaled down scenarios performed in a controlled lab setting, we will study the decision
making in multiple game-like experiments. We will use a projectile shooting game to illustrate
how subjects handle an environment with nonlinear relations affecting the trajectory of the related
states, similar to the complex driving setting which involves nonlinear tire dynamics. We will also
attempt to parallel the distracted driving scenario with a dual-task game. Lastly, we will use the
example of juggling to examine the subject’s ability to simulate real-time forecasts in a dynamic
task. The fusion of the analysis from experiments conducted both in the real-world setting and the
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lab setting ties together the psychology approach of focusing on the underlying principles from
parametric models with real-world application for control design.

This chapter is structured as follows. First we present all the experimental details associated
with the driving context, which include: the coordinate system associated with the vehicle dynam-
ics and the surrounding environment; the experimental setup of the vehicle including sensors and
actuators; the experimental setting including the test centers and virtual driving; the sensor mea-
surements to monitor human states; and lastly, detailed discussion of the previously introduced
driving scenarios. The second part of this chapter presents the experimental setup of the dynamic
task of juggling, and the projectile shooting and the dual-task game.

3.1 System dynamics, experimental setup and data collection
for driver modeling and control

In this section, all the experimental setups and test scenarios designed for understanding driver
behaviors will be discussed. We will first present the system dynamics associated with the vehicle,
then detail the on-road vehicle setup that is used to collect driver behavior on real roads and actual
road driving. Then we will describe the simulation setup used to record virtual driving in a lab
setting, followed by the equipment and methodologies used to estimate the internal and external
states of the human subject, and finally, outline the different driving scenarios that is incorporated
into the experiments.

3.1.1 Vehicle dynamics and tire model
Figure 3.1 illustrates a vehicle system and shows the conventions of some of the associated vari-
ables. These are listed below for ease of reference,

• X , absolute X position in the global coordinate framework

• Y , absolute Y position in the global coordinate framework

• ẋ, longitudinal velocity in the body coordinate framework

• ẏ, lateral velocity in the body coordinate framework

• ẍ, longitudinal acceleration in the body coordinate framework

• ÿ, lateral acceleration in the body coordinate framework

• ψ, yaw angle / heading angle in the global coordinate framework

• ψ̇, yaw rate / rotational velocity about the vertical axis

• ψ̈, rate of change in yaw rate / rotational velocity about the vertical axis
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• δ, steering angle of front wheels

• Fx,i, forces applied to vehicle in the longitudinal direction from tire i

• Fy,i, forces applied to vehicle in the lateral direction from tire i

• Fl,i, longitudinal tire forces of tire i from the tire model

• Fc,i, cornering tire forces of tire i from the tire model

• vi, velocity vector of tire i

• αi, side slip angle of tire i

• ey, lateral deviation from center of lane

• eψ, heading deviation from curvature of preview point

• dψ, distance to preview point

• xr,i, relative distance to the i-th vehicle

• ẋr,i = ẋ− ẋi, relative speed to the i-th vehicle

Figure 3.1: Four wheel vehicle model illustrating the vehicle states.



CHAPTER 3. DESCRIPTION OF EXPERIMENTAL SETUPS, TEST SCENARIOS AND
DYNAMICS OF ASSOCIATED SYSTEMS 26

Figure 3.2: Longitudinal and cornering tire forces and side slip angle.

Figure 3.3: Deviation from lane center and curvature.

Figure 3.4: Relative velocity and distance with neighboring vehicles.

Vehicle model for controller design: Used in the semi-autonomous controller, as discussed later
in Chapter 5, we introduce the system dynamics of the four wheel vehicle model [67], which is a
six state nonlinear model ξ̇(t) = f (ξ(t),u(t)) capturing the lateral, longitudinal and yaw dynamics.
The state vector and input vector is defined as ξ = [ẏ, ẋ,ψ, ψ̇,Y,X ]′ and u = δ respectively.

The equations of motion w.r.t. the center of gravity of the vehicle are:

mÿ =−mẋψ̇+Fy,1 +Fy,2 +Fy,3 +Fy,4 (3.1a)
mẍ = mẏψ̇+Fx,1 +Fx,2 +Fx,3 +Fx,4 (3.1b)
Iψ̈ = a(Fy,1 +Fy,2)−b(Fy,3 +Fy,4)+ c(−Fx,1 +Fx,2−Fx,3 +Fx,4) (3.1c)
Ẏ = ẋsinψ+ ẏcosψ (3.1d)
Ẋ = ẋcosψ− ẏsinψ (3.1e)

where m is the vehicle’s mass, I is the rotational inertial about the yaw axis, a, b and c are
distances between the tires and the center of gravity. The tire forces, Fx,i,Fy,i are modeled by using
a nonlinear Pacejka tire model [94].
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Nonlinear characteristic of tire model: Using the Pacejka tire model [94], we introduce the
nonlinear relationship between the vehicle states and the tire forces. All the parameters required
for the Pacejka tire model i.e. road friction coefficient, normal force, tire slip ratio are assumed to
be constant, except for α which depends on ẏ, ẋ, ψ̇ and δ [67].

αi = arctan vc,i
vl,i

(3.2)

where vc,i and vl,i are the lateral and longitudinal wheel velocities computed from,

vc,i =


(ẏ+aψ̇)cosδ− (ẋ− cψ̇)sinδ if i = 1
(ẏ+aψ̇)cosδ− (ẋ+ cψ̇)sinδ if i = 2
ẏ−bψ̇ if i = 3,4

(3.3)

vl,i =


(ẏ+aψ̇)sinδ+(ẋ− cψ̇)cosδ if i = 1
(ẏ+aψ̇)sinδ+(ẋ+ cψ̇)cosδ if i = 2
ẋ− cψ̇ if i = 3
ẋ+ cψ̇ if i = 4

(3.4)

Figure 3.5 shows the lateral tire force Fc as a function of α under different road friction coeffi-
cients. Notice that the tire forces can be divided into a linear region where the relationship between
α and Fc is approximately linear and a saturated region where Fc maintains roughly constant even
when α is changing. Also note that with lower friction coefficient, the linear region is narrower,
which makes driving on slippery surfaces extremely difficult for a novice.
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Figure 3.5: Cornering tire forces as a function of side slip angle α for different friction coefficient.



CHAPTER 3. DESCRIPTION OF EXPERIMENTAL SETUPS, TEST SCENARIOS AND
DYNAMICS OF ASSOCIATED SYSTEMS 28

3.1.2 Equipment setup on the test vehicle
In collaboration with Ford Motor and Hyundai Motors, we have used two different manufactures
test vehicles on separate occasions to record driver behavior. The vehicles are equipped with the
following instruments for data collection and control.

Figure 3.6: Test vehicles provided by Ford Motors and Hyundai Motors.

Oxford Technical Solution sensing system: We used an Oxford Technical Solution (OTS)
RT3002 sensing system to measure the position and the orientation of the vehicle in the iner-
tial frame and the vehicle velocities in the vehicle body frame. The OTS RT3002, is housed in a
small package that contains a differential global positioning system (GPS) receiver, Inertial Mea-
surement Unit (IMU), and a digital signal processor (DSP). It is equipped with a single antenna
to receive GPS information. The IMU includes three accelerometers and three angular rate sen-
sors. The DSP receives both the measurements from the IMU and the GPS, utilizes a Kalman filter
for sensor fusion, and calculates the position, orientation and other states of the vehicle such as
longitudinal and lateral velocities.

Wheel rotation sensors: The wheel rotation sensors gives measurements of the rotational speeds
of the wheels. This combined with the measurements from the IMU gives a state estimate of the
longitudinal velocity.

MobilEye camera system: The MobilEye camera system is widely used by many motor vehicle
companies in order to provide information for their on-board smart autonomous and driver assis-
tance systems i.e. Tesla’s autopilot system [95]. The camera system overlooks the road conditions
directly in front of the vehicle, records and processes the images internally with their proprietary
algorithm. It monitors and detects proceeding vehicles, pedestrians, and lane information. The
results and outputs of the MobilEye camera include lane information i.e. lane curvature, deviation
from center of lane ey, and the relative distance and speed to the proceeding i-th vehicles, xr,i, ẋr,i.
The MobilEye is a powerful system to use in monitoring the environment, and is easy to install
and readily provides processed information.
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3.1.3 Test centers
Our driving scenarios on the real vehicle were performed in two different test centers. One for
extreme conditions with snow tracks, and the other for normal driving conditions.

Figure 3.7: Hyundai-Kia Motor California Proving Ground [96] (left) and Smithers Winter Test
Center (right).

Hyundai-Kia Motor California Proving Ground (CPG): Located in the middle of the Mojave
Desert, the CPG test center provides researchers and engineers with various driving tracks to collect
driving data and test algorithms. Shown in Figure 3.7, label 3 and 4 indicates the high-speed oval
loop which provides the environment for highway driving, and at label 5 is the winding track which
is a serious of twist and turns with asphalt surfaces.

Smithers Winter Test Center: In collaboration with Ford Motors, the Smithers test ground is
used during winter reason to perform driving under cold and slippery conditions, especially on icy
and snow packed surfaces, typically at a friction coefficient of 0.2-0.4.

3.1.4 Virtual driving on the simulator
Driving behavior on a real vehicle is ideally the type of driving setup we want to be collecting
information from because it represents the true sensory feedback a driver will experience while
driving, however, there are certain driving scenarios and environmental conditions we would like
to test which cannot be safely or practically performed on-road, for example, texting while driving,
or the sudden appearance of obstacles. In addition, sometimes it is useful to be able to control
the exact feedback and environmental conditions the subject will be receiving in order to record
repeatable and consistent data. Therefore, specific test scenarios are performed with a virtual setup
and simulated driving.
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The CarSim software provides a realistic driving world with full dynamics of the car, as well
as customizable environments in terms of road layout, road conditions, and the presence of other
vehicles. Figure 3.8 provides a screenshot of the type of visual feedback the driver experiences
in this simulated driving environment. In addition, we also provide audio feedback to the driver
which corresponds to the amount of longitudinal acceleration applied. The driver interfaces with
the CarSim simulator through Logitech steering wheel and brake / throttle pedals typically used in
gaming.

Figure 3.8: Screenshot of CarSim simulator as experience by the subject (left) and control interface
using Logitech gaming equipment (right).

3.1.5 Sensors for monitoring human states
The data collection system previously described all focused on obtaining variables which are the
sensory feedbacks the human experiences and therefore is only related indirectly to the human
subject. Internal states of the subject is often inferred from these measurements. Direct monitoring
of both the external body positions and internal mental states provide useful information about the
subjects’ state of mind.

Eye tracker: Eye tracking provides information about the object in view that the human subject
is concentrating on. The point of focus provided by the eye tracker shows the area in space that the
subject is currently focusing on. It also provides information about saccade and fixation which are
important to detect the switching of attention between different objects.

There are many different eye tracking devices out there, mainly differ in where they are mounted.
Desk-mounted eye trackers are good for applications where the task is performed in a limited vi-
sual range [97], for example, with experiments which involve a computer screen, the subject is
limited to looking at the screen therefore the desk-mounted version is more suitable. On the other
hand, head-mounted eye trackers are more invasive and the subject has to physically wear the de-
vice, which can be more uncomfortable or may require constant re-calibration when the device
shifts. However, the head-mounted eye tracker is usually not limited to a predetermined visual
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space since gaze information is calibrated and overlaid on top of image streams from a scene cam-
era. It is suitable for experiments which might involve the subject walking around, or turning of
the head, as in our case, in driving scenarios and juggling.

We use the SensoMotoric Instruments (SMI) head-mounted eye tracker, also termed eye track-
ing glasses, to measure the eye gaze of the subject in driving experiments to see where the driver
is looking at and paying attention to. We also use the same eye tracking glasses to record the gaze
location of an expert juggler to determine whether forecasts are made. The eye tracking glasses
provides data at a sampling rate of 30Hz.

Figure 3.9: SensoMotoric Instruments head-mounted eye tracker [98] (left) and subject wearing
eye tracker in an experiment [99] (right).

Skeletal tracking: Skeletal tracking gives us information about the body position, posture, arm,
leg and hand positions over time. We can use these information to estimate what the person is
doing at certain moments in time. For example, in gaming, skeletal tracking is used to create an
interactive and realistic gaming experience where the person uses their whole body to perform
certain tasks and therefore would feel a stronger association with real life scenarios [100]. In
driving scenarios, we can use skeletal tracking to determine what the driver is doing, for example,
texting, hands on the wheel, adjusting onboard controls etc.

There are many ways skeletal tracking can be achieved, i.e. through motion capture sensors
[101, 102], or a non-intrusive method with stereo cameras or infrared cameras i.e. Leap Motion.
The Microsoft Kinect is one particular examples of using infrared technology to derive 3D point
clouds, and has being heavily used over the recent years by both hobbyists and researchers, because
of its ease of application, and the vast community of software support developed for the hardware
[102]. The Microsoft Kinect used in our experiments has one camera capturing images at 30 Hz,
and also an infrared system capturing depth information. The infrared system limits the use of
older models to be indoors under controlled lighting. The Skeleton class is used to process raw
data and output skeletal tracking in real-time as seen in Figure 3.10.
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Figure 3.10: Microsoft Kinect sensor for skeletal tracking (left) and screenshot of real-time skeletal
display during tracking (right).

3.1.6 Driving scenarios
With our vehicle apparatus, testing environment and sensor setup described in the previous section,
we will now outline the various driving scenarios our test subjects performed in. The driving
scenarios include differences in driving conditions, amount of distraction, and goal of the driving
task etc. We explain each driving scenario here and detail the modeling process for each scenario
later in Chapter 4 and 5. Depending on the scenario, some of the data are collected from driving
on actual roads with real traffic conditions and uncontrolled interactions with other vehicles, and
some are collected from driving on test grounds or simulators, under controlled traffic conditions,
or zero interaction with other vehicle.

Highway driving with lane changing and lane keeping: Highway driving takes up a large
portion of what a driver has to experience every day. Fully autonomous driving will take much
longer to achieve because of the complication of real traffic conditions in urban environments.
However, there are already many highway driving assist features available in commercial vehicles
currently out in the market [7], responsible for operating at levels 1 and 2 of vehicle automation as
defined by the National Highway Traffic Safety Administration [103]. For example, lane keeping,
adaptive cruise control, car following, lane changing, blind spot detection etc.

We asked subjects to perform lane keeping and lane changing, both on an enclosed highway at
the CPG and on a real highway with uncontrollable traffic conditions, and record the vehicle states
and lane information. With lane keeping, we concentrate on the lower-level control decisions of
the steering angle. With lane changing, we concentrate on the higher-level decisions of when the
driver will change lanes based on traffic conditions.

Curve negotiation on the winding track: The winding track located at the CPG is used to col-
lect data on how drivers adjust their controls during curve negotiations. This differs from highway
driving where it is mostly straight and even the curved sections have large curvatures. On the
winding track, we collect additional data using the eye-tracking glasses to determine what visual
cues the driver uses to make control decisions, for example, turning the steering wheel and speed
adjustments.
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Performing extreme maneuvers on slippery roads: Extreme maneuvers refers to driving sce-
narios where tire dynamics are near the limits of operation. As discussed in the tire model section
of 3.1.1 and shown in Figure 3.5, the lateral tire forces are a nonlinear function of the side slip
angle and roughly consists of a linear region and a saturated region. We can see from the tire force
plots that when the tire slip angles are small, the relationship with tire forces are approximately
linear. As the friction coefficient decreases, this linear region shrinks.

Most of the driving performed on everyday roads such as asphalt has high friction coefficients
and a typical driver will be able to stay within the linear range. When the driving conditions are
harsh, for example on wet or icy roads, or dirt road racing, the friction coefficients are much lower
and the linear range is significantly reduced, and therefore the vehicle is much harder to control in
slippery conditions

Typical drivers are not trained to handle the vehicle dynamics that are involved with tire satu-
ration. Expert drivers on the other hand, are able to utilize both the linear and saturated regions of
tire forces to their advantage, for example, professional dirt road racers will drift around corners to
quickly negotiate around a corner without having to reduce too much speed and momentum [104].

For our extreme maneuver scenario, we ask trained drivers to purposefully enter the saturation
region and perform a 180 degree turn on icy roads. The data is collected at the Smithers test-
ing center during the winter. Figure 3.11 shows an example of the X-Y trajectory of the vehicle
associated with this maneuver.
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Figure 3.11: X-Y trajectory of 180 degree drift maneuver.

Driving under the influence of distractions: Distracted driving has always been a major con-
cern and factor in accidents. Processing of the environment and reaction times are significantly
reduced because of distractions [105]. Anything that the driver does in the vehicle that inhibits
him/her from paying full attention on the road can be classified as a source of distraction. For ex-
ample, fiddling with the on-board controls, talking and/or texting on the phone, even with hands-
free devices, it is still a cognitive distraction since the driver is mentally paying attention to the
conversation [106]. Texting while driving is especially dangerous because the driver is both not
looking at the traffic conditions and also the driver’s hands are not physically on the steering wheel.

We tested two distracted driving scenarios, the first one set in CarSim is used to immerse
the subject in a busy highway driving scenario with other vehicles nearby and with the sudden
appearance of obstacles. The idea is to model, map and predict the future steering and braking
behaviors of the driver based on the state of the driver, or the level of distraction the driver is
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currently under, and integrate this driver model into a semi-autonomous controller. In the second
scenario we recorded attention allocation during driving and texting at the CPG.

Texting while driving with sudden obstacles in virtual simulator: The experiments are
divided into two sessions: training and controller application. In the training session, we asked
the driver to drive for different trials on the CarSim simulator, on some trials, we asked the driver
to drive normally with two hands on the wheel, and on some other trials, we asked the driver to
respond to a customized messaging application on an Android based smart phone. The phone is
preloaded with questions and the driver will have to answer in order to emulate the experience of
texting while driving.

To monitor the state of the driver, we have used the Microsoft Kinect to perform skeletal track-
ing. Skeletal tracking will be able to differentiate when the driver is texting by detecting the skeletal
configuration which maps to only having one hand on the wheel while the other hands is busy tex-
ting. The downside to this setup is the inability to measure whether the driver is paying attention
on the road. We found that while the driver might be holding onto the phone and thus leaving only
a hand on the steering wheel, this might be interpreted as a distracted state, however, the driver
is still looking at the computer screen and paying attention on the road. A possible improvement
to this would be to include possible head tracking, or even eye-tracking to measure the degree of
focus.

In the controller application session, we used the driver model to generate sequences of pre-
dictions for future states of the vehicle given current observations of the vehicle, environment and
driver skeletal configurations, and based on the controller’s assessment of safety, apply the neces-
sary amount of intervention in order to prevent lane deviations or collisions with obstacles.

The experimental setup and the driving scenarios on the CarSim is shown in Figure 3.12. On the
left, we see the screenshot of the driving simulator and on the right we see the hand configuration
when the subject is texting. The left picture also shows the real-time skeletal tracking overlaid on
the subject.

Figure 3.12: View from CarSim driving simulator during texting while driving experiment [19]
(left) and experimental setup with control interface [19] (right).
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Attention measurement during texting while driving on the highway: The second experi-
ment involves real highway driving in a distracted state. Performed at the test tracks of the Hyundai
CPG, we asked the driver to stay within the lane while texting on a smart phone. We have estab-
lished from the previous experiment that skeletal tracking alone is not enough to fully determine
the cognitive state of the driver in distracted scenarios. Therefore, we equipped the driver with the
SMI eye-tracking glasses to measure and estimate when the driver is paying attention on the road,
and when the driver is paying attention to texting on the phone. With this experimental setup, we
are interested in modeling how driver allocate attention between the primary task (driving) and the
secondary task (texting), based on the traffic conditions and vehicle states such as speed.

3.2 Simple dynamic task and game-based decision making
The previous section have focused on detailing the driving applications of human modeling. It is
important to recall that in trying to understand and model different human decision making prob-
lems, two major motivations are: the possible utilization and integration of human models and
behavior prediction into intelligent frameworks, and a better understanding and quantification of
behavioral concepts. While the previous section focused on driving and the possible application
of human models into autonomous systems, some attempts on understanding behavioral concepts
were also made. However, the experimental setups and the uncertainty of traffic conditions and
random stimuli makes it difficult to vary environmental conditions and repeat certain experiments
with consistency. Therefore, to focus on specific principles affecting the decision making and to
create an arbitrary environment for the subject, we scaled down the problem and investigated into
simple dynamic tasks and virtual game-like experiments which tries to probe at similar psycholog-
ical concepts associated with driving.

3.2.1 Juggling
The task of juggling is used as an example of a simple dynamic task that still encompasses a layer of
complexity. As can be seen from the skill differences between a novice and a professional juggler,
juggling is not an intuitive task and requires practice and learning of the hand-eye coordination
[107]. Juggling can be viewed as a task which involves both throwing and catching at precise
timings, and therefore the juggler needs to have good predictions of ball trajectories in order to
sustain a juggling pattern. By examining the gaze trajectories in relation to the ball positions, we
hope to determine whether expert juggler make trajectory forecasts of the ball.

We equipped a professional juggler with the eye-tracking glasses, as seen in Figure 3.13, to
determine the gaze point of the juggler while ball is in flight. We recorded the gaze trajectories in
relation to the ball (provided by the scene camera shown in the right of Figure 3.13 in two different
scenarios. In the first scenario, we asked the juggler to perform a three-ball cascade using the same
type of balls, and in the second scenario, we asked the juggler to also perform the same pattern,
but this time using three objects of different weights, shapes and sizes: a ball pin, a light large ball,
and a smaller heavier ball.
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Figure 3.13: Expert juggler performing the 3 ball cascade with eye-tracking glasses (left) and
screenshot from scene camera with gaze point (right).

3.2.2 Projectile game
The first game-like experiment of interest, which we term the projectile game, is similar to the
popular computer and mobile-based game angry birds [108], where subjects are asked to aim at
a target in a virtual environment where gravity affects the flight trajectory. Figure 3.14 shows
screenshots of what the game looks like as presented to the subject. Subjects are initially shown
with the instructions about how the game works and how the control inputs work. Then the subject
plays through a training set to practice and experience the mechanisms of the game before being
presented with the actual trials in which their actions are recorded and analyzed. Projectile games
like this are created to mirror the concept of throwing a ball at a target in real life, which can be
considered to be an essential element in the juggling task.

Figure 3.14: Labelled screenshot of projectile game showing the mechanism and configurations
of the game.
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Game setup and control: The game setup and control interface work in the following manner.
Subjects are presented with a circular target (shown in red), and a circular obstacle (shown in
black) of set radiuses. The subject’s goal is to adjust the initial conditions of the projectile flight
such that the flight trajectory of the particle (shown in green) intersects with the target and avoids
intersecting with the obstacle at the same time. On the instructions page, subjects are informed that
if they hit the obstacle, they will lose 2 points regardless of whether they also hit the target; will
lose 1 point if they miss hitting the target; and will gain 2 points if they successfully hits the target
and avoided the obstacle. The accumulated score is displayed in the top-left corner of the screen.

Subjects control the game using the keyboard. The up/down keys adjusts the power level (or
initial speed) v of the projectile, and the left/right keys adjusts the initial angle α. Subjects receive
feedback on the size of v and α through either the numerical value that is displayed in the top-left
corner of the screen, and also visually indicated by the size and orientation of the arrow. Subjects
are under no time pressure to decide on the best initial v and α to apply, and once they are satisfied
with the current setting, hitting the space bar will release the particle in its flight.

At the beginning of a trial set, subjects are presented with a new configuration / position for
the target and the obstacle which we refer to as a scenario or a trial. If the subjects fails at the
current scenario, they will repeat the same scenario without any change to the target and obstacle
configurations until they have successfully complete the current trial, and then presented with sub-
sequent trials with different scenario settings. Each trial set consists of twenty different scenarios
the subject will have to go through, and each trial set will be configured under specific settings i.e.
gravitational constant, means of control interface, means of feedback etc.

Associated system model: Figure 3.15 illustrates the variables that are associated with the dy-
namics and computational analysis of the associated projectile game, which are listed and ex-
plained below for clarity and for ease of reference later in Chapter 4:

• pproj = (xproj,yproj), x and y coordinate of projectile center point

• ptarg = (xtarg,ytarg), x and y coordinate of target center point

• pobst = (xobst,yobst), x and y coordinate of obstacle center point

• v, initial velocity of projectile

• α, initial angle of projectile

• g, vertical gravitational acceleration constant

• Rproj, radius of projectile

• Rtarg, radius of target

• Robst, radius of obstacle
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Figure 3.15: Coordinate system of projectile model.

Following simple kinematics with only vertical acceleration, the projectile trajectory can be
subscribed over time t as a function of initial conditions.

xproj(t) = vxt (3.5a)

yproj(t) = vyt +0.5gt2 (3.5b)
vx = vcosα (3.5c)
vy = vsinα (3.5d)

3.2.3 Dual-task game
In the dual task experiment, we are interested in emulating the experience of texting while driving,
where the primary task is to pay attention on the road and keeping a safe distance and speed with
respect to the traffic, and the secondary task is responding to text messages, and model the decision
making process of selecting which task to pay attention to.

The subject is asked to play a game on the computer shown on two screens, each screen has
one window in view. The first window shown in Figure 3.16, will display the primary task (Task
1), and the second window shown in Figure 3.17 displays the secondary task (Task 2). The setup
is designed so that when the subject shift his/her attention between windows, his field of view will
be constrained to focusing on a single window only.

The primary task consists of obstacles (small blue dots) that fall down from the top at a constant
speed. The participant has control over toggling the target (large blue dot at the bottom) between
staying in the left or the right column. The participant is told his goal is to avoid obstacles by
shifting the position of the target, and if he/she hit an obstacle, he will incur J1 points in penalty.
In the same window as the primary task, there is a display box which issues instructions to the
participant. Messages that are displayed include: “Press space to continue”, “Text completed”, or
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“Check your text”. The participant is told whenever “Check your text” appears, he should consider
switching his attention to the secondary task.

In the secondary task, the participant is prompted to read a string of random numbers and
enter the same sequence of numbers using the number pad on the keyboard. The secondary task
is considered complete if the numbers match. He/she is told that whenever the secondary task is
cued by the message, he will incur J2T in penalty, T being the amount of time taken to complete
the secondary task.

Intuitively, being given these instructions, the participant should aim to avoid all obstacles,
at the same time complete the secondary task as quickly as he can without hitting the obstacles.
Therefore, he needs to have some sense of predictions of the state of the primary task when he is
attending the secondary.

Figure 3.16: Primary task of obstacle avoidance in window 1 of dual-task game.

Figure 3.17: Secondary task of texting in window 2 of dual-task game.
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3.3 Conclusion
In this chapter we detailed the various experiments performed to support our study of human de-
cision making. The experiments included everyday tasks in the real-world such as driving on the
highway and also when under distractions such as texting while driving. Data collected from these
experiments will facilitate in identifying a suitable driver model for the purpose of integrating
driver predictions into a semi-autonomous systems for guaranteeing future safety of the driver. We
also performed experiments which involved scenarios where expertise is essential, such as driving
in extreme conditions and three ball juggling. With data collected from these scenarios, we would
like to see that experts do intrinsically learn the knowledge of the more complex system and use
it to make future forecasts. Through the use of eye-tracking glasses, we can better understand the
cognitive states of the human in various contexts. Lastly, to further explore the fundamental prin-
ciples behind human decision making, we designed scaled down game-based experiments which
parallel the contexts in everyday tasks, and attempt to bridge the different modeling abstractions
between the data-driven approached for controller applications with the parametric approach for
psychology studies.



41

Chapter 4

Modeling, Identification and Results of
Human Behavior Applications

Using the data collected from the experimental applications described in Chapter 3 and the model-
ing methodologies introduced in Chapter 2, this chapter aims to present the first major contribution
of this thesis. We will use the proposed computational modeling frameworks to better understand
the mechanism and factors which affect human decision making in different problem contexts,
both from the controls design and psychology perspective. With applications that span the two ex-
tremes, we will attempt to bridge the disconnection between real-world experiments and simplified
scenarios in psychology, and draw parallels between the two.

Instead of an application-based approach, where the ordering of discussions are categorized by
the experiment, we feel it is more suitable to center our discussions on the fundamental principles
behind the various models and support them with application examples. Following the order in
Section 2, we will first address modeling methods which involve directly looking up stored pol-
icy functions without the extra computational load associated with finding an optimal solution in
real-time. The modeling principles behind linear feedback, PWA and SVM will be used to explain
the control strategies in both driving and the projectile game, with the emphasis that these method-
ologies of lesser computational effort support the reflexive behavioral patterns observed from the
subjects. The second part of this chapter will focus on optimization-based models, which are poli-
cies that cannot be applied directly but instead need extra computational time to solve for an in-
ternal optimization problem. The optimal framework extending to constrained optimization, MPC
and MDP will be used to simulate the predictive and cost/reward based strategies seen in complex
driving maneuvers and distracted driving, as well as projectile and dual-task gaming applications.
Lastly, we will use eye-tracking information obtained from driving and juggling to support the
claim that subjects perform state prediction through forward models in the optimization-based
models.
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4.1 Direct method: function map of stored policies
The first approach to modeling decision making is the direct method where the policy maps are
stored, and making a decision corresponds to looking up a learned policy given the observations.
To make a connection with the bottom-up approach involving the central nervous system, the
learned policies and the process of learning can be paralleled to the adjustment of the weights in
the neural network [73]. Direct methods typically involve minimal computational effort, unlike the
optimization-based policies which will be discussed in the second part of this chapter. Following
this characteristic, direct methods naturally become suitable candidates for modeling behaviors
which appear to be more repetitive, reflexive, immediate and associated with lower-level decision
making problems, as opposed to higher-level decision making which involves more planning and
mental simulations [109]. The lesser computational effort of direct methods can be paralleled to
cognitive processes which can free up the processing bottleneck allowing subjects to multi-task
[65].

Starting with the simplest method of linear feedback, we draw some parallels between highway
lane keeping and adjusting control inputs in a projectile game. However, simple linear feedback
might not be enough to capture the nonlinearity and uncertainty associated with the projectile
game, and possibly a switched system is required to deal with different subgroups of data. A similar
argument is applied to extreme driving maneuvers involving the nonlinearity of tire dynamics,
where a switched system is used to capture the steering control. Lastly, the discrete decisions of
choosing the mode of control in the projectile game can be used to parallel the discrete decisions
made in lane switching applications.

4.1.1 Linear feedback model for highway driving and lane keeping
To start off our discussion of using direct methods to model lower-level decision making problems,
we will cite from [110] and outline briefly the driver model that is used to model lane keeping on
the highway. The lane keeping component of highway driving can be viewed as a lower-level
control problem that requires less planning, i.e. it is a well-practiced and repetitive task with which
a typical driver will have no problem performing other tasks on top of. Often times, drivers will
have to navigate and perform path planning in heavy traffic, the task of staying inside the lane
boundaries becomes an automatic process which does not require a lot of attention.

The driver sees deviations from the center of the lane or upcoming curvatures and will try to
steer just the right amount to realign the vehicle properly with the lane. The look ahead point and
feedback gain will be a matter of experience, preference, vehicle steering wheel sensitivity, and
current road condition such as road surface. Referring back to Figure 3.3 and the vehicle state
descriptions in Section 3.1.1, the model is formally defined as,

δ = Kyey +Kψeψ (4.1)

where Ky and Kψ are the linear feedback gains. The continuous input vector into the model map
is x = [ey,eψ], which are the deviations from the lane center and the road curvature at a distance
from the current position of the vehicle. We call the point where this distance is measured from
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the preview point, and this is a parameter that is subject dependent. The continuous output vector
from the model is y = δ is the steering angle.

4.1.2 Linear feedback model for the projectile game
The modeling for the projectile game experiment can be treated as a hybrid of two different mod-
els, with one capturing more of the planning and predicting aspects of the decision making process,
and the other, similar to the repetitive, low-level philosophy of the previously introduced steering
control for lane keeping, directly mapping the feedbacks from the previous trial to the input de-
cisions of the current trial. We will first present the direct mapping approach and its relation to
the subject’s observed behavior and discuss the optimization-based predictive models later in the
chapter.

As presented in Section 4.1, the linear feedback model is a direct map between the feature input
vector r and output vector u, and the model structure makes parameter identification simple and
data-driven. Therefore, in modeling the projectile experiment with the this approach, during the
model identification stage we will include as many variables as possible in the feature vector, even
if some features doesn’t intuitively correlate to the decision making, or might be slightly repetitive.
After including a large feature vector, we apply the LASSO identification technique to minimize
the number of features. This will provide us with insight as to which features are important to the
subject when making the next decision.

Definition of input / feature vector r

Based on the context of the problem, the candidate features are classified into three categories:
scenario-based, input-based and feedback-based. Scenario-based features include ptarg and pobst,
which are positions of the target and obstacles. Input-based features include v and α, which are
the initial conditions of the previous trial. Lastly, feedback-based features are f (pproj, ptarg, pobst),
which are functions of the visual feedback the subject receives from the previous trial consisting
of the projectile trajectory in relation to the target and obstacle positions.

The feedback-based features are the only ones which models how the subject adjusts the next
input based on the most current feedback it receives. This models the short term nature of mapping
current deviations to the control input. On the other hand, the scenario-based features are fixed for
the current trial and the variables don’t change based on the subject’s last input.

Feedback-based features: There are several factors to be considered when determining the func-
tion which defines the feedback based features. Firstly, we are interested in finding a relation which
captures the error between the trajectory to the target and obstacles. Since pproj is parameterized
by time t in Equation (3.5), there are multiple alternatives as to the value t to use in the feature
vector. One option is to find the point tmin,∗, which gives the minimum distance to the respective
points of interest p∗, formally defined as,

tmin,∗ = argmin
t
‖pproj(t)− p∗‖ (4.2)
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where the star symbol ∗ is a placeholder for either the target or the obstacle. Alternatively, the y
position where the trajectory intersects with either the x coordinate of the point of interest can also
be used.

ty,∗ = {t : yproj(t) = y∗} (4.3)

Lastly, the highest point in the trajectory flight at tapex is also used to extract the x and y position
for the feature vector,

tapex = {t :
dy
dt

= 0} (4.4)

In post experiment surveys, this point in flight was reported by the subjects to provide valuable
information about the nonlinear map between the control input and the flight path. In our own
study of juggling and in [111, 112], which involves a similar trajectory mechanic, it was also
observed that subjects focused their attention on the apex of the balls to provide information for
optimal state estimations.

Definition of output / control vector u

With the input features vectors explained in detail, the output vector of the linear map are

• ∆v, change in initial velocity from last trial

• ∆α, change in initial angle from last trial

We have chosen to model the control inputs as the amount of change to add to the previous input
since this aligns with the way the control interface in the experiment is designed, which is from the
incremental adjustments of the keyboard without resetting the values after every trial.

Model formulation and identification

Following the linear feedback framework introduced in Section 2.2.1, and the defined input r and
output u vectors, the model can be formally presented as follows.

uk = θ

[
rk
1

]
(4.5)
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where the input feature vector rk is defined as,

rk =



xk,targ
yk,targ
xk,obst
yk,obst
vk−1
αk−1
∆vk−1
∆αk−1

xk−1,proj(tmin,targ)
yk−1,proj(tmin,targ)
xk−1,proj(tmin,obst)
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(4.6)

and the output control vector uk is defined as,

uk =

[
∆vk
∆αk

]
(4.7)

We use LASSO identification [113] to find the optimal parameter θ which minimizes the error
between the recorded output to the predicted output from the model for a given value of λ.

min
θ
‖uk−uk,s‖+λ‖θ‖1 (4.8)

A larger value of λ will favor the algorithm to find a more sparse θ with more zero entries, and
therefore, towards eliminating redundant features.

Identification Results and Analysis

In this section, we present the model identification results of the formulation discussed before.
Feature vectors rk and model outputs uk are extracted from recorded data of the projectile exper-
iment described in Section 3.2.2. LASSO is used to identify the linear feedback gain θ which
minimizes prediction error. The results will be discussed in the following order. First we present
the prediction output where the entire data set is used in the identification without parsing. Then
we describe how the data set is parsed into different groups, and present the results where iden-
tification is performed separately on individual groups. For selected groups, we discuss in detail
the specifics related to the LASSO algorithm and how it shows redundancy in certain features. We
will continually to make connections between the results from the data and the behavioral patterns.
Finally, we conclude the discussion that a simple linear feedback model can only capture specific
scenarios and is insufficient to model the entire experiment, which leads to using the optimization-
based models later in the section.
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Results of all recorded trials: Shown in Figure 4.1 are plots comparing the error between the
predicted initial conditions of the model and the actual initial conditions that was applied by the
subject. We can see that the model makes some bad predictions and the error between the predicted
and the actual for ∆α is approximately between -0.2 to 0.2 radians (rad), and for ∆v between -20
to 20 pixels per second (pix/s). For λα = 0.00079, and a cross-validation partition of 10, the mean
squared error (MSE) for the prediction of ∆α is 0.0043. (For the sake of simplicity, all the LASSO
fits were performed with a cross-validation of 10, therefore, we will omit this detail later on when
making references to the identification results.) For λv = 0.11, the MSE for the prediction of ∆v is
50.6 which is considerably high relative to the admissible range of v ∈ [0,200]. So even though the
initial angle predictions doesn’t deviate as much, the velocity predictions deviate by a significant
amount and will correspond to a vast difference in the resulting trajectory.
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Figure 4.1: Distribution of prediction errors for ∆α and ∆v for all trials.

To illustrate the difference in the trajectory path due to the discrepancies between the predicted
and the actual, Figure 4.2 shows two of example screenshots of how the predicted initial conditions
map out to projectile trajectories and how it differs with the subject’s trajectories. The dashed blue
line shows the feedback of the projectile trajectory from the previous trial, which is used to extract
features for the regressor. The solid blue line shows the actual projectile trajectory that resulted
from the subject’s selection of initial conditions. Finally, the solid red line shows the projectile
trajectory that resulted from the initial conditions predicted from the identified model. We can see
from the left plot of Figure 4.2 the actual input missed the target but the prediction actually hits the
target. Similarly, the right plot shows the actual input was successful in hitting the target and the
prediction hitting the obstacle and almost missing the target.

So far we have seen that LASSO has failed to identify a good linear model when the entire data
set is used. Unlike the lane keeping application on the highway, this shows that a simple linear
model is insufficient in capturing the complexity of all the decision making that is involved with
the projectile game. To tackle this problem, we will now try to break down the data into specific
scenarios and attempt to fit a linear model for each individual scenario.



CHAPTER 4. MODELING, IDENTIFICATION AND RESULTS OF HUMAN BEHAVIOR
APPLICATIONS 47

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

Y

X

Comparison between predicted and actual X−Y trajectory

 

 

previous trajectory
actual trajectory
predicted trajectory

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

Y

X

Comparison between predicted and actual X−Y trajectory

 

 
previous trajectory
actual trajectory
predicted trajectory

Figure 4.2: Comparison between predicted and actual X-Y trajectory.

Parsing the trials into different characteristic groups: The most obvious method of parsing
the data set is to group them into either old or new scenarios. Old scenarios are defined as scenarios
with the same target/obstacle configurations as the previous one, which the subject has to make a
second or subsequent tries at due to failure at the previous attempt i.e. missing the target or hitting
the obstacle. New scenarios refer to new target/obstacle configurations which the subject is pre-
sented with after a successful attempt. Psychologically, with an old scenario, the subject has better
memory of the relation between the scenario configuration and the trajectory feedback from the
previous trial, and will most likely react differently or adopt a different decision making strategy
when presented with a new scenario. In addition, with new scenarios that are positioned signifi-
cantly different from the previous, the trajectory feedback might not be as valuable or consistent
to be used in the feature vector of the linear map.

The second approach of grouping the data set is to separate the initial conditions which resulted
in a successful trial. For a successful trial, subjects are more consistent with their decision making
strategies, perhaps due to past experiences and has learned the best strategy over time. Unsuccess-
ful trials on the other hand, results from inconsistent strategies or unfamiliar configurations which
the subject has not yet learned to solve. If the subject fails at an attempt, then he/she is will likely be
updating the model, in this case the feedback gains, until the trial is successful. Intuitively it makes
more sense for a subject to be consistently successful, rather than consistently failing. Therefore
the feedback gains for successful attempts will be more constant, whereas for failed attempts, it
is updated and constantly fluctuating. This is similar to the situation in driving where the road
conditions are constantly changing i.e. due to weather conditions. If the driver is used to driving
on dry asphalt surfaces and suddenly come across a wet or icy area, the friction coefficient will
drop substantially, and therefore the linear gain in (4.1) will be adapted accordingly.

The third criterion for partitioning the data is to use the mode of control input, which can be
separated into three groups: {∆α = 0,∆v 6= 0}, {∆α 6= 0,∆v = 0}, and {∆α 6= 0,∆v 6= 0}. We feel
certain configuration and feedbacks will result in the subject choosing one strategy over the other,
and the uncertainty and mind set associated with whether to manipulate one or two control inputs
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Group Size Old New Success Failed ∆α 6= 0 ∆α = 0 ∆α 6= 0
Scenario Scenario Trial Trial ∆v = 0 ∆v 6= 0 ∆v 6= 0

1 100% X X X X X X X
2 47% X X X X X X
3 53% X X X X X X
4 53% X X X X X X
5 47% X X X X X X
6 3% X X X X X
7 22% X X X X X
8 75% X X X X X
9 36% X X X X X

10 22% X X X X
11 22% X X X X

Table 4.1: Characteristic of partitioned data from the projectile game.

will be different.
Upon separating the data set into different groups, the LASSO formulation is again performed

on each of the individual groupings. Table 4.1 shows a description of how the groups are parti-
tioned, labeling each group from Groups 1-11, in addition the respective percentage of the data set
in each of the groups is included. Figure 4.3 shows the normalized MSE (NMSE) for the predic-
tions of all the sub-groups listed in Table 4.1. NMSE takes the largest MSE value for ∆α and ∆v
in Groups 1-11 as the normalizing constant. Note that Group 1 from Table 4.1 is the original data
set without parsing used for the analysis in the previous section.

As discussed previously, Groups 3 and 5, which are the new trials and the failed trials have
the greatest NMSE. New trials have larger uncertainty associated and in failed trials, the linear
gains θ are being adapted in real-time. We can see from the NMSE of Groups 4 and 7 that the
subject is more consistent in adjusting ∆v than ∆α. The NMSE, significantly lower than for Group
1 (original data set), indicates that the subject has learned and converged to a more constant θv
associated with the velocity input more than the angle. In fact, the extremely low percentage of ∆α

only trials compared to the higher percentage of ∆v only trials in Table 4.1 shows that subjects are
more comfortable and confident in using ∆v to hit the target.

Relating results of LASSO to behavioral features: We will now analyze the results of LASSO,
in particular the search and interpretation for the sparsity of θ in relation to the feature vector. We
feel it will be too redundant to repeat the same analysis for all 11 partitioned data set groups, as it is
not our goal to interpret the projectile game in detail but to abstract the fundamental idea of using
the LASSO technique to facilitate in making connections to human behavior in general. Therefore,
to keep the analysis simple, we will use the results of Group 2 and 3, which involves either old or
new scenarios, as an example.
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Figure 4.3: Normalized MSE for ∆α and ∆v for Group 1-11.

Shown in Figure 4.4 and 4.5 is a comparison between the MSE for different λ values. Larger
λ results in larger MSE since more weight is placed on increasing the number of zero entries in θ

and thus making the parameter less flexible. In addition, Figure 4.6 and 4.7 shows the respective
values of θ for different λ. Comparing between which parameter values affect the control inputs,
we can see that for Group 2, which is the group with old scenarios, the dominant features which
affect both ∆α and ∆v are the 9th, 10th, 12th, 13th and 15th entries of θ. Referring to (4.6),
these correspond to xk−1,proj(tmin,targ), yk−1,proj(tmin,targ), yk−1,proj(tmin,obst), yk−1,proj(tx,targ), and
yk−1,proj(tapex) respectively. Interestingly, these are all associated with the feedback-based features.
In comparison, for Group 3, which is the group with new scenarios, the parameter values are now
dominated by features 1-5. These correspond to the coordinates of the target and the obstacle and
the input vk−1, which means now the scenario-based features dominate the decision making.

Concluding remarks

We have shown that the repetitive nature associated with the projectile game in certain trials can be
considered to be of lower-level control with minimal computational effort, and therefore the direct
feedback mapping method can be used to model the decision making policy of the subjects, in
the same framework as the steering control on the highway. Partitioning of data sets into different
groups according to several characteristics illustrates the adaptive nature of the linear gains, as
well as convergence to a consistent gain for the velocity input option. In addition, the nature of the
trials, whether it is a new or old trial, demonstrates the limitations of using a single feedback gain
to model the entire task. Old trials provide subjects with better error estimates from the feedback
trajectory of the previous trial, and therefore leads to a more consistent linear feedback model.
New trials, on the other hand, have error estimates that are more uncertain due to memory loss,



CHAPTER 4. MODELING, IDENTIFICATION AND RESULTS OF HUMAN BEHAVIOR
APPLICATIONS 50

10
−6

10
−5

10
−4

10
−3

10
−2

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7
x 10

−4

Lambda

M
S

E

Cross−validated MSE of LASSO fit of ∆α for Group 2

10
−3

10
−2

10
−1

10
0

10
1

10

20

30

40

50

60

70

Lambda

M
S

E

Cross−validated MSE of LASSO fit of ∆v for Group 2

Figure 4.4: Cross-validated MSE of LASSO fit for Group 2.
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Figure 4.5: Cross-validated MSE of LASSO fit for Group 3.

and therefore, relied more on the configuration of the scenario. This leads to the idea that a more
complex model is required to capture the associated nonlinearity and uncertainty.

One approach is to use the optimization-based method to deal with the planning of trajecto-
ries in the uncertainty environment. We will discuss this later in the chapter. Locally weighted
regression as applied to robotic juggling in [114], can also be used to find locally linear mod-
els. Similarly, PWA models introduced in Section 2.2.2, which is also a switched system with
segmented linear maps can be used to model the associated nonlinear behavior. We will give an
example using this PWA approach in the next section, discussing extreme driving maneuver which
involves the nonlinearity of the tire dynamics.
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Figure 4.7: Individual parameter value of θα of different λ for Group 3.

4.1.3 Piecewise affine model for extreme driving maneuvers
Piecewise affine (PWA) models is another example of the direct method. Similar to the linear
feedback method which simulates the direct mapping between input and output with small com-
putational effort. The PWA model is a particular example of switched systems which extends the
complexity of the policy map to include multiple sets of gain values depending on the context of
the problem. For example, with the partitioning of data sets in Section 4.1.2, PWA can be used to
approximate the nonlinear map with smaller segments of linear maps. As mentioned previously,
gain scheduling is the simplest form of PWA models where the gain values are different for differ-
ent segmentations of the state variable. In situations such as lane keeping, drivers can be modeled
as a simple linear controller with a state feedback law [33]. As for the extreme maneuver intro-
duced in Section 3.1.6, which encompasses the full nonlinearity of tire dynamics, modeling the
human driver as a simple linear controller will not suffice. In this section, we will model steering
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behavior in extreme conditions using PWA models.
Switched systems involves switching between different modes of operation. Different modes

might have different system models and/or control laws. This intuitively lines up with human deci-
sion making. Under different conditions, humans have corresponding control strategies. Following
common intuitions, we propose to decompose the drifting maneuver into two control strategies:

1. The maneuver starts off with the vehicle traveling in a straight line. In order to drift, the
controller is responsible for “destabilizing” the vehicle by saturating the tires, and placing
the vehicle at a high lateral velocity and a large yaw rate.

2. Once the vehicle is destabilized, the controller needs to stabilize the vehicle again, more
importantly, the vehicle has to end in the desired final state, i.e. heading angle of 180 degrees.

The conjecture is that if the human driver uses a switched control strategy in practice, we
should be able to observe a similar behavior by modeling drifting by a human driver as a two-mode
switched system. Therefore, instead of having a highly nonlinear and complicated mental model
of the world, complex models can be broken down into different modes with simpler dynamics
within each mode. Following the PWA modeling framework described in Section 2.2.2, we will
now define the associated variables for the steering behavior in extreme conditions that are used to
identify the parameters of the PWA model.

Model formulation and identification

To identify the model of the human driver, input and output information are recorded during each
trial and the parameter θi is identified for each mode. In this paper, we implemented the cluster-
based procedure [80]. For comparison of this algorithm with other hybrid identification techniques,
readers can refer to [79].

For the drifting scenario, we are interested in making predictions of the driver’s steering based
on state information. The hybrid model’s output vector is the steering angle,

yk = [δk] (4.9)

and the input vector is defined from the vehicle states,

uk = [ψk, ψ̇k,Yk,α fk ,αrk ]
T (4.10)

Identification Results and Analysis

Using the PWARX formulation, we identify the parameters θi, predict the steering profile ŷk =
θT

σ(k)[ŷ
T
k−1,u

T
k ,1]

T , compare ŷk with the actual driver steering yk and analyze the effectiveness of
introducing additional modes in the hybrid system. Three sets of models differing in the number of
modes (s = 1,2,3) are identified. The maximum prediction error, e = ‖yk− ŷk‖∞, for each model
is denoted respectively as e1,e2 and e3 and presented in Figure 4.8.
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Figure 4.8: Maximum prediction error for 1, 2 and 3 mode PWARX models.

Determining the necessary number of modes: The one-mode system relates to a single linear
controller. For the one-mode hybrid system, the prediction error is comparatively higher. This
confirms our previously discussed conjecture that in order to drift, the driver has to understand the
nonlinearity involved, and therefore a simple linear control strategy will not suffice. Notice that
e1 in trial 1 is smaller than subsequent trials. State trajectories for trial 1 shows that the driver
failed to achieve the maneuver. This indicates that in trial 1, the driver is likely to be still using a
single-mode strategy and only learns to switch between modes through subsequent trials.

Comparing e2 and e3, it can be seen that, only a very small improvement is obtained when an
additional mode is added. This confirms our conjecture that it is sufficient to decompose the drift-
ing maneuver into two modes of control destabilizing to achieve high slip angles, and stabilizing
to achieve final desired state. We will focus on the two-mode model from here forth.

Observed input of vehicle states: Figure 4.9 shows the trajectories of the states which were
used as features to the model input in (4.10). The blue and green lines shows the two modes that
are identified. We can see that when the side slip angles α are high, the mode switching occurs,
and once switching happens, the vehicle is stabilized with a much smaller value of α.

Comparison between actual and predicted steering output: Figure 4.10 compares the actual
steering angle with the predicted steering angle from the two-mode hybrid model. Notice that the
state evolution began in mode 1, switched to mode 2 at t = 4.8s, and stayed in mode 2 without any
further switching. This confirms our hypothesis of the decomposition of the control strategy in the
drifting maneuver.

θ1, the parameter of mode 1 of a two-mode model, obtained from model fitting of trial 5 data
is validated on two other trials. Keeping θ constant means we are not allowing the predicted driver
to switch his strategy. Figure 4.11 shows the comparison between the recorded steering profiles
and that predicted from θ1. We can see that the first half of the steering profile makes very good
predictions but the second half, where the driver should be switching modes, fits poorly. The results
of our model validation conforms to the hypothesis of a two-mode switching control strategy.
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Figure 4.9: Vehicle states during extreme drift maneuver.
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Figure 4.11: Model validation: θ1 from trial 5 validated on data of trial 2 and 3.

Concluding remarks

In this section, we have shown that the extreme driving maneuver involving the saturation region
of the tire can be accounted for if we use a two-mode switched system. We showed that the one-
mode, which is essentially a simple linear feedback like the model for highway driving is not
sufficient to capture the nonlinearity involved with the tire dynamics, and therefore a switched
system is necessary. A similar strategy can potentially be used to capture the different modes for
the projectile game. Our intuition of how a driver handles extreme driving with destabilization to
the unstable regions, followed by the stabilization of the vehicle states aligns with the switching
conditions we saw in the vehicle trajectories.

One could argue that the dynamics and the type of extreme maneuver discussed here is too
complex for the driver to be acting reflexively and not planning based, such that direct methods
are overly simple to be used for modeling the decision making a driver uses in extreme situations.
Alternatively, an optimization-based approach can be used to capture the planning and predictions
the driver might be simulating. Before we investigate this further later in the chapter, we would
like to first discuss how direct methods can also be used to model discrete decisions, such as the
decision to switch lanes on the highway.

4.1.4 SVM model for the discrete lane change decision
As mentioned in Section 2.2.3, support vector machines (SVM) are well-established methodolo-
gies that are used in many machine learning applications involving two-class or even multi-class
classifications. Recall in the projectile game, when the subject is making the decision on how to
manipulate the control input, he/she will first have to decide on which control input to manipulate,
and the associated linear strategies that follow this decision will be different. The decision to ad-
just only the angle, only the velocity, or adjust both simultaneously can be viewed as a three-class
decision making problem.

Similarly, for the lane-changing on the highway scenario, if we label the training data at any
instance as either lane keeping (LK) or lane changing (LC) mode, then this will fit as a two-class
or two-mode classification problem. Intuitively, when a driver is driving on the highway, he/she
will keep the vehicle at a comfortable speed and will try to keep the vehicle within lane boundaries,
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in other words, executing the lane keeping mode. Under certain conditions, the driver will turn on
the turn signal and decide to switch lanes. For example, it could be destination related where the
driver is either following highway signs or trying to get off/on the highway, or it could be state /
environment related where the front vehicle is traveling too slow. In this section, we are interested
in using highway driving data and SVM methods to model and predict the driver’s intent to switch
lanes.

Model formulation and identification

It is important to first establish how the training data is labelled. Since we have no clear methods
to actually measure and define the driver’s intent to switch lanes, this needs to be defined explicitly
and indirectly from measurable states of the vehicle. One method is to use the turn signal as an
indication of when the driver wishes to switch lanes. For example, as soon as the turn signal is
switched on, then a window of width w1 is taken about this instant for the states of the vehicle and
the environment, and these data are labeled as corresponding to the lane changing mode, and all
the data when the turn signal was off is labeled as the lane keeping mode. However, one potential
problem with this approach to labeling could come from different people’s habit of driving and
when they use the turn signal, or maybe some people don’t use it at all. In addition, putting on
the turn signal doesn’t necessarily indicate that the driver feels it is safe to switch lanes. These are
two very different mind sets. The first is the intent to switch lanes and correlates more with the
states and the traffic flow of the proceeding vehicles. The second is the safety and comfort level
of switching lanes and correlates more with the states of the trailing and neighboring vehicles. To
model when the driver feels safe to switch lanes, then we need to take a window of width w2 about
the instant when the driver starts to intentionally steer out of the lane, and label these data sets as
lane changing mode.

To formally define the variables used in the training data, each data point consists of a label
y ∈ {LK,LC} and a feature vector x ∈ Rn consisting of ẋ, ẋr,xr which, as defined in Section 3.1.1,
are the speed of the ego vehicle, the relative speed and distance between the ego and the proceeding
vehicle respectively. Note that the observations available from the recorded data are only associated
with the ego vehicle and the states related with the immediate proceeding vehicle. Unfortunately
the driving experiment was recorded on a test vehicle which only have front facing radars and side
or rear radars were not available. Therefore, although extremely important in the context of lane
switching on highways, information about trailing vehicles, or vehicles in neighboring lanes were
not recorded. Nevertheless, we will attempt to use the available data to model the lane keeping
decision making using SVM.

Identification Results and Analysis

We attempt to fit a discrete decision making model of highway lane switching, using the LibSVM
package [88]. The results of one trajectory sample of predictions made with the fitted model is
shown in Figure 4.12. The second labeling method is used where a lane change decision is made
based on the values of the lateral deviations ey, and the driver’s discrete decision to change lanes
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is determined as a 1 second window before ey passes through a threshold value. We can see from
Figure 4.12 that even though the model can predict the lane change maneuver 1 second earlier,
there are also many false positives (around 120 and 180 seconds) where the model predicts a lane
change, but the driver did not execute.

Figure 4.12: Measured vehicle states and comparison between predicted and actual lane switching.

Concluding remarks

We conclude that our formulation of the SVM performs poorly in modeling and predicting of the
driver’s intent to switch lanes. This could be attributed to the labeling of the data, and also to the
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feature vectors available. As discussed earlier, intent can be measured on two abstractions, the first
is the intent to change lanes due to traffic conditions conflicting with desired speeds. This is an
internal decision made by the driver and better driver sensors such as the use of eye-tracking glasses
may be used to better extract the output of this decision making. The second level is more closely
associated with directly measurable conditions of traffic flow, such as the cars in neighboring lanes.
This second level of decision making follows the first level, where first the driver makes a conscious
decision to switch lanes, and then the driver assesses the traffic conditions and the risks associated
with changing lanes. Intuitively, this requires more planning and perhaps mental simulations of
lane change trajectories in order to avoid hitting other cars.

4.1.5 Limitations of direct methods
So far with our examples of driving and simple gaming, we have attempted to use the direct method
to model the policy function of human decision making. Even though direct methods have a more
intuitive connection to the structure of weights in the neural network, it is limited in its capability
to model more lower-level, repetitive, reactive and less computationally intensive behaviors, such
as steering control in lane keeping, direct error feedbacks to old scenarios in the projectile game,
or fast steering reactions in extreme maneuvers.

We have seen in some of the presented results that a simple direct method may not be sufficient
in capturing the complexity of certain problem scenarios. For example, when new scenarios are
presented in the projectile game, it is less intuitive to the subject how much adjustments to make
to each of the inputs in order to successfully hit the target. We observe from subject’s playing time
that the reaction to old trials is much less than those associated with new trials. It appears that
subjects could potentially be making predictions and mental simulations of the expected trajectory
before committing to the set of control inputs, similar to the study in [109]. Similarly, in the
extreme maneuver situation, it is also possible that the driver is trying to follow a learned reference
trajectory of state variables rather than using direct feedback. In addition, in the problem with
lane changing, drivers seem to also be assessing the risks of traffic conditions on top of the intent
to switch lanes i.e. predicting whether the trajectory path of lane changing will collide with any
neighboring vehicles.

Seen in both the simple projectile game and real-world driving, we conclude that the mere
use of the direct method, although useful in many controls applications due to its ease of iden-
tification, is not sufficient to capture the full extent of modeling the psychological principles of
human behaviors. More likely a fusion between multiple approaches, such as those which include
the optimization-based approach, or the Bayesian induction approach [43], will be able to better
model and explain bigger and high-level problems. In the upcoming section of this chapter, we
will discuss the use of optimization-based methods.
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4.2 Optimization-based policy functions
Contrary to the direct methods discussed in the previous section, optimization-based policy func-
tions are computationally intensive and requires the search for the solution to an optimal problem in
real-time. Not to be confused with the policy maps which are pre-computed off-line from optimal
frameworks and stored online for function lookup, for example, the state feedback law of linear
quadratic regulators [69], or the piecewise affine control law of explicit model predictive control
[75], the optimization-based methods referred to in this chapter is adopted explicitly for its nature
of solving the optimal problem online, whereas off-line computation of optimal policies will result
in function maps which are more in line with the previously discussed direct methods. The higher
computational load of the optimization-based policies is one of the main features of this approach,
similar to the controlled cognitive processing which require more cognitive attention [65].

The optimization-based method to modeling human behavior poses the decision policy as an
optimization problem, with a decision criterion over some function and constraints. First and fore-
most, modeling human behaviors in this manner is paralleling the notion that subjects intrinsically
possess these criterion functions or variables which they are optimizing over. This modeling frame-
work involves the proper definition of a utility function, also known as the cost or reward function.
The structure and variables of this cost function is heavily discussed in [64], and candidates such
as cost of time, speed-accuracy tradeoff, discounted reward, naturalistic vs. explicitly defined cost
function etc., are presented.

The different types of criteria, seen in a wide range of everyday activities, will depend on the
context of the activity and based on different variables. For example, in a driving task, the criteria
might be to optimize fuel consumption and time while satisfying safety constraints, or in a reaching
experiment where the trajectory of the subject’s hand can have infinite solutions, and the subject
might choose to reach using a combination of shortest distance, smoothest trajectory and also least
amount of effort [64]. Another example takes the optimal framework and implements the inverse
problem on a robot, where the goal is to convey intent to a subject by optimizing over criterions
you expect the subject to be using [115].

The second characteristic of using optimization-based methods to model human behavior is the
assumption that humans have an intrinsic representation of internal models, or mapping functions
that is part of the optimal problem. For dynamic tasks, these internal models might correspond
to differential equations, or state trajectory solutions. Similar to the disconnection between the
connectionist and the probabilistic approach to modeling inductive reasoning [44], and even with
evidence of the mirror neurons which simulates behavior [56], it is still unclear how such inter-
nal model and the optimization of cost can be represented in the central nervous system (CNS).
However, like [43], a modeling approach which abstracts away the physical implementations at the
neural level yields greater flexibility for exploring the different representations for human behav-
iors.

We will revisit the application examples discussed in the previous section and draw connections
between the principles of optimization-based methods and the observed behavior. First we will
pose the projectile game as an optimal problem, and extend this optimal framework to MPC and
use it to model extreme maneuvers in driving. We will introduce the dual-task game, model with
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the MDP framework and parallel this to distracted driving. Lastly, the observed results of juggling
will also be used as an example to illustrate the idea of forecasting for the optimization-based
framework.

Recall in Section 2.3 we briefly discussed the issue of identifying parameters for optimization-
based frameworks, where unlike the vast number of identification tools and algorithms available
for the direct method, identification for the optimization-based method is not so straightforward.
Therefore, instead of finding actual parameter values which fits the data, we will simulate the result
of the associated model structure and use it to draw comparisons with the observed data.

4.2.1 Non-convex optimization for the projectile game
As mentioned in the concluding remarks of Section 4.1.2, the decision making associated with the
projectile game can only be partially modeled by a simple linear gain i.e. for a subset of scenarios.
The amount of uncertainty involved in the mapping between the control inputs to state trajectories
and the arguable usefulness of the feedback-based features, leads us to investigate the suitability of
using the optimization-based framework to model the rest of the problem. We will first present the
model formulation associated with the projectile problem, then present and compare the simulated
results with the observed behavior.

Model formulation

Recall Section 3.2.2 and Figure 3.15 for the state variables and parameters involved. Building on
top of the general optimal control framework posed in Section 2.3, we need to formally define the
decision variables u, the cost function J, and the equality and inequality constraints f and g.

Decision variables and the associated uncertainty: To discuss about what consists as the deci-
sion variable of the human subject, we also need to consider the uncertainty that arises between the
actual input intended by the user to what is actually applied to the system. Similar to the case when
a person throws a ball, the muscular system and how it interacts with the object introduces uncer-
tainty [116]. Since we are dealing with human subjects and trying to model the internal decision
making process happening in the CNS, we would like to pose the decision variable as the intended
input into the system. The actual input applied will have a slight discrepancy to the intended.

In the projectile game example, the inputs are controlled by the subject through the game
interface (keyboard). The values set by the subject are the initial angle α0 and initial velocity v0 of
the projectile. The subject has the opportunity to adjust the values before releasing the projectile,
and receives feedback both in the forms of numerical values on the screen and the size and angle
of arrows in proportion to the input value. Through the subject’s perception of the visual and
numerical feedbacks, the actual α and v applied to the projectile will be different to the subject’s
perceived values. The difference will be attributed to factors such as noise in the visual system and
memory decay [64]. To define this formally, the actual input values are defined as a function of the
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value intended by the user,

α0 = fα(αu) (4.11a)
v0 = fv(vu) (4.11b)

where αu and vu are the values intended by the subject and are the decision variables in the model,

u =

[
αu
vu

]
(4.12)

As mentioned before, this input discrepancy map can be defined in many ways factoring in different
elements that would cause the discrepancy. For the projectile example, we will define the input
discrepancy map to be,

α0 = αu + εα (4.13a)
v0 = vu + εv (4.13b)

where εα and εv are random variables used to capture the uncertainty in the discrepancy between
the subject’s perceived values and the actual input applied to the system.

Different probability densities can be used to represent the uncertainty, and we can use different
densities to capture effects of different factors. For example, the distribution can be specified to be
dependent on the previous input value u−. In this case the function map in (4.11a) can be defined
as a joint distribution between the intended input with the previous input u−, tying together the
dependence of the uncertainty on the feedback the subject receives from the previous trial.

Consider the effect of memory decay of the subject’s estimation of how the visual and numer-
ical feedbacks are related to the actual input applied to the system. If the intended input is close
to the previous input then the subject already has received feedback on how this maps out, and the
relative uncertainty will shrink. On the other hand, if the intended input is drastically different from
the previous, then the subject is more likely to have forgotten the mapping function and therefore
the uncertainty is larger.

Equality constraints: The equality constraints in the projectile example corresponds to the
mapping related to the kinematics of the problem. The projectile scenario simply involves gravity
in the vertical direction, i.e. ÿ = g. The states of the particle are positions and velocities in the hor-
izontal and the vertical direction x, y, ẋ and ẏ. The solutions to the differential equations governing
this dynamic system are posed as the equality constraints,

x(t) = ẋ0t (4.14a)

y(t) = ẏ0t +0.5gt2 (4.14b)
ẋ0 = v0 cosα0 (4.14c)
ẏ0 = v0 sinα0 (4.14d)
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recall that α0 and v0 both depend on the decision variable shown in (4.12). Respectively, the subject
can determine how particle states map out by controlling the initial velocity and angle. The only
parameter value in the constraint is g, which denotes the gravity, formally the acceleration in the
vertical direction. This value, although predefined and determined by the experiment as part of the
environment parameter is unknown to the subject, and over time, subject will learn and have an
estimation of this value.

Inequality constraints: The inequality constraint involves both state and input constraints. Input
constraints involves limitations set on the decision variables, which in our projectile example is set
between

¯
u and ū. The state constraints correspond to the relative distance between the projectile

trajectory and the target / obstacle positions. Since the target / obstacles are circular with radius
R, avoiding the obstacle is equivalent to having a minimum distance between the particle and the
obstacle. These constraints are formally defined as,

∃ t > 0, ‖p(t)− ptarg‖< Rtarg +Rproj (4.15a)
∀ t > 0, ‖p(t)− pobst‖> Robst +Rproj (4.15b)

y≤ Yscreen (4.15c)
u ∈U, U = {u :

¯
u≤ u≤ ū} (4.15d)

where p(t) = (x(t),y(t)), ptarg = (xtarg,ytarg), and pobst = (xobst,yobst) are the x and y coordinates of
the projectile, target and obstacle respectively. Constraint (4.15a) corresponds to the requirement
for the projectile to hit the obstacle at any point in time; Constraint (4.15b) corresponds to the
requirement for the projectile to avoid the obstacle for the entire trajectory; Constraint (4.15c)
corresponds to the upper bound for the y coordinate of the projectile due to screen limitations; and
Constraint (4.15d) corresponds to the upper and lower bounds on the control input, which in our
experiment is set at α ∈ [0,π] and v ∈ [0,200]. Notice Constraint (4.15b) makes the optimization
problem non-convex.

Cost function: The cost function for the projectile example will depend on the distance to the
target, and since uncertainty is added, the function will be the mean squared error e(t∗) = p(t∗)−
ptarg of the particle position to the target reference,

J1 = E[e(t∗)T e(t∗)] (4.16)

and since the particle positions x and y is parameterized by time t in Equation (4.14), we include t∗

in the optimization variable. The presence of uncertainty in v and α will affect the state trajectory
and J1. We introduce two additional constraints that could possibly be used by the subject in order
to directly minimize the effects of uncertainty on state evolutions.

J2 = ∆uT Q∆u (4.17)
J3 = t∗ (4.18)
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where ∆u indicates the change in the control input between trials and Q is the weight matrix
between ∆α and ∆v. J3 will try to find the minimum time required to approach closely to the
target. With the model formalized, we will now present the result and analysis, which will include
both analytical and numerical solutions.

Analytical and numerical results and analysis

In this section, we will describe several phenomena and behavioral patterns we observed through-
out the subjects’ experimental data, and attempt to capture the fundamental principles behind spe-
cific decisions. Model structures and parameters of the optimal framework described before will
be used to reason subjects’ responses, either analytically through the model, or through numerical
simulations and solving of the optimization problem.

Effects of uncertainty on the decision making in trials without obstacles: Starting off with the
simplest scenarios, the first set of trials presented to the subjects when they start the experiment are
the ones without obstacles. Subject are asked to hit the target without any obstacles constraining
the flight trajectory. We observe that even though initial control inputs might vary greatly among
subjects, after a few trials the subjects learn the factors involved, and they all eventually converge
to the same control strategy. The strategy involves increasing the initial velocity to the maximum
level for all trials, and only manipulate the initial angle to match different target positions. This can
be seen in Figure 4.13, which shows the various control strategies over several subsequent trials.
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Figure 4.13: Control inputs for scenarios without obstacles.

This decision making strategy can be captured by the amount of uncertainty that is included
in each of the control inputs, and of the environment. Recall Equation (4.13a), the intended input
of the subject and the actual input applied to the system is biased and corrupted by noise. For the
initial angle α, the subject receives direct visual feedback through the arrow indicator, therefore the
added noise only arises from the visual-sensory system itself, which is very minimal compared to
the amount of uncertainty included in the control input for initial velocity v. Because the indicator
for v, provided both numerically and visually, still has to rely on the mapping through the subject’s
memory from previous trials, the amount of uncertainties involved is much greater than for α.
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In addition, there is uncertainty associated with the gravitational constant g, which also relies on
memory and learning from the subject.

To connect this line of cognitive reasoning with the model framework, consider the extreme
case where the uncertainty in α is much smaller than in v, such that α is posed to be deterministic
and only v to be the random variable. Reformulating Equations (4.14) and eliminating t, the new
trajectory map for x and y can be presented as,

y = tan(α)x+
gx2

2v2 cos2(α)
(4.19)

Notice v is eliminated in the first term, and appears in the denominator of the second term.
g also only appears in the second term. Therefore, as v→ ∞, the second term goes to zero, and
we are left with y = tan(α)x, which is deterministic since we have reduced α to be deterministic.
Therefore, by increasing the size of v, we reduce the effect of the uncertainty in v and g on the
projectile trajectory, which aligns with the control strategy adopted by the subjects.

This supports the conjecture that, from the subject’s perspective, the uncertainty associated
with v is much greater than the uncertainty associated with α, and that the subject’s control strategy
aligns with the principle of minimizing the resulting uncertainty of the predicted state trajectories.
Since we have established that v has a much larger uncertainty relative to α, from here forth we
will simplify the analysis by assuming α to be deterministic.

Analyzing decision making with one obstacle: After the subjects have finished the trials with
no obstacles and have become familiar with the dynamics and mechanics of the game, we present
subsequent trials where a single obstacle is present. Analysis of the recorded data from the sub-
ject’s game plays and from post-game feedbacks, shows that there are several noteworthy obser-
vations regarding the control strategies of the subjects. To summarize, the patterns show control
preferences towards the following factors:

• minimum time / trajectory path length

• minimum change in control

• preference towards zero change in ∆α

The above listed conjectures each correspond to a specific formulation of the cost and constraint
functions of the optimal problem. We will discuss these behavioral patterns and compare with
various baseline solutions of the optimal framework presented in the model formulations. The
baseline solutions is computed using YALMIP [117] and the general purpose nonlinear solver
IPOPT [118, 119]. The technical details of how the baseline solutions are computed is included in
Appendix A.1.
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Control strategy of minimum time: We observe that the subjects’ control strategy closely
relates to an optimal control problem which minimizes the time to hit target, i.e. the cost function
includes term (4.18). This can possibly be attributed to the uncertainties associated with the control
inputs and the environment. Since we are dealing with a minimum time formulation, we solve the
optimization problem (2.9) using with two cost criterions: J = ttarg and J =−ttarg with y(t)< 672
due to screen constraints, which provides our analysis with baseline solutions of lower and upper
bounds, i.e. minimum time to hit target and maximum time to hit target.

The trajectory shown in Figure 4.14 compares baseline solutions with the subject’s response.
We can see in this example the subject’s response closely follows the lower bound of the baseline
solution with minimum time to hit target. In fact, for certain scenarios and obstacle-target config-
urations, subjects have generally shown preference towards choosing the set of initial conditions
from the feasible set hat results in shorter flight trajectories.
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Figure 4.14: Comparison of trajectories between subject input and the maximum and minimum
time baseline solutions.

We can directly relate this biased preference towards minimum time to the control input α.
Consider system dynamics defined by (4.22)-(4.14d), larger α will result in longer flight trajectory
in order to reach the target. Subjects in general will choose a smaller α in order to minimize the
length of the flight trajectory. Figure 4.15 shows the distribution of subject input relative to the
maximum and minimum time baseline solutions. The values in the shown distribution are the
ratio ρtmin of the difference between subject input and minimum time baseline solution over the
difference between the maximum and minimum time baseline solutions,

ρtmin =
αsubj−αtmin

αtmax−αtmin

(4.20)

ρtmin = 0 means the subject’s control strategy is equivalent to the minimum time baseline solu-
tion, and similarly ρtmin = 1 would equal the maximum time baseline solution. The distribution in
Figure 4.15 shows the mean value of ρtmin = 0.26 and a standard deviation of 0.1, illustrating the
preference that subjects are biased towards the minimum time solution.

This particular control strategy can be explained by looking at the uncertainty involved in the
system dynamics. As explained in the no obstacle scenarios, we can assume that there is no or
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Figure 4.15: Distribution of subject input relative to the tmax and tmin baseline solutions.

very minimal uncertainty involved in the initial α when compared to v. There is also a considerable
amount of uncertainty associated with the gravitational constant g as this is also a learned parameter
from feedback of previous trials subject to memory decay.

To simulate the effect that uncertainty plays in the flight trajectories, Figure 4.16 compares
three different sets of flight trajectories computed from the worst case bounds on the uncertainty
in g ∈ [ḡ− δg, ḡ+ δg] and v ∈ [v̄− δv, v̄+ δv], where given a specific value of α and the target
positions (xtarg,ytarg), the nominal value of v̄ satisfies (4.22)-(4.14d) reformulated as,

v2 =
ḡx2

targ

2cos2 α(ytarg− xtarg tanα)
(4.21)

The results in Figure 4.16 is obtained with ḡ = −10,δg = −1,δv = 5 and α = {π

8 ,
π

4 ,
3π

8 }. We
can see that with a larger value of α, the resulting state trajectory will reach the target at a longer
t, and the predicted bounds at target is bigger than for α = π/4, making it is less likely to hit the
target. The limiting factor will be the position of obstacle which obstructs the path.

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

Y

X

Comparison of path trajectory due to uncertainty in v and g for different α

 

 

α = π/8

α = π/4

α = 3π/8

Figure 4.16: Comparison of path trajectory due to uncertainty in v and g for different α.
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Control strategy of minimum change in input: The next set of observations and behavioral
trends we see from the subjects are the preferences towards minimum change in control inputs.
This is equivalent to including (4.17) in the cost function. Similar to the analysis for the previously
discussed minimum time formulation, we solve optimization problem (2.9) to find the baseline
solutions for: minimum time to hit target (cost term (4.18)); minimum change in α (cost term
(4.17) with zero weight on ∆v); and minimum change in v (cost term (4.17) with zero weight on
∆α).

Shown in Figure 4.17, are comparisons between the subject’s change in the input control with
the baseline solutions for both ∆α and ∆v. Three different baseline solutions are computed using
the optimal framework in (2.9) , and different cost functions minimizing exclusively either change
in α, change in v, or time to hit target ttarg.

Firstly, looking at the distribution of the baseline solutions shown in blue, we can see the
solution for the minimum time to hit target formulation has a bias towards a decrease in α and an
increase in v; ∆α for the minimum ∆α formulation is also mostly zero, which means no change or
very little change in α is still feasible in many cases; and ∆v for the minimum ∆v, although also
centered around zero, has a slightly larger distribution.

Now we focus and compare the subject’s input to the baseline. Like the formulation for mini-
mum ∆α and minimum ∆v, the subject also has a distribution where the mean is centered on zero
change in α and v, showing that subject prefer to minimize the change in input. Looking at the plot
for ‘∆v from subject vs. ∆v from min∆α’, we can see the distribution is almost identical, whereas
in the plot for ‘∆α from subject vs. ∆α from min∆v’, the distribution is vastly different. This
shows that, although subjects generally prefer to minimize the amount of change to apply to the
control inputs, there is a stronger bias towards putting more weight on minimizing ∆α over ∆v.

Scenario dependent hybrid control strategy: Similar to our analysis of the projectile game
using direct methods in Section 4.1.2, we follow the conjecture that the control strategy will follow
a hybrid structure which is scenario dependent. Focusing specifically on the partitioning of scenar-
ios based on whether it is new or old (repeating failed trials), we plot the partitioned data against
the same baseline solutions discussed in the previous section. Figure 4.18 shows the results of the
new scenarios and Figure 4.19 shows the results of the old scenarios.

Several observations and comparisons can be made from Figure 4.18 and 4.19. Firstly, looking
at the subject’s distribution in the new scenarios, even though Figure 4.18(a) and 4.18(d) shows that
the baseline solution has successfully obtained close to zero values of ∆α and ∆v to be feasible,
the subject’s distribution, although centered around zero, has a wider distribution. In addition,
Figure 4.18(c) and 4.18(b) shows the distribution between the subject and the baseline solution to
be closely matched.

In comparison, looking at the result in old scenarios, distributions shown in Figure 4.19(a) and
4.19(b) shows that the subject’s control strategy follows closely with the baseline solutions that
are computed from the minimum ∆α formulation. On the contrary, Figure 4.19(c) and 4.19(d)
shows that the control strategy does not align with the minimum ∆v formulation quite as well. In
addition, there is also a slightly better fit with the baseline solution of the minimum time to hit
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target formulation in the new scenarios as seen in Figure 4.18(e) and 4.18(f).
From the above observations, we can conclude the following. Firstly, the subject uses a dif-

ferent set of decision making strategies when encountering different scenarios. Specifically, in the
old scenarios, it appears that the subject prefers to adjust the velocity input over the angle, putting
more weight on minimizing ∆α than on minimizing ∆v or ttarg. Conversely, in the new scenarios,
there appears to be more of an equal balance of weighting on all the terms, minimizing both ∆α

and ∆v as well as ttarg. ∆α is more likely to be dominating when the trajectory needs to avoid the
obstacle and the only feasible solution is to alter the flight trajectory through increasing ∆α.

We can possibly attribute this behavioral pattern to the idea that human subjects are better at
deducing linear relations, and are more likely to assign linear relationships to functions [120]. This
explains why subjects are more likely to manipulate v over α, since v appear linearly in (4.14c).
Recall from (4.14) the x and y coordinates of the trajectory can be defined in terms of α and v,

x = vcos(α)t (4.22)

y = vsin(α)t +0.5at2 (4.23)

Differentiating with respect to v and α,

dx
dv

= cos(α)t,
dy
dv

= sin(α)t (4.24)

dx
dα

=−vsin(α)t,
dy
dα

= vcos(α)t (4.25)

As shown, ∆v affects both ∆x and ∆y linearly, whereas ∆α is nonlinear. Linearization can be
performed on this nonlinear relationship about the current α, however, is restricted to small regions
for accuracy. Especially since the sine and cosine functions are complementary to each other, it
is harder for subjects to learn about this nonlinear relationship, as evident from the preference
towards the larger distributions in ∆v over ∆α in Figure 4.19.

Connecting the role of feedback to control strategies: From a psychology standpoint, the
feedback the subject receives from previous trials helps the subject in solving the inverse problem
where the parameters of the input mapping (4.22) are identified. However, the feedback from
previous trial are stored in short term or working memory which is subject to decay and memory
detail loss [65], which means over time, it is most likely that the feedback trajectory received
from the most current trial replaces other trajectories from previous trials. This combined with
the tendency for human subjects to interpolate relationships linearly [120], leads to the input map
to have distributions where estimations around the most recent input will have the least amount
of uncertainty and estimations that are vastly different from the current input will have a great
amount of uncertainty, which has been shown from Figure 4.19 that the uncertainty associated with
deviating from the current control inputs far exceeds the accumulation of uncertainties associated
with a longer flight trajectory.

In other words, we can pose this relationship between the current and the previous input as hav-
ing a joint distribution. In turn we can model the effect of a given previous input on the estimation
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of the current and compute the conditional densities of the current input given the previous. To
formally present this, define the input vector (game control) selected by the subject for the current
scenario (trial i) as ui

s = (αi
s,v

i
s), the input vector that the subject estimates will be applied to the

system for trial i as ui
a = (αi

a,v
i
a), and the input vector (game control) selected by the subject for

previous i− j trials as ui− j
s = (α

i− j
s ,vi− j

s ), then the conditional probability of the applied input can
be posed as p(ui

a|θi) where θi represents the parameters that specifies the distribution, i.e. the mean
and standard deviation for a Gaussian distribution, and is conditional on the current and previous
game controls as well as the trajectory feedback O i− j the subject receives from applying ui,k

s . The
marginal distribution for ui

a given previous control and feedback observations pairs,

p(ui
a|ui

s,u
i−1
s , ...,ui−N

s ,O i−1, ...,O i−N) = p(ui
a|θi)p(θi|ui

s,u
i−1
s , ...,ui−N

s ,O i−1, ...,O i−N) (4.26)

To simplify the equation, assume the memory from the most current feedback dominates the
estimation of θi reducing to j = 1. In this case, p(θi|ui

s,u
i−1
s ,O i−1). Observations helps the subjects

solve the inverse problem where the initial conditions are identified for the associated ui− j
s . To find

a connection between Equation (4.22) and why subjects prefer to minimize the change in control
inputs, consider two different feasible game controls the subject can choose to apply ui

s,1 and ui
s,2,

where ∆u1 = ui
s,1− ui−1

s and ∆u2 = ui
s,2− ui−1

s , with the condition that ‖∆u1‖ < ‖∆u2‖. Suppose
ui

a N (µ,σ), θi = (µ,σ) specifies a Gaussian distribution with the size of σ positively correlated
with the size of ‖∆u‖. Then ui

2, with the larger change in control will result in a wider distribu-
tion. Substituting into Equation (4.22), this will give a higher probability of failure, and therefore
subjects are more likely to choose a smaller control difference to minimize the uncertainty.

Concluding remarks

In this section, we have presented the decision making associated with the projectile game as an
optimal control problem. Similar to the discussion about how reward functions can be formulated
in [64], we investigated the structure of the cost function in our experiment. We have found that
the subject adopts a hybrid strategy that is dependent on different scenarios and the uncertainties
associated with the control inputs and system dynamics. In new scenarios, subjects will optimize
over a combination of minimum time to hit target and minimum deviations from current control
inputs, whereas in old scenarios, subjects adopted a strategy which focused on minimizing devi-
ations from the current initial angle. This can be attributed to how subjects view the system as
locally linear functions.

Typically, motor studies deals with reaching experiments where the subject has an infinite
number of hand trajectories and optimizes for minimum control effort, smoothness etc. [64, 73].
In our experiments, we extend this concept by introducing nonlinearity into the trajectory mapping,
as imposed by the simulated gravity in the projectile game, and also including avoidance regions
posed by the obstacles. By introducing nonlinearity and obstacle constraints into the problem
formulation, we can draw parallels to the task of driving, where the driver is also dealing with
constraints and nonlinear regions of the tires. We use a similar optimal framework in the next
section to model driving under extreme conditions.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: Comparison of subject ∆α and ∆v with baseline solutions for all trials.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.18: Comparison of subject ∆α and ∆v with baseline solutions with only new scenarios.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.19: Comparison of subject ∆α and ∆v with baseline solutions with only old scenarios.
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4.2.2 MPC model for extreme driving on slipper roads
Using the same optimal framework as the projectile game, we will now extend the game-based
application to real-world examples, specifically in the context of driving. For the steering control
introduced in Section 4.1.1 and in [121, 122], direct methods which maps observed feedback to
steering input through a linear gain is a suitable candidate for modeling simple highway driving on
typical road conditions. Applications like this, where the task is familiar to the person, align more
with the principles behind direct methods where the decision making is more on the lower-level
and responses are more reflexive rather than predictive.

Lane keeping on the highway deals with small side slip angles and therefore primarily involves
only the linear region of tire dynamics familiar to the driver. However, as reported in [123], many
car accidents involve slippery surfaces and nonlinearity of the tires, which typical drivers have little
experience with. Driver training on skidding as part of the license requirement [124] is proposed
to increase their knowledge on how to respond to the unexpected change in vehicle dynamics
involving the full nonlinearity of the tires.

In this section, we will model the behavior of an experienced driver who is familiar with the
nonlinear dynamics involved in driving on slippery surfaces, and knows how to utilize the full non-
linearity of the tire to first induce tire saturation and slipping, and then stabilizing the vehicle from
the drift. With the idea that the experienced driver has knowledge of and an internal representation
of the vehicle dynamics and the nonlinearity in the tire, the MPC framework introduced in Section
2.3.1 can be used to model decision making based on mental simulations and state predictions.

Previously in Section 4.1.3, we modeled the same maneuver using direct methods and the PWA
framework postulating that after many trials, the subject learns the linear gains for two different
modes of operations, saturated and unsaturated. In this section we postulate that the subject learns
a reference trajectory over time of all vehicle states for the 180 degree turning maneuver, and
using a model predictive framework and knowledge of the vehicle dynamics to choose the control
variables which will follow the learned reference trajectory.

Model formulation and associated variables

Following the MPC framework described in 2.3.1, we will model the extreme maneuver on ice
using the predictive approach. First the cost function J(x) in (2.10) is defined for the driver appli-
cation as,

JN(ξ̄t ,Ut ,∆Ut) =
t+Hp−1

∑
k=t

‖ξk,t−ξre fk,t‖
2
Q +‖uk,t‖2

R +‖∆uk,t‖2
S (4.27)

i.e. by minimizing a weighted combination of (i) deviations in the reference trajectory, (ii) the
control input uk,t and (iii) the rate of change in uk,t . The subscript of the norms denotes ‖x‖2

P =
‖Px‖2,P = Q,R,S.

The cost function in (4.27) involves the tracking of a reference trajectory by minimizing state
deviations from the reference states, which requires a mental representation of the vehicle model in
order to make state predictions over the upcoming horizon. This leads to the following questions.
Firstly, what reference trajectory is the driver trying to track? As proposed in Section 2.1.1, the
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reference generator will either be a higher level optimization-based path planner similar to [67], or
simply looks up stored reference trajectory from memory.

Secondly, how is the driver making predictions of vehicle states? In this section, we propose the
driver is predicting state evolutions from the nonlinear model described in Section 3.1.1. But the
driver could simply be retrieving stored pieces of trajectories from a look up table [89], or using a
simpler dynamical model such as the point mass model [67] with a linear tire. This could possibly
be the difference between expert and novice driving. The expert driver is able to make better
predictions using a nonlinear model, whereas the novice driver is only using the linear model, and
would fail to act appropriately in slippery conditions.

Thirdly, what is the prediction horizon of the driver? A long prediction horizon considers
long term goals, but are computationally expensive. On the other hand, short prediction horizons
require less computation, therefore can be updated more often. Shorter horizons are however,
short-sighted, and often requires a good reference. For example, using this predictive framework
to model the different levels of the driver hierarchical scheme mentioned in [125]. For a driver
who wishes to minimize total traveling time, at the strategic level, the driver makes predictions
of traveling time based on distance and traffic information, and makes a decision on which roads
to take. This is one long horizon prediction and is seldom updated unless something unexpected
comes up (e.g. unexpected traffic). At the maneuvering level, the human has to make decisions on
maneuvers such as running a yellow light or passing a slow vehicle. The prediction horizon in this
level is a few seconds, and gets updated often. Then at the control level, the driver constantly makes
decisions on the steering/braking/throttling controls i.e. to maintain speed limit, lane keeping etc.

For the extreme drift maneuver described in Section 3.1.6, we take the state trajectory of a
successful maneuver which the driver has learned as the reference trajectory, and we model the
driver at the control level by treating the driver as a MPC controller.

Results and model simulations

Figure 4.20 shows the steering input and the simulated state trajectories of a 180 degree drift
turn when the MPC formulation in (2.10) is solved using the nonlinear solver NPSOL [90]. The
sampling time is 50 ms and Hp = 160. The trajectory obtained from an expert driver is used as the
reference trajectory for the model simulation (red dash-dotted line).

Figure 4.20 indicates that an optimal control framework is suitable in replicating driver be-
havior. The solid line in Figure 4.20 shows the simulated state and input trajectories when the
nonlinear Pacejka tire model [94] and (3.1) is used to make state predictions in (2.10b) and in the
simulation. We can see that the simulated state trajectories tracks the reference trajectories rea-
sonably well, and the input trajectory from the solver has a similar profile with the driver steering.
Note that in the MPC formulation, the difference between solver steering and driver steering is not
penalized in the cost function, which is why the steering profiles do not exactly match. Yet even
though there are large quantitative differences, the qualitative behavior (the general shape/pattern
of the steering profile), is quite similar. The quantitative differences are due to model mismatches
between the test vehicle and the model used in the solver and the uncertainty in the actual road
conditions. A more accurate model would reduce this mismatch.
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Figure 4.20: Comparing expert driver and MPC result of drift maneuver using both nonlinear and
linear approximation of tire model: input trajectory δ and state trajectories ξ = [ẏ, ẋ,ψ, ψ̇,Y,X ].

Figure 4.20 also shows that for complex maneuvers which involve the saturation regions of the
tires, a high fidelity model is needed in the predictive framework. Most importantly, the nonlin-
earity in the tire forces needs to be recognized by the driver/solver in order for the drift maneuver
to be performed. If the tire forces are treated to be only linear in the tire side slip angle, then the
driver/solver will not be able to track the reference trajectory that replicates this drifting maneuver.
This is shown by the state and input trajectories represented by the dashed line in Figure 4.20.
The input trajectory is solved when the tire force in (3.1) is only obtained from a linear tire model
(the dashed linear approximation in Figure 3.5. The state trajectories are simulated by passing this
input profile through the original nonlinear model.
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Concluding remarks

We have shown that the optimization-based method using the MPC framework can be used to
model and simulate driver behavior in more complex driving scenarios involving slippery condi-
tions and nonlinear dynamics involving the tire. Similar to the projectile game experiment, the
subject/driver requires knowledge of the system dynamics in order to make mental simulations of
state evolutions in order to find the most optimal set of control inputs to apply to the system. Sub-
jects are required to hit targets while avoiding obstacles in the projectile game and therefore there
are certain coordinates in the state space which the subject should and should not enter. Similarly,
in the extreme driving situation, drivers are given guidelines, either learned from demonstration
or from memory, on what the vehicle states should be over the next horizon and tries to track this
reference trajectory over the next horizon.

Up to this point, we have introduced the use of optimization-based methods in the modeling
of control strategies that only involved continuous decision variables. Next, we will attempt to
model discrete decisions with the same optimization-based approach, specifically by using the
MDP framework to model decision making in a dual-task game and a paralleling situation in the
real-world with distracted driving.

4.2.3 MDP model for attention allocation in the dual-task game
Recall in the projectile game, we introduced the notion that subjects might be using a different set
of control strategies for different scenarios and partitioned the data set accordingly to demonstrate
this idea. One of the partitioning characteristic was how the subject selected the control inputs
and whether it involved adjusting only the angle, only the velocity or both simultaneously. This
precursor to the finer control of continuous inputs, such as the actual values of angle and velocity,
can be an example of the decision making process involving discrete variables.

In Section 4.1.4, we introduced how the direct method of SVM mapping can be used to model
the discrete intent to change lanes on the highway based on the traffic conditions, and concluded
that for this particular application, there might be more planning and predictions involved in the
assessment of safety and therefore an optimization-based method might be more suitable to capture
the predictive nature of the decision making process.

In this section, we will use MDP, an optimization-based framework introduced in Section 2.3.2
to model the dual-task problem presented in Section 3.2.3. As previously described, the dual-
task game requires the subject to perform a primary task which involves avoiding obstacles, at
the same time completing a secondary task which involves typing in strings of numbers. The
MDP framework provides an intuitive way to model this decision making process. The states and
actions are naturally discrete and the subject receives reward for completion of the secondary task
and receives penalty for hitting obstacles, so there is a tradeoff between the two tasks. In the results
discussion we will use the MDP framework to simulate the ideal behaviors for the game and the
inverse reinforcement learning algorithm to extract the cost function that is used by the subject and
analyze how it differs from what is prescribed by the experimenter.
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Model formulation

First we define the associated variables for the dual-task problem, where the states and actions in
the MDP tuple (S,A,T,R,γ) is defined as,

• S = S1×S2×S3×S4 where

– S1 = {0,1, ...,N1}: distance of the obstacle on the left

– S2 = {0,1, ...,N2}: distance of the obstacle on the right

– S3 = {0,1}: position of the target (left or right)

– S4 = {−1,0, ...,N4} is the state of task 2.

∗ (−1) means task 2 is completed
∗ (0) means task 2 is cued but unattended
∗ (≥ 1) is the total amount of time spent attending task 2

• A = {1,2,3} is a set of three actions, shifting the position of the target (left or right), or
typing on the number pad (indicating attention on task 2)

The game is setup so that the obstacles would fall down at constant speeds and did not switch
positions once it appeared. The probability of new obstacles appearing is taken into account in the
transition probabilities between S1 and S2. The actions of the participants carries no uncertainties,
therefore S3 is deterministic. Task 2 is cued at random intervals, and once the participant starts
typing on the number pad, this is taken as attention shifting to task 2, therefore S4 transitions from
0 to 1 deterministically when A = 3 is applied. The amount of time it takes to complete task two is
up to the skills and reaction times of the participant, and this is uncertain. Therefore the transition
between S4 ≥ 1 is probabilistic and the probabilities are determined from the trials.

The reward/cost function is posed as described to match the instructions given to the partici-
pants. For example, colliding with an obstacle is equivalent to incurring a cost of R(s1 = 0,s3 =
0) = J1 or R(s2 = 0,s3 = 1) = J1, and not completing task 2 is equivalent to R(s4 ≥ 0) = J2.

The subject’s goal is to choose the control input, whether to pay attention on the primary task
of avoiding the obstacle by shifting the position of the target left or right, or to switch attention
to task 2 in order to minimize the expected discounted cost given the state transition probabilities
learned over time.

Simulation Results and Analysis

To show the results of the MDP model, value iteration from (2.12) is used to find the value function
of the discrete states, which is used in finding the optimal action given the current observed state as
formulated by (2.13). States presented to the subject when playing the game is used as inputs to the
computed policy to simulate the optimal action. The sequence of actions played by the participant
is compared to the actions predicted by the optimal policy given identical states. The cost function
found through inverse reinforcement learning is also compared to the cost function verbally given
to the participants.
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Analyzing the computed value function: The value function V (s) obtained through value it-
eration is shown in Figure 4.21 and Figure 4.22. On the x and y axis of the plot are s1 and s2,
(distances to the obstacles). Only s3 = 0 (left) is considered since s3 = 1 (right) would yield
similar plots with the coordinates flipped. Figure 4.21 plots V (s) for s4 = 0 (task 2 cued but unat-
tended). V (s4 = 0) is always larger than V (s4 =−1) since there is no penalty if task 2 is not cued,
and ‖V (s4 = −1)−V (s4 = 0)‖∞ ≤ 4.55. The diagonal pattern in the plot makes intuitive sense,
since this is indicating that if the distances to the closest obstacles is the same on both sides than
the target has to hit one of them eventually. The high value where s1 = 0 is the cost of obstacle
collision.

Figure 4.22 plots V (s4 = 2). We can see the value function is high for s1 = 5, and becomes
increasingly higher as s1 gets smaller. This is showing that since the task 2 completion can require
up to 5 time steps, during which no attention is paid on the avoiding task, there is a chance that the
target runs into the obstacle if the participant decides to shift attention to task 2 at s1 = 5. As will
be explained later, the participant’s policies is actually even more conservative than this.
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Figure 4.21: Value function of the dual-task game for s1 and s2 with s3 = 0 and s4 = 0.

Comparing the simulated optimal action with subject’s action: Shown in Figure 4.23, the
plots show a snippet from 100 consecutive samples taken from a single game play by the subject,
counting down from the top most plot, each subplot displays the following features:

• s1, distance to obstacle on the left

• s2, distance to obstacle on the right

• s3, current position of the target
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Figure 4.22: Value function of the dual-task game for s1 and s2 with s3 = 0 and s4 = 2.

• s4, completion status of task 2

• onset of task 2 message cue

• input applied by the user based on the key pressed

• optimal input chosen from the optimal policy π∗(s) from (2.13) of the original MDP formu-
lation

• optimal input chosen from π∗(s) of the MDP with modified reward function

• optimal input from π∗(s) of the MDP with modified reward function and modified transition
probabilities (discussed later)

As there weren’t any additional sensors monitoring the state of the participant, such as a cam-
era, the only way of determining which task the subject was paying attention to was through the
type of key he/she pressed. Pressing the left/right keys are considered as full attention on task 1
and pressing on the number pad, enter or backspace keys are considered as paying attention to task
2. The drawback associated with this can be seen at t = {5,53,65,91}, at which the optimal input
acted faster than the participant’s recorded input. There is a delay for the subject due to his/her
reaction time to the onset of task 2 cue, as well as the time needed to first read the string of number
before typing on the keypad. These delays in reaction times are not measured and therefore not
modeled in the MDP. Eye-tracking equipment could potentially be used to accurately determine
when exactly the subject is shifting his/her attention, as well as the delays associated with this
attention switch and keyboard input.
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Figure 4.23: 100 sample (t) snippet of a game play.

The time it takes for the subject to complete task 2, which consists of sequences of six numbers,
are computed (under the previous condition). The transition probability associated with S4 = 1−5
time steps, {P(S4 = i)}5

i=1 = {0,0.097,0.484,0.387,0.032}. This shows that most of the time the
subject is able to complete the task under five time steps.

Despite the statistics of task completion times, the subject’s policy still seems a lot more con-
servative. We can see at t = {19,50,81}, the distance to the obstacles are {7,5,7}. Given that the
obstacles are moving at one unit per time step, and given the subject’s history of task completion
under five seconds, there is enough time for the subject to finish task 2 without hitting the obsta-
cles. However, the subject’s actions differ from the optimal policy. We can see at t = {25,54,85},
the subject first waits for a big enough clearance (≥ 8) before switching to task 2. If this is due to
a conservative estimation of the task completion time, then the transition probabilities of the MDP
would be different.
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Also notice that the times when the subject decides to switch lanes. Notice the switching that
occurs at t = {43,61}, and compare with the optimal input in (i). The optimal policy decides to
switch later at t = {44,62}, one time step later when the obstacle is right in front of the target. This
shows that the subject’s policy takes into account the distance to the obstacles and not just based
on the occurrence of a collision.

The bottom two subplots shows the optimal policy from a modified MDP. An additional reward
feature is added to include the distance to the obstacles. We can see in subplot (g) that the optimal
policy of the modified reward function matches the switching times of the subject.

The transition probabilities between s4 is shifted to account for the conservativeness of task
completion estimates. The probability associated with S4 = 1− 8 time steps is now, {P(S4 =
i)}8

i=1 = {0,0,0,0,0.097,0.484,0.387,0.032}. In other words, extra three time steps is added
on top of the subject’s actual performance. Comparing the optimal policy from the new MDP
(modified reward and transitional probabilities) with the original, we can see that there is no longer
false alarm predictions, and matches the user’s policies better.

One interesting question is what would happen if the goal of the game is phrased in a rewarding
context. For example, if the participant was told that the blue dots were points instead of obstacles.
Prospect theory states that we tend to be more risk-aversive when dealing with big losses [126],
which means subject might no longer act as conservatively as the original problem.

Comparison with user reward function Using the inverse reinforcement learning algorithm
described in Section 2.3.2, the reward function of the user is extracted. The features φ(s) used
include:

• φ1 = distance to the obstacle in current lane

• φ2 = distance to the obstacle in the other lane

• φ3 = occurrence of a collision

• φ4 = completion of task 2

• φ5 = amount of time spent in task 2

Solving problem (2.17), we obtain the features weighting vector w = [0.123,−0.123,−0.508,
13.11,−0.333]. w(1) and w(2) shows that the participant adopts the policy of trying to maximize
the distance to the obstacle in the current lane and tries to minimize the distance to the obstacle in
the other lane. Comparing w(3) and w(4), the completion of task 2 carries a higher weighting than
the occurrence of a collision because the participant relies on the distance information to avoid
obstacles.

Using the obtained w, condition (2.16) is checked to see which states/policies are not satisfied.
Out of 500 samples, 2.4% of the states taken from the data did not satisfy the constraint, which
was expected since the participant’s actions are uncertain. In addition, there is a learning curve of
the participant, during which his/her policy may change over time.
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Splitting the data from game play into two parts, the features weighting vector becomes,
w = [0.222,−0.222,−0.111,12.245,−0.229] and w = [0.099,−0.099,−0.604,12.245,−0.229]
respectively. We can see that more weight is put on the obstacle distance in the beginning of
the game and the weight shifts more towards the occurrence of collision in the latter part.

The participant was told that he/she would only incur penalty when there is a collision. There
is no penalty involved with being as close to the obstacles as you can without hitting it, therefore
the feature weighting vector of the actual cost is zero for w(1) and w(2).

Concluding remarks

We have used an optimization-based approach to model the discrete decision making of shifting
attention between the primary and the secondary task in the dual-task game. Using the same
framework as [37] which used MDP to simulate the policies associated with highway driving and
lane switching. We extended this to study how subjects deal with distractions framed in the context
of a dual-task problem. By comparing the predicted actions of the model with the subject’s actions,
we were able to better understand the underlying structure of the cost functions involved in this
context.

We observed that the original cost associated with hitting the obstacles is not enough to capture
the subject’s policy. Instead, subjects used a more conservative policy where a distance buffer is
added to the obstacles, or the distance to obstacles actually appears in the cost function, like the
approach used in the autonomous car in [67]. This could potentially be extended to modeling how
drivers respond to distractions on the highway, such as texting while driving.

Through inverse reinforcement learning, we were able to find the weights of the feature vector
in the cost function. Partitioning the recorded data into the training and trained groups, we were
able to observe the subject adapting the weights as he/she became more familiar with the problem.
We will now scale this game-based application to real-world driving and study the context of
distracted driving using the same modeling framework.

4.2.4 MDP model for attention allocation in distracted driving
Scaling up the dual-task game from the virtual world to the real-world, we can draw parallels
between the previously described experiment and modeling framework with distracted highway
driving. During highway driving, the primary task of the driver is to pay attention on the road,
keep the vehicle to the center of the lane and avoid collisions with any incoming vehicles, which is
similar to the obstacle avoidance task in the game. The secondary task of highway driving is to pay
attention to the phone and text while driving. When the driver shifts his attention to the secondary
task, he no longer receives visual feedback about the current states of the vehicle, and therefore
has to rely on past experiences to make judgments about safety.

Model Formulation: Using the same MDP framework that is used for the dual-task game, the
variables in the MDP tuple for highway texting is defined as follows,
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• S = S1×S2×S3 where

– S1 = {0,1, ...,N1}: discretized distance to the front vehicle

– S2 = {0,1, ...,N2}: discretized deviation from lane center

– S3 = {0,1, ...,N3}: discretized longitudinal velocity of vehicle

– S4 = {−1,0, ...,N3} is the state of task 2.

∗ (−1) means task 2 is completed
∗ (0) means task 2 is cued but unattended
∗ (≥ 1) is the total amount of time spent attending task 2

• A = {1,2} is a set of two actions, shifting the attention between driving and texting

Interpreting the associated variables and functions: Similar to the dual-task game, the reward
function would capture a tradeoff between completion of the texting task and the penalty associated
with deviation from the center of the lane or collision with the front vehicle. The transition function
which changes the states would depend on whether the driver is paying attention on the road or on
the phone. If the driver is paying attention on the road, then he is constantly correcting the vehicle
through visual feedback. Therefore, it is less likely that the vehicle will be deviation from the lane
or approach the front vehicle at an unsafe distance. On the contrary, if the driver is spending time
on the secondary task, then he will not be able to correct the vehicle in real-time, and therefore the
vehicle will have a higher uncertainty associated with future states in the lateral and longitudinal
direction which affects S1 and S2. In addition, both S1 and S2 will depend on the velocity S3 of the
vehicle. If the vehicle is traveling at higher speeds, then S1 will change at a higher rate, and S2 will
change with a higher probability.

Structure of policy map: The policy map of the driver, which determines whether he/she pays
attention on the road or the phone, will be a value function learned from experience, similar to the
value function in the dual-task game, and will be dependent on the vehicle’s velocity S3. Higher
values of S3 will be associated with lower values in the value function since the probability of
incurring penalties from lane deviations and frontal collisions will be higher, therefore the driver
will more likely to revert attention back to the road after a certain time has passed.

Collection and interpretation of driving data: We asked the driver to drive on the highway
inside the CPG test ground with no other vehicles, i.e. S1 can be discounted, but the driver is
still required to stay within lane boundaries. As described in Section 3.1.6, in addition to the
sensor measurements on the states of the vehicle, eye-tracking glasses is equipped on the driver to
accurately determine when the driver switches attention between the road and the phone, as well
as the amount of time spent in each. Figure 4.24 shows two screenshots to illustrate the difference.

Parsing the eye-tracking data and combining with the data from vehicle sensors, Figure 4.25
illustrates the relationship between the time spent on the phone with the speeds of the vehicle. We
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Figure 4.24: Measuring attention allocation in the distracted driving scenario through gaze fixa-
tions: (left) attention on the road and (right) attention on the phone.

Figure 4.25: Inverse of texting duration vs velocity of vehicle.

can see that roughly when the speeds increase, the amount of time decreases, which aligns with
the proposed framework that the state transition matrix is a function of the vehicle velocity.

Concluding remarks: Extending from the same framework used in the dual-task game, we pre-
sented how the game-based application can be used to parallel real-world driving. The control
strategy of the driver is posed as the attention allocation between the driving task and texting. The
proposed MDP framework with vehicle velocity as one of the states will determine the driver’s
control strategy. We equipped the driver with eye-tracking glasses to measure the duration of the
time spent on the phone. The results showed that as the vehicle velocity increases, the duration
time decreases, which aligns with the policy from the MDP framework where the transition prob-
abilities and reward functions depend heavily on the vehicle velocity.
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4.2.5 Mental representations of system dynamics and making forecasts
Up to this point we have presented two approaches which can be used to model the decision making
in various applications involving the human. Direct methods are suitable at modeling lower-level
decisions that directly maps input to output, whereas optimization-based methods involves making
predictions of states and finding the best control decisions in order to minimize some cost func-
tion and satisfy constraints. One of the major factors differentiating the two approaches is the
underlying assumption that in optimization-based methods, the decision maker has some internal
representations of the systems involved and that state predictions are performed prior to execution
of the final decisions.

Similar to the argument connecting probabilistic to connectionist methods [43], although it is
unclear how mental representations and predictions are physically implemented in the cerebellum,
the higher abstraction in the modeling hierarchy allows greater flexibility for exploring a broader
range of human behaviors, from game-based applications typically associated with psychology
experiments to real-world applications for human-machine interactions.

In this section, we will discuss the potential evidences which support the claim that human
decision makers do possess internal representations of the real-world and that state predictions are
simulated. We attempt to validate this by collecting eye-tracking data from subjects in various
experiments which involve both driving and juggling, and therefore further strengthening the para-
metric approach of modeling a subset of human behaviors with the optimization-based approach.

Evidence from literature

Mental models or representations of the world and their uses in the decision maker’s control strate-
gies has been discussed in many reaching experiments which involve sensorimotor control of the
arm [63, 73]. In [60], this mental representation is termed the forward model and postulates that
multiple pairs of inverse (controller) and forward (predictor) models are responsible for sensori-
motor learning and control. Evidence from fast reaching movements suggest that forward models
are responsible for the speed of these movements [59], and that the amount of delay in the sensory
feedback is too slow to perform fast movements based on the feedback model alone.

In addition, the conjecture that humans perform mental simulations in the cerebellum has also
been investigated in both the neuroscience and psychology literature. The existence of mirror
neurons in the premotor cortex show that subjects will simulate a motor skill familiar to the subject
while observing another subject performing the same skill [56]. [61] attempts to make neural
connections between the mirror neurons and the forward models. Psychology experiments aims to
support the theory of mental simulations from a top-down approach. The model presented in [109]
predicts that people would use more samples of mental simulations when it is harder to make
an accurate prediction due to higher simulation uncertainty. In [127], experiments showed that
people continuously update their physical simulations and predictions in light of new information.
Experiments in [128], where subjects were asked to make predictions about the expected range of
a ball, suggests that people form a probabilistic distribution over the predictions.

In light of the above discussed studies, we will attempt to further support the theory of mental
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predictions through the use of eye-tracking information collected from subjects performing every-
day activities which involve dynamic decisions. We will look at two scenarios in particular, one in
the context of driving, and the other in the dynamic task of juggling.

Using eye-tracking information to support forward models in driving

The review of eye-tracking in everyday tasks showed that eye movements are used to locate in-
formation needed by the motor system and eyes typically seek out information prior to decision
making [129]. In the context of modeling the steering control of drivers, [121] proposed a two-
level model where in one level is the forward model and executes steering commands in open loop,
and the other level will provide corrective steering based on feedback. We equipped drivers with
eye-tracking glasses and recorded their gaze-movement when driving on the winding track at CPG
discussed in Section 3.1.6, which involves many turns and curves unlike a typical highway.

Figure 4.26: Eye-tracking showing far point (left) and near point (right) gaze points in driving.

Figure 4.26 shows two different screenshots taken from the eye-tracking video that was recorded
during the driving experiment on the winding track. We can see that the left picture shows the driver
looking at a far point down the road around a curve. This supports that the driver is obtaining visual
information about the road i.e. road curvature in order to feed the forward model with parameters.
The picture on the right shows a jump from the far point to the near point, illustrating that after
obtaining the necessary information for the forward model, the driver has now switched back to
using the visual feedback to facilitate in corrective steering ensuring the vehicle remains within
lane boundaries.

Eye-tracking of objects in juggling

Juggling is one example of an activity involving hand-eye coordination and requires a lot of prac-
tice to master the skill. We will use the context of juggling to relate how familiarity with the activity
will affect eye-tracking, and in turn show that expert jugglers are better at making forecasts than
novice juggler.
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The idea that people who are experts in a particular skill will be better at making predictions is
explored in [130], where the gaze location of expert and novice billiard players were tracked while
watching videos of billiard shots. Eye-tracking information revealed that expert players tend to
saccade between critical points of contact, whereas novice players tend to track the ball trajectories,
which showed that expert players had better predictions about the ball’s expected path. Similarly,
[112] compares the visuomotor strategies between novice and expert jugglers, where novices look
at the balls around their zeniths and experts tend to fixate their gaze at a central location within the
juggling pattern.

Figure 4.27: Eye-tracking showing non-tracking (using peripheral vision) of objects during jug-
gling with same objects.

We also equipped an expert juggler with eye-tracking glasses and recorded his eye gaze move-
ment under different juggling scenarios. Figure 4.27 and 4.28 shows sequential screenshots (from
left to right) taken from two different juggling tasks. In Figure 4.27, we asked the juggler to per-
form a three-ball cascade using the same type of balls. Shown in the picture, the fixation is fixed
in the central location, similar to [112]. In Figure 4.28, we asked the juggler to also perform the
three-ball cascade pattern, but this time using three objects of different weights, shapes and sizes:
a ball pin, a light large ball, and a smaller heavier ball. As shown in the picture, the visuomotor
strategy no longer followed the one for juggling with identical objects. Instead, the juggler’s gaze
shifts from the expected apex of the objects’ trajectories. We also observed that the gaze shifts to
the expected apex at a time interval prior to the object’s arrival.

These observations and the results in [112] shows that the juggler are making predictions and
forecast about the trajectories of the objects. In the scenario where the expert juggler is juggling
with identical and familiar objects, he is so familiar with the task that accurate predictions can be
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Figure 4.28: Eye-tracking showing prediction and tracking of objects with point-of-focus during
juggling with different objects.

made with just the peripheral visions of the juggler. On the other hand, for novice jugglers, or in
the scenario where the expert juggler has to deal with three different objects, the predictions are
not as accurate, and therefore shifting the gaze to the expected apex of the trajectory is required in
order to obtain feedback for corrective action.

This control strategy is similar to the forward/feedback modeling pairs discussed in both driv-
ing [121] and sensorimotor control in reaching experiments [60], where the juggler makes forward
model forecasts about the expected trajectory of the objects, shifts gaze to the expected location to
receive accurate sensory feedback, and then use this feedback information to update state estimates
of the objects, and finally adjusts the locations of the hand in order to successfully catch the ball.

Concluding remarks

Mirror neurons in the prefrontal cortex, results from sensorimotor control, and experiments for
probabilistic mental simulations all suggest that humans, in addition to feedback control, also pos-
sess forward models and makes predictions to facilitate in the decision making of many everyday
tasks. Eye-tracking data from driving on the winding track and juggling also supports this model-
ing regime. This provides us with the core elements of the optimization-based methods in decision
making.
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4.3 Conclusions
In this chapter we have introduced two approaches to modeling human decision making: direct
methods and optimization-based methods. The first approach of direct methods maps observed
input to the control decisions directly without extra computations involved with solving for an
optimal solution. This methodology is suitable for mapping lower-level decisions which are repet-
itive and requires no planning. We used examples from driving on the highway, extreme driving
on slippery roads, as well as game-based experiments involving kinematic dynamics. We conclude
that direct methods are only useful for a subset of the task scenarios that is discussed, and fails to
capture the human decision making involved in the entire task.

For example, in the highway driving example, direct methods are good at modeling the lane
keeping component of the task, but fails to model the lane switching portions which is postulated
to require more planning due to safety assessments. Similarly, in the projectile game, we have seen
a pattern where partitioned groups of data showed very different results from parameter identifica-
tion. For example, MSE values in the new scenarios are much higher than in the old scenarios. In
addition, the identified weights on the feature vectors showed new scenarios relied more heavily
on scenario-based features, whereas in old scenarios it was dominated by feedback-based features.

We conclude that in the same task, people will switch between different methods of decision
making depending on the context. Therefore a hybrid approach integrating different modeling
methodologies needs to be adopted to encompass the broad range of behaviors. For example, in
highway driving, we can propose a two-level approach similar to [67] where at the higher-level
an optimization-based method is used for path planning to avoid collisions with other cars, and at
the lower-level tracks the generated reference using direct methods. A similar hybrid framework
can also be applied to the projectile game, where subjects switch between the optimization-based
method and the direct method.

Since the computational complexity of directly methods is significantly less than the complex-
ity of mental simulations, subject are more likely to adopt the direct approach when the errors are
small enough such that the linear maps provide a good approximation to the nonlinear problem.
On the other hand, if the subject is presented with a new trial or scenario which is significantly
different from the previous, then the error values will not be a good approximation. In this case,
the subject will make more careful calculation and estimations based on past knowledge of the in-
put mechanism and the shape of the expected flight trajectories, optimizing over all possible flight
paths given their own learned knowledge of the experiment.

In the second part of this chapter, we discussed the implications of using optimization-based
methods to model decision making, where subjects are postulated to perform mental simulations
and state predictions in order to satisfy constraints and minimize the cost function. Results from
the projectile example showed that in order to minimize the amount of uncertainty in the state
predictions, subjects are minimizing over the length of the trajectory, as well as the change in
control inputs. Similar to the above discussed hybrid approach, we saw the weights on the cost
function vary as the context of the problem changes.

Extending the game-based experiments to real-world driving, we modelled the continuous
steering input involved in extreme driving maneuvers using MPC and postulated that drivers are
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trying to follow a learned state reference trajectory corresponding to the maneuver, and that drivers
need to have knowledge of the nonlinearity in the tires in order to achieve this.

In addition to the continuous decisions, we also used the same optimization-based modeling
framework to model discrete decision making in a dual-task game, where the subject was required
to make decisions on attention allocation between the primary task and the secondary task. We
observe, as seen in the shift in the weights in the cost function, that as the subjects become more
familiar with the transition probabilities associated with the game, they become more comfortable
in switching to the secondary task more often and at higher risks.

Similarly, the same modeling framework is applied to distracted driving on the highway, where
the subject’s attention allocation between driving and texting is directly measured using eye-
tracking glasses. Following the MDP framework, the value function showed dependence on the
vehicle’s longitudinal velocity and complies with the measured attention durations on the texting
task, which shows a decrease in duration as velocity increases.

We drew from literature and data from eye-tracking in driving and juggling that subjects possess
forward models and perform predictions in their decision making, a necessary component in the
optimization-based methods.

Lastly, with better understanding of how humans make decisions under different circumstances,
we can design better intelligent systems that integrates human behaviors into the algorithms. We
will discuss how this can be achieved in the next chapter.
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Chapter 5

Human Model Integration with Control
Applications

As mentioned in Chapter 1 section, an increasing number of intelligent systems are now designed
to not only work autonomously on a task, but to operate for applications which either involve
servicing or working in cooperation with human subjects, i.e. collaborative robotics [5] or au-
tonomous cars. Therefore it is important to have an understanding and knowledge base of the
human’s expected behaviors in specific scenarios that the intelligent system caters to. Incorporat-
ing predicted behaviors of the human subject into the control algorithm of these systems will lead
to more efficient collaborations, as well as greater level of comfort and acceptance by the human
in many autonomous systems. Following the previously discussed motivation of relating human
behavior with computational models, in this chapter we will present the second major contribution
of this thesis, which is to introduce a unifying framework for integrating human decision mak-
ing policies into controller design and address the interest of modeling human behaviors for the
purpose of improving human-machine intelligent systems.

In this chapter, we will first propose the mathematical formulation for the control framework
which can incorporate the expected human behavior. We approach this by extending the MPC
framework introduced in Section 2.3.1 with additional constraints which correspond to the pre-
dictions of human behavior, including additional terms in the cost function in order to minimize
controller intervention, and discussing the differences between open-loop and closed-loop for-
mulations. In the interest of generating these predictions, we revisit the two different means of
modeling for human decision making: the parametric approach and the data-driven approach.

Parametric approaches are used for their capability to directly relate parameters to observations
from the behavioral perspective. However, for some formulations such as the optimization-based
methods, the parameters are much more difficult to identify when compared to the data-driven
approach. For the data-driven approach, there exist many state-of-the-art identification algorithms
and even online recursive algorithms that make models adaptive in real-time [77].

To illustrate the aforementioned system structure with real-world applications, we will take ex-
amples from driver modeling for autonomous vehicles. Using the direct methods of driver models
discussed in Section 4.1, we present the results for the extended MPC framework with closed-loop
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driver predictions. The last part of this chapter will discuss the inclusion of the cluster-based, data-
driven driver model in a distracted scenario. We emphasis that the extended MPC framework is a
natural candidate in the interest of improving human-machine interactions due to its optimal and
predictive nature, allowing the minimization of control intervention while still satisfying safety
constraints.

5.1 Control Framework for Semi-autonomous systems
Integrating the human component into the design of human-robot intelligent systems, or semi-
autonomous systems, involves many factors ranging from the physical design of the system, to
the software implementations of control algorithms. A review of these factors discussed in [131]
mostly focused on the higher-level concepts which involved inferring the intent of the human from
explicit and implicit communications. Action planning and joint actions from the inferred intent
are also discussed in the survey, but is limited to the higher-level decision making as well.

As mentioned previously, cognitive architectures [38] like ACT-R are very good candidates
for integrating the different factors of human cognition derived from psychology and neuroscience
into one unifying framework. The unified structure provides a good basis for simulating human
behaviors across a wide range of spectrum from simple arithmetic to everyday driving [39]. How-
ever, unlike computational models, this more descriptive approach to modeling makes integration
with typical control algorithms difficult.

In this section, we will present the extended MPC as a unifying framework that can incorpo-
rate computational human models, such as those discussed in Chapter 4, directly into the control
algorithm of the semi-autonomous system. We want to emphasis that in this framework, human
models are integrated as part of the predictive algorithm in the MPC, and therefore can handle both
the higher-level and lower-level representations of control.

Model formulation

We are interested in generating a sequence of predicted control decisions from the human model
given observations, and utilize a control framework which can make use of this predicted informa-
tion. Readily used as a framework for control systems such as obstacle avoidance in autonomous
driving [67], the way MPCs are posed with state predictions make them a natural candidate for
such purpose. Recall Equation (2.10b) of the MPC formulation from Section 2.3.1 describes a
model of the future state evolutions as equality constraints. We can add an additional equality
constraints to handle the predicted human input upred and its relations to input variables umpc posed
as the optimization vector to the MPC.
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Reformulating formulation (2.10) to include the human model,

min
Ut

JN(ξ̄t ,Ut ,∆Ut)+ JN(uk,mpc) (5.1a)

subj. to ξk+1,t = fsys(ξk,t ,uk,sys) k = t, ..., t +Hp−1 (5.1b)
uk,t,sys = fu(uk,t,mpc,uk,t,pred) k = t, ..., t +Hp−1 (5.1c)
uk,t,pred = fpred(ξt,t) k = t, ..., t +Hp−1 (5.1d)
∆uk+1,t = uk+1−uk k = t, ..., t +Hp−2 (5.1e)
uk,t ∈U k = t, ..., t +Hp−1 (5.1f)
∆uk,t ∈ ∆U k = t +1, ..., t +Hp−1 (5.1g)
ξt,t = ξ(t) (5.1h)
ξN,t ∈ X f (5.1i)

The reformulated MPC has two additional constraints (5.1c) and (5.1d). Note in the original
formulation (2.10), the variable u is both the optimization variable of the MPC and the direct
input for differential Equation (5.1b). In the new formulation (5.1), the input ut,sys for the system
differential Equation (5.1b), is now defined as a function of the optimization variable ut,mpc, and
the predicted behavior of the human subject ut,pred, as shown in Constraint (5.1d). Simple affine
maps such as,

ut,sys = ut,mpc +ut,pred (5.2)

combined with the additional term in the cost functions (5.1a) which minimizes ut,mpc will result
in a solution which tries to minimize the controller intervention and apply ut,sys as close to ut,pred
as possible.

The second constraint (5.1d), relates to the manner which the human behavior predictions are
performed. There are two ways this can be performed in the MPC framework: open-loop or
closed-loop predictions.

Open-loop predictions of human behavior

Open-loop predictions in the MPC framework refers to how the human behaviors are predicted
based on the current observed states of the system. A sequence of predicted control inputs for
the next prediction horizon is generated prior to running the MPC solver. Therefore, while the
solver searches for the optimal solution, the predicted sequence remains constant and unaffected
by perturbations of states within the MPC. This approach is less computationally intensive and
therefore is more suitable for more complex models of human behavior.

Closed-loop predictions of human behavior

Closed-loop prediction, on the other hand, involves predictions which are not only based on the
currently observed state feedback but also future state evolutions within the MPC framework. In-
stead of generating the sequence beforehand, a model, or a state feedback law, of how the predicted
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behavior will be generated is included in the MPC framework directly. Through this approach, fu-
ture states within the MPC framework will affect the value of ut,pred. Evidently, the introduction
of this equality constraint will increase the computational complexity of the MPC problem more
than the open-loop approach, but the effects of state evolutions in the MPC can be coupled with
the human model internally.

We will now discuss in detail applications which uses the MPC framework to include behavior
predictions. In particular, we will investigate how the driver models can be applied for intelligent
control in semi-autonomous vehicles, both from the closed-loop and the open-loop approaches.

5.2 Integrating driver models into semi-autonomous driving
applications

Applications discussed in this section will involve the same autonomous driving framework and
cover examples of both closed-loop and open-loop predictions of the driver behavior. The MPC
framework, as well as numerous other autonomous driving algorithms from the DARPA grand
challenge [8, 9, 11], the Google car [132], and assistance modules from the automotive industry [7],
can be implemented by itself without driver prediction. Even for obstacle avoidance, a nonlinear
solver can be used to find a solution to an optimal control problem where the obstacle is represented
as either a cost term or a constraint [67]. But having a control algorithm which learns and operates
to the preferences of specific drivers [34, 35] will improve driver’s comfort and acceptance for the
system.

To differentiate from purely autonomous vehicles which ignores control actions from the driver,
our semi-autonomous framework will focus on letting the driver behavior dominate the control
algorithm, and only apply the required intervention when the driver is predicted to act in an unsafe
manner, i.e. collision with other cars. In this way, the control inputs and state trajectories of
the car will not only feel more naturalistic to the driver himself, but also to the other drivers in
neighboring cars. In fact, it was reported that the accidents that were involved in the Google car
were primarily associated with the unnaturalistic driving performed by the autonomous controller
[133] i.e. driving too slow frustrated other vehicles with human driver. Therefore, it is necessary
during the transition from human operated to machine operated cars to include semi-autonomous
algorithms.

In addition, many of the solutions do not need to utilize the saturated regions of the tires. For
maneuvers which involve the saturated regions, such as drifting or last minute obstacle avoidance
on slippery surfaces, the solutions would live closer to the unstable equilibrium points of the sys-
tem dynamics [134]. It would be much harder for the nonlinear solver to find such a solution.
Therefore, as an example, we will incorporate the switched driver model introduced in Section
4.1.3 into the MPC with closed-loop predictions of driver behavior under extreme driving con-
ditions that requires the utilization of the saturated regions of the tires, and show how the driver
model can be facilitate in guiding the solver into finding the solution to achieve the maneuver.

In the second example we will implement a semi-autonomous framework to guarantee safety
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of the vehicle. We postulate that when the driver is attentive to normal traffic condition, he will
be driving in a safe manner, and only when the driver is distracted that the future trajectories will
be unsafe. We monitor the state of the driver through skeletal tracking to determine the degree
of distraction, combine this with states of the car to arrive at a data-driven approach to model
driver behavior. The predicted driver behavior will be applied in open-loop with the same MPC
framework in (5.1).

5.2.1 Closed-loop driver predictions in extreme driving maneuvers
Simple lane keeping driver models of a state feedback gain has been implemented in close-loop
in a similar framework in [110] and even an uncertain version has been integrated with stochastic
MPC [20]. We would like to extend this and see if we can include the switched driver models
in extreme driving. To include driver models in the task of extreme driving maneuvers, we will
first revise the driver model that is to be used in the semi-autonomous framework and detail the
mathematical equivalence to the constraints in (5.1). Then we will present simulated results of the
MPC with the driver model included.

Switched driver model for extreme driving

Using the switched driver model for driving under extreme conditions, we will integrate it into
the MPC framework (5.1). Recall in Figure 4.10, we see that the switch happens only once in
the middle of the maneuver, therefore to decrease the computational complexity, we will simplify
the switching condition from state-dependent to a time-dependent formulation. In this first for-
mulation, the optimization variables are the control variable uk,t and are only constrained by the
polytopic bounds on uk,t and ∆uk,t . Here we present the time-dependent version of the two-mode
switched linear model,

uk,t = θ
T
σ(k,t)

[
rk,t
1

]
(5.3a)

σ(k, t) =

{
1 if k < Tsw

2 if k ≥ Tsw
(5.3b)

This revised version of the switched driver model will be integrated into MPC formulation (5.1)
in two different ways. The first method will use (5.3) to redefine the functional input between the
optimization variable and the input applied to the system, guiding the MPC to follow a switched
control strategy. The second method will take (5.3) and the parameters identified from the HIT
algorithm in Section 4.1.3 to make driver control input predictions in close loop with the MPC. We
present the simulation results as follows.

Guiding the controller with the switched strategy

In this section, we are interested in using the two-mode switching model structure discussed in
Section 4.1.3 to guide the MPC to act more like the switched strategy of the driver. We reduce the
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flexibility in the optimization variable by introducing extra constraints which will force the MPC
to find solutions near the saturation regions of the tires.

Equation (5.3) is used to replace Constraint (5.1c), and reformulated with the proper nomen-
clatures as,

uk,t,sys = θ
T
σ(k,t)

[
rk,t
1

]
(5.4a)

σ(k, t) =

{
1 if k < Tsw

2 if k ≥ Tsw
(5.4b)

where the feedback gains, uk,t,mpc = (θ2,θ2), are the reformulated optimization variables to the
MPC.

Similar to the results presented in Section 4.2.2, the new MPC formulation is solved using
NPSOL with a sampling time of 50 ms and Hp = 160 steps. The reference trajectory comes from
recorded expert driving data. Note Tsw could be posed as an optimization parameter, but to avoid
having to solve a mixed-integer program, we fixed Tsw and tried a few values. For the following
results, we have fixed Tsw = 83.

Figure 5.1 shows the state and steering trajectories predicted by the optimal control problem.
The state trajectories verify that even with the additional state feedback constraint (5.4), the solver
is still able to find a feasible solution to track the reference trajectories. In addition, the general
shape of the input trajectory also conforms to the steering pattern of initializing drift and counter-
steering.

Predicting driver’s switched strategy in closed-loop with MPC

Contrary to the above presented framework which imposes model structure to the controller input
to the system to follow the two-mode PWA approach, an alternative formulation for the semi-
autonomous control system, is to minimize controller intervention. Therefore, we pose a similar
MPC problem to (2.10) and reformulate Constraint (5.1c) to minimize controller intervention sim-
ilar to (5.2), where ut,sys = ut,mpc +ut,pred is the control applied to the system dynamics, and ut,mpc
is the optimization variable to the MPC which measures how much the controller intervenes. By
adding this intervention term in the cost function like (5.1a), the nonlinear solver will find a solution
which minimizes controller intervention while still tracking the desired trajectory and satisfying
state and input constraints.

Figure 5.2 shows the controller intervention ũ for three different MPC formulations. The solid
line represents the formulation where ũ is not penalized in the cost function. The dashed and
dashed-dotted lines represents the formulation where ũ is penalized. The dash-dotted line repre-
sents the formulation where predicted driver steering is taken from the open loop sequence, which
in this case is just the recorded driver inputs from trial 5. In general, this open loop prediction
could be obtained from any higher level module which computes a sequence of driver predictions.
The dashed line represents the formulation where driver steering is predicted in closed-loop with
the state predictions inside the optimization problem using the hybrid model identified in Section
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Figure 5.1: State and input trajectory: NPSOL solution of new optimization formulation (blue
solid line) vs expert driver trajectories (red dotted line).

4.1.3. Figure 5.2 shows that ũ for the latter two formulations are smaller. We remark that there is a
tradeoff between controller intervention and tracking error and is highly dependent on the weights
between the respective terms in the cost function.
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Figure 5.2: Controller intervention ũ: difference between controller input and predicted driver
input. Predictions are open loop or through state feedback.



CHAPTER 5. HUMAN MODEL INTEGRATION WITH CONTROL APPLICATIONS 98

We have so far discussed the application of integrating driver models in closed-loop with the
MPC, which was computationally possible because of the simplicity of the models involving only
state feedback gains. However, for more complicated driver models, it will be too computationally
extensive to integrate it in closed-loop with the MPC, making the MPC optimization problem
intractable for the search algorithms. We will now discuss driver models for distracted driving,
and use it in open-loop with the MPC controller.

5.2.2 Open-loop approach to integrating distracted driver models into
semi-autonomous system

One major problem with the above closed-loop approach to driver-controller fusion is the increase
in computational complexity due to the additional equality constraint introduced for the behavior
predictions of the driver. To eliminate this problem, the open-loop approach can be used where a
sequence of inputs can be generated prior to running the MPC.

For the distracted driving scenario, we are interested in making predictions of future states of
the vehicle resulting from the driver’s control input. To capture the effects of driver distractions on
the predicted states, we need a more complex model which makes closed-loop predictions much
more difficult to perform within the MPC.

We will now introduce the cluster-based driver model where predictions are performed from
observed skeletal configurations of the driver, vehicle and environment states as well as past steer-
ing behavior. And present the results of fusing this cluster-based, open-loop driver model into the
MPC framework of autonomous driving. We would like to credit the modeling framework, con-
troller design and experimental design to the authors in [19]. My own contribution to this work
lies in the data collection and the qualitative assessments of the semi-autonomous controller.

Cluster-based probabilistic driver model

The behavior of the distracted driving scenario on the simulator is highly variable and dependent
on many factors including vehicle states and driver pose. The capability of the cluster-based model
outlined in Section 2.2.2 to handle uncertainty with probability distributions, makes the model
a perfect candidate to use for this particular application. Following the experimental setup for
distracted driving on the simulator described in Section 3.1.6, the cluster-based framework will be
used to model driving behavior and future predictions during different scenarios.

Feature vector: First we need to define the feature vectors that are used as observations O for
the clusters. The feature vectors can be divided into four groups: vehicle states, environment, past
input and driver states. The vehicle states correspond to those listed in Section 3.1.1 and is provided
by the high-fidelity vehicle model of Carsim. The environment, including the curvature of the road,
the existence of obstacles and the states of near-by vehicles, is predefined by the experimenter and
experimental design, [19] provides a detailed description of the experiment scenarios and how the
environment is coded for different trials. Temporal trajectories of past steering inputs are also
included in the feature vector. Driver states are skeletal and joint predictions obtained from the
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Microsoft Kinect. Ideally, the skeletal information would be able to distinguish between distracted
and attentive states by detecting the position of the hands with respect to the wheel. Unfortunately,
this may not necessarily be the case since people have different texting preferences, and having
the hands away from the wheel may not always correspond to the subject texting, and vice versa,
having the hands close to the wheel doesn’t mean that the person isn’t texting. To minimize this
confusion, we ask the subject to text to the side with their hand far away from the wheel. If
eye-tracking and head-tracking was involved, then the driver states would be distinguished more
clearly. Nevertheless, we present the results we have with the current setup here.

Model formulation and identification: Taking large amounts of data, accumulating to 1 hour
of driving on the CarSim simulator, the feature vectors or observations are used to feed the k-
means clustering algorithm [82]. Instead of using steering angles, the prediction output of the
clustering based model are directly mapped to future vehicle states. We fit a marginal distribution
p((X(k)− x(0))|O,I ) to cover the set of possible future vehicle states for each identified cluster.
The marginal distribution captures the probability of the difference between the future states of the
vehicle X(k) over the next T horizon and the current state x(0) given the set of observation clusters
O and the current measured observation I .

With the marginal distributions fitted for each cluster, we can compute the vehicle prediction
multifunction (VPM) denoted by ∆(α,k,O,I )⊂ 2Rn

as the solution to,

∆(α,k,O,I ) = arg min
Ω⊂Rn

|Ω| (5.5a)

s.t.P((X(k)− x(0))⊂ ω|O,I )≥ α (5.5b)
∀k ∈ {0, ...,T} (5.5c)

where ω = {x ∈ Rn|z1 ≤ x ≤ z2} represents the upper and lower bounds for the future state. The
VPM is the smallest size set that contains all α probable vehicle trajectories in k times steps, given
prior observations and current information.

Results of cluster-based probabilistic driver model: The results shown in Figure 5.3 and 5.4
illustrates a comparison between two types of models in predictions of future vehicle states, and
the probability distributions associated with the identified cluster. The first one uses a worst case
scenario where state are the reachable sets (RS) treating drivers as a fixed disturbance at maximum
steering range. The second one uses the VPM - the cluster-based driver model with marginal
distributions. We can see that in both the curved and straight roads, with and without obstacles,
future vehicle states in the lateral direction has a much larger range when predicted using the RS
model.

Our VPM model of distracted driving behaviors will be a better model than the model computed
with RS since in that worst case, the RS model is overly conservative and always predict the driver
to be unsafe. We can see especially in the attentive states of the driver that our model predicted
the driver will be safe whereas the RS model always predicted the same regardless of whether the
driver was attentive or not.
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Integrating distracted driver model into MPC

With the driver models established in the previous section, we can now use it to make open-
loop predictions and integrate it into the MPC framework for semi-autonomous systems. First we
present the modified semi-autonomous framework and then the results.

Formulation: To integrate the above introduced VPM model of distracted driving, we start from
the semi-autonomous framework (5.1), introduce a slack variable for the state constraint, formally
define the equalities associated with driver predictions, and reformulate the framework as,

min
u,ε

λε+
N̄

∑
k=0

(‖uc(k)‖R +‖∆uc(k)‖S) (5.6a)

subj. to ξk+1,t = fsys(ξk,t ,uk,sys) k = t, ..., t +Hp−1 (5.6b)

u(k) = uc(k)+udriver(k) (5.6c)
uk,driver = Π(∆(1,k,O,I )) k = t, ..., t +Hp−1 (5.6d)
h(x(k),u(k))≤ 1ε (5.6e)
∆uk+1,t = uk+1−uk k = t, ..., t +Hp−2 (5.6f)
uk,t ∈U k = t, ..., t +Hp−1 (5.6g)
∆uk,t ∈ ∆U k = t +1, ..., t +Hp−1 (5.6h)
ξt,t = ξ(t) (5.6i)
ξN,t ∈ X f (5.6j)

where the slack variable ε is a new optimization variable added to Constraint (5.6e) and penal-
ized in the cost function (5.6a). The cost function also penalizes for the controller intervention
and the change in controller intervention uc and ∆uc, combined with the predicted driver steering
results in the control input u applied to the vehicle system (3.1). The driver steering in (5.6d) is
predicted using the probability density obtained from the cluster-based framework described in [].
The function Π is constructed to pick the expected value of ∆(1,k,O,I ) for each k ∈ {0, ..., N̄},
and finds the steering angle which results in the trajectory. Notice this sequence of state trajectory
and the corresponding steering angle is computed before the MPC is solved, and therefore driver
predictions are utilized in the open-loop sense.

Results of semi-autonomous controller performance Subjects were asked to go through 4
training trials, and the data collected from these trials were used to run the k-means clustering
algorithm in order to fit the associated driver model. As mentioned previously, Figure 5.3 and 5.4
shows the results of the prediction of the model, which can be used in an open-loop approach in
the semi-autonomous framework.

After obtaining the driver model, we asked the same subject to go through another 4 testing
trials where the semi-autonomous controller is applied with the integration of open-loop driver
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predictions. The weights of the cost function (5.6a) used in the experiment which has the semi-
autonomous controller running are R =

[
1 0
0 0.1

]
, S =

[
0.1 0
0 0.01

]
, and λ = 1000. The MPC controller

is solved using NPSOL [90] at a sampling rate of 200ms.
We define the occurrence controller intervention to be when uc 6= 0 in (5.6c). From all the trials,

we found that the controller using the VPM model intervened only 13% of the time. Compare
this to the RS model where it would always intervene since the driver is always predicted to be
unsafe. Figure 5.5 shows examples of instances where controller intervention occurred. The dotted
red lines, solid blue line, dotted blue line and red line represented the past steering angle, future
steering angle, expected steering from VPM and future controller steering angle respectively.

We also conducted surveys on the subjects and found that 75% of the subjects felt the controller
was effective in preventing collisions, 21% neutral and only 4% felt it wasn’t effective. 50% of
the subjects felt the controller was too aggressive in intervening, 21% felt neutral and 29% felt it
wasn’t. Lastly, 58% of the subjects felt the knowledge that there was a safety controller changed
their driving behavior and they were more risky in responding to texts.

5.3 Conclusions
We have demonstrated using examples from driving applications the effectiveness of using the ex-
tended MPC framework as a unifying way to integrate computational models of human behaviors
into semi-autonomous systems. We proposed that since the MPC framework already includes state
predictions in its infrastructure, it becomes a natural candidate to also include driver predictions in
the control algorithm, which only involves adding extra constraints and cost terms corresponding
to the predictions and controller intervention.

We demonstrated that using this MPC framework, we are not limited to using a particular
human modeling structure for making predictions. Instead the controller can handle any open-
loop sequence of model predictions over the next horizon, regardless of how they are generated.
Therefore, however complex the model might be, i.e. optimization-based models, probabilistic
Bayesian models, or even the descriptive cognitive architectures, as long as an open-loop sequence
of predictions are generated, the MPC semi-autonomous controller can take the predictions into
account.

Using examples from the switched system in the extreme driving maneuver, we demonstrated
how even a switched strategy exhibited by the driver can be integrated in closed-loop with the
MPC. We also showed that the complex cluster-based probabilistic model of distracted drivers can
be included in open-loop, and that the results showed significantly less controller interventions that
were unnecessary as compared to the worst case scenarios.
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Fig. 4. Sample prediction sets at the same instance in time for four scenarios (each row) for the RS model (column 1), the VPM model (column 2), and the
corresponding probability distribution used for the VPM model (column 3). The predicted sets are drawn in blue beginning at the subject’s vehicle, which is drawn
as a green box, in an environment with bounds drawn as red dots. The dotted blue line is the expected value of the trajectory from the VPM used in the VIF, and
the dotted green line is the actual trajectory of the vehicle. Other obstacles are illustrated as magenta boxes. These sets are taken from scenarios 1 and 2 in the
testing set. In column 3, the red color corresponds to a probability of 1 and blue corresponds to a probability of 0. Colors range from blue to red and represent a
probability from 0 to 1, respectively.

Figure 5.3: Probability distribution of vehicle states with the identified cluster given observations,
and predicted future state of the vehicle based on two different driver models: RS and VPM, for
both distracted and attentive states of the driver, and on curved roads.
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Fig. 5. Sample prediction sets at the same instance in time for four scenarios (each row) for the RS model (column 1), the VPM model (column 2), and the
corresponding probability distribution used for the VPM model (column 3). The predicted sets are drawn in blue beginning at the subject’s vehicle, which is drawn
as a green box, in an environment with bounds drawn as red dots. The dotted blue line is the expected value of the trajectory from the VPM used in the VIF, and
the dotted green line is the actual trajectory of the vehicle. Other obstacles are illustrated as magenta boxes. These sets are taken from scenarios 1 and 2 in the
testing set. In column 3, the red color corresponds to a probability of 1, and blue corresponds to a probability of 0. Colors range from blue to red and represent a
probability from 0 to 1, respectively.

Figure 5.4: Probability distribution of vehicle states with the identified cluster given observations,
and predicted future state of the vehicle based on two different driver models: RS and VPM, for
both distracted and attentive states of the driver, and on straight roads.
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Fig. 6. Sample prediction sets with instances when the controller provided a change to the driver’s steering input. The color scheme in the first column is the
same as in Fig. 5, except for the gradient of magenta. The gradient from dark to bright magenta shows the position of the obstacle from 0 to 1.2 s in the future.
In the second column, the dotted red line denotes the past steering wheel angle, the solid blue line represents the future steering wheel angle, the dotted blue
line denotes the expected steering from the VPM, and the red line represents the future controller steering. The dotted red line and solid blue line are continuous
because they represent the steering wheel angle.

Figure 5.5: Results from semi-autonomous MPC framework with cluster-based probabilistic
driver model during distracted driving.
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Chapter 6

Conclusions

In this thesis, we integrated advanced control algorithms with computational models of human
decision making in dynamic contexts in order to improve human-machine interactions in intelli-
gent systems. We addressed the need to make connections between the human behavioral studies
performed in psychology with real-world applications. To support these research directions, we
have used advanced test apparatus and sensor equipment to collect experimental data and observe,
directly and indirectly, the cognitive states of the human subject. To connect studies of human
behavior from the psychological perspective to engineering applications, we performed experi-
ments in the real-world and designed game-based scenarios which paralleled the corresponding
driving applications. Parametric models were used instead of data-driven models in order to gen-
eralize behaviors to a wider context. With the experimental data, we used both the direct and
optimization-based approaches to parametrically model the cognitive processes associated with
the decision making in the presented dynamic scenarios. Using these advanced modeling tech-
niques, we were able to connect model structure and parameters with psychological principles,
and simulate how subjects switch between different controls strategies that is a combination of
both modeling approaches. To integrate human models into controller design, we introduced an
advanced framework using model predictive control to incorporate any computational model into
the control algorithm.

6.1 Using control-based frameworks to model cognitive
processes in a dynamic system

In Chapter 2, we introduced a framework capturing the interactions between the human agent with
the dynamic system, and paralleled the typical components in a control system with the underlying
cognitive processes associated with human behaviors. In order to properly model behaviors of the
human in dynamic contexts, all interconnecting components of the control system need to be con-
sidered. State observers take noisy measurements from the sensory nervous system and combine
sensor fusion with prior knowledge to produce an estimated state feedback from the associated dy-
namic system. This piece of information is crucial to the control algorithm component which maps



CHAPTER 6. CONCLUSIONS 106

state feedback to the required input to the actuators in order to achieve a set of goals determined by
a higher-level reference generator. This mapping, termed the decision policy, is the main cognitive
process addressed in this thesis. The decision policy needs to address any discrepancies resulted
from the various uncertainties associated with state estimation, actuation, or prior knowledge of
the world, either through corrective action or internal predictions.

One limitation of the above presented framework is the singleton module of the decision policy.
This structure oversimplifies the cognitive processes associated with the overall decision makings
in dynamic environments and constrains the model to deal with a single layer of abstraction. As
discussed in Section 1.3.1, there are multiple layers of abstraction to consider when modeling
human behaviors, and lower-level decisions are often coupled with a hierarchy of higher-level
decision making. Therefore, as an extension to the analysis of the framework, multiple levels of
decision policies can be simultaneously posed to encompass this broader context.

6.2 Using advanced technologies to bridge psychological
principles with real-world applications

In Chapter 3, we presented the experiments designed to connect studies of human behavior from
the psychological perspective to engineering applications. Our real-world application consists
of the task of driving under various circumstances. Our test vehicle, equipped with an inertial
measurement unit, differential GPS and forward looking cameras, provided us with the necessary
measurements of vehicle states, road and traffic conditions in driving scenarios on real roads. With
access to two testing facilities the Smithers testing center and the Hyundai-Kia Motor California
Proving Ground, we were able to collect data from various driving scenarios including highway
driving, distracted driving, and extreme maneuvers in slippery conditions. This broad range of
driving contexts allows us to explore the different factors associated with human behaviors from
various modeling methodologies. Experimental setups on the virtual simulator with skeletal track-
ing allowed us to test the implementation of our semi-autonomous controller which guarantees
safety of a distracted driver in dangerous situations.

To study the fundamental principles behind human decision making in a controlled environ-
ment and draw connections to the above discussed driving applications, we designed game-based
experiments which parallels similar scenarios in the context of driving. The projectile game is de-
signed to present a nonlinear mapping function between the control input and the state trajectories
with uncertainty and constraints, which matches the nonlinearity and uncertainty associated with
different road conditions in driving, as well as constraints in traffic conditions. With the dual-task
game, we simulated a scenario which parallels the cognitive processes involved with texting while
driving, where attention allocation has to be divided between a primary and a secondary task.

Many of the decision making experiments did not directly measure the cognitive states of the
human subject. In our modeling paradigm, we followed the assumption that humans will intrinsi-
cally perform mental simulations of states in order to search for a feasible solution to the problem.
To validate this conjecture, we used head-mounted eye-tracking technology to directly measure the
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cognitive states of the human, in terms of attention allocation and state predictions. One limitation
is that in some contexts, humans will use their peripheral vision to obtain information, therefore
even though the point-of-gaze provides valuable information, it is still unclear how the use periph-
eral vision can be measured.

Even with the combination of both game-based and driving experiments, the problem context
still sits at very far ends of the spectrum which relate simple cognitive problems with real-world
applications. Game-based experiments, although provide a controlled setting for creating arbitrary
scenarios and collect consistent data, suffers from the lack of sensory feedback and motor control
involved in real-world applications. It will be beneficial to design experimental contexts which lie
somewhere in between the two extremes. With recent advancements in virtual reality [135], we
now have the capability to include 3D vision with virtual reality glasses such as the Oculus Rift
[136], tracking full body and hand movements with non-invasive skeletal tracking technologies
[102], force and haptic feedback through virtual gloves [137]. Designing experiments with these
new technologies will provide the same controlled setting as computer games at the same time
provide subjects with a more realistic experience of the world.

6.3 Using advanced models to understand cognitive principles
in decision policies

In Chapter 4 we used data collected from the experiments described in Chapter 3, and the two
approaches of modeling detailed in Chapter 2 to analysis human behaviors with principles of psy-
chology in different decision making contexts, involving both continuous and discrete decisions.
The first approach of direct methods maps observed input to the control decisions directly without
extra computations involved with solving for an optimal solution. This methodology is suitable
for mapping lower-level decisions which are repetitive and requires no planning. The second ap-
proach used an optimization-based framework, where subjects are postulated to perform mental
simulations and state predictions in order to satisfy constraints and minimize the cost function.

Dynamic problems involving continuous decision: Analyzing subject’s response in the pro-
jectile game, we observed that a switched control strategy was used due to nonlinearity and un-
certainty associated with the function mapping inputs to states of the system. With old scenarios
where the trajectory feedback was closer to the target position, linearization about the current input
values produced less errors than if the feedback was further away, typically the case with new sce-
narios. In addition, subjects showed preference towards changing the velocity input over the angle
since velocity appears linearly in the function. Therefore, it is more likely that subjects adopted
the direct method in these scenarios. On the contrary, in new scenarios where linearization fails,
subjects adopted a strategy which involved mentally simulating predicted trajectories in order to
hit the target and avoid obstacle. Subjects were shown to minimize a combination of minimum
change in input and time to hit the target in order to minimize the effect of input uncertainty on the
state trajectories. Reaction times also supported the switching between strategies.
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Similar to the effect of nonlinearity in the projectile game, subjects also showed a switched
control strategy in extreme driving where both the linear and the saturated regions of the tire need
to be utilized. A hybrid model was used to fit the steering behavior of drivers and it was shown that
a two-mode model was sufficient. We also showed by using model predictive control that subjects
need to have prior knowledge of the nonlinearity in the tire in order to follow the trajectory of the
required maneuver. This showed that forward models of the system are considered in the decision
making process. The existence of forward models and state predictions were validated through
analyzing eye-tracking data in the context of driving and juggling.

Even though we were able to show that uncertain knowledge of the forward model and its
associated nonlinearity lead to a switched control strategy in both the game-based scenario and
real-world driving, the inputs of the projectile game are applied at discrete intervals, whereas the
steering inputs of driving are being adjusted constantly. In addition, the constraints associated with
the obstacles in the projectile game are stationary, but in the context of on-road traffic, constraints
have a temporal component associated it with. Therefore, to improve our aim to connect game-
based principles to the real-world, we need to redesign our experiment to allow, first the continuous
application of inputs and second, the incorporation of moving obstacles.

Dynamic problems involving discrete decisions: Optimization-based methods of the Markov
decision process was used to study the discrete decision of attention allocation in multi-task prob-
lems in the context of texting while driving. Model simulations and inverse reinforcement learning
from data of the dual-task game showed a shift in the weights in the cost function, that as the sub-
jects become more familiar with the transition probabilities associated with the game, they become
more comfortable in switching to the secondary task more often and at higher risks. Applying the
same framework to the context of distracted driving in the test center, the value function showed a
negative correlation with the vehicle’s longitudinal velocity and complies with the attention dura-
tions on the texting task measured with the eye-tracker. We showed that the same decision making
framework applies to both the game-based experiment and real-world driving.

To further improve the connection between the game-based experiments with the context of
driving, on top of attention allocation in the secondary task, the lower-level decision making as-
sociated with the primary task for both contexts should match. Therefore, further experiments
should be conducted where the dual-task game is redesigned to involve a primary task which par-
allel steering inputs, or real driving experiments should be performed to involve lane switching.

6.4 Using advanced control frameworks to integrate human
behaviors with intelligent systems

In Chapter 5 we pieced together the previously discussed modeling efforts and addressed our orig-
inal motivation of improving human-machine interactions through the integration of human mod-
els with control algorithms. We introduced a unifying framework using model predictive control
(MPC) extended to include both predictions of human behavior and the minimization of controller
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intervention. We presented both simulation results and real implementations of a safety controller
on the simulator the effectiveness of the extended MPC which included predictions of driver mod-
els both in closed-loop and open-loop. We showed that with the inclusion of the driver model, the
controller was able to intervene on less occasions. We demonstrated that using this MPC frame-
work, we are not limited to using a particular human modeling structure for making predictions.
Instead the controller can handle any open-loop sequence of model predictions over the next hori-
zon, regardless of how they are generated. Therefore, even though the presented examples involved
only predictions from a single driver, the framework should be able to be extended to include other
drivers or decision making agents in the environment, and design a system which can interact
with multiple agents simultaneously. The limiting factor in the inclusion of additional models,
posed as constraints, will be the feasibility and computational complexity involved with the new
optimization problem.

6.5 Summary of original contributions
Lastly, we provide a summary of the above discussed contributions and emphasize the originality of
the research in this thesis. We used parametric approaches to model and analyze human behaviors.
Inspired from the field of controls theory and computer science, we used model structures typically
used in control systems to model human decision making in dynamic problems, and analyzed
the model parameters from the perspectives of cognitive psychology. We differ from the data-
driven approach which mainly focuses on the accuracy of identification and predictions and does
not take into account the cognitive factors influencing human behaviors. We also differ from the
hand reaching experiments in cognitive psychology by dealing with tasks that involve a dynamic
environment such as the effects of gravity in the projectile game and in driving. We attempted
to bridge the cognitive principles studied in simple controlled experiments in psychology with
real-world dynamic tasks by designing paralleling experiments in both contexts. For example, the
dual-task game is designed to mirror the decision of attention allocation in the context of texting
while driving.

To model the decision policies involved in a typical dynamic task, we proposed that model-
ing methods can be divided into two approaches: direct and optimization-based methods. We
related the principles behind these approaches to cognitive processes and discussed how lower-
level familiar tasks are associated with the direct method, whereas higher-level planning tasks are
associated with the optimization-based approach. Through the projectile game, we were able to
propose the novel idea that subjects used a combination of the two approaches depending on the
scenarios presented to them. With the help of advanced eye-tracking technology, we were able
to directly measure the cognitive states of the human subject in texting, driving and juggling, and
used these observations to support the idea of forward models and mental simulations essential to
the optimization-based approaches.

Our novel control framework, using an extended version of model predictive control, is able to
directly include any computational models of human behavior into controller design and minimize
the amount of controller intervention. This framework structure is able to include complex models
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as long as the model can generate sequences of predictions for the next horizon.

6.6 Future work
In Section 6.1, we proposed a higher-fidelity representation of the human decision making frame-
work as having a hierarchical nature where lower-level decision making are coupled with higher-
level abstractions similar to the framework used in [67] where autonomous driving involved both
path-planning and path-following. Similarly, our study of both continuous and discrete decision
variables in Section 6.3 can be viewed as a decomposition of a hierarchical task, where at the
higher-level, discrete decisions of attention allocation is decided between the primary and sec-
ondary task, and at the lower-level, continuous decisions of steering inputs are applied to the
primary task. Future experiments, designed both from a game-based perspective and real-world
driving, can be performed to draw parallels between psychological principles and engineering ap-
plications in this hierarchical context. In addition, the use of virtual reality technology can be
included to further bridge the two extremities of the research fields.
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Appendix A

Appendix

A.1 Baseline solutions to the projectile problem
The projectile problem involves kinematic equations with gravity in the vertical direction as de-
scribed in Section 3.2.2. Recall from Equation (2.9), the optimization problem is posed as,

min
x

J(x) (A.1a)

subject to f (x) = 0 (A.1b)
g(x)≤ 0 (A.1c)

Although the decision making model posed in Section 4.2.1 for the human subject includes
uncertainty in the formulations, but we will try and solve the deterministic problem here since we
are only solving for the baseline solutions.

We will be solving four different sets of baseline solutions for four different cost functions J(x):

• Minimum change in initial angle input: J1 = ‖∆α‖

• Minimum change in initial velocity input: J2 = ‖∆v‖

• Minimum time to hit target J3 = Ttarg

• Maximum time to hit target J4 =−Ttarg

The equality constraints f (x) = 0 as described in Section 2.3 are kinematic relationships, re-
peated here for clarity,

x(t) = vcos(α)t (A.2a)

y(t) = vsin(α)t +0.5gt2 (A.2b)
p(t) = (x(t),y(t)) (A.2c)
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The inequality constraints g(x) ≤ 0 are associated with successfully hitting the target at the
same time avoiding the obstacle, again repeated for clarity,

∃ t > 0, ‖p(t)− ptarg‖< Rtarg +Rproj (A.3a)
∀ t > 0, ‖p(t)− pobst‖> Robst +Rproj (A.3b)

y≤ Yscreen (A.3c)
u ∈U, U = {u :

¯
u≤ u≤ ū} (A.3d)

However the obstacle avoidance equation in (A.3b) makes the inequality constraint non-convex,
and this makes the optimization problem very difficult to solve. Therefore, we will relax the non-
convex inequality constraint (A.3b) in order to more easily find the optimal solution to the relaxed
problem.

Because the projectile game scenarios in the game are setup with only one obstacle, and in a
way such that the obstacle is always obstructing the direct line of path such that it is impossible to
pass underneath the obstacle and still hit the target. We will increase and transform the avoidance
region as shown in Figure A.1. Therefore, trajectory path directly before the obstacle will also be
infeasible.

Next we will relax the condition that the trajectory path has to avoid the obstacle for all t, as
well as discretizing the obstacle into finite points as shown in Figure A.1. With the discretized
coordinates on the edges of the obstacle, now we just need to make sure the trajectory stays above
those points. Combining the discretized constraints with the kinematic equations in (A.2),

tobst,i = {t : x(t) = xobst,i} i = 1, ...,N (A.4)

y(tobst,i)≥ yobst,i i = 1, ...,N (A.5)

Even though the new relaxed optimization problem is still non-convex, the relaxation in the
non-convex obstacle constraint makes it easier for numerical solvers to find the optimal solutions.
Before relaxation, it was difficult for solvers to find a feasible solution in the first place.

With the new formulation, we run the relaxed optimization problem four times to find optimal
solutions for the four different cost functions J1 to J4, using YALMIP optimization toolbox for
Matlab [117], and the solver IPOPT [118]. IPOPT was able to quickly find the feasible and optimal
solution.
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Figure A.1: Relaxed obstacle constraint for the projectile problem.
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