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A New Information Criterion Based Bandwidth

Selection Method for Nonparametric Regressions

Sijia Xiang ∗, and Weixin Yao †

Abstract

Local linear estimator is a popularly used method to estimate the nonpara-

metric regression functions, and many methods have been derived to estimate the

smoothing parameter, or the bandwidth in this case. In this article, we propose an

information criterion based bandwidth selection method, with the degrees of free-

dom originally derived for nonparametric inferences. Unlike the plug-in method,

the new method does not require preliminary parameters to be chosen in advance,

and is computationally efficient compared to the cross-validation method. Numer-

ical study shows that the new method performs better or comparable to existing

plug-in method or cross-validation method in terms of the estimation of the mean

functions, and has lower variability than cross-validation selectors. Real data ap-

plications are also provided to illustrate the effectiveness of the new method.

Key words: Information criterion method; bandwidth selector; nonparametric regres-

sion.
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1 Introduction

Given {(X1, Y1), ..., (Xn, Yn)} from the model

Y = m(X) + ε, (1.1)

wherem(x) = E(Y |X = x) is a smooth function, E(ε|X) = 0 and Var(ε|X = x) = σ2(x).

Local linear approximation, among other methods, has been proposed to estimate m(x)

and its features have been well studied. See, for example, Fan (1992, 1993) and Fan

and Gijbels (1992). In a small neighborhood of x0, m(x) ≈ m(x0) + m′(x0)(x − x0) ≡

β0 + β1(x− x0). The problem of estimating m(x0) is equivalent to the estimation of β0,

which is calculated by minimizing

n∑
i=1

{Yi − β0 − β1(Xi − x0)}2Kh(Xi − x0),

where Kh(t) = K(t/h)/h, K(·) is a kernel density function, and h is a smoothing

parameter. Let β̂0 and β̂1 be the solutions. Then m̂(x0) = β̂0.

The selection of the optimal smoothing parameter h is crucial to the estimation of

m(x). Classical bandwidth selection methods, such as cross-validation (CV), generalized

cross-validation (GCV) or Akaike information criterion (AIC), and plug-in methods have

been popularly used. CV (Härdle et al., 1988) and GCV (Craven and Wahba, 1979) try

to minimize an unbiased estimator of mean average squared error (MASE), while AIC

and improved AIC (AICc) (Hurvich, et al., 1998) are aiming at minimizing the expected

Kullback-Leibler discrepancy. For example, CV selects the bandwidth that minimizes

CV (h) = n−1
n∑

i=1

[Yi − m̂−i(Xi)]
2w(Xi),

where m̂−i(Xi) is the “leave-one-out” estimate of m(Xi), w(Xi) is a weight function.
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Classical bandwidth selectors are totally automatic, but tend to choose highly variable

and under-smoothing parameters. As a result, plug-in methods have been developed,

which minimizes a large sample approximation of MASE. For example, Ruppert et al.

(1995) proposed the plug-in selector for the local linear estimator

hopt =

(
R(K)

µ2(K)
∫
m′′(x)2f(x)dx

)−1/5
n−1/5,

where R(K) =
∫
K(t)dt, µ(K) =

∫
t2K(t)dt, f is the density of predictor variables, and

n is the sample size. For plug-in method, we need to replace the unknown quantity

m′′(x) by an estimator, such as based on a parametric fit. Compared to the classical

bandwidth selector, plug-in methods yield more stable estimators, and does not tend to

under-smooth in practice. However, plug-in methods have only been developed when

the asymptotic optimal bandwidth has a simple form, and are criticized for not being

able to minimize the average squared error (ASE) for the observed data set (Jones and

Kappenman, 1991; Hall and Marron, 1991; Grund et al., 1994). In addition, the plug-in

selector generally requires preliminary parameters to be chosen by the researchers, and

the properties of the final estimator can be sensitive to those choices.

More recently, some new bandwidth selection methods have been proposed for more

complicated model settings. For a nonparametric functional regression model with ho-

moscedastic errors and unknown error density, Shang (2013) proposed a Bayesian band-

width estimation procedure, which outperforms the likelihood CV for estimating the er-

ror density. Levine (2006) studied a possible bandwidth selection approach for difference-

based variance estimators in the nonparametric regression, basing on the cross-validation

idea adjusted for correlated data. For integrated time series data, Sun and Li (2011)

suggested using the least squares CV (LS-CV) method to choose the smoothing param-

eter, and studied the asymptotic properties of both the local constant and local linear

estimators.
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In this article, we propose a new bandwidth selector for the local linear approximation

of model (1.1), based on the idea of information criterion and the degrees of freedom

proposed by Fan et al. (2001) for nonparametric regression. Unlike the plug-in method,

the new method does not require preliminary parameters to be chosen in advance, and

is computationally efficient compared to the cross-validation method. Numerical study

shows that the new method performs better or comparable to existing plug-in method

or cross-validation method in terms of the estimation of the mean functions, and has

lower variability than cross-validation selectors. Some real data applications are also

provided to illustrate the effectiveness of the new method.

The rest of the article is organized as follows. The derivations of the new method

are given in Section 2 . In Section 3 and Section 4, we use simulation studies and real

data examples to show the effectiveness of the new method, and compare it with existing

bandwidth selectors. A few discussions are provided in Section 5.

2 Bayesian Information Criterion Based Method

In general, a Bayesian information criterion has the form:

n log{ 1

n

n∑
i=1

(yi − ŷi)2}+ df × log n, (2.1)

where df is the degrees of freedom, amounting to the complexity of the model, and the

first term is a measure of goodness-of-fit of the model. To implement the information

criterion, a measure of the complexity of the model is needed. Unlike the parametric

model, the model complexity is not well defined for nonparametric regression model.

Here, we implement the degrees of freedom proposed by Fan et al. (2001), which is

originally derived for nonparametric hypothesis testing. Based on Fan et al. (2001), the
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degrees of freedom of model (1.1) is:

dfN = rKh
−1|Ω|{K(0)− 1

2

∫
K2(t)dt}, (2.2)

where Ω is the support of the covariate, K(·) is a kernel density function, and

rK =
K(0)− 1

2

∫
K2(t)dt∫

{K(t)− 1
2
K ∗K(t)}2dt

.

Therefore, we propose to select the bandwidth which minimizes

BICN = n log{ 1

n

n∑
i=1

(yi − ŷi)2}+ dfN × log n, (2.3)

where dfN is defined in (2.2). Note that the degrees of freedom and, therefore, BICN

depend on the bandwidth h. We propose to apply the information criterion on a wide

range of bandwidths, and select the bandwidth which minimizes the information criterion

(2.3). In case the support of the covariate is not a closed interval, we propose to use the

range of the sample to approximate |Ω|.

Zhang (2003) also covered in detail the degrees of freedom of linear smoothers in non-

parametric settings. For linear smoother S, they proposed to use either tr(S), tr(STS),

or tr(2S − STS) as the degrees of freedom. Among these, they showed, under some

conditions, tr(2S − STS) = (2K −K ∗K)(0)|Ω|/h{1 + o(1)}, which is proportional to

our df , with a multiplier rK/2. However, the intuition behind the methods are quite

different.
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3 Simulation Study

In this section, we use Monte Carlo simulations to investigate the finite sample perfor-

mance of the newly proposed bandwidth selection method, and compare it with some

existing bandwidth selectors.

Table 1 contains the eight examples considered in the simulation study. In Figure 1,

a random sample of size n = 100 is plotted for each example, accompanied by their mean

functions. In Example 1 and Example 2, the covariates are from a closed interval and

an open set, respectively. Example 3 and Example 4 were used by Fan (1992), where

the mean function is approximately linear in Example 3, and the covariate in Example

4 is from a mixture of normal distributions. Example 5 - Example 8 were suggested

by Hurvich et al. (1998), where Example 5 represents a case with less fine structure or

trend, Example 6 a case with noticeably different degrees of curvature for different values

of the predictor, Example 7 a case with a trend but no fine structure, and Example 8

non-differentiable at x = 1/3. For each model, sample sizes of n = 100, n = 200 and

n = 400 are conducted over 500 repetitions.

Table 1: Models considered in the simulation study.

Mean functions Density of covariate Density of error

2 sin(πx) U(0, 1) N(0, 22)

4− sin(πx) N(0, 1) N(0, 0.22)

sin(0.75x) N(0, 1) N(0, 0.62)

sin(2.5x) 0.5N(−1, 1) + 0.5N(1.75, 0.25) N(0, 0.62)

1− 48x+ 218x2 − 315x3 + 145x4 U(0, 1) N(0, 4.52)

0.3 exp{−64(x− 0.25)2}+ 0.7 exp{−256(x− 0.75)2} U(0, 1) N(0, 1.252)

10 exp(−10x) U(0, 1) N(0, 82)

exp(x− 1/3) if x < 1/3, exp{−2(x− 1/3)} if x ≥ 1/3 U(0, 1) N(0, 1.52)

For each example, we assume that the data comes from model (1.1) and the local
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Figure 1: Simulation examples: random samples of size n = 100 and their corresponding
density plots.

linear approximation with Gaussian kernel is used to estimate the mean functions. The

performance of the new bandwidth selector is reported, and is compared with the plug-

in method by Ruppert et al. (1995), leave-one-out cross-validation, and 10-fold cross-

validation. For the plug-in method, the least squares quartic fit is used to approximate

m(x) and therefore m′′(x). If r is used to denote the range of predictors, then the grid

of bandwidths is formed by taking 30 equally spaced points from 0.01r to 0.5r.

To assess the performance of the bandwidth selectors, we report the average squared

error (ASE) of the estimators:

ASE =
1

N

N∑
i=1

{m(ui)− m̂(ui)}2, (3.1)

where {u1, ..., uN} is a set of equally spaced grid points, and N is the number of grid

points. In the simulation, N = 100 is set for all examples.

Table 2 contains the mean and standard deviation of ASE of the four bandwidth

selectors when n = 100, n = 200, and n = 400, based on 500 repetitions. Figure
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2, Figure 3, and Figure 4 show the boxplots of ASE of Example 1 - Example 8 with

n = 100, n = 200 and n = 400, respectively. We can see that the BICN is most often

best, and usually not far away from best otherwise. The performance of 10-fold CV

and leave-one-out CV are close, and are slightly better than the plug-in method in most

cases.

0

0.1

0.2

0.3

a b c d

Example 8

0

0.1

0.2

0.3

0.4

0.5

0.6

a b c d

Example 1

0

0.05

0.1

0.15

0.2

a b c d

Example 2

0

0.05

0.1

a b c d

Example 3

0

0.5

1

1.5

a b c d

Example 4

0

1

2

3

a b c d

Example 5

0.05

0.1

0.15

0.2

0.25

a b c d

Example 6

0.05

0.1

0.15

0.2

0.25

a b c d

Example 7

0

2

4

6

8

10

a b c d

Example 7

Figure 2: Boxplot of ASE of Example 1 - Example 8 with n = 100, and the bandwidth
selected by a) BICN , b) plug-in, c) 10-fold CV, and d) leave-one-out CV.

In addition to the estimation of the mean functions, we also compare the compu-

tation efficiency among different bandwidth selectors. The simulation is done through

Matlab on a personal laptop with an i7-3610QM CPU and 8GB of RAM. Table 3 re-

ports the mean and standard deviation of calculation time (in seconds) of a repetition.

As expected, the plug-in method is always the fastest method in all cases. The BICN

method takes much less time than the 10-fold CV, and the leave-one-out cross-validation

takes the longest time to compute.

To assess the variability of the selected bandwidths, we also report the variance of

the selected bandwidths over 500 repetitions, in Table 4. Among the eight examples

considered, Example 3 has significantly more variable bandwidths, due to the fact that
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Figure 3: Boxplot of ASE of Example 1 - Example 8 with n = 200, and the bandwidth
selected by a) BICN , b) plug-in, c) 10-fold CV, and d) leave-one-out CV.

its mean function is approximately linear. The plug-in selector has the least variable

bandwidths in most cases. The BICN selector has relatively low variability compared

to cross-validation when the sample size is small, and the performance of 10-fold or

leave-one-out cross-validation are similar, in this respect.

Next, we consider the MSE and bias of the selected bandwidth. For each repetition,

we find the optimal bandwidth which minimizes the ASE, defined in (3.1). The plug-in

selector and cross-validation selector have a clear tendency towards undersmoothing,

while the BICN tends to oversmooth in most cases. In terms of the magnitude of MSE

and bias, the BICN gives most favorable result in Examples 2, 3, 4, 6, and 8, and

comparable performance in other cases. The plug-in selector, in this cases, is the least

satisfied bandwidth selector.
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Figure 4: Boxplot of ASE of Example 1 - Example 8 with n = 400, and the bandwidth
selected by a) BICN , b) plug-in, c) 10-fold CV, and d) leave-one-out CV.

4 Real data analysis

Example 1 (1995 British family expenditure data). We illustrate the application of the

new bandwidth selector to the 1995 British family expenditure data, available from

R package “np”. The data set consists of a random sample taken from the British

Family Expenditure Survey for 1995. The households consist of married couples with

an employed head-of-household between the ages of 25 and 55 years. There are 1655

household-level observations and 10 variables in the original data set. In this example,

we use logarithm of total expenditure (logexp) as a covariate to predict for expenditure

share on food (food).

Assuming the two variables follow model (1.1), we apply local linear approximation

to the data, using each of the foregoing bandwidth selection method for optimal band-

widths. Figure 5 shows the scatter plot and fitted models based on the four bandwidth

selectors.

To compare the newly proposed bandwidth selector to existing methods, since the
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true regression function is unknown, we use 10-fold cross-validation to check the pre-

diction performance. The mean and standard deviation of the mean squared prediction

error (MSPE) are reported in Table 6. The calculation time of each method is also

reported.

It can be seen that the newly proposed bandwidth selector works comparable to

10-fold CV or leave-one-out CV in terms of prediction performance, but with much less

computation time. Since 10-fold CV targets the minimization of the MSPE, it indicates

that the bandwidth chosen by the new method has the optimal prediction performance.

The plug-in selector, in this case, has similar prediction performance and with the least

computation time.
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Figure 5: Scatter plot of the 1995 British family expenditure data, and its corresponding
fitted models.

Example 2 (Canadian prestige data). Next, we apply the bandwidth selectors to

the Canadian prestige data (Fox and Weisberg, 2011), using average education of oc-

cupational incumbents (in 1971) to predict for prestige score, which is from a social

survey conducted in the mid-1960s. The data set has 102 observations, corresponding

to occupations.
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Table 6 shows the MSPE and calculation time of each of the bandwidth selection

methods. Similar to the British family expenditure data, the new bandwidth selector

and plug-in method obtain the optimal bandwidth in terms of prediction, but with much

less calculation time, which is desirable in real data applications.
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Figure 6: Scatter plot of the Canadian prestige data, and its corresponding fitted models.

5 Discussion

In this article, we proposed a bandwidth selector for local linear estimator, based on

information criterion with the degrees of freedom originally derived for nonparametric

inferences. The method can be easily implemented using any statistical software and

is intuitively appealing. Simulation studies and real data examples show that the new

selector outperforms the cross-validation method in terms of the estimation of the mean

functions and calculation time, and is less variable in most cases. In addition, unlike the

plug-in method, the new method does not require preliminary parameters to be chosen

in advance, and therefore, is desirable in real data applications.
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In this article, we only investigate the bandwidth selector of local linear estimator.

It is also of great interest to extend our work to the local polynomial context based on

the work of Zhang (2003). Applications to other nonparametric regression models, such

as varying coefficient models and varying coefficient partial linear models, would also be

valuable.
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Härdel, W., Hall, P. and Marron, J. S. (1988). How far are automatically chosen regres-

sion smoothing parameters from their optimum? Journal of the American Statistical

Association, 83, 86-99.

Hurvich, C.M., Simonoff, J.S. and Tsai, C. (1998). Smoothing parameter selection in

nonparametric regression using an improved Akaike information criterion. Journal of

the Royal Statistical Society B, 60(2), 271-293.

Jones, M. C. and Kappenman, R. F. (1991). On a class of kernel density estimate

bandwidth selectors. Scandinavian Journal of Statistics, 19, 337-349.

Levine, M. (2006). Bandwidth selection for a class of difference-based variance estimators

in the nonparametric regression: a possible approach. Computational Statistics & Data

Analysis, 50, 3405-3431.

Ruppert, D., Sheather, S.J. and Wand, M.P. (1995). An effective bandwidth selector for

local linear squares regression. Journal of the American Statistical Association, 90,

1257-1270.

Shang, H. L. (2013). Bayestian bandwidth estimation for a nonparametric functional re-

gression model with unknown error density. Computational Statistics and Data Anal-

ysis, 67, 185-198.

Sun, Y. and Li, Q. (2011). Data-driven bandwidth selection for nonstationary semipara-

metric models. Journal of Business & Economic Statistics, 29(4), 541-551.

14



Table 2: Mean(Std) of ASE of the mean functions.

Sample Size BICN plug-in 10-fold CV leave-one-out CV

n = 100 0.201(0.131) 0.235(0.189) 0.215(0.159) 0.212(0.157)

Example 1 n = 200 0.105(0.073) 0.117(0.082) 0.113(0.087) 0.113(0.088)

n = 400 0.055(0.037) 0.063(0.045) 0.061(0.049) 0.062(0.051)

n = 100 0.084(0.485) 0.135(0.598) 0.167(2.571) 0.172(2.572)

Example 2 n = 200 0.072(0.215) 0.096(0.620) 0.166(1.361) 0.144(1.212)

n = 400 0.042(0.092) 0.077(0.262) 0.083(0.485) 0.083(0.485)

n = 100 0.040(0.038) 0.069(0.377) 0.056(0.218) 0.070(0.555)

Example 3 n = 200 0.037(0.034) 0.041(0.041) 0.039(0.037) 0.039(0.043)

n = 400 0.028(0.027) 0.032(0.044) 0.031(0.046) 0.030(0.029)

n = 100 0.117(1.310) 0.748(5.685) 0.108(0.103) 0.102(0.078)

Example 4 n = 200 0.095(0.059) 0.397(3.902) 0.072(0.077) 0.082(0.130)

n = 400 0.051(0.045) 0.185(1.755) 0.065(0.148) 0.057(0.069)

n = 100 1.135(0.501) 1.345(1.027) 1.241(0.749) 1.255(0.784)

Example 5 n = 200 0.760(0.356) 0.718(0.409) 0.732(0.416) 0.724(0.408)

n = 400 0.416(0.233) 0.393(0.207) 0.408(0.250) 0.408(0.257)

n = 100 0.068(0.036) 0.106(0.069) 0.085(0.058) 0.087(0.065)

Example 6 n = 200 0.050(0.019) 0.062(0.034) 0.055(0.028) 0.055(0.027)

n = 400 0.037(0.010) 0.036(0.017) 0.037(0.017) 0.038(0.019)

n = 100 2.754(1.555) 4.197(4.176) 3.295(2.497) 3.410(3.144)

Example 7 n = 200 1.857(0.966) 2.054(1.468) 1.908(1.232) 1.999(1.617)

n = 400 1.117(0.627) 1.142(0.698) 1.132(0.668) 1.117(0.774)

n = 100 0.060(0.051) 0.126(0.104) 0.079(0.080) 0.082(0.084)

Example 8 n = 200 0.036(0.026) 0.065(0.047) 0.047(0.043) 0.047(0.043)

n = 400 0.022(0.014) 0.033(0.024) 0.027(0.026) 0.028(0.029)
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Table 3: Mean(Std) of calculation time (in seconds) of a repetition.

Sample Size BICN plug-in 10-fold CV leave-one-out CV

n = 100 0.184(0.071) 0.029(0.017) 0.606(0.232) 4.746(1.764)

Example 1 n = 200 0.139(0.022) 0.019(0.003) 0.492(0.068) 6.128(0.805)

n = 400 0.165(0.031) 0.020(0.004) 0.773(0.129) 12.482(2.013)

n = 100 0.187(0.079) 0.032(0.033) 0.603(0.234) 4.758(1.771)

Example 2 n = 200 0.150(0.029) 0.023(0.022) 0.533(0.105) 6.666(1.260)

n = 400 0.168(0.029) 0.023(0.008) 0.806(0.127) 12.934(2.058)

n = 100 0.182(0.074) 0.027(0.011) 0.567(0.233) 4.467(1.802)

Example 3 n = 200 0.153(0.035) 0.022(0.005) 0.546(0.127) 6.782(1.537)

n = 400 0.175(0.029) 0.022(0.004) 0.828(0.141) 13.116(2.021)

n = 100 0.165(0.067) 0.025(0.010) 0.512(0.214) 4.016(1.634)

Example 4 n = 200 0.155(0.038) 0.023(0.005) 0.546(0.130) 6.792(1.508)

n = 400 0.173(0.028) 0.023(0.004) 0.816(0.125) 13.083(2.078)

n = 100 0.161(0.045) 0.024(0.006) 0.497(0.140) 3.921(1.101)

Example 5 n = 200 0.205(0.003) 0.026(0.015) 0.745(0.223) 5.519(1.225)

n = 400 0.215(0.092) 0.025(0.011) 1.025(0.439) 16.662(7.227)

n = 100 0.161(0.044) 0.024(0.006) 0.500(0.143) 3.955(1.104)

Example 6 n = 200 0.221(0.058) 0.029(0.010) 0.796(0.206) 9.962(2.550)

n = 400 0.208(0.064) 0.025(0.007) 0.993(0.295) 16.007(4.568)

n = 100 0.183(0.096) 0.027(0.014) 0.567(0.301) 4.462(2.363)

Example 7 n = 200 0.224(0.091) 0.029(0.012) 0.815(0.335) 10.219(4.139)

n = 400 0.222(0.082) 0.026(0.010) 1.059(0.393) 17.284(6.442)

n = 100 0.195(0.104) 0.029(0.014) 0.608(0.326) 4.803(2.556)

Example 8 n = 200 0.227(0.068) 0.030(0.012) 0.826(0.259) 10.331(3.159)

n = 400 0.188(0.054) 0.022(0.007) 0.895(0.261) 14.629(3.814)
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Table 4: Variance of selected bandwidths over 500 repetitions.

Sample Size BICN plug-in 10-fold CV leave-one-out CV

n = 100 0.014 0.001 0.010 0.009

Example 1 n = 200 0.004 0.001 0.003 0.003

n = 400 0.001 0.000 0.001 0.001

n = 100 0.000 0.000 0.002 0.002

Example 2 n = 200 0.000 0.000 0.002 0.002

n = 400 0.002 0.000 0.001 0.001

n = 100 0.581 0.024 0.667 0.671

Example 3 n = 200 0.528 0.011 0.391 0.366

n = 400 0.214 0.006 0.082 0.076

n = 100 0.002 0.003 0.006 0.005

Example 4 n = 200 0.001 0.001 0.004 0.004

n = 400 0.002 0.001 0.003 0.002

n = 100 0.026 0.001 0.029 0.030

Example 5 n = 200 0.018 0.000 0.007 0.005

n = 400 0.012 0.000 0.004 0.004

n = 100 0.014 0.002 0.034 0.034

Example 6 n = 200 0.018 0.001 0.038 0.039

n = 400 0.035 0.001 0.034 0.034

n = 100 0.019 0.001 0.028 0.029

Example 7 n = 200 0.022 0.001 0.018 0.017

n = 400 0.012 0.000 0.007 0.005

n = 100 0.008 0.001 0.026 0.027

Example 8 n = 200 0.010 0.001 0.029 0.029

n = 400 0.016 0.001 0.030 0.030
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Table 5: MSE(Bias) of bandwidths.

Sample Size BICN plug-in 10-fold CV leave-one-out CV

n = 100 0.018(0.082) 0.014(-0.102) 0.010(-0.006) 0.009(-0.010)

Example 1 n = 200 0.006(0.048) 0.004(-0.059) 0.004(-0.007) 0.004(-0.011)

n = 400 0.001(0.029) 0.003(-0.040) 0.002(-0.006) 0.002(-0.009)

n = 100 0.000(0.003) 0.003(-0.040) 0.003(-0.004) 0.003(-0.007)

Example 2 n = 200 0.001(0.024) 0.003(-0.043) 0.003(-0.013) 0.003(-0.016)

n = 400 0.002(-0.014) 0.003(-0.045) 0.004(-0.040) 0.004(-0.046)

n = 100 0.509(0.499) 0.757(-0.739) 0.667(0.035) 0.671(0.033)

Example 3 n = 200 0.321(0.341) 0.372(-0.483) 0.391(-0.005) 0.367(-0.040)

n = 400 0.151(0.186) 0.113(-0.286) 0.084(-0.045) 0.079(-0.054)

n = 100 0.005(0.050) 0.021(-0.125) 0.008(0.004) 0.006(-0.006)

Example 4 n = 200 0.002(0.035) 0.015(-0.108) 0.005(-0.003) 0.006(-0.014)

n = 400 0.003(0.022) 0.011(-0.092) 0.005(-0.014) 0.004(-0.021)

n = 100 0.037(0.126) 0.035(-0.160) 0.029(-0.009) 0.030(-0.005)

Example 5 n = 200 0.027(0.102) 0.013(-0.087) 0.018(0.003) 0.016(-0.004)

n = 400 0.011(0.056) 0.003(-0.038) 0.004(-0.001) 0.004(-0.004)

n = 100 0.019(0.073) 0.092(-0.281) 0.036(-0.049) 0.037(-0.051)

Example 6 n = 200 0.033(0.121) 0.076(-0.240) 0.039(-0.031) 0.040(-0.030)

n = 400 0.053(0.157) 0.036(-0.145) 0.034(-0.021) 0.035(-0.021)

n = 100 0.033(0.120) 0.041(-0.182) 0.028(-0.008) 0.029(-0.006)

Example 7 n = 200 0.030(0.109) 0.022(-0.129) 0.017(-0.005) 0.017(-0.011)

n = 400 0.013(0.071) 0.007(-0.067) 0.007(0.000) 0.006(-0.008)

n = 100 0.013(0.069) 0.097(-0.294) 0.026(-0.022) 0.027(-0.023)

Example 8 n = 200 0.021(0.100) 0.078(-0.261) 0.030(-0.020) 0.029(-0.008)

n = 400 0.028(0.108) 0.059(-0.226) 0.030(-0.002) 0.030(-0.009)
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Table 6: Mean(Std) of 10-fold CV.

BICN plug-in 10-fold CV leave-one-out CV

1995 British family expenditure data

MSPE 0.011(0.002) 0.011(0.002) 0.011(0.002) 0.011(0.002)

Time 0.183(0.008) 0.036(0.003) 3.843(0.041) 48.790(0.377)

Prestige data

MSPE 0.017(0.009) 0.017(0.010) 0.017(0.010) 0.018(0.010)

Time 0.077(0.004) 0.014(0.001) 0.348(0.007) 2.627(0.024)
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