
UC Irvine
ICS Technical Reports

Title
AGM, a dataflow database machine

Permalink
https://escholarship.org/uc/item/831110t6

Authors
Bic, Lubomir
Hartmann, Robert L.

Publication Date
1984

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/831110t6
https://escholarship.org
http://www.cdlib.org/

Submitted for publication

Notice: This Material
may be protected
by Copyright.Law
(Title 17 U.S.C.)

AGM: A Dataflow Database Machine1

by

Lubomir Bic

Robert L. Hartmann

Department of Information and Computer Science

University of California, Irvine

October 1984

Technical Report No. 85-24

1This work was supported by the NSF Grant MCS-8117516: The UGI Data/low
Databases Project.

ABSTRACT

In recent years, a number of database machines consisting of large numbers of
-

parallel processing elements have been proposed. Unfortunately, one of the main

limitations to parallelism in database processing is the 1/0 bandwidth of the un­

derlying storage devices. One way to solve this problem is to use multiple parallel

disk units. The main problem with this approach, however, is the lack of a compu­

tational model capable of utilizing the potential of any significant number of such

devices.

This paper presents a database model which is based on the principles of data­

driven computation. According to this model, the database is represented as a

network in which each node is conceptually an independent processing element,

capable of communicating with other nodes by exchanging messages along the net-

work arcs. To answer a query, one or more such messages, called tokens, are created

and injected into the network. These then propagate asynchronously through the

network in the search of results satisfying the given query.

To investigate the performance of the proposed system, we have implemented

the model on a simulated computer architecture. The results of the simulation ex­

periments indicate that the model is capable of exploiting the potential 1/0 band­

width of a large number of disk units as well as the computational power of the

associated processing elements.

1

1. Introduction

A typical database is an organized collection of data kept on secondary storage

devices such as magnetic discs. To increase efficiency during processing, a number

of multiprocessor database machines have been proposed. Unfortunately, since all

data to be processed must first be transferred into primary memory, the available

1/0 bandwidth provided by the disk drives is the main limitation in the design of

database machines. For example, Agrawal and DeWitt / AgDeW84/ have shown

that for 2 disk drives (IBM 3350) not even 10 query processors are adequately

utilized.

To alleviate the problem of 1/0 bandwidth, several approaches can be taken:

1. Head-per-Track devices. A read/write head is associated with each track of

the disk thus virtually eliminating the seek time. Furthermore, some amount of pro­

cessing may be performed directly by marking data on the disk, without having to

move it to primary memory. An example of such a system is the Relational Associa­

tive Processor (RAP) /Sch78/. The main problem with this approach is a relatively

high cost of implementation and a number of technological difficulties in support­

ing the special-purpose circuitry of the read/write mechanisms. Furthermore, the

processors associated with each track must be very simple due to space and power

supply limitations, thus a large amount of processing must be done outside of the

database machine by a host computer.

2. Parallel Readout Disks. Disks may relatively easily be extended to read

all tracks of a given cylinder in parallel. While the potential 1/0 bandwidth is

increased by an order of magnitude, it is rarely the case that a query will be able

to utilize the content of an entire cylinder. Hence the actual bandwidth is reduced

to the useful portion of the data actually retrieved with each operation.

2

3. The Use of Multiple Disks. While the potential 1/0 bandwidth increases with

the number of independent disk drives, the main problem is that of utilizing this

potential, i.e., the choice of an adequate database model. Network-based (DBTG)

models /TaFr76/ are not suitable to parallel processing due to their low level of

interaction with the database. The user is actually seen as a 'navigator', who

guides a sequential thread of computation through the database.

The Relational Model, on the other hand, permits queries to be expressed in

a non-procedural manner. Unfortunately, other features of the model make an

efficient parallel implementation difficult. In particular, binary relational operators

such as join, set intersection, or set difference, require that the involved relations be

sorted or otherwise preprocessed in order to avoid comparing each element of one

relation against all elements of the other. Hence one of the most difficult problems

is to decide how to distribute the different relations over the available disks and

how to select the site at which a particular operation should be performed.

The above discussion suggests that, while increasing the I/O bandwidths is a

necessary precondition, it is not sufficient to guarantee better performance, regard­

less of the number of processors provided by the architecture. Rather a different

model of computation must be devised, that would be capable of exploiting the

potential parallelism resulting from a large number of independent disk units. Such

a model must satisfy the following requirements:

• It must be possible to process many requests concurrently. Without this con­

dition a large portion of the total 1/0 bandwidth would be wasted since each

request will, in general, involve several phases not all of which require disk

access.

• There must be no centralized control to distribute computation to and to su­

pervise the progress of individual processing elements. The elimination of the

3

control bottleneck must not, however, prevent data integrity and back-up poli­

cies from being enforced.

• The model must be able to tolerate the long latencies in accessing data, resulting

from the relatively slow speed of secondary storage devices. That is, while data

is being trans! erred from a disk, the processing element must be able to work

on some other task. In addition, it must be able to tolerate the fact that data

will not necessarily be arriving in the order in which requests were issued.

In this paper we present a model for data representation and manipulation

that satisfies the above requirements. This model, referred to as the Active Graph

Model1 (AG-Model, for short), is based on the principles dataftow systems /Com82,

TBH82/ which depart from the sequential, one-instruction-at-a-time concept of Von

Neumann computers by enforcing data-driven functional computation. This model

has been implemented on a simulated computer architecture consisting of a large

number of disk units, each equipped with a separate processing element. The model

together with the underlying architecture will be referred to as the Active Graph

Machine (AGM). Using a series of simulation experiments, we will demonstrate that

the system is capable of exploiting the potential 1/0 bandwidth of a large number

of disk units as well as the computational power of the associated processors.

2. The Model

2.1 Data Representation

To represent the database, we adopt the basic ideas of the Entity-Relationship

model /Che76/ which perceives information as collections of entities and relation­

ships. An entity-relationship diagram is used to describe a particular database. In

The justification for selecting this na.me will be given in Section 2.2.

4

this representation, entity sets and relationship sets are shown as rectangular and

oval shaped ·boxes, respectively; arcs are used to indicate the participation of entities

in relationships. Attn·butea may be associated with both entities and relationships.

They are defined as mappings between the entity or relationship sets and value sets.

Internally, entity and relationship sets are represented as follows:

• Each element n of an entity or relationship set is represented by a member node.

It consists of a key value kn and a set of attribute values. Key values are unique

within each set, thus any member node is uniquely identified by the pair (S, kn)·

• For each entity or relationship set S there exists a unique node called master

node. All elements of the set S are connected to their corresponding master

node via arcs.

• All arcs in the system are represented as bi-directional pointers.

Figure I (a) shows a sample database comprising three entity sets, PROFes­

sors, CO URS Es, and STUDents, interconnected via the corresponding relationships

TEACH and ENROLLment. (Heavy lines indicate the flow of tokens as will be ex­

plained in Section 2.4.)

PROF tl -t2-COURSE-e_l - e2 STUD

5

Figure l(a)

2.2 A Dataflow_ View of Processing

The assumption implicit to most database systems is the existence of an outside

agent - a processor - which accesses and manipulates the data stored on secondary

memory. Under this Von Neumann model of computation it is very difficult to ex­

ploit parallelism, primarily due to problems of synchronizing any significant number

of processing elements. In order to overcome these difficulties, inherent to conven­

tional models of computation, we adopt the dataflow point of view which eliminates

the need for any centralized control. At the model level, we do not view the database

graph as a passive representation of entities and relationships. Rather, each node

is viewed as an active element capable of receiving, processing, and emitting value

tokens traveling asynchronously along the graph arcs. Similar to general dataff ow

systems, the operation of each node is triggered solely by the arrival of tokens.

The terms 'Active Graph Model' and 'Active Graph Machine' thus derive from the

fundamental assumption that each node of the graph is, logically, an autonomous

'processing element'.

2.3 The Data-Manipulation Language

One of the main requirements of the model is that it provides a high-level non­

procedural language to specify all requests - queries and updates - to be performed

against the database. The language developed for the AG-model /Har84/ has its

roots in the query language CABLE (ChAin-Based LanguagE), proposed for the

Entity-Relationship model /Sho78/. Each request consists of two parts, referred to

as selection and operation. The selection part is a collection of 'beads' interconnected

into a tree structure. Each bead names one of the entity or relationship sets and

6

some restriction to be applied to elements of that set. These restrictions may be

based on attribute values of the set itself or they may be based on the existence

of arcs between nodes of various sets. Hence the tree of beads forming a request

may be viewed as a pattern to be superimposed onto the database graph for the

purposes of selecting nodes that satisfy the given restrictions.

The processing of the tree starts from its leaves and converges onto its root.

At each set the corresponding restrictions are applied and, if necessary, specified

attribute values are extracted and carried along by tokens. The root node represents

the final target set at which the actual operation (e.g. data retrieval, update,

etc.) is performed. As will be discussed in Section 2.4, the entire selection process

is carried out by tokens propagating asynchronously through the database graph.

Before discussing the details of token propagation we present the data manipulation

language more formally.

A request is a collection of beads Bs followed by an operation 0, i.e.,

Bs1, ... , Bsn : 0

Each bead Bs has the form

(in_arc1, ... , in_arcn}S[p; export e]{out_arc}

where the individual components have the following meaning:

• in_arci, ... , in_arcn and ouLarc are names of arcs occurring m the entity­

relationship diagram. The collection of beads are required to form a tree2 as

follows. There must be exactly one bead with no out_arc; this becomes the root

of the tree. For each in_arc; of this and of all other beads there must exist

another bead whose ouLarc matches i'n_arci. Beads with no in_arcs then be-

come the leaves of the tree. We will refer to this tree as the request tree and

2 By permitting more than one out _a re with ea.ch bead, a. DAG (directed a.cyclic graph) could be formed, rather

than a. tree. To simplify the subsequent discussion, we ha.ve restricted ourselves to using only one out_arc.

7

to its nodes as set nodes, to distinguish them from nodes (master or member)

constituting the database graph.

• S is the name of an entity or a relationship set occurring m the entity­

relationship diagram.

• e is an algebraic formula which specifies the attribute values to be carried from

nodes of the set S to nodes of the next set, say S' of the tree, along the cor­

responding ouLarc; these are said to be exported to S'. The keyword export

is used to visually separate the two clauses p and e, each of which could be a

complex expression.

e is composed of selectors and the set-combining operators union (u), intersec­

tion (n), difference(\), and Cartesian product (x).

Selectors are lists of the form (xi, ... , Xn), where each xi is either an attribute

designator, an aggregate function, or a constant c.

An attribute designator can be one of the following:

o *.i, which specifies the value of the i-th attribute of the set S

o in_arci.j, which refers to the value of the j-th attribute exported by the set

connected to S via in_arci.

An aggregate function may be one of the following:

<> COUNT(in_arci), AVERAGE(in_arci), MIN(in_arci), or MAX(in_arci),

where in_arci is one of the input arcs of the set S. Each of these functions is

applied to the results exported by the previous set along fo_arci.

e is then defined recursively as a formula, where:

<> Every selector is a formula.

<> If x and y are formulas then (x), x Uy, x n y, x \ y, and xx y are formulas.

8

• p is a restriction expression to be applied to all nodes s of the set S; a node s

is called selected if it satisfies the restriction expression p. Each p is a Boolean

formula composed of elementary restn·ctions and logical operators (not, and,

or).

Elementary restrictions have the form: op1 fJ op2 , where

o (} is one of the relational operators =, :/;, <, >, ~' ~' and

o each DPi is one of the following:

o an attribute designator of the same form as defined above, 1.e., *·i or

o one of the aggregate functions defined above, i.e., COUNT(in_arc;),

AVERAGE(in_arci), MIN(in_arci), or MAX(in_arci), as defined above,

o or a constant c,

o the function ARC _GOU NT(in_arci), which, for a given node s, returns

the number of arcs of type in_arci, connected to that node.

Each p is then defined recursively as a formula, where:

o Every elementary restriction is a formula.

o If x and y are formulas then (x), -.x, x /\ y, and x Vy are formulas.

The following examples illustrate the purpose of the individual component and

demonstrate the expressive power of the selection process:

Assume that the sets of Figure I(a) have he following attributes:

PROF:

TEACH:

COURSE:

KEY, NAME, RANK

KEY

KEY, NAME, SUBJECT

9

ENROLL: KEY

STUD: KEY, NAME, STAT

Example 1. The query 'find all ics courses with more than 20 graduate students;

output the course name' is expressed as follows:

STUD[*·3='GRAD'] (el)

(el) ENROLL[) (e2)

(e2)COURSE[*.3='1CS' /\ COUNT(e2)>20, expori *.2J: OUTPUT

This query involves three sets connected via the roles el and e2. Proceeding from

the set STUD to the set COURSE, the restrictions are applied as follows. First, all

elements of STUD satisfying the restriction *.3='GRAD' (i.e. STATUS='GRAD')

are selected. As a next step, elements of the set ENROLL are selected; since no

explicit restriction is specified, all elements connected via an arc el to at least one

of the selected nodes of STUD are selected. Finally, a selection is performed on the

set CO URS Es. Each element in that set must meet the following requirement to

be selected: it must satisfy the restriction *.3='1CS' (i.e., SUBJECT='ICS') and

it must be connected via an arc e2 to at least twenty of the selected elements of

the previous set ENROLL. The export clause then specifies that the value of the

second attribute (NAME) is to be extracted from each of the selected element and

output, as specified by the operation part of the query.

Example 2. The query 'find all ics courses with only graduate students; output

the course name' is expre~ed as follows:

STUD[*.3='GRAD'J (el)

(el}ENROLL[](e2)

{e2}COURSE[*.3='1CS' /\ COUNT(e2)=ARC_COUNT(e2), export *.2J: OUT­

PUT

This query is very similar to the one of Example I; the only distinction is the

10

restriction COUNT(e2)=ARC_COUNT(e2), which states that an element s of the

set COURSE is selected only when all elements of the previous set to which s is

connected via an -e2 arc have been selected. Courses in which any undergraduate

students are enrolled do not satisfy this restriction and are therefore not selected.

Example 3. The query 'find all ics courses with more than 20 graduate students

and taught by an associate professor; output the course number and the course

name' is expressed as follows:

PROF[*.3=' ASSOC']{tl)

(tl)TEACH[](t2)

STUD[* .3='GRAD'J (el)

{el) ENROLL[J (e2)

{t2,e2)COURSE[*.3='1CS' A COUNT(e2)>20; expori (*.I, *.2)]: OUTPUT

This query forms a tree where PROF and STUD are the leaves and COURSE

is the root. The selection proceeds independently along the two branches PROF­

TEACH-COURSE and STUD-ENROLL-COURSE. At each set, elements satisfying

their corresponding restriction are selected. In the final set, COURSE, an element

s must satisfy the following criteria in order to be selected: its SUBJECT attribute

must be 'ICS', it must be connected to at least 20 (graduate) students (via elements

of the set ENROLL), and it must be connected to an associate professor (via an

element of the set TEACH). The course numbers and names of the selected nodes

are then output.

The operation 0 constituting each request may specify the following basic op­

erations:

• OUT PUT(opt). This operations causes the attribute values exported by the

elements of the root set S to be output. The three queries discussed above were

examples of using this operation. The optional parameter opt may specify one of

11

the functions COUNT, AVERAGE, MIN, or MAX, in which case the appropriate

aggregate value is calculated and output, or it may specify the function SORT(i),

in which case the-results are output sorted by the attribute value i. For example,

to determine the number of graduate students, rather than to retrieve any of their

attribute values, the following query would be used:

STUD[*.3='GRAD'J: OUTPUT(COUNT)

• UPDATE(ai, ... ,an)· This operation causes each node of the root set S

selected by the preceding selection operation to modify itself as follows. Each ai

is an assignment of the form *.i ~ arithm_exp, indicating that the attribute *·i

is to be replaced by the value of the arithmetic expression arithm_exp, defined

recursively as follows:

¢ an attribute designator, which can have the form *·i or in_arc;.j as defined

earlier, is an arithmetic expression,

¢ if x and y are formulas then (x) and x {) y are arithmetic expressions, where

{)is an arithmetic operator(+,-,*, etc.).

For example, to increase the salary of all associate professors by 3%, the follow­

ing query could be used:

PROF[*.3=' ASSOC']: UPDATE(*.4 ~ (*.4) * 1.03)

• INSERT_NODE(ai, ... ,an)· This operation causes one new node to be in­

serted into the root set S of the request. This node is automatically connected

to its master node via an arc. Each ai has the same form as in the case of the

update operation - it specifies the new attribute values of the inserted node. In the

simplest case the selection information constituting the request will consists of only

one bead - the root set S itself. For example, to insert a new student, the following

query could be used:

12

STUD(J: INSERT(*.1 ~ '999', *·2 ~'JANE JONES', *·3 ~'GRAD')

If a tree consisting of more than one set node is specified then new arcs between

the inserted node and nodes of other sets are established as well. If S' is a set node

connected to the root set S via its ouLarc then a new arc is established between

the inserted node and each selected node of the set S'.

• DELETE _N 0 DE. This operation causes each node of the root set S selected

by the preceding selection operations to delete itself. All arcs connecting such nodes

to any other node are removed as well. For example, to delete all undergraduate

students enrolled in a course C20, the following query could be used:

COURSE[*.2='C20'] (e2}

{e2}ENROLL[J(el}

{el}STUD[*.3='UNDERGRAD']: DELETE

• INSERT_ARC. This operation causes the insertion of new arcs between

existing nodes. If S' is a set node connected to the root node S via its ouLarc then

a new arc is established between each selected node of the set S and each selected

node of the set S'.

• DE LET E_ARC. This operation causes existing arcs to be deleted. If S' is

a set node connected to the root node S via its out _arc then all arcs between the

selected nodes of the set S and the selected nodes of the set S' are deleted.

2.4 Execution of Requests

As described in Section 2.3, each request is a tree structure consisting of beads.

To process a request, the system performs the following tasks:

• For each bead Bs, find the elements of the set S that satisfy the corresponding

restriction p. As discussed in Section 2.3, this restriction may be based on

13

attribute values of the set S itself, or it may be based on some relationship

between attributes of the set S and attributes of some other set S', preceding

S in the request tree.

• Perform the operation on the selected elements of the set corresponding to the

root of the tree.

To accomplish these tasks, the request is translated into a collection of tokens

which are injected into master nodes of the database graph; recall that these are

active elements, capable of receiving and processing tokens. We employ two types

of tokens as follows:

Each bead Bs, i.e., (in_arc1, ... , in_arcn}S[p;expori eJ{out_arc}, is placed on

a separate token, called restriction token, and is injected into the corresponding

master node of the set S. From there it is replicated along existing arcs to all

member nodes of that set. The second type of token, called sweep token, is used

to transmit information between elements of two sets. Initially, one sweep token is

created by each node of a leaf set of the given request tree; from there the sweep

tokens are propagated through the tree toward the root. Each sweep token has the

form:

p,e

where

• p denotes the value (True/False) of the restriction p, indicating whether the

node emitting that sweep token has been selected by the restriction p.

• € denotes the value of the expression e; this represents the collection of attribute

values exported by the node emitting that sweep token.

The processing of each request is completely data-driven. That is, once the

restriction tokens are injected into the database graph, their propagation as well as

14

the creation and propagation of sweep tokens is governed by the following procedures

performed by individual nodes receiving tokens:

Each node s of a set S involved in a request will receive exactly one restriction

token from its master node. If no in_arcs are specified, the node is, by definition,

a leaf of the request tree, implying that both the restriction p and the export

expression e may be based only on attribute values internal to the node s itself.

The node determines the corresponding values p and e and constructs a sweep

token consisting of these two values. It sends a copy of this token along all arcs

matching the ouLarc specified in the restriction token.

All nodes receiving that token will perform a similar step: the values of the

corresponding p and e expressions are determined and a sweep token is constructed

and forwarded along the appropriate out ;_arcs to the next set. The evaluation of p

and e is, however, more complicated than in nodes of a leaf set since both may be

based on internal attribute values as well as on values carried by the received sweep

tokens. We can distinguish the following four cases according to the possible atoms

constituting p and e, as defined in Section 2.3:

• *·i refers to attribute values of the node s itself; these are kept with the node

and thus are readily available.

• i n_arci refers to attributes exported by sets preceding S in the tree; these are

carried by sweep tokens arriving along in_arci.

• COUNT(in_arci), AVERAGE(in_arci), MIN(in_arci), and MAX(in_arci) also

refer to attributes exported by sets preceding S; the nodes must apply the given

function to all sweep tokens arriving along in_arci.

• a constant value c; this is supplied as part of the restriction token itself.

The above steps, i.e. the evaluation of p and e and the forwarding of sweep

15

tokens, are repeated by all nodes along the request tree until the root set is reached.

Each node of that set, in addition to determining the values of the corresponding

expressions p and-e, performs the operation 0 specified by the request.

In the case of 0 UT PUT, all data from the selected nodes is sent to the cor­

responding master node which, at the model level, may be viewed as performing

the necessary proce~ing such as sorting, or computing of aggregate values. As will

be discu~ed in Section 3.2, the actual implementation permits many processing

elements to be involved in each of these operations.

The UPDATE operation is performed by each selected node of the root set. Each

of these simply applies the operations specified as the parameters of the UPDATE

operation to its own attribute values, thus modifying itself.

The INSERT_NODE operation is more complex in that is requires the coopera­

tion of several nodes. First, the new node is created by and connected to the master

node of the root set S. As a next step, an arc between the newly created node and

each selected node of a set S', connected to S via its out_arc, must be established.

This is accomplished according to a protocol followed by the master nodes of the

sets S and S'; these two nodes exchange the nece~ary information to establish the

arcs.

The INSERT_ARC operation also requires the cooperation of selected nodes of

the root set S and some other set S', connected to S via its out_ arc. The necessary

information to be exchanged among each two nodes in order to establish an arc is

transferred via the corresponding master nodes of the sets S and S' as in the case

of inserting a node.

The DELETE_NODE and DELETE_ARC operations, on the other hand, are

quite simple. In the first case, each node selected for deletion removes all arcs

16

connecting it to other nodes. It then informs its respective master node that it

wishes to be deleted. In the second case, each selected node removes all those arcs

along which token-s were received from the previous set.

2.5 Concurrent Processing and Data Integrity

One of the main requirement of the model was to permit concurrent execution

of requests. The model, as described so far, is completely asynchronous in that

each node performs an operation whenever it receives a token. There are two main

problems to be solved:

• Each node will, in general, receive one restriction token and zero or more sweep

tokens. Since communication is asynchronous, tokens will be arriving with

arbitrary delays, thus each node must be able to distinguish tokens belonging

to different requests and combine these accordingly.

• In the case of requests involving modifications (update, insert, or delete) of any

part or the database, data integrity must be preserved in that requests must be

serializable. That is, concurrent execution of two or more requests must always

yield the same result as if they had been executed in sequence. We employ the

following scheme to solve both problems:

Each token carries, in addition to its content as described in Section 2.4, a

unique identifier called activity name. For restriction tokens the activity name has

the form

[req_id, r/w, (i, j)J

while sweep tokens carry only the first component

[req_id]

The meaning of the individual components is as follows:

17

• req_id is a unique request identifier generated for each new request submitted

to the system. This permits each node to distinguish tokens belonging to the

same request.

• r/w is a Boolean flag which specifies whether the request is a retrieval or a

modification of the database.

• (i, j) is a pair of integers generated as follows:

For each set Si represented in the database the system maintains two counters

~ and Wi. When a request is submitted, the system performs the following

operations:

o For each bead Bs1c constituting the request, the counter R1c, corresponding

to the set S1c, is incremented by one.

o If the request is a modification operation, the corresponding counter W1c is

incremented as well.

o The component (i, j) of the restriction token to be injected into the master

node of the set S1c is then composed of the current values of the counters R1c

and W1c. (The two integers i and j are similar in nature to the 'use' bit and the

'dirty' bit, used in paged memory systems.)

To maintain integrity of the data, each node of the database graph is then

required to obey the following rules:

• A modification request with the activity name [req_id, w, (i, j)] may be proces.5ed

only when all requests with activity names [req_id, r/w, (i', j')J, where i' < a,

have been completed.

• A retrieval request with the activity name [req_id, r, (i, j)] may be proces.5ed

only when all requests with the activity name [req_id, r/w, (i', j')], where i' < j,

have been completed.

18

The first rule states that a modification request must await the completion of all

previous requests, regardless of their type, while the second rule states that retrieval

requests have to await the completion of only the last modification request. The

latter implies that retrieval requests between any two consecutive modifications

may be interleaved arbitrarily. Furthermore, since the sequencing is enforced at the

node level, a given node does not have to wait for other nodes to complete their

respective operation.

3. Implementation of the Model

In the previous section, we have presented a rather abstract model of data

processing in ~hich all operators are injected into the dataftow database graph and

propagate asynchronously by being replicated and forwarded by individual nodes.

This section presents one possible implementation of such a model.

3.1 Economics of Disk Storage

Assume that we wish to implement a database comprising on the order of 1010

bytes of data. Table 1 below contrasts the use of large disk units, such as the IBM

3380, with medium size units, such as a high capacity 5 1/4 inch Winchester drive.

The line labeled 'no. of units for 1010 B' indicates that 4 of the large units versus

133 of the smaller ones would be required. Assuming that each of the large units has

4 parallel actuators, the total number of accesses per millisecond is 16/24 = 0.66; in

the case of the smaller disks this number is 133/ 43 = 3.09. Thus, while the cost per

byte of storage increases only by approximately 10%, the maximum 1/0 bandwidth

increases by a factor of 5.

19

cost umt

capacity 2.5 * 109 7.5 * 107

cost/byte .0026¢ .0029¢

access time 24 msec 43 msec

no. of actuators 4 1

no. of units for 1010B 4 133

no. accesses/msec 16/24 = 0.66 133/43 = 3.09

As will be shown in Section 4, the AG-model is capable of exploiting several

hundreds of disk units. Thus to increase the database capacity from 1010 to 1011 ,

40 of the large disk units could be used, resulting in a maximum total bandwidth

of 6.6 random accesses per millisecond.

3.2 The Simulated Architecture

Based on the above observations we have implemented the AG-Model on a

simulated computer architecture with the following characteristics:

A collection of n processing elements (PEs) are arranged into a k-dimensional

array. Both the number of PEs as well as the number of dimensions were varied

during the simulation runs to determine their effect. To simplify subsequent dis­

cussion, we shall assume k to be 2, i.e., the architecture is a square array, where

each PE is connected to its four nearest neighbors, as shown in Figure l(b). Each

PE is in control of a separate disk unit and is equipped with local primary memory,

used for program storage, token buffers, and disk cache. The amount of memory

available for disk cache is assumed to be very small (about 3%), relative to the

disk space allotted for node storage. Thus disk performance is the major factor

determining the access time to nodes.

20

_(-PE .,___ _________ _
PE

I I
I I
I I
I I
I I I
I I I

(1-:---------~:----j-

I PE -----------1- PE
I I

Figure l(b)

For reasons of reliability, the space on each disk is divided in half; one half

contains data belonging to the owner PE while the other contains a copy of the

data belonging to its buddy (left hand neighbor). Thus, in the case of a PE/disk

failure, the neighboring PE may resume the work of the failed component.

To communicate with users, the database machine has one or more 1/0 pro­

cessors attached to selected PEs. The optimal number of such processors and their

connection to different PEs is independent of the model. Conceptually, one 1/0

processor is sufficient, which is the assumption made in this section.

The database graph is mapped onto the collection of individual memories as

follows. Each node n of the graph is uniquely identified by a pair (S, kn), where S

is the set to which the node belongs and kn is its key value within S, as discussed in

Section 2.1. Each of the PEs is identified by a unique number from 1 top, where p

is the number of existing PEs. To map a node n onto a PE, a system-wide hashing

function f is applied to the corresponding pair (S, k), which always yields a number

between 1 and p. This number, f(S, k), is then used as the PE number whose disk

unit will hold the node n.

Recall that, according to the model, each node must be an active entity. In the

implementation, each PE may be viewed as the incarnation of all nodes mapped

21

onto that PE; for all of these nodes the PE must receive, process, and emit tokens

traveling along the graph arcs.

-
An arc between two nodes nl and n2, belonging to the sets SI and S2, respec-

tively, is represented by recording the corresponding key value (SI, knt) with the

node n2 and the key value (S2, kn2) with the node nl.

Propagation of Tokens

As mentioned above, arcs of the graph are represented as lists of set and key

value pairs, kept with each node. According to the model, each node must be able

to send tokens along any of its arcs to other nodes. Since for any given query the

number of tokens to be exchanged among nodes could be very large, we must try to

find ways of minimizing the number of tokens actually transmitted. As described

in Section 2.4, there are two types of tokens - restriction and sweep tokens. Let us

first consider a scheme to reduce the number of actually transmitted sweep tokens.

Each sweep token carries the value p (True or False), which indicates whether the

node emitting that sweep token has been selected by its corresponding restriction

p. Typically, the selection rate is quite small (less than 10%) and hence the number

of sweep tokens carrying the value False will exceed those with the value True by

an order of magnitude. To reduce the token traffic, only True tokens will actually

be transmitted while the absence of a token on a particular arcs will be interpreted

as the arrival of a False token.

The main problem with this scheme lies in the asynchronous nature of the

model. Since tokens may be arriving with arbitrary delays, each node must be able

to determine whether the absence of a True tokens is to be interpreted as the arrival

of a False token or whether a True token is still in transit. To solve this problem,

we implement the following protocol:

22

Assume that the selected nodes of a set SI are to transmit sweep tokens to

nodes of another set 82 along existing arcs. Each node of the set Sl will report to

its master node tlie number of tokens actually sent. The master node accumulates

the total number of tokens sent and reports it to the master node of the receiving

set 82. In the meantime, nodes of the set 82 report the numbers of tokens received

from nodes of the set 81 to their master. When the total number of tokens received

equals the total number of tokens sent, the master node of the set 82 notifies each

of its member nodes that no more tokens will be arriving. At this point, each arc

from which no token has been received may be interpreted as having delivered a

token with the value False.

Assuming that sweep tokens will be transmitted according to the scheme de­

scribed above, we can distinguish the following three situations; for each of these,

efficient token propagation mechanisms must be provided:

1. A node is sending a copy of a token to all elements of a given set. Typically,

this will be the case when a master node is replicating a restriction token to all

its member nodes, or when it is informing its member nodes that no more sweep

tokens are in transit.

2. A node is receiving a large number of tokens, each arriving from a different

node. This will occur when the master node is waiting for all its member nodes to

report the number of sweep tokens sent or received, or when the results of a query

are being collected.

3. A node is sending a copy of a token to a selected subset of nodes, and,

conversely, a node is awaiting a number of tokens to arrive from different nodes.

This situation represents the flow of True sweep tokens exchanged among individual

member nodes.

23

For each of these three situations we will employ a different scheme for trans­

porting tokens to minimize the communication overhead. In the following discussion

we will refer to a -given PE by a pair of coordinates (i, j), where i and j designate

the corresponding row and column within the two-dimensional array of PEs:

1. To replicate a token to all elements of a set S a scheme called flooding is used

which replicates the token as follows. From the PE holding the sending node the

token is replicated first in only one direction, say horizontally, along the coordinate

i. Each PE in the row i then replicates the token vertically along the corresponding

column j of PEs thus 'flooding' the entire PE array. Each PE then treats the

received token as if a separate copy had arrived for each node of the set S. Note

that the number of transmissions is proportional to the number of PEs rather than

the number of nodes comprising the set S.

2. To return a large number of tokens to a single node a scheme called draining

is used, which accomplishes the reverse function of flooding. The last row of PEs

receiving the flooding tokens will return the results along the same columns j until

the originally first row i is reached in which the tokens are propagated horizontally

toward the PE containing the receiving node. Thus the tokens being drained follow

the reverse paths of the flooding tokens. Since each PE combines its own tokens

with those received from its immediate neighbors, the total number of transmissions

is again proportional to the number of PEs.

All aggregate operations as well as sorting of values are performed during the

draining process. Consider for example the situation where each member node of

a given set must report to its master node the number of tokens sent to member

nodes of some other set as described above. During the draining process, each PE

will count the number of tokens emitted by its own nodes and add to it the number

of tokens reported to it by its immediate neighbors before forwarding the result to

24

the next PE.

Other operations such as calculating the values ?f the functions COUNT, AV­

ERAGE, MAX,. MIN, or the sorting of values can be performed in an analogous

way in that each PE performs the necessary operations locally on all nodes mapped

onto that PE and merges the results with those received from its neighbors.

3. Sending and receiving sweep tokens along arcs between selected subsets of

nodes must be performed on an individual basis. The PE holding the sending node

determines the i and j coordinates of the PE holding the receiving node. Based on

that information and its own position within the array it determines which of its

four neighbors has the shortest geometric distance to the destination PE, and sends

the token into that direction. This operation is repeated by each PE receiving the

token until the final destination is reached.

The initial injection of restriction tokens into master nodes is implemented in

an analogous way. The token is injected into one of the PEs connected to an 1/0

processor. Based on the token's destination, the injection PE determines the i and

j coordinates of the PE holding the destination node and send the token into the

appropriate direction.

4. Simulation Results

To test architectural ideas and to evaluate the performance of the the proposed

database system, we have implemented the AG-Model on a simulated architecture.

The complete software package, henceforth referred to as the AG-Simulator, consists

of approximately 8000 lines of SIMULA code executing on a VAX-11/780.2 The

following sections describe the results of the simulation experiments.

2 VAX is a registered trademark of Digital Equipment. Corporation

25

4.1 Performance Evaluation Methodology

We have followed the methodology for evaluating database systems proposed

by Boral and DeWitt /BoDeW84/. The basic structure of the synthetic database

as well as the proposed four query types and the query mix were adopted from this

paper:

• Query type I is a direct access of a single node using a key. In the implementation

of the AG-Model, hashing is used instead of indexing.

• Query type II selects 1% of a given set.

• Query type III selects 10% of one set and joins the resulting subset with another

set. In our case, no indices are used; rather, a join is functionally equivalent to

sending sweep tokens from selected elements of one set to another.

• Query type IV is the same as query type II except the selection rate is 10%.

In addition, this query performs some aggregate function; we have chosen to

perform a sorting on the final results.

• Finally our query mix is the one suggested in /BoDeW84/: 70% of type I, 10%

of type II, 10% of type III, and 10% of type IV queries.

4.2 Parametric Variation Experiments

We have carried out the following four series of experiments to test various

aspects of the proposed system.

4.2.1 Architecture Topology Variation

As mentioned in Section 3.2, the architecture assumed for the proposed system

is a k-dimensional array of processing elements. The first set of experiments was

26

intended to investigate the effects of varying the number of dimensions, k. The

primary objective was to confirm our intuitive assumption that, once a 'reasonable'

number of physic3.I links are established among PEs, adding new connections has

little impact on improvement in performance.

We can distinguish the following three major phases of each query: (I) flooding

of the array, which sends restriction tokens to all PEs, (2) exchange of sweep tokens

among nodes of the involved sets, and (3) draining of the array, which collects the

results. Let us consider these in tum:

1. Flooding: Figure 2(a) shows the correlation between the number of dimen­

sions and the flooding time: the improvement is dramatic when increasing the

number of dimensions from I to 2, as represented by the distance between the solid

and the dashed curves; it becomes less important when a third dimension is added.

(Note that the time to flood the array is completely independent of the database

size, the query type, or the disk performance.)

2. Propagation of sweep tokens: Each sweep token is propagated along the

shortest geometric distance from the sending to the receiving node. Since the dis­

tribution of nodes over PEs is random, each sweep token will travel a distance

corresponding to the average path length within the array. This distance is plotted

in Figure 2(b) for the three different dimensions. The resulting curves are similar

to those for the array flood times (Figure 2(a)): the improvement between I and 2

dimensions is dramatic but diminishes when a third dimension is added.

3. Draining-. The time to drain the array obviously depends on the number of

results to be returned. If this number is very small, the time to drain the array is

essential the same as the array flood time (Figure 2(a)). If the number of results is

large, the time to complete the query will be limited by the speed of the IO device

designated to (sequentially) output all results. (This, of course, does not prevent

27

other queries to proceed in parallel, thus utilizing the available resources.)

In summary, we observe that in all three cases the effect of increasing the con­

nectivity of the PE array diminishes rapidly. Considering the fact that each new

dimension requires two communication links to be added to every PE, the improve­

ment from two to three dimensions appears already quite marginal. Based on this

observation, we have restricted all subsequent experiments to only two-dimensional

arrays of PEs.

4.2.2 Problem Size Variation

The next set of experiments is intended to study the effects of varying the

amount of work handled by each PE, on the request processing time. For that

purpose, we consider an array of 9 PEs (3 x 3) and vary the set size from 10

to 1024. Figure 3(a) shows the mean processing time for three different types of

queries. 3 While a very slow increase is observed for queries of Type I, it becomes

almost linear for queries of Type II and III; that is, the mean processing time for

the latter types is directly proportional to the problem size.

At a first glance, this result does not seem to represent any major breakthrough

in performance, since a conventional database machine displays a similar degrada­

tion in response time. We must, however, consider the amount of resources actually

utilized to process each query. This is shown in Figures 3(b) and 3(c) for secondary

memory and for the PEs, respectively. As expected, for queries of Type I, most

(90%) of the available 1/0 bandwidth as well as the processing time is unused. For

queries of Type II and III, disk utilization rises to a maximum of approximately

75% and then decreases slightly; this is due to a decrease in average seek time as

3 These experiment were ca.med out with a. multiprogramming level of two, i.e., two queries were executing

simultaneously.

28

the density of nodes on the disks increases. The available processing power is even

less utilized; with 100 nodes per PE, over 60% is still unused.

In summary, we observe that, for queries of Type I, the mean processing time

remains nearly constant; that is, all disks except one and almost all PEs are unused.

For other query types the mean processing time increases linearly with the problem

size, however, even in the small array of only 9 PEs, much of the available 1/0

bandwidth (> 35%) as well as the computing potential (> 60%) is still unused.

(This unused capacity may be exploited by increasing the number of simultaneous

queries, as will be discussed in Section 4.2.4.)

4.2.3 Array Size Variation

The purpose of this series of experiments is to investigate the eff'ects of increasing

the array size, i.e., the number of PEs. Ideally, the mean processing time for a query

should increase only slightly (due to longer communication paths within the array),

while the unused 1/0 bandwidth and the PE idle time should increase in proportion

with the array size. To confirm this assumption, we have varied the array size from

4 to 1024 PEs, while keeping the set size and the queries constant. The resulting

mean processing time for a query is plotted in Figure 4(a). We observe that by

increasing the number of PEs from 9, (which was the size assumed in the previous

experiment), to 1024, i.e., by two orders of magnitude, the mean processing time for

a query does not show any dramatic changes; it decreases first as more disk units

and PEs are added and then rises again due to longer communication paths within

the array. (Note that a logarithmic scale is used in Figure 4(a).)

While the above changes in query processing time are rather insignificant, the

increase in unused 1/0 bandwidth and PE time is dramatic, as shown in Figure 4(b)

and 4(c), respectively; with 300 PEs, both values are nearly zero.

29

4.2.4 Multiprogramming Level Variation

The previous experiments have shown that increasing the number of PEs does

not have any significant adverse effect on the mean query processing time. Our

objective now is to show that the unused 1/0 bandwidth and the computational

power may usefully be exploited for simultaneous processing of other queries. For

that purpose, we return to the original array of nine PEs, and vary the number of

simultaneous queries (selected from the mix suggested in /BoDeW84/) from I to

16. Figure 5 shows that, even in the case of nine PEs, where resource utilization is

relatively high (Figures 3(b) and 3(c)), the system throughput increases from 1.3

to approximately 3 queries per second.

5. Conclusions

The objective of this paper was to demonstrate that the use of hundreds of

processors in a database machine is feasible, provided the 1/0 bandwidth of the

secondary storage medium is increased accordingly, as pointed out in / AgDe W84/.

To accomplish the latter, we proposed to replace each large disk with a number

of smaller units, each connected to an independent processor. By employing a

database model (the AG-Model) suitable to parallel processing, we have shown

that the potential 1/0 bandwidth and the associated computational power of the

PE array may usefully be exploited.

We have implemented the AG-Model on a simulated architecture. Due to lim­

itations imposed by the simulator (a typical simulation run producing one data

point for the plotted curves consumed between 2 and 10 hours of VAX-11/780 CPU

time) we were forced to accept a number of restrictions. In particular, (I) the size

of the array had to be kept very small; for example, to place any significant load

30

on individual PEs, only 9 were used for the problem size variation experiments

(Figure 3(a)-(c)); (2) the distribution of data nodes over the disks was assumed to

be random; a better memory management scheme would significantly improve the

utilization of the available 1/0 bandwidth; (3) in an actual implementation, queries

referring to the same sets could reduce the number of disk accesses significantly by

using a cache, as discussed in /BeDe W84/; we did not exploit this potential of data

sharing in the simulator.

Despite the above adverse assumptions, the obtained results are quite encour­

aging - the proposed system is capable of utilizing the available 1/0 bandwidth

and the computational power of a significant number of a.synchronously operating

processing elements.

Arra!
Flooa

Time (Sec.)
0.30

0.25

0.20

0.15

0.10

0.05

-- 1 Dimensional
- - - - - 2 Dimensional

· · · · 3 Dimensional

/

--- ...

Averare
Path

Len(th
16

12

10

8

6

4

2

-- 1 Dimensional
- - - - - 2 Dimensional

3 Dimensional

-- ...
0 .oo '-----r---.----r----.----.---..-----.----. 0 '------r----r-----.----.---.......--.------..-~

1.0 3.2 10.0 31.6 100.0 1.0
Number of PE'•

Fir. 2(a). Dimensionality Effect on
Flood Time

31

3.2 10.0
Number of PE's

31.fl

Fir. 2(b). Dimensionality Effect on
Path Lenrth

100.0

Mea.n
Proce111ln1,.

Tim• (Sec.)
----- uery Type II
--- §uery tJpe I
· · · · · · · · · uery Type Ill

Secondary
Memory

UtJUu.Uoa 9'

---§ury tJpe I
----- uery Type II
· · · · · · · · · ury Type Ill

100.00 100

90

80
10.00

70

·" 60

1.00
.. · .50

40

so
0.10

------------- 20

10

0.01 '----------.-----Po----.--------. 0

I
I

I
I

I

;>;..-...... ~.~·>:--.
.· / :-..:

.' /

... I

: I
. I

I
I

I

I

I

1 10 100 1000 1 10 100

Processor
Utlllza.tlon %

100

90

80

70

60

50

40

30

Node1 Per PE

Fie. 3(a.). Problem Size Effect on
'Processln1 Time

--- §uery tJpe I
----- ueryTypell
· · · · · · · · · uery Type III

,.·

20 -'"-':...:.. - --

10------

Request
Proceuln(.

Time (Sec.)
4.0

3 • .5

3.0

2 • .5

2.0

1.0

0 . .5

NodH Per PE

Fl1. :S(b)bProblem Size Effect oa
lsk UtJU:utJoa

--- Query type IV

1000

0 ~---r-----.-~~--r-----r---..------, 0.0 '---.....----r---r---..---.----..----..-----.
1 10 0 1000 1

Nodes Per PE

Fie. 3(c). Problem Size Effect on
l>rocessor Utlllza.tlon

32

10 100
Number of PE's

1000

Fl1. 4(a.l. Arra..Y Size Effect on
ffroceuln1 Time

10000

Secoadar7
Memor7

UtllluUoa 96
100

90

80

70

ao

50

40

30

20

10

--- QH'7 t7pe IV - Qwtr7 t7pe IV

100

90

80

70

eo

50

40

30

20

10

0 '--~....-~...-~---~--~--_;;;:::::,...~-.-~--. 0 --~....-~....-~---~--~--~--~--~--
1 10 100 1000 10000 l 10

N11mb1r of PE'•
100

N•mlMr of PE'1
1000

FJ1. 4(bl. Arr&J Slit Efftc:i oa
Olsk Utlllu.tloa

Fie. 4(c). Arru_Sl11 Effed oa
Proc111or lJtlllsatloa

Qur71
Per

Second
3.2

2.0

1.8

l.G

1.4

---Qur7 Mix

1.2 -..,........,.........,.....,...,,.....,.....,........,...,.........,.....,...,,.....,.....,.........,......,.........,.....,....,,.....,.....,.............,
1 2 3 4 a e 1 8 o 10 11 12 13 u u lG

M111tlpro1rammln1 Lnel

Fl1. 5. System Loadln1 Effect on
Thro111hp11t

References

10000

/ AgDeW84/ Agrawal, R. and DeWitt, D. J.: "Whither Hundreds of Processors in a

33

Database Machine?," lnt'l Workshop on High-Level Architecture, Los Angeles,
California, 1984.

/BoDeW84/ Boral, H. and DeWitt, D. J.: "A Methodology for Database Perfor­
mance Evaluation," ACM SIGMOD, Proc. of Annual Meeting, Vol.14, No.2,
1984.

/Che76/ Chen, P.: "The Entity - Relationship Model: Toward a Unified View of
Data," ACM TODS, 1,1, March 1976

/COM82/ COMPUTER, Special Issue on Dataflow Systems, 15,2, Feb. 1982

/Har84/ Hartmann, R.: "The Active-Graph Database Machine," PhD Thesis (to
be completed Dec. 1984), Dept of JCS, University of California, Irvine, 92717

/Sch78/ Schuster, S. A., at. al.: "RAP.2 - An Associative Processor for Data
Bases," Proc. Fifth Annual IEEE Symp. for Computer Architecture, 1978

/Sho78/ Shoshani, A.: "CABLE: A Language Based on the Entity-Relationship
Model," Technical Report, Lawrence Berkeley Lab., 1978

/TBH82/ Treleaven, P. C., Brownbridge, T. R.,. Hopkins, R. C.: "Data-Driven
and Demand-Driven Computer Architecture," ACM Computing Surveys, 14,1,
March 1982

34

