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Abstract

Pseudomonas aeruginosa is an opportunistic pathogen commonly found in humans and other

organisms and is an important cause of infection, especially in patients with compromised immune

defense mechanisms. The PA3611 gene of P. aeruginosa PAO1 encodes a secreted protein of

unknown function, which has been recently classified into a small Pseudomonas-specific protein

family called DUF4146. As part of our effort to extend structural coverage of novel protein space

and provide a structure-based functional insight into new protein families, we report the crystal

structure of PA3611, the first structural representative of the DUF4146 protein family.
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INTRODUCTION

Pseudomonas aeruginosa is a ubiquitous environmental bacterium, which is found in soil,

marshes and coastal marine habitats, as well as on plant and animal tissues. It is an

opportunistic pathogen that is one of the top three causes of infection in humans1,2. People

afflicted with cystic fibrosis and compromised host defense mechanisms are at increased

risk of infections from P. aeruginosa. P. aeruginosa PAO1 has a large 6.3 Mbp genome

with 5,570 predicted open reading frames (ORFs)1. As with other organisms, a substantial

number of its genes lack functional characterization, although many of these have been

assigned putative functional roles based on transcriptome profiling2–5 and structural

genomics approaches6. The PA3611 gene of P. aeruginosa PAO1 encodes a secreted protein

of unknown function with a molecular weight of ~14 kDa (residues 1– 136) and a calculated

isoelectric point of 8.86. PSI-BLAST7 searches identify ~60 homologues of PA3611

(UniProt ID: Q9HY15), which are all domains of unknown function (DUF) found solely in

different strains of Pseudomonas. These proteins have been recently classified into a small

Pseudomonas-specific family in Pfam8, PF13652 (DUF4146), and are all secreted proteins

of similar size comprising a single DUF4146 domain. An earlier proteomics analysis using

2D-PAGE and MALDI-TOF mass spectrometry revealed that PA3611 may be a Quorum

Sensing (QS)-regulated protein and a potential virulence factor9. P. aeruginosa PAO1 has

195 known virulence factors according to the Virulence Factor Database10 and the

Pseudomonas Genome Database11 (http://www.pseudomonas.com). Here we report the

crystal structure of PA3611 at 1.6 Å resolution, which was determined using the semi-

automated, high-throughput pipeline of the Joint Center for Structural Genomics (JCSG), as

part of the NIGMS Protein Structure Initiative (PSI). The structure provides the first

structural representative of the PF13652 (DUF4146) protein family.

MATERIALS AND METHODS

Protein production and crystallization

Clones were generated using the Polymerase Incomplete Primer Extension (PIPE) cloning

method12. The gene encoding PA3611 (gi|15598807) was amplified by polymerase chain

reaction (PCR) from Pseudomonas aeruginosa PAO1 genomic DNA using PfuTurbo DNA

polymerase (Stratagene) and I-PIPE (Insert) primers (forward primer, 5’-

ctgtacttccagggcGCCTCGCTCAAGGATTTCGAACTGAGC-3’; reverse primer, 5’-

aattaagtcgcgttaCTTCTTGCCCTGGATGCGGCAGCTGCCG-3’, target sequence in upper

case) that included sequences for the predicted 5' and 3' ends. The expression vector,

pSpeedET, which encodes an amino-terminal tobacco etch virus (TEV) protease-cleavable

expression and purification tag (MGSDKIHHHHHHENLYFQ/G), was PCR amplified with

V-PIPE (Vector) primers (forward primer: 5’-taacgcgacttaattaactcgtttaaacggtctccagc-3’,

reverse primer: 5’-gccctggaagtacaggttttcgtgatgatgatgatgatg-3’). V-PIPE and I-PIPE PCR

products were mixed to anneal the amplified DNA fragments together. Escherichia coli

GeneHogs (Invitrogen) competent cells were transformed with the I-PIPE / V-PIPE mixture

and dispensed on selective LB-agar plates. The cloning junctions were confirmed by DNA

sequencing. Using the PIPE method, the gene segment encoding residues Met1-Ala19 were

deleted from the construct used for structure determination for expression of soluble protein
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because it is predicted to contain a signal peptide based on SignalP13. Expression was

performed in a selenomethionine-containing medium at 25°C. Selenomethionine was

incorporated via inhibition of methionine biosynthesis14, which does not require a

methionine auxotrophic strain. At the end of fermentation, lysozyme was added to the

culture to a final concentration of 250 µg/ml, and the cells were harvested and frozen. After

one freeze/thaw cycle, the cells were homogenized and sonicated in lysis buffer [50 mM

HEPES pH 8.0, 50 mM NaCl, 10 mM imidazole, 1 mM Tris(2-carboxyethyl)phosphine-HCl

(TCEP)] and the lysate was clarified by centrifugation at 32,500 × g for 30 minutes. The

soluble fraction was passed over nickel-chelating column (GE Healthcare) pre-equilibrated

with lysis buffer, the column washed with wash buffer [50 mM HEPES pH 8.0, 300 mM

NaCl, 40 mM imidazole, 10% (v/v) glycerol, 1 mM TCEP], and the protein was eluted with

elution buffer [20 mM HEPES pH 8.0, 300 mM imidazole, 10% (v/v) glycerol, 1 mM

TCEP]. The eluate was buffer exchanged with TEV buffer [20 mM HEPES pH 8.0, 200 mM

NaCl, 40 mM imidazole, 1 mM TCEP] using a PD-10 column (GE Healthcare), and

incubated with 1mg of TEV protease per 15 mg of eluted protein for 2 hr at ambient

temperature followed by overnight at 4°C. The protease-treated eluate was passed over

nickel-chelating column (GE Healthcare) pre-equilibrated with HEPES crystallization buffer

[20 mM HEPES pH 8.0, 200 mM NaCl, 40 mM imidazole, 1 mM TCEP] and the column

was washed with the same buffer. The flow-through and wash fractions were combined and

concentrated to 10.5 mg/ml by centrifugal ultrafiltration (Millipore) for crystallization trials.

PA3611 was crystallized using the nanodroplet vapor diffusion method15 with standard

JCSG crystallization protocols16. Sitting drops composed of 200 nl protein solution mixed

with 200 nl crystallization solution in a sitting drop format were equilibrated against a 50 µl

reservoir at 277 K for 22 days prior to harvest. The crystallization reagent consisted of 2.0

M (NH4)2SO4, 0.2 M Li2SO4, and 0.1 M 3-(Cyclohexylamino)-1-propanesulfonic acid

(CAPS) pH 10.5. Ethylene glycol was added to a final concentration of 15% (v/v) as a

cryoprotectant. Initial screening for diffraction was carried out using the Stanford

Automated Mounting system (SAM)17 at the Stanford Synchrotron Radiation Lightsource

(SSRL, Menlo Park, CA). The diffraction data were indexed in orthorhombic space group

P212121. The oligomeric state of PA3611 in solution was determined to be monomeric using

a 1 × 30 cm2 Superdex 200 size exclusion column (GE Healthcare)12 coupled with

miniDAWN (Wyatt Technology) static light scattering (SEC/SLS) and Optilab differential

refractive index detectors (Wyatt Technology). The mobile phase consisted of 20 mM Tris

pH 8.0, 150 mM NaCl, and 0.02% (w/v) sodium azide. The molecular weight was calculated

using ASTRA 5.1.5 software (Wyatt Technology).

Data collection, structure solution and refinement

MAD data were collected at SSRL on beamline 9-2 at wavelengths corresponding to the

high-energy remote (λ1), inflection point (λ2) and peak (λ3) of a selenium MAD

experiment using the BLU-ICE18 data collection environment. The data sets were collected

at 100 K using a MarMosaic 325 CCD detector (Rayonix, USA). The MAD data were

integrated and reduced using XDS19 and scaled with the program XSCALE. The heavy

atom sub-structure and phasing calculations were performed using SOLVE20. RESOLVE21

was used for density modification and ARP/wARP22 was used for automatic model building

to 1.60 Å resolution. Model completion and crystallographic refinement were performed
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with the λ1 data set using COOT23 and REFMAC524. The refinement protocol included the

experimental phase restraints in the form of Hendrickson–Lattman coefficients from

SOLVE and TLS refinement with one TLS group for the whole molecule. Data and

refinement statistics are summarized in Table I25,26,27,28

Validation and deposition

The quality of the crystal structure was analyzed using the JCSG Quality Control server

(http://smb.slac.stanford.edu/jcsg/QC). This server verifies: the stereochemical quality of the

model using AutoDepInputTool29, MolProbity30, and Phenix31, the agreement between the

atomic model and the data using RESOLVE21, the protein sequence using CLUSTALW32,

the ADP distribution using Phenix, and differences in Rcryst/Rfree, expected Rfree/Rcryst and

various other items including atom occupancies, consistency of NCS pairs, ligand

interactions and special positions using in-house scripts to analyze refinement log file and

PDB header. Protein quaternary structure analysis was performed using the PISA server33.

Figure 1B was adapted from an analysis using PDBsum34 and other figures were prepared

with PyMOL35. Atomic coordinates and experimental structure factors for PA3611 to 1.60

Å resolution (PDB ID: 3npd) were deposited in the Protein Data Bank (www.wwpdb.org).

RESULTS AND DISCUSSION

Cloning, expression, purification and crystallization of PA3611 were carried out using

standard Joint Center for Structural Genomics (JCSG; http://www.jcsg.org) protocols. N-

terminal residues 1–19 were excluded from the expression construct due to the prediction of

a signal peptide cleavage site. The crystal structure of PA3611 was determined by Multi-

wavelength Anomalous Diffraction (MAD) phasing to a resolution of 1.60 Å. Data

collection, model and refinement statistics are summarized in Table I 25,26,27,28. A single

PA3611 molecule is present in the crystallographic asymmetric unit. The final model

(Figure 1) includes Gly0 (left over after cleavage of the expression and purification tag),

residues 20–131 of the 136 residues in the full-length protein, 2 sulfate ions and 4 CAPS

molecules from the crystallization reagents, 2 1,2-ethane-diol molecules from the

cryoprotectant, and 124 water molecules. The Matthews’ coefficient36 is 1.95 Å3/Da, with

an estimated solvent content of ~37 %. The Ramachandran plot produced by MolProbity30

shows that 100% of the residues are in the favored regions.

PA3611 is comprised of one structural domain with five β-strands (B1- B5) and five α-

helices (H1-H5). Analysis of the crystallographic packing of PA3611 using the PISA server5

indicates that a monomer is the biologically relevant oligomeric state of the protein,

consistent with the oligomeric state in solution from SEC. The β-strands form a twisted anti-

parallel β-sheet flanked on one side by the helices. A disulfide bond is present between

Cys92 and Cys130 in helices H3 and H5, respectively. A residue conservation analysis

reveals that the conserved residues Ser38, Arg44, Ile46, Tyr55, Val83, Gln86, Ser90, Asn94,

Arg98 and Tyr109 line a groove on the surface of the protein (Figure 2).

A search for other proteins of similar structure was carried out using DALI37, SSM38 and

FATCAT39 using default search parameters. The SSM (Secondary-Structure Match) search

did not identify any significant match (the highest hit had Q-score of 0.14 and Z-score of
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0.6), and the best hit with DALI was with fatty acyl-adenylate ligase/saframycin MX1

synthetase (PDB id 3lnv, 3.9 Å r.m.s.d., 10% sequence identity, 87 aligned Cα atoms, Z-

score 5.0), although several other proteins gave hits with lower Z-scores. A search for

similar structures using the flexible alignment mode in FATCAT resulted in several hits

with significant scores (P-value < 0.05), most of which were to α+β class proteins. The most

significant hit was to the C-terminal RNA-binding domain of Escherichia coli Era GTPase40

(score of ~0.0006, r.m.s.d. of 2.7 Å, 5.6% sequence identity, alignment length of 92 Cα
atoms, PDB id 1ega), which is involved in maturation of the 30S ribosome by binding to

16S ribosomal RNA41, and belongs to the alpha-lytic protease prodomain-like fold (SCOP

fold 54805) and is a member of the prokaryotic type KH domain superfamily (KH-domain

type II, SCOP 54814, Pfam clan CL0007) (Figure 3, 4). The KH domain has been shown to

be involved in protein-protein interactions in addition to RNA binding42. Numerous lysine

and arginine residues on a helix-turn-helix motif in the KH domain of Era (Arg239, Lys243,

Lys244, Lys250, Lys253, Lys255, Arg262 and Lys263) are implicated in RNA

interactions40. Although these residues are not directly conserved in the equivalent positions

in PA3611, there are some structural similarities and the basic nature of the helix is

conserved: Era residues Arg239, Lys244, Lys255 and Lys263 are close to chemically

similar residues Arg69, Arg75, Arg77, Arg84 and Arg98 in PA3611. In addition, PA3611

Arg131, which has no equivalent in Era, contributes to the basic nature of this region, which

might be involved in ligand or nuclei acid interactions. Ile254 in Era is part of a hydrophobic

core and is equivalent to Ile304 in the KH domain of the protein that is implicated in the

fragile X syndrome link to mental retardation43,44. In PA3611, Val83 is the corresponding

residue and part of the conserved groove described above (Figure 2). Analysis of the

electrostatic potential surface (using PDB2PQR45 and the APBS46 module in PyMOL)

reveals an almost equal distribution of basic and acidic residues on the protein surface

(Figure 5).

Analysis of potential interacting partners based on genomic context using STRING47 (http://

string.embl.de) indicates that PA3611 interacts with PA3612 (score ~0.8, a 73-residue

protein of unknown function classified in PF12843, DUF3820). Also, PA3611 and PA3612

may form a single transcriptional unit based on the prediction that they form an operon

according to the Pseudomonas Genome Database. It is also predicted to interact with its

adjacent protein PotD (PA3610), which is the polyamine substrate-binding protein in the

polyamine uptake system comprised of PotABCD. As polyamine transport has been

implicated in quorum sensing and PA3611 was found to be up regulated in quorum sensing,

PA3611 (and PA3612) may be involved in quorum sensing via modulation of PotD’s

function, with implications specific to biofilm formation in Pseudomonas. A computational

assessment of PA3611 using a Support Vector Machine method as implemented in

VirulentPred48 (http://203.92.44.117/virulent/index.html) predicts PA3611 as a virulence

factor. The structure of PA3611 provides some clues into the potential function of this

protein and will serve as a guide for further investigation into its molecular and cellular role.
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Figure 1. Crystal structure of PA3611 from Pseudomonas aeruginosa
(A) Stereo ribbon diagram of PA3611 color-coded from N-terminus (blue) to C-terminus

(red). Helices H1-H5, β-strands (B1-B5) and the Cys92-Cys130 disulfide bond are

indicated. (B) Diagram showing the secondary structure elements of PA3611 superimposed

on its primary sequence, adapted from PDBSum (http://www.ebi.ac.uk/pdbsum). The α-

helices (H1-H5), β-strands (B1-B5), β-turns (β) and β-hairpins (red loops) are indicated.

The sequence and structure includes Gly0, which remains after removal of the expression

and purification tag, and residues 20–131 of the 136 residues in the entire protein.
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Figure 2. Sequence conservation in PA3611
Residue conservation analysis performed using CONSURF49 of PA3611(UniProt Q9HY15)

homologs included in the analysis (with UniProt id codes and sequence identities to PA3611

in parentheses): PSPPH_3802 from Pseudomonas syringae pv. phaseolicola str. 1448A

(Q48F97, 70%), PPUT_4084 from Pseudomonas putida str F1 (A5W7U8, 57%),

PFL01_1180 from Pseudomonas fluorescens str Pf0-1 (Q3KH33, 59%), PFLU_1192 from

Pseudomonas fluorescens str SBW25 (C3KDG3, 52%). The surface representation color

gradient goes from cyan (most variable) to magenta (most conserved). Most of the

conserved residues in PA3611 and its homologs are located on one side of the protein and

are located on the surface or surround a prominent groove in the protein. They include

Ser38, Arg44, Ile46, Tyr55, Val 83, Gln86, Ser90, Asn94, Arg98 and Tyr109 (labeled in left

panel; orientation is similar to that in Fig. 1). Right panel: ~180° rotation around a vertical

axis compared to the left panel.
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Figure 3. Structural comparison of PA3611 with the RNA-binding domain of Era
PA3611 (blue) is structurally similar to the C-terminal RNA-binding domain of E. coli Era

GTPase (grey). Some of the Era residues (red sticks) implicated in RNA binding (Arg239,

Lys244, Lys255 and Lys263) approximate the location of PA3611 residues (blue sticks)

Arg69, Arg75, Arg77, Arg84 and Arg98, respectively. Although, only Arg98 is conserved in

PA3611 homologs, the similar chemical nature of the residues leads to a similar basic region

on both proteins. PA3611 Arg131, which is not a counterpart of any Era residues, also

contributes to the basic nature of this region and might be involved in ligand or nucleic acid

interactions.
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Figure 4. Structural alignment of PA3611 Era
Superimposition of PA3611 (in blue to red from N- to C-terminus, similar orientation as in

Figure 3) with the E. coli Era GTPase (grey) using DaliLite37 (Z-score=3.2, r.m.s.d of 3.2 Å

over 71 Cα residues) highlighting the significant structural differences in helix positions but

the FATCAT flexible alignment mode is still able to identify the overall structural similarity

between PA3611 and the C-terminal RNA-binding domain of Era.
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Figure 5. Surface charge analysis
The electrostatic surface representation of PA3611 shows an almost equal distribution of

positively- and negatively-charged residues (blue and red, respectively) on the protein

surface. The basic region (blue) is primarily made up of residues described in Figure 3. The

molecular orientation is similar to that in Figure 1. The color scale is in units of kT/e from

−3 to +3.
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TABLE I

Summary of crystal parameters, data collection and refinement statistics for PDB 3npd

Space group P 21 21 21

Unit cell parameters a = 34.99 Å, b = 51.32 Å, c = 56.90 Å

Data collection λ1 MAD Se λ2 MAD Se λ3 MAD Se

  Wavelength (Å) 0.91837 0.97941 0.97925

  Resolution range (Å) 28.9–1.60 28.9–1.60 28.9–1.60

  Highest resolution shell (Å) 1.64–1.60 1.64–1.60 1.64–1.60

  Number of observations 49,327 49,052 49,176

  Number of unique reflections 14,032 14,047 14,051

  Completeness (%) 99.6 (99.3) 99.6 (99.4) 99.6 (98.9)

  Mean I/σ (I) 10.9 (2.1) 11.1 (2.1) 10.5 (2.0)

  Rmerge on I† (%) 7.4 (64.9) 7.5 (62.6) 8.5 (64.8)

  Rmeas on I‡ (%) 8.7 (76.6) 8.9 (73.8) 9.9 (76.4)

  Rp.i.m. on I‡‡ (%) 4.5 (40.0) 4.6 (38.5) 5.1 (39.8)

Model and refinement statistics

  Resolution range (Å) 28.9–1.60 Data set used in refinement λ1

  No. of reflections (total) 13,997a Cutoff criteria |F|>0

  No. of reflections (test) 700 Rcryst
¶ 0.160

  Completeness (% total) 99.5 Rfree
¶ 0.205

Stereochemical parameters

Restraints (RMSD observed)

  Bond angle (°) 1.7

  Bond length (Å) 0.016

  Average isotropic B-value†† / Wilson plot B-value (Å2) 22.7 / 17.8

  ESU based on Rfree 0.096

  Protein residues/ atoms (Å) 113 / 868

  Water/ solvent molecules 124 / 8 (SO4=2, CAPS=4, EDO=2)

  Ramachandran plot: residues (%) in favored / allowed 100 / 100

Values in parentheses are for the highest resolution shell.

a
Typically, the number of unique reflections used in refinement is slightly less than the total number that were integrated and scaled. Reflections

are excluded due to systematic absences, negative intensities, and rounding errors in the resolution limits and cell parameters ESU = Estimated

overall coordinate error 26

†
Rmerge = ΣhklΣi|Ii(hkl) - <I(hkl)>|/Σhkl Σi(hkl).

‡
Rmeas = Σhkl[N/(N-1)]1/2Σi|Ii(hkl) - <I(hkl)>|/ΣhklΣiIi(hkl) 25.

‡‡
Rp.i.m. (precision-indicating Rmerge) = Σhkl[(1/(N-1)]½ Σi|Ii (hkl) - <I(hkl)>| / ΣhklΣi Ii(hkl) 27,28.
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¶
Rcryst = Σhkl‖Fobs| - |Fcalc‖/Σhkl|Fobs|, where Fcalc and Fobs are the calculated and observed structure-factor amplitudes, respectively. Rfree

is the same as Rcryst but for 5.0% of the total reflections chosen at random and omitted from refinement.

††
This value represents the total B that includes TLS and residual B components.
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