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Abstract

Feedback mechanisms within cell lineages are thought to be important for maintaining tis-

sue homeostasis. Mathematical models that assume well-mixed cell populations, together

with experimental data, have suggested that negative feedback from differentiated cells on

the stem cell self-renewal probability can maintain a stable equilibrium and hence homeo-

stasis. Cell lineage dynamics, however, are characterized by spatial structure, which can

lead to different properties. Here, we investigate these dynamics using spatially explicit

computational models, including cell division, differentiation, death, and migration / diffusion

processes. According to these models, the negative feedback loop on stem cell self-renewal

fails to maintain homeostasis, both under the assumption of strong spatial restrictions and

fast migration / diffusion. Although homeostasis cannot be maintained, this feedback can

regulate cell density and promote the formation of spatial structures in the model. Tissue

homeostasis, however, can be achieved if spatially restricted negative feedback on self-

renewal is combined with an experimentally documented spatial feedforward loop, in which

stem cells regulate the fate of transit amplifying cells. This indicates that the dynamics of

feedback regulation in tissue cell lineages are more complex than previously thought, and

that combinations of spatially explicit control mechanisms are likely instrumental.

Author summary

Tissues in higher organisms are maintained at a homeostatic setpoint level, which is deter-

mined by a complex set of regulatory mechanisms. Negative feedback loops from differen-

tiated cells onto stem cell division patterns, which have been experimentally documented,

are thought to contribute to homeostatic regulation. This is in part based on the analysis

of mathematical models. Typically, however, such models are based on ordinary differen-

tial equations, which assume perfect mixing of cells and molecule, while in vivo, tissues

are characterized by pronounced spatial structure. Here, we show that this negative feed-

back mechanism loses the ability to maintain tissue homeostasis in spatially explicit

computational models. Negative feedback on stem cell division, however, can lead to the

organization of stem and differentiated cells into distinct, spatially separated islands,
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where stem cells comprise a small fraction of the cell population. Reduction of negative

feedback control in the model results in a breakdown of these spatial structures and stem

cell enrichment. We further show that control loops can maintain homeostasis in this spa-

tial setting if the negative feedback on stem cell divisions is combined with other, experi-

mentally documented, spatially explicit control mechanisms, indicating that more

complex combinations of control loops are instrumental.

Introduction

Tissue homeostasis is central to the functioning and survival of higher organisms. Adult tissues

are maintained by tissue stem cells that can both self-renew and differentiate to give rise to

transit amplifying cells, which in turn give rise to terminally differentiated cells. Stem cells can

divide asymmetrically [1], where one daughter is another stem cell and the other is a differenti-

ating cell. In mammalian systems, however, data indicate that a stochastic symmetric division

model also plays an important part, where a stem cell gives rise to either two daughter stem

cells or to two daughter differentiated cells [2–4]. In such settings, it is thought that feedback

mechanisms are required to prevent unbounded cell growth and to maintain homeostasis.

Corresponding feedback signaling molecules have been much discussed in the literature in dif-

ferent tissues, and loss of feedback signals has been implicated in carcinogenesis [5,6]. Several

feedback molecules have been shown to determine the fate of cell divisions, influencing

whether self-renewal or differentiation can occur. Examples include growth differentiating fac-

tor 11 (GDF11) and Activin βB (ACTβB), which negatively regulate self-renewal rates in pro-

genitor and stem cells in the olfactory epithelium of mice [7,8]; transforming growth factor

beta (TGF-β) [9], which is mutated in a variety of tumors [10–12]; the bone morphogenetic

protein 4 pathway (BMP4) that is inactivated in glioblastomas [13]; and the adenomatous pol-

yposis coli (APC) tumor suppressor gene that is inactivated in colorectal cancer, with concom-

itant activation of the Wnt cascade [14].

A growing mathematical literature has emerged that investigates feedback control in rela-

tion to tissue homeostasis, and loss of feedback control in relation to carcinogenesis [6–8,15–

26]. One particular approach focused on the notion that feedback factors produced by differ-

entiated cells might play an important role for determining the fate of cell divisions. Specifi-

cally, in the olfactory epithelium, there appears to be negative feedback from differentiated

cells both on the probability of stem cell self-renewal and on the rate of cell division, mediated

by GDF11 and Activin β [7,8]. These observations motivated mathematical models showing

that such negative feedback from differentiated cells onto stem cell division patterns can play

an important role in the maintenance of tissue homeostasis [8,21–24,27]. Mathematical mod-

els predicted that in the absence of this feedback, unbounded growth occurs, while negative

feedback from differentiated cells inhibiting stem cell self-renewal can result in a stable

equilibrium.

These mathematical models of negative feedback regulation are typically based on ordinary

differential equations (ODEs), which assume perfect mixing (mass action or meanfield

assumption) of cells and molecules. In other words, no spatial structure was assumed. This

applies to most mathematical models of stem cell regulation, with a few exceptions, e.g. [28].

Here, we re-formulate negative feedback models within cell lineages assuming spatially

restricted dynamics, and specifically examine how this affects the ability of negative feedback

loops to maintain tissue homoeostasis. We further construct models of other control mecha-

nisms where spatial interactions are important, and determine their effect on tissue
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homeostasis. We start by briefly reviewing the previously published ODE models that were

used to study negative feedback from differentiated cells on stem cell division patterns in rela-

tion to the ability to maintain tissue homeostasis. We then introduce the spatial modeling

framework and explore how this affects the dynamics.

Previously published, basic models without spatial restriction

An ordinary differential equation model has been used to describe tissue hierarchy dynamics

in a healthy tissue [8,15,24], and the models presented here build on these approaches. While

cell lineages consist of stem cells, transit amplifying cells, and terminally differentiated cells,

we can make a simplification and take into account only stem cells (which encompass all the

proliferating cells) and differentiated cells. Hence, with this simplification, the stem cell com-

partment can be thought to contain both stem and transit amplifying cells, and such models

have been shown to display qualitatively similar properties compared to three-compartment

models with respect to the types of dynamics investigated here [6,24] (below we explore a

more complex model that requires three compartments to be explicitly included). Denoting

stem cells (SC) by S and differentiated cells (DC) by D, the model is given by:

dS
dt
¼ rS 2p � 1ð Þ ð1Þ

dD
dt
¼ 2rS 1 � pð Þ � aD

Stem cells divide with a rate r. With a probability p, the division results in two daughter stem

cells (self-renewal), and with a probability (1-p), the division results in two daughter differenti-

ated cells (differentiating division). Differentiated cells are assumed to die with a rate α. These

equations capture a probabilistic model of tissue control, where on the cell population level a

fraction of the symmetric divisions result in two daughter stem cells and the remaining frac-

tion results in two daughter differentiated cells. In addition to symmetric divisions, asymmet-

ric divisions may play a role in tissue renewal. With asymmetric cell division, a stem cell gives

rise to one stem cell and one differentiated cell, thus maintaining a constant population of

stem cells. While not included here, it has been previously shown that the incorporation of

asymmetric cell divisions into this modeling framework does not fundamentally alter the

properties of the model [29], and in fact mathematically can be reduced to the same equation

structure as (1)[30]. System (1) is only characterized by a neutrally stable family of nontrivial

equilibria if p = 0.5 [6,8]. If p>0.5, infinite growth is observed. If p<0.5, the cell population

goes extinct.

If we include the assumption that differentiated cells secrete negative feedback factors that

influence stem cell division patterns, however, more realistic dynamics can be observed

[6,8,24]. In particular, it has been shown that negative feedback from differentiated cells onto

the probability of self-renewal, p, results in the existence of a stable equilibrium of cells, which

might contribute to tissue homeostasis. This is because increased numbers of differentiated

cells shift the division pattern in favor of differentiation, which limits overall cell growth.

Mathematically, this has been expressed by p(D) = p’/(1+f1Dκ1), where constant p’ is the basic

self-renewal probability of stem cells in the absence of any feedback, and parameters f1 and κ1

determine the strength and power of the feedback. The existence of a stable equilibrium

requires p’>0.5.

In addition, feedback loops have been proposed where differentiated cells reduce the rate of

stem cell division [8,24], which can be expressed as r = r’/(1+f2Dκ2), where r’ is the basic stem
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cell division rate in the absence of any feedback (and similarly, parameters f2 and κ2 determine

the strength and power of the feedback). While this feedback can influence the dynamics of

the system, it does not contribute to the existence of a stable equilibrium, and hence

homeostasis.

Under these assumptions, the stable equilibrium population size is given by [29]

S� ¼
a

r1

2p0 � 1

f1

� � 1
k1

1þ f2
2p0 � 1

f1

� �k2
k1

 !

D� ¼
2p0 � 1

f1

� � 1
k1

Results

An agent-based model with diffusion of feedback mediators

We consider a two-dimensional spatial model of growing cell populations that are regulated

by a population of diffusing negative feedback mediators. The model contains a cell layer and

a layer that describes the dynamics of feedback factors.

The dynamics of the cell population are described by a stochastic agent-based model, which

assumes two cell populations: stem cells and differentiated cells. The agent-based model is

given by a 2-dimensonal grid that contains nxn spots. Each spot can be empty, contain a stem

cell, or contain a differentiated cell. During one time step, the grid is sampled N times, where

N is the total number of cells in the system. If the sampled spot contains a stem cell, a division

event can occur with a probability pdiv. A target spot is chosen randomly from the eight nearest

neighboring spots, into which the offspring cell can be placed. If that spot is already occupied,

the division event is aborted, introducing density dependence into the model (similar to logis-

tic growth in ODEs). If the target spot is empty, a new stem cell is placed there with a probabil-

ity pself (self-renewal), and a differentiated cell is placed there with a probability 1- pself. A stem

cell can die with a probability pSdeath. If the sampled spot contains a differentiated cell, cell

death occurs with a probability pDdeath. In addition to these processes, stem and differentiated

cells can attempt a migration event with a probability pmig. A spot is selected randomly from

the eight nearest neighbors and if this spot is empty, the cell moves there. While the division

events can in principle be formulated differently, the rules implemented here are meant to cor-

respond to the previously published ODEs [6,8,24], with the addition of logistic growth rather

than unlimited growth in the absence of feedback (see next section).

In contrast to previously published ODE models reviewed above [6,8,24], we here include

the possibility of stem cell death for two reasons. First, tissue stem cells do die, although with a

relatively small rate. In addition, when the model formulation contains a carrying capacity for

the cell population, the absence of stem cell death leads to an artificial model outcome where

the stem cells can exclude (or “outcompete”) the differentiated cells population, which is bio-

logically unrealistic.

Note that in this algorithm, not all the cells will necessarily be sampled (and some might get

sampled more than once). It is however necessary to tie a (biological) time-step with popula-

tion size, to be able to compare different populations with each other. The following simple

scaling argument can be made: in a simple birth process with a per-cell division rate L time-1

and a population size N, during one time unit a cell will divide with probability L, so a total of

NL cells will be expected to divide per time-unit. Similarly, in a spatial system, we need to sam-

ple N times per time-unit to achieve that average population division rate. In general, the larger

the population size, the more events will happen during a time unit. Our approach is one of a

PLOS COMPUTATIONAL BIOLOGY Spatial dynamics of feedback regulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010039 May 6, 2022 4 / 17

https://doi.org/10.1371/journal.pcbi.1010039


number of ways to simulate this type of a stochastic process, another being the spatial Gillespie

simulation, which implements a similar idea by setting the expectation of the time to the next

reaction by the inverse of the sum of all the propensities (given by NL in the above example).

Further details are provided in previous work [6].

The probability of self-renewal is influenced by the presence of feedback factors that can be

secreted from differentiated cells. The dynamics of the feedback factors are described by a

deterministic patch model, which includes production by differentiated cells, degradation, and

diffusion of factors to the neighboring patches. Each spot on the cell grid is associated with a

patch, in which the level of feedback factors is recorded. In each patch i, the level of the feed-

back factor, zi, is given by the following ODE: dzi/dt = c–bzi−mgzi + gZi. The parameter c repre-

sents the production rate of the feedback factor. We set c = 0 if the spot does not contain a

differentiated cell, otherwise c>0. Feedback factors are assumed to decay with a rate b in each

patch. Feedback factors move to the nearest neighboring patches with a rate g, representing

diffusion processes. The parameter m denotes the number of neighboring patches. For our

grid, m = 8, except for boundary patches, where m<8. The variable Zi = Sjzj denotes the sum

of all feedback factor populations, zj, among the patches adjacent to i. For each time step of the

agent-based model, the ODEs in each patch were run for one time unit. The probability of

self-renewal for a given cell in the agent-based part of the model is thus given by pself = p(0)self /
(1+hzi), where p(0)self denotes the self-renewal probability in the absence of any feedback. The

more feedback factors are locally present in the patch corresponding to the spot in the cellular

grid, the lower the probability of stem cell self-renewal (and the larger the probability of differ-

entiation). The parameter h describes the strength of feedback inhibition, with larger values of

h corresponding to more potent inhibition. For simplicity, we do not include feedback on the

stem cell division rate, because this has been shown in the ODEs to not contribute to the exis-

tence of a stable equilibrium. This feedback can, however, be easily incorporated into the

model in the same way.

We note that the time scales of the agent-based portion of the model and the ODEs are the

same, but that the processes occurring in these two parts of the model can occur at very differ-

ent rates. As mentioned above, in the agent-based model, one time unit is defined by sampling

N times, where N is the number of cells in the system. For each time unit in the agent-based

model, the ODEs describing the dynamics of the feedback factor are also advanced by one

time unit (as both cell dynamics and factor diffusion happen concurrently in the system). The

amount of change that occurs during that one time unit can be very different for the agent-

based portion and the ODEs, and is expressed in the rate constants and probabilities that

determine the rate at which processes happen in the two parts of the model. We explore a large

parameter space where time-scales of these different processes vary significantly.

The degree of spatial restriction in this system is given by two parameters: the migration

rate of cells, pmig, and the rate of feedback diffusion, g. If pmig = 0 and the value of g is low, the

system is characterized by strong spatial restriction. For large values of pmig and g, the system

approaches mass action dynamics (perfect mixing).

As initial conditions, a square of 7x7 spots in the center of the grid was filled with stem

cells, and the simulation was run according to the rules described above. Parameter values

are largely unknown, and hence were chosen for the purpose of demonstration. Parameters

quoted in the figures are picked such that stem cells divide on average once a day [31,32],

and terminally differentiated cells on average live for 10 days. The reported results, how-

ever, do not depend on these particular values, as was explored by repeated simulations

and parameter sweeps. The basic codes that simulate the different models are provided in

S1–S4 Data.
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Dynamics assuming strong mixing of cells and feedback mediators

We start by assuming large values of pmig and g, i.e. the migration rate of cells and the diffusion

rate of feedback factors. In this limit, the average dynamics of the agent-based model converge

to those predicted by the corresponding set of ordinary differential equations. Denoting the

populations of stem cells, differentiated cells, and feedback factors by S, D, and Z, respectively,

the ODEs are given as follows.

dS
dt
¼ rS 2p � 1ð Þ 1 �

Sþ D
K

� �

� ZS

dD
dt
¼ 2rS 1 � pð Þ 1 �

Sþ D
K

� �

� aD ð2Þ

dZ
dt
¼ xD � bZ;

where negative feedback from differentiated cells onto the probability of self-renewal is given

by p ¼ p0

1þ
fZ
K
, and p’ is the self-renewal probability of stem cells in the absence of feedback. In

contrast to model (1) above, here we explicitly track the population of secreted feedback fac-

tors, Z. They are produced by differentiated cells with a rate ξ and decay with a rate β. Another

change in the model (compared to model (1)) is the inclusion of a carrying capacity K, which

corresponds to the maximum population size the system can sustain, independent of the nega-

tive feedback loop. This describes the finite grid size underlying the agent-based model. In the

term describing the negative feedback on the stem cell self-renewal probability, the abundance

of the secreted feedback mediator is divided by the carrying capacity K. The reason is that in

the agent-based model, a larger system results in a lower amount of soluble feedback mediators

available per cell due to diffusion, and this has to be captured in the corresponding ODE.

Finally, we assumed that stem cells can die with a rate η, in addition to being removed through

differentiation.

Fig 1A shows that this system of ODEs describes the average behavior of the agent-based

model well for the limit of large cell migration and feedback diffusion rates. More generally,

this ODE model is characterized by two equilibria. If p’<0.5, the cell population goes extinct

and the system converges to the trivial equilibrium S(0) = 0, D(0) = 0, Z(0) = 0. If p’>0.5, the sys-

tem converges to a stable equilibrium at which all cell populations exist (not written down

here due to complexity of expressions). An important property of this equilibrium is that the

total cell population size is proportional to the carrying capacity, K (Fig 1B). As the value of

the carrying capacity increases towards an infinitely large size, the number of cells also increase

to an infinitely large size, despite the occurrence of negative feedback regulation. Therefore, in

this model, negative feedback alone cannot maintain homeostasis of the cell population,

defined as keeping the number of cells constant. The strength of negative feedback does, how-

ever, regulate the density of cells for a given carrying capacity, K. This behavior is in contrast

to model (1) that does not take into account a carrying capacity. The reason is that model (1),

as well as similarly structured models [24], assume that a given total amount of feedback medi-

ators is equally effective regardless of the system’s size, while model (2) assumes that the same

amount of feedback mediators becomes less effective at suppressing stem cell self-renewal for

larger system sizes. In other words it assumes that locally, biological processes respond to con-

centrations rather than the total amounts of an factor, which corresponds to the formulation

of the agent-based model and might be biologically more realistic.
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Dynamics assuming spatial restrictions

Here we assume that the processes of cell migration and the diffusion of feedback mediators

are spatially restricted. For simplicity, we assume the strongest form of spatial restriction of

cell migration, i.e. no migration occurs, and cells are assumed to place their offspring in a near-

est neighboring spot. For feedback mediators, the rate of diffusion will be varied from low to

high. In general, similar properties are observed compared to the well-mixed system studied in

the previous section. That is, negative feedback can only regulate the density of the cells, but

not total numbers: the larger the size of the grid, the larger the total cell population size (Fig

1C). Beyond the properties of the well-mixed model, however, we find that negative feedback

inhibition can result in pronounced spatial patterns, in which a number of islands of stem and

differentiated cells exist, separated by space that is not occupied by cells (Fig 2A). Within these

islands, stem cells cluster in the inside, while differentiated cells are located around the periph-

ery of the islands. Biological relevance of these clusters is discussed further below (Discussion

Section). As the strength of feedback inhibition is reduced (lower value of parameter h), the

distribution of cells within the space becomes uniform (Fig 2B). We quantified the degree of

clustering by calculating the ratio of the variance to mean of the number of cells (which we

denote by Idisp for index of dispersion) assuming the grid is subdivided into a number of rela-

tively small squares. A ratio that is significantly greater than one indicates that the cell popula-

tion is clustered across space. Fig 2C shows that as the strength of negative feedback inhibition

is reduced, there is a remarkably sharp transition from a clustered distribution of cells towards

a uniform distribution. This indicates the existence of two distinct states in the system,

depending on whether the negative feedback can control density (leading to the patchy config-

uration) or whether this breaks down, resulting in a significantly higher density. If the clus-

tered population structure corresponds to a normal state, then it is possible that the transition

to a uniform distribution due to reduced negative feedback corresponds to a first step towards

abnormal growth. Interestingly, in the presence of strong negative feedback and clustered pop-

ulation structure, the stem cell population is in the minority (Fig 2). For weak negative

Fig 1. Properties of the spatially explicit computational model with negative feedback. (A) Dynamics of the agent-based model, depending on the carrying

capacity K under the assumption that cells migrate with a high rate (large pmig) and feedback mediators move across space at a high rate (large g). The

horizontal lines represent equilibrium values derived from the corresponding ODE system (2). Parameters are given as follows. For agent-based model: Pdiv =

4.17x10-2, p(0)
self = 0.7, PSdeath = 0, PDdeath = 8.3x10-3, pmig = 0.67, h = 1.6, c = 8.33, b = 4.17, g = 83.3; n = 100 and n = 200 for the small and large system,

respectively. The average over 46 simulations are shown for each case; standard errors are too small to see. For ODEs: r = 4.17x10-2, η = 0, α = 8.3x10-3, ξ = 8.33,

β = 4.17, p’ = 0.7, f = 1.6, K = 100x100 and 200x200 for the small and large systems, respectively. (B) Equilibrium properties of the corresponding ODE system

(2) as a function of the carrying capacity, K. Parameters were the same as in (a). (C) Dynamics of the agent-based simulation, depending on the carrying

capacity K under the assumption of spatial restriction (pmig = 0, low g). Parameters were chosen as follows. Pdiv = 4.17x10-2, p(0)
self = 0.7, PSdeath = 8.3x10-5,

PDdeath = 4.17x10-3, pmig = 0., h = 4.0x10-3, c = 8.33, b = 8.3x10-3, g = 0.83; n = 100 and n = 200 for the small and large system, respectively. The average over 46

simulations are shown for each case; standard errors are too small to see. Units of parameters are in hours.

https://doi.org/10.1371/journal.pcbi.1010039.g001
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Fig 2. Spatial patterns observed in the agent-based model with negative feedback. Dark blue is empty space, light

blue represents stem cells, and yellow represents differentiated cells. (A) With a stronger degree of negative feedback

on the stem cell self-renewal rate, clumped spatial patterns are observed. Islands of stem and differentiated cells form,

separated by empty space. Stem cells are in the minority. (B) For weaker negative feedback, these spatial patterns break

down, and a uniform distribution of cells across space is observed. Also, stem cells become the dominant population.

For A and B: The spatial picture is a snapshot in time at equilibrium, and the time series represents the average over 46

simulations; standard errors are too small to see. (C) The degree of clustering of cells across space can be quantified by

dividing the space up into relatively small squares (10x10), and recording the number of cells per square. If the ratio of

Idisp = variance / mean is greater than 1, the spatial pattern is clumped. If the ratio Idisp is less than one, the distribution

is uniform. The graph shows the value of Idisp at the end of the simulation (at equilibrium). As the rate of negative

feedback inhibition is increased from low to high, we observe a relatively sharp transition in the ratio Idisp, i.e. from a

uniform to a clumped distribution of cells across the space. Baseline parameter values were chosen as follows. Pdiv =

4.17x10-2, p(0)
self = 0.7, PSdeath = 8.3x10-5, PDdeath = .17x10-3, pmig = 0., h = 4x10-3, c = 8.33, b = 8.3x10-3, g = 0.83;
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feedback and uniform cell distribution, however, the stem cell fractions are significantly larger

(Fig 2), corresponding to stem cell enrichment [33].

Finally, we note that if the strength of negative feedback inhibition is large and crosses a

threshold in this model, extinction of the cell population is observed.

Next, we investigated how the different outcomes depend on model parameters. This was

done by randomly drawing the logarithm of parameter values from a uniform distribution and

recording the ratio Idisp. In Fig 3, two parameters were varied simultaneously for any given

plot: The rate of negative feedback inhibition on stem cell self-renewal, h, was always varied,

together with a second parameter. The outcome of the simulation is color-coded in Fig 3,

where each dot in the parameter space represents the outcome of an individual simulation. A

value of Idisp >1.5 (clustering) is recorded in red, and a value of Idisp <1.5 (uniform distribu-

tion) is recorded in blue. Runs in which population extinction occurred are shown in yellow.

As mentioned above, clustered cell population persistence occurs for intermediate rates of neg-

ative feedback inhibition, while larger and smaller rates of feedback inhibition result in popula-

tion extinction, or a uniform distribution of cells across space, respectively. The width of the

parameter region in which cell clusters are observed depends on parameters (Fig 3). In particu-

lar, it depends on the diffusion rate of feedback mediators, and on the decay rate of the feed-

back mediators. Larger diffusion rates, g, and slower decay rates of feedback mediators, b, lead

to a broader region of feedback inhibition rates for which cell clusters are observed (Fig 3). If

the diffusion rate of feedback mediators is low and their decay rate is high, the mediators

secreted by a given cell mostly act locally, and the clustering regime is narrow. In the limit, the

clustering regime is so narrow that the behavior of the system essentially transitions from

extinction to a uniform invasion of the space by cells (Fig 3). If the diffusion rate of feedback

mediators is faster and they decay slower, then the mediators secreted from a given cell affect

cells in a larger area of the space, and the clustering behavior becomes pronounced (Fig 3).

Therefore, the model suggests that the clustered persistence of cells requires feedback media-

tors to act beyond the immediate neighborhood of the cell from which they are secreted. Other

model parameters do not have a significant influence on the range of feedback inhibition val-

ues across which clustered cell persistence is observed (Fig 3).

Feedforward loop

So far, we have considered regulatory loops where differentiated cells influence the behavior of

stem cells. Data from the airway epithelial tissue from mice [34], however, indicate that stem

cells can also send a signal forward to their progeny and influence their behavior. In fact, this

“feedforward” regulation is inherently spatial. The stem cells secrete a notch ligand to their

daughter transit amplifying cells (secretory cells), and this signal is necessary to maintain the

transit amplifying cell population. In the absence of this signal, the transit amplifying cells

undergo terminal differentiation to become ciliated cells. Hence, the further the transit ampli-

fying cells are located away from stem cells, the weaker this signal, and the more likely terminal

differentiation occurs. Transit amplifying cells that are located closer to stem cells receive a

stronger signal and are more likely to self-renew.

We adapt our agent-based model to describe this scenario. To do so, we expand the model

complexity to include a population of transit amplifying cells (TA) in addition to stem cells.

Now, stem cell differentiation results in the generation of two TA cells. Similarly to stem cells,

TA cells have a probability to divide (qdiv). With a probability qself, this is a self-renewing

n = 200. For (A) h = 4x10-3, (B) h = 10−3, and for (C) the value of h was varied, as indicated. Units of rate parameters

are in hours-1.

https://doi.org/10.1371/journal.pcbi.1010039.g002
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division, giving rise to two TA daughter cells; with a probability 1-qself, this is a terminally dif-

ferentiating division, giving rise to two daughter differentiated cells. TA cells are assumed to

die with a probability qTdeath. Feedforward mediators are secreted from stem cells. The dynam-

ics of the feedforward factors are again described by a deterministic patch model. In each

patch i (associated with a spot on the grid), the level of the feedforward factor, wi, is given by

the following ODE: dwi/dt = c2 –b2wi−mg2wi + g2Wi. The parameter c2 represents the

Fig 3. Parameter dependencies of outcome. Each dot in the graph represents the long-term outcome of an individual

simulation. Each simulation was run up to a time threshold, and the spatial distribution was determined by calculating

Idisp, the index of dispersion. The time threshlold was determined by waiting until the temporal average of the stem

cells did not change by more than 0.1% for 1000 consecutive time steps, after which the simulation was allowed to run

for an amount of time that corresponds to 10 years in the simulation, to ensure that the dynamics are well in the steady

state pase. Yellow indicates the extinction of the cells. Blue indicates a distribution that is characterized by Idisp < 1.5

(mostly uniform distribution). Red indicates Idisp > 1.5 (clumped distribution of cells). For each graph, two parameters

were varied: the strength of negative feedback on the stem cell self-renewal probability, h, and a second parameter, as

indicated in the individual graphs. The ranges of the parameters were chosen such that all three outcomes are seen, to

illustrate how the different outcomes depend on parameters. Baseline parameters were chosen as follows. Pdiv =

4.17x10-2, p(0)
self = 0.7, PSdeath = 8.3x10-4, PDdeath = 4.17x10-3, pmig = 0., c = 8.33, b = 8.3x10-3, g = 0.833; n = 200. Units

of rate parameters are in hours-1.

https://doi.org/10.1371/journal.pcbi.1010039.g003
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production rate of the feedback factor. We set c2 = 0 if the spot does not contain a stem cell,

otherwise c2>0. Feedforward factors are assumed to decay with a rate b2 in each patch. Feed-

forward factors move to the nearest neighboring patches with a rate g2, representing diffusion

processes. The parameter m again denotes the number of neighboring patches. The variable

Wi = Sjwj denotes the sum of all feedforward factor populations, wj, among the patches adja-

cent to i. Importantly, the probability of TA cell self-renewal (and thus maintenance) is deter-

mined by the amount of the feedforward factor according to qself ¼ 1 � 1

1þh2wi
, consistent with

the experimental observations [34]. For large feedforward factor levels, the probability of TA

self-renewal converges to one. In the absence of feedforward factors, the probability of TA self-

renewal is zero. In other words, the feedforward factors secreted by stem cells are responsible

for the maintenance of the TA cell population, and in the absence of these mediators, terminal

differentiation is the only fate of the division.

It is instructive to start examining the dynamics of this system under the assumptions that

stem cells and TA cells do not die (and only disappear through differentiation). In this case, a

structure forms where stem cells are located in the center, surrounded by an area of TA cells,

with differentiated cells at the periphery (Fig 4Ai). Interestingly, this structure is self-contained

and stops growing after an initial phase of expansion. The size of this structure is independent

of the grid size, and determined by the diffusion rate of the feedforward factor. The further the

feedforward factors can diffuse from the stem cells, the larger the area of the TA cell popula-

tion. In other words, in this scenario, the feedforward regulation can maintain homeostasis of

cell numbers, and the same cell numbers are maintained no matter how large the available

space is. Hence, homeostasis is maintained by the control loops and not by the carrying capac-

ity of the system. The reason for this behavior is that there is competition between stem and

TA cells for space, similar to the dynamics described by Hillen et al [35]. Stem cells enable self-

renewal of TA cells in their immediate vicinity, and the TA cells block the stem cells from

dividing further. Hence, the growth of the overall cell population is limited.

This homeostasis, however, represents a somewhat artificial situation due to the assumption

that stem and TA cells can only be eliminated through differentiation processes, and no

explicit cell death is assumed to occur. If cell death is assumed to occur in stem and TA cells,

the spatial competition dynamics either go in favor of the TA cells, resulting in the exclusion

of stem cells and thus in the extinction of the whole cell population, or in favor of stem cells, in

which case the stem cell population can expand outward over time, leading to cell population

growth limited only by the available space (Fig 4Aii), similar to the simulations with negative

feedback on stem cell self-renewal. Hence, the control-loop-mediated homeostasis observed in

this system is lost in the presence of stem cell death.

Combination of negative feedback and feedforward regulation

The above sections considered negative feedback on the stem cell self-renewal probability, and

feedforward regulation separately. For each model, these mechanisms failed to maintain con-

trol loop-mediated homeostasis of cell numbers. Here, we consider a modified version of the

agent-based model that includes both of these control processes at the same time. The two con-

trol mechanisms are implemented in the same way as before. We now observe parameter

regions in which the control loops maintain a constant number of cells independent of the car-

rying capacity of the system. In other words, it is the control loops that maintain homeostasis

and not the carrying capacity (Fig 4B), i.e. the number of cells converges to an equilibrium

value that is independent of the size of the grid or carrying capacity (including parameter

regions where stem and transit amplifying cells are assumed to die). The reason for this behav-

ior is as follows. With the feedforward loop, the death of transit amplifying cells can make
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Fig 4. (A) Properties of the agent-based models with the feedforward control loop only. Dark blue represents empty space, light blue stem cells, green transit

amplifying cells, and yellow terminally differentiated cells. (i) In the absence of stem and transit amplifying cell death, the cell population stops growing and

converges to an equilibrium that is independent of the carrying capacity, K (not shown). The transit amplifying cells block stem cell divisions due to lack of

available space, and this prevents the cluster of cells from expanding. The picture shown corresponds to the population at steady state. Parameters were as

follows: Pdiv = 4.17x10-2, p(0)
self = 0.8, qdiv = 5.83x10-2, PSdeath = 0, PTdeath = 0, PDdeath = 4.17x10-3, pmig = 0., c2 = 0.833, b2 = 8.3x10-3, g2 = 0.417, h2 = 2, n = 200.

(ii) In the presence of cell death, however, this mechanism breaks down and the stem cells can continuously expand into empty space, provided by the death of

transit amplifying cells. The picture represents a snap-shot during this cell expansion. Parameters were chosen as follows: Pdiv = 4.17x10-2, p(0)
self = 0.8, qdiv =

5.83x10-2, PSdeath = 8.3x10-5, PTdeath = 10−4, PDdeath = 4.17x10-3, pmig = 0., c2 = 0.833, b2 = 8.3x10-3, g2 = 0.417, h2 = 2, n = 200. (B) Properties of the agent-based

model that contains both the feedforward and the feedback loop, and assumes the occurrence of death for all cell populations. (i) Time series, in which the

system / grid size was varied, n = 100 vs n = 150. Blue and purple show stem cells for the smaller and larger grid size, respectively. Light green and dark green

show TA cells, for the smaller and larger grid size, respectively. Yellow and orange show differentiated cells, for the smaller and larger grid size, respectively.

The lines present the average time series over 46 iterations of the simulation, and the dashed lines represent the average plus minus standard errors. The

simulation was run for 100 years to show that this mechanism can in principle maintain tissue homeostasis for long human life-spans (in the absence of any

mutations that might allow cell growth) (ii) A snapshot of the spatial configuration of cells at a specific time point during steady state. Parameters were chosen

as follows. Pdiv = 4.17x10-2, p(0)
self = 0.8, qdiv = 5.83x10-2, PSdeath = 8.3x10-5, PTdeath = 10−4, PDdeath = 4.17x10-3, pmig = 0., c = 8.33, b = 8.33x10-2, g = 0,

h = 6.0x10-2, c2 = 8.33, b2 = 8.33x10-2, g2 = 3.33, h2 = 2.5. Units of rate parameters are in hours-1.

https://doi.org/10.1371/journal.pcbi.1010039.g004
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space for the invasion of self-renewing stem cells. If only the feedforward loop exists, this

results in a continuous expansion of the stem cell population through space, which results in a

concomitant expansion of transit amplifying and differentiated cells, and hence in uncon-

trolled growth. The addition of negative feedback on stem cell self-renewal, however, counters

this process. The negative feedback mediators are assumed to be secreted from differentiated

cells, which are located predominantly at the surface of the cell mass (Fig 4B). As the stem cells

expand in space and reach locations closer to the differentiated cells, the negative feedback

loop becomes important and counters this outward stem cell expansion by forcing terminal

differentiation to occur. This prevents the unbounded expansion of the stem cells and ensures

the existence of an equilibrium that is independent of the grid size (carrying capacity). This

effect is observed even if the negative feedback factors act predominantly on a local level,

including with zero diffusion rates (as long as the feedback mediators remain present for long

enough to stop an expanding front of stem cells).

Exploration of the parameter space is computationally not feasible on a larger scale because

each parameter combination needs to be run many times to obtain the average trajectories and

thus to determine whether grid size determines the equilibrium number of cells. Additional

simulations, however, are described in S1 Text (ii), demonstrating that these dynamics are

observed over large parameter ranges.

It is important to point out that spatial dynamics are essential to observe homeostasis that is

maintained by the control loops and independent of the carrying capacity of the system. It is

possible to describe a non-spatial version of the feedforward control mechanism, where stem

cells promote the self-renewal of TA cells regardless of spatial location. A corresponding ODE

model that takes into account both the feedforward and the negative feedback mechanisms is

presented in S1 Text (i). In the absence of space, the ability of these controls to maintain

homeostasis is lost, and the equilibrium cell population sizes are directly proportional to the

carrying capacity of the system.

Discussion

Previous mathematical modeling approaches [6,8,24,27], based on the assumption that cells

mix perfectly (mass action), suggested that negative feedback from differentiated cells on the

self-renewal probability of stem cells is an important determinant of tissue homeostasis. Here,

we extended this analysis into a spatially explicit scenario where cells grow in a finite space,

characterized by a given carrying capacity (maximum possible number of cells the system can

sustain). This suggests that the negative feedback from differentiated cells onto the stem cell

self-renewal probability cannot by itself maintain tissue homeostasis. The number of cells at

equilibrium always scales with the carrying capacity of the system, even under the assumption

that cells and feedback mediators mix relatively well due to fast migration and diffusion pro-

cesses. In these models, an infinitely large space available for cell growth will lead to infinitely

large cell population sizes, despite the presence of the negative feedback loop.

The negative feedback on stem cell self-renewal can only maintain cell density, not total cell

numbers in the models considered here. In the spatially explicit model versions (without sig-

nificant migration of cells), this negative feedback can further lead to the formation of spatial

patterns. In the presence of relatively strong negative feedback, clumps of cells (containing

both stem and differentiated cells) form in the model, separated by empty space. This is inter-

esting, because it suggests that this negative feedback loop might be involved in the formation

of spatial structures in the cellular microenvironment. At the same time, however, the forma-

tion of spatial structures around stem cell populations, in particular the formation of stem cell

niches, is highly complex and includes many (partially unknown) components not currently
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taken into account in our model [36]. Therefore, it is difficult to interpret details of these spa-

tial structures, such as the location of stem cells in the center and the location of differentiated

cells around the periphery in Fig 2A. While this could be quantified further in the model, the

physiological relevance remains unclear because these predicted spatial arrangements can be

easily altered when further biological complexities, characteristic of stem cell niches, are intro-

duced into the model. This was therefore not explored further.

As the strength of feedback inhibition is reduced, there is a sharp transition in the model

away from the clumped spatial structure towards a uniform distribution of cells, where the

stem cell population is dominant. This means that loss of negative feedback on stem cell self-

renewal might lead to a collapse of spatial organization, which might be a first step towards

malignancy, even though unbound growth does not yet occur. Whether this is indeed the case

requires further investigation, in particular using models that take into account a higher bio-

logical complexity that characterize stem cell niche morphology.

In this context, it is interesting to note that in the regime with relatively strong feedback,

where pronounced spatial structures form, stem cells are in the minority and form a small frac-

tion of the total cell population (Fig 2A). As feedback inhibition becomes weaker and spatial

structures disappear, the fraction of stem cells markedly increases in the model, i.e. we observe

stem cell enrichment (Fig 2B). Stem cell enrichment is a phenomenon that occurs during car-

cinogenesis [33], supporting our notion that the transition from spatial structures to a more

uniform distribution of cells could correlate with disease development.

While the model suggests that negative feedback on stem cell self-renewal can lead to spatial

structures, the model further indicates that stronger spatial restrictions of feedback mediator diffu-

sion limits the parameter regime in which this behavior is observed. The pattern formation is

observed over relatively wide parameter regions only if the rate of feedback mediator diffusion is

fast, i.e. if feedback factors secreted by a given cell can affect cells in a location further away. If feed-

back mediators are assumed to act only locally (through limited diffusion), the parameter region

where the spatial patterns form becomes extremely narrow. In this case, as the strength of the nega-

tive feedback is reduced from high to low, the model behavior more or less transitions from popu-

lation extinction (stronger feedback) to a uniform distribution of cells (weaker feedback).

It was interesting to observe, however, that a combination of the negative feedback loop

with a feedforward loop from stem cells to transit amplifying cells can lead to homeostasis that

is maintained by the control loops and independent of the carrying capacity (e.g. a self-limiting

solution); that is, cell numbers settle around an equilibrium that is independent of the amount

of space available. The feedforward loop assumed in the model was based on data from the air-

way epithelium in mice, where stem cells were shown to secrete a notch ligand, which enabled

the maintenance of the transit amplifying cells [34]. In the absence of this feedforward signal,

transit amplifying cells were shown to undergo terminal differentiation. This is an inherently

spatial process, since the concentration of the feedforward mediator decreases with distance

from the originating stem cell. This leads to the formation of a structure, where stem cells are

located in the center, surrounded by transit amplifying cells, while differentiated cells are

located at the surface of this area. The presence of only the feedforward control loop cannot

maintain homeostasis because the stem cell population can expand outward and replace transit

amplifying cells. The concomitant presence of the negative feedback loop, however, results in

increased differentiation (rather than self-renewal) of stem cells, limiting their ability to spread

outwards in space. This contributes to a stable equilibrium that is independent of the carrying

capacity of the system. This type of equilibrium is observed even if the diffusion rate of the neg-

ative feedback mediator is assumed to be slow, i.e. if the negative feedback loop acts largely on

a local level. Importantly, an equivalent non-spatial model does not exhibit control-mediated

cell homeostasis. These results suggest that the interplay between different feedback control
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mechanisms within a cell lineage in a spatial setting can lead to homeostasis that is maintained

only by the control loops (independent of carrying capacity), which we could not observe in a

model without spatial structure.

While the combination of these particular feedback and feedforward mechanisms can

maintain control loop-mediated homeostasis in our model (independent of carrying capacity),

it is likely that other feedback configurations exist that give rise to similar results. In addition,

it is important to point out that this is a relatively simple model that was aimed to test how pre-

viously described homeostatic mechanisms [6,8,24] translate into spatial settings. Nevertheless,

this model is based on solid experimental data that document the biological importance of the

feedback and feedforward loops underlying the mathematical models. As mentioned above,

however, additional biological complexities, especially those that characterize stem cell niches,

need to be considered to gain a more detailed picture of cell dynamics under homeostatic con-

ditions. Besides the control loops involved in cells of a given lineage, complex signaling mecha-

nisms between the cell lineage and its microenvironmental components exist that together

yield homeostatic properties. These processes will need to be decoded with a combination of

experiments and dynamical models. The results described here form a basis for understanding

feedback dynamics in such more complex and realistic settings.

Materials and methods

The core computational models underlying this study are given by stochastic agent-based

models that describe the dynamics of cell populations, coupled with a deterministic patch

model that describes the dynamics of soluble feedback mediators. The models are described in

detail in the Results section. They were coded in Intel Fortran, and simulated on a computer

cluster. The basic codes that simulate the different models are provided in S1–S4 Data. For the

limit of perfect mixing, the dynamics can be given by ordinary differential equations, which

are also described in detail in the Results section.

Supporting information

S1 Text. Additional mathematical and computational details about the modeling analysis.

(PDF)

S1 Data. Computer code that generates data that were used for Fig 2. Details about the code

and how to run it are given within the file.
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S2 Data. Computer code that generates data that were used for Fig 2. Details about the code

and how to run it are given within the file.

(F90)

S3 Data. Computer code that generates data that were used for Fig 3. Details about the code
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