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natural experiment
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Documenting ecological patterns across spatially, temporally and taxonomically
diverse ecological communities is necessary for a general understanding of the
processes shaping biodiversity. A major gap in our understanding remains the
comparison of diversity patterns across a broad spectrum of evolutionarily
and functionally diverse organisms, particularly in the marine realm. Here, we
aim to narrow this gap by comparing the diversity patterns of free-living
microbes and macro-invertebrates across a natural experiment provided by the
marine lakes of Palau: geographically discrete and environmentally hetero-
geneous bodies of seawater with comparable geological and climatic history,
and a similar regional species pool. We find contrasting patterns of α-diversity
but remarkably similar patterns of β-diversity between microbial and macro-
invertebrate communities among lakes. Pairwise dissimilarities in community
composition among lakes are positively correlated between microbes and
macro-invertebrates, and influenced to a similar degree by marked gradients
in oxygen concentration and salinity. Our findings indicate that a shared
spatio-temporal and environmental context may result in parallel patterns of
β-diversity in microbes and macro-invertebrates, in spite of key trait differences
between these organisms. This raises the possibility that parallel processes also
influence transitions among regional biota across the tree of life, at least in
the marine realm.
1. Introduction
A key step towards understanding the general processes that underlie diversity
and abundance in ecological communities is to search for patterns that are
repeated across spatially, temporally and taxonomically diverse communities
[1]. Recent syntheses of previously identified repeated patterns propose that
the diversity and structure of most ecological communities may be driven by
the same suite of processes [2,3]: deterministic differences in fitness between
individuals of different species (selection), random changes in relative abun-
dances (drift), the movement of organisms (dispersal) and the origin of new
genetic variants (speciation/mutation). However, these syntheses are based pre-
dominantly on studies of ‘macro’-organisms (i.e. multicellular plants and
animals), which together make up a relatively small proportion of the tree of
life. Comparing ecological patterns across a broad spectrum of life forms there-
fore remains a major gap in our understanding of the general processes shaping
ecological communities and the functioning of ecosystems [4,5]. Here, we aim
to narrow this gap by comparing the diversity patterns of evolutionarily and
functionally disparate microbes and macro-invertebrates within a marine natu-
ral experimental system. Collectively, these groups provide a broad picture of
diversity within marine ecosystems, with thousands of microbial groups

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2019.0999&domain=pdf&date_stamp=2019-10-09
mailto:giorapac@gmail.com
https://doi.org/10.6084/m9.figshare.c.4673129
https://doi.org/10.6084/m9.figshare.c.4673129
http://orcid.org/
http://orcid.org/0000-0003-1494-9017
http://orcid.org/0000-0002-5417-5426
http://orcid.org/0000-0001-7927-8395


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20190999

2
found throughout the ocean [6,7] and macro-invertebrates
being among the most speciose groups of macro-organisms
in marine communities [8].

Quantifying relationships between microbial and macro-
organismal diversity is central to a general understanding
of ecosystems [9–11], because associations between microbes
and macro-organisms underlie multiple ecosystem processes
and properties—including productivity [12], nutrient cycling
[13] and resilience to environmental change [14]. Yet, the
degree to which the processes structuring macro-organismal
communities also structure microbial communities, and
whether parallel processes result in parallel biodiversity
patterns remains unclear [9,15,16]. Applying approaches
developed for macro-organismal community ecology to
microbial communities has revealed microbial patterns coher-
ent with macro-organismal patterns and potentially driven
by the same suite of general processes [17–20]. Nevertheless,
given fundamental trait differences between these taxa, it is
plausible that the mechanisms through which selection,
drift, dispersal and speciation structure microbial and
macro-organismal communities lead to contrasting patterns
in some aspects of their diversity [15,16]. First, the greater
metabolic diversity of microbial communities multiplies the
potential abiotic and biotic pathways through which selection
may act [18]. For instance, the concentration of particular
compounds (e.g. methane, sulfate) may strongly influence
the microbial groups that directly use them as substrates,
while having little or no direct influence on macro-organisms.
Second, the generally higher capacity for passive dispersal
(via water or air) may lead to microbial communities that
are more spatially and temporally homogeneous [21–23],
and more strongly structured by environmental selection
[24,25] than communities of macro-organisms. Third, the
high degree of rarity and functional redundancy within
microbial communities, coupled with the higher rates of pas-
sive dispersal, may make microbial communities particularly
susceptible to ecological drift [19]. Finally, owing to poten-
tially rapid growth and shorter generation times, speciation
could influence microbial community dynamics over a
shorter temporal scale than for macro-invertebrates [15,16].

Reliable tests of whether microbial and macro-organismal
communities display distinct or parallel diversity patterns
require comparisons across shared spatio-temporal domains
and environmental gradients influencing diversity in both
sets of organisms [9]. Previous studies comparing realized
microbial and macro-organismal communities have faced a
number of challenges. First, they had to grapple with the
blurred boundaries and high connectedness of their study eco-
systems (e.g. mountainsides: [26–28]; streams: [21,22,29,30];
forests: [31–33]), which make it difficult to select a suitable
spatial scale for comparing microbes and macro-organisms.
Second, they had to address whether the environmental gradi-
ents under study were relevant for both microbes and macro-
organisms, and whether those effects were observed at the
spatio-temporal scale most appropriate for each taxon (e.g.
[5,26,31]). Third, they had to disentangle the relative influence
of direct ecological interactions from the influence of shared
environmental constraints between microbial and macro-
organismal communities [34–38]. While in situ manipulative
experiments can partially resolve these challenges in terrestrial
ecosystems, experiments involving a high diversity of taxa are
much more challenging in open and dynamic marine systems
[39]. As a result, to our knowledge, no previous study has
directly compared the diversity of communities of free-living
microbes and macro-organisms in marine ecosystems.

The marine lakes of Palau provide an unprecedented
opportunity to compare the diversity patterns of microbial
and macro-invertebrate communities in the marine realm (elec-
tronic supplementary material, figure S1). Marine lakes are
inland basins flooded by rising seas at the end of the Last Gla-
cial Maximum. They represent natural ecological–evolutionary
experiments that are geographically discrete and exist at inter-
mediate spatial (hundreds of metres) and temporal (thousands
of years) scales where island-like patterns are apparent [40,41].
Lakes can be broadly categorized as either mixed—vertically
unstratified bodies of oxygenated and high-salinity water; or
stratified—bodies of water where a shallower oxygenated
brackish layer is separated from a deeper anoxic layer by a che-
mocline [42,43]. However, both within and among these broad
categories, differences in shape, size, depth and connectivity to
the surrounding sea result in finer differences in the physical
composition of lakes—including marked lake-level gradients
in dissolved oxygen concentration, salinity, light availability
and productivity among lakes. In this way, marine lakes are
microcosms for examining effects of ecologically meaningful
environmental variation found across marine ecosystems
worldwide, such as changing dissolved oxygen concentration,
salinity and solar radiation. Despite their physical differences,
all marine lakes share a similar regional history of geological
and climatic change and probably have been exposed to simi-
lar rates of propagule pressure from the surrounding lagoon
over the last 6000–12 000 years. As a result, marine lakes pro-
vide an ideal opportunity to ask if microbial and macro-
invertebrate communities display parallel local and regional
diversity patterns (figure 1) within a simplified system with
shared bounded spatial and temporal scales—a fundamental
attribute of study design in comparative biogeography (e.g.
[44]).

Here, we compare the diversity patterns of microbial and
macro-invertebrate communities across 12 of Palau’s marine
lakes to infer potential responses and feedbacks between the
abiotic and biotic components of these ecosystems. For simpli-
city, we begin by testing the assumptions that organisms across
the tree of life are subject to similar regional and local
constraints on diversity ([4,15]; figure 1d). As a result, we
hypothesize (i) positive correlations in the relative richness
and evenness (α-diversity) of microbial operational taxonomic
units (OTUs) and macro-invertebrate species across lakes, and
(ii) a positive correlation in the compositional dissimilarity of
microbial and macro-invertebrate communities among lakes
(β-diversity). However, given the expected lower degree of dis-
persal limitation in microbes than macro-invertebrates [16,45],
we also hypothesize that (iii) microbes display a lower overall
β-diversity, and (iv) microbes display a stronger association
with environmental factors than do macro-invertebrates.
2. Methods
(a) Study design
We sampled 12 marine lakes in the Republic of Palau (see the elec-
tronic supplementary material, figure S1) to obtain comprehensive
lake-level estimates of (i) the relative abundance and taxonomic
composition of free-living microbes, (ii) the relative abundance
and taxonomic composition of benthic macro-invertebrates, and
(iii) environmental variation. We used these data to estimate and
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Figure 1. Potential relationships in α-diversity and β-diversity between
microbes and macro-organisms and corresponding potential inferences on
underlying processes. Curves are for illustrative purposes and slopes may
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will require more detailed tests than correlative tests. For instance, it is also
possible that parallel patterns may be driven by different processes, while
non-parallel patterns may be driven by similar processes [9].
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compare patterns and environmental correlates of α- and β-diver-
sity in microbes and macro-invertebrates (figure 1).

Ourobjectivewas, to our knowledge, the first to generate reliable
and consistent estimates of relative differences in diversity across
lakes using the most appropriate methodology for either microbes
or macro-invertebrates; we subsequently compared differences
among lakes between microbes and macro-invertebrates. While
differences in microbial versus macro-invertebrate sampling proto-
cols could potentially affect diversity estimates (particularly
absolute estimates of α-diversity within each lake), we took several
steps to mitigate disparities as best possible; these included using
DNA sequence-based identification of OTUs for both microbes and
macro-invertebrates, and using α- and β-diversity measures insensi-
tive to under-sampling of ecological communities. We reflect on the
potential influenceof thesemethodological choices in theDiscussion.

(b) Microbial data collection and analysis
Microbial diversity was assessed by sequencing and analysis of
16S rRNA genes in DNA samples extracted from marine lake
water samples. To examine microbial diversity at the level of
each lake, 250 ml water samples were collected at seven to eight
regularly spaced depth intervals from the centre of each lake;
the vertical spacing of samples scaled with total lake depth
(electronic supplementary material, table S1). Following DNA
extraction (see the electronic supplementary material, Methods),
16S rRNA genes were amplified using universal archaeal/
bacterial primers [46] and sequenced on an Illumina MiSeq
according to Earth Microbiome Project protocols (electronic sup-
plementary material, Methods). Sequence processing and
analysis was conducted in mothur (http://www.mothur.org/),
following the approach of [47], modified from the mothur
MiSeq SOP [48]. Following quality control, 85 000 16S rRNA
sequences were randomly and equally subsampled from each
lake to maintain even sampling across lakes (electronic sup-
plementary material, Methods). Analysis of lake-level diversity
patterns using differently sized sequence libraries (including
resampling using 10 000, 20 000, 40 000 and 160 000 sequences
per lake) all produced highly consistent results (electronic sup-
plementary material, Methods; tables S2 and S3). All sequences
were clustered into OTUs based on the commonly used 97% iden-
tity threshold using the furthest-neighbour algorithm in mothur,
and we generated an OTU-sample matrix for subsequent ecologi-
cal analyses as described below. Analysis of microbial
communities via 16S rRNA amplicons is potentially subject to
biases introduced through primer design and polymerase chain
reaction amplification that favour particular segments of the
microbial community, and so, we analysed these data using
both abundance-based and presence–absence-based metrics
described below. Sequence data are available in the Sequence
Read Archive under accession number PRJNA555354 at https://
www.ncbi.nlm.nih.gov/sra/PRJNA555354.
(c) Macro-invertebrate data collection and analysis
Macro-invertebrate community composition was estimated using
point intercept transects placed randomly at 13–14 sites in each
lake. At each site, divers using SCUBA sampled three parallel
transect lines from a depth just above the chemocline of stratified
lakes or the basin bottom ofmixed lakes. Along each transect, four
to eight equally spaced depths were selected, depending on lake
size, at which four points were sampled at 15 cm intervals orthog-
onal to the transect. The total number of points surveyed in each
lake was between 504 (lake code: SLM) and 1344 (lake codes:
CLM, NLK). At each point, the first macro-invertebrate encoun-
tered was photographed, attributed a field identification and its
tissue biopsied. If any additional organisms were observed
directly under the original sample, they were also sampled and
recorded. After all depths on a transect were surveyed, back at
the surface, samples were transferred to 95% ethanol, then
returned to the field station and stored at −20°C within 6 h.

We chose a subset of specimens for DNA barcoding to corro-
borate field identifications. DNA was purified and amplified
using several primer sets and thermocycle conditions (electronic
supplementary material, table S4) targeting the cytochrome c oxi-
dase subunit I (COI) barcode locus. Sequences were visually
checked and manually corrected for errors and aligned by
major taxonomic group—ascidians, bivalves, bryozoans, cnidar-
ians, crustaceans, echinoderms, gastropods, polychaetes and
sponges. Open reading frames were confirmed and pairwise
sequence distance was calculated (see the electronic supplemen-
tary material, Methods for additional details). OTUs, or clusters
of sequences, similar at 97% were identified for each taxonomic
group, except for sponges, which were clustered at 99% sequence
similarity, given their slow sequence evolution. We estimated the
taxonomic composition and relative abundance of macro-invert-
ebrate species in each lake in the final dataset by combining field
identifications with DNA-sequencing results (see the electronic
supplementary material, Methods for additional details). Data
and associated metadata on the abundance of all macro-invert-
ebrates, COI barcoding sequences and alignments are available
through the National Science Foundation’s Biological and
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Chemical Oceanography Data Management Office at https://
www.bco-dmo.org/dataset/768138.

(d) α- and β-diversity measures
We summed the number of sequences attributed to each
microbial OTU and the number of individuals attributed to
each macro-invertebrate species across all samples in each lake
to obtain lake-level estimates of the relative abundance of all
taxonomic units. Additionally, we also derived presence–absence
datasets for both microbes and macro-invertebrates across the 12
lakes by converting abundance data to binary presence–absence.

We used the relative abundances of OTUs/species to estimate
three measures of α-diversity for microbes and macro-
invertebrates in each lake: richness, evenness and dominance.
We estimated richness using the observed number of OTUs/
species, the abundance-based coverage estimator (ACE; [49]) and
CHAO1 [50]. We estimated evenness using the Simpson’s equitabil-
ity index [51] and Pielou’s evenness metric [52]. We estimated
dominance using the Berger–Parker index [53]. We also calculated
the Shannon diversity, the exponential of Shannon entropy [54], as
a measure of the effective number of species in each lake that
accounted for both richness and evenness. We assessed the corre-
lation between microbial and macro-invertebrate α-diversity
measures using Spearman’s rank correlation tests. All α-diversity
analyses were run in R v. 3.5.1 [55] using the package ‘SpadeR’
[56]. Owing to the relatively low number of lakes in our analyses,
we quantified the uncertainty around observed correlations in α-
diversity using 95% confidence intervals estimated from observed
data for ACE and Shannon diversity. Specifically, we sampled
9999 values of ACE and Shannon diversity for each taxon in
each lake from a uniform distribution bounded by the lower
and upper limits of the estimated 95% confidence intervals; we
used these values to generate 9999 potential correlations.

We examined patterns of β-diversity by calculating the dissim-
ilarity in the composition of microbial and macro-invertebrate
communities between all pairs of lakes using the complement of
the Morisita–Horn overlap index [57]. We calculated the comp-
lement of the Morisita–Horn index using either the relative
abundance data or the binary presence–absence data. We assessed
the correlation between microbial and macro-invertebrate pairwise
dissimilarity matrices using the Mantel tests (Pearson’s corre-
lation); this test assesses significance by comparing the observed
correlation to the distribution of correlations obtained via 9999
random permutations of the observed matrices. To summarize
β-diversity for each lake from all pairwise dissimilarities, we calcu-
lated the median (± variation) dissimilarity value for each lake
with respect to all others (see the electronic supplementary
material, Methods for additional details). All β-diversity analyses
were run in R v. 3.5.1 [55] using the package ‘vegan’ [58].

(e) Environmental variables
The 12 marine lakes were profiled vertically at 1 m intervals for
dissolved oxygen concentration, temperature, pH, chlorophyll flu-
orescence, conductivity/salinity and photosynthetically active
radiation once annually between June and October 2011–2015.
We summarized the environment of each lake by calculating the
median and standard deviation of each of these six environmental
factors and removed highly inter-correlated variables (electronic
supplementary material, figure S2). Additionally, we also esti-
mated the size (surface area, m2) and isolation (minimum
distance from a lake’s edge to the surrounding lagoon, m) of
each lake using satellite data in a geographical information
system (see the electronic supplementary material, figure S1).
This resulted in a final dataset comprising eight lake-level environ-
mental variables: oxygen median, oxygen variation, conductivity
median, temperature median, productivity median, radiation vari-
ation, lake size and lake isolation.
( f ) Environmental correlates of α- and β-diversity
We examined the effects of each environmental predictor on
α-diversity measures using univariate linear models. Additionally,
we examined the effects of environmental predictors on β-diversity
using distance-based redundancy analysis (RDA), as implemented
in the ‘capscale’ function in the R package ‘vegan’ [58]. To avoid
overfitting given our small number of data points (12 lakes) and
to generate RDA models comparable between microbes and
macro-invertebrates, we identified a minimum adequate model
comprising the four environmental variables best explaining the
ordinations ofmicrobes andmacro-invertebrates (see the electronic
supplementary material, Methods for additional details).

We assessed the similarity between microbial and macro-
invertebrate RDA models using Procrustes tests, which test the
non-randomness between two ordination configurations by com-
paring observed ordinations to ordinations obtained from 9999
random permutations of the observed dissimilarity matrices; sig-
nificant results (i.e. p < 0.05) indicate that two configurations
are non-random with respect to each other, and significantly
correlated as indicated by a Pearson’s correlation coefficient r.
3. Results
(a) Contrasting patterns of α-diversity in microbes and

macro-invertebrates
Contrary to our hypothesis (i), microbial and macro-invert-
ebrate communities did not display positively correlated
patterns of α-diversity across lakes, irrespective of the measure
used (figure 2; electronic supplementary material, table S5).
Instead, rank correlation coefficients between the richness,
evenness and dominance of microbial and macro-invertebrate
communities were consistently negative (ACE richness:
ρ =−0.028, p > 0.05; Shannon diversity: ρ =−0.266, p > 0.05;
Simpson’s evenness: ρ =−0.336, p > 0.05; Berger–Parker domi-
nance index: ρ =−0.287, p > 0.05; see the electronic
supplementary material, table S5 and figure S3 for more
measures) and statistically non-significant at α = 0.05.
Permutation tests based on 9999 values sampled from the
95% confidence intervals estimated from observed data indi-
cated that correlations in ACE and Shannon diversity between
microbes and macro-invertebrates were never statistically
significant across estimateduncertaintybounds (figure 2 insets).

Microbes and macro-invertebrates displayed different cor-
relations between α-diversity and environmental variables
(electronic supplementary material, figure S4 and table S6).
Compared with stratified lakes, mixed lakes had more even
macro-invertebrate communities (F1,10 = 5.76, p < 0.05) but
less even microbial communities (F1,10 = 10.72, p < 0.01); lakes
with more variable dissolved oxygen concentrations had less
even macro-invertebrate communities (r =−0.64, p < 0.05) but
more even microbial communities (r = 0.63, p < 0.05); and
lakes with higher median dissolved oxygen concentrations
had richer macro-invertebrate communities (r = 0.58, p < 0.05)
and less even microbial communities (r =−0.61, p < 0.05).
Finally, lakes more distant from the surrounding ocean
had significantly less rich (r =−0.78, p < 0.01) and less even
(r =−0.58, p < 0.05) macro-invertebrate communities.

(b) Parallel patterns of β-diversity in microbes and
macro-invertebrates

In agreement with hypothesis (ii), we found significant posi-
tive correlations in the β-diversity patterns of microbes and
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macro-invertebrates. Dissimilarity values among lakes were
high on average for both microbes and macro-invertebrates
and were significantly positively correlated between the
two taxonomic groups (figure 3). Mantel tests indicated
that, despite being based on a relatively small sample size
of 12 lakes, correlations in β-diversity were more extreme
than 99.8–99.99% of 9999 matrices generated randomly
from our data. The pairwise dissimilarity matrices of
microbes and macro-invertebrates were more strongly posi-
tively correlated when considering exclusively differences
in the presence–absence of OTUs/species among lakes
(Mantel test: r = 0.578, p < 0.001; figure 3a) than when also
incorporating relative abundances (r = 0.293, p = 0.020;
electronic supplementary material, figure S5A).

We found a significant positive correlation between the
environmentally constrained RDA of the dissimilarity matrices
of microbes and macro-invertebrates, as assessed by Procrustes
tests of the symmetry between the ordination configurations
(figure 4). Once again, the strength of this positive correlation
was higher for presence–absence (correlation in a symmetric Pro-
crustes rotation: r = 0.881, p< 0.001; figure 4c) than abundance-
based dissimilarity values (r = 0.558, p< 0.05; figure 4f ). These
ordinations confirmed that the diversity of both microbes and
macro-invertebrates are significantly influenced by lake type—
with higher compositional differences between, rather than
within, lake types—and median dissolved oxygen concen-
tration. The gradient in median salinity among lakes was also
a significant predictor in all ordinations. Environmental vari-
ables explained 41–67% and 47–59% of dissimilarity among
microbial and macro-invertebrate communities, respectively
(figure 4), providing no evidence towards our hypothesis (iv)
of a higher influence of environmental variation on microbial
than macro-invertebrate patterns.

Despite these parallel patterns, we also found noteworthy
differences in β-diversity between microbes and macro-invert-
ebrates. First, in line with hypothesis (iii), abundance-based
dissimilarity values were on average higher for macro-
invertebrates than microbes (mean dissimilarity: microbes =
0.69; macro-invertebrates = 0.88; t = 5.01, p < 0.001; electronic
supplementary material, figure S5). However, the opposite
was true for dissimilarity values based on presence–absence
(mean dissimilarity: microbes = 0.91; macro-invertebrates =
0.84; t = 6.10, p < 0.001). Second, a number of the environmental
factors best explaining β-diversity patterns differed between
microbes versus macro-invertebrates. Microbial β-diversity
patterns were significantly correlated with lake surface area
and median temperature. By contrast, macro-invertebrate
β-diversity patterns were significantly correlated with variation
in dissolved oxygen concentration,median temperature and/or
variation in solar radiation (figure 4).

4. Discussion
Our description of marine communities along environmental
and connectivity gradients in marine lake ecosystems, Palau,
shows that microbes and macro-invertebrates display parallel
β-diversity patterns despite seemingly non-parallel con-
straints on α-diversity (approximating figure 1c). Our study
provides a rare direct comparison of the diversity patterns
of free-living microbial and macro-organismal communities,
narrowing a key gap in our understanding of biodiversity.
Our findings raise the possibility that, more broadly, tran-
sition zones between regional biotas may be shaped by
large-scale processes acting in parallel on diverse taxa
across the tree of life, at least in the marine realm.

A strong, direct, but largely opposite response to oxygen
gradients is likely to partly underlie the combination of par-
allel β-diversity and non-parallel α-diversity patterns we
observe in microbes and macro-invertebrates across marine
lakes. Marked gradients in dissolved oxygen concentration
are strong selective forces for both macro-organisms [59]
and microbial communities [60,61]. Indeed, our measure of
the degree of oxygenation in each lake (i.e. median dissolved
oxygen concentration) was the most important predictor
of community dissimilarity in both microbes and macro-
invertebrates (figure 4). However, the direction of this
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response was opposite in microbes and macro-invertebrates
(electronic supplementary material, figure S4). On the one
hand, macro-invertebrates are unable to survive at low dis-
solved oxygen concentrations, with profound effects on
ecosystem energetics and function [59]. In our marine lake
surveys, macro-invertebrates in effect were not found below
oxygen concentrations of 0.7 µg l−1 (electronic supplementary
material, figure S6). On the other hand, some microbial taxa
thrive in anoxic conditions, with gradients in dissolved
oxygen both driving and being reinforced by changes in
aerobic versus anaerobic microbial activity [59,61]. In marine
lakes, the diversity of a subset of microbial groups—including
sulfate-reducing bacteria and SAR324, for example—increases
markedly in anoxic conditions [62].

Nevertheless, non-parallel α- and parallel β-diversity pat-
terns between microbes and macro-invertebrates persisted
even when analysing only samples collected in the oxic por-
tion of each lake’s water column (i.e. above 0.7 µg l−1

dissolved oxygen; electronic supplementary material, figures
S7 and S8), indicating that these findings are not driven solely
by steep declines in oxygen concentrations. Secondary
environmental drivers may also underlie α- and β-diversity.
For instance, the median salinity of each lake correlated
with aspects of α- (electronic supplementary material, table
S6) and β-diversity (figure 4) in both microbes and macro-
invertebrates. While this could reflect direct physiological
responses to salinity [63], median salinity may also reflect
the degree of connectivity of lakes to the surrounding ocean
and the brackish nature of stratified lakes.

Despite their extraordinariness as natural experimental
systems, marine lakes encapsulate over a small geographical
extent much of the ecologically meaningful environmental vari-
ation found across marine ecosystems worldwide, including
marked gradients in dissolved oxygen concentration, salinity
and solar radiation (though not temperature). Moreover,
marine lakes also reflect diversity–environment relationships
occurring at large spatial scales across the ocean, including the
central role of transitions between mixed and stratified waters,
as well as oxygen and salinity gradients, on α- and β-diversity
in microbes [7,64] and macro-invertebrates [65,66]. Therefore,
our study highlights the potential for marked marine environ-
mental gradients across the globe to drive parallel transitions in
regional biodiversity across highly taxonomically, evolutionarily
and functionally disparate organisms.

Environmental constraints explained a combined 41–67%
and 47–59% of dissimilarity among microbial and macro-
invertebrate communities, respectively (figure 4). Additional
drivers of community dissimilarity which could be responsible
for parallel β-diversity patterns between microbes and macro-
invertebrates include a parallel history of speciation and/or
colonization [67], a comparable influence of ecological drift
and/or direct interactions among subsets of the two taxa
[5,37]. We assumed that microbial and macro-invertebrate
taxa are unlikely to have experienced a parallel history of taxo-
nomic diversification across marine lakes. This is because the
inception of all lakes, and subsequent inoculation with both
microbial and macro-invertebrate life, occurred relatively
recently (putatively approx. 6000–12 000 years ago) and,
while this timeline will have allowed for the creation of new
genetic variants in both microbes and macro-invertebrates, it
is unlikely to have allowed for speciation in macro-invertebrate
taxa. Moreover, based on the putative ages of five lakes ident-
ified from lake sediments, we find no statistically significant
relationship between lake age and either lake environment or
α-diversity patterns (electronic supplementary material, table
S7), indicating that the timing of lake inception is unlikely to
have driven contemporary diversity patterns. However, dis-
persal limitation and ecological drift, in addition to selection,
could have influenced diversity patterns in both macro-
invertebrates and microbes. We found that lake isolation was
significantly negatively correlated with macro-invertebrate
α-diversity, potentially reflecting the signature of dispersal
limitation. Furthermore, microbial community dissimilarity
was higher between mixed and stratified lakes than within
either lake type, suggesting that at least some microbial
groups (e.g. strictly anaerobic microbes) may not easily trans-
locate between lakes types. Microbial dissimilarity was also
influenced by lake area (figure 4), with smaller lakes being
on average more dissimilar than larger lakes, potentially indi-
cating a higher influence of ecological drift in smaller lakes.
Finally, rank correlations in α-diversity patterns between
the most speciose individual subgroups of microbes and
macro-invertebrates were occasionally positive (e.g. the posi-
tive correlation between Deltaproteobacteria and Porifera
richness; electronic supplementary material, figure S9). While
this may indicate direct or indirect associations between
these individual subgroups, a reliable test of the influence
of biotic interactions on these communities will require
more in-depth sampling specifically targeting hypothesized
interactions across shared substrates.

Given the diversity of life forms and life histories—and con-
sequently of sampling protocols used—in comparisons of
microbial versus macro-invertebrate communities, it is worth
asking whether methodological choices could systematically
bias findings. Recent studies have contended that any single
method is likely to under-sample some taxa [68], so we believe
the question is phrased most productively as: do chosen
sampling methods misrepresent diversity in the target taxa
and places studied, and what is the uncertainty around corre-
lations in diversity estimates? We suggest four main steps can
minimize the impact of methodological choices on comparative
analyses generally. First, applyingDNA-basedprotocols in inde-
pendent but parallel surveys ofmicrobial andmacro-organismal
diversity can generate robust estimates for each taxon and pro-
vide a ‘common currency’ for comparison (including with
other studies, e.g. eDNA-based surveys [69]). Second, focusing
on reliably estimating relative α-diversity across environmental
gradients—rather than absolute site-level diversity—usingmul-
tiple metrics (figure 2; electronic supplementarymaterial, figure
S3 and table S5) can facilitate comparisons; especially because
estimating the total diversity of microbial communities remains
mostly out of reach [70]. For this purpose, non-parametric
asymptotic estimators that account for the likely incidence of
undetected species and provide uncertainty estimates are an
important tool [71]. Third, using a (dis)similarity metric insensi-
tive to under-sampling, such as the Morisita–Horn index, can
produce robust estimates of β-diversity even when hyper-
diverse communities may have been incompletely surveyed
[72]. Finally, using permutational tests—contrasting observed
correlations to correlations obtained using thousands of
reshuffled diversity matrices (e.g. figure 2 insets)—can help
quantify the likelihood that estimated relationships among
taxa occurred by chance; an important step when analysing
datasets with a relatively small sample size. With these four
steps, we consider our results a robust description of α- and β-
diversity patterns between microbes and macro-invertebrates
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across the 12 marine lakes, and a strong starting hypothesis for
similar analyses in other marine systems.

While the proximate mechanisms revealed by our analyses
are contingent on marine systems, our study nevertheless has
important implications for a general understanding of bio-
diversity, as it provides novel insights into the understudied
relationship between organismal scale and spatial scale. Our
findings imply that similar processes may underlie the β-com-
ponent of regional diversity across vastly different organisms,
irrespective of their local constraints on α-diversity. At broader
spatial scales (e.g. an island archipelago), taxon-specific
individualistic responses to local-scale variation become less
important and a common regional-scale signal—potentially
resulting from shared variation in historical and contemporary
climate, geology and/or dispersal—emerges across taxa.
Our results are in line with previous comparisons between
microbial and macro-organismal taxa in terrestrial and
freshwater systems, which reported consistently positive
correlations in β-diversity, irrespective of correlations in α-diver-
sity (e.g. terrestrial: [5,31,32,36,37]; freshwater: [21,22,29]). The
extent to which deviations from this general relationship may
be explained by taxon-specific attributes such as physiological
and/or life-history traits remains an open and interesting
question that demands further scrutiny.

In conclusion, our study takes advantage of a marine natu-
ral experimental system to show that marine organisms as
diverse as microbes and macro-invertebrates display parallel
patterns in community dissimilarity across space, despite diver-
gent local-scale responses potentially resulting from distinct
physiology and life history. The extent to which parallel and
universal processes may drive these parallel patterns in regional
biodiversity across the tree of life in the marine realm is an
important question that deserves increasing attention [9].
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