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Abstract

We present a special symmetric Lanczos algorithm and a kernel polynomial method

(KPM) for approximating the absorption spectrum of molecules within the linear re-

sponse time-dependent density functional theory (TDDFT) framework in the product

form. In contrast to existing algorithms, the new algorithms are based on reformu-

lating the original non-Hermitian eigenvalue problem as a product eigenvalue problem

and the observation that the product eigenvalue problem is self-adjoint with respect to
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an appropriately chosen inner product. This allows a simple symmetric Lanczos algo-

rithm to be used to compute the desired absorption spectrum. The use of a symmetric

Lanczos algorithm only requires half of the memory compared with the non-symmetric

variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically

more stable than the non-symmetric version. The KPM algorithm is also presented as a

low-memory alternative to the Lanczos approach, but may require more matrix-vector

multiplications in practice.

We discuss the pros and cons of these methods in terms of their accuracy as well as

their computational and storage cost. Applications to a set of small and medium-sized

molecules are also presented.

1 Introduction

Time-Dependent Density Functional Theory (TDDFT)1,2 has emerged as an important tool

for reliable excited-state calculations for a broad spectrum of applications from molecular

to materials systems. The most common formulation of TDDFT in quantum chemistry

is in the frequency domain via linear response theory or the Casida formulation.3,4 This

approach is also known as linear-response (LR) TDDFT and is widely used to calculate

absorption spectra. Computing the absorption spectrum with this approach involves solving

a non-Hermitian eigenvalue problem. Formally, the numerical cost to diagonalize the full

LR-TDDFT matrix equations scales as O(N6), where N is the total number of molecular

orbitals (MO).5 As a result, for large systems, this approach becomes expensive if a large

number of excitations (∼ 103–104) are needed. It can be shown, that the original matrix

equation can be unitarily transformed into a form that decouples into two equivalent product

eigenvalue problems half of the size of the original problem.6 The iterative eigensolvers are

typically used to solve lowest lying excited states7 or the excited states within a given energy

window.8,9 In the worst scenario these algorithms scale as O(N5), more advanced techniques

including Krylov subspace approaches and linear-scaling methods can reduce the cost to
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O(N3) or less.5,10 We refer the reader to more comprehensive reviews of LR-TDDFT.3,4,11–13

In many cases like large molecular complexes and high density of states (DOS) mate-

rials, excitations over a wider energy range may be required. This often results in a very

demanding calculation14,15 even when iterative eigensolvers are used. Over the years several

approaches have been developed to tackle this problem including the complex polarization,16

damped response approaches,17,18 multishift linear solvers,19 variational DFT approach of

Ziegler and co-workers,20 the simplified approaches from Grimme and co-workers21,22 and

the efficient LR approach of Neuhauser and Baer.23 Alternative approaches like real-time

time-dependent density functional theory (RT-TDDFT)24,25 in combination with a weak

delta-function field have also been used to tackle this problem in the time domain. Despite

these algorithmic developments, it is desirable to look for novel approximate, yet accurate,

excited-state approaches for large systems.

In this paper, we explore efficient ways to estimate the absorption spectrum of a finite

system in the frequency domain. Specifically, we are interested in methods that do not ex-

plicitly compute the eigenvalues and eigenvectors of the full LR-TDDFT matrix. Within the

Tamm–Dancoff approximation (TDA),26 the matrix to be diagonalized becomes Hermitian.

In this case, the absorption spectrum can be approximated by the Kernel Polynomial Method

(KPM), originally proposed to estimate the density of states of a symmetric matrix.27 This

approach has been discussed in Ref.28 By casting the full LR-TDDFT eigenvalue problem

as a product eigenvalue problem, we show that the KPM can be extended to the full LR-

TDDFT equations. To the best of our knowledge, the product form has not been utilized in

the computation of absorption spectra.

A “two-sided” Lanczos procedure was proposed in Ref.29 to approximate the absorption

spectrum in the full LR-TDDFT framework. This approach treats the Casida Hamiltonian

as a non-Hermitian matrix and can be numerically unstable. We show that it is possible to

use a more standard Lanczos algorithm with a properly chosen inner product to obtain an

accurate approximation of the absorption spectrum. This approach improves the numerical
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stability and reduces the memory and computational cost compared with a two-sided Lanczos

procedure.

The rest of the paper is organized as follows. For completeness, we first derive the expres-

sion to be computed in the absorption spectrum estimation using matrix notation. Although

this result is well known (see, e.g., Ref.29), our derivation highlights the relationship between

several quantities associated with the LR-TDDFT eigenvalue problem. We then present the

Lanczos and KPM algorithms for estimating the absorption spectrum in Section. 3. We

also discuss how to use the Lanczos and KPM algorithms to compute the density of states

(DOS) of the LR-TDDFT eigenvalue problem. Computational results that demonstrate the

effectiveness of the Lanczos algorithm are presented in Section. 6, where we compare the

accuracy and cost of the Lanczos and KPM approaches. All algorithms discussed in this

paper have been implemented in a development version of the NWChem30 program.

2 Linear Response and Absorption Spectrum

In the linear response regime of TDDFT, the optical absorption spectrum of a finite system

can be obtained from the trace of the 3× 3 dynamic polarizability tensor αµ,ν defined as

αµ,ν(ω) = ⟨µ| −
1

π
Imχ(ω)|ν⟩ = − 1

π
Im⟨µ|χ(ω)|ν⟩, (1)

where µ and ν are one of the coordinate variables x, y and z, and χ(ω) characterizes the

linearized charge density response ∆ρ to an external frequency dependent potential per-

turbation vext(r;ω) of the ground state Kohn–Sham Hamiltonian in the frequency domain,

i.e.

∆ρ(r;ω) =

∫
χ(r, r′;ω)vext(r

′;ω)dr′.

The symbol Imχ denotes the imaginary part of χ, which is also called the spectral function

of χ. Further discussion about the imaginary part is given in Appendix. A.
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It is well known11 that χ can be expressed as

χ(r, r′;ω) =

∫
ε−1(r, r′′′;ω)χ0(r

′′′, r′;ω)dr′′′, (2)

where ε is called the dielectric operator defined as

ε(r, r′′′;ω) = δ(r, r′′′)−
∫

χ0(r, r
′′;ω)fHxc(r

′′, r′′′)dr′′ (3)

and ε−1 is the inverse of the dielectric operator in the operator sense. In TDDFT, within

the adiabatic approximation, the Hartree–exchange–correlation kernel fHxc is frequency-

independent, and is defined as

fHxc(r, r
′) =

1

|r − r′|
+

δvxc[ρ](r)

δρ(r′)
,

with vxc being the static exchange–correlation potential. The retarded irreducible independent-

particle polarization function χ0 is defined by

χ0(r, r
′;ω) =

∑
j

∑
a

ϕj(r)ϕ
∗
a(r)ϕ

∗
j(r

′)ϕa(r
′)

ω −∆εa,j + iη
−

ϕ∗
j(r)ϕa(r)ϕj(r

′)ϕ∗
a(r

′)

ω +∆εa,j + iη
, (4)

where (εj, ϕj) and (εa, ϕa) are eigenpairs of the ground state self-consistent Kohn–Sham

Hamiltonian. Here j and a are indices of the occupied and virtual Kohn–Sham eigenfunctions

(orbitals), ∆εa,j ≡ εa−εj, and ∆εa,j > 0 by definition. Also η > 0 is an infinitesimally small

constant to keep Eq. (4) well defined for all ω.

Since we consider the excitation properties of finite systems, without loss of generality

we can assume that all Kohn–Sham eigenfunctions ϕj and ϕa are real. To simplify the

notation, we will use Φ(r) to denote a matrix that contains all products of occupied and

virtual wavefunction pairs, i.e., Φ(r) =
[
ϕj(r)ϕ

∗
a(r), . . .

]
and D0 to denote a diagonal matrix
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that contains ∆εa,j on its diagonal. Using this notation, we can rewrite χ0 as

χ0(r, r
′;ω) = [Φ(r),Φ(r)]

(ω + iη)I −D0 0

0 −(ω + iη)I −D0


−1 Φ(r′)

Φ(r′)


To simplify the notation further, we define

C =

I 0

0 −I

 , D =

D0 0

0 D0

 , and Φ̂(r) = [Φ(r),Φ(r)] ,

which allows us to rewrite χ0 succinctly as

χ0(r, r
′;ω) = Φ̂(r) [(ω + iη)C −D]−1 Φ̂(r′). (5)

We denote by Φ, Φ̂ the finite dimensional matrices obtained by discretizing Φ(r), Φ̂(r) on

real space grids, respectively. Similarly, the discretized Φ̂(r′) can be viewed as the matrix

transpose of Φ̂. Replacing all integrals with the matrix–matrix multiplication notation and

making use of the Sherman–Morrison–Woodbury formula for manipulating a matrix inverse,

we can show that (see Appendix. B for a detailed derivation)

χ(ω) = Φ̂ [(ω + iη)C − Ω]−1 Φ̂T (6)

where

Ω ≡

A B

B A

 =

D0 + ΦTfHxcΦ ΦTfHxcΦ

ΦTfHxcΦ D0 + ΦTfHxcΦ

 . (7)

Here ΦTfHxcΦ is an nonv × nonv matrix commonly known as the coupling matrix, where

no and nv are the number of occupied and virtual states, respectively. The (j, a; j′, a′)th
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element of the matrix is evaluated as

∫
drdr′ϕj(r)ϕa(r)fHxc(r, r

′)ϕ′
j(r

′)ϕ′
a(r

′).

It follows from (6) that

⟨x|χ(ω)|x⟩ = x̂T [(ω + iη)C − Ω]−1 x̂ (8)

where x̂ =
[
x̂T
1 , x̂

T
1

]T
, and x̂1 = ΦTx is a column vector of size nonv. The (j, a)th element of

x̂1 can be evaluated as ∫
xϕj(r)ϕa(r)dr. (9)

It can be easily verified that

⟨x|χ(ω)|x⟩ = x̂T [(ω + iη)I −H]−1Cx̂, (10)

where

H =

 A B

−B −A

 (11)

and is also referred to as the Casida or LR-TDDFT matrix equations. Although H is non-

Hermitian, it has a special structure that has been examined in detail in previous work.12,31,32

In particular, when bothK ≡ A−B andM ≡ A+B are positive definite, it can be shown that

the eigenvalues of H come in positive and negative pairs (−λi, λi), λi > 0, i = 1, 2, . . . , nonv.

If
[
uT
i , v

T
i

]T
is the right eigenvector associated with λi, the left eigenvector associated with

the same eigenvalue is
[
uT
i ,−vTi

]T
.

It follows from the eigendecomposition of H (see Appendix. C) and (10) that

⟨x|χ(ω)|x⟩ =
nonv∑
i=1

([
x̂T
1 (ui + vi)

]2
ω − λi + iη

−
[
x̂T
1 (ui + vi)

]2
ω + λi + iη

)
, (12)
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where the eigenvectors satisfy the normalization condition uT
i ui − vTi vi = 1. In the limit of

η → 0+, αx,x = − 1
π
Im⟨x|χ(ω)|x⟩ becomes

nonv∑
i=1

[
x̂T
1 (ui + vi)

]2
[δ(ω − λi)− δ(ω + λi)] = x̂T δ(ωI −H)Cx̂.

Hence, the absorption spectrum has the form

σ(ω) = − 1

3π
lim
η→0+

Im

(
⟨x|χ(ω)|x⟩+⟨y|χ(ω)|y⟩+⟨z|χ(ω)|z⟩

))
=

1

3

∑
i

f 2
i [δ(ω − λi)− δ(ω + λi)] ,

(13)

where f 2
i =

[
x̂T
1 (ui + vi)

]2
+
[
ŷT1 (ui + vi)

]2
+
[
ẑT1 (ui + vi)

]2
is known as the oscillator strength.

It is not difficult to show that wi ≡ ui + vi is the ith left eigenvector of the nonv × nonv

matrix MK, associated with the eigenvalue λ2
i . The corresponding right eigenvector is in

the direction of ui − vi. Therefore, the absorption spectrum can be obtained by computing

the eigenvalues of KM , which is half of the size of H. It can be shown that αx,x can be

expressed as

αx,x(ω) = 2 sign(ω)x̂T
1Kδ(ω2I −MK)x̂1, (14)

where the matrix function δ(ω2I −MK) should be understood in terms of the eigendecom-

position of MK, i.e., δ(ω2I−MK) =
∑nonv

i=1 δ(ω2−λ2
i )(ui−vi)(ui+vi)

T . The derivation can

be found in the Appendix. C. In (13), the value of ω = λj > 0 is often referred to as the jth

excitation energy, whereas ω = −λj < 0 is often referred to as the jth deexcitation energy.

Because the oscillator strength factors associated with these energy levels are identical in

magnitude and opposite in signs, it is sufficient to focus on just one of them. Here, we will

only be concerned with excitation energies, i.e., we assume ω > 0.
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3 Algorithms for Approximating the Absorption Spec-

trum

If the eigenvalues and eigenvectors of H or MK are known, the absorption spectrum defined

in (13) is easy to construct. However, because the dimensions of H and MK are O(nonv),

computing all eigenvalues and eigenvectors of these matrices is prohibitively expensive for

large systems due to the O(n3
on

3
v) complexity.

If we only need the excitation energies and oscillator strengths of the first few low excited

states, we may use an iterative eigensolver such as Davidson’s method or a variant of the

locally optimal block preconditioned gradient method (LOBPCG) to compute the lowest

few eigenpairs of MK.12,33,34 These methods only require the user to provide a procedure

for multiplying A and B with a vector. The matrix A or B does not need to be explicitly

constructed. However, these methods tend to become prohibitively expensive when the

number of eigenvalues within the desired energy range becomes large.

In this section, we introduce two methods that do not require computing eigenvalues and

eigenvectors of the Casida Hamiltonian explicitly. In addition, these methods only require

a procedure for multiplying A and B with a vector. Both approaches provide a satisfactory

approximation to the overall shape of the absorption spectrum from which the position and

the height of each major peak with a desired energy range can be easily identified.

3.1 The Lanczos Method

One way to estimate αx,x is to use the Lanczos algorithm. Because MK is self-adjoint with

respect to the inner produced induced by K, i.e.,

⟨v,MKv⟩K = vTKMKv = ⟨MKv, v⟩K , (15)
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we can use the K-inner product to generate a k-step Lanczos factorization of the form

MKQk = QkTk + fke
T
k , (16)

where

QT
kKQk = I and QT

kKfk = 0, (17)

and Tk is a tridiagonal matrix of size k×k. The major steps of the K-inner product Lanczos

procedure is shown in Algorithm 1. We use the MATLAB notation Q(:, j) to denote the

jth column of the matrix Q. In principle, because Tk is tridiagonal in exact arithmetic,

columns of Qk can be generated via a three-term recurrence. However, it is well known

that as some of the eigenvalues of Tk converge to those of MK, and loss of orthogonality

among columns of Qk can occur due to potential instability in the numerical procedure. As

a result, Tk may become singular with several spurious eigenvalues near zero.35 To avoid loss

of orthogonality, we perform full reorthogonalization as shown in steps 5–7 of Algorithm 1.

Unless k is extremely large, the cost of full reorthogonalization is relatively small compared

to the cost of multiplying A and B with vectors. However, full reorthogonalization does

require keeping all columns of Qk in memory.

If we choose the starting vector for the Lanczos iteration to be x̂1, i.e., Qke1 = x̂1/
√

x̂T
1Kx̂1,

then eT1 δ(ω
2I − Tk)e

T
1 serves as a good approximation of αx,x(ω).

To see why this is the case, let us first assume that δ(ω2I − MK) can be formally

approximated by a k-th degree polynomial of the form pk(MK;ω2), i.e.

δ(ω2I −MK) ≈ pk(MK;ω2) =
k∑

i=0

γi(ω
2)(MK)i.

It follows from (16) that

pk(MK;ω2)Qk = Qkpk(Tk;ω
2) +Rk,
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Algorithm 1: A k-step Lanczos method in the (A−B)-inner product.

Input: Real symmetric matrices A and B defined in (7); A start-
ing vector v0; The number of steps k.

Output:Matrices Qk and Tk that satisfy (16) and (17)

1: Qk(:, 1) = v0/
√

vT0 (A−B)v0 ;
2: for j = 1, . . . , k do
3: w ← (A−B)Qk(:, j);
4: w ← (A+B)w;
5: h← Qk(:, 1 : j)T (A−B)w;
6: H(1 : j, j) = h;
7: w ← w −Qk(:, 1 : j)h;
8: if j < k then
9: Qk(:, j + 1) = w/

√
wT (A−B)w;

10: end if
11: end for

where Rk is a residual matrix that vanishes when k = nvno.

Consequently, we can show that

lim
η→0+

− 1

π
Im⟨x|χ(ω)|x⟩ = x̂T

1Kδ(ω2I −MK)x̂1

≈ eT1Q
T
kKpk(MK;ω2)Qke1

= eT1Q
T
kK

[
Qkpk(Tk;ω

2) +Rk

]
e1

≈ eT1 pk(Tk;ω
2)e1 (18)

≈ eT1 δ(ω
2I − Tk)e1

=
k∑

j=1

τ 2j δ(ω
2 − θj), (19)

where θj > 0 is the jth eigenvalue of the k × k tridiagonal matrix Tk sorted in increasing

order and τj is the first component of the jth eigenvector of Tk.

As shown in the Appendix. C, δ(ω2 − θj) can be rewritten as

δ(ω2 − θj) =
1

2
√
θj
δ
(
ω −

√
θj
)
, (ω > 0). (20)
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Therefore,

αx,x(ω) ≈
k∑

j=1

τ 2j δ(ω
2 − θj) =

k∑
j=1

τ 2j

2
√

θj
δ
(
ω −

√
θj
)

(21)

holds.

The cost of the Lanczos algorithm is proportional to the number of steps (k) in the

Lanczos iterations. We would like to keep k as small as possible without losing desired

information in Eq. (19). However, when k is small, (21) gives a few spikes at the square root

of the eigenvalues of Tk, also called Ritz values. No absorption intensity is given at other

frequencies. To estimate the intensity of the absorption at these frequencies, we replace

δ
(
ω −

√
θj
)
in (19) by either a Gaussian or a Lorentzian. The use of these regularization

functions allows us to interpolate the absorption intensity from the square root of the Ritz

values to any frequency. Replacing δ(ω2−θj) with a Lorentzian is equivalent to not taking the

η → 0+ limit in (19). It is also equivalent to computing the (1, 1) entry of the matrix inverse[
(ω2 + iη)I − Tk

]−1
. This entry can be computed recursively by using a recursive expression

that is related to continued fractions.36 This is the method of Haydock.37 However, since

the cost of computing the inverse and the eigenvalue decomposition of a small tridiagonal

matrix is negligibly small, we do not gain much by using the Haydock’s recursion.

3.2 Kernel Polynomial Method

Another approach follows the kernel polynomial method (KPM) reviewed in Ref.27 To use

this method, it is convenient to consider the case of ω > 0 and view αx,x(ω) as a function of

ϖ := ω2. The general idea relies in expressing αx,x (and similarly αy,y and αz,z) formally by

a polynomial expansion of the form

α̂x,x(ϖ) =
∞∑
k=0

γkTk(ϖ), (22)
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where

α̂x,x(ϖ) =

√
1−ϖ2

2
αx,x(ω) =

√
1−ϖ2 x̂T

1Kδ(ϖI−MK)x̂1 =
√
1−ϖ2

∑
i

λi(x̂
T
1wi)

2δ(ϖ−λ2
i ),

with wi being the ith left eigenvector of MK and {Tk(ϖ)} being a set of orthogonal poly-

nomials of degree k.

For instance, we choose {Tk(ϖ)} to be Chebyshev polynomials. Using the identity∫
Tk(ϖ)δ(ϖ − λ2

i ) = Tk(λ2
i ), we can compute the expansion coefficients γk’s by

γk =
2− δk0

π

∫ 1

−1

1√
1−ϖ2

Tk(ϖ)α̂x,x(ϖ)dϖ

=
2− δk0

π
x̂T
1

[nonv∑
i=1

λiwiTk(λ2
i )w

T
i

]
x̂1

=
2− δk0

π
x̂T
1

[nonv∑
i=1

K(ui − vi)Tk(λ2
i )(ui + vi)

T

]
x̂1

=
2− δk0

π
x̂T
1KTk(MK)x̂1. (23)

Here δij is the Kronecker δ symbol so that 2−δk0 is equal to 1 when k = 0 and to 2 otherwise.

In deriving (23) from the line before, we use the property that wi = ui+vi is a left eigenvector

of MK and the corresponding right eigenvector is in the direction of ui−vi = λiK
−1(ui+vi).

Because Chebyshev polynomials Tk(ϖ) can be generated recursively using the three-term

recurrence

T0(ϖ) = 1, T1(ϖ) = ϖ, Tk+1(ϖ) = 2Tk(ϖ)− Tk−1(ϖ),

for ϖ ∈ [−1, 1], we do not need to construct Tk(MK) explicitly. We can apply Tk(MK)x̂1

recursively using a 3-term recurrence also. This three-term recurrence allows us to implement

the KPM by storing 3 or 4 vectors depending on whether an intermediate vector is used to

hold intermediate matrix vector products. Pseudocode for the KPM is given in Algorithm 2.

The cost of the KPM is dominated by the multiplication of the matricesA andB with vectors,

and proportional to the degree of the expansion polynomial or the number of expansion terms
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in (22).

The derivation above requires ϖ ∈ [−1, 1]. To generate Chebyshev polynomials on an

interval [a, b] where a and b are the estimated lower and upper bounds of the eigenvalues of

MK, a proper linear transformation should be used to map ϖ to [−1, 1] first.

In (22), we assume that the η → 0+ limit has been taken. Because the left hand side

is a sum of Dirac-δ distributions, which is discontinuous, a finite least squares polynomial

expansion will produce the well known Gibbs oscillations as shown in Ref.,38 and lead to

larger errors near the point of discontinuity. This effect is more pronounced for molecules

of which excitation energies are well isolated, and is less severe for solids whose excitation

energies are more closely spaced. To reduce the effects of the Gibbs oscillation, we can set

η to a small positive constant (instead of taking the η → 0+ limit.) This is equivalent to

replacing each Dirac-δ distribution with a Lorentzian of the form

gη(ω − λi) =
1

π

η

(ω − λi)2 + η2
.

In this case, the expansion coefficients γk’s need to be computed in a different way. We may

also replace the Dirac-δ distributions on the left hand side of (22) with Gaussians of the

form

gσ(ω − λi) =
1√
2πσ2

e−(ω−λi)
2/(2σ2), (24)

where σ is a smoothing parameter that should be chosen according to the desired resolution

of αx,x. We refer to the technique of replacing Dirac-δ distributions with Lorentzians or

Gaussians as regularization. In Ref.,38 we show how the expansion coefficients γk’s can be

computed recursively when Dirac-δ distributions are replaced with Gaussians, and Tk(ϖ) is

taken to be the kth degree Legendre polynomial. We referred to this particular expansion

as the Delta–Gaussian–Legendre (DGL) expansion.38 Another technique for reducing the

Gibbs phenomenon is the use of Jackson damping.39 However, it has been shown in Ref.38

that Jackson damping can lead to over-regularized spectrum.
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Algorithm 2: The kernel polynomial method for approximating the absorption spec-
trum of a finite system.

Input: Real symmetric matrices A and B defined in (7); A set
of points {ωi}, i = 1, 2, . . . ,m at which the absorption
spectrum is to be evaluated, the dipole vector x̂1 defined
in (9), the degree k of the expansion polynomial used in
KPM.

Output:Approximate absorption spectrum σ(ωi) for i = 1, 2, . . . ,m.

1: Estimate the upper and lower bounds (λub and λlb) of the eigenval-
ues of MK by a few step of the Lanczos iteration.

2: Let c = (λlb + λub)/2; d = (λub − λlb)/2;
3: Set ζj = 0 for j = 0, . . . , k;
4: Let q0 ← x̂1;
5: for j = 0, 1, . . . , k do
6: wA ← Aqj;
7: wB ← Bqj;
8: Compute ζj ← ζj + qT0 (wA + wB);
9: Compute qj+1 via the three-term recurrence

qj+1 = 2 [(A−B)(wA + wB)− c(wA + wB)] /d− qj−1

(for j = 0, q1 = [(A−B)(wA + wB)− c(wA + wB)] /d);
10: end for

11: Set γj ←
2− δj0
nonvπ

ζj for j = 0, 1, . . . , k;

12: Evaluate

αx,x(ωi) = 2
k∑

j=0

γjTj
(ω2

i − c

d

)/√
1−

(ω2
i − c

d

)2

for i = 1, 2, . . . ,m;
13: Set q0 = ŷ1 and q0 = ẑ1 and repeat Steps 5–10 to obtain αy,y and

αz,z;
14: σ(ωi) =

[
αx,x(ωi) + αy,y(ωi) + αz,z(ωi)

]
/3 for i = 1, 2, . . . ,m.
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4 Estimating the Density of States of the LR-TDDFT

Matrix Equations

In some cases, the oscillator strength associated with some of the excitation energies are

negligibly small. These are sometimes referred to as dark states.11 To reveal these states, it

is sometimes useful to examine the density of states (DOS) associated with the LR-TDDFT

matrix equations (11).

In the review paper,38 several numerical algorithms for estimating the DOS of symmetric

matrices are presented and compared. To apply these techniques, we make use of the fact

that eigenvalues of H can be obtained from that of MK or K1/2MK1/2 which is Hermitian.

As a result, the DOS can be written as

ϕ(ω) = trace(ω2I −K1/2MK1/2). (25)

We assume that ω ≥ 0 since ϕ(−ω) = ϕ(ω).

If we use the KPM to approximate (25), i.e.,

ϕ(ω) ≈
∞∑
k=0

γkTk(ω2), (26)

the expansion coefficients γk can be computed as

γk =
2− δk0
nπ

trace
[
Tk(K1/2MK1/2)

]
=

2− δk0
nπ

trace [Tk(MK)] . (27)

Thus, apart from the scaling factor (2 − δk0)/(nπ), γk is the trace of Tk(MK), and such a

trace can be estimated through a statistical sampling technique that involves computing

ζk =
1

nvec

nvec∑
l=1

(
q
(l)
0

)T
KTk(MK)q

(l)
0 , (28)
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for a set of randomly generated vectors q
(1)
0 , q

(2)
0 , . . . , q

(nvec)
0 . One possible choice of the

random vectors is that each entry of q
(l)
0 follows an independent Gaussian distributionN (0, 1)

for all l = 1, . . . , nvec. The method only requires multiplying A and B with a number of

vectors, and the multiplication of Tk(MK) with a vector can be implemented through a

three-term recurrence.

To estimate the DOS by the Lanczos method, we can simply use the K-orthogonal

Lanczos factorization shown in (16) to obtain a sequence of tridiagonal matrices T
(l)
k , l =

1, 2, . . . , nvec, using a set of randomly generated starting vectors q
(1)
0 , q

(2)
0 , . . . , q

(nvec)
0 as

mentioned above. The approximate DOS can be expressed as

ϕ(ω) ≈ 1

nvec

nvec∑
l=1

∑
i

(τ
(l)
i )2δ(ω2 − θ

(l)
i ), (29)

where θ
(l)
i is the ith eigenvalue of T

(l)
k , τ

(l)
i is the first component of the corresponding

eigenvector. To regularize the approximate DOS, we rewrite δ(ω2− θ
(l)
i ) in the form of (20),

and replace δ(ω −
√

θ
(l)
i ) with properly defined Gaussian gσ(ω −

√
θ
(l)
i ).

5 Frozen Orbital and Tamm–Dancoff Approximation

When ω is relatively small compared with ∆εa,j, the contribution of the corresponding

term in (4) is relatively insignificant. Thus, it is reasonable to leave out these terms which

constitute indices j’s that correspond to the lowest occupied orbitals often known as the

core orbitals. By using this frozen core approximation (FCA),40 we effectively reduces the

dimension of A and B matrices in (7) from nonv to (no − nf )nv, where nf is the number of

lowest occupied orbitals that are excluded (or “frozen”) from (4). It is well known that the

FCA preserves the low end of the absorption spectrum while removing poles of χ(ω) at higher

frequencies. Therefore, it is extremely useful to combine FCA with the Lanczos algorithm to

obtain an accurate approximation to the absorption spectrum in the low excitation energy

range at a reduced cost, as we will show in the next section.
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Another commonly used technique to reduce the computational cost of estimating the

absorption spectrum is to set the matrix B in (7) to zero. This approximation is often

referred to as the Tamm–Dancoff approximation (TDA). It reduces the eigenvalue problem

to a symmetric eigenvalue problem that involves the matrix A only. We do not consider the

TDA in this paper.

6 Computational Results

We now present computational results to demonstrate the quality of the approximate ab-

sorption spectrum obtained from the algorithms presented in Section 3 and the efficiency

of these algorithms. In particular, we compare the absorption spectrum obtained from the

new algorithms with that obtained from a traditional diagonalization based approach and

that obtained from a real-time TDDFT (RT-TDDFT) simulation that can be readily per-

formed with the released version of the NWChem open source code. It has been shown that

absorption spectra from RT-TDDFT simulations in the weak delta-function field limit are

consistent with those obtained from LR-TDDFT calculations for both UV/Vis and core-level

excitations.9,15 In addition, RT-TDDFT has been shown to provide a reasonable approxima-

tion of the entire spectrum for large molecular complexes and high DOS systems. For these

reasons and since our goal is to demonstrate the applicability of our new approaches to large

systems, we have chosen the RT-TDDFT spectra as our reference where full diagonalization

is prohibitive. For details of the RT-TDDFT approach, we refer the reader to Refs.24,25 We

also compare the efficiency of the new algorithms with the aforementioned approaches and

show that the algorithms presented in Section. 3 are much faster.

6.1 Test Systems

Our test systems include two small dyes: 2,3,5-trifluorobenzaldehyde (TFBA) and 4’-hydroxybenzylidene-

2,3-dimethylimidazoline (HBDMI) as well as two relatively large molecules F2N12S and
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P3B2, respectively. The atomic configurations of these molecular systems are shown in Fig-

ure 1. All geometries were optimized in the ground state DFT calculation using the B3LYP41

functional. We use the 6-31G(d)42,43 basis set for all systems except F2N12S where the cc-

pVDZ basis set44 was used.

Figure 1: The molecules TFBA, HDMBI, F2N12S and P3B2.

In Table 1, we list no, nv as well as the dimension of the excitation matrix (nonv) for

each problem. We also list the number of frozen orbitals (nf ) when FCA is used, and the

corresponding reduced ((no − nf )nv).

Table 1: The size of systems used in calculations, nf denotes the number of frozen (core)
orbitals. Geometries can be found in Supplementary information.45

System no nv nonv nf (no − nf )nv

TFBA 40 120 4,800 11 3,480
HBDMI 57 191 10,887 16 7,831
F2N12S 142 456 64,752 41 46,056
P3B2 305 1,059 322,995 92 225,567

The TFBA and HBDMI problems are relatively small. Thus, we can generate the matrices

for these problems explicitly in NWChem and compute all eigenvalues and eigenvectors of

these Hamiltonians. These eigenvalues and eigenvectors are used in the expression (13) to

construct an “exact” linear response (LR) TDDFT absorption spectrum.
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6.2 Approximation for Small Dyes

In Figure 2, we compare the approximate absorption spectrum obtained from the Lanczos

algorithm with that obtained with traditional diagonalization for both the TFBA and HB-

DMI molecules. We only show results in the [0, 20] eV energy range for TFBA and in the

[0, 30] eV energy range for HBDMI, since these are often the ranges of interest in practice.

We observe that the absorption spectrum obtained from k = 1200 steps of Lanczos

iterations is nearly indistinguishable from the exact solution for TFBA. All major peaks are

correctly captured. Similarly, for HBDMI, 1200 Lanczos iterations are required to achieve

the same level of accuracy.
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Figure 2: Comparison of the approximate absorption spectrum obtained from the Lanc-
zos algorithm with that obtained from an exact LR-TDDFT calculation and RT-TDDFT
calculation for (a) TFBA (b) HBDMI.

We also plot, in Figure 2, the absorption spectrum obtained from a real-time (RT)

TDDFT calculation reported in Ref.15 In this calculation, the time-dependent dynamic po-

larizability was calculated by propagating the solution to the time-dependent Kohn–Sham

equation after an electric field pulse in the form of a small δ-kick and field strength 2× 10−5

a.u. was applied at t = 0. The Fourier transform of the time-dependent polarizability yields

the approximate absorption spectrum. Numerically, the RT-TDDFT calculations were car-

ried out using a time step ∆t = 0.2 a.u. (4.8 attoseconds), the size of the simulated trajectory
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is 1000 a.u. (24.2 fs, 5000 steps). We can see from this figure that the LR-TDDFT absorption

spectrum matches well with that obtained from RT-TDDFT for both TFBA and HBDMI.

The nearly perfect match indicates the validity of linear response approximation. Therefore,

it seems reasonable to compare the absorption spectrum obtained from the Lanczos algo-

rithm with that obtained from RT-TDDFT directly for larger problems where the traditional

diagonalization approach is prohibitively expensive.

6.3 The effect of FCA

In Figure 3, we illustrate the effect of using the frozen core approximation (FCA) for TFBA

by setting nf to 11. That effectively reduces the dimension of the A and B matrices in

(11) from nonv = 4800 to (no − nf )nv = 3480. We can clearly see from the DOS shown in

Figure 3(a) that FCA preserves the small eigenvalues of the original matrix, but the largest

eigenvalues are absent. The absence of these eigenvalues allows the Lanczos algorithm to

obtain more Ritz values in the low energy range (e.g. [0,20] eV) in fewer iterations, thereby

producing an accurate absorption spectrum with lower cost. The cost reduction in FCA

results from both the reduction in the dimension of the matrix and the reduction in the steps

of Lanczos iterations required to achieve a desired resolution in the absorption spectrum.
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Figure 3: (a) Density of states of H with and without the FCA (b) The absorption spectrum
obtained from 400 Lanczos iterations with and without the FCA.
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6.4 Resolution and the number of Lanczos steps

In Figure 4, we show that the resolution of the absorption spectrum obtained from the Lanc-

zos algorithm clearly improves as we take more Lanczos iterations for TFBA and HBDMI.

In this set of experiments, we use FCA for all test runs.

When k = 400 iterations are performed, the Lanczos approximation is nearly indistin-

guishable from traditional diagonalization. When k is as small as 100, the general features

of the absorption spectrum are clearly captured.
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Figure 4: Resolution improvement with respect to the number of Lanczos iterations k for
(a) TFBA (b) HBDMI.

6.5 Approximation for Larger Molecules

In Figure 5, we compare the absorption spectra obtained from the Lanczos-based LR-TDDFT

calculation with those obtained from RT-TDDFT simulations for both the F2N12S and P3B2

molecules. We can see that without the FCA, the Lanczos algorithm can capture the basic

features of the F2N12S absorption spectrum exhibited by the RT-TDDFT simulation after

k = 1200 iterations, but does not clearly reveal all the peaks. However, when the FCA is

used, the result matches extremely well with that produced by RT-TDDFT. For the P3B2

molecule, we need to run 1200 Lanczos iterations to obtain the result that matches well
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with that produced by RT-TDDFT. When the FCA is used, only 400 Lanczos iterations are

needed to achieve essentially full resolution in the computed absorption spectrum.

(a)

Energy [eV]
0 5 10 15 20 25 30

In
te

n
si

ty
 [

A
rb

. u
n

it
s]

Lanczos (FCA, k=1200), 203 Ritz v. 
RT-TDDFT
Lanczos (k=1200), 24 Ritz v.

(b)

Energy [eV]
0 5 10 15 20 25 30

In
te

n
si

ty
 [

A
rb

. u
n

it
s]

Lanczos (k=1200), 57 Ritz v.
RT-TDDFT
Lanczos (FCA, k=400), 63 Ritz v.

Figure 5: Comparison of simulated absorption spectra of F2N12S calculated by RT- and
Lanczos-LR-TDDFT with and without FCA. Comparison of simulated absorption spectra
of P3B2 calculated by RT and Lanczos-LR-TDDFT. The number of Ritz values in the
displayed interval is 57 for k = 1200 or 63 for k = 400 while FCA is used.

6.6 Computational efficiency

Clearly, the most expensive method for estimating the absorption spectrum is the full diag-

onalization approach, which constructs a full Casida matrix of size O(n2
on

2
v) and performs

a diagonalization that requires O((nonv)
3) floating point operations (flops). The David-

son, Lanczos and KPM algorithms are iterative methods that require one multiplication of

vector(s) by matrices K and M per iteration. These multiplications are the most expen-

sive operations relative to other linear algebra operations. The efficiency of these methods

depends on the number of iterations required to reach convergence, and the number of eigen-

values to be computed in the case of the Davidson algorithm since the number of matrix

vector multiplications performed in each Davidson iteration is proportional to the number

of eigenvalues to be computed. For the Davidson method, the error of each eigenvector can

be estimated by computing the residual norm of each eigenpair. For the Lanczos and KPM

algorithm, we do not yet have an efficient estimator to estimate the error of the absorption
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spectrum directly. In the results presented in this paper, we use a visual inspection of the

approximate absorption spectrum to determine whether sufficient resolution is reached after

k steps. A more systematic approach to terminate these algorithms is to compare approxi-

mations produced in consecutive iterations, and terminate when the difference between these

approximations is sufficiently small.

In the case of the P3B2 system, we set the residual norm threshold to 10−4, and compute

200 lowest excited states, which cover the [0, 4.5] eV energy range. In each iteration, up to

400 matrix-vector multiplications is performed, which results in 1926 multiplications in total.

In order to obtain the valence-level absorption spectrum with good resolution (roughly 0.5

eV) by the Lanczos algorithm, we need to perform k = 400 Lanczos iterations. A similar

resolution is reached in KPM when approximately k = 600 steps are taken. Because in

Lanczos as well as in KPM we need to compute the xx, yy, and zz components of the dy-

namic polarizability, the total number of Lanczos matrix-vector multiplications is 3k = 1200

Lanczos and 3k = 1800 for KPM. We remark that when the absorption spectrum over a

wider range of interval is needed, the cost of Davidson method increases with respect to the

number of eigenvectors, while the cost of Lanczos and KPM methods stays approximately

the same.

To illustrate the computational efficiency of the implementation of Lanczos algorithm,

we compare the wall clock time taken by 400 Lanczos steps with that used by the Davidson

algorithm to compute the lowest 200 eigenvalues of the matrix KM , as well with that used

by the RT-TDDFT to run a 24.2-femtosecond trajectory with a 4.8 attosecond time step

(5000 time steps). For these settings the RT-TDDFT gives similar resolution of spectra as

these obtained by Lanczos. All calculations were performed with a development version of

the NWChem30 program on the Cascade system, which is equipped with 1440 Xeon E5-2670

8C 2.6GHz 16-core CPUs plus Xeon Phi ”MIC” accelerators, 128 GB memory per compute
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node and a Infiniband FDR network, and maintained at the EMSL user facility located at

the Pacific Northwest National Laboratory. The Xeon Phi accelerators were not utilized in

this work.

Each calculation was performed using 1536 cores. In both the Lanczos and RT-TDDFT

methods, the xx, yy, and zz components of the dynamic polarizability can be computed

simultaneously. We use 512 cores for each component. The Lanczos calculation required 2.5

hours, while Davidson required 4 hours and RT-TDDFT 15 hours.

6.7 Lanczos vs. KPM and DGL

In Figure 6 (a), we compare the absorption spectrum obtained from the Lanczos algorithm,

KPM and DGL for the TFBA dye. We ran 400 Lanczos steps, which produces a relatively

high resolution approximation to the absorption spectrum produced by exact diagonalization.

To make the computational cost of the KPM and DGL method comparable to that of the

Lanczos algorithm, we set the degree of the polynomial approximation to 400 also in this

test. We can see from Figure 6 (a) that the absorption spectra produced by the KPM and

DGL algorithm match with “exact” solution reasonably well in the [0,10] eV energy range.

However, they miss some of the peaks beyond 10 eV. We can see that the approximate

absorption spectra produced by the KPM and the DGL algorithm are not strictly non-

negative, which is an undesirable feature. Furthermore, KPM tends to produce some artificial

oscillations and peaks in the approximate absorption spectrum, which may be misinterpreted

as real excited states. These artificial oscillations and peaks are the result of the Gibbs

oscillation that are present when a discontinuous function, such as the sum of a number

of Dirac-δ distributions is approximated by a high degree polynomial. This observation

is consistent with that reported in Ref.38 Because the absorption spectrum associated with

molecules contain well isolated peaks, the KPM, which is based on polynomial approximation

in a continuous measure, often exhibit Gibbs oscillation when degree of the polynomial is

high. The Gibbs oscillations are clearly visible on Figure 6 between 0–5 eV and also create
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pseudopeak around 5.5 eV (Figure 6 (b)). This problem is reduced in the DGL algorithm.
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Figure 6: Comparison of simulated absorption spectra of TFBA calculated by LR-TDDFT,
Lanczos-LR-TDDFT, KPM and DGL. The FCA was used. (a) k = 400 (b) k = 400 for the
Lanczos-LR-TDDFT and k = 600 for KPM and DGL.

Figure 6 (b) shows that as the degree of the kernel polynomial increases, for example, to

600, all major peaks of the absorption spectrum in [0, 30] eV are correctly resolved.

6.8 DOS by Lanczos

In Figure 7, we plot the DOS approximation for the FTBA dye obtained from the Lanczos

algorithm and compare it with that obtained from a full diagonalization of the KM matrix.

The FCA is used to show the DOS in the energy range [0, 125] eV. We use nvec = 10

randomly generated vectors to run the Lanczos algorithm. When 200 Lanczos steps are

used in each run, the DOS approximation obtained from (29) is nearly indistinguishable

from that constructed from the eigenvalues of the KM matrix. The total number of matrix

vector multiplications used in this case is 10×200 = 2000. If fewer Lanczos steps are taken in

each run, the resulting DOS approximation becomes less well resolved. However, the general

features of the DOS can still be seen clearly when only 50 Lanczos steps are taken in each

run.

26



Energy [eV]
0 15 30 45 60 75 90 105 120

D
en

si
ty

 o
f 

S
ta

te
s

"exact"
Lanczos (k=200)
Lanczos (k=100)
Lanczos (k=50)

Figure 7: Resolution improvement of the density of states for FTBA, the FCA approximation
is used. The number of random initial vectors for Lanczos iteration is 10.

7 Conclusion

We have described two iterative algorithms for approximating the absorption spectrum of

finite systems within LR-TDDFT. We used the fact that the product eigenvalue problem is

self-adjoint with respect to an appropriately chosen inner product, which allowed us to pro-

pose the symmetric Lanczos algorithm and corresponding KPM algorithm as an low-memory

option. Our computational examples show that these methods can be much more efficient

than traditional methods. In addition, the Lanczos algorithm generally gives more accurate

approximation to the absorption spectrum than that produced by the KPM or DGL, when

the same number of matrix vector multiplications are used. In particular, the approximate

absorption spectrum produced by the Lanczos algorithm is strictly non-negative. This is

not necessarily the case for KPM or DGL. Furthermore, KPM tends to produce additional

artificial oscillations, that may be misinterpreted as fictitious excited states. However, the

Lanczos algorithm requires storing more vectors in order to overcome potential numerical
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instability. In contrast, both the KPM and DGL methods can be stably implemented using

a three-term recurrence, leading to a minimal storage requirement. While we have demon-

strated the efficiency of our approaches to estimate spectra features, more work needs to be

done to obtain information about the composition of the excited states and state-specific

properties like forces and Hessians where traditional methods based on partial diagonaliza-

tion of the Casida matrix are still very useful.
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Appendix

In this section, we provide detailed derivations and explanations for some of the expressions

presented in the main text.

A Spectral function

The spectral function associated with a function of the form

f(ω) =
∑
i

ai
ω − λi

,

is defined to be

s(ω) =
∑
i

aiδ(ω − λi).

It is an elegant way to describe the numerator (or weighting factor) associated with each

pole of f(ω).

An alternative way to express s(ω) is through the expression

s(ω) = − 1

π
lim
η→0+

Imf(ω + iη) =
1

π
lim
η→0+

∑
i

ai
η

(ω − λi)2 + η2
.

This is the expression we used in (1) to define the dynamic polarizability tensor α.

B Derivation for χ

The expression of χ(ω) given in (2) can be derived in a number of ways, (e.g. through the

Liouville super-operator presented in Ref.29) We give a simple derivation of this expression

here using basic linear algebra.
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We start from a matrix representation of (2)

χ(ω) = ε−1(ω)χ0(ω) = [I − χ0(ω)fHxc]
−1 χ0(ω),

and substitute χ0 with (5) to obtain

χ(ω) =
[
I − Φ̂

(
(ω + iη)C −D

)−1
Φ̂TfHxc

]−1

Φ̂
(
(ω + iη)C −D

)−1
Φ̂T .

Using the Sherman–Morrison–Woodbury formula for the following matrix inverse

[
I − Φ̂

(
(ω + iη)C −D

)−1
Φ̂TfHxc

]−1

= I + Φ̂
[(
(ω + iη)C −D

)
− Φ̂TfHxcΦ̂

]−1

Φ̂TfHxc

= I + Φ̂
(
(ω + iη)C − Ω

)−1
Φ̂TfHxc,

where Ω is defined by (7). We obtain

χ(ω) =
[
I + Φ̂

(
(ω + iη)C − Ω

)−1
Φ̂TfHxc

]
Φ̂
(
(ω + iη)C −D

)−1
Φ̂T

=Φ̂
[
I +

(
(ω + iη)C − Ω

)−1
(Ω−D)

] (
(ω + iη)C −D

)−1
Φ̂T

=Φ̂
[
I +

(
(ω + iη)C − Ω

)−1(
Ω− (ω + iη)C + (ω + iη)C −D

)] (
(ω + iη)C −D

)−1
Φ̂T

=Φ̂
(
(ω + iη)C − Ω

)−1
Φ̂T .

(30)

C Eigendecomposition of the Casida Matrix

It is known (see, e.g., Ref.47) that when both M ≡ A + B and K ≡ A − B are positive

definite, the Casida matrix, H, defined in (11) admits an eigendecomposition of the form

 A B

−B −A

 =

U V

V U


Λ

−Λ


U V

V U


−1

=

U V

V U


Λ

−Λ


 U −V

−V U


T

,
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where U , V are real nonv × nonv matrices satisfying UTU − V TV = I, UTV − V TU = 0,

and Λ = diag{λ1, . . . , λnonv}. Let U = [u1, . . . , unonv ], V = [v1, . . . , vnonv ]. Then the right

and left eigenvectors of H associated with λi are
[
uT
i , v

T
i

]T
and

[
uT
i ,−vTi

]T
, respectively. In

addition, we have

⟨x|χ(ω)|x⟩ = x̂T
[
(ω + iη)I −H

]−1
Cx̂T

=
[
x̂T
1 , x̂

T
1

](ω + iη)I −

 A B

−B −A




−1  x̂1

−x̂1


=

[
x̂T
1 , x̂

T
1

] U V

V U


(ω + iη)I −

Λ
−Λ




−1  U −V

−V U


T  x̂1

−x̂1


=

[
x̂T
1 (U + V ), x̂T

1 (U + V )
](ω + iη)I −

Λ
−Λ




−1  (U + V )T x̂1

−(U + V )T x̂1


=

nonv∑
i=1

([
x̂T
1 (ui + vi)

]2
ω − λi + iη

−
[
x̂T
1 (ui + vi)

]2
ω + λi + iη

)
. (31)

In the limit of η → 0+, the imaginary part of (31) becomes

lim
η→0+

Im⟨x|χ(ω)|x⟩ = −π
nonv∑
i=1

([
x̂T
1 (ui + vi)

]2
δ(ω − λi)−

[
x̂T
1 (ui + vi)

]2
δ(ω + λi)

)
.

= −2π sign(ω)
nonv∑
i=1

λi

[
x̂T
1 (ui + vi)

]2
δ(ω2 − λ2

i ).

Here we make use of the identity

δ(ω ∓ λi) = 2λiH(±ω)δ(ω2 − λ2
i ),
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where H(x) =
[
1 + sign(x)

]
/2 is the Heaviside step function. This identity can be proved

by showing

ξ(λi) =

∫ +∞

0

2λiδ(ω
2 − λ2

i )ξ(ω)dω =

∫ +∞

−∞
2λiH(ω)δ(ω2 − λ2

i )ξ(ω)dω,

ξ(−λi) =

∫ 0

−∞
2λiδ(ω

2 − λ2
i )ξ(ω)dω =

∫ +∞

−∞
2λiH(−ω)δ(ω2 − λ2

i )ξ(ω)dω,

for any continuous function ξ(ω), through a change of variable ϖ = ω2, ω = ±
√
ϖ, and

dω = ± dϖ
2
√
ϖ
.

It can be verified that the normalization condition UTU − V TV = I implies that (U +

V )T (U − V ) = I and (U + V )TM(U + V ) = Λ. Consequently, we have

M = (U − V )Λ(U − V )T , K = (U + V )Λ(U + V )T .

The eigendecompositions of MK and KM are thus given by

MK = (U − V )Λ2(U − V )−1 = (U − V )Λ2(U + V )T ,

KM = (U + V )Λ2(U + V )−1 = (U + V )Λ2(U − V )T .

Therefore, the vectors ui+ vi (i = 1, 2, . . . , nonv) in (31) are the right eigenvector of KM , as

well as the left eigenvector of MK, both associated with the eigenvalues λ2
i . These results

lead to

αx,x(ω) = 2 sign(ω)
nonv∑
i=1

λi

[
x̂T
1 (ui + vi)

]2
δ(ω2 − λ2

i )

= 2 sign(ω)x̂T
1 (U + V )Λδ(ω2I − Λ2)(U + V )T x̂1

= 2 sign(ω)x̂T
1 (U + V )Λ(U + V )T (U − V )δ(ω2I − Λ2)(U + V )T x̂1

= 2 sign(ω)x̂T
1Kδ(ω2I −MK)x̂1.
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Thus we have proved (14), which is an expression for αx,x(ω) that involves matrices of

dimension nonv × nonv (instead of 2nonv × 2nonv in (8)).
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