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Cost–benefit analysis of nanofertilizers 
and nanopesticides emphasizes the need to 
improve the efficiency of nanoformulations 
for widescale adoption

Yiming Su    1 , Xuefei Zhou2, Huan Meng3, Tian Xia4, Haizhou Liu5, 
Philippe Rolshausen6, Caroline Roper    7, Joan E. McLean1, Yalei Zhang2, 
Arturo A. Keller    8 & David Jassby    9 

Nanotechnology-based approaches have demonstrated encouraging 
results for sustainable agriculture production, particularly in the field of 
fertilizers and pesticide innovation. It is essential to evaluate the economic 
and environmental benefits of these nanoformulations. Here we estimate 
the potential revenue gain/loss associated with nanofertilizer and/or 
nanopesticide use, calculate the greenhouse gas emissions change from 
the use of nanofertilizer and identify feasible applications and critical 
issues. The cost–benefit analysis demonstrates that, while current 
nanoformulations show promise in increasing the net revenue from crops 
and lowering the environmental impact, further improving the efficiency 
of nanoformulations is necessary for their widescale adoption. Innovating 
nanoformulation for targeted delivery, lowering the greenhouse gas 
emissions associated with nanomaterials and minimizing the content of 
nanomaterials in the derived nanofertilizers or pesticides can substantially 
improve both economic and environmental benefits.

It is expected that demand for all types of crops will significantly 
increase in the coming decades to meet the crop demand of the expand-
ing global population. While the production of wheat and rice has been 
increasing steadily over the past 70 years, the growth rate of vegetable, 
fruit, soybean and rubber tree production has increased at a faster pace 
(Fig. 1 and Supplementary Fig. 1).

The primary method used to increase crop yields—increased use 
of conventional fertilizers and pesticides—is no longer yielding the 

needed growth (suggested by the plateaued consumption of fertilizer 
and pesticide; Supplementary Fig. 2)1 and has resulted in significant 
environmental damage, a result of over-application of fertilizers and 
inefficient uptake (for example, 30–35%, 18–20% and 35–40% of N, P 
and K fertilizer were uptaken by plants2; 10–70% of applied pesticides 
reaching plants3 with possibly <0.1% reaching biological targets4).

The use of nanotechnology-based approaches for crop yield 
enhancement has demonstrated encouraging results2,5, especially 
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been shown to be effective in inhibiting the growth of plant-associated 
bacteria and fungi, on the basis of in vitro experiments21,23–25. Different 
techniques can deliver NPs onto plants, leading to the enrichment of 
NPs at targeted tissue, such as leaves, trunks and roots26–28. Tuning the 
surface physicochemical properties (such as hydrophilicity, surface 
charge and polymer layer thickness) and size can potentially deliver and 
mobilize/immobilize NPs into plant cells, organelles and conductive 
systems (xylem and phloem, responsible for the upward and downward 
transport of water/nutrients, respectively), which allows NPs to combat 
both endogenous and exogenous pathogens23,28. However, it is unclear 
whether these nanotechnology-based approaches are economically 
feasible for combatting different crop diseases.

Adopting nanotechnology for non-food crop production is also 
very attractive as nanotechnology-based amendments can improve the 
desirable properties of the final products29. According to a 2008 study, 
60% of the world’s total harvested biomass was used for animal feed, 
4% for material use and 4% for energy production30. Therefore, there 
is ample opportunity for nanotechnology to play an important role 
in agricultural practices. However, before nanotechnology is widely 
adopted, it is critical to carry out a cost–benefit analysis on the use of 
nanofertilizers and nanopesticides for growing different crops. In this 
analysis, we evaluate the potential revenue gain/loss (including the 
environmental cost of a fertilizer) associated with nanofertilizer and/
or nanopesticide use, calculate the GHG emissions change resulted 
from the use of nanofertilizer and identify feasible applications and 
critical issues that need to be further explored.

Results and discussion
Cost–benefit analysis of nanofertilizers
Although not much information is available, there are several studies 
that allow us to perform a preliminary cost–benefit analysis of employ-
ing NP-based fertilizers and compare them with traditional fertilizers. In 
terms of macronutrients (that is, N, K and P), it remains largely unknown 
whether the use of nanofertilizers can generate net positive revenue, 

in the field of nanofertilizers and nanopesticides3,6–9. Fertilizer com-
pounds (for example, N, P and K) can be made into, and applied as, 
nanoparticles (NPs). Alternatively, inert NPs can be used as nutrient 
carriers (for both macro- and micronutrients) in agricultural practices2. 
Recent studies have demonstrated that multiple stages of plant growth 
benefit from the application of NP fertilizers (germination, growth, 
flowering and fruiting), and discussed the underlying mechanisms 
responsible for the increased plant production2,10,11. Nanofertilizers 
(that is, zerovalent iron NPs, ZnO NPs and nanomolybdenum) can also 
be used to remediate soil from contamination by pentachlorophenol, 
Cd, As and Cu (refs. 12–14). In addition, nanofertilizers may contribute 
to the nutritional value of crops, which can alleviate certain nutrient 
deficiency diseases in humans (that is, Zn, Fe, Ca and Se deficiency)15. 
Owing to the high efficiency, it is possible that nanofertilizers can 
(partially) replace heavily dosed conventional fertilizers for grow-
ing nutrient-demanding crops, such as rice, wheat, apple, pear and 
grape16,17. However, it is unclear whether this increased production can 
offset the increased cost of NP-based fertilizers. Moreover, greenhouse 
gas (GHG) emissions from fertilizer synthesis and use account for a 
large portion of man-made GHG emissions. For instance, production of 
N fertilizer alone makes up approximately 2% of the world’s energy con-
sumption; about 60% of anthropogenic nitrous oxide release is mainly 
from microbial nitrification and denitrification of the residual fertilizer 
in croplands18,19. It remains unclear how the use of nanofertilizers could 
impact the overall GHG emissions from fertilizer synthesis and use.

Pesticides have been employed to treat a wide array of plant dis-
eases. However, some endogenous (residing in a plant’s conductive 
system) or exogenous (residing in intercellular spaces of plant tissues) 
pathogens can grow on or in leaves, stems, roots, fruits and seeds, 
making it hard for conventional pesticides to treat and causing a sig-
nificant decline in crop yield. Recent advances in nanotechnology 
show that nanopesticides can be employed to replace conventional 
pesticides20–22. A wide range of nanoscale agents including pristine 
NPs (for example, nano-Ag, nano-CuO, nano-ZnO and nano-S8

0) have 
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Fig. 1 | Guaranteeing the supply of fruit, vegetables and non-food crops 
while providing sufficient grains. On the basis of 2013 population and food 
consumption data, the production of wheat and rice will have to increase to 
9.2 × 108 and 9.7 × 108 tonnes by 2050 (approximately 30% higher than their 
production in 2013) to satisfy global demand. However, the production of 
maize, vegetables (primary, that is, coming directly from the land and without 

undergoing further processing), fruits (primary) and rubber (an example of an 
industrial crop) will probably need to increase to meet global demand by 110%, 
80%, 65% and 91%, respectively, on the basis of their 2018 production levels. 
Data of global crop production from 1960 to 2018 were collected from FAOSTAT 
(https://www.fao.org/faostat/en/#data/QCL).
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as well as how to apply nanofertilizers to achieve both economic and 
environmental benefits. Using K as an example, conventional K fertilizer 
use (1.33 g K per 15 kg soil) was found to increase corn yield (obtained 
from the control group without fertilizer) by approximately 16.7%, while 
the yield increase brought by a nanoformulated K varied between 9.5% 
and 24.5%, depending on the dosage (0.26 g to 1.33 g K per 15 kg soil)31. 
Given the unit price of a nanoformulation is higher than the conven-
tional fertilizer, it is very likely that, for a given crop, there is an optimal 
dosage of nanofertilizers that maximizes revenue. In general, it has 
been reported that the application of nanofertilizers can increase crop 
yield by 10–30% (ref. 3). Assuming a 20% yield increase, it is estimated 
that nanofertilizers can add (U.S. dollars) $133.2, $66.0 and $86.4 ha−1 
to the revenues from corn, wheat and soybeans, respectively (based on 
data from https://ag.purdue.edu/commercialag/home/paer-article/20
18-purdue-crop-cost-return-guide/). In addition, because of the lower 
dosages of nanofertilizers needed to achieve enhanced growth and 
yields, the total cost of nano-N (typical dosage 10 kg ha−1, cost $100 ha−1), 
nano-P (typical dosage 5 kg ha−1, cost $125 ha−1) and nano-K (typical 
dosage 5 kg ha−1, cost $125 ha−1) is estimated to be $350 ha−1 (based 
on data from https://inscx.com/shop/), while that of conventional 
fertilizer for corn, wheat and soybean are $296 ha−1 (270.0 kg anhy-
drous ammonia ha−1, 79.9 kg P2O5 ha−1 and 81.0 kg K2O ha−1) $200 ha−1 
(123.8 kg urea ha−1, 64.1 kg P2O5 ha−1 and 59.6 kg K2O ha−1) and $116 ha−1 
(0 kg N ha−1, 38.2 kg P2O5 ha−1 and 90.0 kg K2O ha−1), respectively (based 
on data from https://ag.purdue.edu/commercialag/home/resource/
2020/03/2020-crop-cost-and-return-guide/). It is currently unclear 
whether it is economically beneficial to replace some or all of conven-
tional fertilizers with nanofertilizers. Importantly, the substitution may 
have significant environmental benefits because of the lower dosages 
needed of nanofertilizers. These benefits can stimulate the adoption 
of nanotechnology in agricultural practices.

Herein we use maize and N fertilizer as an example to quantitively 
estimate the economic and environmental benefits associated with 
nanofertilizer use. As illustrated in Fig. 2, in the absence of nanofer-
tilizers (control group), corn yields gradually increase from 4.1 t ha−1 
to 9.5 t ha−1 when conventional fertilizer dosage (XT) increases from 
0 kg ha−1 to 300 kg ha−1. Notably, when the dosage is higher than 
150 kg ha−1, increasing dosage does not substantially increase yield, 
suggesting an increasing waste of fertilizer at high dosages. In terms 
of nanofertilizers, different γ values (relative efficiency of the nanofer-
tilizer to traditional one, defined in Methods) result in different crop 
yields. By increasing γ from 1 to 9 and considering a nanofertilizer 
dosage between 0 kg ha−1 and 50 kg ha−1, the yield increases signifi-
cantly (Fig. 2 and Supplementary Fig. 3). For example, compared with 
the dosage of conventional fertilizer (200 kg ha−1) needed to obtain a 
high yield (>8.0 t ha−1), a much lower dosage of nanofertilizer is needed 
(40 kg ha−1) with γ = 6. Moreover, it may be feasible to combine conven-
tional and nanofertilizers as a co-dosing approach to increase yield 
even further (Fig. 2), which is currently widely explored, for example, 
co-dosing fertilizer with carbon-based nanomaterials32–34. The benefit 

of the co-dosing method is that it lowers the total cost of fertilizer 
application (through the use of conventional fertilizers) while increas-
ing the yield (through the use of the nanofertilizers). However, it is 
worth noting that both XT and γ can impact the increased rate of yield 
significantly. For instance, the increase in corn yields within a range of 
0 kg ha−1 to 50 kg ha−1 of nanofertilizers with γ = 6 is much higher than 
that with γ = 1 or 4 (with the same XT); increasing XT from 50 kg ha−1 to 
150 kg ha−1 can reduce the rate of yield from the increased usage of 
nanofertilizers (with the same γ) (Fig. 2 and Supplementary Fig. 3). In 
sum, nanofertilizer with a high γ value can efficiently increase crop 
yields and reduce fertilizer dosage significantly, which will be beneficial 
to the environment.

While applying nanofertilizers can significantly increase crop 
yields, the current price of nanofertilizers is still much higher than that 
of conventional fertilizers. As the overall cost of fertilizers has a linear 
relationship with dosage for both conventional and nanofertilizers, 
high dosage leads to a large cost discrepancy between conventional 
and nanofertilizers. Therefore, it is essential to estimate the revenue 
change after adopting nanofertilizers. Through equations (2–7), rev-
enue under different scenarios was calculated (Supplementary Fig. 4) 
and the maximum revenue was determined (Fig. 3). Excluding envi-
ronmental costs from the cost–benefit model, the observed ‘revenue’ 
under the recommended conventional fertilizer dosage (180 kg ha−1, 
without nanofertilizer) is $864 ha−1 (Fig. 3). However, after includ-
ing environmental costs into our model (without nanofertilizer), a 
maximum revenue of $475 ha−1 is obtained with a dosage of 49 kg of 
conventional fertilizers per hectare (Fig. 3); this finding implies that 
there is a large environmental cost under the high-dosage scenario 
using conventional fertilizers.

In terms of nanofertilizers, when γ is ≤2 (Fig. 3), the maximum 
revenue (subtracting environmental costs) is obtained when no 
nanofertilizers are used ($475 ha−1), indicating that at these γ values 
nanofertilizers do not generate positive net revenue under the assump-
tions made in our model. However, lower unit prices, less N leaching 
and higher N use efficiency can lower the critical γ value under which 
positive net revenue can be generated by using nanofertilizers. In the 
current model, when γ increases to 3, co-dosing 49 kg ha−1 conventional 
fertilizers and 24.5 kg ha−1 nanofertilizers generate a maximum revenue 
of $510 ha−1 (Fig. 3). When γ further increases from 4 to 9, the maximum 
revenue increases from $649 ha−1 to $982 ha−1 while the optimal dosage 
of nanofertilizers declines from 42 kg ha−1 to 28 kg ha−1 (Fig. 3). That is, 
nanofertilizers with a high γ value are able to completely replace con-
ventional fertilizer and generate higher revenues, while those fertilizers 
with medium γ values (that is, γ = 3) should be used to partially replace 
conventional fertilizers (which is the current stage of the research 
in this field). Notably, with highly efficient nanofertilizer (γ = 9), the 
maximum revenue ($982 ha−1; Fig. 3) is even higher than the observed 
revenue with only conventional fertilizer at the recommended dosage 
($864 ha−1, without taking environmental costs into consideration), 
indicating highly efficient nanofertilizers can significantly increase 
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Fig. 2 | Efficient nanofertilizers can significantly reduce fertilizer dosage for the same corn yield compared with that of conventional fertilizers. Surface 
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the yield while lowering the environmental impact in comparison with 
that brought by conventional fertilizers. However, current data from 
the majority of studies on nanofertilizer indicate that the efficiency of 
nanofertilizers largely remains below 3, and more work on composition 
optimization needs to be done. In addition, in the co-dosing scenario, 
it is worth investigating how to use nanofertilizer efficiently along with 
conventional fertilizers.

In addition, among all the micronutrients, zinc is critical for 
plant growth. In a recent study35, zinc was delivered by spraying 
16 l of 10 mg l−1 nano-ZnO (nZnO) suspension per hectare, which 
increased pearl millet yield by 37.7%. While the cost of nZnO fertilizer 
($0.0048 ha−1) is more than an order of magnitude higher than that 
of conventional (that is, non-nano) ZnO ($0.00032 ha−1), the net rev-
enue increase by using nZnO is estimated to increase from $38.6 ha−1 
(using conventional ZnO) to $103.1 ha−1 in India (commodity price of 
pearl millet, $25.65 per 100 kg; https://www.commodityonline.com/
mandiprices/bajra-pearl-milletcumbu). Another case study investi-
gating nano-Fe2O3 (nFe2O3) fertilizer showed that the use of nFe2O3 
fertilizer (50 mg Fe kg−1 soil, or 20 kg nFe2O3 ha−1) increased tomato 
yield from 22.6 t ha−1 (without Fe dosage) to 59.2 t ha−1 while 100 mg 
conventional Fe (FeCl3·6H2O) or chelated Fe per kg soil increased yield 
to only 29.3 t ha−1 and 35.5 t ha−1, respectively36. It is estimated that the 
total cost of nFe2O3 was about $700 ha−1 (with unit price of $35 kg−1, 
https://www.alibaba.com/product-detail/SUOYI-Nano-Ferric-oxide-
20-30nm_1600374519559.html?spm=a2700.galleryofferlist.nor-
mal_offer.d_title.436e4b8bqH7jYM), while the net revenue increase 
is approximately $160,000 ha−1 (with $4.37 kg−1 tomato, June 2022, US 
price; https://fred.stlouisfed.org/series/APU0000712311). In addition, 
several studies reported a significant increase in plant growth and 
yield when testing NPs as micronutrients. Owing to the low dosage 
of micronutrients (that is, ≤50 mg l−1 in foliar spray37), the risk of NP 
accumulation in food remains low, as research reported similar metal 
levels in grain/fruit treated with conventional or nanometal-based 
fertilizers26. It is highly likely that nanofertilizers used as micronutrients 
can increase net revenue.

We further estimate changes in GHG emissions after nano-N fer-
tilizer is widely adopted. While there are no available data about GHG 
emissions from nanofertilizer (that we defined in this study using γ) 
manufacturing, there are several studies demonstrating that simply 
mixing a small amount of nanomaterials (for example, carbon nano-
tube38, 2D graphite carbon NPs33 and ZnO (ref. 39)) with conventional 
fertilizers can significantly increase nutrient uptake efficiency and thus 
reduce the dosage substantially (for example, 30% reduction33). Moreo-
ver, nanomaterials (such as nanographene oxide40, nZnO (refs. 41,42),  
nFe2O3 (ref. 5) and nAg (ref. 43)) have been proven as effective fertiliz-
ers. For example, applying 1 mg nAg kg−1 soil (0.3 wt% of N fertilizer 
dosage) was found to increase grain yield by 42.3% (ref. 43); 80 mg l−1 
of nZnO sprayed onto wheat increased yield from 4.38 g per pot (con-
trol) and 6.96 g per pot (chemical zinc) to 19.94 g per pot42. It is highly 
likely that optimizing the composition of nanofertilizer can increase γ 
significantly. Thus, we estimate the GHG emissions from nanofertilizer 
manufacturing by adding the GHG emissions of conventional fertilizer 
and those of any nano-additives. In Fig. 4a, it is observed that small 
GHG emissions of nanomaterials, low weight ratio of nanomaterials 
added, and high efficiency of the derived nanofertilizers can lead to a 
significant reduction of the overall GHG emissions during manufactur-
ing. Currently, with a 30% fertilizer dosage reduction (representing a 
nanofertilizer with γ of 1.4) (ref. 33), to achieve a goal of GHG emissions 
reduction from the level of 2019 (the green dashed line in Fig. 4a), the 
weight ratio of the nano-additive to conventional fertilizer shall be less 
than 1% and its GHG emissions during manufacturing shall be lower 
than 200 kg CO2 kg−1. If mixing 1% of 100 kg CO2 kg−1 nanomaterials 
into conventional fertilizer reduces fertilizer dosage by 50% or 75% 
(that is, γ of these nanofertilizer increases to 2 or 4), then the overall 
GHG emissions during fertilizer (including both nanomaterials and 
conventional fertilizer) manufacturing can be lowered by 31.2% and 
65.6%, respectively, compared with 2019 levels (FAOSTAT, https://www.
fao.org/faostat/en/#data/GY).

In terms of the GHG emissions from the applied fertilizer in crop-
land, seen from Fig. 4b, GHG emissions from conventional N fertilizer 
usage are predicted to increase to 6.4 × 108, 6.6 × 108 and 6.7 × 108 T 
(equivalent CO2 emissions) in 2030, 2040 and 2050, respectively. In 
contrast, with the use of nanofertilizer GHG emissions may be greatly 
reduced. For instance, when m (the percentage of conventional fertiliz-
ers replaced by nanofertilizer to the overall fertilizer usage) equals 20%, 
40% and 50%, GHG emissions in 2050 decrease to 5.5 × 108, 4.3 × 108 and 
3.8 × 108 T, respectively (γ = 6), representing a 17.9%, 35.8% and 43.3% 
decline, respectively; when γ increases from 3 to 9, if 40% of conven-
tional N fertilizers are replaced by nanofertilizers, then GHG emission 
will decline from 4.7 × 108 to 4.2 × 108 T in 2050. In sum, a higher effi-
ciency of nanofertilizers could allow for reduced usage, which would 
lead to reduced GHG emissions.

Case for nanopesticides
According to FAOSTAT (https://www.fao.org/faostat/en/#data/RP), 
in 2019 the global pesticides use in agricultural practices was about 
4.17 million tonnes, which includes 2.22 million tonnes of herbicides, 
0.97 million tonnes of fungicides and bactericides, and 0.70 million 
tonnes of insecticides. Given the large consumption of herbicides, 
their environmental impact could be greatly reduced if nanotechnol-
ogy could reduce their usage. Among the different nanoformulations, 
nanoporous materials (for example, SiO2 and zeolites), nanomi-
celles (self-assembled amphipathic co-polymers), nanoemulsions 
(oil-in-water emulsions) and nanocapsules (typically with a polymeric 
shell) have been explored as potential pesticides carriers44. For instance, 
two studies reported on the successful preparation and delivery of 
temperature- and/or pH-responsive nanocarriers for agrochemicals 
into/onto tomato leaves28,45. However, so far, little effort has been 
placed on nanocarrier development for efficient herbicide loading/
delivery and in vivo programmed release. Thus the economic feasibility 
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of replacing traditional herbicides with nano-encapsulated herbicides 
is largely unknown and needs further investigation once more data 
are available.

In terms of nanopesticides, we first performed a thorough com-
parison between conventional pesticides and nanopesticides (in two 
categories: pesticides in nanocarriers and metal-based nanopesticides) 
in terms of their efficiency for pathogen/pest inhibition. As demon-
strated in Fig. 5a, pesticides in nanocarriers have higher efficiency than 
their conventional counterparts under a wide range of conditions, with 
the average efficiency increase from conventional to nanoformulation 
under the same dosage being about 25.4 ± 11.6%. With regard to the 

lethal concentration at which 50% of the target pests are killed (LC50) 
of pesticides, the value of nanopesticides is 50% lower than that of 
conventional pesticides, with some even an order of magnitude lower 
(Fig. 5b). This reduction in the mass of active ingredients, although 
varying over a wide range, contributes to the economic benefit of using 
nanopesticides. Given the relatively low price of promising nanocarrier 
materials (https://www.alibaba.com/?spm=a2700.galleryofferlist.
scGlobalHomeHeader.8.17be6dc9L79Kg6), such as nanocellulose 
($1–50 kg−1), nanochitosan ($11–34 kg−1), alginic acid ($1–6 kg−1) and 
zein ($40–50 kg−1), it is very likely that using organic nanocarriers for 
pesticide delivery will be economically feasible. However, a lower LC50 
probably means nanopesticide is more toxic to organisms in environ-
ment, which needs careful investigation before practical application.

In terms of metal-based nanopesticides, they are classified into Ag, 
Zn, Cu and other metals (for example, Ti and Mg)-based nanopesticides. 
We collected LC50 values for these nanopesticides (and their conven-
tional counterparts if reported in the literature) to different types of 
bacteria, fungi and pests. It is widely acknowledged that metal-based 
NPs can be employed for pest and pathogen control in agricultural 
practices46, and they have shown some advantages over their conven-
tional counterparts, such as lower LC50 (Fig. 5c). However, as shown in 
Fig. 5c, the effectiveness of metal-based nanopesticides varies, and 
it is difficult to find a universal working concentration of a particular 
type of nanopesticide depending on its LC50. According to literature, 
the effectiveness has close relationship with size, surface functional 
group, composition and even crystal structures of the NPs8,9,46. it is 
possible that mixing with a secondary metal47, biosynthesizing with 
plant extracts48 and combining with conventional pesticides49 can 
greatly improve the effectiveness of metal-based nanopesticides. 
With respect to cost, the cost of 378.5 l (100 gallons) of a conven-
tional pesticide solution ranges between $1 and $160 (Fig. 5d), with 
an active ingredient concentration ranging between 0.1 mg l−1 and 
3.0 mg l−1 (based on data from https://www.purduelandscapereport.
org/article/fungicide-costs/). For nanopesticides (for example, nAg, 
nTiO2, nZnO, nCuO and nS8

0), assuming an effective concentration for 
pathogen growth inhibition ranges between <10 mg l−1 and 1,000 mg l−1  
(refs. 3,50), the approximate cost of nAg, nTiO2, nZnO, nCuO and nS8

0 
per a 378.5 l suspension is estimated to be about $1.14 to $303, $0.3 to 
$68.22, $0.038 to $40, $0.038 to $40 and $1.14 to $303 (Fig. 5d). As an 
example calculation, if the price of a nanopesticide is $100 kg−1 and its 
effective concentration is 100 mg l−1, the calculated cost is approxi-
mately $0.01 l−1 (or $3.79 per 378.5 l) (Fig. 5d, black dashed line), which 
is far lower than the cost of most conventional pesticides.

In addition, combining NPs with conventional pesticides has been 
proven to greatly lower the conventional pesticide dosage and improve 
the efficacy49,51. For instance, using nCuO or nZnO as additives to con-
ventional pesticides at an NP concentration of 250 mg l−1 can reduce 
conventional pesticides dosage by 80% (refs. 51,52). The cost of nCuO 
or nZnO is approximately $0.95 to $10 per 378.5 l suspension, while 
the reduced conventional pesticides cost ranges from $0.8 to $128 per 
378.5 l suspension. Therefore, it can be economically feasible to use 
low-cost NPs, such as nCuO and nZnO, to improve the efficacy of con-
ventional pesticide. Lowering the dosage of NPs, the unit price of NPs 
and the conventional pesticide concentration (when NPs are present) 
can further lower the cost of these hybrid pesticides. On the other hand, 
NPs can be designed to facilitate the degradation of pesticides52, which 
can alleviate the environmental impact of conventional pesticides in 
addition to lowering their dosage.

There have been studies that demonstrate the effectiveness of nan-
opesticides to endogenous pathogens. While conventional pesticides 
currently cannot efficiently reach the conducting system of plants, 
nanopesticides can be properly designed and effectively delivered 
into the plants to combat these pathogens (Fig. 6). For example, nAg 
and ZnO/nCuSi can combat Candidatus liberibacter and Xanthomonas 
citri subsp. citri, respectively, in citrus trees23,53. Given the high value of 
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Fig. 4 | GHG emission reduction by using efficient nanofertilizers. a, GHG 
emission during fertilizer manufacturing under different scenarios: 25, 50, 100 
and 200 kg CO2 kg−1 are the equivalent GHG emission of different nano-additives 
during synthesis, such as nZnO, nAg, nCu and nanocellulose (Supplementary 
Table 1); 30%, 50% and 75% fertilizer dosage reduction represents nanofertilizer 
with γ = 1.4, 2 and 4 (the green dashed line represents 2019 GHG emission of 
conventional N fertilizer during manufacturing). b, GHG emission from applied 
fertilizer in cropland: polynomial fit (red line) was use for data analysis (green 
line and blue line represent 95% lower/upper confidence interval and lower/
upper prediction interval; red dashed line represents predicted GHG emission; □ 
represents the predicted GHG emission value at that year), and γ and m represent 
the efficiency of nanofertilizer and the percentage of conventional fertilizers 
replaced by nanofertilizer. Emission data before 2019 are collected from 
FAOSTAT (https://www.fao.org/faostat/en/#data/GY).
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some crops (in Fig. 6), it will be economically viable to use high-value 
nanoformulations, such as nAg, nS8

0 and other well-designed nano-
complexes, if they are effective in inhibiting growth of pathogens. It 
is also worth noting that non-food crops account for 5.6% of the total 
value of crops ($2.5 trillion) in 2016 (ref. 30), making it reasonable to 
incorporate nanopesticide in these non-food crops (such as cut flowers 
and rubber trees) as well.

Recommendations for future work
On the basis of the above analysis, nanotechnology has the potential 
to increase the net revenue from agricultural products, especially the 
high-value crops, and alleviate the environmental impact of conven-
tional fertilizers and pesticides. Given that the efficiency of nanofor-
mulations currently available is relatively low but the price is high, it 
is possible to use them partially replace conventional counterparts 
for higher net revenue and better environmental benefits. Further 
improving the efficiency of nanoformulations is necessary for the wide 
adoption. Moreover, past research has focused primarily on the effec-
tiveness of nanofertilizers/nanopesticides in crops intended for human 
consumption (for example, grains and vegetables)8,22, with studies 
on animal feed (for example, forages and silage corn), fruit trees and 
non-food crops still rare. We propose that, in the next phase, research 
shall focus on the following:

 1. Increasing the efficiency (γ) of benign nano-agents (both 
fertilizers and pesticides) to increase economic and environ-
mental benefits. At present, the economic benefit brought by 
using nanofertilizers/nanopesticides may not be very attractive 
compared with that of conventional fertilizers/pesticides. For 
a wide adoption of nano-agents, it is critical to develop benign 

nano-agents, increase the γ of these nano-agents and reduce 
the unit cost. The following strategies are recommended: (1) 
explore green synthesis process via plant extract or functional 
microbes54, (2) optimize nanocomposition according to soil 
conditions, nutrients requirements of plants and climate condi-
tions (that is, droughts, storms and heat), (3) tune NP surface for 
targeted delivery (that is, to rhizosphere and chloroplast)55 and 
(4) minimize the GHG emission of nano-additives and their con-
tent in the derived nanoformula. Moreover, it is very likely that 
nano-agents can be designed to have multiple functions. For in-
stance, nanometals (that is, Fe and Zn) combined with nutrients 
(that is, N, P and K) and/or conventional pesticides may be able 
to simultaneously meet the requirements of contamination re-
mediation, nutrient supply, plant immune system improvement 
and pathogen control. It is also important to realize that there 
can be long-term environmental implication or carryover ben-
efits of nano-agents, and these aspects deserve more research 
effort. In addition to lab tests, field tests are needed for estimat-
ing the practical economic benefits.

 2. Long-term tracking on NPs in the environment and plants. 
Currently, studies on the fate and transport of NPs have been 
carried out mostly on annual crops, ending after crops were har-
vested. There is a lack of information on the long-term fate and 
transport of NPs in environment and plants, especially in cases 
involving cropland remediation56 and perennial crops, where 
the use of nanomaterials may make more economic sense. The 
physical and chemical properties of NPs evolve after exposure to 
the environment or after being introduced onto/into plants. The 
influence of these modified NPs on soil chemistry and the soil 
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Fig. 5 | Costs and benefits of nanopesticides. a, Inhibition efficacy of 
nanopesticides (loaded on nanocarriers) and their conventional counterparts on 
pathogen or pest at the same dosage (data available in Supplementary Table 2).  
b, LC50 of nanopesticides (loaded on nanocarriers) and their conventional 
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marker indicates the mean value) (data available in Supplementary Table 3).  
d, Pesticide cost per 378.5 l (100 gallons) working solution (nanopesticide 
concentration range: 10–1,000 mg l−1; dashed line represents the cost of 
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maximum and minimum values and the square marker indicates the mean value).
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microbiome, and in particular on nitrifying/denitrifying bacte-
ria (N cycle)57, needs to be investigated. NP uptake by plants and 
their fate and translocation within plants needs to be monitored 
over the long term, as well. In addition, regarding NPs in peren-
nial plants, it remains unknown how these NPs impact photo-
synthesis, and how NPs impact the properties of plant products 
(that is, fruit, rubber and timber) in the long term. It will be ben-
eficial if one can manipulate the translocation of NPs in plants, 
for example, to block NP entry into fruit, and sequester NPs in a 
particular plant tissue to achieve specific goals.

 3. Developing effective NP delivery methods. Minimizing the 
dosage of nanomaterials is critical to limit their cost and envi-
ronmental release, thus demonstrating the true benefit of na-
nofertilizers and nanopesticides. Therefore, it is important to 
develop effective methods for NP delivery in the field, since the 
current methods developed for dosing conventional fertilizers/
pesticides, such as foliar spraying and soil drenching, result in 
inefficient NP uptake, which can increase the risk of NP leaching 
into the environment. In terms of trunk injecting and petiole/
branch feeding, while they can effectively deliver NPs into larger 
woody plants (the cost of application is still not available), it 
remains unclear how to carry out similar injecting or feeding 
for smaller crops. In addition, the cost of delivery techniques 
for nanoformulations also needs to be evaluated for practical 
application.

 4. Developing regulations for nanomaterial use in line with 
their potential risk for human health. As there are concerns 
about the impact of NPs on the ecosystem, the bioaccumulation 
of NPs through the food chain and the impact of NP-containing 
foods on human health, besides developing benign NPs, it is 
necessary to classify different agricultural practices into dif-
ferent categories according to the extent of risk caused by NP 
use. For instance, NP use in crops planted for energy or materi-
als could be classified into a lowest-concern group, while crops 

treated with nanomaterials and used for animal feed could be 
classified into a mid-concern group. For the lowest-concern 
group, incentives instead of restrictions could be adopted since 
nanotechnology can lower the environmental cost of conven-
tional fertilizers/pesticides and increase crop revenue. In terms 
of the mid-concern group, regulatory measures could be de-
signed to encourage farmers to make the best use of nanoferti-
lizers/nanopesticides while minimizing the risk of nanomaterial 
exposure to human health. For the application of nanomaterials 
in food crops, it is important to realize there are also major dif-
ferences between herbaceous and woody plants in terms of the 
effective dosage, delivery methods, fate and transport of NPs in 
the plants, and residual NP content in grains and/or (intergen-
erational) fruit. Therefore, guidelines for nanomaterial applica-
tion (that is, dosage, dosing time, harvest time and maximum 
NP content in grain or fruits) in food crops should be crop spe-
cific and/or should depend on the residual level of NPs in grains 
or fruit post-NP application. This is in line with the Approach 
to Regulation of Nanotechnology Products of the US Food and 
Drug Administration (FDA): the Agency assess each product on 
its own merits and does not make broad and general assumption 
about the safety of products related to nanotechnology (https://
www.fda.gov/science-research/nanotechnology-programs-fda/
nanotechnology-fact-sheet). In addition, the FDA encourages 
industry to carry out individual consultation with the Agency to 
facilitate a mutual understanding about the scientific and regu-
latory issues related to the agricultural products grown with 
nanotechnology.

Methods
This study complies with all relevant ethical regulations from each 
university involved. The cost of nanofertilizers as micronutrients per 
hectare was estimated through multiplying the total dosage per hectare 
by the unit price. In terms of macronutrients, while economic benefits 
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can be qualitatively estimated by comparing revenue increase brought 
by using nanofertilizers with the cost of nanofertilizers, it is of great 
importance to quantify both economic and environmental benefits 
for fully embracing nanotechnology in agricultural practices. We use 
maize and N fertilizer as an example. First, we modify the traditional 
logistic fertilizer-yield function developed by Reck and Overman58 as 
follows (equation (1)),

Y = A/ (1 + eα−β(XT+γXN)) (1)

where Y, A, α, β, XT, XN and γ are actual yield (T ha−1), maximum potential 
yield (T ha−1), intercept parameter, response coefficient (ha kg−1), tradi-
tional N fertilizer dosage (kg N ha−1), nano-N fertilizer dosage (kg N ha−1) 
and relative efficiency of the nanofertilizer to traditional one, respec-
tively. In this study, γ represents the ratio of conventional fertilizer 
dosage to nanofertilizer dosage that is needed to obtain an equal yield, 
and it is assumed to be 1, 3, 4, 5, 6 and 9; these values are based on the 
typical dosage of the two types of fertilizer from two data resources 
(https://inscx.com/shop/ and https://ag.purdue.edu/commercialag/
home/resource/2017/03/purdue-crop-cost-return-guide/): nano-N 
10 kg ha−1 versus urea or anhydrous ammonia 123.8–270.0 kg ha−1; 
nano-P 5 kg ha−1 versus P2O5 38.2–64.1 kg ha−1; nano-K 5 kg ha−1 versus 
K2O 59.6–90 kg ha−1. Values of parameters A (9.51 T ha−1), α (0.77) and β 
(0.013 ha kg−1) are obtained from a study by Reck and Overman, assum-
ing that nanofertilizers were employed to replace the conventional 
fertilizers used in the cropland reported in the study58. It is noted that 
the quantitative relationship of yield–dosage (using MATLAB R2020a) 
may vary among different studies owing to the different soil types and 
cultivating conditions, but the trend was quite similar59,60. While Reck 
and Overman’s model allows us to quantitively analyse the impact of 
nanofertilizer efficiency on dosage–yield relationship, it has to be noted 
that the accuracy of this model can be influenced by the types of soil, 
abundance of soil organics, irrigation mode and some other factors61.

Second, it is hypothesized that the environmental costs associated 
with fertilizer use primarily include the cost of nitrate leached (CLN), 
ammonia volatilization (CAm) and the release of gaseous NO (CNO) and 
N2O (CN2O) (N2 from denitrification is not incorporated here);62 we 
propose to use equations (2–5) to estimate these costs on the basis of 
the findings from previous studies:62,63

CLN ,XT = a × LN (2)

CAm,XT = b × R1 × [XT (1 − NUE) − LN] (3)

CNO,XT = c × R2 × [XT (1 − NUE) − LN] (4)

CN2O,XT = d × R3 × [XT (1 − NUE) − LN] (5)

in which a, b, c and d are the environmental cost of leached nitrate 
($2.44 kg−1 N), ammonia volatilization ($11.3 kg−1 N), NO ($29.12 kg−1 N) 
and N2O release ($16.18 kg−1 N); R1,R2 and R3 are the proportion of ammo-
nia (0.48), NO (0.09) and N2O (0.09) to the overall mass of N from ferti-
lizer (excluding N utilized by plants and N leached) (notably, N2 accounts 
for 34% of the rest of N); NUE is the N utilization efficiency, which heavily 
depends on irrigation models. Assuming an efficient irrigation system, 
we use a relatively high NUE value for conventional fertilizer in our 
model to avoid overestimating the environmental benefits brought by 
replacing conventional fertilizers with nanofertilizers: 0.67, XT ≤ 50; 
0.62, 50 < XT ≤ 100; 0.57, 100 < XT ≤ 150; 0.54, 150 < XT ≤ 200; 0.52, 
200 < XT ≤ 250; 0.5, 250 < XT ≤ 300 (ref. 1). LN, leached nitrate (kg N ha−1), 
can be calculated by the following equation64,

LN = 68e
[0.71×( XT

XR
−1)] − 33.43 (6)

in which XR is the recommended dosage for maize (180 kg N ha−1). In 
terms of the environmental cost of nanofertilizers, it is assumed that 
nitrate leaching, ammonia volatilization and the release of NO and 
N2O can be reduced by 50%, 10% and 20%, respectively, on the basis 
of previous findings about NUE improvement strategies33,34,42,62,65,66. 
Notably, nitrate leaching, ammonia volatilization and the release of 
gaseous NO and N2O are closely related to NUE66. The higher NUE is, the 
less fertilizer remains in the environment and thus, the fertilizer has a 
lower environmental impact. This implies that environmental benefits 
brought by nanofertilizers vary with the degree of NUE improvement.

To simplify the calculation, it is further hypothesized that revenue 
primarily varies with yield, fertilizer cost and environmental cost. Other 
expenses, such as pesticides, labour and transportation remain the 
same between the two scenarios (that is, with and without nanofertiliz-
ers), although it is possible that labour expenses may increase owing to 
the additional training needed for nanomaterial handling. In contrast, 
transportation expenses may decline owing to the significant reduc-
tion in fertilizer mass. Therefore, net revenue (R, $ ha−1) after adopting 
nanofertilizers can be expressed by equation (7):

R = Y(XT ,XN) × P − XT × pT − XN × pN − CLN ,XT − CAm,XT − CNO,XT
−CN2O,XT − 0.5CLN,XN − 0.9CAm,XN
−0.8CNO,XN − 0.8CN2O,XN

(7)

where P is the price of corn ($149.0 tT−1, low-end commodity US price, 
from 2014 to 2020, https://www.indexmundi.com/commodities/?co
mmodity=corn), pT is the price of traditional fertilizer ($1.7 kg−1) and 
pN is the price of nanofertilizer ($10 kg−1, https://inscx.com/shop/news-
hop/). The constants, 0.5, 0.9 and 0.8, are derived from the assumption 
forementioned that nanofertilizers have lower environmental cost 
than conventional fertilizer. Notably, the net revenue largely depends 
on the price of the crop, conventional and nanofertilizers, the efficiency 
of the nanofertilizer, and the GHG reduction brought by nanofertilizers. 
While this is a preliminary evaluation (based on US price of crops, 
fertilizers and pesticides), it is applicable for evaluating the cost–ben-
efit of nanofertilizers to different types of crops under different sce-
narios. However, owing to a lack of data, the potential environmental 
impact of nanomaterials is not considered in this model (in the case of 
large consumption of fertilizers and pesticides, safe and green nano-
materials are highly recommended).

To explore the impact of nanofertilizers use on reducing GHG 
emissions, we estimated the possible emission change of GHGs during 
manufacturing and field application. Here, to simplify the estimation 
of GHG emission during manufacturing, we assume nanofertilizer 
could be used as a hybrid with conventional fertilizer of nanomaterials, 
with wt% of 0.01%, 0.1%, 1% and 10%. GHG emission from nanofertilizer 
during manufacturing (EGHG,pro) can be expressed by equation (8),

EGHG,pro = μcon × φ × (1 − τ) + φ × (1 − τ) × ω × μnano (8)

where μcon and μnano are the GHG emission of conventional fertilizer 
(μcon = 3, as urea) and different types of nanomaterial during manufac-
turing (μnano = 25, 50, 100, 200) (data of typical nanomaterials are avail-
able in Supplementary Table 1), φ is N fertilizer usage in 2019 (1.08 × 108 
metric tonnes), τ and ω are percentage of fertilizer usage reduction 
(τ = 30%, 50%, 75%, representing 𝛾𝛾 = 1.4, 2,4) and weight percentage of 
nanomaterials to conventional fertilizer.

In terms of GHG emission from field application of N fertilizer, N2O 
released after its application has a global warming potential 265–298 
times greater than CO2 on a 100 year timescale. To simplify the calcula-
tion, the GHG emission (EGHG,post) is assumed to include direct (N2ODirect) 
and indirect (N2OLeaching) emissions of N2O resulting from fertilizer 
usage, which can be expressed by equations (9–11) (refs. 33,62,64),
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EGHG,post = 265 × (N2ODirect + N2OLeaching) (9)

N2ODirect = FSN × EF1 (10)

N2OLeaching = FSN × FractLeach × EF2 (11)

FSN,nano = FSN,con/γ (12)

where FSN, EF1, FractLeach and EF2 are the annual amounts of synthetic 
conventional N fertilizer applied to soils (kg N per year), the emission 
factor for N2O emissions from N (EF1 0.01), the fraction of N losses by 
leaching/runoff to total applied N fertilizer (FractLeach 0.3), and the 
emission factor for N2O emissions from N leaching and runoff (EF2 
0.0075), respectively. Owing to the high efficacy of nanofertilizer, FSN 
of nanofertilizer can be approximately calculated by equation (12). The 
reduced dosage decreases both the direct and indirect N2O release. 
The total GHG emissions consist of the emissions from conventional 
fertilizer (EGHG,post,con) and emissions from nanofertilizer (EGHG,post,nano), 
and can be estimated by equation (13).

EGHG,post,total = EGHG,post,con + EGHG,post,nano = (1 −m) EGHG,post,con,total+

EGHG,post,nano ≈ 265 × FSN,con,total × [(1 −m) × (EF1,con + FractLeach,con × EF2,con)

+ 0.8×m
γ

(EF1,con + FractLeach,con × EF2,con)]

= (1 −m) EGHG,post,con,total +
0.8×m

γ
EGHG,post,con,total

(13)

in which m is the assumed ratio that conventional fertilizer replaced 
by nanofertilizer to the total expected conventional fertilizer usage 
(EGHG,post,con,total), and the constant 0.8 is obtained from the assumption 
that nanofertilizer reduces N2O release by 20% (refs. 33,65). EGHG,post,con,total 
is estimated from historical data fitted with a parabolic model.

Last but not least, to qualitatively estimate the cost of nanopes-
ticides, we assume that an effective concentration (M) for pathogen 
growth inhibition ranges between <10 ppm and 1,000 ppm (refs. 3,50). 
The price (pN) of nAg, nTiO2, nZnO, nCuO and nS8

0 was found to range 
between $300 and $800, $80 and $180, $10 and $100, <$10 and $100, 
and $300 and $800 kg−1, respectively (depending on particle size and 
purity). Therefore, the maximum (Tmax) and minimum (Tmin) cost of 
nAg, nTiO2, nZnO, nCu and nS8

0 per a 378.5 l (100 gallons) suspension 
are calculated via equations (14) and (15):

Tmax =
(378.5 ×Mmax × pN,max)

1000,000 (14)

Tmin =
(378.5 ×Mmin × pN,min)

1000,000 (15)

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The authors declare that the data (including MATLAB analysis) sup-
porting the findings of this study are available as Excel spreadsheets 
alongside the manuscript and its Supplementary Information (Sup-
plementary Tables 1–3) and FAO website (https://www.fao.org/faostat/
en/#data). Source data are provided with this paper.
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