
UC Irvine
UC Irvine Previously Published Works

Title
Microglia states and nomenclature: A field at its crossroads

Permalink
https://escholarship.org/uc/item/8363826f

Journal
Neuron, 110(21)

ISSN
0896-6273

Authors
Paolicelli, Rosa C
Sierra, Amanda
Stevens, Beth
et al.

Publication Date
2022-11-01

DOI
10.1016/j.neuron.2022.10.020
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8363826f
https://escholarship.org/uc/item/8363826f#author
https://escholarship.org
http://www.cdlib.org/


Microglia states and nomenclature: A field at its crossroads

A full list of authors and affiliations appears at the end of the article.

SUMMARY

Microglial research has advanced considerably in recent decades yet has been constrained by 

a rolling series of dichotomies such as “resting versus activated” and “M1 versus M2.” This 

dualistic classification of good or bad microglia is inconsistent with the wide repertoire of 

microglial states and functions in development, plasticity, aging, and diseases that were elucidated 

in recent years. New designations continuously arising in an attempt to describe the different 

microglial states, notably defined using transcriptomics and proteomics, may easily lead to 

a misleading, although unintentional, coupling of categories and functions. To address these 

issues, we assembled a group of multidisciplinary experts to discuss our current understanding of 

microglial states as a dynamic concept and the importance of addressing microglial function. Here, 

we provide a conceptual framework and recommendations on the use of microglial nomenclature 

for researchers, reviewers, and editors, which will serve as the foundations for a future white 

paper.

NAMES, NAMES, NAMES

If the names are unknown, knowledge of the things also perishes.1

—Carolus Linnaeus

And yet, we humans instinctively tend to name things and use that name to define their 

properties. Biologists are no exception: from the time of 18th century father of taxonomy 

Carolus Linnaeus, the main purpose of biology has been categorizing the natural world as 

a way of understanding it. Naming species and grouping them together into taxa served 

to define evolutionary relationships; even today taxonomy and phylogeny are closely 

interrelated. But we must never forget that nomenclatures and categories are artificial 

constructs and that biology is seldom black and white but rather an extended continuum 

of greys. While giving names is natural and useful, we need to be aware that categorization 

constrains our thinking by forcing us to fit our observations into established classes. As 

sociologists say, “categorization spawns expectations.”2 This semantic issue has already 

been acknowledged by immunologists because, in fact, the given names have connotations 

that often imply a specific function.3 In this paper, we extend similar initiatives on 

macrophages,4 dendritic cells,3 interneurons,5 and astrocytes6 to discuss the widespread 
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problems associated with categorization of microglia using outdated terms such as “resting 

versus activated” (Box 1) or “M1 versus M2” (Box 2).

Dichotomic, rigid categories convey a dualistic idea of good versus bad microglia and may 

actually impede scientific advancement. Widely used terms, such as “neuroinflammation” as 

a synonym of microglial reactivity (Box 3) and naming a panoply of presumed microglial 

populations and assumed functions arising from single-cell transcriptomics, are misleading 

and increasingly problematic, especially to those entering the field of glial biology and 

neuroimmunology. This nomenclature does not address the important question: what are 

the specific functions of microglia in the contexts of development, health, aging, and 

disease? It is now clear that microglia exist in diverse, dynamic, and multidimensional states 

depending on the context, including local environment (Figure 1). We define dimensions 

as the key variables driving the phenotypic transformations of microglia. These variables 

are molecularly distinct signaling pathways regulated at multiple levels (e.g., transcriptional, 

epigenetic, translational, metabolic) that each give rise to distinct microglial functions or 

properties. In this manner, categorizing microglia based on a historical, one-dimensional 

nomenclature in the absence of functional data will constrain and stifle future progress and 

innovation.

To examine and address these issues, we assembled a team of international experts who have 

made major contributions to microglia research, inclusive of various groups, and balancing 

gender, geographical distribution, and seniority. Authors from the fields of neuroscience, 

neurobiology, immunology, neuroimmunology, oncology, and neuropathology, from both 

academia and industry, discussed their perspectives on the current and future challenges 

in defining microglial states and nomenclature. A questionnaire (Data S1) was created 

to collect all the authors’ opinions on several nomenclature issues and the importance 

of directly addressing microglial function. The responses to the questionnaire, an online 

meeting held in June 2021, and an open session held at the EMBO meeting Microglia 2021 

were used as a backbone to develop this paper.

Herein, we summarize our current knowledge about the identity of microglia and discuss 

best practices for how to define and study microglial state dynamics. We then outline 

“classical” microglial nomenclatures, highlighting some of the key discoveries that led to the 

above classifications and their limitations. We intentionally focus on citing studies related to 

the nomenclature rather than providing a comprehensive review of the history of microglial 

research, as it has been done elsewhere.7,8 We discuss the overall limitations and conclude 

with recommendations for the proper usage of microglial nomenclature as research evolves, 

provide a conceptual framework for discussing microglia, and offer perspectives on the 

future questions, gaps in knowledge, and challenges to tackle as a field.

MICROGLIAL IDENTITY: WHAT WE MEAN ABOUT WHEN WE TALK ABOUT 

MICROGLIA

The origin and identity of microglia was, for many years, a matter of debate. In the dim 

and distant past, Ramón y Cajal’s disciple, Pío del Río-Hortega, suggested that these cells 

were of mesodermal origin.9 However, over time, an ectodermal origin was also proposed,10 
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sparking controversy until the 1980s. The mesodermal origin took solid hold later with 

the advance of technical approaches revealing more similarities than differences with the 

functions and features of macrophages. In 1999, microglia were reported to appear in the 

brain rudiment as early as embryonic day 8 (E8) in mice and proposed to originate from 

yolk sac progenitors.11 The recent combination of fate mapping studies and transplantation 

approaches this debate, revealing key aspects of microglial identity and plasticity. In mice, 

unlike other model organisms such as zebrafish,12,13 microglia are now considered to 

originate from a pool of macrophages produced during primitive hematopoiesis in the yolk 

sac, which start invading the neuroepithelium at E8.5.14–17 In humans, microglial precursors 

invade the brain primordium around 4.5 to 5.5 gestational weeks.18

One key signaling pathway critical for microglial development and maintenance is 

the colony stimulating factor receptor (CSF1R). Ligands of CSF1R that sustain this 

pathway include two cytokines with different origins and primary sequences but similar 

tridimensional structures and binding to CSF1R: IL-34 and CSF1.19 IL-34 is produced by 

neurons, while CSF1 is secreted primarily by oligodendrocytes and astrocytes. Accordingly, 

the two ligands have distinct and non-overlapping functions in the establishment and 

maintenance of microglia within the gray and white matter.20 Microglia have the capacity 

for self-renewal in certain contexts, allowing them to repopulate the CNS within 1 

week of depletion, even when more than 99% of microglia are ablated with CSF1R 

antagonists21,22 or diphtheria toxin.22 This process, termed “microglial repopulation” or 

“microglial self-renewal,”23–25 is different from “microglia replacement,” which, in contrast, 

occurs when endogenous microglia are replaced by exogenous cells that can include 

bone-marrow-derived myeloid cells,26–29 peripheral blood cells,28,30 stem-cell- or induced-

pluripotent-stem-cell (iPSC)-derived peripheral blood cells,31 across various experimental 

or pathological conditions.31–33 Our current definition is that mammalian microglia are 

yolk-sac-derived, long-lived cells within the CNS parenchyma that persist into adulthood 

and self-renew without any contribution from bone-marrow-derived cells at a steady state.

The identification of microglia is currently based on the expression of specific genes highly 

enriched in microglia, which represent their transcriptional identity and are commonly 

employed as “microglial markers” (Table 1). However, the expression of each marker 

alone is not sufficient to define microglial identity, as levels of expression may change 

depending on microglial adaptation to local signals. The present consensus is that 

mammalian microglia can be identified by the expression of transcription factors like 

Pu.116, cytoplasmic markers such as ionized calcium-binding adapter molecule 1 (IBA1), 

and surface markers including the purinergic receptor P2YR12, trans-membrane protein 119 

(TMEM119), and CSF1R.34 Based on these markers, genetic tools (such as Cx3cr1CreERT2, 

P2ry12CreERT2, Tmem119CreERT2, and HexbCreERT2 mouse lines) (Table 2) are available 

that allow for more specific manipulation or visualization of microglia, although they could 

also target other populations, including border-associated macrophages (BAMs), also named 

CNS-associated macrophages (CAMs), and other glial cells.35–40 Most recently, a new 

binary transgenic model relying on co-expression of Sall1 and Cx3cr1 has been introduced 

that specifically targets microglia in a non-inducible way.41
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Nonetheless, many of these markers are downregulated in pathological states and can be 

expressed by other brain macrophage populations such as BAMs residing in the perivascular 

space and leptomeninges,42,43 which also derive from the yolk sac.44 In addition, caution 

must be exercised, because many classical microglial markers can also be expressed by 

cells originating from monocytes or iPSCs, and therefore their presence does not imply 

bona fide microglia. These cells should be more accurately described as monocyte-derived 

microglia-like or iPSC-derived microglia-like cells (iMGL cells).

As resident macrophages of the brain parenchyma, microglia participate in many critical 

CNS functions ranging from glio-, vasculo-, and neurogenesis to synaptic and myelination 

through their process motility, release of soluble factors, and capacity for phagocytosis 

(Figure 2). These functions have been revealed using several constitutive and inducible 

knockout models for microglial-specific genes45 and by microglial-depletion paradigms in 

animal models,46 particularly rodents and zebrafish.

The key role of microglia in maintaining CNS health is also supported by the severe 

phenotype displayed by patients lacking microglia due to loss-of-function CSF1R mutations. 

Heterozygous mutations, particularly in the kinase domain of CSF1R, are associated with 

adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP; OMIM: 

221820) characterized by reduced microglial numbers and white matter atrophy that result 

in progressive cognitive and motor impairment, dementia, and early death.47 Additionally, 

biallelic mutations are reported to cause complete absence of microglia with developmental 

brain malformation, hydrocephalus, bony lesions, and early death.48,49 This phenotype, 

however, seems in apparent contradiction with the reported absence of gross neurological 

abnormalities at birth observed in mice with genomic deletion of FIRE, an intra-intronic 

super enhancer in the Csf1r gene enhancer region, whose brains lack microglia,50 though 

more nuanced analyses are needed. Nonetheless, FIRE mice have premature lethality and 

increased amyloid pathology as early as 5 months of age.51 The source of discrepancy 

between the developmental impact of CSF1R mutations in humans and mice is not yet fully 

understood. One possibility is that microglial developmental functions are partly redundant, 

modified by other environmental factors, or compensated in their absence by other cell 

types, such as astrocytes.52 It will be important to determine how microglia communicate 

with other glial cells and immune cell populations to support CNS maturation and function 

in the future.

(RE)DEFINING MICROGLIAL STATES: DAMs, HAMs, WAMs, AND MORE

Core markers of cellular identity are useful to identify microglia but are not necessarily 

informative about the functional “state” of microglia, which depends on the context (i.e., 

the physiological conditions in which microglia are found at any given CNS region and 

time). Microglia have a complex “sensome,”53 a series of surface receptors that allow 

them to detect changes in their environment. Microglial states are thus dynamic, and the 

outcome of the cell’s epigenome, transcriptome, proteome, and metabolome yields discrete 

morphological, ultrastructural, and/or functional outputs (Figure 3). Microglia are anything 

but static, as they are exceptionally responsive to alterations in their local environment. In 

the mature healthy CNS, the distribution of microglia is largely uniform and generally 
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regular with little overlap between adjacent territories.54 The cell bodies are largely 

sessile, but their processes are constantly moving and scanning the brain parenchyma.55,56 

Microglial functions adapt to their location and reciprocal interactions with nearby cells and 

structures. Their morphology, ultrastructure, and molecular profile are similarly dynamic 

and plastic, resulting in many different cell states. As Conrad H. Waddington, founding 

father of systems biology, eloquently described: “Cells are residents of a vast ‘landscape’ of 

possible states, over which they travel during development and in disease”.57

Single-cell technologies, multi-omics, and integrative analyses of gene and protein 

expression have helped to not only locate cells on this landscape but also provide new 

insight into the molecular mechanisms that shape the landscape and regulate specific 

cell states in a given context (e.g., development, adult, disease, or injury model, etc.). 

Many diverse and context-dependent microglial states have been observed across species 

and models. Some examples of these states are the disease-associated microglia (DAMs), 

originally associated with Alzheimer’s disease (AD) pathology models;58 microglial 

neurodegenerative phenotype (MGnD) documented across several disease models;59 

activated response microglia (ARMs) and interferon-responsive microglia (IRMs) in an AD 

pathology mouse model;60 human AD microglia (HAMs);61 microglia inflamed in multiple 

sclerosis (MS) (MIMS);62 and lipid-droplet-accumulating microglia (LDAMs) in aging mice 

and humans,63 brain tumors (glioma-associated microglia, GAMs),64 amyotrophic lateral 

sclerosis (ALS)-associated signature,65 and Parkinson disease (PD) microglial signature.66 

In the developing and aging brain, the white matter-associated microglia (WAMs),67 axon 

tract-associated microglia (ATMs),68 and proliferative-region-associated microglia (PAMs, 

related to phagocytosis of developing oligodendrocytes)69 may share some features with the 

core DAM signature. In the developing human CNS, microglia also express some of the 

DAM/MGnD/ARM-like profiles.70

While gene expression signatures indicate biological pathways, the functional implications 

of these states and relationship to one another remain unclear. In fact, the ever-growing list 

of branding clusters in single-cell RNA sequencing (scRNA-seq) experiments and use of 

acronyms is not consistent across research groups and could hinder future advance of the 

field without validation and functional experiments to understand their meaning. Moreover, 

transcriptomic signatures depend on tissue dissection and gating strategies that can lead 

to isolation artifacts,71–74 which, when layered with the technical limitations of single-cell 

sequencing, can make it difficult to assign state identity across different studies. Another 

source of complexity comes from evident interspecies differences,75–77 which can further 

hamper comparisons. Advances in computational tools and approaches, which enable the 

alignment and integration of single-cell datasets, can help solve some of these issues, 

providing a powerful way to determine microglial-state similarities across contexts.78,79

A practical limitation of solely defining functional states by their transcriptional signature 

is that mRNA expression may not directly predict protein levels.80 Protein expression 

signatures obtained by methods, such as single-cell mass cytometry, have their own technical 

limitations81 but may better represent true cell states.82,83 Importantly, mRNA or protein 

expression alone does not necessarily predict microglial function, although they can be used 

to generate functional hypotheses that need to be experimentally tested. There are many 
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methods that allow for the classification of microglia based on their constituent states, 

including gene expression, protein expression, post-translational modifications, mRNA 

profiling, morphology, and ultrastructure. All these approaches can vary in coverage (e.g., 

expression of a single-cell versus whole-transcriptome profiling), which has created overall 

confusion and mislabeling in the field. Presumably, each microglial state is associated with 

unique or specialized functions, although the unique roles of any observed state have so 

far remained elusive. Thus, it is critical that we begin to define microglial states taking 

into account their specific context within and between species, across sex, space, and time 

(e.g., CNS region and biological age) as well as layers of complexity (e.g., epigenetic, 

transcriptional, translational, and metabolic signatures), which ultimately determine together 

the cell’s phenome (i.e., motility, morphology, and ultrastructure) and function (Figure 5).

One major conceptual limitation of the various “one-off” microglial acronyms (e.g., DAMs, 

MGnD, etc.) is that they suggest stable states or phenotypes of microglia associated with a 

disease context, such as neurodegeneration. Intuitively, this classification system is similar 

to the concept of neuronal cell types, where neurons cluster into distinct subtypes based on 

their gene expression or neuroanatomy. However, contrary to microglia, neuronal groupings 

are considered fixed and terminally differentiated.5 We do not know how temporally or 

spatially dynamic microglial states may be, as microglia are remarkably heterogeneous 

and plastic. Therefore, these cells are probably not permanently “locked” into any single 

functional state. From the evidence available so far, microglial states appear dynamic and 

plastic, possibly transitory, and strongly dependent on the context.84 New tools including 

imaging reporters for microglial states are needed to track transitions within individual cells 

over time and across the lifespan, following different challenges and perturbations, as well 

as in response to treatment.

MICROGLIAL HETEROGENEITY: IT ALL DEPENDS ON THE CONTEXT

The term “homeostatic” is used to refer to microglia in physiological conditions, but there 

are different interpretations of this nomenclature when describing microglia in health and 

disease. While homeostatic relates to the “physiological” context assessed in space and time, 

it does not necessarily correspond to a unique molecular profile because, even without any 

perturbation, microglia display diverse morphological and functional states depending on 

the signals from the CNS microenvironment. This continuous microglial sensing results in 

multiple transcriptional signatures from development to aging depending on the specific 

local signals or challenges to the brain at each developmental stage.53 A less responsive 

microglial state, which in other contexts would be considered more homeostatic, might be 

less effective at responding to damage or pathological cues in aging and disease contexts. 

For example, in aging and neurodegenerative disease, microglia may have reduced ability 

to rapidly respond to brain challenges (i.e., removing toxic amyloid, infected, damaged, or 

degenerating neurons), leading to CNS dysfunction and disease progression. Microglia from 

adult TREM2 knockout mice have been described as “locked in a homeostatic state” as 

they are less responsive to challenges (such as amyloid) and do not adopt a transcriptional 

DAM signature in disease contexts.85,86 From this example, the term “homeostatic” is not 

informative if not well defined and placed in the context of function.
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Key modifying factors that lead to microglial heterogeneous states include age, sex, 

circadian time, local CNS signals, and peripheral cues, such as the changes in 

the microbiota87,88 or other systemic diseases (e.g., asthma)89 in addition to the 

pathophysiological state of the CNS and overall organism (discussed in more depth in 

the next section). Age, indeed, has a key influence on the microglial homeostatic state, 

which goes through several distinct temporal stages (embryonic, perinatal, adult, and aging 

microglia), each notably characterized by an enrichment of defined regulatory factors 

and gene expression profiles.68,90 After the initial establishment of microglial identity 

by a network of developmentally programmed and environment-dependent transcription 

factors,75,90 microglia become extremely heterogeneous in their transcriptome during early 

postnatal development, as determined by scRNA-seq.68,69,91 In contrast, microglia display a 

more limited transcriptomic heterogeneity in the adult CNS, where the different microglial 

scRNA-seq clusters fall into a transcriptional continuum instead of representing distinct 

states.68,69,91 Relatively small transcriptional differences may, however, lead to relevant 

functional differences, as exemplified by the functional variations between hippocampal and 

cerebellar microglia.92,93

Sex differences due to sex chromosomes and/or gonadal hormones may also impact 

microglial states in different contexts. A growing body of evidence shows that male and 

female microglia differ in their transcriptomic, proteomic, and morphological profiles across 

brain colonization, maturation, and function in health and disease.88,94–96 Of note, the 

microglial sex-specific transcriptomic signatures appear to be intrinsically determined, being 

maintained when microglia are transplanted into the brains of mice from the other sex.96 

Sexually differentiated roles of microglia could critically influence a variety of biological 

processes, in a time-dependent manner, and, thus, emerge as key disease modifiers across 

various pathological conditions with sexual dimorphism in prevalence, manifestation, and 

response to treatment.97 A well-characterized example for sex-specific divergence is the 

purinergic receptor P2X4R, identified as the male-biased microglial mediator of chronic 

pain.98 Sex differences in sexually dimorphic responses in physiology and pathology likely 

arise from a combination of Y-chromosome-specific genes, sex hormones, neuronal circuit-

related factors, and epigenetic mechanisms.99

Regardless of the reduced heterogeneity in the mature adult (compared to embryonic) 

CNS,7,68,90 microglia do differ among CNS areas in terms of their morphology and 

ultrastructure, transcriptional, proteomic, epigenetic profiles, and functional specialization, 

suggesting that microglial states are modulated by local cues.83,100,101 However, local 

CNS signals are not sufficient to determine microglial identity because macrophages 

engrafted in the brain parenchyma can acquire a microglia-like morphology without 

reaching a transcriptomic signature identical to host microglia, even after prolonged CNS 

residence,26,102,103 supporting the idea that microglia are distinct from peripherally derived 

macrophages, even when they colonize a similar niche. In addition, these findings suggest 

that once their identity is established, microglia assume different functional states in 

response to local CNS signals. Therefore, both the developmental genetic programs and 

CNS environment (nature and nurture) collaborate to dynamically determine microglial 

functional states.
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Microglia not only respond to local cues within the brain, but they also receive continuous 

inputs from the periphery, including signals from the gastrointestinal tract.104 In this context, 

the role of the host microbiota is gaining momentum in controlling microglial maturation 

and function in the CNS,88 with growing evidence that microbiota-derived short-chain fatty 

acids represent major mediators of the gut-brain axis.87,105 Another example of crosstalk 

between microglia and the periphery is the so called “sickness behavior,” as a result of the 

central response to peripherally released cytokines produced by peripheral immune cells 

and tissue-resident macrophages detecting specific pathogen-associated molecular patterns 

(PAMPs).106 This complex and coordinated response, in which the functional role of 

microglia remains poorly understood, gives rise to adaptive behavioral strategies, including 

lethargy. Acute systemic inflammation, nevertheless, was extensively shown to impact on 

microglia107,108 and induce a microglial state associated with robust IL-1β production.109

The concept of the brain as an immune-privileged organ has been challenged and definitely 

revisited in recent years. Indeed, peripherally produced cytokines and immune cells access 

the CNS and patrolthe perivascularspace in disease but alsoin health, thus playing important 

roles in coordinating central and peripheral immune responses.110 It was also suggested 

that microglia require resident CD4+ T cells in the healthy developing brain for proper 

maturation and complete fetal-to-adult transition.111 Microglia and T cell crosstalk was 

shown to help maintain homeostasis in the CNS, with dysfunctional regulation occurring 

in diseases, such as MS,112 ALS,113 AD,114 and encephalitis.115 It will be important to 

continue investigating the influence of the peripheral immune system, including B cells, 

natural killer cells, and other cells, on microglial states and function in both health and 

disease.

MICROGLIAL STATES IN THE DISEASED CNS

Microglia are keen responders and critical players in numerous neurodevelopmental, 

neurological, and neurodegenerative conditions, as thoroughly reviewed elsewhere. Altered 

microglial states have been described in the diseased human brain and across various 

animal models of disease pathology based on morphology and gene expression signature. 

In addition, these states also differ depending on the timing (i.e., disease stage), genetic 

background, and local environment. Context-dependent signals vary dramatically during 

disease progression; they range from apoptotic cells, extracellular debris, toxic proteins (i.e., 

amyloid, α-synuclein), and signals resulting from blood-brain barrier disruption and altered 

function of neurons and other glial cells. Microglia respond to these challenges by changing 

their molecular profile, morphology, and ultrastructure (Box 3), as well as motility and 

function.

The expression of core microglial markers is also altered over the course of disease, 

including downregulation of the homeostatic microglial signature. A prototypical example 

is P2RY12, one of the most widely used markers to discriminate microglia from other 

macrophages, with its reduced expression being one of the salient features of the microglial 

response to AD pathology and other disease conditions,116 as shown in several mouse 

models of disease (Figure 4). The apparent contradiction that core markers do not have 

a steady expression, as could perhaps be expected, is likely reflecting the functions 
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those proteins have and how they change in the diseased brain. For instance, P2RY12 

upregulation in epilepsy may relate to microglial sensing ATP and nucleotides released 

during seizures.117 This seeming paradox strengthens the fact that determining microglial 

expression profile is far from attributing any function to microglia, as it may only be 

suggestive of a potential functional identity, which, with unanimous consensus from all the 

authors, requires experimental validation using appropriate animal models and mutagenesis 

while using analyses that preserve the environmental influences shaping microglial function.

A microglial state that has received particular focus is the one denoted by the DAM 

signature, initially identified in a mouse model with mutations within five AD genes 

(5XFAD)58 and later detected in other AD mouse models and samples from human 

AD (reviewed in Chen and Colonna116) and MS patients.62,118 Single-cell transcriptomic 

profiling of human microglial nuclei revealed a tau-associated microglia cluster that had not 

been identified in mice,119 reinforcing the idea that more human studies are needed. The 

shared DAM signature includes downregulation of CX3CR1 and P2RY12 and upregulation 

of APOE, AXL, SPP1, and TREM2,116 and it has been recently shown that it comprises 

two ontogenetically different cell lineages, both expressing TREM2, resident microglia 

and invading monocyte-derived cells (termed disease inflammatory macrophages, DIMs) 

that accumulate during aging.120 Many questions remain open regarding the functional 

significance of the DAM signature.

Are DAMs beneficial, detrimental, or both? Several studies, in both mouse and human stem-

cell-differentiated microglia, demonstrated that the transition to a DAM state is dependent 

on TREM2.58,59,85,121 How the TREM2 receptor drives the DAM transcriptional phenotype 

remains unclear, although the TREM2-ApoE signaling pathway is necessary for the switch 

from homeostatic to MGnD.59 Further investigations are required to fully elucidate the 

role of TREM2. For instance, is TREM2 a key sensor for amyloid-β and other AD-related 

pathology, or does its loss of function cause developmental defects in microglia that render 

them unable to change state? Is TREM2 controlling the microglial state by regulating their 

energetic and anabolic metabolism?122,123

New bulk and single-cell epigenetic approaches75,124–129 will help answer these questions 

and ultimately may provide a means to toggle microglial states at will, enabling the 

field to finally understand the function of distinct microglial states and their impact in 

different contexts. Additionally, many genes of the DAM signature were identified across 

various contexts. For example, a common set of markers including (but not limited to) an 

upregulation of TREM2, APOE, CD11c, CLEC7A, and LPL and downregulation of TGFβ, 

CSF1R, P2RY12, and TMEM119 has been recently used to denote a microglial state that 

associates with myelinating areas in the developing brain but also with aging and several 

models of degenerative diseases, such as AD, ALS,130 and MS.58,67,131 These observations 

raise the question as to whether the DAM is a signature strictly associated with certain 

diseases, as the name implies, or perhaps represents a more universal core signature that 

appears in response to various challenges and may differ between the young/developing 

versus aged/diseased CNS and across distinct regions. Most likely, the same states that 

are beneficial in certain contexts may be detrimental in others, strictly depending on the 

complex interactions between microglia and their surrounding environment. One of the most 
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relevant questions to be addressed is to which extent microglial states identified in the mouse 

brain are conserved and functionally relevant in the human brain.

NOMENCLATURE TROUBLES

Our current understanding of the plasticity of microglial states is at odds with the simplistic 

scenario established using outdated microglial nomenclature (resting versus activated and 

M1 versus M2; Boxes 1 and 2). Thus, a systematic, careful naming approach would 

greatly benefit microglial biology. As a first step to guide the field regarding the use of 

nomenclature, we generated a questionnaire (Data S1) and collected the responses from the 

co-authors.

Surprisingly, there was more consensus than disagreement that the current nomenclature has 

severe limitations, and a more useful conceptual framework is needed to properly understand 

microglial states. There is also agreement that this framework is a first important step 

to guide the field and should be revisited every 5 to 10 years by an international panel 

of experts as new discoveries are made. There is also a broad agreement that microglial 

responses should be framed in a multidimensional space and should not be simplified as 

dichotomic good versus bad (Figure 1). Another point of strong agreement: abandon M1/M2 

(and similar) nomenclature once and for all and generally avoid using the vague term 

“neuroinflammation.” Most agree that inflammation is not always detrimental but, instead, 

represents an adaptive response to damage that can sometimes get out of control (Box 

4). Quite importantly, a vast majority of authors support the use of “markers” (genes or 

proteins) to identify cell populations, but not as a readout of cell functions, which need to be 

addressed directly.

Nonetheless, there were a few points that are still under intense debate. The term “resting” 

microglia is strongly avoided by some authors, whereas others acknowledge that they still 

use it even with its limitations for lack of a better term. “Homeostatic” has more acceptance, 

although it is recognized that it is based on a very particular gene signature not shared by 

microglia across all physiological contexts, such as embryonic and postnatal development, 

and that several homeostatic states likely exist. Thus, the term “homeostatic” should always 

be accompanied by an accurate description of the context.

The opinion on use of the term “DAM,” on the other hand, is highly polarized. Many authors 

consider that a core set of transcripts in this signature is common to several pathological 

conditions and some physiological processes, including the development of white matter, 

whereas an equal number of authors state there is not enough evidence for “DAM” to be a 

universal signature of microglial response to damage. Finally, the extent to which microglia 

are unique or similar to other brain-associated or tissue macrophages is evolving with new 

data and profiling methods: most agree that because of their lineage, microglia are, to some 

extent, similar to other macrophages but have unique functions resulting from their longer 

residence in the CNS environment.
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RECOMMENDATIONS: DO’S AND DON’TS

Based on the collective opinions from the authors, we provide a series of recommendations 

for researchers, reviewers, and editors. As the field has not yet reached a consensus on 

several nomenclature topics, including the appropriate use of descriptors for microglial 

states, it is premature to provide clearer recommendations. Nevertheless, we aim to raise 

awareness on these issues and stimulate the launch of further initiatives that will guide the 

field and allow to develop more specific guidelines.

Classic nomenclature

• Consider microglia as highly dynamic and plastic cells that display multivariate 

morphological/ultrastructural, transcriptional, metabolic, and functional states in 

both the healthy and pathological CNS.

• Describe microglia using as many layers of complexity as possible: ontogeny, 

morphology/ultrastructure, motility, -omics, and function, always placing them 

into a species and spatiotemporal context (Figure 5).

• Refer to microglia in basal conditions as “homeostatic” instead of “resting” 

microglia, considering the limitations discussed above (i.e., that these terms refer 

to microglia under physiological conditions and not to the function of microglia). 

Use the term “surveillant/surveilling” to refer to microglia that are engaged in 

surveillance, but not as a synonym of microglia under normal physiological 

conditions.

• Refer to microglia in your experimental condition as “reactive to” or “responding 

to” while describing the particular signals they respond to (i.e., the context) 

instead of using the widely used broad term “activated,” as microglia are active 

in both health and disease.

• Disregard simplistic, dichotomic categorizations by providing the observed data 

and its context.

• Describe profiles of cytokine expression, considering that microglial complexity 

cannot be reduced to oversimplified and polarized “pro-inflammatory” 

versus “anti-inflammatory” categories. Similarly, do not use M1 versus M2 

classification.

• When using the term “DAM,” do not use it as a universal term applicable to all 

diseases, models, or challenges. The jury is still out to test whether its full or 

core signature is common to all or a subset of pathologies, particularly in the 

human brain.

Introducing new terminology

• Until a consensus is reached about true subtype(s) of microglia, with defined 

ontogeny, physical niches, functions, and transcriptional profiles (whether 

permanent or transient), use the term “state” rather than “subpopulation.”
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• Use combinations of gene or protein “markers” to identify putative 

subpopulations but be aware that their expression is plastic and may change over 

time and under different experimental conditions. Use fate mapping approaches 

with lineage tracing to track individual microglial cells and assess possible 

intrinsic differences as well as changes in their state over time.84,132

• In scRNA-seq studies, describe the transcriptional signatures (sets or modules 

of expressed genes) that can be compared with other studies.116,133 To describe 

groups of transcriptionally similar cells in terms of signature, use the term 

“cluster.”

• Avoid the use of acronyms wherever possible, and only use these once multiple 

laboratories have defined a stable state with a clearly defined functional role.

• If new terminology needs to be introduced, follow FAIR principles: findable, 

accessible, interoperable, and reusable (https://neuronline.sfn.org/professional-

development/data-sharing-principles-to-promote-open-science). An example of 

naming cell lines following these principles can be found here.134

Microglial markers and function

• Use integrative methodological approaches that allow probing of microglia using 

different levels of analysis (Figure 5).

• Follow updated consensus guidelines when using methodologies such as scRNA-

seq,135 qRT-PCR,136 or digital PCR.137

• Do not use morphology or gene/protein expression as a substitute for directly 

assessing cell function. Morphology and expression can be used to generate 

hypotheses about function that need to be specifically tested.

Grammar quandary

• “Microglia” as a population is a plural noun in English but a singular noun in 

Latin-derived languages, which occasionally causes confusion. In English texts, 

microglial cells should always be referred to in the plural form unless referring to 

an individual cell. For example, “microglia are brain cells” but “this microglia is 

adjacent to a neuron”.

FUTURE QUESTIONS AND CHALLENGES

From words to action

A key challenge in the field is to match microglial morphological, ultrastructural, 

transcriptomic, proteomic, metabolomics, and emerging lipidomic changes with functional 

responses (Figure 3). In the current single-cell era, an overwhelming wealth of data has 

been generated, profiling the expression of millions of microglia in different organisms, at 

different ages, across diverse brain regions. Yet, such “omics” identities are not necessarily 

linked to functional states and often lack spatial resolution. Additionally, many widely used 

microglial markers are sensome genes, whose expression and activity at the microglial 
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membrane may reflect functional adaptations to a changing environment and are possibly 

more indicative of the microglial functional state than the transcription profile.

Transcriptional analysis will benefit from ribosome profiling by RiboSeq138 and from 

gene-trap insertion profiling by TRAP-Seq.139 Proteomic approaches combined with in 
situ studies will provide better information in this respect, bridging the gap between 

expression and function. Further integration of complementary approaches, such as spatial 

transcriptomics, imaging mass cytometry, and correlative or conjugate electron microscopy 

in combination with other single-cell approaches, will provide a more comprehensive 

characterization of microglia. Ultimately, functional studies using specific pharmacological 

and transgenic approaches in animal models, as well as human-derived cells and 

organoids, are indispensable to understand the multiple roles of microglia within specific 

spatiotemporal contexts of health and disease.

How are microglial states coordinated?

Even as we acquire more data about microglial states, there are still key questions 

remaining unanswered. To which extent are microglial states plastic and reversible? What 

is the relationship between microglial state and cellular function? These varied single-cell 

characterizations ultimately need to be linked to particular functions to become relevant to 

development, health, and diseases. How do these states come about? How do signals from 

the CNS environment get integrated in microglia to produce specific states? New imaging 

tools and reporters that enable tracking and manipulation of specific microglial states are 

needed to address these questions.

How similar are peripherally derived macrophages and microglia?

A burning question that surely requires further investigation is related to the identity 

and function of microglia versus other brain macrophages. Although recent studies 

have provided evidence for an intrinsic unique core signature of microglia, their 

functional resemblances and differences remain undetermined. For instance, could engrafted 

parenchymal macrophages functionally replace the resident microglia despite having a 

different molecular identity, and could they serve as therapeutic vectors?

The devil is in the details

Another major caveat is that microglia are incredibly reactive cells, and evidence indicates 

that artifacts are often introduced during sample processing for a variety of methodologies, 

such as RNA profiling, immunohistochemistry, fluorescence-activated cell sorting, in vivo 
imaging, and so on. Hence, we may be missing or confounding important pieces of 

information because we unintentionally introduce changes in the parameters we are trying 

to measure. In addition, these artifacts are likely to generate variability across laboratories 

using different protocols. A future challenge is to increase reproducibility of data across 

laboratories by coordinating a shared database of protocols and analysis pipelines curated 

using STAR Methods guidelines. In addition, in the current single-cell multi-omics era, the 

challenges in big data analysis are exponentially growing.140 Statistical methods (including 

multivariate statistics)141 and artificial-intelligence-based data mining approaches (such as 
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machine learning)142 will have to be introduced to uniformly process and integrate large 

datasets, as well as extract the biological relevance of the findings.

Diversity as a source of richness

Many transcriptional states have been reported during embryonic development, aging, and 

disease. How many different microglial states can be identified? Within the homeostatic 

microglia, how many states exist? How do microglia navigate among their many states? Are 

they related through a transcriptional continuum or perhaps as a hub-and-spoke set of states, 

as has been proposed for macrophages?4 How dynamic are these states? And how spatially 

defined are they? Future research will need to address these important questions.

Male versus female microglia

Sex differences have been reported to affect the brain colonization, maturation, structure, 

transcriptomic, proteomic, and functional profiles of microglia in a time-dependent manner. 

To what extent these differences may regulate the susceptibility to neurological diseases 

remains a fascinating question that urgently awaits answers. Investigating the molecular and 

cellular mechanisms underlying sex-mediated differences in microglial states would advance 

our understanding of microglial implication in diseases with clear sex-related differences in 

their prevalence, symptoms, and progression, as well as response to treatments.

Relevance to humans

It will be imperative to study developmental and functional differences between human and 

animal model microglia. To date, most of the studies on microglia were conducted in mice, 

and a direct comparison among brain regions is still missing. Whether microglial states 

identified in mice also exist in humans is still under debate. Translating and validating these 

findings across species is critical and will help prevent failure of clinical trials that stem 

from animal model limitations. In addition, most human microglial studies were performed 

in Caucasians, and only recently data from other groups, such as African American 

individuals, are becoming available.143

Toward a unified nomenclature

The conclusion of this paper is that the community has not yet reached an agreement on 

what defines microglial identity compared to other cell types, nor consensus on the number, 

dynamic nature, or definition of microglial states. The community advocates for creating 

harmonized, curated databases and guidelines for introducing novel terminology; following 

STAR methods; and sharing data as early as possible. Until such consensus is reached, the 

community urges all microglial studies to present data with all their layers of complexity 

and carefully define the context examined to offer clarity instead of confusion, thereby 

contributing to a more thorough understanding of the many facets of microglial biology. To 

establish new guidelines for microglial states and nomenclature, we call for a community-

based approach, whereby the issues and progress are discussed openly in workshops and 

meetings, with input from diverse researchers across fields and career stages. A useful model 

to look after are the 10 Human Leukocyte Differentiation Antigen workshops that have taken 

place since 1982, in charge of renaming cluster of differentiation (CD) antigens (https://
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www.sinobiological.com/research/cd-antigens/hlda1). We lastly advocate for the creation 

of an international panel/committee of experts in charge of overseeing the guidelines and 

establishing a specific roadmap to write a white paper in the nearest future.

We would like to conclude with the words of Río-Hortega, who sarcastically identified the 

problems of microglial nomenclature already 100 years ago: “If we were fond of introducing 

new nomenclature to describe microglia, as many modern histologists are, who think that 

enriching nomenclature resolves problems, we would find for microglia names that would 

indicate their origin, or morphology, or function, in addition to classify all the shapes that 

acquire when moving and evolving—resulting in the same absurdity that occurs in some 

branches of Histology and, particularly, Hematology.”144

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1.

Resting versus activated microglia

The development of specific silver staining techniques in 1919 allowed Río-Hortega to 

clearly identify microglia and study their response to experimental manipulations.7,145 

Early on, Río-Hortega appreciated the striking morphological transformation of microglia 

following brain damage, but it was in the mid-1970s that the terms “resting” and 

“activated” microglia first appeared in the literature. These terms were used to 

morphologically describe cells with an affinity for silver staining that were observed in 

physiological (“resting”) versus pathological (“activated”) conditions. This nomenclature 

consolidated in the 1980s and became widely used during the 1990s,146 in parallel with 

the development and use of histochemical and immunohistochemical techniques, such 

as lectin staining,147 detection of phosphatases and phosphorylases,148 and antibodies 

against the complement receptor CR3.7 These techniques and nomenclature were pivotal 

in determining that “resting” microglia were unrelated to astrocytes, as some studies 

had wrongly concluded,149 and that “reactive” microglia shared many characteristics 

with the blood-borne monocytes.10 As shown by a PubMed search with microglia in 

all fields, there were only few papers published on the topic before the 1990s, and 

then a steady increase until the beginning of our century, followed by an exponential 

growth.150 There is a first inflexion point in 2005, with the seminal discovery using 

non-invasive two-photon in vivo imaging that microglia are extremely dynamic in the 

absence of pathological challenge, continuously surveying the parenchyma with their 

highly motile processes.55,56 The development of non-invasive methods was necessary 

for our understanding of microglial roles in the healthy brain (reviewed in Tremblay151). 

In 2005, microglial extreme dynamism in the intact brain was examined for the first 

time, through the skull of CX3CR1-GFP mice in which microglia are fluorescently 

labeled.55,56 As a result, microglia are now considered to be the most dynamic cells 

of the healthy mature brain.151 This seminal discovery prompted the renaming of 

quiescent or resting microglia as surveying56,152 or surveillant (from the verb to 

survey)153 microglia and also led to the proposal of the concept that microglia are 

never resting.154 Together, these and other in vivo two-photon imaging data put into 

serious doubt the concept of “activated” microglia, which suggests a unique form of 

response, as in fact microglia are always active, constantly responding (in different 

ways depending on the context) to the changes in their CNS environment, even under 

normal physiological conditions. Therefore, microglia do not switch from “resting” to 

“activated” in response to trauma, injury, infection, disease, and other challenges. Rather, 

microglia are continuously active and react to the stage of life, CNS region, species, sex, 

and context of health or disease by adopting different states and performing different 

functions. Thus, although still widely used, “resting” and “activated” microglia are labels 

that should be discontinued.
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Box 2.

M1 versus M2 microglia

Another terminology emerged in the early 2000s from immunologists classifying 

macrophages based on findings obtained using in vitro models: “M1,” the classical 

activation, considered pro-inflammatory and neurotoxic, as well as closely related to 

the concept of “activated” microglia, and “M2,” or alternative activation, considered anti-

inflammatory and neuroprotective.155 These responses were related to those of T helper 

lymphocytes (Th1 and Th2) based on their in vitro activation by specific immune stimuli 

that activated differential metabolic programs and changes in cytokine expression.156 

An associated term is “M0” microglia, which describes their state when cultured in 

the presence of transforming growth factor β (TGFβ) and CSF1 to mimic in vivo 
counterparts.157 The terms became widely adopted in microglial research, and the 2010s 

saw a boom of papers phenotyping macrophages and microglia into “M1” and “M2” 

based on the expression of markers related to these categories, used to indirectly assume 

a detrimental (“M1”) or beneficial (“M2”) microglial role.156 In many cases, editors 

and reviewers have asked authors to comply with this nomenclature. However, it soon 

became evident that macrophage responses are more complex than simply “M1” and 

“M2.”158 In the case of microglia, the advent of single-cell technologies provided clear 

evidence that microglia in the living brain do not polarize to either of these categories, 

often co-expressing M1 and M2 markers,159 despite the continued use of M1 and M2 in 

the literature. We thus recommend strictly avoiding M1 and M2 labels and using more 

nuanced tools to investigate microglial function (reviewed in Devanney et al.160).
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Box 3.

Microglial morphological responses across species

Microglial cells display a profusion of morphologies that have fascinated researchers 

since the early days of Río-Hortega. Many were tempted to equate morphology 

with function. Ramified microglia were traditionally associated with the “resting” 

state, although we now know that ramified microglia actively play many functions 

during normal physiological conditions. In contrast, “reactive” microglia (rounder 

cell body, generally with fewer and shorter processes) were called “activated” and 

equated with an inflammatory response. Only recently, however, a mechanistic link 

between microglial reduced branching and increased release of the inflammatory 

cytokine interleukin 1β (IL-1β) was reported.161 Activation of P2YR12 by tissue 

damage signals potentiates the tonically active potassium THIK-1 channel, expressed 

in microglia, leading to both decreased microglial ramifications and activation of 

the inflammasome machinery processing IL-1β precursors into their mature form.161 

Another morphology associated with functional changes is “ameboid” microglia, which 

were thought to be more “phagocytic,” but it is clear now that ramified microglia execute 

phagocytosis through their terminal or “en passant” branches notably during adult 

neurogenesis,162,163 while in disease conditions such as epilepsy, ameboid microglia 

can display reduced phagocytosis.164 Therefore, morphological changes should not 

be interpreted in functional terms but rather taken as a suggestion prompting further 

investigation of the relationship between microglial structure and function. While the 

categorization described above is now outdated, the analysis of microglial morphology is 

considered valuable and still often used across animal model and human postmortem 

brain studies. Studies in postmortem brain samples have revealed that human and 

mouse microglia can adopt similar morphologies. Using the now outdated terms 

“ramified,” “primed” (larger cell body, ramified processes), “reactive” (ameboid, few 

ramified processes), and “ameboid” (less than two unramified processes), microglia were 

described in middle-aged individuals.165 In addition, “rodshaped” microglia (elongated 

cell body, polarized processes) were found to become more abundant with aging.166 

Similarly, “dystrophic” microglia, presenting apparently fragmented (but still intact 

at the ultrastructural level) processes were reported in aging.167,168 These different 

morphological types observed in humans were previously described in rodent models 

(reviewed in Savage et al.169). Nevertheless, a more sensitive quantitative microglial 

morphological assessment using a computational pipeline involving cluster analysis 

revealed differences between mouse and human, with distinct clusters found to be unique 

to each species.170 Subsequently, a high-throughput comparative morphology analysis 

revealed a generally conserved evolutionary pattern, with some intriguing differences 

observed between the leech, zebrafish, axolotl, turtle, chicken, gecko, snake, bearded 

dragon, bat, boar, sheep, whale, hamster, rat, mouse, marmoset, macaque, and human 

and across brain regions between mouse and human.76 While detailed comparative 

ultrastructural analyses of microglia between species are currently lacking, the state of 

“dark microglia” (named based on their increased electron density giving these cells 

a dark appearance, compared to other microglial states) discovered in 2016, which is 

defined using electron microscopy by its markers of cellular stress in contexts of aging 
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and disease, was found to be conserved across mouse, rat, and human.171,172 New 

strategies are currently being developed to provide morphological data analyses based 

on automated pipeline, thus overcoming feature-selection-based biases.173 Future studies 

will show how these varied morphologies correlate with transcriptional and proteomic 

profiles and what they imply for the cell’s function. At the molecular level, recent 

single-cell transcriptome analyses also revealed that human microglia show multiple 

clusters that indicate a greater heterogeneity than in other mammalian species such as the 

mouse.76,91
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Box 4.

Microglia and the term “neuroinflammation”

There is a long historical literature stating that inflammation is an important part of 

recovery from infection, injury, and disease, and it is the lack of resolution of this 

inflammatory response that is problematic in the context of CNS cell “reactivity.” 

Therefore, when the term “neuroinflammation” is encountered in the literature, the reader 

must be aware that it means different things depending on the context.

While the term “neuroinflammation” is widely used in the field as a synonym 

of microglial “activation,”174 its definition also varies dramatically among authors, 

according to our survey. Below are representative definitions which are currently used 

by the authors:

a. Neuroinflammation is inflammation of neural tissue particularly mediated by 

glial cells.

b. Neuroinflammation is strictly limited to conditions in which leukocytes enter 

CNS, e.g., in stroke and MS.

c. Neuroinflammation is a mixed cellular response to brain infection or damage 

involving innate and adaptive responses of resident brain cells and circulating 

immune cells.

d. The term neuroinflammation is too unclear and imprecise and should be 

avoided.

Considering that different definitions are used across authors, our main recommendation 

for the field is to liberate neuroinflammation from microglia and microglia from 

neuroinflammation and to use both terms rigorously. The consensus among authors is 

4-fold. First, protection against tissue damage and extreme departures from homeostasis 

as well as repair (i.e., “inflammation”) encompasses, in the CNS, a highly complex set of 

local responses and equally complex interactions with circulating immune cells or with 

immune cells residing in brain-blood and brain-cerebrospinal fluid interphases. In other 

words, “neuroinflammation” is not a substitute for “microglial reaction.” Second, there 

are numerous transcriptional states of microglia, astrocytes, and oligodendrocytes. The 

functional outcomes of cells undergoing these transcriptional states remain incompletely 

understood. Furthermore, it is uncertain which transcriptional states are transient or 

represent durable cell-fate choices. It is also unknown whether changes in states 

during diseases are “inflammatory” or dedicated to maintaining microglial homeostatic 

functions. Taking these considerations together, one should exercise extreme caution 

in simplifying these phenomena as “neuroinflammation,” as at least some of these 

phenomena may represent alternative homeostatic or non-inflammatory reactive states. 

Third, it is not appropriate to imply that neuroinflammation is invariably deleterious. 

Rather, it should be recognized that each inflammatory response may exert adaptive or 

maladaptive effects, contingent on context. To be more specific, research is necessary to 

explore functions and distinct actions of cytokine-enriched microglia secretomes beyond 

binary characterizations such as “pro-inflammatory” and “anti-inflammatory.” Fourth, 
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with regards to nomenclature, we recommend the use of modest and precise terms to 

describe specific phenomena such as: microglial reaction, astrocytic reaction, molecules 

involved, loss of barrier function at the blood-brain barrier, etc. All in all, the main 

message we wish to convey is that inflammation associated with the CNS follows unique 

rules that need to be fully discerned experimentally and not simply extrapolated from 

observations in non-nervous tissue.
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Figure 1. Microglial nomenclatures: Past and future
Microglia have been traditionally framed into dichotomic categories, but our current 

integration of epigenetic, transcriptomic, metabolomic, and proteomic data favors a 

multidimensional integration of coexisting states.
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Figure 2. Microglial core properties and functions
Phagocytosis, surveillance, and capacity for releasing soluble factors (inner circle) are core 

properties through which microglia contribute to key biological functions (outer circle). 

Created with BioRender.com.
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Figure 3. Microglial identity and states
The identity of microglia, compared to other CNS-associated macrophages in the 

perivascular space, choroid plexus, and leptomeninges, is established early on from yolk-

sac-derived progenitors. Once they colonize the brain parenchyma and differentiate, they can 

adopt multiple states depending on the particular spatiotemporal context, as shown in more 

detail in Figure 5. Created with BioRender.com.
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Figure 4. Microglial transcriptomic signatures
Recent scRNA-seq studies have identified many microglial transcriptional signatures 

including, but not limited to, PAM and ATM in development; DAM, MgnD, ARM, and 

MIMS in disease models of AD, MS, ALS, and PD; and WAM, LDAM, and HAM in aging, 

in both mice and human. The key upregulated (red) and downregulated (blue) genes in each 

signature are indicated. Created with BioRender.com.

Paolicelli et al. Page 46

Neuron. Author manuscript; available in PMC 2023 March 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://BioRender.com


Figure 5. Microglial states defined by their intrinsic and extrinsic determinants, spatiotemporal 
context, and layers of complexity
Microglial states depend on intrinsic determinants (such as species, ontogeny, sex, or 

genetic background) as well as the specific context they inhabit, including age, spatial 

location, and environmental factors (such as nutrition, microbiota, pathogens, drugs, etc.). 

All together, these factors impinge on microglia at multiple levels (i.e., epigenomic, 

transcriptomic, proteomic, metabolomics, ultrastructural, and phenomic), which ultimately 

determine microglial functions. Created with https://BioRender.com
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