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Abstract

Scientific user facilities present a unique set of challenges for image processing due to the 

large volume of data generated from experiments and simulations. Furthermore, developing and 

implementing algorithms for real-time processing and analysis while correcting for any artifacts 

or distortions in images remains a complex task, given the computational requirements of the 

processing algorithms. In a collaborative effort across multiple Department of Energy national 

laboratories, the ”MLExchange” project is focused on addressing these challenges. MLExchange 

is a Machine Learning framework deploying interactive web interfaces to enhance and accelerate 

data analysis. The platform allows users to easily upload, visualize, label, and train networks. The 

resulting models can be deployed on real data while both results and models could be shared 

with the scientists. The MLExchange web-based application for image segmentation allows for 

training, testing, and evaluating multiple machine learning models on hand-labeled tomography 

data. This environment provides users with an intuitive interface for segmenting images using 

a variety of machine learning algorithms and deep-learning neural networks. Additionally, these 

tools have the potential to overcome limitations in traditional image segmentation techniques, 

particularly for complex and low-contrast images.
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Introduction

The scientific community relies on scientific instrumentation at light and neutron source 

user facilities to perform science that is impossible anywhere else. Beamlines are significant 

producers of scientific data, and image-based data constitutes a significant part of this, 

with many instruments producing terabytes of image data per day. Beyond the challenges 

of moving and storing data at high rates and volumes is the challenge of developing 

and implementing algorithms for processing and analyzing data in real-time to produce 

immediate results while accurately correcting for artifacts. Thus, there is a pressing need for 

coordinated tools that can build reproducible pipelines for optimizing the user experience 

and experiment efficiency.

Recent advances in scientific machine learning (ML) have proven to be a powerful tool 

to enhance data analysis – especially image processing. Scientific imaging analysis faces 

unique hurdles as it often requires domain expertise to decode intrinsic relationships 

between image features. Applying a ML-based pipeline in this context thus requires 

flexibility and adaptability to many different specific use cases [1]. Moreover, to allow 

access for all beamline users, many of whom have no experience with ML or high 

performance image processing, the solution has to be easyto-use and must allow scaling 

to the size of data produced at modern synchrotron instruments.

As a collaborative effort across several Department of Energy (DOE) national laboratories, 

we have developed a platform called “MLExchange” to provide easily-accessible interfaces 

for ML-infused tools. This Machine Learning Operations (MLOps) platform features 

multiple interactive web interfaces allowing for easy exchange, visualization, and labeling of 

datasets, as well as training and testing of various ML models and techniques. The platform 

is designed to be expandable and collaborative, to enable users to contribute new algorithms 

and customize existing algorithms for their specific scientific needs [2].

One of the web-based applications within the platform focuses on image segmentation 

tasks. This application provides an intuitive interface for users to segment images using ML 

algorithms, such as deep learning neural networks. Traditional segmentation techniques such 

as thresholding or watershedding [3] can struggle with complex or low contrast images. ML, 

on the other hand, has the potential to identify features and effectively segment such images 

[4, 5, 6] despite obstacles such as noise and artifacts sometimes present in tomography data 

sets.

Below is an introduction to the web-based segmentation interface within MLExchange.

A Web-based Segmentation Interface

The MLExchange Segmentation Application has been deployed on a centralized server at 

the Advanced Light Source, Lawrence Berkeley National Laboratory. It consists of five 

primary components: a File Manager tab, an Image Display session, an Annotation Panel, 

a Model Selection Panel, and a Table of Jobs (as depicted in Figure 1). To initiate a 

segmentation task, users upload an image stack through the drag-and-drop box, which is 

then displayed in the Image Display section, equipped with a slice navigation bar.
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In the Model Selection Panel, users then can choose from three currently available 

algorithms: a Supervised Random Forest Classifier, an Unsupervised K-Means Clustering 

Algorithm, or a Supervised Mixed-Scale Dense Convolutional Neural Network (MSDNet). 

Upon selection, the default model parameters are automatically set, which can be adjusted 

if necessary. Various training parameter choices may also be selected here, including the 

number of epochs, loss criterion, learning rate, and the optimizer. If a supervised model 

is selected, ground truth information must be provided using the Annotation Panel, where 

regions of interest can be color-coded to represent different classes.

As in other ML workflows, the model will undergo a traintest process. The MLExchange 

Segmentation Application training session is initiated by hitting the TRAIN button, and 

progress can be monitored in the Table of Jobs at the bottom of the application. Upon 

completion, pressing the TEST button triggers the segmentation process, analyzing the 

entire image stack with the trained model. The segmentation result can be displayed by 

toggling on the “Show Segmentation” option, which color-codes each pixel according to its 

corresponding class. Completed requests can be retrieved and revisited in the Table of Jobs 

section for future needs.

Mixed-Scale Dense Convolutional Neural Network

One deep learning network model has been integrated into the segmentation application. The 

mixed-scale dense network (MSDNet) [7] was developed as a deep learning framework 

for image classification and pixel-by-pixel segmentation tasks with a relatively simple 

architecture containing roughly two to three orders of magnitude fewer trainable parameters 

than U-Nets [8] and other typical encoder-decoder convolutional neural networks [9, 10]. 

MSDNets have proven effective and been tested in several use cases for tomographic 

reconstruction [11, 12, 13, 14], nano-CT denoising [15], segmentation of sub-nuclear 

structures in focused-ion beam scanning electron microscopy (FIB-SEM) [16], X-ray 

scattering imaging inpainting [17], and X-ray in-line phase contrast imaging [18].

Benefits of MSDNet can be attributed to two distinct details in its architecture. First, 

MSDNet replaces typical upscaling and downscaling operations (such as transposed 

convolutions and maximum pooling) with dilated convolutions [19, 20]. Convolutions with 

integer dilations operate in the same manner as standard convolutions, but by inflating 

the kernel with gaps between entries that expand the kernel’s receptive field; e.g. a 3×3 

dilated convolution with a dilation of 5 has a receptive field of 11×11 pixels, as vertically- 

and horizontally-adjacent entries in the kernel are spaced 5 pixels apart. Second, image 

features from different length scales are mixed together by densely connecting all network 

layers with dilated convolutions and summing the results at each layer, as depicted in the 

3-layer MSDNet diagram in Figure 2. Dense and direct connections in this manner is only 

feasible with dilated convolutions since they preserve spatial dimensionality, allowing all 
previous layers’ outputs to be used as input in computing the next layer’s feature map, 

effectively creating a network full of skip connections [21] of all possible lengths. This 

allows MSDNets to train on lower amounts of data than what is required of other deep 

learning networks, as the dense interconnectivity yields maximum reusability of all input 

and intermediate information. Furthermore, dense connections assist in the recovery of lost 
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spatial information [22] and help alleviate the vanishing gradient problem [23], which, when 

combined with a relatively small number of trainable parameters, allows for faster model 

convergence that remains robust to overfitting.

User-defined custom implementations of MSDNets were accomplished through the 

Python-based deep learning software library dlsia (Deep Learning for Scientific Image 

Analysis), which allows one to easily tune the network hyperparameters and interlayer 

operations to optimize its performance. Further dlsia documentation may be found at https://

dlsia.readthedocs.io/en/latest/.

ML-aided Tomography Segmentation

To evaluate the performance of the MLExchange segmentation application, a study was 

conducted using synthetic tomography images from the TomoBank phantom foam data 

set [24], pictured in Figure 3. In this series of data sets, one high-quality (HQ) and five 

problematic versions of the raw data are synthesized, with problems mimicking limitations 

often seen in real tomography scans such as only using a limited number of angles, 

noise, and limited angular range. For the purposes of demonstrating MLExchange and the 

segmentation interface, we did not use advanced reconstruction approaches - rather we used 

a consistent set of parameters to reconstruct each data set using the ASTRA Toolbox [25, 

26]. We reconstructed a 100-slice sample of each data set for this demonstration.

Three types of ML-based segmentation were performed: a Supervised Random Forest 

Classifier with 30 decision trees and a tree depth of 8; a Supervised Mixed-Scale Dense 

Convolutional Neural Network with 12 convolutional layers, max dilation of 6 and a 

learning rate of 0.01 for 50 epochs, optimized using the ADAM algorithm [27] to update 

the model weights by minimizing the cross entropy loss criterion; and an Unsupervised 

K-means Clustering algorithm with 2 clusters and a maximum iteration of 300. For both 

supervised models, training data consisted of only a pair of single images: the first image in 

each of the 100-slice samples and a corresponding mask with sparsely annotated labeling as 

a target. In this single mask, used across all 6 data sets to ensure consistency, roughly 16% 

of pixels were labeled, of which the foreground-to-background ratio was roughly 1:40. For 

the unsupervised method, only the first image is used in model training. Lastly, a traditional 

threshold-based segmentation [28] was performed as a baseline comparison, with all sets 

sharing the same threshold value.

The segmented results are presented in Figure 4 with a zoomed in portion of the sample to 

show details. The performance of each individual model was evaluated using the F1 score 

[29], defined as the harmonic mean of model precision and recall, and the Intersection Over 

Union (IoU) metric, also known as the Jaccard index, which measures the ratio of correct 

class predictions over the combined ground truth and predictions for said class. The mean F1 

and IoU of each stack are presented in Figures 5 and 6, respectively.

The results of the segmentation study on synthetic tomography images indicate the 

robustness of the two supervised learning methods, the Random Forest classifier and the 

MSDNet, in handling noise and artifacts. Despite being trained on limited ground truth 

information, the Random Forest classifier showed a mean F1 score centered around 0.91 
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and a mean Intersection Over Union (IoU) score centered around 0.84, while the MSDNet 

mean F1 score of 0.90 and a mean IoU score of 0.81. In contrast, both the unsupervised 

K-Means Clustering method and the traditional thresholding technique demonstrated strong 

performance with high-quality data, yielding mean F1 and IoU scores approaching 1. 

However, the performance of these methods drastically reduced with the introduction of 

noise, indicating their sensitivity to image quality and contrast. It is worth noting that the 

quality of both the neural network classifier and the Random Forest method are dependent 

on both how much of the image is annotated, and also where and how. This is especially 

true for the MSDNet; Deep learning neural network models typically require vast amounts 

of training data [30], though the MSDNet overcame this via the dense interconnectivity 

between layers that allows for maximum reusability for the sparsely annotated single image 

training data set. Fortunately, the interactive nature of the MLExchange user interface allows 

one to rapidly iterate between annotation paradigms - sparse or dense - to enhance the 

performance for a particular data set under any classification scheme.

Summary and Looking Forward

The MLExchange platform is an MLOps platform that provides web-based interfaces for 

the training and testing of ML models, specifically designed to address the challenges in 

scientific data processing. The MLExchange Segmentation Application, a key component 

of the platform, enables users to segment images generated from scientific experiments 

using ML algorithms, including deep learning neural networks, and has been evaluated 

using synthetic tomography images from the TomoBank phantom foam dataset, showing 

improved results compared to traditional threshold-based segmentation techniques. So far, 

several other test cases have been successfully deployed in the segmentation application, 

including a number of different X-ray microCT dataset and one X-ray scattering dataset. 

Particularly impressive in the MLExchange supervised learning schemes is the ability to 

accommodate sparse or incomplete labeling of ground truth data, as evidenced by the sparse 

manual labeling of classes.

The MLExchange platform serves as a central repository containing a collection of 

community-sourced algorithms, models, and data sets. Users can access and utilize these 

contributions to analyze and annotate their experimental data, providing new insights and 

refinements to the shared repository. This platform offers facility users an accessible and 

convenient solution to their image processing needs. The user-friendly interface enables 

the selection, download, and implementation of ML solutions for testing on their own 

experimental data. The platform operates as a web-based system, with all applications and 

pipelines contained in a centralized deployment, requiring only a web browser login for 

access and eliminating the need for any local installations.
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Figure 1. 
Layout of the MLExchange image segmentation application, with a demonstration of ML 

guided segmentation for X-ray microCT images. The manually labeled sparse annotations 

are colored purple and orange as the ground truth for training, while model predictions are 

colored light yellow and violet as the background and sample, respectively.
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Figure 2. 
Schematic of a 3-layer mixed-scale dense network (MSDNet). Blue, green, and red solid 

lines represent 3×3 dilated convolutions between each possible pairing of the input and 

hidden layers Li, with different dilations assigned to each color. Black dotted lines represent 

1×1 convolutional operators connecting all hidden layers and the input to the final output, 

effectively resulting in a linear sum with learned weights between all previous layers.
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Figure 3. 
An overview of the reconstructed phantom foam data set, with HQ picturing the high quality 

reconstructed slices. Other images represent various degrees of limitations encountered in 

tomography scans.
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Figure 4. 
Visualization of the segmentation results for a zoomed-in region of the sample. Each row 

corresponds to the data set described in Figure 3. The phantom foam is marked in yellow, 

while the background is marked in black.
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Figure 5. 
F1 score of the segmentation result. Each color represents one segmentation method 

(Random Forest, MSDNet, K-means and traditional Thresholding), and the bar value is 

calculated from the mean over the 100 segmented images for each technique.
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Figure 6. 
Intersection Over Union (IoU) of the segmentation result. Each color represents one 

segmentation method (Random Forest, MSDNet, Kmeans and traditional Thresholding), and 

the bar value is calculated from the mean over the 100 segmented images for each technique.
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