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ABSTRACT OF THE THESIS

Incorporating minority groups for the improvement of AI performance in majority groups

by

Shreeram Seshathri Athreya

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Achuta Kadambi, Chair

Numerous studies have rightly emphasized the importance of incorporating minority groups

into artificial intelligence (AI) training data to enhance test inference not only for minority

groups but also for society as a whole. A comprehensive society includes both minority and

majority stakeholders. A common misunderstanding is that the inclusion of minority groups

does not lead to improved performance solely for majority groups. In this thesis, I make a

remarkable discovery that incorporating data from minority groups can, in fact, result in a

reduction in test errors for the majority group. Put simply, the integration of minority groups

results in performance improvements for the majority group, an effect termed as Majority

Group Enhancements through Minority Inclusion (MIME). To support this finding, I present

a theoretical existence proof of the MIME effect, which demonstrates that this phenomenon

is not only possible but also well-founded. The theoretical results align with experimental

outcomes gathered from six diverse datasets, further validating the MIME effect’s existence

and relevance. By acknowledging and incorporating the MIME effect in AI development,

we can create more robust and effective systems that cater to the needs of both minority

and majority populations. This approach enables us to harness the full potential of artificial
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intelligence by ensuring that it is more inclusive and efficient, ultimately benefiting society

as a whole. An understanding of the MIME effect has substantial implications for the future

of AI research and development, as it underscores the importance of fostering diversity in

training data. By embracing a more inclusive approach to AI development, we can ensure

that our models are better equipped to handle a wider range of scenarios, ultimately leading

to more accurate and reliable outcomes. Additionally, the MIME effect has the potential to

inspire new research directions, encouraging scholars to explore the benefits of diverse data

sets in various AI applications and domains. It is crucial that the AI community recognizes

the value of minority inclusion in achieving performance enhancements for all stakeholders,

and actively works towards creating systems that are truly representative of the diverse

society we live in. By doing so, we can not only maximize the potential of AI technologies,

but also contribute to a more equitable and just society where artificial intelligence serves

the needs of everyone, regardless of their background or status. This paradigm shift will not

only revolutionize the field of AI, but also pave the way for a more inclusive and sustainable

future for all.
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CHAPTER 1

Introduction

Inclusion of minorities in a dataset impacts the performance of artificial intelligence (AI).

Recent research has presented the value of inclusive datasets to improve AI performance on

minorities and also for society-at-large [2, 3, 4, 5, 6, 7, 8, 9, 10]. A society-at-large consists

of both majority and minority stakeholders. However, an objection (often silently posed) to

minority inclusion efforts, is that the inclusion of minorities can diminish performance for

the majority. This is based on a “rule of thumb” that AI performance is maximized when

one trains and tests on the same distribution. A devil’s advocate position against minority

inclusion might be presented as: “In a fictitious society where we are absolutely certain

that only blue-skinned humans will exist in the test set, why include out of distribution

orange-skinned humans in the training set?”.

In this thesis, we make the surprising finding that inclusion of minority samples improves

AI performance not just for minorities, not just for society-at-large, but even for majorities.

We refer to this effect as Minority Inclusion, Majority Enhancement (MIME), illustrated

in Figure 1.2. Specifically, we note that including some minority samples in the train set

improves majority group test performance. However, continued addition of minority samples

leads to performance drop. The effect holds under statistical conditions that are represented

in traditional computer vision datasets including FairFace [11], UTKFace [12], pets [13],

medical imaging datasets [14] and even non-vision data [15]. Although deep learning is

used for these problems, the flattening layer of a network can be empirically approximated

to elementary distributions like Gaussian Mixture Models (GMMs). A GMM facilitates

1



Machine Learning

Classification

Binary Classification

Fixed Backbone ML

This paper’s 
theory guarantees 
are certifiable in 
this subset of AI

Figure 1.1: This thesis proves that including minorities improves majority per-

formance. The provable guarantees are certifiable for fixed backbone binary classification

- when one uses a head network with pretrained weights and fine-tunes a downstream layer

for classification.

closed-form analysis to prove the existence of the MIME effect. Additionally, we show

existence of MIME on general distributions. Classification experiments on neural networks

validate using Gaussian mixtures: complex neural networks exhibit feature embeddings in

flat layers, distributed with approximately Gaussian density, across six datasets, in and

beyond computer vision, and across many realizations and configurations.

Fairness in machine learning is an exceedingly popular area, and our results benefit from

several key papers published in recent years. Sample reweighting approaches recognize the

need to preferentially weight difficult examples [16, 17, 18]. Active and online learning bene-

fit from insights into sample “informativeness” (i.e. given a budget on the number of training

samples, which would be the best sample to include [19, 20]). Domain randomization liter-

ature indicates that surprising perturbations to the training set can improve generalization

performance [21, 22, 23]. We extend some of these theoretical insights to the sphere of

analyzing benefits of minority inclusion on majority performance.
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Test Set Images Train Set A Train Set B

Majority

Accuracy


Performance

Add Minority

 Sample

Add Majority

 Sample

Majority 

Sample

Minority 

Sample

Push on Stack

Figure 1.2: Inclusion of minorities can improve performance for majorities. We

theoretically describe an effect called Minority Inclusion, Majority Enhancement (MIME).

The figure depicts test classification of blue mimes, and an initial training stack, also of blue

mimes. If allowed to add one more training sample, it can be better to push an orange mime

onto the training stack rather than a blue mime. Test accuracy can increase by pushing

orange, even though the test set consists of blue mimes alone.

1.1 Contributions

While some works [24, 4] have observed related phenomena for isolated tasks, to the best

of our knowledge, characterizing benefits to majority groups by including minority data is

largely unexplored theoretically. Our contributions are as follows:

• We introduce the Minority Inclusion Majority Enhancement (MIME) effect in a theo-

retical and empirical setting.

• Theoretically: we derive in closed form, the existence of the MIME effect both with

and without domain gap (Key Results 1 and 2) and for general sample distributions

(Key Result 3).

• Empirically: we test the MIME effect on six datasets, as varied as animals to medical

images, and observe the existence of MIME consistent with theory.
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1.2 Outline of Theoretical Scope

Figure 1.1 describes the theoretical scope. Through three key results (Theorem 1, Theorem

2 and Theorem 3), this thesis offers an existence proof of the MIME effect. An existence

proof can leverage a tractable setting. As in Figure 1.2, training data is a stack of K − 1

majority samples. Test data is all majority samples. We can push one additional training

sample to increase the stack size to K. We are allowed the choice of having the K-th sample

drawn from the minority or majority group. Theorem 1 proves that, under the assumptions

in Chapter 3, pushing a minority sample is superior for majority group performance im-

provements. Theorem 2 generalizes this result to a more realistic scenario, with domain gap.

Theorem 3 extends the existence proof to general sample distributions. Empirical results on

real-world AI tasks offer validation for theoretical assumptions. From Figure 1.1, the prov-

able guarantees are certifiable for fixed backbone binary classification. The fixed backbone

ML is far from a toy scenario (it is considered SoTA by some authors [25]) and also enables

provable certification - ordinarily it is hard to prove things for neural network settings.

4



CHAPTER 2

Background

2.1 Debiasing and fairness

It has been widely reported that biases in training data lead to biased algorithmic perfor-

mance [26, 27, 3]. Work has been carried out in identifying and quantifying biases [28, 29, 30]

and a range of methods exist to address them [9, 7]. Early approaches suggest oversampling

strategies [31, 32]. Other methods propose resampling based on individual performance [6].

Some works utilize information bottlenecks to disentangle biased attributes [33]. Still other

methods propose bias mitigation solutions based on adversarial learning [34] or include con-

siderations like protected class-specific classifiers [35]. Generative models have also found use

in creating synthetic datasets with debiased attributes [36]. Xu et al. [37] identify inherent

bias amplification as a result of adversarial training and propose a framework to mitigate

these biases. Our goals are different – while these aim to reduce test time performance bias

across groups, we analyze influence of minority samples on majority group performance.

2.2 Learning from multiple domains

Domain adaptation literature explores learning from multiple sources [38]. It could therefore

be one potential way to analyze our problem of training on combinations of majority and

minority data. In our setting, data arising from distinct domains is seen as being drawn

from different distributions with a domain gap [39]. Between these domains, [40] establishes

error bounds for learning from combinations of domains. However, these error estimates

5



and bounds do not take into account the notion of majority and minority groups; therefore,

describing the MIME effect is outside their scope.

2.3 Dataset diversity

An important push towards fairness is through analysis of dataset composition. Several

works indicate the importance of diverse datasets [2, 8]. Ryu et al. [5] note that class im-

balance in the training set leads to performance reduction. Wang et al. [30] highlight that

perfectly balanced datasets may still not lead to balanced performance. For designing med-

ical devices, [10] emphasizes the importance of diverse datasets. Through experiments on

X-ray datasets, [4] observe that imbalanced training sets adversely affect performance on the

disadvantaged group. They also observe that an unbiased training set shows the best overall

accuracy. However, their inferences are related empirical observations on a few medical tasks

and datasets. From an application perspective, the task of remote photoplethysmography

enables analysis of the bias problem. Prior work notes that camera-based heart rate estima-

tion exhibits skin tone bias [41], and [42, 43] propose synthetic augmentations to mitigate

this. Additionally, [44, 45] establish that camera based heart rate estimation is fundamen-

tally biased against dark skin tone subjects, establishing a notion of task complexity. While

all these works recognize that data composition affects bias, none to our knowledge describe

the effect of varying minority group proportions on majority group accuracy.
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CHAPTER 3

Statistical Origins of the MIME Effect

For more concise exposition, we have made assumptions in the derivation outlined in this

chapter of the thesis and defer extended generality to Appendix A. The assumptions are

explained as follows:

• Assumption 1: one-dimensional data samples and binary labels, x ∈ R, y ∈ {1, 2}.

This is relevant to modern classification problems since the final classification decision

is based on a one dimensional projection of the feature representation of the sample

with respect to the learnt hyperplane (illustrated in Figures 1.1, 4.1 and discussed in

Chapter 4). Additionally, existence proof of MIME holds for more general vectorized

notation, as discussed in Appendix A.

• Assumption 2: the binary classifier used is a perceptron: this assumption relates to

real neural networks since the last layer is perceptron-like [46].

We now introduce some key definitions that follow from these assumptions.

Definition 1: (Task complexity): For binary classification we define task complexity for a

group of data θ as a continuous variable in [0, 1], such that,

θ = arg min
h∈H

ε(h), (3.1)

where ε(h) is the classification error for hypothesis h (the classifier), H is the space of feasible

hypotheses. It is noted later that this is empirically equivalent to distributional overlap. This

7



definition is not new. Hard-sample mining [16] establishes the of use performance measures

as an indicator of difficulty.

Definition 2: (Majority Group): Group class (i.e. group label g = major) on which the

task performs better. Quantified by training a network only with majority group data and

evaluating test performance: θmajor = arg min
h∈H

εmajor(h).

Definition 3: (Minority Group): Group class (i.e. group label g = minor) on which the

task performs worse. Quantified by training a network only with minority class data and

evaluating test performance: θminor = arg min
h∈H

εminor(h).

Definition 4: (Minority Training Ratio (β)): Ratio of minority to majority samples in the

data under consideration (training set, in the context of this paper).

Definition 5: (MIME Domain Gap): Measure of how classification differs for minorities

and majorities. Quantified as a difference between ideal hyperplanes. Note that this definition

for domain gap could be different from other definitions. In this work, domain gap should be

taken to mean MIME domain gap.

Empirical observations on cutting-edge machine learning tasks demonstrate the real-world

applicability of the assumptions above. We now discuss three key results. For ease of

understanding, we make two simplifying assumptions for Key Results 1 and 2: (i) simplified

distributions that follow a symmetric Gaussian Mixture Model, and (ii) equally likely class

labels, i.e. Pr(y = 1) = Pr(y = 2). These assumptions are relaxed in Key Result 3.

8



3.1 Key Result 1: A minority sample can be more valuable for

majority classifiers than another majority sample

Our first key result shows that it can benefit performance on the majority group more if one

adds minority data (instead of majority data). Consider a binary classification setting with

data samples x ∈ R and labels y ∈ {1, 2}. Samples from the two classes are drawn from

distributions with distinct means:

x|y = 1 ∼ p1(x|µ1, σ1)

x|y = 2 ∼ p2(x|µ2, σ2).
(3.2)
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                     -1                     0                  +1 
Sample  

Minority class 
distribution 

Overlap of  
Minority class 

Minority class 
Ideal hyperplane 

Majority class 
distribution 

Overlap of
Majority class 

Majority class  
Ideal hyperplane 

Visualizing domain gap and overlap in minority and majority distributions

Domain Gap 
  -1                    0                     +1 

Figure 3.1: Visualization of Gaussian Mixture Model parameters. We plot GMMs

with different task complexities. The domain gap δ is visualized as the difference in the ideal

threshold locations. The overlap/task complexity metric can be visually seen.
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Maximum likelihood (ML) can be used to estimate the label as

ŷ = arg max
y

L(x|y). (3.3)

An ideal hyperplane for ML Hideal is a set of data samples such that:

Hideal =
{
x
∣∣ L(x|y = 1) = L(x|y = 2)

}
. (3.4)

We consider the hyperplane’s geometry to be linear in this one dimensional setting. Therefore

the hyperplane can be represented as a normal vector: hideal. The normalized hyperplane is

represented by a two dimensional vector, h = [1 b]T . Here, b is the offset/bias. In general,

a hyperplane h may not be ideal. The accuracy of a hyperplane is based on a performance

measure P
{
h
}

, where the operator P takes as input the hyperplane and outputs the closeness

to the ideal hyperplane hideal. A goal of a learning based classifier is to obtain:

ĥ = arg min
h

P
{
h
}

= arg min
h

‖h− hideal‖, (3.5)

where ĥ is the best learnt estimate of the ideal hyperplane. The ideal hyperplane is the

global minimizer of this objective. Now, assume we are provided a finite training set of

labelled data DK−1 = {(xi, yi)}K−1
i=1 . Let the estimated hyperplane be hK−1, denoting that

K−1 samples have been used to learn the hyperplane. If one additional data sample is made

available, then the learnt hyperplane would be hK . From Equation 3.2, the k-th sample is

drawn from one of two distributions:

xk|y = 1 ∼ p1(x|µ1, σ1)

xk|y = 2 ∼ p2(x|µ2, σ2).
(3.6)

We now introduce the notion of majority and minority sampling.

Introducing Majority/Minority Distributions: Suppose that the k-th data sample

could be drawn for the same classification task from a minority or majority group. Let

g ∈ {major,minor} denote the group label (for the group class). Equation 3.2 can now be

10



conditioned on the group label, such that there are four possible distributions from which

the k-th sample can be drawn:

xk|g = major, y = 1 ∼ pmajor
1 (x|µmajor

1 , σmajor
1 )

xk|g = major, y = 2 ∼ pmajor
2 (x|µmajor

2 , σmajor
2 )

Majority

group

xk|g = minor, y = 1 ∼ pminor
1 (x|µminor

1 , σminor
1 )

xk|g = minor, y = 2 ∼ pminor
2 (x|µminor

2 , σminor
2 )

Minority

group

(3.7)

Overlap: Let the ideal decision hyperplane be located at x = dideal. Then, given equal like-

lihood of the two labels for y, the overlap for the majority group is defined as the probability

of erroneous sample classification:

Omajor = 0.5

∫ dideal

x=−∞
pmajor

2 (x)dx+ 0.5

∫ ∞
x=dideal

pmajor
1 (x)dx. (3.8)

The same definition holds true for the minority class as well. Therefore, by definition,

Omajor < Ominor. The task complexities θmajor and θminor are empirical estimates of the

respective overlaps. Hereafter, we assume that all four marginal distributions are Gaussian

and symmetric (this is relaxed later for Key Result 3). Figure 3.1 visually highlights relevant

parameters. Ominor > Omajor occurs through the interplay of component means and variances.

The expectation over the class label yields majority and minority sampling:

xmajor
k , xk|g = major ∼ Ey

[
xk|g = major, y

]
xminor
k , xk|g = minor ∼ Ey

[
xk|g = minor, y

]
,

(3.9)

where we have defined xmajor
k or xminor

k as having the k-th sample come from the majority or

minority distributions.

Armed with an expression for the k-th sample, we can consider a scope similar to ac-

tive/online learning [47, 48, 49, 50, 51, 52, 20, 53]. Suppose a dataset of K − 1 samples

11



has been collected on majority samples, such that there exists a dataset stack Dmajor
K−1 ={

(xmajor
i , ymajor

i )
}K−1

i=1
. A hyperplane hK−1 is learnt on this dataset and can be improved by

expanding the dataset size. Consider pushing sample index K, denoted as xK onto the stack.

Now we have a choice of pushing xmajor
K or xminor

K , to create one of two datasets:

D+
K = {Dmajor

K−1 , x
major
K }

D−K = {Dmajor
K−1 , x

minor
K },

(3.10)

where D−K represents the interesting case where we choose to push a minority sample onto

a dataset with all majority samples (e.g. adding a dark skinned sample to a light skinned

dataset). Denote h+
K and h−K as hyperplanes learnt on D+

K and D−K . We now arrive at the

following result.

Theorem 1: Let Pmajor
{
·
}

be the performance of a hyperplane on the majority group.

Let ∆ = Pmajor
{
hK−1}. Assume that the minority group distribution has an overlap Ominor

while the majority group has an overlap Omajor < Ominor. Both have the same ideal hyperplane

hideal. Under the definitions of h−K and h+
K as above, assuming ∆ is sufficiently small and

the group class distribution variances are not very large,

E
xminor
K

Pmajor
{
h−K
}
< E

xmajor
K

Pmajor
{
h+
K

}
, (3.11)

stating that, perhaps surprisingly, expected performance for majorities improves more by

pushing a minority sample on the stack, rather than a majority sample.

Proof: The general idea is to show that samples closer to hideal are more beneficial, and

minority distributions may sample these with higher likelihood. Without loss of generality,

we assume that hK−1 is located, non-ideally, closer to the task class y = 2 (arbitrarily called

the positive class) than hideal. For our perceptron update rule, the improvement in the

estimated hyperplane due to xK is proportional to the difference between the false negative
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rate (FNR) and the false positive rate (FPR) for hK−1, with respect to the distribution of xK .

For sufficiently small ∆, FNR−FPR can be approximated in terms of the likelihood l that

xK is on the ideal hyperplane. The likelihood l is directly proportional to FPR−FNR. We

consider the one-dimensional linear classifier setting, trained using the Perceptron algorithm.

Given any x ∈ R, the classifier evaluates an output y given by,

y = wx+ b, (3.12)

where w, b ∈ R. The decision threshold in this case is at y = 0. For simplification, we reduce

the redundant parameter, as follows:

y′ = x+ b′. (3.13)

Note that the decision threshold is unaffected by this conversion. For notational simplicity,

we use y = y′ and b = b′ here onward. We consider the perceptron decision and update rule,

modified for our case. That is, for any training sample (xi, yi), the predicted output is given

by,

ŷi =
sign(xi + b) + 3

2
, (3.14)

where sign(·) is the sign function. Readers will notice the unconventional form of this

decision rule. The additional terms map the conventional perceptron labels in {−1, 1} to

our chosen labels {1, 2} respectively.

For an appropriately chosen learning rate γ, the parameter update rule for this setting is

given by:

b←


b+ γ, if ŷi 6= yi and yi = 2

b− γ, if ŷi 6= yi and yi = 1

. (3.15)

Let hideal , [1, bideal]
T denote the ideal decision hyperplane. Under the current assumption

of no domain gap, it can be shown that this ideal hyperplane is located at x = dideal such
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that,

pminor
1 (dideal) = pminor

2 (dideal)

pmajor
1 (dideal) = pmajor

2 (dideal).
(3.16)

This also implies that bideal = −dideal. Now, consider an initial training set of K − 1 samples

from the majority group, Dmajor
K−1 . A decision hyperplane hK−1 is learnt from these samples.

Then, without loss of generality, we can assume that,

dK−1 = dideal + ∆. (3.17)

That is, the real hyperplane hK−1 is non-ideally located closer to the positve class (y =

2) than hideal. ∆ is a small positive value representing the error in the learnt decision

hyperplane. Consider that the K-th sample is drawn from the majority group xmajor
K . Recall

that parameter updates for the Perceptron algorithm take place only in the event of incorrect

label estimation ŷK 6= yK . If we denote the change in the parameter b due to this sample as

∆b, then three cases exist:

1. Sample from class 2 is classified as belonging to class 1 such that

xmajor
K ∼ pminor

2 (x), xmajor
K < dideal −∆. Associated ∆b = +γ.

2. Sample from class 2 is classified as belonging to class 1 such that

xmajor
K ∼ pminor

2 (x), dideal −∆ ≤ xmajor
K < dideal + ∆. Associated ∆b = +γ.

3. Sample from class 1 classified as belonging to class 2 such that

xmajor
K ∼ pminor

1 (x), xmajor
K ≥ dideal + ∆. Associated ∆b = −γ.

Let the expected change in b due to one majority group sample be denoted as ∆bmajor.

∆dmajor is similarly defined for the expected change in d. Then, the following holds true:

∆bmajor = E
xmajor
K

[∆b] . (3.18)
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Writing out the expectation over all three cases,

∆bmajor = γ

∫ dideal−∆

x=−∞
pmajor

2 (x)dx+ γ

∫ dideal+∆

x=dideal−∆

pmajor
2 (x)dx

− γ
∫ +∞

x=dideal+∆

pmajor
1 (x)dx. (3.19)

Similar expressions can be identified if the K-th sample is drawn from the minority group.

Under the assumption that the mixture models under consideration are symmetric Gaussian

mixture models,

∫ dideal−∆

x=−∞
pmajor

2 (x)dx =

∫ +∞

x=dideal+∆

pmajor
1 (x)dx. (3.20)

Then, using Equation 3.19 and Equation 3.20,

∆bmajor = γ

∫ dideal+∆

x=dideal−∆

pmajor
2 (x)dx. (3.21)

The region between x = dideal − ∆ and dideal + ∆ determines the expected change in

the classification parameter. If ∆ is small enough, ∆bmajor ≈ 2γpmajor
2 (dideal)∆. Similarly,

∆bminor ≈ 2γpminor
2 (dideal)∆.

We now identify a sufficient condition where pminor
2 (x) > pmajor

2 (x) for −∆ ≤ x ≤ ∆, given

that the overlaps satisfy the condition Ominor > Omajor, as defined in the main text. Under

the GMM assumption,

pmajor
2 (x) =

1√
2π(σmajor

2 )2

exp

(
−(x− µmajor

2 )2

2(σmajor
2 )2

)
. (3.22)

A similar expression exists for the minority group distribution as well. We wish to find the

intersection point for the majority and minority distributions, that is pmajor
2 (x) = pmajor

1 (x)

for some x. This expression reduces to,(
x− µmajor

2

)2

σmajor2 −
(
x− µminor

2

)2

σminor2 = 2ln

∣∣∣∣σminor

σmajor

∣∣∣∣. (3.23)
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We want to ensure that this intersection point occurs for an x > dideal. This sets up a

hyperbolic equation for the condition. For our purposes of proving existence, we qualitatively

note that if the majority group variance is not very large (meaning the likelihood of sampling

at the ideal hyperplane is low for the majority group), and the minority group variance is not

very large (such that it does not tend close to a uniform distribution), pminor
2 (x) > pmajor

2 (x).

Then,

∆bminor > ∆bmajor. (3.24)

∆dminor < ∆dmajor < 0. (3.25)

Our final task is to relate the expected change in the decision hyperplane over a choice of

training sets D+
K and D−K , with associated learnt hyperplanes h+

K and h−K . As a reminder,

D+
K = {Dmajor

K−1 , x
major
K }

D−K = {Dmajor
K−1 , x

minor
K },

(3.26)

Consider a general training setting, where we use minibatches of size M > 1, over multiple

epochs. Then, any minibatch containing the K-th sample can be split into the K-th sample

and a random subset of M−1 samples from Dmajor
K−1 . Therefore, on average, the only difference

to the sample updates would be due to the contributions of the K-th sample. This brings

us to our final observations,

E
xminor
K

[d+
K ] = dmajor

K−1 + ∆dmajor

E
xminor
K

[d−K ] = dmajor
K−1 + ∆dminor.

(3.27)

From Equations 3.25 and 3.27,

E
xminor
K

[d−K ] < E
xminor
K

[d+
K ], and (3.28)

E
xminor
K

[|dideal − d−K |] < E
xminor
K

[|dideal − d+
K |]. (3.29)
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The above holds for small enough γ. Since we know the relationship between the decision

hyperplane h and the associated d in our setting, the following equations hold true:

E
xminor
K

‖hideal − h−K‖< E
xminor
K

‖hideal − h+
K‖, (3.30)

E
xminor
K

Pmajor
{
h−K
}
< E

xmajor
K

Pmajor
{
h+
K

}
. (3.31)

Under the assumptions of the theorem, a direct relation is established between the overlap

and l for each of the group classes. Then, it is shown that an additional minority sample,

with overlap Ominor > Omajor leads to greater expected gains as compared to an additional

majority sample, concluding the proof. �

3.2 Key Result 2: MIME holds under domain gap

In the previous key result we described the MIME effect in a restrictive setting where a

minority and majority group have the same target hyperplane. However, it is rarely the

case that minorities and majorities have the same decision boundary. We now consider

the case with non-zero domain gap, to show that MIME holds on a more realistic setting.

Domain gap can be quantified in terms of ideal decision hyperplanes. If hmajor
ideal and hminor

ideal

denote ideal hyperplanes for the majority and minority groups respectively, then domain gap

δ = ‖hmajor
ideal − hminor

ideal ‖.

A visual illustration of domain gap is provided in Figure 3.1. Next, we define relative

hyperplane locations in terms of halfspaces (since all hyperplanes in the one dimensional

setting are parallel). We say two hyperplanes h1 and h2 lie in the same halfspace of a reference

hyperplane h0 if their respective offsets/biases satisfy the condition (b1 − b0)(b2 − b0) > 0.

For occupancy in different halfspaces, the condition is (b1 − b0)(b2 − b0) < 0. We now enter

into the second key result.
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Theorem 2: Let δ 6= 0 be the domain gap between the majority and minority groups. As-

sume that the minority group distribution has an ideal hyperplane hminor
ideal ; while the majority

group has an ideal hyperplane hmajor
ideal . Then, if δ < ∆, δ + ∆ is small enough, and the group

class distribution variances are not very large, it can be shown that if either of the following

two cases:

1. hK−1 and hminor
ideal lie in different halfspaces of hmajor

ideal ,

or

2. hK−1 and hminor
ideal lie in the same halfspace of hmajor

ideal , and if

Omajor

Ominor

< (1− δ

∆
)f, (3.32)

are true, then:

E
xminor
K

Pmajor
{
h−K
}
< E

xmajor
K

Pmajor
{
h+
K

}
, (3.33)

where f is a non-negative constant that depends on the majority and minority means and

standard deviations for all the individual GMM components.

Proof: We prove independently for both cases. When hK−1 and hminor
ideal lie in different

halfspaces of hmajor
ideal , it can be shown that the expected improvement in the hyperplane is

higher for the minority group as compared to the majority group, using a similar argument as

in Theorem 1. Let hmajor
ideal , [1, bmajor

ideal ]T denote the ideal decision hyperplane for the majority

group. Let hminor
ideal , [1, bminor

ideal ]T denote the ideal decision hyperplane for the minority group.

Then, the ideal hyperplanes are located at x = dmajor
ideal and x = dminor

ideal respectively such that,

pminor
1 (dminor

ideal ) = pminor
2 (dminor

ideal )

pmajor
1 (dmajor

ideal ) = pmajor
2 (dmajor

ideal ).
(3.34)

This implies that bmajor
ideal = −dmajor

ideal and bminor
ideal = −dminor

ideal . Consider an initial training set of

K − 1 samples from the majority group, Dmajor
K−1 . Then, without loss of generality, we can
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assume that dK−1 = dmajor
ideal + ∆, where ∆ > 0. Additionally, we consider the existence of

domain gap in this case, that is, dminor
ideal = dmajor

ideal + δ.

Let δ < ∆. Similar to the setting in Theorem 1 (Equation 3.19), we can set up the equation

for expected parameter change in the case of the majority and minority groups as follows:

∆bmajor = γ

∫ dmajor
ideal −∆

x=−∞
pmajor

2 (x)dx+ γ

∫ dmajor
ideal +∆

x=dmajor
ideal −∆

pmajor
2 (x)dx

− γ
∫ +∞

x=dmajor
ideal +∆

pmajor
1 (x)dx. (3.35)

∆bminor = γ

∫ dminor
ideal −(∆−δ)

x=−∞
pminor

2 (x)dx+ γ

∫ dminor
ideal +(∆−δ)

x=dminor
ideal −(∆−δ)

pminor
2 (x)dx

− γ
∫ +∞

x=dminor
ideal +(∆−δ)

pminor
1 (x)dx. (3.36)

Under the assumption that the mixture models under consideration are symmetric Gaussian

mixture models,

∆bmajor = γ

∫ dmajor
ideal +∆

x=dmajor
ideal −∆

pmajor
2 (x)dx, (3.37)

∆bminor = γ

∫ dminor
ideal +(∆−δ)

x=dminor
ideal −(∆−δ)

pminor
2 (x)dx. (3.38)

If ∆ + |δ| is small enough,

∆bmajor ≈ 2γpmajor
2 (dmajor

ideal )∆, (3.39)

∆bminor ≈ 2γpminor
2 (dminor

ideal )(∆− δ). (3.40)

By establishing the same conditions on group class variances as Theorem 1, we know that

pminor
2 (dminor

ideal ) > pmajor
2 (dmajor

ideal ). We now identify conditions under which ∆bminor > ∆bmajor.

19



Case 1 - δ < 0: Under the same conditions as Theorem 1, (∆−δ) > ∆, and pminor
2 (dminor

ideal ) >

pmajor
2 (dmajor

ideal ). Therefore,

∆bminor > ∆bmajor. (3.41)

This proves the theorem for Case 1. When hK−1 and hminor
ideal lie in the same halfspace of

hmajor
ideal , and assuming that hK−1 is located closer to the positive class, we approximate the

FNR−FPR value as function of δ, ∆ and the likelihood l as defined for Theorem 1. Then,

through algebraic manipulation, constraints can be established in terms of the two likelihoods

lminor and lmajor. Under the assumptions of the theorem, a relation can be established between

the ratios lminor

lmajor
and Ominor

Omajor
.

Case 2 - δ > 0:

∆bmajor ≈ 2γpmajor
2 (dmajor

ideal )∆, (3.42)

∆bminor ≈ 2γpminor
2 (dminor

ideal )(∆− δ). (3.43)

For ∆bminor > ∆bmajor,

pminor
2 (dminor

ideal )(∆− δ) > pmajor
2 (dmajor

ideal )∆. (3.44)

Rearranging Equation 3.44,

pmajor
2 (dmajor

ideal )

pminor
2 (dminor

ideal )
<

(
1− δ

∆

)
. (3.45)

Given the definitions of the majority and minority groups,

pmajor
2 (dmajor

ideal ) < pminor
2 (dminor

ideal ), (3.46)

Omajor < Ominor. (3.47)

Since all four of these terms depend only on the means and variances of the Gaussian

components, we can write,
Omajor

Ominor

=
pmajor

2 (dmajor
ideal )

pminor
2 (dminor

ideal )
f, (3.48)
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where f is a positive scalar constant that depends only on the component means and vari-

ances. From Equations 3.45 and 3.48,

Omajor

Ominor

<

(
1− δ

∆

)
f. (3.49)

This proves the conditions in the theorem. Theorem 1 can now be used to show the existence

of the MIME effect in the presence of domain gap, for these conditions. This concludes the

proof. �

A Note on the Theorems: Theorems 1 and 2 are existence theorems. That is, they

show that there exist certain conditions under which the MIME effect can be observed.

The theorems make these arguments based on the ‘usefulness’ of points close to the ideal

hyperplane. The direct metric of correlation is the likelihood for a particular distribution to

sample at the ideal hyperplane. However, since this cannot be easily measured in practice,

we set up our proofs in terms of a correlated metric: the overlap.

3.3 Key Result 3: MIME holds for general distributions

We now relax the symmetric Gaussian and equally likely labels requirements to arrive at

a general condition for MIME existence. Let pmajor
1 and pmajor

2 be general distributions de-

scribing the majority group y = 1 and y = 2 classes. Additionally, Pr(y = 1) 6= Pr(y = 2).

Minority group distributions are described similarly. We define the signed tail weight for the

majority group as follows:

Tmajor(xd) = πmajor

∫ xd

x=−∞
pmajor

2 (x)dx− (1− πmajor)

∫ ∞
x=xd

pmajor
1 (x)dx, (3.50)

where πmajor = Pr(x = 2) for the majority group. Tminor(·) is similarly defined. This leads

us to our third key result.
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Theorem 3: Consider majority and minority groups, with general sample distributions

and unequal prior label distributions. If,

min
{
Tminor(dideal + ∆),−Tminor(dideal −∆)

}
>

max
{
Tmajor(dideal + ∆),−Tmajor(dideal −∆)

}
, (3.51)

then E
xminor
K

Pmajor
{
h−K
}
< E

xmajor
K

Pmajor
{
h+
K

}
.

Proof: This Theorem considers distributions with general prior distributions. The per-

ceptron algorithm update rule is proportional to FNR − FPR (if hK−1 is located closer

to the positive class) or the FPR − FNR (if hK−1 is located closer to the negative class).

The MIME effect exists in the scenario where the worst case update for the minority group

is better than the best case update for the majority group (described in Equation 3.51).

Therefore, for the majority group, let

pmajor′

2 (x) = πmajorpmajor
2 (x),

pmajor′

q (x) = (1− πmajor)pmajor
1 (x).

(3.52)

Similar definitions are made for the minority group as well. Then, assuming dK−1 = dmajor
ideal +

∆, ∆ > 0 (similar to Theorem 2), and δ = 0 (for now), and drawing from Equation 3.19),

we can set up the equation for expected parameter change in the case of the majority group

as follows:

∆bmajor = γ

∫ dideal+∆

x=−∞
pmajor′

2 (x)dx− γ
∫ +∞

x=dideal+∆

pmajor′

1 (x)dx

= Tmajor(dideal + ∆).

(3.53)

A similar expression holds true for the minority group. Then, if Tmajor(dideal + ∆) <

Tminor(dideal + ∆), the MIME effect will hold true.

Similarly, if dK−1 = dmajor
ideal −∆, ∆ > 0,

∆bmajor = −γ
∫ dideal−∆

x=−∞
pmajor′

2 (x)dx+ γ

∫ +∞

x=dideal−∆

pmajor′

1 (x)dx

= −Tmajor(dideal −∆).

(3.54)
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Then, if −Tmajor(dideal −∆) < −Tminor(dideal −∆), the MIME effect will hold true.

Combining the two expressions, for a sufficient existence condition, we get,

min
{
Tminor(dideal + ∆),−Tminor(dideal −∆)

}
>

max
{
Tmajor(dideal + ∆),−Tmajor(dideal −∆)

}
. (3.55)

This completes the proof. �

Note that the existence proof for Theorem 3 ignores the effect of domain gap δ, in the interest

of readability and brevity. A very similar existence proof can be established with domain

gap. We omit the derivation and provide the final condition below (under the constraints

on δ and ∆ as in Theorem 2, and using the same notation):

min
{
Tminor(dmajor

ideal + ∆),−Tminor(dmajor
ideal −∆)

}
>

max
{
Tmajor(dmajor

ideal + ∆),−Tmajor(dmajor
ideal −∆)

}
. (3.56)

Generalizations of Theorem 3 to include domain gap are discussed in Appendix A. Theorems

1 and 2 are special cases of the general Theorem 3, describing MIME existence for specific

group distributions.
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CHAPTER 4

Verifying MIME Theory on Real Tasks

In the previous Chapter, we provide existence conditions for the MIME phenomenon for

general sample distributions. However, experimental validation of the phenomenon requires

quantification in terms of measurable quantities such as overlap. Theorem 2 provides us these

resources. Here, we verify that the assumptions in Theorem 2 are validated by experiments

on real tasks.

4.1 The Assumptions

4.1.1 Verifying Gaussianity

Theorem 2 assumes that data x is drawn from a Gaussian Mixture Model. At first glance,

this quantification may appear to be unrelated to complex neural networks. However, as

illustrated at the top of Figure 4.1, a ConvNet is essentially a feature extractor that feeds

a flattened layer into a simple perceptron or linear classifier. The flattened layer can be or-

thogonally projected onto the decision boundary to generate, in analogy, an x used for linear

classification (Figure 1.1, fixed-backbone configuration). We use this as a first approximation

to the end-to-end configuration used in our experiments.

Plotting empirical histograms of these flattened layers (Figure 4.1) shows Gaussian-like

distribution. This is consistent with the Law of Large Numbers – linear combination of

several random variables follows an approximate Gaussian distribution. Hence, Theorem 2

is approximately related in this setting. Details about implementation and comparison to
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Table 4.1: Experimental measures of overlap and domain gap are consistent with

the theory in Chapter 3. Note that the majority group consistently has lower overlap. Do-

main gaps are found to be small. DS-1 is FairFace, DS-2 is Pet Images, DS-4 is Chest-Xray14

and DS-5 is Adult. DS-6 is the high domain gap gender classification experiment. DS-3 is

excluded here since it deals with a 9 class classification problem.

Dataset

(Task)

DS-1 [11]

(Gender)

DS-2 [13]

(Species)

DS-4 [14]

(Diagnosis)

DS-5 [15]

(Income)

DS-6 [12, 54]

(Gender)

Major. overlap 0.186 0.163 0.294 0.132 0.09

Minor. overlap 0.224 0.198 0.369 0.208 0.19

Domain gap 0.276 0.518 0.494 0.170 1.62

Gaussians are deferred to Appendix A.

4.1.2 Verifying minority/majority definitions

The MIME proof linked minority and majority definitions to distributional overlap and do-

main gap. Given the histogram embeddings from above, it is seen that minority groups

on all four vision tasks have greater overlap. There also exists a domain gap between ma-

jority and minority but this is small compared to distribution spread (except for the high

domain gap experiment). This establishes applicability of small domain gap requirements.

Quantification is provided in Table 4.1. Code (algorithmic implementations) is provided in

Appendix A.

25



4.2 MIME Effect Across Six, Real Datasets

4.2.1 Implementation

Six multi-attribute datasets are used to assess the MIME effect (five are in computer vision).

For a particular experiment, we identify a task category to evaluate accuracy over (e.g.

gender), and a group category (e.g. race). The best test accuracy on the majority group

across all epochs is recorded as our accuracy measure. Each experiment is run for a fixed

number of minority training ratios (β). For each minority training ratio, the total number

of training samples remains constant. That is, the minority samples replace the majority

samples, instead of being appended to the training set. Each experiment is also run for a

finite number of trials. Different trials have different random train and test sets (except

for the FairFace dataset [11] where we use the provided test split). Averaging is done

across trials. Note that minority samples to be added are randomly chosen – the MIME

effect is not specific to particular samples. For the vision datasets, we use a ResNet-34

architecture [55], with the output layer appropriately modified. For the non-visual dataset,

a fully connected network is used. Average accuracy and trend error, across trials are used

to evaluate performance. Specific implementation details are provided in Appendix A.

4.2.2 MIME effect on gender classification

The FairFace dataset [11] is used to perform gender classification (y = 1 is male, y = 2 is

female). The majority and minority groups g = {major,minor} are light and dark skin,

respectively. Results are averaged over five trials. Figures 4.2 and 4.3 describe qualitative

accuracy. The accuracy trends indicate that adding 10% of minority samples to the training

set leads to approximately a 1.5% gain in majority group (light skin) test accuracy.
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4.2.3 MIME effect on animal species identification

We manually annotate light and dark cats and dogs from the Pets dataset [13]. We classify

between cats (y = 1) and dogs (y = 2). The majority and minority groups are light and

dark fur color respectively. Figures 4.2 and 4.3 show qualitative results. Over five trials, we

see a majority group accuracy gain of about 2%, with a peak at β =10%.

4.2.4 MIME effect on age classification

We use a second human faces dataset, the UTKFace dataset [12], for the age classification

task (9 classes of age-intervals). We pre-process the UTKFace age labels into class bins to

match the FairFace dataset format. The majority and minority groups are male and female

respectively. The proportion of task class labels is kept the same across group classes. Results

are averaged over five trials. Figures 4.2 and 4.3 show trends. We observe a smaller average

improvement for the 10% minority training ratio. However, since these are average trends,

this indicates consistent gain. Results on this dataset also empirically highlight the existence

of the MIME effect beyond two class settings.

4.2.5 MIME effect on X-ray diagnosis Classification

We use the NIH Chest-Xray14 dataset [14] to analyze trends on a medical imaging task. We

perform binary classification of scans belonging to ‘Atelectasis’ (y = 1) and ‘Pneumothorax’

(y = 2) categories. The male and female genders are the majority and minority groups

respectively. Results are averaged over seven trials (due to noisier trends). From Figures 4.2

and 4.3, we observe noisy trends - specifically we see a performance drop for β = 0.2, prior to

an overall gain for β = 0.3. The error bounds also have considerably more noise. However,

confidence in the peak and the MIME effect, as seen from the average trends and the error

bounds, remains high.
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MIME effect on income classification: For validation in a non-vision setting, we use

the Adult (Census Income) dataset [15]. The data consists of census information with annual

income labels (income less than or equal to $50,000 is y = 1, income greater than $50,000 is

y = 2). The majority and minority groups are female and male genders respectively. Results

are averaged over five trials. Figure 4.4(a) highlights a prominent accuracy gain for β = 0.6.

MIME effect and domain gap: Theorem 2 (Chapter 3) suggests that large domain

gap settings will not show the MIME effect. We set up an experiment to verify this (Fig-

ure 4.4(b)). Gender classification among chickens (majority group) [54] and humans (mi-

nority group) [12] has a high domain gap due to minimal common context (validated by the

domain gap estimates, Table 4.1). With increasing β, the majority accuracy decreases. This

(and Figure 4.1, Table 4.1 that show low domain gap for other datasets) validates Theorem

2. Note that while this result may not be unexpected, it further validates our proposed

theory.
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Figure 4.1: The use of Gaussian mixtures to represent minority and majority dis-

tributions is consistent with behaviors in modern neural networks, on real-world

datasets. (top row) The last layer of common neural architectures is a linear classifier on

features. Histograms of the penultimate layer projections are generated for models with

β = 0.5. (middle row) Minority histograms: note the greater difficulty due to less separation

of data. (bottom row) Majority histograms: note smaller overlap and easier classification.

Figure can be parsed on a per-dataset basis. Within each column, the reader can compare

the domain gap and overlap in the two histograms.
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Figure 4.2: When domain gap is small, the MIME effect holds. On four vision

datasets, majority performance is maximized with some inclusion of minorities. All experi-

ments are run for several trials and realizations (described in Section 4.2).

30



Majority class accuracy curveMajority - only threshold Error bounds

Atelectasis Pneumothorax
M

aj
or

ity
M

in
or

ity

Dataset 4: Chest-Xray14 Dataset

M
aj

or
ity

 A
cc

ur
ac

y

Minority class fraction in train set

Young Old

M
aj

or
ity

M
in

or
ity

Dataset 3: UTKFace Dataset
M

aj
or

ity
 A

cc
ur

ac
y

Minority class fraction in train set

Figure 4.3: When domain gap is small, the MIME effect holds. On four vision

datasets, majority performance is maximized with some inclusion of minorities. All experi-

ments are run for several trials and realizations (described in Section 4.2).
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Figure 4.4: MIME effect is observed in non-vision datasets, and is absent in the

case of large domain gap. (a) The Adult Dataset uses Census data to predict an income

label. (b) On dataset six, gender classification is re-scoped to occur in a high domain gap

setting. Majority group is chickens and minority group is humans.
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CHAPTER 5

Discussion

5.1 Secondary validation and analysis

Table 5.1 provides additional metrics to analyze MIME. Across datasets, almost all trials

show existence, with every dataset showing average MIME performance gain. Some readers

may view the error bars in Figures 4.2, 4.3 and 4.4 as large, however they are comparable to

other empirical ML works [56, 57]; they may appear larger due to scaling. Reasons for error

bars include variations in train-test data and train set size (Tables A.2 and A.3, Appendix A).

Further analysis, including interplay with debiasing methods (e.g. hard-sample mining [16])

and reconciliation with work on equal representation datasets [2, 3, 4, 5, 6, 7, 8, 9, 10] is

deferred to Appendix B.

Vimp =
1

||Wimp||
∑

w∈Wimp

Vw (5.1)

5.2 Optimality of inclusion ratios

Our experiments show that there can exist an optimal amount of minority inclusion to benefit

the majority group the most. This appears true across all experiments in Figures 4.2, 4.3

and 4.4. However, beyond a certain amount, accuracy decreases consistently, with lowest

accuracy on majority samples observed when no majorities are used in training. This optimal

β depends on individual task complexities, among other factors. Since identifying it is outside

our scope (Sections 1.1, 1.2), our experiments use 10% sampling resolution for β. Peaks at
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Table 5.1: Additional evaluation metrics provide further evidence of MIME ex-

istence across all datasets. The table highlights: (i) number of trials with MIME per-

formance gain (i.e. majority accuracy at some β > 0 is greater than majority accuracy at

β = 0), and (ii) the mean MIME performance gain across trials (in % points).

Dataset DS-1 [11] DS-2 [13] DS-3 [12] DS-4 [14] DS-5 [15]

#MIME trials/Total trials 4/5 4/5 5/5 6/7 4/5

Avg. MIME perf. gain 0.72% 1.84% 0.70% 1.89% 0.98%

β = 10% for some datasets are due to this lower resolution; optimal peak need not lie there

for all datasets (e.g. X-ray [14] & Adult [15]). Future work can identify optimal ratios

through finer analysis over β.

5.3 Limitations

The theoretical scope is certifiable within fixed-backbone binary classification, which is nar-

rower than all of machine learning (Figure 1.1). Should this theory be accepted by the com-

munity, follow-up work can generalize theoretical claims. Another limitation is the definition-

compatibility of majority and minority groups. Our theory is applicable to task-advantage

definitions; some scholars in the community instead define majorities and minorities by pro-

portion. Our theory is applicable to these authors as well, albeit with a slight redefinition

of terminology. Additional considerations are included in Appendix A and B. In conclusion,

majority performance benefits from a non-zero fraction of inclusion of minority data given

a sufficiently small domain gap.
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APPENDIX A

Generalizations and Implementation

A.1 MIME Existence Beyond 1D Settings

Consider x ∈ Rn. The perceptron decisions are based on the metric y = wTx + b, where

w ∈ Rn, and y, b ∈ R. Similar to Theorem 1, we consider the perceptron decision and update

rule. That is, for any training sample (xi, yi), the predicted label is given by,

ŷi =
sign(wTxi + b) + 3

2
. (A.1)

We can rewrite this in terms of a single decision hyperplane by defining w̃ = [wT b]T and

x̃ = [xT 1]T . For a small learning rate γ, the updated decision rule becomes,

ˆ̃yi =
sign(w̃T x̃i) + 3

2
. (A.2)

w̃←


w̃ + γx̃i, if ŷi 6= yi and yi = 2

w̃ − γx̃i, if ŷi 6= yi and yi = 1

. (A.3)

We now refer to the hyperplane w̃ as the decision hyperplane. Let hideal be the ideal

decision hyperplane. In this setting, any domain gap δ or error in real hyperplane estimation

∆ manifests as a direction/angle error in the hyperplane normal vector (since the bias term

b is subsumed in the hyperplane). The updates change the normal vector of the hyperplane

through a linear combination with the sample x̃i, scaled by the learning rate γ.

We now provide a qualitative description for the existence of the MIME effect, in terms of

the likelihood of a favorable update to w̃. We consider a simplified 2D case with symmetric
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Figure A.1: The MIME effect holds in a multidimensional setting as well. We

show the support for the two finite distributions. Weight vector updates arising out of

samples from regions R3, R4, R5 and R6 lead to an update with a large vertical (corrective)

component (favorable update). Updates arising out of regions R1 and R2 result in an overall

update in the horizontal direction (unfavorable update).

distributions and δ = 0. A finite support is assumed for the majority and minority groups,

for ease of understanding. Consider that the bias term b is known, and only the hyperplane

direction is to be refined. Again, we denote the hyperplane from our finite training set Dmajor
K−1

as hK−1. The error ∆ in this case is now the angular error between the normals for hideal

and hK−1. Figure A.1 indicates this setting. The learnt hyperplane w̃K−1 is shown as a

black solid line. The black dashed line represents the mirror image of the learnt hyperplane,

defined for aid in simplification. Recall that updates to the weight vector take place on

misclassification. On average, the updates due to samples in regions R1 for (y = 2) and R2

(for y = 1) lead to a net horizontal (leftward) weight update. This is an unfavorable update

that increases ∆. Therefore, the favorable updates on average are from regions R3 and R4

for y = 2, and R5 and R6 for y = 1. This is a net update with large vertical (upward) update.

This is a favorable update that decreases ∆. These regions are described based on the small

angular deviation ∆. Since the distributions have finite support along the direction parallel
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to the ideal hyperplane (vertical direction in Figure A.1), the requirement again reduces

to greater likelihood of sampling close to the ideal hyperplane (similar to Theorems 1 and

2), since ∆ is small. That is, distributions that sample close to the ideal hyperplane with

greater probability have a greater expected likelihood of a favorable update. Under similar

conditions as Theorem 1, MIME effect holds in this case.

The extension to include the bias term b is straightforward. We follow the setting in

Equation A.2 and subsume the bias as part of the weights. In this case, ∆ includes the error

in both the hyperplane normal direction as well as the bias. Extensions to greater number

of dimensions can be done using the same arguments. Additionally, domain gap can also be

introduced. We omit explicit mathematical expressions in the interest of brevity, and since

our goal here is to establish existence.

A.2 Feature Space Analysis

A.2.1 Constructing the Projected Feature Histograms

Let f denote a feature vector, in the penultimate layer of a classification neural network. For

example, in the case of ResNet-34 [55], f ∈ R512. Similarly, let w be the final layer weights.

In the case of multiple final layer hyperplanes, we choose any one of the hyperplanes (since

for the two class classification task, the two projected variables are correlated when trained

against the cross entropy loss for 2 classes). Then, we define x ∈ R as,

x = wT f . (A.4)

Classification decisions are made solely on the basis of the projected variable x. Therefore,

we analyze the histogram distributions for x. Practically, for each dataset, we use the best

performing (in terms of majority group performance) model trained using a minority training

fraction (β) of 0.5. This is chosen in order to obtain histograms of x for all four distributions

– the two task classes for both the majority and minority groups. The histograms are created
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using the test set samples.

A.2.2 Estimating the Overlap

The overlap is estimated from the histograms, using the following Python code snippet:

def histogram_intersection(h1 , h2 , bins):

#INPUTS:

#h1 , h2: normalized histograms

#bins: number of bins in the histograms (should be equal for the

two histograms)

#OUTPUTS:

#sm: overlap fraction

sm = 0

for i in range(bins):

sm += min(h1[i], h2[i])

return sm

A.2.3 Estimating the Domain Gap

We follow a two step process to estimate the domain gap δ. First, the ideal decision hy-

perplanes for the majority and minority groups are estimated, using Equation 3.34. We fit

a fifth order polynomial to the two histograms. The central intersection point of the his-

tograms (i.e the intersection point that lies between the means of the two classes) is then the

location of the ideal decision threshold. The following Python code snippet describes this:

import numpy as np

def ideal_hyperplane(h1 , h2 , z, ref=5):

#INPUTS:

#h1 , h2: the two histograms , of equal length and identical bins

#z: a list of the histogram bin centers

#ref: Search space for the intersection of the two histograms -
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default is from -5 to 5

#OUTPUT:

#z_dec: Ideal decision threshold between the two histogram

distributions

z_dash = np.polyfit(z, h1 , 5)

f1 = np.poly1d(z_dash)

# calculate polynomial

z_dash = np.polyfit(z, f2 , 5)

f2 = np.poly1d(z_dash)

new_z = np.linspace(-ref ,ref ,5000)

new_f1 = f1(new_z)

new_f2 = f2(new_z)

id_dec = np.argmin(np.abs(new_f1-new_f2))

z_dec = new_z[id_dec]

return z_dec

The domain gap is the absolute difference between two ideal decision thresholds, for each

of the two group classes. Figure 3.1 from Chapter 3 may be referred to for a graphical

visualization.

A.2.4 Notes on the Estimated Measures

The latent feature space analysis is not perfect. This is because the feature extraction part

of the network is jointly learnt along with decision hyperplane. Histograms are plotted on

the 50% minority training ratio so as to enable a fair domain gap and overlap comparison

between the two group classes. Specifically, note that we define task complexity in Chapters 3

and 4 in terms of the minority only and majority only train sets which deviates from the

setting here. The estimates for overlap and domain gap are therefore approximate correlated

estimates and not exact measures.

39



A.2.5 Analysis of Feature Space Gaussian-like Behavior

We set up the Chi-Squared goodness of fit test on all 20 distributions under consideration

(i.e. across 5 datasets and 4 distributions each per dataset). These statistics correspond to

the distributions in Table 4.1 and Figure 4.1 from Chapter 4. Python code for testing the

hypotheses is given below. The number of bins are chosen so as to ensure ≥ 5 samples per

bin on average.

from scipy.stats import chisquare

from scipy.stats import norm

from scipy import stats

import pandas as pd

def chi_square_stats(vals ,no_bins)

#INPUTS:

#vals: a list of samples whose Gaussianity is to be tested

#no_bins: number of bins (thumb rule: no_bins <len(vals)/5)

tot_vals = len(vals)

# mean and standard deviation of given data

mean = np.mean(vals)

std = np.std(vals)

interval = []

for i in range(1,no_bins+1):

val = stats.norm.ppf(i/no_bins , mean , std)

interval.append(val)

interval.insert(0, -np.inf)

lower = interval[:-1]

upper = interval[1:]

df = pd.DataFrame({’lower_limit ’:lower , ’upper_limit ’:upper})
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sorted_vals = list(sorted(vals))

df[’obs_freq ’] = df.apply(lambda x:sum([i>x[’lower_limit ’] and i<=

x[’upper_limit ’] for i in

sorted_vals]), axis=1)

df[’exp_freq ’] = tot_vals/no_bins

statistic = stats.chisquare(df[’obs_freq ’], df[’exp_freq ’])

p = 2 # number of parameters for 1D Gaussian

DOF = len(df[’obs_freq ’]) - p -1

thresh = stats.chi2.ppf(0.95 , DOF)

return statistic , thresh

Table A.1 highlights the evaluated chi-square statistics, as well as related parameters.

Note that a lower value of the statistic is better, and the null hypothesis is not rejected when

the value of the statistic is lower than the critical value. We establish the null hypothesis

at a 5% level of significance for each distribution to be that the samples are drawn from

a Gaussian distribution. Distributions that are unable to reject the null hypothesis are

indicated in bold. It can be seen that a large majority of the distributions indicate that the

projected latent features follow a Gaussian-like distribution.

A.3 Implementation Details

A.3.1 Analysis measures

For each task, we estimate the test accuracy aip(β) as a function of minority group fraction in

the train set β ∈ [0, 1], for a trial i ∈ {1, ..., N}, for a group class g (e.g. dark skin tones). N
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Table A.1: Chi-Squared goodness of fit measures for all distributions. Distributions

with bolded values show the estimated statistics that are lower than the critical value,

indicating that the null hypothesis (Gaussian distribution) cannot be rejected.

Dataset No. of samples

per group per class

No. of Bins Critical Value Majority Group Minority Group

y = 1 y = 2 y = 1 y = 2

DS-1 [11] 379 15 21.03 13.65 28.69 10.25 15.39

DS-2 [13] 126 15 21.03 7.81 12.10 11.62 9.24

DS-4 [14] 126 15 21.03 10.43 17.57 17.10 4.48

DS-5 [15] 159 15 21.03 11.09 24.05 5.74 14.40

DS-6 [54, 12] 43 5 5.99 25.48 5.02 5.72 4.79

is the total number of trials. Practically, we evaluate performance for a finite set of β values,

represented by the set B = {0, 0.1, 0.2, . . . , 1.0}. We now define the following measures:

Average accuracy : For a given minority training ratio β0, and for a given group class

g, we define the average accuracy,

āg(β0) =
1

N

N∑
i=1

aig(β0). (A.5)

Error bounds : We also evaluate the trend variation among aig(β) for various i. That

is, we want to evaluate if across all the trials (for a particular task-dataset combination),

the relative trend (of majority group performance gain) holds true. One candidate measure

for this is stdi(a
i
g(β)) for each β, where stdi(·) is the standard deviation operator, over i.

However, this measure will include average changes in accuracy for all splits, for a particular

trial (arising out of unrelated effects such as different train or test set samples). This is un-

necessary in our case. Therefore, we define our error measure ζ̂(β) as the β-mean subtracted

standard deviation. That is,
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ζ̂(β) = stdi(a
i
g(β)− āig),

āig =
1

|B|
∑
β∈B

aig(β),
(A.6)

where | · | is the cardinality operator representing the size of a set. In our graphs, we plot

the average accuracy āg(β) as well as the error bounds, from āg(β) − ζ̂(β) to āg(β) + ζ̂(β),

∀β ∈ B.

A.3.2 Network Architectures Used

For all the vision-related experiments, we use the ResNet-34 architecture [55]. We only

modify the output layer of the network so as to match the number of task classes (9 for

Dataset 3, and 2 for all other tasks). For the Adult (Census) Dataset [15], we use a fully

connected network with sigmoid outputs. The PyTorch [58] implementation for the model

is included below.

#Model

def act(x):

return F.relu(x)

class Network(nn.Module):

def __init__(self ,):

super ().__init__ ()

self.fc1 = nn.Linear(101 , 50)

self.fc2 = nn.Linear(50 , 50)

self.fc3 = nn.Linear(50 , 50)

self.fcLast = nn.Linear(50 ,2)

def forward(self ,x):

x = act(self.fc1(x))
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# x = self.b1(x)

x = act(self.fc2(x))

x = act(self.fc3(x))

x = torch.sigmoid(self.fcLast(x))

return x

A.3.3 General Experiment Details

Table A.2: Training configuration and parameters for all datasets and experi-

ments. Parameters for each dataset are chosen so as to maximize performance.

Dataset DS-1 [11] DS-2 [13] DS-3 [12] DS-4 [14] DS-5 [15] DS-6 [54, 12]

(Task) (Gender) (Species) (Age) (Diagnosis) (Income) (Gender)

Group class Race Skin tone Gender Gender Gender Species

Train set size 10900 1500 7700 1500 2600 750

Test set size (per group) 760 250 970 250 300 90

No. of trials 5 5 5 7 5 5

No. of epochs 35 60 65 40 250 20

Learning rate 0.0005 0.0006 0.0006 0.0006 0.0005 0.0005

Weight Decay 0.08 0.05 0.05 0.05 0.08 0.08

Input Shape/Config. 3x100x100 3x256x256 3x100x100 3x256x256 101x1 3x100x100

All experiments were carried out using PyTorch [58]. Table A.2 highlights the training

parameters used for each dataset. We use different parameters for each of the datasets.

These are experimentally chosen to maximize accuracy. All the models are trained using the

AdamW optimizer [59] and the cross entropy loss. The train and test set sizes vary slightly

across trials, due to different data splits. However, the train set size remains the same for all

minority training ratios of a particular trial. A validation set is held out but given the small

sample size of several datasets, we measure trends based on best test performance. This is

to minimize the effect of sample specific performance gap in small datasets. Averaging of

trends over multiple trials, and hence multiple train-test splits ensures that the trends do not
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overfit to a particular configuration. Each trial is run using a unique random seed. Table A.3

highlights the random seeds used for our experiments, which were randomly chosen. Input

images are resized to the chosen input size for each dataset. For the Adult dataset [15], we

use a one-hot encoding scheme for the input. The group class information is dropped from

the input before passing to the network. For all the datasets, across all minority training

ratios for a particular trial, we use a fixed model initialization to ensure that the changes in

accuracy are completely attributable to the train data configuration.

Table A.3: Random seeds used for the trials. Seeds were chosen at random for trials to

generate average trends and error bounds.

Dataset DS-1 [11] DS-2 [13] DS-3 [12] DS-4 [14] DS-5 [15] DS-6 [54, 12]

(Task) (Gender) (Species) (Age) (Diagnosis) (Income) (Gender)

Random

Seeds

0, 1, 3,

5, 7

21, 42, 35,

28, 31

0, 55, 2,

15, 6

33, 42, 24, 36

54, 21, 28

13, 15, 17,

19, 21

0, 1, 3,

5, 9

A.3.4 Dataset Specific Information

To perform experiments on the Pet Images Dataset, we manually annotate light and dark

fur cats and dogs from the larger dataset used in [13]. For the age classification task on

the UTKFace Dataset [12], we pre-process the age labels to match the annotation format

for the FairFace dataset [11]. For the large domain gap gender classification task using the

UTKFace and Chicken Images Datasets [12, 54], we perform gender classification over

human and chicken groups. Therefore, this experiment is over a new, composite dataset.
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APPENDIX B

Additional Analysis

B.1 Secondary Analysis of MIME

B.1.1 MIME effect with debiasing methods:

We now analyze the interaction of the MIME effect with existing debiasing methods. Specif-

ically, while applying hard-sample mining [16] (as an exemplary case) across the task classes

(y = 1, 2), we sweep across various minority training ratios. Figure B.1(a) shows results on

two datasets (implementation details may be found in the following section). The MIME

effect continues to be observed. Debiasing methods act on the task classes (y = 1, 2) in an

effort to improve performance while MIME acts on majority and minority groups, regardless

of the task class. Therefore, MIME is complementary to debiasing methods, rather than

a competitor. In our experiments, hard-sample mining does not lead to significant perfor-

mance gains since the task classes are balanced by experimental design. In other scenarios

where this might not be the case, MIME and hard sample mining might together improve

performance.

B.1.2 Reconciling MIME with existing equal representation (ER) datasets:

In this thesis, we focus only on majority group performance, for which ER training datasets

are not optimal in general. In contrast, existing efforts [2, 3, 4, 5, 6, 7, 8, 9, 10] focus on ER

datasets to maximize overall (majority+minority) performance. This need not be optimal

but is a good thumb rule. This is because while majority group performance eventually
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reduces with minority training ratio, minority group performance increases (Figure B.1(b)

highlights this).

B.2 Hard Mining Baseline Implementation

We implement a version of the method proposed in [16]. From a batch of 30 samples, 12

samples (6 of each task class) are retained and used in the training step. These are the

samples with least confidence, with respect to ground truth targets. Code is shown below.

Trial random seeds are the same as shown in Table A.3.

class compute_crossentropyloss_hardMine:

"""

y0 is the vector with shape (batch_size ,C)

x shape is the same (batch_size), whose entries

are integers from 0 to C-1. In our case , C=2.

"""

def __init__(self , ignore_index=-100) -> None:

self.ignore_index=ignore_index

def __call__(self , y0 , x):

loss = 0.

eps = 1e-5

K = 6

n_batch , n_class = y0.shape

pos_score = torch.ones(n_batch).to(device)

neg_score = torch.ones(n_batch).to(device)

ix_pos = 0

ix_neg = 0

for y1 , x1 in zip(y0 , x):

class_index = int(x1.item())

score = torch.exp(y1[class_index])/(torch.exp(y1).sum()+eps)

if class_index == 0:
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neg_score[ix_neg] = score

ix_neg+=1

else:

pos_score[ix_neg] = score

ix_pos+=1

pos_score ,_ = torch.sort(pos_score ,dim=0)

neg_score ,_ = torch.sort(neg_score ,dim=0)

pos_els = np.minimum(K,ix_pos)

neg_els = np.minimum(K,ix_neg)

for ix in np.arange(pos_els):

loss = loss -torch.log(pos_score[ix])

for ix in np.arange(neg_els):

loss = loss -torch.log(neg_score[ix])

loss = loss/(pos_els+neg_els)

torch.cuda.empty_cache ()

return loss

B.3 Negative impacts and mitigation:

This thesis focuses on highlighting the existence of the MIME effect, and not optimal con-

figurations for performance gain. Nevertheless, potential negative outcomes may occur if

the results are misinterpreted as guidance on dataset construction with respect to certain

stakeholder groups. The rigor of our theoretical results emphasizes this nuance to computer

scientists, and future work in diverse venues can extend the notion of minority inclusion for

majority group performance gains to broader audiences.
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Figure B.1: The MIME effect is complementary to data debiasing methods and

consistent with research aimed at equal representation (ER) datasets. (a) Training

configurations using data debiasing methods show the MIME effect. (b) While ER datasets

are not optimal for the MIME effect (Figures 4.2, 4.3 and 4.4), optimal overall performance

is observed close to ER.
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