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ABSTRACT OF THE DISSERTATION

Communication-Reduced Distributed Control and Optimization of
Multi-Agent Systems

by

Yong Ding

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2022

Dr. Wei Ren, Chairperson

This dissertation proposes communication-reduced solutions to the containment

control, distributed average tracking and distributed time-varying optimization problems of

multi-agent systems.

The objective of containment control in multi-agent systems is to design con-

trol algorithms for the followers to converge to the convex hull spanned by the leaders.

Sampled-data based containment control algorithms are suitable for the cases where the

power supply and sensing capacity are limited, due to their low-cost and energy-saving

features resulting from discrete sensing and interactions. In addition, sampled-data control

has advantages in performance, price and generality. On the other hand, when the agents

have double-integrator dynamics and the leaders are dynamic with nonzero inputs, the ex-

isting algorithms are not directly applicable in a sampled-data setting. To this end, this

dissertation proposes a sampled-data based containment control algorithm for a group of

double-integrator agents with dynamic leaders with nonzero inputs under directed commu-

nication networks. By applying the proposed containment control algorithm, the followers
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converge to the convex hull spanned by the dynamic leaders with bounded position and ve-

locity containment control errors, and the ultimate bound of the overall containment error

is proportional to the sampling period.

In the distributed average tracking problem, each agent uses local information to

track the average of individual reference signals. In some practical applications, velocity

measurements may be unavailable due to technology and space limitations, and it is also

usually less accurate and more expensive to implement. Before deriving the event-triggered

approach, we first present a base algorithm without using velocity measurements, which sets

the stage for the development of the event-triggered algorithm. The base algorithm has an

advantage over the existing related works in the senses that there is no global information

requirement for parameter design. Building on the base algorithm, we present an event-

triggered algorithm that further removes continuous communication requirement and is free

of Zeno behavior. It is suitable for practical implementation since in reality the bandwidth

of the communication network and power capacity are usually constrained. The event-

triggered algorithm overcomes some practical limitations, such as the unbounded growth of

the adaptive gain and requirement of additional internal dynamics, by constructing a new

triggering strategy. In addition, a continuous nonlinear function is used to approximate the

signum function to reduce the chattering phenomenon in reality.

In distributed optimization of networked systems, each member has a local cost

function, and the goal is to cooperatively minimize the sum of all the local cost functions.

The distributed time-varying optimization problem is investigated for networked Lagrangian

systems with parametric uncertainties in the dissertation. Usually, in the literature, to ad-
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dress some distributed control problems for nonlinear systems, a networked virtual system

is constructed, and a tracking algorithm is designed such that the agents’ physical states

track the virtual states. It is worth pointing out that such an idea requires the exchange

of the virtual states and hence necessitates communication among the group. In addition,

due to the complexities of the Lagrangian dynamics and the distributed time-varying opti-

mization problem, there exist significant challenges. This dissertation proposes distributed

time-varying optimization algorithms that achieve zero optimum-tracking errors for the net-

worked Lagrangian agents without the communication requirement. The main idea behind

the proposed algorithms is to construct a reference system for each agent to generate a ref-

erence velocity using absolute and relative physical state measurements with no exchange

of virtual states needed, and to design adaptive controllers for Lagrangian systems such

that the physical states are able to track the reference velocities and hence the optimal

trajectory. The algorithms introduce mutual feedback between the reference systems and

the local controllers via physical states/measurements and are amenable to implementation

via local onboard sensing in a communication unfriendly environment. Specifically, first, a

base algorithm is proposed to solve the distributed time-varying optimization problem for

networked Lagrangian systems under fixed graph. Then, based on the base algorithm, a

continuous function is introduced to approximate the signum function, forming a continu-

ous distributed optimization algorithm and hence removing the chattering. Then, by using

the structure of the base algorithm, a distributed time-varying optimization algorithm is

designed for networked Lagrangian systems under switching graphs.
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Chapter 1

Introduction

Due to the advantages in achieving group performance with low operation cost

and flexible scalability, and potential practical applications in vehicle formation, sensor

networks, cooperative surveillance, and so on [88, 95], distributed cooperative control of a

group of robots/agents have drawn massive attention from various scientific communities.

Consensus is an important research subject in distributed cooperative control of multi-

agent systems, where all the agents reach an agreement on a state of interest. A number of

distributed consensus algorithms have been proposed to solve the consensus problems for

a group of agents with no leader [90, 94] and one leader [55, 10]. In this dissertation, we

address three more complex and challenging problems for multi-agent systems, which are

containment control, distributed average tracking and distributed time-varying optimization

of multi-agent systems. We provide communication-reduced solutions to these problems:

1. Sampled-data containment control for double-integrator agents with dynamic leaders

with nonzero inputs,
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2. Robust distributed average tracking for double-integrator agents without velocity mea-

surements under event-triggered communication,

3. Distributed time-varying optimization of networked Lagrangian systems.

Thus, we continue with an overview of containment control, distributed average tracking

and distributed time-varying optimization problems.

1.1 Containment Control

Consider a collection of autonomous, mobile agents consisting of multiple leaders

and followers, and the objective of the containment control [60] is to drive the followers

to converge to the convex hull spanned by the leaders. Several natural phenomena exhibit

the relationship between leaders and followers in the containment control problem. For

instance, several sheepdogs gather a flock of sheep and guide them safely to a desired

location [110]. Another biological example is provided in [53, 23], where female silkworm

moths are capable of releasing a certain kind of pheromone to attract male moths to swarm

in tight geometrical configurations. On the other hand, the containment control problem

has practical applications. For instance, several robots capable of self-navigation are able to

guide a group of agents to cross a partially known area [23]. Also, the containment control

problem has applications in coordination of a group of robots [11].

A number of algorithms have been reported in the literature to deal with the con-

tainment control problem under various scenarios. For instance, containment control algo-

rithms are proposed for a group of single-integrator agents [9, 72], double-integrator agents

[11, 68, 72], and agents with general linear dynamics [70] and Euler-Lagrange dynamics [78].

2



The aforementioned results are derived for continuous-time cases, which require continuous

sensing and interaction among agents. However, when each agent has limited power supply

and sensing capacities, energy saving becomes one of the main factors that the designers

have to take into account. Because of the advantages in cost reduction, the event-triggered

and discrete-time containment control algorithms are studied in the literature.

Several different event-triggered containment control algorithms are proposed in

the literature. See [131, 80, 24, 75, 22, 126, 74] for instance. These event-triggered contain-

ment control algorithms require that each agent continuously monitor the communication

channels and certain states, and continuously compute and check the event-triggering func-

tions to see whether they exceed some threshold. These actions will cost additional energy

and resources. It is also worth noting that in [131, 80, 24, 75, 22, 126, 74], the leaders’

inputs are either zero or designed to drive the leaders to some stationary locations, which

are simpler than the case where the dynamic leaders’ inputs can be arbitrary as long as

they are bounded.

Discrete-time containment control algorithms are proposed for multi-agent systems

with single-integrator dynamics [23, 112], double-integrator dynamics [2, 118, 73, 72], higher-

order integrator dynamics [116, 98], and general discrete-time linear dynamics [70]. The

containment control problem for heterogeneous multi-agent systems is addressed in [99],

where the followers have single- and double-integrator dynamics and leaders are single-

integrator agents.

Among these discrete-time containment control algorithms, the sampled-data based

ones stand out because of their advantages in performance/accuracy, price and generality.
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Also it is more coincident with practical applications in real life. For instance, sampled-data

based algorithms are proposed in [73] and [72] to solve the containment control problem

for multiple agents with fractional-order double-integrator dynamics and ordinary double-

integrator dynamics, respectively.

In the above mentioned discrete-time containment control algorithms, however,

the leaders’ inputs remain zero, which greatly simplifies analysis and design. One natural

question arises is how to solve the containment control problem for the case where lead-

ers’ inputs are nonzero. In this case, discontinuous algorithms are usually used to achieve

containment control for continuous-time single- and double-integrator agents [11, 9]. How-

ever, the discontinuous algorithms proposed in [11, 9] require each agent to continuously

interact with its neighbors, and it is not clear whether it is applicable for double-integrator

agents in a sampled-data setting. A solution to the question is provided in [23] for discrete-

time higher-order-integrator agents if the leaders’ trajectories are described by polynomial

functions. Such trajectories can be generated by integrator agents with polynomial inputs.

However, it is not directly applicable when the followers’ dynamics become complicated

and the leaders’ inputs are non-polynomial as considered in this thesis. Also, note that to

implement the discrete-time containment control algorithm in [23], each double-integrator

follower needs to store a great amount of historical state information to update its controller.

In the sampled-data setting, there exist new challenges for the containment control

of double-integrator agents with dynamic leaders with nonzero inputs. The coexistence of

the sampled-data setting, double-integrator dynamics and dynamic leaders with nonzero

inputs, makes the containment control problem more difficult and complicated, and renders
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the existing related results in the literature inapplicable. Therefore, the development of

new sampled-data containment control algorithm is needed for double-integrator agents

with dynamic leaders with nonzero inputs.

1.2 Distributed Average Tracking

During the recent decade, the distributed average tracking problem, which includes

consensus and distributed tracking as special cases, is formulated and addressed in the

literature. In the distributed average tracking problem, each agent has a time-varying

reference signal, and the goal is to design controllers for the agents based on local information

such that all the agents are able to track the average of these reference signals. Because of

the time-varying tracking objective and the lack of access to error signals, the distributed

average tracking problem is theoretically more challenging compared with consensus and

distributed tracking problems.

In the literature, there are cases where each agent aims to only estimate the aver-

age of these reference signals, which is often termed as dynamic average consensus. Some

applications, such as feature-based map merging [1], and distributed Kalman filtering [4],

have been reported in the literature. Several linear distributed algorithms are established to

deal with the dynamic average consensus problem for certain types of reference signals. For

instance, the dynamic average consensus problem is solved in [104], [3] and [122] for reference

signals with steady state values, with a common denominator in their Laplace transforms,

and slowly varying reference signals, respectively. The dynamic average consensus prob-

lem is solved with bounded steady state error for a strongly connected, weight-balanced
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interaction topology in [65], where the discrete-time counterparts are addressed as well. A

class of nonlinear algorithms is proposed in [85] for reference signals with bounded devi-

ations, and the dynamic average consensus error is bounded. A non-smooth algorithm is

proposed in [14], which enables each agent to keep track of the average of a class of reference

signals with bounded derivatives. More recently, combined with an adaptive scheme, two

dynamic average consensus algorithms without correct initialization are proposed in [43]

such that each agent is able to estimate the average of the reference signals. Also, a robust

dynamic average consensus algorithm is proposed for directed networks, which guarantees

an arbitrary prescribed small steady-state error bound.

The aforementioned algorithms focus on estimator design, and in reality, some

tasks, such as region following formation control [13] and coordinated path planning [108],

require that each agent has a certain dynamics, and the goal is to design controllers for

each agent such that its physical states track the average of multiple time-varying reference

signals. In this context, the term distributed average tracking is often used. A nonsmooth

algorithm is presented in [21] for double-integrator agents. It requires that the accelerations

of the individual reference signals be bounded. For general linear systems, the distributed

average tracking problem is addressed in [128]. The distributed average tracking algo-

rithms mentioned above need full state information (e.g., both positions and velocities for

double-integrator agents) to update the controllers. However, in some practical applica-

tions, partial states may be unavailable due to technology and space limitations. Moreover,

it is usually less accurate and more expensive to implement velocity measurements com-

pared with position measurements. Hence, it is worth investigating the distributed average
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tracking problem for double-integrator agents without using velocity measurements. In [50],

the authors investigate the problem described above. However, in [50], the lower bounds of

the design parameters depend on the bounds related to the reference signals and the graph

information including the largest and smallest nonzero eigenvalues of the Laplacian matrix,

which are global information and may be inaccessible to the agents. Also, the algorithm

in [50] is sensitive to parameter selection as a certain parameter is required to be exactly

equal to a certain value.

All these aforementioned continuous-time distributed average tracking algorithms

require each agent to continuously interact with its neighbors. However, it may not be prac-

tical due to the constrained bandwidth of the communication network and power source.

On the other hand, discrete-time distributed average tracking algorithms require agents

to interact with each other periodically. It may result in a waste of network resources.

Furthermore, with regard to general bounded reference signals, there usually exist tracking

errors by using the discrete-time algorithms. Thus, it makes sense to employ event-triggered

control strategies to address the distributed average tracking problem. They take advantage

of opportunistic aperiodic sampling to improve efficiency. In [64], the authors extend the

algorithm in [65] by incorporating an event-triggered communication strategy, but specific

initialization is needed for a certain variable, and there exist non-zero tracking errors for

general bounded reference signals. A robust dynamic average consensus algorithm under

dynamic event-triggered communication is proposed in [45] for agents to estimate the aver-

age of the reference signals. These works focus on the estimation aspect of the distributed

average tracking problem, where the agents’ dynamics are essentially single integrators.
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1.3 Distributed Time-varying Optimization

Recently, the distributed optimization problem has attracted a significant amount

of attention from different research societies due to its wide applications in power systems,

sensor networks, machine learning and so on. In distributed optimization of networked

systems, each member has a local cost function, and the goal is to cooperatively minimize

the sum of all the local cost functions. A number of distributed optimization algorithms have

been presented in the literature. See [123] and the references therein for instance. These

results (e.g., [123] and the references therein) usually assume fixed local cost functions

for the agents. However, the local cost functions might be time-varying in many practical

applications, which reflects the fact that the optimal point might be changing over time and

forms an optimal trajectory. For example, in the economic dispatch problem [25], a group

of power generators aim to meet the power demand and minimize the total generation cost,

which is the summation of each generator’s individual cost. In a day, the power demand

of a specific region changes over time, and the cost to generate the same amount of power

also changes due to the fluctuation of resource’s price and availability. These two reasons

would result in a time-varying cost function for each generator. Hence, it is meaningful to

investigate the distributed time-varying optimization problem.

In the literature, there are extensive distributed discrete-time algorithms that

solves the time-varying optimization problem. See [124, 71, 5, 102] for examples. There usu-

ally exist bounded convergence errors to the optimal trajectory by using the discrete-time

algorithms. There is another body of literature on distributed continuous-time optimization

algorithms for time-varying cost functions. These distributed continuous-time optimization
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algorithms have various applications in practice. One important applications lies in the

coordination of a team of robots, where each robot’s dynamics are described by differential

equations and the team objective is to track an optimal trajectory defined by all the team

members’ cost functions. For instance, by constructing a quadratic objective function for

each agent, the distributed time-varying optimization algorithms can be applied to solve

the distributed average tracking of multi-agent system (see Remark 34 later for details). A

few distributed time-varying optimization algorithms are established for single-integrator

agents [106, 25, 107], double-integrator agents [92] and agents with integrator-like nonlinear

dynamics [57]. In reality, a broad class of robots can be modeled by Lagrangian dynamics,

for example, the planar elbow manipulator and autonomous vehicles [105]. The Lagrangian

dynamics, which are the focus of this part of the dissertaion, are more complicated than

single and double integrators, and are different from and cannot be included as special cases

by the model considered in [57]. The complexity of the dynamics creates more challenges

to solve the distributed time-varying optimization problem.

Some results addressing distributed coordination problems (e.g., consensus, or

more generally, distributed optimization) for agents with nonlinear dynamics introduce dis-

tributed observers or virtual systems at a higher level, where the agents communicate their

observer states (virtual states independent of the agents’ physical states/measurements)

with neighbors such that the observer states or virtual states reach consensus on the de-

sired optimal point/trajectory. Then control algorithms are designed for the agents to track

the virtual states (serving as reference trajectories). However, due to the lack of physical

states/feedback (e.g., agent positions) in the observers, the reference trajectories generated

9



by such an approach do not explicitly take into account the physical agents’ interaction with

the environment and their capability. Also, such an approach cannot be implemented based

on local measurements via onboard sensors without communication in a communication

unfriendly environment.

1.4 Contribution of Dissertation

In this dissertation, we focus on the following three problems:

1. Sampled-data containment control for double-integrator agents with dynamic leaders

with nonzero inputs,

2. Robust distributed average tracking for double-integrator agents without velocity mea-

surements under event-triggered communication,

3. Distributed time-varying optimization of networked Lagrangian systems.

The contributions of this dissertation are discussed as follows.

In the first part of the dissertation (e.g., Chapter 2), we address the containment

control problem in a sampled-data setting for double-integrator agents with multiple dy-

namic leaders with nonzero inputs under directed communication networks. The contribu-

tions of this part are two-fold. First, a sampled-data based containment control algorithm

is proposed for double-integrator agents, which eliminates the requirement of continuous

sensing and interactions. It is more suitable for practical applications, since continuous

sensing and interaction are not energy-efficient, and demand a larger portion of energy on

board compared with periodic ones. Second, the proposed algorithm is proposed for the
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case where there are multiple dynamic leaders with nonzero inputs, which is one of the main

differences distinguishing our work from the existing discrete-time distributed containment

control algorithms in the literature. By the proposed algorithm, we show that all the fol-

lowers converge to the convex hull spanned by the leaders with bounded errors. Both the

collective position and velocity containment control errors are bounded, and the ultimate

bound of the overall containment control error is proportional to the sampling period.

In the second part of the dissertation (e.g., Chapter 3), we focus on an event-

triggered mechanism to solve the distributed average tracking problem for double-integrator

agents without using velocity measurements. Before deriving the event-triggered approach,

we first present a base algorithm to solve the distributed average tracking under continuous

communication. Then we present an event-triggered distributed average tracking algorithm

that further removes the continuous communication requirement. In contrast, [50] consid-

ers the problem of distributed average tracking of double-integrator agents without using

velocity measurements under continuous communication, which does not enjoy the bene-

fit of the event-triggered algorithm proposed in this part. While the base algorithm has

some connection with [50], it is worth mentioning that even this base algorithm has an

advantage over [50] in the sense that no global information is needed for parameter design.

We would also like to point out that the base algorithm has a different structure from the

one in [50]. Such structure and its independence on global information lay a solid base for

the development of the event-triggered algorithm. The proposed event-triggered algorithm

is able to achieve distributed average tracking with zero tracking errors, does not require

correct initialization, and is free of Zeno behavior. In contrast to [45], which is limited
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to only single-integrator agents, double-integrator agents without using velocity measure-

ments are considered in this part, which is a more complicated and challenging problem. It

is also noted that there are some practical limitations for the algorithm in [45]. First, the

time-varying gain may grow unbounded due to persistent disturbance, which would affect

the convergence and the success of the event triggering scheme. Second, an extra internal

dynamics is needed to ensure the exclusion of Zeno behavior, which may cost extra com-

putational power and storage space. In addition, the use of the signum function may cause

the chattering phenomenon in real applications. The proposed event-triggered algorithm

overcomes the aforementioned limitations in [45]. In this algorithm, a new adaptive law

and a new event-triggering strategy are constructed and a continuous nonlinear function is

used to approximate the signum function.

In the third part of the dissertation (e.g., Chapter 4), we propose communication-

free distributed time-varying optimization algorithms for networked Lagrangian agents with

parametric uncertainties. The main idea of the proposed algorithms is constructing a refer-

ence system for each agent, which is driven by the physical states instead of virtual states

between neighbors and generates a reference velocity, and then designing adaptive con-

trollers such that the agents’ physical states track their reference velocities, and hence the

optimal trajectory. The algorithms introduce mutual influence/feedback between reference

systems and local controllers via physical states/measurements and are amenable to im-

plementation via local onboard sensing in a communication unfriendly environment. Due

to the coupling and mutual influence of the reference systems and the agents’ dynamics,

there are significant new challenges in the convergence analysis. In particular, the reference
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systems are rewritten as coupled and perturbed networked second-order systems by taking

the tracking errors between agents’ velocities and their own reference states as disturbances.

Due to the use of the nonlinear functions (the signum function and the one in (4.17) later)

in the construction of the reference systems, the coupled and perturbed networked systems

have disturbances inside and outside the nonlinear functions, and the general input-to-state

stability analysis might not be directly applicable. This requires novel rigorous analysis on

the impact of disturbance on the optimum-tracking performance of the perturbed systems.

To this end, this dissertation carefully examines the perturbed systems, and obtains the

input-to-state-like stability from the disturbances to optimum-tracking errors. That is, the

optimum-tracking errors remain bounded if the disturbances are bounded in a certain sense

and converges to zero if the disturbances converge to zero (See Proposition 36 for instance).

These intermediate results facilitate the convergence analysis of the proposed algorithm for

the networked Lagrangian agents.

To be exact, we first design a base algorithm for the networked Lagrangian systems

to achieve exact optimum tracking under fixed graph. Since the base algorithm uses the

signum function to construct the reference systems, which might cause chattering during the

implementation in practice. Built on the base algorithm, we then propose to approximate

and replace the signum function in the reference systems with a smooth nonlinear function,

generating continuous control torques for the Lagrangian systems. Such an approximation

method can be found in [83, 34], where traditional stabilization of a single agent is addressed.

While addressing the time-varying optimization of multi-agent systems is more complicated

and the theoretical proof can not be directly implied from [83, 34]. Using a similar structure
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of the base algorithm, we then design a distributed time-varying optimization algorithm for

networked Lagrangian systems under switching graphs, which is more applicable than the

base algorithm in the terms of the types of interaction graph among the agents. However,

fixed Hessian matrices are assumed for the cost functions, and it is more restrictive compared

with the base algorithm. It is also worth mentioning that the reference systems designed

for the fixed and switching graph cases are different.

Comparison with Related Works. The works [127, 133, 132] focus on solving the

distributed time-invariant optimization problem for networked Lagrangian agents. They

follow the aforementioned distributed observer idea, which rely on the exchange of virtual

states between neighbors. The work [127] also considers the case of time-invariant cost

functions with additive uncertainties modeled by time-dependent functions, and nonzero

bounded optimum-tracking errors are achieved. In contrast, the proposed algorithms in

this part of the dissertation solves the optimization problem with time-varying cost func-

tions, which is not addressed in [133, 132]. Compared with [127], the problem considered

in this part is more general and can be solved with zero optimum-tracking errors. More

importantly, the proposed algorithms relies purely on physical states without the need for

exchange of virtual states and can be implemented in a communication unfriendly appli-

cation. In contrast, the communication of virtual states between neighbors is necessary in

[133, 132, 127]. The structure of the proposed algorithms is inspired by [115], where the

consensus and leader-following tracking of networked Lagrangian systems are addressed.

However, the problem considered in this part is more complex and challenging, and in-

cludes the consensus and leader-following tracking of networked agents as special cases. In
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[92], the distributed time-varying optimization problem is solved for networked single and

double integrators, and the method of signum function approximation is also applied to

deal with the chattering issue while implemention. However, we consider the distributed

time-varying optimization of networked Lagrangian systems, and the agents’ dynamics are

more complex. As an intermediate step in the convergence analysis, a perturbed networked

second-order system is investigated. Compared with [92], where, essentially, a disturbance-

free networked second-order systems is considered, additional analysis is needed to address

the influence on the system performance for the coexistence of the disturbances and the

signum function or its approximation.

1.5 Preliminaries

In the reminder of this chapter, we introduce notations, algebraic graph theory

and Lagrange dynamics.

1.5.1 Notations

Throughout this thesis, let R, R≥0 and R+ denote the sets of all real numbers,

all nonnegative real numbers and all positive real numbers, respectively. For a set S, |S|

denotes the cardinality of S, and for a real number x ∈ R, |x| denotes the absolute value of

x. The transpose of matrix A is denoted by AT . For a given vector x = [x1, . . . , xp]
T ∈ Rp,

define ‖x‖1 =
∑p

i=1 |xi|, ‖x‖2 =
√
|x1|2 + · · ·+ |xp|2, and ‖x‖∞ = maxi=1,...,p |xi|. For

a symmetric matrix A ∈ Rp×p, let λ1(A) ≤ · · · ≤ λp(A) denote its eigenvalues. The

Kronecker product of matrices A and B is denoted by A ⊗ B. Let diag{A1, . . . , Ap},
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where Ai ∈ Rn×m, represent the block diagonal matrix with the i-th block in the main

diagonal being Ai. For a vector x ∈ Rp, define sgn(x) = [sgn(x1), . . . , sgn(xp)]
T where

sgn(xi) = 1 if xi > 0, sgn(xi) = 0 if xi = 0, and sgn(xi) = −1 if xi < 0. Let 0m×n ∈ Rm×n

and 1m×n ∈ Rm×n denote the m × n dimensional zero and all-ones matrix, respectively,

and for simplicity, let 0m = 0m×1 and let 1m = 1m×1. In ∈ Rn×n denotes the iden-

tity matrix. For a time-varying function f : Rp × R≥0 → R, its gradient, denoted by

∇f(q, t) ∈ Rp with q ∈ Rp and t ∈ R≥0, is the partial derivative of f(q, t) with respect

to q, and its Hessian, denoted by H(q, t) ∈ Rp×p, is the partial derivative of the gradient

∇f(q, t) with respect to q. Define Lp∞ =
{
x : [0,∞)→ Rp

∣∣ supt≥0 ‖x(t)‖∞ <∞
}

and Lp2 ={
x : [0,∞)→ Rp

∣∣ √∫∞
0 xT (t)x(t)dt <∞

}
. A continuous function $ : [0, a) → [0,∞) is

said to belong to class K if it is strictly increasing and $(0) = 0. It is said to belong to class

K∞ if a =∞ and $(r)→∞ as r →∞. A continuous function ρ : [0, a)× [0,∞)→ [0,∞)

is said to belong to class KL if, for each fixed s, the mapping ρ(r, s) belongs to class K with

respect to r and, for each fixed r, the mapping ρ(r, s) is decreasing with respect to s and

ρ(r, s)→ 0 as s→∞.

1.5.2 Graph Theory

For a multi-agent system consisting of N agents, the interaction topology can be

modeled by an undirected graph G = {V, E}, where V = {1, . . . , N} and E ⊆ V × V denote

the node set and edge set, respectively. An edge denoted by (i, j) ∈ E , means that agent i

and j can obtain information from each other. In an undirected graph, the edges (i, j) and

(j, i) are equivalent. It is assumed that (i, i) /∈ E . The neighbor set of node i is denoted by

Ni = {j ∈ V | (j, i) ∈ E}. The adjacency matrix A = [aij ] ∈ RN×N of the graph G is defined
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such that aij = 1 if (j, i) ∈ E and aij = 0 otherwise. For an undirected graph, aij = aji. The

Laplacian matrix L = [Lij ] ∈ RN×N associated with the adjacency matrix A is defined as

Lii =
∑

j∈Ni aij and for i 6= j, Lij = −aij . By arbitrarily assigning an orientation for every

edge in G, let B = [Bij ] ∈ RN×|E| denote the incidence matrix associated with graph G,

where Bij = −1 if edge ej leaves node i, Bij = 1 if it enters node i, and Bij = 0 otherwise.

An undirected path between node i1 and ik is a sequence of edges of the form

(i1, i2), (i2, i3), . . . , (ik−1, ik), where ik ∈ V. A connected graph means that there exists an

undirected path between any pair of nodes in V.

1.5.3 Lagrange Dynamics

We consider N Lagrangian systems, and the interaction topology among these

agents is characterized as the graph G. The equations of motion of the i-th Lagrangian

system can be described by [105]

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi (1.1)

where qi ∈ Rp is the generalized position (or configuration), Mi(qi) ∈ Rp×p is the inertia

matrix, Ci(qi, q̇i) ∈ Rp×p is the Coriolis and centrifugal matrix, gi(qi) ∈ Rp is the gravi-

tational torque, and τi ∈ Rp is the exerted control torque. Three well-known properties

associated with the dynamics (1.1) are listed as follows [105, 46].

Property 1 The inertial matrix Mi(qi) is symmetric and uniformly positive definite, and

there exist positive constants kC̄ and kḡ such that ‖Ci(qi, q̇i)‖2 ≤ kC̄ ‖q̇i‖2 and ‖gi(qi)‖2 ≤ kḡ,

∀i ∈ V.
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Property 2 The Coriolis and centrifugal matrix Ci(qi, q̇i) can be suitably chosen such that

the matrix Ṁi(qi)− 2Ci(qi, q̇i) is skew-symmetric.

Property 3 The dynamics (1.1) depend linearly on an unknown constant parameter vector

ϑi ∈ Rm, that is, for any x, y ∈ Rp, it holds that

Mi(qi)x+ Ci(qi, q̇i)y + gi(qi) = Yi(qi, q̇i, y, x)ϑi, (1.2)

where Yi(qi, q̇i, y, x) is the regressor matrix.
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Chapter 2

Sampled-data Containment

Control for Double-Integrator

Agents with Dynamic Leaders with

Nonzero Inputs

2.1 Problem Statement

Consider a network of n agents whose interactions are represented by the directed

graph G. Each agent i has double-integrator dynamics given by

ṙi(t) = vi(t), v̇i(t) = ui(t), i = 1, . . . , n,

where ri(t) ∈ Rp and vi(t) ∈ Rp denote the position and velocity of agent i at time t,

respectively, and ui(t) is the corresponding control input. In this part, we consider a

19



sampled-data setting where the agents have continuous-time dynamics while the control

inputs are based on zero-order hold and the interactions with neighbors are made at discrete

sampling times. Then the system can be discretized as

ri[k + 1] = ri[k] + Tvi[k] +
T 2

2
ui[k]

vi[k + 1] = vi[k] + Tui[k],

(2.1)

where T is the sampling period, k is the discrete-time index, and ri[k] ∈ Rp, vi[k] ∈ Rp and

ui[k] ∈ Rp represent the position, velocity, and control input of the ith agent at t = kT ,

respectively.

We adopt the definitions of the leaders and the followers used in [8]. That is, an

agent is called a leader if and only if it has no neighbor, and otherwise it is called a follower.

Without loss of generality, let F = {1, . . . ,m} and L = {m+ 1, . . . , n} denote the follower

set and the leader set, respectively. Therefore, the row-stochastic matrix D associated with

the directed graph G can be written as

D =

 D1 D2

0(n−m)×m I(n−m)×(n−m)


where D1 ∈ Rm×m and D2 ∈ Rm×(n−m). We assume that G satisfies the following assump-

tion.

Assumption 1 For each of the followers, there is at least one leader that has a directed

path to the follower.

Lemma 1 [70] Under Assumption 1, the matrix D1 has all the eigenvalues within the unit

circle, and each entry of (Im − D1)−1D2 is nonnegative, and each row of (Im − D1)−1D2

has a sum equal to 1. �
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Definition 2 Let C be a set in a real vector space S ⊆ Rp. The set is convex if, for any

x and y in C, the point (1 − α)x + αy ∈ C for any α ∈ [0, 1]. The convex hull for a set of

points X := {x1, . . . , xm} in S, denoted by Co(X ), is the minimal convex set containing all

points in X , that is, Co(X ) := {
∑m

i=1 βixi | xi ∈ X , βi ≥ 0,
∑m

i=1 βi = 1}.

In this chapter, the objective is to solve the containment control problem, that is

to design ui[k] for follower i, i ∈ F , by using its own and neighbors’ states, {rj}j∈Ni∪{i}

and {vj}j∈Ni∪{i}, such that all followers’ positions and velocities converge to the convex

hull spanned by the dynamic leaders’ positions and velocities, respectively, which are given

by Co({rl}l∈L ) and Co({vl}l∈L ), respectively.

Note that by properly designing ui[k] for leader i ∈ L , the leader will be able to

follow a certain desired trajectory. Then, the leaders are capable of guiding the followers

through a certain region safely and reach the desired location. We assume that the leaders’

inputs are pre-designed and satisfy the following condition.

Assumption 2 The inputs of the leaders are bounded, i.e., for any j ∈ L , ‖uj [k]‖2 ≤ c1,

where c1 is a positive constant.

2.2 Sampled-data Containment Control

In order to solve the multi-agent containment control problem, we consider the

following controller for follower i as

ui[k] =
∑

j∈L∪F

dij

(
vj [k]− vj [k − 1]

T
− γ1{ri[k]− rj [k]} − γ2{vi[k]− vj [k]}

)
, i ∈ F

(2.2)

21



where dij is the (i, j)the entry of the matrix D, and γ1, γ2 > 0 are constant. Essentially,

the term
vj [k]−vj [k−1]

T make use of past data to approximate the acceleration of agent j.

Therefore, each follower only uses its own and its neighbors’s current and previous velocities

as well as the current positions to update its control input, which means the algorithm (3.5)

can be implemented in reality.

Define the position and velocity containment control errors for follower i as xi[k] =∑n
j=1 dij(ri[k]− rj [k]) and yi[k] =

∑n
j=1 dij(vi[k]− vj [k]), respectively. Define the collective

position and velocity containment control error as X[k] =
(
x>1 [k], . . . , x>m[k]

)>
and Y [k] =(

y>1 [k], . . . , y>m[k]
)>

, respectively. Using (3.5) for (2.1), we have

X[k + 1] =
(
A11 ⊗ Ip

)
X[k] +

(
A12 ⊗ Ip

)
Y [k]−

(
T

2
D1 ⊗ Ip

)
Y [k − 1] +

(
T

2
D2 ⊗ Ip

)
∆[k]

Y [k + 1] =
(
A21 ⊗ Ip

)
X[k] +

(
A22 ⊗ Ip

)
Y [k]−

(
D1 ⊗ Ip

)
Y [k − 1] +

(
D2 ⊗ Ip

)
∆[k],

where

A11 =

(
1− T 2

2
γ1

)
Im +

T 2

2
γ1D1,

A12 =

(
T − T 2

2
γ2

)
Im +

(
T

2
+
T 2

2
γ2

)
D1,

A21 = −Tγ1

(
Im −D1

)
,

A22 =
(
1− Tγ2

)
Im +

(
1 + Tγ2

)
D1.

and ∆[k] = 2vL[k] − vL[k + 1] − vL[k − 1] with vL[k] =
(
v>m+1[k], . . . , v>n [k]

)>
. Define

Z[k + 1] =
(
X>[k + 1], Y >[k + 1], X>[k], Y >[k]

)>
. It then follows that

Z[k + 1] = ÃZ[k] + B̃∆[k], (2.3)
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where Ã = A⊗ Ip with

A =



A11 A12 0m×m −T
2D1

A21 A22 0m×m −D1

Im 0m×m 0m×m 0m×m

0m×m Im 0m×m 0m×m


, (2.4)

and B̃ =
[
T
2 , 1, 0, 0

]> ⊗ (D2 ⊗ Ip
)
.

The eigenvalues of Ã play an important role in determining the solution of (2.3).

Therefore, we investigate the eigenvalues of Ã in the following. We first present three useful

lemmas before moving on.

Lemma 3 (Generalized Schur’s Formula [66]) Let Mij ∈ Rn×n, i, j ∈ M, where M =

{1, . . . ,m}, and

M =


M11 · · · M1m

...
. . .

...

Mm1 · · · Mmm

 .

If Mij, i, j ∈ M pairwise commute, i.e., MijMls = MlsMij for all possible pairs of indices

i, j and l, s, then

det(M) = det

(∑
π∈Sm

sgn(π)M1π(1)M2π(2) . . .Mmπ(m)

)
,

where det(·) denotes the determinant of a matrix, π is a permutation, set Sm denotes the

set of all possible permutations of the M, and sgn(π) denotes the parity of the permutation

π. �

Lemma 4 Let P (z) be a polynomial of order three with complex coefficients in the form of

P (z) = z3 +α1z
2 +α2z+α3, where αi = pi + jqi, i = 1, . . . , 3 and j is the imaginary unit.
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The polynomial P (z) has all its zeros in the open left half of the z-complex plane if and only

if p1 > 0, p2
1p2 + p1q1q2 − p1p3 − q2

2 > 0, and det(M3) > 0 where

M3 =



p1 p3 p5 −q2 −q4

1 p2 p4 −q1 −q3

0 p1 p3 0 −q2

0 q2 q4 p1 p3

0 q1 q3 p1 p2


.

Proof: This lemma is a special case of the Theorem 3.2 in [39], and the proof is

thus omitted. �

Lemma 5 [56] The matrix M ∈ Rn×n has eigenvalues λ1, . . . , λn. Let g(x) = a0 + a1x+

· · ·+akx
k be a polynomial, and let g(M) = a0In+a1M + · · ·+akM

k. Then the eigenvalues

of g(M) are g(λ1), . . . , g(λn). �

With the above three lemmas, we can obtain the following results on the eigenval-

ues of the matrix Ã.

Lemma 6 Suppose that Assumption 1 holds. Let λi be the ith eigenvalue of D1. The

matrix Ã has all eigenvalues within the unit circle if and only if there exist positive scalars

T , γ1 and γ2 such that

2γ2

Tγ1
>

1− |λi|2

|1− λi|2
, i = 1, . . . ,m, (2.5)

and(
2γ2

T
− 1− |λi|2

|1− λi|2
γ1

)2 [
2(1− |λi|2)

|1− λi|2
− Tγ2

]
− 16(Im {λi})2γ3

2

|1− λi|4T
> 0, i = 1, . . . ,m, (2.6)

hold. In addition, such positive scalars T , γ1 and γ2 always exist.
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Proof: First, we prove that the matrix A defined in (2.4) has all eigenvalues within

the unit circle if and only if there exist positive scalars T , γ1 and γ2 such that (2.5) and

(2.6) hold. Note that the characteristic polynomial of A is given by

det(sI4m −A) = det





sIm −A11 −A12 0m×m
T
2D1

−A21 sIm −A22 0m×m D1

−Im 0m×m sIm 0m×m

0m×m −Im 0m×m sIm




= det

(
s

[
s(sIm −A11)(sIm −A22)− sA12A21

+ (sIm −A11)D1 −
1

2
D1A21

])
= det

(
s

{[
s3 −

(
2− T 2

2
γ1 − Tγ2

)
s2 +

(
1 +

T 2

2
γ1

− Tγ2

)
s

]
Im +

[(
−1− T 2

2
γ1 − Tγ2

)
s2

+

(
2− T 2

2
γ1 + Tγ2

)
s− 1

]
D1

})
,

where we have used Lemma 3 to obtain the second to the last equality because sIm −A11,

−A12, 0m×m, T2D1, −A21, sIm−A22, D1, −Im and sIm commute pairwise. Let λ1, . . . , λm

be the eigenvalues of D1. Then by Lemma 5 and the fact that the determinant of a matrix is

the product of its eigenvalues, it holds that det[g1(s)Im + g2(s)D1] =
∏m
i=1[g1(s) + g2(s)λi],

where g1 and g2 are two polynomial functions of s. Thus, it follows that

det(sI4m −A) =
m∏
i=1

(
s

{
s3 −

(
2− T 2

2
γ1 − Tγ2

)
s2 +

(
1 +

T 2

2
γ1

− Tγ2

)
s+

[(
−1− T 2

2
γ1 − Tγ2

)
s2

+

(
2− T 2

2
γ1 + Tγ2

)
s− 1

]
λi

})
.
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Thus, the roots of det(sI4m −A) = 0 either equal to zero or satisfy

s3 +

[
−2− λi + (1− λi)

(
T 2

2
γ1 + Tγ2

)]
s2

+

[
1 + 2λi + (1− λi)

(
T 2

2
γ1 − Tγ2

)]
s− λi = 0.

(2.7)

It is trivial when the roots of det(sI4m − A) = 0 are zero. Note that the matrix A has all

eigenvalues within the unit circle if and only if, for any eigenvalue of D1, the roots of (2.7)

all lie inside the unit circle. Instead of computing the roots of (2.7) directly, we apply the

bilinear transformation s = z+1
z−1 to (2.7), which yields

(1− λi)T 2γ1z
3 + 2(1− λi)Tγ2z

2 + (1− λi)(4− T 2γ1)z

+ 4(1 + λi)− 2(1− λi)Tγ2 = 0.

(2.8)

Such bilinear transformation maps the left half of the complex z-plane to the interior of

the unit circle in the s-plane, it then follows that (2.7) has all the roots within the unit

circle if and only if (2.8) has all the roots in the open left half of the complex plane. Since

Assumption 1 holds, it follows that |1 − λi| > 0 by Lemma 1. Note that both γ1 and the

sampling period T are positive. Then (2.8) is equivalent to

z3 + α1z
2 + α2z + p3 + jq3 = 0. (2.9)

where α1 = 2Tγ2
T 2γ1

, α2 = 4−T 2γ1
T 2γ1

, p3 = 4(1−|λi|2)
|1−λi|2T 2γ1

− 2Tγ2
T 2γ1

, and q3 = 8Im{λi}
|1−λi|2T 2γ1

. Denote by

P (z, λi) the left hand side of (2.9) for some given λi. Note that for a given λi, P (z, λi) is a

polynomial in the indeterminate z of degree 3. Then for a given λi, by Lemma 4, P (z, λi)

has all the zeros in the open left half of the complex plane if and only if the positive scalars

T , γ1 and γ2 satisfy

f ij > 0, j = 1, . . . , 3, i = 1, . . . ,m, (2.10)
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with f i1 = α1, f i2 = α1α2 − p3, and f i3 = (α1α2 − p3)2p3 − q2
3α

3
1. It is easy to see that

(2.5) follows from f i1 > 0 and f i2 > 0, i = 1, . . . ,m. Note that f i3 > 0 can be written as

(2.6). Thus, the matrix A has all eigenvalues within the unit circle if and only if there exist

positive scalars T , γ1 and γ2 such that (2.5) and (2.6) hold.

By the fact that µ is an eigenvalue of Ã if and only if µ is also an eigenvalue of

A, we conclude that Ã has all eigenvalues within the unit circle if and only if there exist

positive scalars T , γ1 and γ2 such that (2.5) and (2.6) hold.

In the following, we show that such positive scalars T , γ1 and γ2 always exist.

Obviously, f i1 > 0 ∀i = 1, . . . ,m. We rewrite f i2 and f i3, i = 1, . . . ,m as

f i2 =

(
8γ2

γ2
1

)
β3 −

[
4(1− |λi|2)

|1− λi|2γ1

]
β2,

f i3 = 32

{[
8(1− |λi|2)γ2

2

|1− λi|2γ5
1

]
β8 −

[
8(1− |λi|2)2γ2

|1− λi|4γ4
1

+
4γ3

2

γ5
1

+
16
(
Im {λi}

)2
γ3

2

|1− λi|4γ5
1

]
β7 +

[
4(1− |λi|2)γ2

2

|1− λi|2γ4
1

+
2(1− |λi|2)3

|1− λi|6γ3
1

]
β6 −

[
(1− |λi|2)2γ2

|1− λi|4γ3
1

]
β5

}
,

where β = 1
T . Note that f i2 and f i3 are three polynomials in the indeterminate β of degree

3 and 8, respectively. The leading coefficients (the coefficient of the term with the highest

degree) of f i2 and f i3 are ei2 := 8γ2
γ21

, and ei3 :=
256(1−|λi|2)γ22
|1−λi|2γ51

, respectively. We can see that

ei2 > 0 ∀i = 1, . . . ,m, since γ1, γ2 > 0. When Assumption 1 holds, the eigenvalues of D1 are

located inside the unit circle by Lemma 1, which implies that 1 − |λi|2 > 0 ∀i = 1, . . . ,m.

It then holds that ei3 > 0 ∀i = 1, . . . ,m. Then it follows that, for any eigenvalue of D1, and

any given positive constants γ1 and γ2,

lim
T→0+

f ij = +∞, j = 2, 3.
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Hence, given any eigenvalue of D1, and for any positive finite constants γ1 and γ2, there

always exists a positive constant T λi such that for any T < T λi , f
i
2 > 0 and f i3 > 0 hold.

Let T = mini=1,...,m T λi . When T < T , f ij , j = 1, . . . , 3, hold for any eigenvalues of D1,

which implies the existence of these three positive scalars T , γ1 and γ2 such that (2.10)

holds for any eigenvalue of D1. �

Theorem 7 Let Assumptions 1 and 4 hold. If the positive scalars T , γ1 and γ2 satisfy

(2.10) for any eigenvalue of D1, using the algorithms (3.5) for (2.1), the followers converge

to the convex hull spanned by the leaders with bounded position and velocity containment

control error, and the overall containment control error, ‖X[k]‖2 + ‖Y [k]‖2, is ultimately

bounded by 2c1c2T
√
n−m

∥∥∥B̃∥∥∥
2
/(1 − ρ), where c1 is given in Assumption 4, and positive

constant c2 and ρ ∈ [0, 1) satisfy
∥∥∥Ãj∥∥∥

2
≤ c2ρ

j, j ≥ 0.

Proof: It follows that the solution of (2.3) is

Z[k] = ÃkZ[0] +
k−1∑
i=0

Ãk−i−1B̃∆[i].

Then, it holds that

‖Z[k]‖2 ≤
∥∥∥ÃkZ[0]

∥∥∥
2

+

∥∥∥∥∥
k−1∑
i=0

Ãk−i−1B̃∆[i]

∥∥∥∥∥
2

≤
∥∥∥Ãk∥∥∥

2
‖Z[0]‖2 + 2

√
n−mTc1

∥∥∥∥∥
k−1∑
i=0

Ãk−i−1

∥∥∥∥∥
2

∥∥∥B̃∥∥∥
2
,

where we have used the fact that

‖∆[i]‖2 = ‖2vL[i]− vL[i+ 1]− vL[i− 1]‖2

≤ ‖vL[i+ 1]− vL[i]‖2 + ‖vL[i]− vL[i− 1]‖2

≤ 2
√
n−mTc1
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holds for all i if Assumption 4 holds. Since Assumption 1 holds, and by Lemma 6, if

the positive scalars T , γ1, and γ2 satisfy (2.10) for any eigenvalue of D1, the matrix Ã

has all the eigenvalues within the unit circle. Then by [67, 61], there exist two finite

positive constants c2 and ρ ∈ [0, 1) such that
∥∥∥Ãj∥∥∥

2
≤ c2ρ

j . Then, we have ‖Z[k]‖2 ≤

c2ρ
k ‖Z[0]‖2 + 2Tc1c2

√
n−m(1− ρk)

∥∥∥B̃∥∥∥
2
/(1− ρ) <∞, which implies that both the po-

sition and velocity containment error are bounded. It also follows that limk→∞ ‖Z[k]‖2 ≤

2Tc1c2
√
n−m

∥∥∥B̃∥∥∥
2
/(1−ρ), since limk→∞ ρ

k = 0. Therefore, it holds that limk→∞(‖X[k]‖2+

‖Y [k]‖2) ≤ limk→∞

√
2 ‖X[k]‖22 + 2 ‖Y [k]‖22 = limk→∞ ‖Z[k]‖2 ≤ 2Tc1c2

√
n−m

∥∥∥B̃∥∥∥
2
/(1−

ρ). This completes the proof. �

Remark 8 The ultimate overall containment control error is proportional to the sampling

period T . As T → 0, ‖X[k]‖2 + ‖Y [k]‖2 → 0, which implies that the position and velocity

containment errors for each follower approach zero eventually.

Remark 9 The discrete-time controller (3.5) is robust to bounded state disturbance. Con-

sider that ri[k + 1] = ri[k] + Tvi[k] + T 2

2 ui[k] + dri [k], vi[k + 1] = vi[k] + Tui[k] + dvi [k],

where dri [k] and dvi [k] are the position and velocity disturbances, respectively. Since (2.3)

is a linear time-invariant system, then under the state disturbances, the followers are still

capable of converging to the convex hull with bounded errors, the value of which depends

on the bounded disturbances, in addition to the sampling period and the choices of positive

scalars γ1 and γ2.

The real-world communication environment may be corrupted by noise, that is,

each agent has access to noisy state information received from its neighbors. In the present

case, each agent i receives r̂j [k] = rj [k] + nrj [k] and v̂j [k] = vj [k] + nvj [k] from its neighbor
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i, where nrj and nvj ∈ Rp are noise vectors. The entries of each noise vector are drawn

independently from some identical zero-mean distribution. Then by using noisy transmitted

position and velocity information in the control law (3.5), that is, replacing rj [k] and vj [k]

with r̂j [k] and v̂j [k], the followers are to converge to the convex hull spanned by the leaders

with bounded error in expectation. The variance of the resulting overall containment control

error is also bounded.

Remark 10 The containment control problem for double-integrator agents in a sampled-

data setting is also investigated in [72]. However, in [72], the leaders are with zero inputs,

which can be included as a special case of this chapter. Moreover, when the leaders has

nonzero inputs, the sampled-data containment algorithm proposed in [72] does not work

anymore. It is also worth noting that the analysis and controller design have been greatly

simplified under the assumption of zero inputs for the leaders.

2.2.1 Selection of the Sampling Period

The sampling period T plays an essential role in ensuring that the matrix Ã has all

its eigenvalues inside the unit circle and thus the convergence. Although it has been proven

from Lemma 6, that given a communication network G satisfying Assumption 1 and some

positive scalars γ1 and γ2, one can always find small enough sampling period T such that

(2.5) and (2.6) hold, it is still not clear about how to choose appropriate sampling period

T . We address this problem in the following.

Given any positive scalars γ1 and γ2, we can obtain the solution to (2.5) as

S1 =

{
T
∣∣ 0 < T < min

i=1,...,m

{
2|1− λi|2γ2

(1− |λi|2)γ1

}}
. (2.11)
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The inequality (2.6) can be equivalently expressed as

ai3T
3 − ai2T 2 + ai1T − ai0 < 0, (2.12)

where ai3 = (1− |λi|2)2|1−λi|2γ2
1γ2, ai2 = 2(1− |λi|2)γ1

[
(1− |λi|2)2γ1 + 2|1− λi|4γ2

2

]
, ai1 =

4|1−λi|2γ2

{[
|1− λi|4 + 4

(
Im {λi}

)2]
γ2

2 + 2(1− |λi|2)2γ1

}
and ai0 = 8(1−|λi|2)|1−λi|4γ2

2 .

The left-hand side of the inequality in (2.12), denoted by gi(T ), is a polynomial of T with

order 3. There are at most three roots for gi(T ) = 0, and then set Si2 can be obtained. Let

S2 =
⋂m
i=1 Si2. Therefore, we have the following corollary.

Proposition 11 Suppose that Assumption 1 holds. Let λi be the ith eigenvalues of D1.

The matrix Ã has all eigenvalues within the unit circle if and only if the sampling period

T ∈ S1 ∩ S2. �

Note that from Lemma 6, a small enough sampling period T always exists such that

the eigenvalues of Ã are located inside the unit circle. The following corollary gives a rough

idea on how to choose a small enough sampling period given the underlying communication

networks and positive scalars γ1 and γ2.

Corollary 12 Suppose that Assumption 1 holds. Let λi be the ith eigenvalue of D1. Given

positive scalars γ1 and γ2, the matrix Ã has all eigenvalues within the unit circle if the

sampling period T ∈ (0, Ta) where

Ta = min
i=1,...,m

 2(1− |λi|2)|1− λi|2[
|1− λi|4 + 4

(
Im {λi}

)2]
γ2

2 + 2(1− |λi|2)2γ1

 .

Proof: The sets of S1 has been derived in (2.11). We focus on solve the inequality

(2.12). Note that ai3T
3 − ai2T 2 < 0 if 0 < T <

ai2
ai3

, and ai1T − ai0 < 0 if 0 < T <
ai0
ai1

. Then,
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the inequality (2.12) holds if 0 < T < min
{
ai2
ai3
,
ai0
ai1

}
. In addition, it can be verified that

ai0
ai1
< 2|1−λi|2γ2

(1−|λi|2)γ1
<

ai2
ai3

. Therefore, if 0 < T < mini=1,...,m

{
ai0
ai1

}
= Ta, (2.5) and (2.6) hold. �

Note that Lemma 6 and Proposition 11 give necessary and sufficient conditions

such that Ã has all its eigenvalues inside the unit circle, and Corollary 12 only provides a

conservative interval for the sampling period T , which is a sufficient condition.

It can be seen that the sampling period T should be small enough if the design

parameter γ1 and γ2 are chosen to be large numbers. This observation coincides with the

proof of Lemma 5. Also, note that as T → 0, the controller (2) turns into a continuous-time

controller, and it is well-known that the followers are to converge to the convex hull as long

as γ1 and γ2 are positive. However, the resulting continuous-time controller as T → 0 cannot

be implemented in practice since each agent’s input depends on its neighbors’ inputs while

the neighbors’ inputs depend on their neighbors’ inputs, which creates algebraic loops. In

contrast, the introduced control algorithm (2) uses data from neighboring agents and can

be implemented in a distributed manner in reality.

Given a graph satisfying Assumption 1, and any γ1 and γ2, to implement control

algorithm (3.5) in practice, one can calculate the value of Ta given in Corollary 11, and

select a valid sampling period T in the range (0, Ta). If the interaction topology among the

followers is undirected, all the eigenvalues of D1 are real and inside the unit circle, then a

simplified results can be obtained.

Corollary 13 Suppose that Assumption 1 holds, and the interaction topology among the

followers is undirected. Given positive scalars γ1 and γ2, the matrix Ã has all eigenvalues

within the unit circle if the sampling period T ∈
(

0,mini=1,...,m

{
2(1−λ2i )

(1−λi)2γ22+2(1−λ2i )2γ1

})
.
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2.2.2 Design of scalars γ1 and γ2

Though for any given scalars, γ1 and γ2, Corollary 12 provides a way to select a

valid sampling period T , it is also important to design the scalars, γ1 and γ2, under given

T . It is because sometimes, small enough sampling period cannot be guaranteed due to

economic constraint and energy consumption issues, and each sampling device has limits on

its sampling frequency. We provide the following results on the design of γ1 and γ2 given

any sampling period T .

Proposition 14 Suppose that Assumption 1 holds. Let λi be the ith eigenvalue of D1.

Given the sampling period T , the matrix Ã has all eigenvalues within the unit circle if the

positive scalars γ1 and γ2 are chosen such as

0 < γ1 < min
i=1,...,m

{
|1− λi|2

1− |λi|2

(
2γ2

T
−
√
φi

)}
, (2.13)

0 < γ2 < min
i=1,...,m

 2(1− |λi|2)|1− λi|2[
|1− λi|4 + 4 (Im {λi})2

]
T

 , (2.14)

where φi =
16(Im{λi})

2
γ32

|1−λi|2T [2(1−|λi|2)−|1−λi|2Tγ2]
, i = 1, . . . ,m.

Proof: By (2.6), it is easy to see that

γ2 <
2(1− |λi|2)

|1− λi|2T
, i = 1, . . . ,m. (2.15)

Note that (2.6) is equivalent to(
2γ2

T
− 1− |λi|2

|1− λi|2
γ1

)2

− φi < 0, i = 1, . . . ,m, (2.16)

where φi is given in the statement. The left hand side of (2.16) has two zeros, i.e.,

γ11,i, and γ12,i =
|1− λi|2

1− |λi|2

(
2γ2

T
±
√
φi

)
.
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Then the solution to (2.16) is γ1 > maxi=1,...,m {γ11,i} or γ1 < mini=1,...,m {γ12,i}. Note that

γ1 > maxi=1,...,m {γ11,i} contradicts (2.5). Hence, we have (2.13). Since γ1 > 0, and in order

to ensure such choice of γ1 exist, it requires that γ12,i > 0 ∀i = 1, . . . ,m, which yields that

γ2 < mini=1,...,m

{
2(1−|λi|2)|1−λi|2[

|1−λi|4+4(Im{λi})
2
]
T

}
. Combining (2.15), we have (2.14). Therefore, if

γ1 and γ2 are selected to respectively satisfy (2.13) and (2.14), (2.5) and (2.6) hold, which

implies that all the eigenvalues of matrix Ã are inside the unit circle. �

It can be seen that the two design parameters γ1 and γ2 should be small if the

sampling period T is chosen to be a large number.

In practice, given the graph G satisfying Assumption 1 and the sampling period T ,

one can first choose γ2 satisfying (2.14), and then choose γ1 satisfying (2.13) given selected

γ2. Such choice of γ1 and γ2 ensures that (2.5) and (2.6) hold. If the interaction topology

among followers is undirected, a simplified result can be obtained.

Corollary 15 Suppose that Assumption 1 holds, and the interaction topology among the

followers is undirected. Given the sampling period T , the matrix Ã has all eigenvalues

within the unit circle if the positive scalars γ1 and γ2 are respectively chosen such as 0 <

γ1 < mini=1,...,m

{
2(1−λi)2γ2

(1−λ2i )T

}
and 0 < γ2 < mini=1,...,m

{
2(1−λ2i )

(1−λi)2T

}
. �

Remark 16 The design of the sampling period T and parameters γ1 and γ2 depends on the

eigenvalues of the matrix D1, which is related to the underlying interaction graph. In real

applications, one can always let the weights dij, j ∈ Ni ∪ {i} for agent i to be 1
|Ni|+1 , which

is valid since it ensures that D is a row-stochastic matrix. The number of possible values

of D such that the underlying interaction graph satisfies Assumption 1, is finite since there

are a finite number of agents. Note that the choice of the sampling period T and the design
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parameters γ1 and γ2 depends on each other. If the parameters γ1 and γ2 are fixed, for

each possible D, one can select T by Corollary 12. Among these values of T , the smallest

one can be selected for implementation in practice. If the sampling period T is fixed, valid

scalars γ1 and γ2 can be selected in a similar manner.

2.2.3 Two Special Cases

Discrete-time Single-integrator Agents

When the agents have single-integrator dynamics given by

ri[k + 1] = ri[k] + Tui[k], (2.17)

we implement the following control law for follower i ∈ F

ui[k] =
∑

j∈L∪F

dij

(
rj [k]− rj [k − 1]

T
− γ{ri[k]− rj [k]}

)
, (2.18)

where γ is positive constant to be determined. Define the containment control error for

follower i as xi[k] =
∑n

j=1 dij(ri[k]− rj [k]). Define the collective containment control error

vector as X[k] =
(
x>1 [k], . . . , x>m[k]

)>
. Let W [k] =

(
X>[k + 1], X>[k]

)>
. Then we have

W [k + 1] = Ã1W [k] + B̃1∆L[k], (2.19)

where Ã1 = A1 ⊗ Ip and B̃1 =

 D2 ⊗ Ip

0mp×(n−m)p

 with

A1 =

 (1− Tγ)Im + (1 + Tγ)D1 −D1

Im 0m×m

 . (2.20)
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Lemma 17 Suppose that Assumption 1 holds. Let λi be the ith eigenvalue of D1. Then

θi > 0 holds, where θi =
2|1−λi|2[2(1−Re{λ}i)−|1−λi|2]

|1−λi|4+4[Im{λi}]
2 . If the positive scalars T and γ satisfy

Tγ < min

{
1, min
i=1,...,m

θi

}
, (2.21)

then the matrix Ã1 has all eigenvalues within the unit circle.

Proof: The proof can be derived by following a similar analysis of Lemma 3.3 in

[10] and the properties of the Kronecker product, thus is omitted here. �

Corollary 18 Suppose that Assumptions 1 holds and the leaders’ inputs are bounded, i.e.,

‖ui[k]‖2 ≤ c3, i ∈ L , where c3 is a positive constant. If the positive scalars T and γ satisfy

(2.21), using the algorithms (2.18) for (2.17), the followers converge to the convex hull

spanned by the leaders with bounded position containment error, and the ultimate bound

of overall containment control error, ‖X[k]‖2, is c3c4T
√

2(n−m)
∥∥∥B̃1

∥∥∥
2
/(1 − ρ1), where

positive constant c4 and ρ1 ∈ [0, 1) satisfy
∥∥∥Ãj1∥∥∥

2
≤ c4ρ

j
1, j ≥ 0.

Proof: By following a similar analysis in the proof of Theorem 7, it can be

obtained that limk→∞ ‖W [k]‖2 ≤ 2c3c4T
√
n−m

∥∥∥B̃1

∥∥∥
2
/(1 − ρ1). Therefore, it holds

that limk→∞ ‖X[k]‖2 = 1
2 limk→∞

√
(‖X[k]‖2 + ‖X[k − 1]‖2)2 ≤

√
2

2 limk→∞ ‖W [k]‖2 ≤

c3c4T
√

2(n−m)
∥∥∥B̃1

∥∥∥
2
/(1− ρ1). �

Discrete-time Double-integrator Agents

When the agent i’s model is descretized as

ri[k + 1] = ri[k] + Tvi[k]

vi[k + 1] = vi[k] + Tui[k]

(2.22)
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where ri[k] ∈ Rp, vi[k] ∈ Rp and ui[k] ∈ Rp represent the position, velocity, and control

input of the ith agent at t = kT , respectively.

Use the same definitions of xi[k] and yi[k] respectively for the position and velocity

containment errors of the follower i, andX[k] and Y [k] respectively for the collective position

and velocity containment control errors. Using (3.5) for (2.22) for each follower, and defining

Z[k + 1] =
(
X>[k + 1], Y >[k + 1], X>[k], Y >[k]

)>
, we then have the same form of system

as

Z[k + 1] = Ã2Z[k] + B̃2∆[k],

with Ã2 = A2 ⊗ Ip and B̃2 = [1, 1, 0, 0]> ⊗
(
D2 ⊗ Ip

)
, where

A2 =



Im TIm 0m×m 0m×m

Ā21 Ā22 0m×m −D1

Im 0m×m 0m×m 0m×m

0m×m Im 0m×m 0m×m


with Ā21 = −Tγ1(Im −D1) and Ā22 = (1− Tγ2)Im + (1 + Tγ2)D1.

Lemma 19 Suppose that Assumption 1 holds. Let λi be the ith eigenvalue of D1. The

matrix Ã2 has all eigenvalues within the unit circle if and only if there exist positive scalars

T , γ1 and γ2 such that

2γ2

γ1
>

(
1− |λi|2

|1− λi|2
+ 1

)
T, i = 1, . . . ,m, (2.23)

and [
1

Tγ1
− 1− |λi|2

|1− λi|2(2γ2 − Tγ1)

]2 [
4(1− |λi|2)

|1− λi|2(2Tγ2 − T 2γ1)

− 1

]
− 16(Im {λi})2

|1− λi|4T 2γ2
1

> 0, i = 1, . . . ,m. (2.24)
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In addition, such scalars T , γ1 and γ2 always exist.

Proof: The proof can be obtained by following a similar analysis procedure in the

proof of Lemma 6, thus is omitted here. �

Corollary 20 Suppose that Assumptions 1 and 4 hold. If the positive scalars T , γ1 and γ2

satisfy (2.23) and (2.24), the followers converge to the convex hull spanned by the leaders

with bounded position and velocity containment error, and the ultimate bound of overall

containment control error, ‖X[k]‖2 + ‖Y [k]‖2, is 2c1c5T
√
n−m

∥∥∥B̃2

∥∥∥
2
/(1− ρ2), where c1

is given in Assumption 4, and positive constants c5 and ρ2 ∈ [0, 1) satisfy
∥∥∥Ãj2∥∥∥

2
≤ c5ρ

j
2,

j ≥ 0. �

Remark 21 The containment control problem for agents with the same model as (2.22)

has been addressed in [2]. However, in [2], the leaders’ dynamics are assumed to be the

same as the followers with zero control inputs. The proposed algorithm (3.5) can deal with

the case where the leaders have bounded nonzero inputs, which is more general, and the

corresponding result takes into account the more realistic sampled-data setting.

2.3 An Illustrative Example

We provide a simulation to illustrate the results obtained in previous section.

Consider a group of ten agents, which are labeled as 1, . . . , 10. Denote by F =

{1, . . . , 6} and L = {7, . . . , 10} the sets of followers and leaders, respectively. The directed

communication network is shown in Fig. 4.1. Let (rxi [k], ryi [k]) and (vxi [k], vyi [k]) be the

coordinates of agent i’s position and velocity at time k. The input of the ith leaders is
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chosen to be ui[k] = − 1
(i−6)2

sin( 1
i−6k) + 0.01(i − 6)2e−0.1(i−6)k, i ∈ L . Set the sampling

period T to 0.1, and choose γ1 = 0.9 and γ2 = 1.25. The control law (3.5) is implemented for

all the followers with dynamics (2.1). The resulting trajectories of positions and velocities

are shown in Fig. 2.2. It can be seen that both positions and velocities of all the followers

converge to the convex hull spanned by those of the four leaders.

1 2

3

45

6

7 8

910

Figure 2.1: Directed network topology for a group of ten agents, which are labeled from
1 to 10. There are four leaders, which are denoted by grey-filled circles. The rest are the
followers.
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(a) Position.

(b) Velocity.

Figure 2.2: Position and velocity trajectories of the agents with dynamics (2.1) under a
directed network topology presented in Fig. 4.1. The followers’ input is implemented with
(3.5). The solid lines denote the trajectories of leaders’ positions and velocities, and the
dashed lines denote the followers’ positions and velocities. The black circles and red squares
denote the positions (velocities) of the leaders and followers, respectively. The areas formed
by four connecting black lines are convex hull spanned by the leaders. Two snapshots at
t = 15s and t = 25s show that all the followers’ positions and velocities are in the convex
hull spanned by the leaders.
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Chapter 3

Robust Distributed Average

Tracking for Double-integrator

Agents Without Velocity

Measurements Under

Event-triggered Communication

3.1 Problem Statement

In this chapter, we consider N physical agents, and the interaction topology among

these agents is characterized as the undirected graph G = (V, E). Unless otherwise stated,

throughout this chapter, we assume a time-invariant graph. Each agent i is modeled by
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double-integrator dynamics

ẋi(t) = vi(t), v̇i(t) = ui(t), i ∈ V, (3.1)

where xi(t) ∈ Rp and vi(t) ∈ Rp are the ith agent’s position and velocity, respectively, and

ui is its control input.

Each agent has a time-varying reference signal xri ∈ Rp, i ∈ V satisfying

ẋri (t) = vri (t), v̇ri (t) = uri (t), i ∈ V, (3.2)

where vri (t) ∈ Rp and uri (t) ∈ Rp are the velocity and acceleration of the ith agent’s reference

signal, respectively. We assume that the reference signals are generated internally by the

agents, and that each agent has access to its own reference signal, and the velocity and

acceleration of the reference signal. In this chapter, we make the following assumption on

the reference signals, and the velocities and accelerations of the reference signals.

Assumption 3 For any two connected agents, the local difference in reference signals xri (t),

their velocities vri (t) and their accelerations ari (t) are bounded, i.e., supt∈[0,∞)
∀(i,j)∈E

∥∥∥xri (t)− xrj(t)∥∥∥∞ ≤
x̄r, supt∈[0,∞)

∀(i,j)∈E

∥∥∥vri (t)− vrj (t)∥∥∥∞ ≤ v̄r, and supt∈[0,∞)
∀(i,j)∈E

∥∥∥uri (t)− urj(t)∥∥∥∞ ≤ ār.
In the distributed average tracking for a group of double-integrator agents, the

objective is to design controller ui for agent i ∈ V such that each agent’s position (velocity)

is capable of tracking the group average of their reference signals (their reference signals’

velocity). That is, for any i ∈ V, it is achieved that limt→∞

∥∥∥xi(t)− 1
N

∑N
j=1 x

r
j(t)
∥∥∥

2
= 0

and limt→∞

∥∥∥vi(t)− 1
N

∑N
j=1 v

r
j (t)

∥∥∥
2

= 0. In this chapter, we are particularly interested

in developing a controller for each agent without velocity measurement and in the absence

of any correct initialization. The motivation behind is that employing velocity measuring
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device is usually costly in the aspect of finance and energy. Also, the velocity measure-

ments are less accurate compared with position measurements. On the other hand, perfect

initialization is hard to achieve in reality.

Before moving onto the main results, a lemma is presented in the following.

Lemma 22 [7] For any symmetric real matrix, M , of the form M =

 D11 D12

DT
12 D22

 , it

holds that M � 0 if and only if one of the following condition hold: i) D11 � 0 and

D22 −DT
12D

−1
11 D12 � 0; ii) D22 � 0 and D11 −D12D

−1
11 D

T
12 � 0.

3.2 Distributed Average Tracking without Velocity Measure-

ments

In this section, we introduce a distributed average tracking algorithm for double-

integrator agents without using the velocity measurements and in the absence of any correct

initialization. In the rest of the chapter, we omit the argument t for brevity.

We design a filter for each agent i as

φ̇i = −κ(xi − xri )− 2κ(wi − vri ) + uri

−
N∑
j=1

aijπijsgn(xi − xj + wi − wj)

wi = φi + κ(xi − xri ), i ∈ V, (3.3)

where κ ∈ R is a positive constant to be determined, φi ∈ Rp is the internal state of the

filter, wi ∈ Rp is the output of the filter, and πij is a time-varying gain for the edge (i, j) ∈ E ,
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satisfying the following adaptation law

π̇ij = aij ‖xi − xj + wi − wj‖1 , i ∈ V (3.4)

with πij(0) > 0 if (i, j) ∈ E . In addition, each agent i needs to coordinate with its neighbor

j ∈ Ni to ensure πij(0) = πji(0). In this way, the gains πij and πji remain equal to each

other. We design the controller for agent i as

ui = −κ(xi − xri )− κ(wi − vri ) + uri

−
N∑
j=1

aijπijsgn(xi − xj + wi − wj), i ∈ V. (3.5)

Essentially, the filter is designed such that its output is capable of tracking the average of

the reference signals’ velocities, and the controller is applied to drive each agent’s position

to the average of the reference signals and velocity to the output of the filter. Note that

the designs of the filter (3.3) and the controller (3.5) for each agent i depend on only

local information and the positions and filter’s outputs from its neighbors. Therefore, it is

implementable in reality.

Remark 23 Note that there is no requirement on the initialization of each agents’ position

and velocity, as well as the internal state of the filter. Thus, the proposed algorithm (3.3)-

(3.5) is called robust distributed average tracking algorithm.

Let x =
[
xT1 , . . . , x

T
N

]T
, v =

[
vT1 , . . . , v

T
N

]T
, and w =

[
wT1 , . . . , w

T
N

]T
. Define

x̃ = (M ⊗ Ip)x, ṽ = (M ⊗ Ip)v, and w̃ = (M ⊗ Ip)w, where M = IN − 1
N 1N1TN . For brevity,
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define α =
[
αT1 , . . . , α

T
N

]T
with αi = κxri + κvri + uri . Then we have

˙̃x = ṽ

˙̃v = −κx̃− κw̃ + (M ⊗ Ip)α

− (BΠ⊗ Ip)sgn
[(
BT ⊗ Ip

)
(x̃+ w̃)

]
, (3.6)

and

˙̃w = −κx̃− 2κw̃ + κṽ + (M ⊗ Ip)α

− (BΠ⊗ Ip)sgn
[(
BT ⊗ Ip

)
(x̃+ w̃)

]
, (3.7)

where Π ∈ R|E|×|E| is a time-varying diagonal matrix, and the sth diagonal entry, denoted

by Πss, represents the weight on the sth edge. That is, if the sth edge is between agent i

and agent j, then Πss = πij .

Theorem 24 Suppose that the undirected graph G is connected, and Assumption 4 holds.

Using the algorithm (3.3)-(3.5) for (3.1), distributed average tracking is achieved asymptot-

ically if κ > 3+2
√

3
3 .

Proof: We prove this statement in two steps. In the first step, we prove that

for any i ∈ V, xi → 1
N

∑N
j=1 xj and vi → 1

N

∑N
j=1 vj as t → ∞. In the second step,

we prove that for any i ∈ V,
∑N

j=1 xj →
∑N

j=1 x
r
j and

∑N
j=1 vj →

∑N
j=1 v

r
j as t → ∞.

Combining these two steps, it can be concluded that limt→∞

∥∥∥xi − 1
N

∑N
j=1 x

r
j

∥∥∥
2

= 0 and

limt→∞

∥∥∥vi − 1
N

∑N
j=1 v

r
j

∥∥∥
2

= 0 hold for all i ∈ V. For simplicity, we denote these two steps

by consensus and sum-tracking steps, respectively.
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Define X =
[
x̃T , ṽT , w̃T

]T
. Consider a Lyapunov function candidate as

V =
1

2
XTPX +

N∑
i=1

N∑
j=1

(πij − πm)2

4
, (3.8)

where

P =


µINp 0Np×Np INp

0Np×Np INp −INp

INp −INp 2INp

 , (3.9)

and πm is a positive constant to be determined. By Lemma 22 and the properties of the

Kronecker product, it holds that P is positive definite if and only if µ > 1. Therefore, V is

positive definite.

Taking the derivative of V along (3.6)-(3.7) yields

V̇ = −XTQX + (x̃+ w̃)T (M ⊗ Ip)α

− 1

2

N∑
i=1

N∑
j=1

aijπij ‖xi − xj + wi − wj‖1

+
1

2

N∑
i=1

N∑
j=1

πij π̇ij −
πm
2

N∑
i=1

N∑
j=1

π̇ij

where

Q =


κINp −µ+κ

2 INp
3κ
2 INp

−µ+κ
2 INp κINp −1+3κ

2 INp

3κ
2 INp −1+3κ

2 INp 3κINp

 . (3.10)

Note that ‖αi − αj‖∞ ≤ ᾱ by Assumption 4, and let Nmax = maxi∈V |Ni|. Then it holds

that

‖(M ⊗ Ip)α‖∞ ≤
1

N
max
i∈V


N∑

j=1,j 6=i
‖αi − αj‖∞


≤ N − 1

2N

N∑
i=1

∑
j∈Ni

‖αi − αj‖∞ ≤
ᾱNmax(N − 1)

2
, (3.11)
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where ᾱ = κx̄r + κv̄r + ār. For brevity, define

β =
ᾱNmax(N − 1)

2
. (3.12)

Note that

‖x̃+ w̃‖1 ≤
1

N

N∑
i=1

∑
j=1,j 6=i

‖xi − xj + wi − wj‖1

≤ max
i∈V


N∑

j=1,j 6=i
‖xi − xj + wi − wj‖1


≤ N − 1

2

N∑
i=1

N∑
j=1

aij ‖xi − xj + wi − wj‖1 .

It then holds that (x̃+w̃)T (M⊗Ip)α ≤ (N−1)β
2

∑N
i=1

∑N
j=1 aij ‖xi − xj + wi − wj‖1. Then, it

follows that V̇ ≤ −XTQX− πm−(N−1)β
2

∑N
i=1

∑N
j=1 aij ‖xi − xj + wi − wj‖1, where the fact

that (x̃+w̃)T (BΠ⊗Ip)sgn[(BT ⊗Ip)(x̃+w̃)] = 1
2

∑N
i=1

∑N
j=1 aijπij ‖(xi − xj) + (wi − wj)‖1

is used. Selecting an πm such that πm ≥ β, one has

V̇ ≤ −XTQX := −W [X].

By Lemma 22, the matrix Q is positive definite if and only if κ > µ + 1
3(µ−1) = f(µ),

which implies that Q is positive definite if κ > minµ>1 f(µ) = 3+2
√

3
3 . Thus V̇ ≤ 0,

which implies that V is nonincreasing. Then it follows that X and πij are bounded. Note

that V is bounded from below by zero. Thus, limt→∞ V exists and is finite. Note that∫ t
0 W [X(τ)]dτ ≤ −

∫ t
0 V̇ [X(τ), {πij(τ)}i,j∈V ]dτ = V [X(0), {πij(0)}i,j∈V ] − V [X, {πij}i,j∈V ].

Therefore, limt→∞
∫ t

0 W [X(τ)]dτ exists and is finite. It follows from (3.6), (3.7) and As-

sumption 4 that ˙̃x, ˙̃v and ˙̃w are bounded. Hence, x̃, ṽ, and w̃ are uniformly continuous. Con-

sequently, W [X] is uniformly continuous by the definition of W [X] and X. By Barbalat’s
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Lemma, it can be concluded that W [X]→ 0 as t→∞, which implies that limt→∞X = 0np.

This completes the consensus step.

Second, define Sx =
∑N

j=1 xj −
∑N

j=1 x
r
j , Sv =

∑N
j=1 vj −

∑N
j=1 v

r
j , and Sw =

∑N
j=1wj −

∑N
j=1 v

r
j . Then we have that Ṡ =




0 1 0

−κ 0 −κ

−κ κ −2κ

⊗ Ip
S = (A ⊗ Ip)S,

where S =
[
STx , S

T
v , S

T
w

]T
. The characteristic polynomial of A is pA(s) = s3 + 2κs2 + (κ+

κ2)s + κ2. According to the Routh-Hurwitz stability criterion, it is easy to verify that if

κ > 0, all the zeros of pA(s) = 0 have negative real parts, which means that A is Hurwitz.

Note that κ > 3+2
√

3
3 > 0. Then the matrix A is Hurwitz, which indicates limt→∞ S = 03p.

This completes the sum-tracking step. �

Note that the dynamics (3.6) is discontinuous due to the introduction of the signum

function in the controller and filter design (3.3)-(3.5). Then, the solutions should be under-

stood in terms of differential inclusion by using non-smooth analysis [37, 26]. However, since

the signum function is measurable and locally essentially bounded, the Filippov solutions for

the closed-loop dynamics always exist. The Lyapunov function used in the proof is contin-

uously differentiable. Then its set-valued Lie derivative is a singleton at the discontinuous

points. Therefore, the proof is valid as in the case without discontinuities.

Remark 25 Note that the algorithm (3.3)-(3.5) has some connection with the first algo-

rithm in [50]. In the first algorithm in [50], there are multiple design parameters, the design

of which depends on the largest and smallest nonzero eigenvalues of the Laplacian matrix,

the bounds on the reference signals, and the total number of the agents in the network.

Also, the first algorithm in [50] is sensitive to parameter selection as a certain parameter is
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required to be exactly equal to a certain value. However, the algorithm (3.3)-(3.5) overcomes

these limitations in [50], and solve the distributed average tracking problem if κ is greater

than a constant. It is easy to select a suitable value for κ and implement the algorithm.

It is also worth noting that the structures of the controller (3.5) and the filter (3.3) are

different from the ones in [50]. Such newly designed structures and their independence of

global information lay a solid base for the development of event-triggered approaches.

Remark 26 The algorithm (3.3)-(3.5) is implementable since κ is constant, which can

be chosen off-line before running the algorithm and embedded to each agent. Once the

algorithm starts to run, the agents communicate with only local neighbors and there is no

need to have access to any global information. If each agent chooses its own κi(0) off-line

such that κi(0) > 3+2
√

3
3 , then each agent can run the max consensus algorithm in [51]:

κi(k + 1) = maxj∈Ni∪{i} {κj(k)}, where k is discrete time instance, to drive each agent to

reach consensus on maxj∈V κj(0). It is proved that the max consensus algorithm converges

in finite time. To determine when to stop the max consensus algorithm, each agent needs

to know the diameter of the graph. However, one can always be more conservative to run

the max consensus algorithm long enough, which guarantees the convergence.

Remark 27 Theorem 38 shows that the agents are capable of achieving distributed average

tracking under any fixed connected undirected communication network. It is actually able to

extend to the case of arbitrarily switching connected communication networks with positive

dwelling time. The function defined in (3.8) can be used as a common Lyapunov function

during the proof process.
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3.3 Event-triggered Distributed Average Tracking without

Velocity Measurements

The algorithm (3.3)-(3.5) in Section 3.2 requires each agent i to continuously ex-

change the position, xi, and the output of the filter, wi, with its neighbors. However,

continuous communication may not be practical due to the constrained bandwidth of the

communication network in reality. To this end, we investigate the event-triggered dis-

tributed average tracking, which removes the requirement of continuous communication. It

is worth mentioning that no velocity measurements and no initialization requirements are

needed as well.

It is noted that there are several practical limitations for the event-triggered algo-

rithm in [45]. First, due to the nature of the adaptation law, the adaptive gains can only

increase. It is normally the case that there exist measurement/communication noise and/or

persistent disturbances in practical systems. In such case, perfect consensus cannot be

achieved, and consequently, the adaptive gains and the control inputs will grow unbounded,

which would affect the convergence and the success of the event-triggered scheme. Second,

implementing the algorithm in [45] requires each agent to maintain an additional internal

dynamics to ensure the exclusion of Zeno behavior. Such additional dynamics may cost

extra computational power and storage space. Finally, the use of the signum function in

the algorithm design will cause chattering phenomenon in real applications. To overcome

these limitations, we propose a novel event-triggered distributed average tracking algorithm

without using velocity measurements and requiring correct initialization.
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We propose the following distributed average tracking algorithm with the filter

φ̇i = −κ(xi − xri )− 2κ(wi − vri ) + uri

−
N∑
j=1

aijπijh(x̂i − x̂j + ŵi − ŵj , t)

wi = φi + κ(xi − xri ), i ∈ V, (3.13)

and the controller

ui = −κ(xi − xri )− κ(wi − vri ) + uri

−
N∑
j=1

aijπijh(x̂i − x̂j + ŵi − ŵj , t), i ∈ V, (3.14)

and πij is governed by the following adaptation law

π̇ij = aij
[
−ρijπij +Ri +

(
x̂i − x̂j + ŵi − ŵj

)T
× h
(
x̂i − x̂j + ŵi − ŵj , t

)]
, i ∈ V, (3.15)

where x̂j(t) = xj(t
j
kj

) and ŵj(t) = wj(t
j
kj

) t ∈ [tjkj , t
j
kj+1), denote the last broadcast position

and filter output of agent j, respectively, and tjkj = max
{
tjk
∣∣ tjk ≤ t} is the latest triggering

time instant of agent j, ρij and Ri are positive constants to be determined, and h : Rp ×

R≥0 → Rp is a nonlinear function [34] defined as

h(z, t) =
z

‖z‖2 + ηe−ct
,

where η and c are positive constants. The boundary layer ηe−ct is time varying, and as

t→∞, the continuous function h(z, t) approaches the discontinuous function sgn(z).

For each agent i ∈ V, define

exi = x̂i − xi, ewi = ŵi − wi, (3.16)
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and the triggering time instant is determined by ti1 = 0 and

tik+1 = min
{
t
∣∣ fi(t, xi, wi, {x̂j , ŵj}j∈Ni∪{i})> 0

}
, (3.17)

where fi
(
t, xi, wi, {x̂j , ŵj}j∈Ni∪{i}

)
is agent i’s triggering function, which is given by

fi
(
t, xi, wi, {x̂j , ŵj}j∈Ni∪{i}

)
=
∣∣∣‖exi + ewi‖1Ri + (exi + ewi)

T ζ̂i

∣∣∣−εie−ϕit, (3.18)

where ζ̂i =
∑N

j=1 aijπijh(x̂i − x̂j + ŵi − ŵj , t), and Ri, εi and ϕi are positive constants to

be determined. Note that the triggering function in (3.18) takes values in R and depends

on time t, its current position xi and current filter’s output wi, and its own and neighbors’

last broadcast positions {x̂j}j∈Ni∪{i} and filter’s outputs {ŵj}j∈Ni∪{i}. For agent i, at

the triggering time instant, it updates its filter’s input and controller by using its current

position and filter’s output, and broadcasts its current position and filter’s output to its

neighbors. In the meantime, exi and ewi are reset to zero. When an event is triggered at

its neighboring agent j, it receives newly broadcast position and filter’s output, and update

its filter’s input and controller immediately.

Theorem 28 Suppose that the undirected graph G is connected, and Assumption 4 holds.

Apply the algorithm (3.13)-(3.15) to (3.1) with κ > 3+2
√

3
3 , and the triggering time instant

is determined by (3.17) with the triggering function defined in (3.18), where ρij >
λmin(Q)
λmax(P ) ,

εi > 0, ϕi > 0, η > 0, c > 0, and the matrices P and Q are given in (3.9) and (3.10) with

µ = 3+
√

3
3 , respectively. Then,

(i) if β ≤ Ri < βmaxj∈Ni{1, ρij
√
p(N − 1)}, distributed average tracking is achieved with

bounded error;
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(ii) if Ri ≥ βmaxj∈Ni{1, ρij
√
p(N −1)}, distributed average tracking is achieved with zero

error.

In addition, the triggering law (3.17) excludes Zeno behavior while running the algorithm

(3.13)-(3.15)

Proof: We first prove statement (i). The proof follows the same two steps

described in that of Theorem 38. Use the same definitions of x̃, ṽ and w̃ as in Section 3.2.

For notational simplicity, let χ = x̃ + w̃ and χ̂ = (M ⊗ Ip)(x̂ + ŵ) with χi = x̃i + w̃i =

xi − 1
N

∑N
j=1 xj + wi − 1

N

∑N
j=1wj and χ̂i = x̂i − 1

N

∑N
j=1 x̂j + ŵi − 1

N

∑N
j=1 ŵj . Then we

have

˙̃x = ṽ

˙̃v = −κx̃− κw̃ + (M ⊗ Ip)α

−


∑N

j=1 a1jπ1jh(χ̂1 − χ̂j , t)

...∑N
j=1 aNjπNjh(χ̂N − χ̂j , t)

 (3.19)

Consider the function V defined in (3.8). Taking the derivative of V along (3.19) yields

V̇ = −XTQX + χT (M ⊗ Ip)α

− χT


∑N

j=1 a1jπ1jh(χ̂1 − χ̂j , t)

...∑N
j=1 aNjπNjh(χ̂N − χ̂j , t)


+

1

2

N∑
i=1

N∑
j=1

π̇ij(πij − πm).
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Then by using the facts that πij = πji and h(−z, t) = −h(z, t), it holds that

V̇ ≤ −XTQX − (ex + ew)T (M ⊗ Ip)α

+
N∑
i=1

N∑
j=1

aij β̄

2
‖χ̂i − χ̂j‖1

+

N∑
i=1

(exi + ewi)
T

N∑
j=1

aijπijh(x̂i − x̂j + ŵi − ŵj , t)

+
N∑
i=1

N∑
j=1

aijρij
2

(
−πij +

Ri
ρij

)
(πij − πm)

−
N∑
i=1

N∑
j=1

aijπm
2

(χ̂i − χ̂j)Th(χ̂i − χ̂j , t),

where β̄ = (N − 1)β. Note that

N∑
i=1

N∑
j=1

aij

[
β̄

2
‖χ̂i − χ̂j‖1 −

πm
2

(χ̂i − χ̂j)Th(χ̂i − χ̂j , t)
]

=
N∑
i=1

N∑
j=1

aij

(
β̄

2
‖χ̂i − χ̂j‖1 −

πm
2

aij ‖χ̂i − χ̂j‖22
‖χ̂i − χ̂j‖2 + ηe−ct

)

≤
N∑
i=1

N∑
j=1

aij

(
β̄
√
p− πm
2

‖χ̂i − χ̂j‖2 +
πm
2
ηe−ct

)
,

where the fact that ‖χ̂i − χ̂j‖1 ≤
√
p ‖χ̂i − χ̂j‖2 is used. Since ab ≤ εa2

2 + b2

2ε ∀a, b ∈ R holds

for any ε > 0, it then follows that

N∑
i=1

N∑
j=1

aijρij
2

(
−πij +

Ri
ρij

)
(πij − πm)

=
N∑
i=1

N∑
j=1

aijρij
2

[
−(πij − πm)2 +

(
Ri
ρij
− πm

)
(πij − πm)

]

≤
N∑
i=1

N∑
j=1

aijρij
2

[
−1

2
(πij − πm)2 +

1

2

(
Ri
ρij
− πm

)2
]
.

54



Thus, selecting a πm such that πm ≥ β̄
√
p yields that

V̇ ≤ −XTQX +
N∑
i=1

N∑
j=1

aijρij
4

(
Ri
ρij
− πm

)2

+
πm
2

N∑
i=1

N∑
j=1

aijηe
−ct −

N∑
i=1

N∑
j=1

aijρij
4

(πij − πm)2

+
ᾱNmax(N − 1)

2

N∑
i=1

‖exi + ewi‖1

+

N∑
i=1

(exi + ewi)
T

N∑
j=1

aijπijh(x̂i − x̂j + ŵi − ŵj , t),

where we have used the Hölder’s inequality. Then implementing the triggering condition

(3.17)-(3.18) yields

V̇ ≤ −XTQX +
N∑
i=1

N∑
j=1

aijρij
4

(
Ri
ρij
− πm

)2

+
N∑
i=1

εie
−ϕit

+
πm
2

N∑
i=1

N∑
j=1

aijηe
−ct −

N∑
i=1

N∑
j=1

aijρij
4

(πij − πm)2

≤ −λQ/PV +
N∑
i=1

εie
−ϕit +

πm
2

N∑
i=1

N∑
j=1

aijηe
−ct

− 1

4

N∑
i=1

N∑
j=1

aij
(
ρij − λQ/P

)
(πij − πm)2

+
N∑
i=1

N∑
j=1

aijρij
4

(
R2i

ρij
− πm

)2

≤ −λQ/PV +
N∑
i=1

εie
−ϕit +

πm
2

N∑
i=1

N∑
j=1

aijηe
−ct

+
N∑
i=1

N∑
j=1

aijρij
4

(
Ri
ρij
− πm

)2

,

where λQ/P = λmin(Q)
λmax(P ) , and the last inequality holds because ρij > λQ/P . According to the
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Comparison Lemma in [62], it holds that

V ≤ e−λQ/P t
[
V (0) + λQ/P

N∑
i=1

N∑
j=1

aijρij
4

(
Ri
ρij
− πm

)2 ]

+ λQ/P

N∑
i=1

N∑
j=1

aijρij
4

(
Ri
ρij
− πm

)2

+ e−λQ/P t
N∑
i=1

∫ t

0

(
εie
−(ϕi−λQ/P )τ +

πm
2
|Ni|ηe−(c−λQ/P )τ

)
dτ.

Therefore, limt→∞ V = λQ/P
∑N

i=1

∑N
j=1

aijρij
4

(
Ri
ρij
− πm

)2
, which implies that

∥∥∥xi − 1
N

∑N
j=1 xj

∥∥∥
2
,∥∥∥vi − 1

N

∑N
j=1 vj

∥∥∥
2
, and

∥∥∥wi − 1
N

∑N
j=1wj

∥∥∥
2

are all bounded.

Second, define Sx, Sv and Sw as in the proof of Theorem 38. Note that
∑N

i=1

∑N
j=1 aijπijh(χ̂i−

χ̂j) = 0 holds for any i ∈ V because πij = πji and h(−z, t) = −h(z, t). As a result, by a sim-

ilar proof of Theorem 38, it follows that limt→∞
∑N

j=1 xj =
∑N

j=1 x
r
j and limt→∞

∑N
j=1 vj =∑N

j=1 v
r
j . Therefore, limt→∞

(
xi − 1

N

∑N
j=1 x

r
j

)
and limt→∞

(
vi − 1

N

∑N
j=1 v

r
j

)
are bounded.

For the proof of the statement (ii), we consider the following Lyapunov function

candidate as

V2 =
1

2
XTPX +

1

4

N∑
i=1

N∑
j=1

(
πij −

Ri
ρij

)2

.

Taking the derivative yields that

V̇2 ≤ −XTQX − (ex + ew)T (M ⊗ Ip)α

+
N∑
i=1

(exi + ewi)
T

N∑
j=1

aijπijh(x̂i − x̂j + ŵi − ŵj , t)

−
N∑
i=1

N∑
j=1

aijρij
2

(
πij −

Ri
ρij

)2

+
β

2

N∑
i=1

N∑
j=1

aij ‖χ̂i − χ̂j‖1

− 1

2

N∑
i=1

N∑
j=1

Ri
ρij
aij(χ̂i − χ̂j)Th(χ̂i − χ̂j , t).

Notice that −(ex + ew)T (M ⊗ Ip)α ≤ β ‖ex + ew‖1 Implementing the triggering condition
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(3.17)-(3.18) yields that

V̇2 ≤ −XTQX +
N∑
i=1

εie
−ϕit +

1

2

N∑
i=1

N∑
j=1

Ri
ρij
aijηe

−ct

−
N∑
i=1

N∑
j=1

aijρij
2

(
πij −

Ri
ρij

)2

≤ −λQ/PV +
N∑
i=1

εie
−ϕit +

1

2

N∑
i=1

N∑
j=1

Ri
ρij
aijηe

−ct

−
N∑
i=1

N∑
j=1

aij

(
ρij
2
−
λQ/P

4

)(
πij −

Ri
ρij

)2

≤ −λQ/PV +

N∑
i=1

εie
−ϕit +

1

2

N∑
i=1

N∑
j=1

Ri
ρij
aijηe

−ct,

where the last inequality holds by noting that ρij > λQ/P in the statement. Following the

similar line of analysis as in the proof of statement (1), we have limt→∞ V2 = 0, which

implies that xi → 1
N

∑N
j=1 xj , vi →

1
N

∑N
j=1 vj , and wi → 1

N

∑N
j=1wj , as t → ∞. Hence,

the consensus step is completed. The sum-tracking step can be completed by the same

analysis to that in the proof of statement (i). Therefore, the distributed average tracking

is achieved with zero tracking error.

Next we prove that the proposed event-triggering mechanism (3.17)-(3.18) is able

to exclude Zeno behavior. Since V (or V2) is bounded according to the analysis above, it

is concluded that ‖xi‖1, ‖wi‖1 ∀i ∈ V and |πij | ∀(i, j) ∈ E are all bounded. It then follows

that ‖ẋi‖1, ‖ẇi‖1 are bounded. Let ẇmax
i = supt∈[0,∞) ‖ẋi‖1, and ẇmax

i = supt∈[0,∞) ‖ẇi‖1.
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Note that∣∣∣‖exi + ewi‖1Ri + (exi + ewi)
T ζ̂i

∣∣∣ ≤ ‖exi + ewi‖1Ri +
∣∣∣(exi + ewi)

T ζ̂i

∣∣∣
≤ ‖exi + ewi‖1

(
Ri +

∥∥∥ζ̂i∥∥∥
∞

)
≤ ‖x̂i − xi + ŵi − wi‖1

(
Ri +

∥∥∥ζ̂i∥∥∥
∞

)
≤ (t− t∗) (ẋmax

i + ẇmax
i )

(
Ri +

∥∥∥ζ̂i∥∥∥
∞

)
,

where ζ̂i is defined in (3.18). The next event will not be triggered before
∣∣∣‖exi + ewi‖1Ri +

(exi +ewi)
T ζ̂i

∣∣∣= εie
−ϕit. Thus, a lower bound is given by τ∗ = t−t∗ that solves the equation

(t− t∗) (ẋmax
i + ẇmax

i )
(
Ri +

∥∥∥ζ̂i∥∥∥
∞

)
τ∗ = ε1e

−ϕiτ∗e−ϕit
∗
.

It is apparent that τ∗ > 0, which implies no Zeno behavior. This completes the proof. �

From the triggering condition (3.17)-(3.18) and the proof of Theorem 40, the

function εie
−φit serves as the time-varying threshold for the term

∣∣∣‖exi + ewi‖1Ri + (exi +

ewi)
T ζ̂i

∣∣∣:= F (exi + ewi). Once F (exi + ewi) reaches the threshold, the agent is triggered.

Therefore, selecting proper εi and φi allows one to affect the rate of triggering times. To

be exact, a larger value of εi and a smaller value of φi intuitively lead to a lower triggering

rate.

The matrices P and Q are accessible to agents since once κ is determined, the form

of these two matrices are fixed. Then, the eigenvalues of P and Q can be easily computed

by each agent.

Remark 29 As indicated in Theorem 40, the lower bound of the design parameter Ri de-

pends on some global information such as the total number of agents in the network and

the bounds related to the reference signals. However, the parameter is constant and can be
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determined off-line before running the algorithms. One can always be more conservative to

select a large enough number for Ri. Moreover, due to the challenging nature of the problem

studied in this chapter, it might be inevitable to have certain piece of global information to

determine the lower bound for the design parameter. This is also the case in the literature

[45, 64], even when solving a simpler problem compared to the one studied in this chapter.

In addition, to obtain a better estimate of the lower bound of the design parameter, one can

use some existing algorithms in the literature [51, 109] to estimate the global information

by interacting with local neighbors.

Remark 30 The adaptation law (3.15) is partially inspired by [128]. The difference is the

adoption of Ri in (3.15) for each agent. From Theorem 40, we can see that the value of Ri

has an effect on the tracking error. As stated in Theorem 40, distributed average tracking is

achieved with zero tracking error when Ri is sufficient larger. It is also worth noting that in

this chapter, an event-triggered communication mechanism is proposed to avoid continuous

interactions and reduce the communication cost. In addition, only position measurements

are used. These two points distinguish the present work from the one in [128].

Remark 31 The distributed average tracking problem is solved by the proposed event-

triggered algorithm, and Zeno behavior is excluded, which removes the requirement of con-

tinuous interactions among agents. Compared with the existing works on event-triggered

distributed average tracking algorithms [45, 64], the proposed one (3.13)-(3.15) contributes

in the following two aspects: i) the algorithm is able to be implemented for double-integrator

agents without using velocity measurements, which is economical and energy efficient; ii)

several practical limitations have been overcome by the newly designed triggering strategy.
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3.4 Illustrative Examples

In this section, we provide examples to illustrate the results obtained in this chap-

ter.

We consider a group of twenty physical agents (N = 20) given in (3.1), which

are labeled as 1, . . . , 20. The agents form a ring topology. In the simulation, we set uri =

Ai sin(ϑit+ϕi) in (3.2) with Ai = −0.04(0.7i+0.5)2[2(i−3.5)−2(−1)i], ϑi = 0.2(0.7i+0.5),

and ϕi = (2iπ/N)− π.

Select κ = 5 and πij(0) = 1000 for any i and j that are connected. Implement

the algorithm (3.3)-(3.5) for (3.1). The simulation results are shown in Fig. 3.1. It can

be seen that all the agents’ physical states, positions and velocities, are capable of tracking

1
20

∑20
j=1 x

r
j and 1

20

∑20
j=1 v

r
j , respectively.
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0 1 2 3 4 5 6 7 8 9 10
-100

-50

0

50

Figure 3.1: Using algorithm (3.3)-(3.5) for (3.1), twenty agents’ position and velocity tra-
jectories. The black lines denote the average of the reference signals and their velocities.
The rest are the position and velocity trajectories of these twenty agents.
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In the following, we use the algorithm (3.13)-(3.15) for (3.1) with the same set

of reference signals. The triggering time instants are determined as in (3.17) with the

triggering function defined in (3.18). For simplicity, we set Ri = 2000, εi = 1000, ρi = 5

and ϕi = 10−4 for any i = 1, . . . , 20. Let η = 10 and c = 1. The position and velocity

trajectories for those twenty agents are shown in Fig. 3.2. It can be seen that all the agents’

physical states, positions and velocities, are capable of tracking 1
20

∑20
j=1 x

r
j and 1

20

∑20
j=1 v

r
j ,

respectively. The number of triggering time instants for each agent is presented in Fig. 3.3.

In this simulation, we use a fixed-step solver to solve the system, and the fixed-step size is

10−5. In the 10 seconds simulation time, agents 1− 20 are triggered 3.69%, 3.80%, 3.84%,

3.93%, 3.91%, 4.03%, 3.99%, 4.08%, 4.02%, 3.90%, 4.09%, 3.78%, 4.02%, 3.79%, 3.85%,

3.68%, 3.49%, 3.27%, 3.34%, and 3.72% of times. Therefore, the proposed distributed

average tracking algorithm (3.13)-(3.15) avoids continuous communication.

0 1 2 3 4 5 6 7 8 9 10
-10

-5

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10
-100

-50

0

50

Figure 3.2: Using algorithm (3.13)-(3.15) for (3.1), twenty agents’ position and velocity
trajectories.
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Figure 3.3: The number of triggering time instants of the agents while using algorithm
(3.13)-(3.15) for (3.1). The black line denotes the total number of triggering time instants.
The rest are the number of triggering time instants for these twenty agents.
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Chapter 4

Distributed Time-varying

Optimization of Networked

Lagrangian Systems

4.1 Problem Statement

In the distributed time-varying optimization problem, each Lagrangian agent aims

to cooperatively track the optimal trajectory determined by the group objective function.

Let q∗(t) ∈ Rp denote the optimal trajectory, and it is defined as

q∗(t) = arg min
q(t)

{
N∑
i=1

fi[q(t), t]

}
, (4.1)

where fi[q(t), t] : Rd × R≥0 → R is the local cost function associated with agent i ∈ V. In

the rest of the chapter, it is assumed that q∗ ∈ Lp∞. This assumption is satisfied in most

applications in practice. It is assumed that fi[q(t), t] is known only to agent i. Note that
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∑N
i=1 fi[q(t), t] =

∑N
i=1 fi[qi(t), t] if qi(t) = qj(t) = q(t) for all i, j ∈ V, and hence to find

q∗(t) defined in (4.1) is equivalent to find the optimal solution

{q∗1(t), . . . , q∗N (t)} = arg min
{q1(t),...,qN (t)}

{
N∑
i=1

fi[qi(t), t]

}
,

Subject to qi(t) = qj(t) ∀i 6= j,

where q∗i (t) = q∗j (t) = q∗(t) ∀i 6= j. Therefore, in this chapter, the goal is to design

the control torques τi, i ∈ V, for the agents (1.1) such that each agent’s position qi(t) is

capable of tracking q∗i (t) = q∗(t), and {q∗1(t), . . . , q∗N (t)} minimizes the group cost function∑N
i=1 fi[qi(t), t]. That is, design τi for each agent i such that limt→∞[qi(t) − q∗(t)] = 0p,

∀i ∈ V. We make the following assumptions on the cost functions.

Assumption 4 Each cost function fi(qi, t), i ∈ V, is twice continuously differentiable both

in qi ∈ Rp and t, and strongly convex in qi and uniformly in t. That is, Hi(qi, t) is always

positive definite and there exists a positive constant m such that λj
[
Hi(qi, t)

]
≥ m ∀j ∈

{1, . . . , p}, ∀i ∈ V holds uniformly in t. In addition, each Hi(qi, t) is upper-bounded, i.e.,

‖Hi(qi, t)‖2 ≤ m̄ ∀i ∈ V.

Assumption 5 The Hessian matrices satisfy Hi(qi, t) = Hj(qj , t) ∀i, j ∈ V.

Assumption 6 For each agent i ∈ V, ∂2

∂ t2
∇fi(qi, t), ∂2

∂ q2i
∇fi(qi, t) and ∂2

∂ t∂ qi
∇fi exist.

In addition, if agent i’s position qi, i ∈ V, is bounded, then ∂
∂ t∇fi(qi, t),

∂2

∂ t2
∇fi(qi, t),

∂2

∂ q2i
∇fi(qi, t) and ∂2

∂ t∂ qi
∇fi(qi, t) are all bounded.

In Assumption 4, the uniform strong convexity of the objective functions guaran-

tees that the optimal trajectory q∗ is unique for all t ≥ 0, and it also ensures that Hi(qi, t)
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∀i ∈ V is invertible for all t. The upper-boundedness of the Hessian matrix is equivalent to

the Lipschitz continuity of the gradient ∇fi(qi, t). In Assumption 6, one sufficient condition

for the existence of ∂
∂ t∇fi(qi, t),

∂2

∂ t2
∇fi(qi, t), ∂2

∂ q2i
∇fi(qi, t) and ∂2

∂ t∂ qi
∇fi, can be that each

cost function fi(qi, t), i ∈ V, is at least three times continuously differentiable in qi and t.

Assumptions 4-6 are some similar/same assumptions that are used in prior related works

[102, 92, 57].

Lemma 32 [6] Let f(x) : Rp → R be a continuously differentiable convex function with

respect to x. The function f(x) is minimized at x∗ if and only if ∇f(x∗) = 0p.

4.2 Distributed Time-Varying Optimization of Networked La-

grangian Agents Under Fixed Graph

In this section, we assume the interaction topology of the Lagrangian agents is

modeled as a fixed graph G ∈ G .

4.2.1 The Base Algorithm

For each agent i ∈ V, construct a reference system as

v̇i = −
∑
j∈Ni

[
α(qi − qj) + β(q̇i − q̇j)

]
− γ

∑
j∈Ni

sgn
[
α(qi − qj) + β(q̇i − q̇j)

]
+ ϕi, (4.2)

where α and β are some positive constants to be determined, and ϕi is defined by

ϕi = −Ḟi(qi, t)−Hi(qi, t)∇fi(qi, t), (4.3)
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with

Fi(qi, t) = H−1
i (qi, t)

[
∂

∂ t
∇fi(qi, t) +∇fi(qi, t)

]
. (4.4)

Note that Assumptions 4 and 6 guarrantee the existence of ϕi, i ∈ V. Define

si = q̇i − vi. (4.5)

The adaptive controller for the Lagrangian system (1.1) is given by

τi = −Kisi + Yi(qi, q̇i, vi, v̇i)ϑ̂i, (4.6)

˙̂
ϑi = −ΓiY

T
i (qi, q̇i, vi, v̇i)si, (4.7)

where Ki and Γi are symmetric positive definite matrices, and ϑ̂i is the estimate of ϑi. In

the algorithm, the reference system (4.2) generate a desired reference velocity vi for each

agent i, and the adaptive controller (4.6)-(4.7) is used to drive each agent’s velocity q̇i to

track its local vi, and in the meantime, qi to track the optimal trajectory.

Remark 33 It is worth emphasizing that the algorithm (4.2)-(4.7) does not rely on ex-

change of virtual variables between neighbors. Especially, the reference system (4.2) is

driven by agents’ physical state information, i.e., qi, q̇i, qi − qj and q̇i − q̇j. Such design

excludes the usage of communication channels, and can be implemented by onboard sensors.

This feature distinguishes this algorithm from existing results on distributed optimization

of networked Lagrangian systems, e.g., [127, 133, 132], where inter-agent communication

is required. In addition, the algorithm (4.6)-(4.7) with v̇i defined in (4.2) addresses the

distributed time-varying optimization problem with zero optimum-tracking error, while the

works [133, 132] are limited to distributed time-invariant optimization, and the work [127]
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only addresses a special case of time-varying cost functions with nonzero bounded optimum-

tracking errors. It is also worth pointing out that such design results in the fact that the

reference systems and agents’ dynamics are highly coupled. The convergence analysis of

such coupled systems is quite complex and challenging. However, in the literature, when

distributed control problems are addressed for nonlinear systems, networked virtual systems

are constructed completely independent of the agents’ dynamics, which makes the analysis

much easier and more straightforward compared with our convergence analysis later.

Assumption 7 For any i, j ∈ V, there exist positive constants c1 and c2 such that ‖ϕi − ϕj‖1 ≤

c1(‖qi − qj‖1 + ‖q̇i − q̇j‖1) + c2.

Remark 34 Assumptions 4-7 can be satisfied in many situations in practice. If the cost

function are constructed as fi(qi, t) = ‖qi(t)− ri(t)‖22 where qi(t) ∈ Rp and ri(t) ∈ Rp

are agent i’s position and local reference signal, respectively, the distributed time-varying

optimization algorithms can be applied to address the distributed average tracking of net-

worked agents, which has found applications in region following formation control [13] and

coordinated path planning [108]. Note that Assumption 4 holds trivially from the above

construction of fi(qi, t). Also, the boundedness assumptions of ri, ṙi and r̈i are commonly

placed when dealing with the distributed average tracking of networked agents [50], and such

boundedness assumptions implies that Assumptions 6 and 7 hold. In addition, when the cost

functions have a slightly more general form as fi(qi, t) = ‖ρqi + gi(t)‖22, where ρ ∈ R+ and

gi(t) is a time-varying function, which is a commonly used cost function for energy mini-

mization [57, 50], Assumptions 6 and 7 are satisfied under the boundedness assumption of

gi(t), ġi(t) and g̈i(t). It is also worth pointing out that under Assumption 5, the value of the
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constants c1 and c2 in Assumption 7 depend mostly on the structure of the cost functions

and their state-independent parts.

4.2.2 Convergence Analysis

Before moving on to the convergence analysis of the distributed optimization al-

gorithm, an essential lemma is presented, which is used later.

Lemma 35 Let z =
[
zT1 , . . . , z

T
N

]
and s =

[
sT1 , . . . , s

T
N

]
where zi ∈ Rp and si ∈ Rp ∀i ∈ V.

Suppose that γ ∈ R+. It holds that

− γzT (B ⊗ Ip)sgn
[(
BT ⊗ Ip

)
(z + βs)

]
≤ −γ

∥∥(BT ⊗ Ip)z
∥∥

1
+ 2γβ

∥∥(BT ⊗ Ip)s
∥∥

1
,

where B is the incidence matrix associated with the graph G.

Proof: Define P = {1, . . . , p}, and let zi,k and si,k denote the k-th entry in vector

zi and si. It holds that

− γzT (B ⊗ Ip)sgn
[(
BT ⊗ Ip

)
(z + βs)

]
= −γ

∑
(i,j)∈E

(zi − zj)T sgn[zi − zj + β(si − sj)]

= −γ
∑

(i,j)∈E

∑
k∈P

(zi,k − zj,k)sgn[zi,k − zj,k + β(si,k − sj,k)]

= −γ
∑
k∈P

∑
(i,j)∈E

Λki,j ,

where Λki,j = (zi,k − zj,k)sgn
[
zi,k − zj,k + β(si,k − sj,k)

]
, and the equalities are obtained by

using the definition of the signum function. For any k ∈ P, define

Ek0 =
{

(i, j) ∈ E
∣∣∣ zi,k − zj,k + β(si,k − sj,k) = 0

}
.
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Note that Λki,j = 0 if (i, j) ∈ Ek0 . It then holds that

− γzT (B ⊗ Ip)sgn
[(
BT ⊗ Ip

)
(z + βs)

]
= −γ

∑
k∈P

∑
(i,j)∈E\Ek0

Λki,j .

For any (i, j) ∈ E \ Ek0 , it holds that

− γΛki,j

= −γ
(zi,k − zj,k)2 + β(zi,k − zj,k)(si,k − sj,k)

|zi,k − zj,k + β(si,k − sj,k)|

= −γ|zi,k − zj,k + β(si,k − sj,k)|

+ γβ
(si,k − sj,k)[zi,k − zj,k + β(si,k − sj,k)]

|zi,k − zj,k + β(si,k − sj,k)|

≤ −γ|zi,k − zj,k + β(si,k − sj,k)|+ γβ|si,k − sj,k|

≤ −γ
∣∣|zi,k − zj,k| − β|si,k − sj,k|∣∣+ γβ|si,k − sj,k|,

where the last inequality follows from the Triangle Inequality. For any k ∈ P, define

Ek+ =
{

(i, j) ∈ E
∣∣∣ |zi,k − zj,k| ≥ β|si,k − sj,k|},

Ek− =
{

(i, j) ∈ E
∣∣∣ |zi,k − zj,k| < β|si,k − sj,k|

}
.
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Then, it follows that

− γ
∑

(i,j)∈E\Ek0

Λki,j

≤ −γ
∑

(i,j)∈Ek+\Ek0

(
|zi,k − zj,k| − 2β|si,k − sj,k|

)

+ γ
∑

(i,j)∈Ek−

|zi,k − zj,k|

≤ −γ
∑

(i,j)∈E

|zi,k − zj,k|+ 2γβ
∑

(i,j)∈Ek+\Ek0

|si,k − sj,k|

+ γ
∑

(i,j)∈Ek0

|zi,k − zj,k|+ 2γβ
∑

(i,j)∈Ek−

|si,k − sj,k|

≤ −γ
∑

(i,j)∈E

|zi,k − zj,k|+ 2γβ
∑

(i,j)∈E

|si,k − sj,k|,

where the last inequality holds due to the definition of Ek−. Hence,

− γzT (B ⊗ Ip)sgn
[(
BT ⊗ Ip

)
(z + βs)

]
≤ −γ

∑
k∈P

∑
(i,j)∈E

(
|zi,k − zj,k| − 2β|si,k − sj,k|

)

= −γ
∑

(i,j)∈E

‖zi − zj‖1 + 2γβ
∑

(i,j)∈E

‖si − sj‖1

= −γ
∥∥(BT ⊗ Ip)z

∥∥
1

+ 2γβ
∥∥(BT ⊗ Ip)s

∥∥
1
.

This completes the proof. �

Using the definition of si in (4.5), the reference system (4.2) can be rewritten as

q̇i = vi + si (4.8)

v̇i = −
∑
j∈Ni

[
α(qi − qj) + β(vi − vj + si − sj)

]
− γ

∑
j∈Ni

sgn
[
α(qi − qj) + β(vi − vj + si − sj)

]
+ ϕi. (4.9)
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By the system reformulation, the reference system (4.2) (i.e., (4.8)-(4.9)) can be viewed

as a group of networked perturbed double-integrators with disturbances si, i ∈ V. The

following proposition shows that the system (4.8)-(4.9) is input-to-state-like stable from

the disturbances (i.e., si, i ∈ V) to the optimum-tracking errors (i.e., qi(t) − q∗(t), i ∈ V).

That is, optimum-tracking errors are bounded and convergent to zero if the disturbances

are bounded in a certain sense and convergent to zero.

Proposition 36 Consider a group of N agents, and their interaction is described by the

graph G. Each agent’s dynamics are given by (4.8)-(4.9). Suppose that Assumptions 1-7

hold. Let α and β be chosen such that α > 2k
λ2(L) and β >

3k+2
√
k[αλ2(L)+2k]+4αλ2(L)−k

4αλ2(L)−k α

with k = c1pλN (L)(N − 1)2|E|, and γ be chosen such that γ > c2(N − 1)2|E|. Then, the

following two statements hold.

1. If si ∈ Lp∞ ∩ Lp2 ∀i ∈ V, it holds that qi − q∗ ∈ Lp∞ ∀i ∈ V.

2. If si ∈ Lp∞ ∩ Lp2 and si(t) → 0p ∀i ∈ V as t → ∞, it holds that qi(t) → q∗(t) ∀i ∈ V

as t→∞.

Proof: The proof of statements is divided into two steps: the coordination step

and the optimum-tracking step. In the coordination step, it is proved that the coordination

errors, qi− 1
N

∑N
j=1 qj and vi− 1

N

∑N
j=1 vj , are bounded and convergent to zero if si ∀i ∈ V

are bounded and convergent to zero, respectively. In the optimum-tracking step, it is proved

that
∑N

j=1∇fj(qj , t) ∈ L
p
∞ if sj ∈ Lp2 ∀i ∈ V, and

∑N
j=1∇fj(qj , t)→ 0p as t→ 0 if sj ∈ Lp2

and si → 0p ∀i ∈ V. Hence, the statements follow by combining these two steps.

First, consider the coordination step. Let q =
[
qT1 , . . . , q

T
N

]T
, v =

[
vT1 , . . . , v

T
N

]T
,

s =
[
sT1 , . . . , s

T
N

]T
, and ϕ =

[
ϕT1 , . . . , ϕ

T
N

]T
. Define x = (M ⊗ Ip)q and y = (M ⊗ Ip)v,
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where M = IN − 1
N 1N1TN . Then it holds that

ẋ = y + (M ⊗ Ip)s (4.10)

ẏ = −(L⊗ Ip)(αx+ βy + βs) + (M ⊗ Ip)ϕ

− γ(B ⊗ Ip)sgn[(BT ⊗ Ip)(αx+ βy + βs)]. (4.11)

Define the function

V =
1

2

 x

y


T 

 2αβL αIN

αIN βIN

⊗ Ip

 x

y

 . (4.12)

Note that the function V is positive definite if α
β2 < 2λ2(L). Taking the derivative along

the solution of (4.10)-(4.11) yields V̇ = U1 + U2 where

U1 = −α2xT (L⊗ Ip)x− yT [(β2L− αIN )⊗ Ip]y

+ 2αβxT (L⊗ Ip)s− β2yT (L⊗ Ip)s+ αyT (M ⊗ Ip)s,

and

U2 = (αxT + βyT )(M ⊗ Ip)ϕ− γ(αxT + βyT )

× (B ⊗ Ip)sgn
[ (
BT ⊗ Ip

)
(αx+ βy + βs)

]
.

Consider the term U1. For notational simplicity, let z = αx+βy and ξ =
[
xT , yT

]T
.

Note that

xT (L⊗ Ip)s ≤ ‖x‖2 ‖L⊗ Ip‖2 ‖s‖2

≤ λN (L)
√
Np ‖x‖1 ‖s‖∞ .
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Similarly,

− yT (L⊗ Ip)s ≤ λN (L)
√
Np ‖y‖1 ‖s‖∞ ,

yT (M ⊗ Ip)s = yT s ≤ ‖y‖1 ‖s‖∞ .

Then it holds that

U1 ≤ −α2λ2(L) ‖x‖22 −
[
β2λ2(L)− α

]
‖y‖22

− β2yT (L⊗ Ip)s+ 2αβxT (L⊗ Ip)s+ αyT (M ⊗ Ip)s

≤ −XTQ1X + 2αβλN (L)
√
Np ‖x‖1 ‖s‖∞

+
[
β2λN (L)

√
Np+ α

]
‖y‖1 ‖s‖∞

≤ −XTQ1X + cM (‖x‖1 + ‖y‖1) ‖s‖∞

≤ −XTQ1X + cM
√

2Np ‖ξ‖2 ‖s‖∞ ,

whereX =
[
‖x‖2 , ‖y‖2

]T
, Q1 = diag

{
α2λ2(L), β2λ2(L)−α

}
, and cM = max

{
2αβλN (L)

√
Np, β2λN (L)

√
Np+

α
}

.

Consider the term U2. Note that

‖z‖1 =

N∑
i=1

∥∥∥∥∥∥
N∑

j=1,j 6=i

1

N
(zi − zj)

∥∥∥∥∥∥
1

≤ 1

N

N∑
i=1

N∑
j=1,j 6=i

‖zi − zj‖1

≤ max
i∈V


N∑

j=1,j 6=i
‖zi − zj‖1


≤ (N − 1)

2

N∑
i=1

∑
j∈Ni

‖zi − zj‖1

= (N − 1)
∥∥(BT ⊗ Ip

)
z
∥∥

1
,
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and it follows from Assumption 7 that

‖(M ⊗ Ip)ϕ‖∞ ≤ ‖(M ⊗ Ip)ϕ‖1

≤ (N − 1)

2

N∑
i=1

∑
j∈Ni

‖ϕi − ϕj‖1

≤ (N − 1)
[
c1

∥∥(BT ⊗ Ip
)
x
∥∥

1
+ c1

∥∥(BT ⊗ Ip
)
y
∥∥

1

+ c1

∥∥(BT ⊗ Ip
)
s
∥∥

1
+ c2|E|

]
.

Note that

∥∥(BT ⊗ Ip
)
z
∥∥

1
≤ α

∥∥(BT ⊗ Ip
)
x
∥∥

1
+ β

∥∥(BT ⊗ Ip
)
y
∥∥

1
,

∥∥(BT ⊗ Ip
)
x
∥∥

1
≤
√
|E|p

∥∥(BT ⊗ Ip
)
x
∥∥

2
≤ k1 ‖x‖2 ,∥∥(BT ⊗ Ip

)
y
∥∥

1
≤ k1 ‖y‖2 ,∥∥(BT ⊗ Ip

)
s
∥∥

1
≤ k1 ‖s‖2 ≤ k2 ‖s‖∞∥∥(BT ⊗ Ip

)
z
∥∥

1
≤ k1 ‖z‖2 ≤ k3 ‖ξ‖2 ,

where k1 =
√
|E|pλN (L), k2 =

√
N |E|p2λN (L) and k3 =

√
|E|pλN (L)(α2 + β2). Then,

zT (M ⊗ Ip)ϕ ≤ ‖z‖1 ‖(M ⊗ Ip)ϕ‖∞

≤ XTQ2X + k4 ‖ξ‖2 ‖s‖∞ + π
∥∥(BT ⊗ Ip

)
z
∥∥

1
,

where Q2 = k

 α α+β
2

α+β
2 β

, k = c1k
2
1(N − 1)2, k4 = c1(N − 1)2Npk3

∥∥BT ⊗ Ip
∥∥, and

π = c2(N − 1)2|E|. From Lemma 35, it follows that

− γzT (B ⊗ Ip)sgn
[(
BT ⊗ Ip

)
(z + βs)

]
≤ −γ

∥∥(BT ⊗ Ip
)
z
∥∥

1
+ 2γβ

∥∥(BT ⊗ Ip
)
s
∥∥

1
.
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Then, it holds that

U2 ≤ −(γ − π)
∥∥(BT ⊗ Ip

)
z
∥∥

1
+ 2γβ

∥∥(BT ⊗ Ip
)
s
∥∥

1

+XTQ2X + k4 ‖ξ‖2 ‖s‖∞

≤ −(γ − π)
√
λ2(L) ‖z‖2 + 2γβk2 ‖s‖∞

+XTQ2X + k4 ‖ξ‖2 ‖s‖∞ .

Hence,

V̇ ≤ −XTQX +
(
cM
√

2Np+ k4

)
‖ξ‖2 ‖s‖∞

− (γ − π)
√
λ2(L) ‖z‖2 + 2γβk2 ‖s‖∞ ,

whereQ = Q1−Q2. Note thatQ is positive definite if α > 2k
λ2(L) and β >

3k+2
√
k[αλ2(L)+2k]+4αλ2(L)−k

4αλ2(L)−k α.

Then, −XTQX ≤ −λm ‖X‖22, where λm is the smallest eigenvalue of Q, i.e., λm = λ1(Q).

V̇ ≤ −λm ‖ξ‖22 +
(
cM
√

2Np+ k4

)
‖ξ‖2 ‖s‖∞

− (γ − π)
√
λ2(L) ‖z‖2 + 2γβk2 ‖s‖∞

= −λm(1− 2η) ‖ξ‖22 − (γ − π)
√
λ2(L) ‖z‖2

− 2λmη ‖ξ‖22 +
(
cM
√

2Np+ k4

)
‖ξ‖2 ‖s‖∞

+ 2γβk2 ‖s‖∞ ,

η ∈
(
0, 1

2

)
. Note that the term −2λmη ‖ξ‖22 +

(
cM
√

2Np + k4

)
‖ξ‖2 ‖s‖∞ + 2γβk2 ‖s‖∞ is

non-positive if ‖ξ‖2 ≥ max
{
d1 ‖s‖∞ , d2

√
‖s‖∞

}
, where d1 = cM

√
2Np+k4
λmη

and d2 =
√

2γβk2
λmη

.

Note that ρ(r) = max
{
d1r, d2

√
r
}

is a class K function. It holds that

V̇ ≤ −λm(1− 2η) ‖ξ‖22

− (γ − π)
√
λ2(L) ‖z‖2 ∀ ‖ξ‖2 ≥ ρ(‖s‖∞).
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It then follows from [62, Theorem 4.19] and the property of the input-to-state stability [62,

p. 175] that x ∈ LNp∞ and y ∈ LNp∞ if s ∈ LNp∞ , and that x(t) → 0Np and y(t) → 0Np

as t → ∞ if s(t) → 0Np as t → ∞. Then, the coordination step is concluded from the

definitions of x and y.

Consider the optimum-tracking step. Let χ =
∑N

j=1∇fj(qj , t) and ψ =
∑N

j=1

[
vj+

Fj(qj , t)
]
. It holds that

χ̇ = −χ+
N∑
j=1

Hj(qj , t)(vj + Fj) +
N∑
j=1

Hj(qj , t)sj (4.13)

ψ̇ = −
N∑
j=1

Hj(qj , t)∇fj(qj , t). (4.14)

Define the Lyapunov function candidate

W =
1

2
χTχ+

1

2
ψTψ. (4.15)

Taking the derivative of W along the solution of the networked system (4.8)-(4.9) yields

that

Ẇ = χT

[
N∑
j=1

Hj(qj , t)vj +
N∑
j=1

∂

∂ t
∇fj(qj , t)

]

+ χT

[
N∑
j=1

Hj(qj , t)sj

]
− ψT

[
N∑
j=1

Hj(qj , t)∇fj(qj , t)

]T

= −χTχ+ χT

[
N∑
j=1

Hj(qj , t)sj

]
,

where Assumption 5 has been used. Note that

χT

 N∑
j=1

Hj(qj , t)sj

 ≤ ‖χ‖2 N∑
j=1

m̄ ‖sj‖2

≤ 1

2
‖χ‖22 +

Nm̄2

2

N∑
j=1

‖sj‖22 .
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It follows that

Ẇ ≤ −1

2
‖χ‖22 +

Nm̄2

2

N∑
j=1

‖sj‖22 .

Then, it holds that 2Ẇ + ‖χ‖22 ≤ Nm̄2
∑N

j=1 ‖sj‖
2
2 . Integrating over [0, t] on both sides

yields that

2

∫ t

0
Ẇdτ +

∫ t

0
‖χ‖22 dτ ≤ Nm̄2

N∑
j=1

∫ t

0
‖sj‖22 dτ,

which is equivalent to

2W (t) +

∫ t

0
‖χ‖22 dτ ≤ 2W (0) +Nm̄2

N∑
j=1

∫ t

0
‖sj‖22 dτ.

If sj ∈ Lp2 ∀i ∈ V, it holds that
∫ t

0 ‖sj‖
2
2 dτ < ∞ ∀i ∈ V ∀t ≥ 0. Note that W (t) ≥ 0

∀t ≥ 0. It then holds that 2W (t) +
∫ t

0 ‖χ‖
2
2 dτ < ∞ ∀t ≥ 0, which implies that W (t) ∈

L1
∞ and χ ∈ Lp2. Hence, it follows from (4.15) that χ ∈ Lp∞ and ψ ∈ Lp∞. By As-

sumption 4, it holds that function
∑N

j=1 fj(q, t) is strongly convex in q. Then it follows

from Assumption 5 that Nm ‖q̄ − q∗‖22 ≤
[∑N

j=1∇fj(q̄, t)−
∑N

j=1∇fj(q∗, t)
]T

(q̄ − q∗) =[∑N
j=1∇fj(q̄, t)−

∑N
j=1∇fj(qj , t)

]T
(q̄ − q∗) +

[∑N
j=1∇fj(qj , t)−

∑N
j=1∇fj(q∗, t)

]T
(q̄ −

q∗). Then, it holds that

Nm ‖q̄ − q∗‖2 ≤

∥∥∥∥∥∥
N∑
j=1

∇fj(q̄, t)−
N∑
j=1

∇fj(qj , t)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
N∑
j=1

∇fj(qj , t)−
N∑
j=1

∇fj(q∗, t)

∥∥∥∥∥∥
2

.

From Assumption 4 and Mean Value theorem, there exist a positive constant M such that∥∥∥∑N
j=1∇fj(q̄, t)−

∑N
j=1∇fj(qj , t)

∥∥∥
2
≤
∑N

j=1 ‖∇fj(q̄, t)−∇fj(qj , t)‖2 ≤
∑N

j=1M ‖qj − q̄‖.

Since
∑N

j=1 fj(q
∗, t) = 0p, and recall that qi − 1

N

∑N
j=1 qj ∈ L

p
∞, then it can be shown

77



that ‖q̄ − q∗‖2 < ∞, and hence qi − q∗ ∈ Lp∞ ∀i ∈ V. This concludes the first part of the

statement.

Recall that χ ∈ Lp2 and ψ ∈ Lp∞. If sj ∈ Lp∞ ∀i ∈ V, it follows from (4.13) that

χ̇ ∈ Lp∞, which implies that χ is uniformly continuous. Recall also that χ ∈ Lp2, then it

follows from Barbalat’s Lemma [62, p. 323] that
∑N

j=1∇fj(qj , t) → 0p as t → ∞. Recall

from the coordination step that xi → xj and vi → vj ∀i, j ∈ V as t→∞ if si → 0p ∀i ∈ V

as t → ∞. Hence, if si ∈ Lp∞ ∩ Lp2 and si → 0p ∀i ∈ V, it follows from Lemma 32 that

qi(t)→ q∗(t) ∀i ∈ V as t→∞. This concludes the second part of the statement. �

Proposition 37 Suppose that Assumptions 1-7 hold. For the system (4.8)-(4.9), if si ∈

Lp∞ ∩ Lp2 ∀i ∈ V, then all ϕi ∈ Lp∞ ∀i ∈ V.

Proof: From the optimum-tracking step in the proof of Proposition 36, it holds

that qi ∈ Lp∞ and ψ ∈ Lp∞ ∀i ∈ V. By Assumptions 4 and 6, it holds that ∇fi(qi, t) ∈ Lp∞

and ∂
∂ t∇fi(qi, t) ∈ L

p
∞ ∀i ∈ V. Hence, vi ∈ Lp∞ ∀i ∈ V. Note also that ∂2

∂ t2
∇fi(qi, t),

∂2

∂ q2i
∇fi(qi, t) and ∂2

∂ t∂ qi
∇fi are all bounded by Assumption 6. Thus, it follows that ϕi ∈ Lp∞

∀i ∈ V. �

With Propositions 36 and 37 at hand, the convergence of the distributed opti-

mization algorithm (4.6)-(4.7) with vi and v̇i given by the reference system (4.2) can be

established by the following theorem.

Theorem 38 Suppose that Assumptions 1-7 hold, and let α and β be chosen such that

α > 2k
λ2(L) and β >

3k+2
√
k[αλ2(L)+2k]+4αλ2(L)−k

4αλ2(L)−k α with k = c1pλN (L)(N − 1)2|E|, and γ be

chosen such that γ > c2(N − 1)2|E|. Using the controller (4.6)-(4.7) with vi and v̇i given by
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the reference system (4.2) for the networked Lagrangian system (1.1) solves the distributed

time-varying optimization problem, that is, qi(t)→ q∗(t) ∀i ∈ V as t→∞.

Proof: For any i ∈ V, define Lyapunov function candidate Wi = 1
2s
T
i Mi(qi)si +

1
2∆ϑTi Γ−1

i ∆ϑi with ∆ϑi = ϑ̂i − ϑi. By using Property 2, the derivative of Wi along the

trajectories of the Lagrangian system (1.1) with the adaptive controller (4.6)-(4.7) can be

written as Ẇi = −sTi Kisi ≤ 0. Hence, it holds that si ∈ Lp∞ ∩ Lp2 and ϑ̂i ∈ Lp∞ ∀i ∈ V.

Using (4.5), we can rewrite (4.2) as the system (4.8)-(4.9). Since si ∈ Lp∞ ∩ Lp2

∀i ∈ V, it follows the analysis of Proposition 37 that ϕi ∈ Lp∞, qi ∈ Lp∞ and vi ∈ Lp∞ ∀i ∈ V.

From (4.8), it then holds that q̇i ∈ Lp∞ ∀i ∈ V. From (4.9), it holds that v̇i ∈ Lp∞ ∀i ∈ V.

Substituting (4.6) into (1.1) and using Property 3 yield that

Mi(qi)ṡi + Ci(qi, q̇i)si = −Kisi + Yi(qi, q̇i, vi, v̇i)∆ϑi. (4.16)

Then by using Property 1 and (4.16), it holds that ṡi ∈ Lp∞ ∀i ∈ V. It can thus be shown

that si ∀i ∈ V are uniformly continuous. Recall that si ∈ Lp2 ∀i ∈ V. Using Barbalat’s

lemma [62, p. 323], we obtain that si(t) → 0p as t → ∞ for any i in V. Then, from the

second statement of Proposition 36, it follows that qi(t)→ q∗(t) ∀i ∈ V as t→∞. �

4.2.3 Distributed Time-varying Optimization Algorithm Removing Chat-

tering

Note that the control torques may involve the chattering issue in practice [103],

since v̇i, given in (4.2), introduces the signum function in the controller (4.6). This subsec-

tion focuses on the distributed time-varying optimization algorithm that generates contin-

uous control inputs, and hence removes the chattering issue while application in practice.
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To reduce the effects of chattering, we introduce a differentiable function h(·) to

approximate and replace the signum function, which results in continuous control torques

for the Lagrangian agents. The function h(·) is given by

h(r) =
r

‖r‖2 + ε
(4.17)

where r ∈ Rp and ε is a positive constant. Such an idea of using continuous approximation

can be found in [83]. Compared with the traditional stabilization of a single agent considered

in [83], the time-varying optimization of networked nonlinear systems addressed here are

more challenging, and theoretical proof can not be directly implied. After replacing the

signum function in (4.2) with the function (4.17), the reference system for agent i ∈ V

becomes

v̇i = −
∑
j∈Ni

[
α(qi − qj) + β(q̇i − q̇j)

]
− γ

∑
j∈Ni

h
[
α(qi − qj) + β(q̇i − q̇j)

]
+ ϕi, (4.18)

where ϕi is defined in (4.3). As in Section 4.2.2, a similar preliminary lemma is presented

first, and it is then used in the convergence analysis.

Lemma 39 Let γ ∈ R+, and zi, si ∈ Rp, i ∈ V. It holds that

− γ
∑

(i,j)∈E

(zi − zj)Th
[
zi − zj + β(si − sj)

]
≤ −γ

∑
(i,j)∈E

(
‖zi − zj‖2 − 2β ‖si − sj‖2 − ε

)
, (4.19)

where E is the edge set of the graph G.
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Proof: From the definition of h(·) in (4.17), it follows that

− γ
∑

(i,j)∈E

(zi − zj)Th
[
zi − zj + β(si − sj)

]
= −γ

∑
(i,j)∈E

‖zi − zj + β(si − sj)‖2 + γ
∑

(i,j)∈E

ε

+ γ
∑

(i,j)∈E

β(si − sj)T
[
zi − zj + β(si − sj)

]
− ε2

‖zi − zj + β(si − sj)‖2 + ε
.

By using the Cauchy–Schwarz inequality, it holds that (si − sj)T
[
zi − zj + β(si − sj)

]
≤

‖si − sj‖2‖zi − zj + β(si − sj)‖2. It then follows that

− γ
∑

(i,j)∈E

(zi − zj)Th
[
zi − zj + β(si − sj)

]
≤ −γ

∑
(i,j)∈E

‖zi − zj + β(si − sj)‖2 + γ
∑

(i,j)∈E

β ‖si − sj‖2

+ γ
∑

(i,j)∈E

ε− γ
∑

(i,j)∈E

βε ‖si − sj‖2 + ε2

‖zi − zj + β(si − sj)‖2 + ε
.

Define

E+ = {(i, j) ∈ E
∣∣ ‖zi − zj‖2 ≥ β ‖si − sj‖2},

E− = {(i, j) ∈ E
∣∣ ‖zi − zj‖2 < β ‖si − sj‖2}.
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Since
βε‖si−sj‖2+ε2

‖zi−zj+β(si−sj)‖2+ε ≥ 0 ∀(i, j) ∈ E , it then holds that

− γ
∑

(i,j)∈E

(zi − zj)Th
[
zi − zj + β(si − sj)

]
≤ −γ

∑
(i,j)∈E

∣∣ ‖zi − zj‖2 − β ‖si − sj‖2 ∣∣
+ γ

∑
(i,j)∈E

(
ε+ β ‖si − sj‖2

)
≤ −γ

∑
(i,j)∈E+

‖zi − zj‖2 + γβ
∑

(i,j)∈E+

‖si − sj‖2

− γβ
∑

(i,j)∈E−

‖si − sj‖2 + γ
∑

(i,j)∈E−

‖zi − zj‖2

+ γ
∑

(i,j)∈E

(
ε+ β ‖si − sj‖2

)
,

where the first inequality follows from the reverse triangle inequality. By the definition of

E−, (4.19) follows. �

Theorem 40 Suppose that Assumptions 1-7 hold, and let Let α and β be chosen such that

α > 2k
λ2(L) and β >

3k+2
√
k[αλ2(L)+2k]+4αλ2(L)−k

4αλ2(L)−k α with k = c1pλN (L)(N − 1)2|E|, and γ

be chosen such that γ > c2(N − 1)2|E|√p. Using the controller (4.6)-(4.7) with v̇i defined

in (4.18) for the networked Lagrangian system (1.1) solves the distributed time-varying

optimization problem with bounded optimum-tracking errors, that is, qi(t) − q∗(t) ∈ Lp∞

∀i ∈ V.

82



Proof: We use the definition of si in (4.5) and rewrite (4.18) as

q̇i = vi + si (4.20)

v̇i = −
∑
j∈Ni

[
α(qi − qj) + β(vi − vj + si − sj)

]
+ ϕi

− γ
∑
j∈Ni

h
[
α(qi − qj) + β(vi − vj + si − sj)

]
. (4.21)

We only need to prove a similar statement for the networked system (4.20)-(4.21) as in

Proposition 36: qi− q∗ ∈ Lp∞ ∀i ∈ V if si ∈ Lp∞ ∩Lp2 ∀i ∈ V. As in the proof of Proposition

36, we also divide the proof into the coordination step and the sum-tracking step. In the

coordination step, let q, v and ϕ denote the column stack vectors of all qi’s, vi’s and ϕi’s,

i ∈ V, respectively, and define x = (M ⊗ Ip)q, y = (M ⊗ Ip)v, and z = αx + βy as in the

proof of Proposition 36, then, we have

ẋ = y + (M ⊗ Ip)s (4.22)

ẏ = −(L⊗ Ip)(αx+ βy + βs) + (M ⊗ Ip)ϕ− γH. (4.23)

where H =
[
HT1 , . . . ,HTN

]
with Hi =

∑
j∈Ni h

[
zi − zj + β(si − sj)

]
. By using the same

Lyapunov function candidate as in the proof of Proposition 36, we have V̇ = −XTQX +(
cM
√

2Np+k4

)
‖ξ‖2 ‖s‖∞+π

∥∥(BT ⊗ Ip
)
z
∥∥

1
+2γβk2 ‖s‖∞−γ

∑
(i,j)∈E(zi−zj)Th

[
zi−zj+

β(si−sj)
]

whereX =
[
‖x‖2 , ‖y‖2

]T
, ξ =

[
xT , yT

]T
, Q =

 α2λ2(L)− αk −α+β
2 k

−α+β
2 k β2λ2(L)− α− βk

,

π = c2(N−1)3N
2 , k = c1k

2
1(N − 1)2, k1 =

√
|E|pλN (L), k2 =

√
N |E|p2λN (L), k3 =√

|E|pλN (L)(α2 + β2) and k4 = c1(N − 1)2Npk3

∥∥BT ⊗ Ip
∥∥
∞. By Lemma 39, it follows
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that

− γ
∑

(i,j)∈E

(zi − zj)Th
[
zi − zj + β(si − sj)

]
≤ −γ

∑
(i,j)∈E

(
‖zi − zj‖2 − 2β ‖si − sj‖2 − ε

)
≤ − γ
√
p

∥∥(BT ⊗ Ip
)
z
∥∥

1
+ k5 ‖s‖1 + γε|E|

where k5 = 2γβ
∥∥BT ⊗ Ip

∥∥
1
, and the second inequality is obtained by using the facts that

‖r‖2 ≤ ‖r‖1 ≤
√
p ‖r‖2 for any r ∈ Rp. Hence,

V̇ ≤ −λm ‖ξ‖22 +
(
cM
√

2Np+ k4

)
‖ξ‖2 ‖s‖∞

−
( γ
√
p
− π

)∥∥(BT ⊗ Ip
)
z
∥∥

1
+ k5 ‖s‖1 + γε|E|

≤ −λm(1− 3η) ‖ξ‖22 −
( γ
√
p
− π

)√
λ2(L) ‖z‖2

− 3λmη ‖ξ‖22 +
(
cM
√

2Np+ k4

)
‖ξ‖2 ‖s‖∞

k5 ‖s‖1 + γε|E|,

where we have used the inequalities −
∥∥(BT ⊗ Ip

)
z
∥∥

1
≤ −

∥∥(BT ⊗ Ip
)
z
∥∥

2
≤ −

√
λ2(L) ‖z‖2

and ‖s‖∞ ≤ ‖s̃‖∞ and the fact that γ > π
√
p to obtain the second inequality. Note

that the term −3λmη ‖ξ‖22 +
(
cM
√

2Np + k4

)
‖ξ‖2 ‖s‖∞ k5 ‖s‖1 + γε|E| is non-positive if

‖ξ‖2 ≥ ρ := max
{
cM
√

2Np+k4
λmη

‖s‖∞ ,
√

k5
λmη

√
‖s‖∞,

√
γε|E|
λmη

}
. It then holds that

V̇ ≤ −λm(1− 2η) ‖ξ‖22

− (γ − π)
√
λ2(L) ‖z‖2 ∀ ‖ξ‖2 ≥ ρ.

This shows that ξ ∈ L2Np
∞ , and hence qi − 1

N

∑N
j=1 qj ∈ L

p
∞ and vi − 1

N

∑N
j=1 vj ∈ L

p
∞.

The proof of the sum-tracking step is similar to that of Proposition 36 by noting that

84



∑N
i=1

∑
j∈Ni(t) h[α(qi − qj) + β(vi − vj + si − sj)

]
= 0p, and thus is omitted. Therefore, it

can be concluded that qi − q∗ ∈ Lp∞ if si ∈ Lp∞ ∩ Lp2 ∀i ∈ V for networked system (4.20)-

(4.21). For each i ∈ V, by using the same Lyapunov function Wi in the proof of Theorem

38, we have si ∈ Lp∞ ∩ Lp2 ∀i ∈ V. Hence, we can conclude that qi − q∗ ∈ Lp∞. That is, the

distributed time-varying optimization problem of networked Lagrangian agents is solved

with bounded optimum-tracking errors. �

There are other continuous functions that can be used to approximate the signum

function, such as sat
(
r
ε

)
and tanh

(
r
ε

)
where ε ∈ R+. When the signum function in (4.2)

is replaced with a time-varying function h(r) = r
‖r‖2+κ1e−κ2t

[34], it can be shown that

qi(t) − q∗(t) → 0p ∀i ∈ V as t → ∞. The proof follows by the similar line of analysis in

Lemma 39 and Theorem 40, which is omitted.

Remark 41 The design of the reference system in (4.2) is inspired by the work [92], and

the method of approximating the signum function using (4.17) has been applied in [92] to re-

move the cahttering. However, this work considers the distributed time-varying optimization

problem for networked Lagrangian systems, and proposed algorithms can be implemented by

using on-board sensors taking physical state measurements (absolute and/or relative posi-

tion and velocity measurement). The Lagrangian dynamics are more complex compared with

single- and double-integrator agents considered in [92]. Moreover, the complexities of the

problem of interest and agents’ dynamics pose challenges in the convergence analysis. For

instance, as an intermediate step in the convergence analysis, two statements are established

for the networked system (4.8)-(4.9) (or (4.20)-(4.21) in the case of using signum function

approximation), which can be seen as networked second-order systems perturbed by distur-
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bances si, i ∈ V. Hence they are different from the disturbance-free double-integrator model

considered in [92], and there are significant technical challenges.

4.3 Distributed Time-varying Optimization Algorithm Un-

der Switching Graphs

In this section, we focus on solving the distributed time-varying optimization prob-

lem under switching graphs when the cost functions satisfy Assumption 4 and the following

assumption.

Assumption 8 For any i ∈ V, the gradient of the cost function fi(qi, t) can be written as

∇fi(qi, t) = Hqi + gi(t), where gi(t) is a smooth time-varying function. In addition, There

exist a positive constant ḡ such that supt∈[0,∞) ‖gi(t)‖2 ≤ ḡ, supt∈[0,∞) ‖ġi(t)‖2 ≤ ḡ and

supt∈[0,∞) ‖g̈i(t)‖2 ≤ ḡ ∀i ∈ V.

For each agent i ∈ V, construct the reference system as

v̇i = −αq̇i − γ
∑

j∈Ni(t)

sgn
(
qi − qj + q̇i − q̇j

)
+ ϕi, (4.24)

where α and γ are positive constants to be determined,

ϕi = −αFi(qi, t)− Ḟi(qi, t), (4.25)

and Fi(qi, t) is defined in (4.4). The adaptive controller for the Lagrangian system (1.1) is

given by (4.6)-(4.7).

Theorem 42 Suppose that Assumptions 1, 4 and 8 hold. Let α ∈ R+ and γ > 2
m(α +

1)(N − 1)ḡ. Using the controller (4.6)-(4.7) with v̇i defined in (4.24) for the networked
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Lagrangian system (1.1) solves the distributed time-varying optimization problem, that is,

qi(t)→ q∗(t) ∀i ∈ V as t→∞.

Proof: From Assumption 8, it follows that ϕi = −αqi − q̇i −H−1
[
αgi(t) + (α+

1)ġi(t) + g̈i(t)
]
. Define Di = −H−1

[
αgi(t) + (α + 1)ġi(t) + g̈i(t)

]
. Then, it follows from

Assumptions 4 and 8 that ‖Di‖∞ ≤
2
m(α+ 1)ḡ := D̄. It follows from (4.24) and (4.5) that

q̇i = vi + si

v̇i = −αqi − (α+ 1)vi − (α+ 1)si

− γ
∑

j∈Ni(t)

sgn
(
qi − qj + vi − vj + si − sj

)
+Di.

Define zi = qi + vi and z =
[
zT1 , . . . , z

T
N ]T . It then holds that

ż = −αz − αs

− γ
[
B(t)⊗ Ip

]
sgn
{[
BT (t)⊗ Ip

]
(z + s)

}
+D,

where s =
[
sT1 , . . . , s

T
N ]T and D =

[
DT

1 , . . . , D
T
N ]T . Define x = (M ⊗ Ip)z. It holds that

ẋ = −αx− α(M ⊗ Ip)s+ (M ⊗ Ip)D

− γ
[
B(t)⊗ Ip

]
sgn
{[
BT (t)⊗ Ip

]
(x+ s)

}
. (4.26)

Consider the Lyapunov function candidate V = 1
2x

Tx. Taking the derivative of V yields

that

V̇ = −α ‖x‖22 − αx
T (M ⊗ Ip)s+ xT (M ⊗ Ip)D

− γxT
[
B(t)⊗ Ip

]
sgn
{[
BT (t)⊗ Ip

]
(x+ s)

}
.
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Note that xT (M ⊗ Ip)D ≤ (N − 1)
∥∥(BT ⊗ Ip)x

∥∥
1
‖D‖∞ ≤ D̄(N − 1)

∥∥(BT ⊗ Ip)x
∥∥

1
. By

Lemma 35, it holds that

− γxT
[
B(t)⊗ Ip

]
sgn
{[
BT (t)⊗ Ip

]
(x+ s)

}
≤ −γ

∥∥[BT (t)⊗ Ip
]
x
∥∥

1
+ 2γ

∥∥[BT (t)⊗ Ip
]
s
∥∥

1

≤ −γ
∥∥[BT (t)⊗ Ip

]
x
∥∥

1
+ k1 ‖s‖1

where k1 = γN(N−1), and we have used the fact that 2γ
∥∥[BT (t)⊗ Ip

]
s
∥∥

1
≤ 2γ

∥∥[BT (t)⊗ Ip
]∥∥

1
‖s‖1 ≤

γN(N − 1) ‖s‖1 to obtain the second inequality. Then, it holds that

V̇ ≤ −α ‖x‖22 + α ‖x‖2 ‖s‖1 − γ
∥∥(BT ⊗ Ip

)
x
∥∥

1

+ k1 ‖s‖1 + D̄(N − 1)
∥∥(BT ⊗ Ip)x

∥∥
1

≤ −α ‖x‖22 + α ‖x‖2 ‖s‖1 + k1 ‖s‖1

≤ −α
2
‖x‖22 +

α

2
‖s‖21 + k1 ‖s‖1 ,

where we have used the fact that γ ≥ D̄(N − 1) to obtain the second inequality and used

the Young’s inequality ‖x‖2 ‖s‖1 ≤
1
2 ‖x‖

2
2 + 1

2 ‖s‖
2
1 to obtain the last inequality. Define

continuous functions ρ(r) = α
2 r

2 and $(r) = α
2 r

2 + k1r, which are class K∞ functions.

Then, it holds that

V̇ ≤ −ρ(‖x‖2) +$(‖s‖1),

which implies that (V, ρ,$) is a common ISS-Lyapunov triple1 for the switched system

(4.26). By [77, Theorem 2.1], it holds that the system (4.26) is uniformly (with respect to the

1A common ISS-Lyapunov triple (V, ρ,$) for the switched system ẋ = fσ(x, u) consists of a positive
definite radially unbounded continuous differential function V : Rn → [0,+∞) and class K functions ρ and
$ such that ∇V (x)fσ(x, u) ≤ −ρ(‖x‖2) +$(‖u‖2) for all x ∈ Rn, all u ∈ Rm and all σ ∈ Γ, where Γ is the
index set for the switched system [77].
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switching signal for the graph) input-to-state stable. That is, there exist a class KL function

ω and a class K function µ such that ‖x(t)‖2 ≤ ω(‖x(0)‖2 , t)+µ
(

sup0≤τ≤t ‖s(τ)‖1
)

. Hence,

it can be concluded that x ∈ LNp∞ if s ∈ LNp∞ and x→ 0Np if s→ 0Np as t→∞.

From the definitions of x and z, it holds that

(M ⊗ Ip)q̇ = −(M ⊗ Ip)q + (M ⊗ Ip)s+ x.

Note that (M ⊗ Ip)q̇ = −(M ⊗ Ip)q is a standard exponentially stable linear time-invariant

(LTI) system. Then, it holds that qi − 1
N

∑N
j=1 qj ∈ L

p
∞ and vi − 1

N

∑N
j=1 vj ∈ L

p
∞ ∀i ∈ V

if si ∈ Lp∞ ∀i ∈ V and qi → 1
N

∑N
j=1 qj and vi → 1

N

∑N
j=1 vj ∀i ∈ V as t→∞ if si → 0p as

t→∞.

Use the same definitions of χ and ψ as in the proof of Proposition 36, and it holds

that

ψ̇ = −αψ − α
N∑
j=1

sj . (4.27)

Note that ψ̇ = −αψ is a standard exponentially stable LTI system. Then, the system (4.27)

is input-to-state stable. Hence, ψ ∈ Lp∞ if si ∈ Lp∞ ∀i ∈ V and ψ → 0d as t→∞ if si → 0p

∀i ∈ V as t→∞.

Note that (4.13) holds. It then holds that χ ∈ Lp∞ if si ∈ Lp∞ ∀i ∈ V and χ→ 0d

as t→∞ if si → 0p ∀i ∈ V as t→∞. The rest of the proof follows from the same analysis

in Theorem 38, which is thus omitted. �

Remark 43 As shown in Remark 34, the distributed time-varying optimization algorithms

can be used to solve the distributed average tracking of networked Lagrangian agents, which

is the topic investigated in [16]. The proposed algorithms in this chapter has the following
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advantages over [16]. Firstly, zero tracking error can be guaranteed for general bounded

reference signals, which cannot be done by using the algorithms in the work [16] in the

same settings. Secondly, the algorithms only use absolute and/or relative measurements

of the physical states with respect to the neighbors, while the work [16] requires addition

communication of some virtual variable. Lastly, the algorithms (4.6)-(4.7) with v̇i given by

the reference system (4.24) works under switching graphs.

Remark 44 The structure of the proposed distributed algorithms for networked Lagrangian

agents are partially inspired by [115], where the consensus and/or leader-following of net-

worked Lagrangian systems are investigated. In this chapter, the distributed time-varying

optimization problem is addressed, which are more complex and challenging and include

the consensus and leader-following as special cases. Moreover, while dealing with the dis-

tributed time-varying optimization for networked Lagrangian agents, the analysis is quite

different from the work [115]. The nonlinear functions, such as the signum function and

the one defined in (4.17), are used to constructing v̇i, which forms a perturbed closed-loop

networked double-integrator systems with si as disturbance in the model and inside the non-

linear functions (see (4.8)-(4.9) for an example). This chapter provide rigorous analysis on

the performance of the perturbed systems under bounded and convergent disturbances. In

addition, when considering distributed time-varying optimization problem, additional anal-

ysis steps are required, see the optimum-tracking steps in the proof of Proposition 36 and

Theorem 38 for instance.

Remark 45 As shown in Theorems 38-42, the lower bounds of the design parameters (e.g.,

γ, α, β and κ) depend on some global information, such as the bounds on the cost functions
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and the graph. It is worth mentioning that these design parameters are constants, and can

be determined off-line. Once they are chosen, one can embed them into each agent and im-

plement the proposed algorithms by using only local information (e.g., local cost functions,

absolute/ relative measurements on physical states), which implies that the proposed algo-

rithm can be implemented in a distributed way. In addition, one can be conservative and

select large enough values for these parameters. Also, one can use some existing algorithms

[109, 51] to estimate the bounds about the cost functions and the graph, and then choose

appropriate values for the parameters based on the estimated bounds.

4.4 Illustrative Examples

In this section, we provide examples to illustrate the results in this chapter. We

consider a group of ten planar manipulators with two revolute joints [105, pp. 259-262]

(N = 10), which are labeled from 1 to 10 (V = {1, . . . , 10}). The interaction among these

ten agents is characterized as the graph in Fig. 4.1. The i-th manipulator/agent’s dynamics

are given as 
di11q̈i1 + di12q̈i2 + ci11q̇i1 + ci12q̇i2 + gi1 = τi1

di21q̈i1 + di22q̈i2 + ci21q̇i1 + gi2 = τi2

where qi =
[
qi1, qi2

]T ∈ R2 is the generalized coordinates, di11 = mi1l
2
ic1 + mi2(l2i1 + l2ic2 +

2li1lic2 cos qi2) + Ji1 + Ji2, di12 = di21 = mi2(l2ic2 + li1lic2 cos qi2) + Ji2, di22 = mi2l
2
ic2 + Ji2,

ci11 = oq̇i2, ci12 = o(q̇i2 + q̇i1), ci21 = −oq̇i1, o = −mi2li1lic2 sin qi2, gi1 = (mi1lic1 +

mi2li1)g cos qi1 +mi2lic2g cos(qi1 +qi2), gi2 = mi2lic2g cos(qi1 +qi2), and g is the gravitational

acceleration. For agent i, Jij , mij , lij , and licj are the moment of inertia, mass, length, and
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the distance from the previous joint to the center of mass of link j, respectively. Suppose

that ϑi = [ϑi1, . . . , ϑi5] where ϑi1 = mi1l
2
ic1 + mi2(l2i1 + l2ic2) + Ji1 + Ji2, ϑi2 = mi2li1lic2,

ϑi3 = mi2l
2
ic2 +Ji2, ϑi4 = mi1lic1 +mi2li1 and ϑi5 = mi2lic2. In the simulations, let mi1 = 0.4

kg, mi2 = 0.8 kg, li1 = 0.8 m, li2 = 1.2 m, Ji1 = 0.0213 kg m2, Ji2 = 0.096 kg m2, lic1 = 1
2 li1

and lic2 = 1
2 li2 for any i ∈ V. Assume that for each i ∈ V, mi1, mi2, li1, li2, lic1, lic2, Ji1 and

Ji2 are unknown. Let ϑi =
[
mi1l

2
ic1+mi2(l2i1+l2ic2)+Ji1+Ji2,mi2li1lic2,mi2l

2
ic2+Ji2,mi1lic1+

mi2li1,mi2lic2
]T ∈ R5. From Property 3, it holds that for any x =

[
x1, x2

]T
and y =[

y1, y2

]T
, Yi(qi, q̇i, y, x) ∈ R2×5 =

[
Yi1(qi, q̇i, y, x)Yi1(qi, q̇i, y, x)

]T
where Yi1(qi, q̇i, y, x) =[

x1, cos(qi2)(2x1 + x2) − sin(qi2)(q̇i2y1 + q̇i1y2 + q̇i2y2), x2, g cos(qi1), g cos(qi1 + qi2)
]T

and

Yi2(qi, q̇i, y, x) =
[
0, cos(qi2)x1 + sin(qi2)q̇i1y1, x1 + x2, 0, g cos(qi1 + qi2)

]T
.

Each agent i ∈ V has a local cost function fi(q, t) = [qi1 − 0.1i sin(t)]2 + [qi2 −

0.1i cos(t)]2, and denote by q∗ =
[
q∗1, q

∗
2

]T
the optimal trajectory that minimizes the sum of

all the local cost functions
∑10

i=1 fi(q, t). In the following algorithm validations, the initial

values are chosen as follows: for any i ∈ V and any j ∈ {1, 2}, qij(0) and q̇ij(0) are generated

randomly from the ranges [−0.5, 0.5], and vi(0) = q̇i(0) + 0.112, and ϑi(0) = 05.

We first validate the distributed time-varying optimization algorithm (4.6)-(4.7)

with v̇i defined in (4.2). The interaction among these ten agents are described by a time-

invariant graph given by Graph 1 in Fig. 4.1. In this simulation, we select Γi = 0.5I5 and

Ki = 25I2 for any i ∈ V, α = 0.3, β = 1 and γ = 8. The position trajectories and control

torques are presented in Fig. 4.2 and Fig. 4.3, respectively. From Fig. 4.2, it shows that

all the agents track the optimal trajectory, i.e., qi(t) − q∗(t) → 02 ∀i ∈ V. It can be seen

from Fig. 4.3 that there exists chattering.

92



1 2 3 4 5

678910

(a) Graph 1.

1 2 3 4 5

678910

(b) Graph 2.
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Figure 4.1: Illustration of a switching interaction graph among the ten agents.

We then validate the distributed time-varying optimization algorithm (4.6)-(4.7)

with v̇i defined in (4.18). We select Γi = 0.4I5 and Ki = 12I2 for any i ∈ V, α = 0.5,

β = 1.5, γ = 7 and ε = 0.5. The position trajectories and control torques are presented in

Fig. 4.4 and Fig. 4.5, respectively. From Fig. 4.4, it shows that all the agents track the

optimal trajectory with bounded errors, i.e., qi− q∗ ∈ L2
∞ ∀i ∈ V. It can seen from Fig. 4.5

that the control torques are smooth and the chattering is removed.
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Figure 4.2: The position trajectories of Lagrangian agents (1.1) by using the distributed
time-varying optimization algorithm (4.6)-(4.7) with v̇i defined in (4.2). The black lines are
the optimal trajectories for each dimension, and the rest are the trajectories of qi1 and qi2 ,
i = 1, . . . , 10.

We use the same set of cost function to validate the algorithm (4.6)-(4.7) with

v̇i defined in (4.24). The interaction among these ten agents are described by a switching

graph shown in Fig. 4.1. The interaction graph states from Graph 1. Then after every 0.25

seconds, it switches to the next graph and the process repeats. We use the same setting for

the initial values, and select Γi = 0.09I5 and Ki = 14I2 for all i ∈ V, α = 1 and γ = 25.

The position trajectories are presented in Fig. 4.6. It can be seen from Fig. 4.6 that the

agents track the optimal trajectory, i.e., qi(t)− q∗(t)→ 02 ∀i ∈ V.
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Figure 4.3: The control torques of Lagrangian agents (1.1) by using the distributed time-
varying optimization algorithm (4.6)-(4.7) with v̇i defined in (4.2).
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Figure 4.4: The position trajectories of Lagrangian agents (1.1) by using the distributed
time-varying optimization algorithm (4.6)-(4.7) with v̇i defined in (4.18). The black lines
are the optimal trajectories for each dimension, and the rest are the trajectories of qi1 and
qi2 , i = 1, . . . , 10.
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Figure 4.5: The control torques of Lagrangian agents (1.1) by using the distributed time-
varying optimization algorithm (4.6)-(4.7) with v̇i defined in (4.18).
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Figure 4.6: The position trajectories of Lagrangian agents (1.1) by using the distributed
time-varying optimization algorithm (4.6)-(4.7) with v̇i defined in (4.24). The black lines
are the optimal trajectories for each dimension, and the rest are the trajectories of qi1 and
qi2 , i = 1, . . . , 10.
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Chapter 5

Conclusions

This dissertation has investigated the following problems:

1. Sampled-data containment control for double-integrator agents with dynamic leaders

with nonzero inputs,

2. Robust distributed average tracking for double-integrator agents without velocity mea-

surements under event-triggered communication,

3. Distributed time-varying optimization of networked Lagrangian systems.

Firstly, we proposed a sampled-data based containment control algorithm for a

group of double-integrator agents under directed communication networks. This algorithm

contributes the solution to the discrete-time containment control problem with dynamic

leaders whose inputs are nonzero. It has been shown that, by applying the proposed contain-

ment control algorithm, the containment control problem is solved with bounded position

and velocity containment control errors, and the ultimate bound of the overall containment

control error is proportional to the sampling period.
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Secondly, we investigated the distributed average tracking problem for double-

integrator agents without velocity measurements under event-triggered communication.

First, a base algorithm has been proposed, which remove the dependence of the design

parameters’ lower bounds on global information. Built on the base algorithm, an event-

triggered distributed average tracking algorithm has been designed to remove the continuous

communication requirement. The event-triggered algorithm is developed with a new adap-

tation law and a new triggering condition which overcomes several practical limitations.

In addition, a continuous nonlinear function is used approximate the signum function to

reduce the chattering phenomenon in reality.

Finally, we have investigated the distributed time-varying optimization of net-

worked Lagrangian systems with parametric uncertainties. The proposed optimization al-

gorithms can be implemented by using only on-board sensors and drive the agents to track

the optimal trajectory. First, a base optimization algorithm has been designed to achieve

zero optimum-tracking error under fixed graphs. Built on the base optimization algorithm,

a continuous variant has been developed, which is capable of generating continuous control

torques for the networked Lagrangian systems and hence reducing the chattering. Then,

by using the structure of the base optimization algorithm, a distributed time-varying opti-

mization algorithm has been designed under switching graphs.
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[76] Hui Lü, Wangli He, Qing-Long Han, Xiaohua Ge, and Chen Peng. Finite-time con-
tainment control for nonlinear multi-agent systems with external disturbances. Infor-
mation Sciences, 2019.

[77] JL Mancilla-Aquilar and Rafael Antonio Garcia. On the existence of common lya-
punov triples for iss and iiss switched systems. In Proceedings of the 39th IEEE Con-
ference on Decision and Control (Cat. No. 00CH37187), volume 4, pages 3507–3512.
IEEE, 2000.

[78] Jie Mei, Wei Ren, and Guangfu Ma. Distributed containment control for la-
grangian networks with parametric uncertainties under a directed graph. Automatica,
48(4):653–659, 2012.

104



[79] Ziyang Meng, Wei Ren, and Zheng You. Distributed finite-time attitude containment
control for multiple rigid bodies. Automatica, 46(12):2092–2099, 2010.

[80] Guoying Miao, Jinde Cao, Ahmed Alsaedi, and Fuad E Alsaadi. Event-triggered
containment control for multi-agent systems with constant time delays. Journal of
the Franklin Institute, 354(15):6956–6977, 2017.

[81] Yilin Mo and Richard M Murray. Privacy preserving average consensus. IEEE Trans-
actions on Automatic Control, 62(2):753–765, 2017.

[82] Hossein Moradian and Solmaz S Kia. On robustness analysis of a dynamic aver-
age consensus algorithm to communication delay. IEEE Transactions on Control of
Network Systems, 6(2):633–641, 2018.

[83] KS Narendra and JD Boskovic. A combined direct, indirect, and variable struc-
ture method for robust adaptive control. IEEE Transactions on Automatic Control,
37(2):262–268, 1992.

[84] S Nosrati, M Shafiee, and MB Menhaj. Synthesis and analysis of robust dynamic
linear protocols for dynamic average consensus estimators. IET control theory &
applications, 3(11):1499–1516, 2009.

[85] Shahram Nosrati, Masoud Shafiee, and Mohammad Bagher Menhaj. Dynamic average
consensus via nonlinear protocols. Automatica, 48(9):2262–2270, 2012.

[86] Erfan Nozari, Pavankumar Tallapragada, and Jorge Cortés. Differentially private av-
erage consensus: Obstructions, trade-offs, and optimal algorithm design. Automatica,
81:221–231, 2017.

[87] Erfan Nozari, Pavankumar Tallapragada, and Jorge Cortés. Differentially private
distributed convex optimization via functional perturbation. IEEE Transactions on
Control of Network Systems, 5(1):395–408, 2018.

[88] Petter Ogren, Edward Fiorelli, and Naomi Ehrich Leonard. Cooperative control of
mobile sensor networks: Adaptive gradient climbing in a distributed environment.
IEEE Transactions on Automatic Control, 49(8):1292–1302, 2004.

[89] Reza Olfati-Saber and Richard M Murray. Distributed cooperative control of multiple
vehicle formations using structural potential functions. IFAC Proceedings Volumes,
35(1):495–500, 2002.

[90] Reza Olfati-Saber and Richard M Murray. Consensus problems in networks of agents
with switching topology and time-delays. IEEE Transactions on Automatic Control,
49(9):1520–1533, 2004.

[91] Reza Olfati-Saber and Jeff S Shamma. Consensus filters for sensor networks and
distributed sensor fusion. In Proceedings of the IEEE Conference on Decision and
Control, pages 6698–6703, 2005.

105



[92] Salar Rahili and Wei Ren. Distributed continuous-time convex optimization with
time-varying cost functions. IEEE Transactions on Automatic Control, 62(4):1590–
1605, 2017.

[93] Salar Rahili and Wei Ren. Distributed continuous-time convex optimization with
time-varying cost functions. IEEE Transactions on Automatic Control, 62(4):1590–
1605, 2017.

[94] Wei Ren and Randal W Beard. Consensus seeking in multiagent systems under dy-
namically changing interaction topologies. IEEE Transactions on Automatic Control,
50(5):655–661, 2005.

[95] Wei Ren, Randal W Beard, and Ella M Atkins. Information consensus in multivehicle
cooperative control. IEEE Control Systems Magazine, 27(2):71–82, 2007.

[96] Minghao Ruan, Huan Gao, and Yongqiang Wang. Secure and privacy-preserving
consensus. IEEE Transactions on Automatic Control, 2019.

[97] Muhammad Saim, Sheida Ghapani, Wei Ren, Khalid Munawar, and Ubaid M Al-
Saggaf. Distributed average tracking in multi-agent coordination: Extensions and
experiments. IEEE Systems Journal, 12(3):2428–2436, 2017.

[98] Jinliang Shao, Lei Shi, Wei Xing Zheng, and Yuhua Cheng. Cooperative containment
control in time-delayed multi-agent systems with discrete-time high-order dynamics
under dynamically changing topologies. Journal of the Franklin Institute, 356(5):2441–
2462, 2019.

[99] Jinliang Shao, Lei Shi, Wei Xing Zheng, and Ting-Zhu Huang. Containment con-
trol for heterogeneous multi-agent systems with asynchronous updates. Information
Sciences, 436:74–88, 2018.

[100] Daniel Shevitz and Brad Paden. Lyapunov stability theory of nonsmooth systems.
IEEE Transactions on automatic control, 39(9):1910–1914, 1994.

[101] Andrea Simonetto, Leon Kester, and Geert Leus. Distributed time-varying stochastic
optimization and utility-based communication. arXiv preprint arXiv:1408.5294, 2014.

[102] Andrea Simonetto, Aryan Mokhtari, Alec Koppel, Geert Leus, and Alejandro Ribeiro.
A class of prediction-correction methods for time-varying convex optimization. IEEE
Transactions on Signal Processing, 64(17):4576–4591, 2016.

[103] Jean-Jacques E Slotine and Weiping Li. Applied nonlinear control, volume 199. Pren-
tice hall Englewood Cliffs, NJ, 1991.

[104] Demetri P Spanos, Reza Olfati-Saber, and Richard M Murray. Dynamic consensus
on mobile networks. In IFAC World Congress, pages 1–6. Citeseer, 2005.

[105] Mark W Spong, Seth Hutchinson, and Mathukumalli Vidyasagar. Robot modeling and
control. New Jersey: Wiley, 2006.

106



[106] Chao Sun, Maojiao Ye, and Guoqiang Hu. Distributed time-varying quadratic opti-
mization for multiple agents under undirected graphs. IEEE Transactions on Auto-
matic Control, 62(7):3687–3694, 2017.

[107] Shan Sun and Wei Ren. Distributed continuous-time optimization with time-varying
objective functions and inequality constraints. In Proceedings of the IEEE Conference
on Decision and Control, pages 5622–5627. IEEE, 2020.
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