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ABSTRACT OF THE DISSERTATION

The Birational Geometry of K-Moduli Spaces

by

Jacob Keller

Doctor of Philosophy in Mathematics

University of California San Diego, 2024

Professor James McKernan, Chair

For C a smooth curve and ξ a line bundle on C, the moduli space UC(2, ξ) of

semistable vector bundles of rank two and determinant ξ is a Fano variety. We show that

UC(2, ξ) is K-stable for a general curve C ∈Mg. As a consequence, there are irreducible

components of the moduli space of K-stable Fano varieties that are birational to M g. In

particular these components are of general type for g ≥ 22.
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Chapter 1

Introduction

The construction of moduli spaces parametrizing algebraic varieties is a central

topic in algebraic geometry. One cannot expect to have reasonable moduli spaces for

all varieties. Rather, attention should be restricted to varieties which are stable in some

sense. Recently, the notion of K-stability has emerged as a powerful tool to construct

moduli spaces of higher-dimensional algebraic varieties. All smooth canonically polarized

varieties, and more generally, KSBA stable pairs are known to be K-stable, and there

exist projective moduli spaces for these varieties (see [Kol23] for an extensive account of

this theory). On the other hand, not every smooth Fano variety is K-stable, and a lot of

research on K-stability centers on finding examples of K-stable Fano varieties.

Historically, it has been challenging to construct moduli spaces of Fano varieties

since automorphism groups of Fano varieties are often positive-dimensional and not re-

ductive, in contrast to the general type case. However, recent advances in the theory of
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K-stability have allowed for the construction of projective moduli spaces that parameter-

ize K-polystable Fano varieties ([LXZ22] finished the construction, but the proof is spread

across many papers including but not limited to [XZ20], [BLX22], [ABHLC19], [LWX21],

[BHLLX21]). The motivation for this paper is to study the birational geometry of these

moduli spaces.

There have been a series of results establishing strong restrictions on rational

curves in the moduli spaces of canonically polarized varieties (e.g. see [Kov03]). These

give interesting examples of moduli spaces that inherit properties from the varieties they

parameterize. We investigate the analogous question for Fano varieties. In particular, this

project started by asking if moduli spaces of K-stable Fanos were uniruled. The answer to

this question is no, as we produce irreducible components of the moduli space of K-stable

Fano varieties that are of general type.

These components are the ones parametrizing moduli spaces UC(2, ξ) of rank-two

vector bundles on a smooth projective curve C with fixed determinant bundle ξ of odd

degree. These are Fano varieties with a long history, and they play a role in various fields

such as enumerative geometry, conformal field theory, and representation theory. Our

main theorem is

Theorem 1.1. The moduli space UC(2, ξ) is K-stable for a general curve C ∈Mg and

any determinant line bundle ξ.

We are interested in the consequences this has for the geometry of the moduli of

K-stable Fano varieties. In particular, from the results of [NR75] and [MN68] we deduce
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the following:

Corollary 1.2. Let MKps denote the projective moduli space of K-polystable Fano va-

rieties. The irreducible component of MKps whose general points parameterize spaces

UC(2, ξ) is birational to M g when ξ has odd degree. In particular, by [EH87] and [FJP20],

it is of general type for g ≥ 22.

We prove this corollary in Chapter 8 by constructing a rational map

M g ⇢MKps

and using [MN68] to say that it is injective on its domain and [NR75] to say that it induces

an isomorphism on tangent spaces when the degree of ξ is odd, which implies that it is

dominant. This result is not true for even degree determinants, because the results of

[NR75] do not hold in this case. By [NR84], for C a smooth non-hyperelliptic curve

of genus 3, the moduli space UC(2,OC) is isomorphic to a Coble quartic in P7. Because

UC(2,OC) is not smooth, but the general quartic is, the component of the K-moduli space

parameterizing the varieties UC(2,OC) is larger than M3.

We briefly outline the paper.

In Chapter 2, we recall background from the paper [Man18] which constructs toric

degenerations of UC(2, ξ) using the theory of conformal blocks. These toric varieties are

the central objects of study for this paper. The goal of Chapters 3 and 4 will be to show

they are K-polystable for suitable curves C.
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In Chapter 3 we use Hecke transformations to construct a finite group of automor-

phisms of our toric varieties, which normalize the torus and thus act on the associated fan

of the toric varieties. In Chapter 4, this action on the fan will almost immediately let us

apply a well-known criterion for toric varieties to be K-polystable (see [Ber16]). The toric

varieties are constructed using the Cox rings of moduli stacks parametrizing parabolic

bundles. Therefore to construct a group action on the toric varieties, we construct an

action on the stacks, and construct a lift of that action to the Cox ring.

In Chapter 4 we use the results of the previous chapter to give conditions for the

toric varieties to be K-polystable. We also give examples in this chapter, and show that

for each genus there is at least one toric variety which is K-polystable.

In Chapter 5 we start building towards the proof of K-stability for UC(2, ξ). For

this, we use the Luna slice theorem for stacks from [AHR20]. For XΓ a K-polystable toric

degeneration of UC(2, ξ), the Luna slice theorem relates the K-stability of UC(2, ξ) to the

GIT stability of a point of a scheme AΓ with respect to an action of Aut(XΓ). First, we

give lemmas that we will need to precisely compute stabilizers of points in AΓ. Then we

give lemmas to guarantee GIT stability of certain points in AΓ. The goal of the rest of

the paper will be to verify that these lemmas hold in our case.

In Chapter 6 we verify an important hypothesis for our GIT lemmas. In particular,

we need to show that the automorphism group of the toric variety XΓ is not too big.

In fact, we show it is generated by the torus and a finite group containing the Hecke

transformations from Chapter 3. This is checked combinatorially using the theory of
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Demazure roots.

In Chapter 7 we study specific points in AΓ along with their stabilizers. The

space AΓ is (an equivariant Artin approximation of) the versal deformation space of XΓ.

Therefore its points parametrize nearby deformations of XΓ. If a point a ∈ AΓ parame-

terizes a variety Xa, then the stabilizer of a under the Aut(XΓ)-action is isomorphic to

the automorphism group of Xa. Thus, what we do in this chapter is construct interesting

deformations of XΓ and study their automorphism groups.

In Chapter 8 we combine everything from the previous chapters to prove Theorem

1.1. In particular we show that the deformations constructed in Chapter 7 have the

properties needed to give the existence of GIT-stable points in AΓ. More precisely, we

show there are GIT-stable points in AΓ that parameterize the spaces UC(2, ξ), which, by

the Luna slice theorem, proves the K-stability of these varieties.

Note that the strategy of using a toric degeneration and the Luna étale slice the-

orem for stacks for proving the K-stability of a different family of varieties has appeared

in [KP21]. A significant difference between our strategy and theirs is that we do not need

an explicit computation of the versal deformation space of the toric variety, which would

be quite difficult. We simply have to produce enough deformations and understand their

automorphism groups. Hopefully this means our strategy can be used to understand the

K-stability of more families of varieties that admit toric degenerations.

Everything in the paper will be over C and by a torus we always mean an algebraic
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torus T ≅ (C×)n. This comes equipped with two dual lattices: the character lattice

M(T ) ∶= Hom(T,C∗) ≅ Zn

and the lattice of one-parameter subgroups

N(T ) ∶= Hom(C×, T ).

1.1 Open Questions

There are many questions that are suggested by the results of this paper. First we

mention

Question 1.3. Is the moduli space UC(2, ξ) K-stable for every smooth curve C?

This type of problem can be quite challenging. Analogous results in [LX19] [SS17]

rely on the varieties being complete intersections, as they show that K-polystable degen-

erations are complete intersections of the same type. The determinant of cohomology

line bundle on the moduli spaces UC(2, ξ) gives embeddings into projective spaces whose

dimensions are very large. Therefore adapting their strategy to this case could be very

difficult.

Another strategy could be to appeal more directly to the definition of K-stability,

e.g. to show that the δ-invariant is larger than one. Because the δ-invariant is a measure
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of the singularities of divisors on UC(2, ξ), such a bound on the δ-invariant could be

interpreted as a question of higher-rank Brill-Noether theory.

We now know that the moduli space MKps has projective irreducible components.

Therefore we can study the closure of the image of Mg in MKps, which we will call KMg.

If Question 1.3 is true, then KMg would contain a dense open set isomorphic to Mg.

Question 1.4. Is KMg isomorphic to M g? If not, is it isomorphic to any other com-

pactification of Mg known in the literature?

Question 1.5. Does every point in KMg correspond to a moduli space of sheaves (perhaps

with extra structure) on a projective curve?

For Question 1.4, one could start by modifying our techniques to study the K-

polystability of the varieties X(C,λ⃗/L) as defined in equation 2.2. When C is a so-called

graph curve, these varieties are the toric varieties discussed above, but when C is an

arbitrary nodal curve, they still have torus actions and it is reasonable to expect that

they could be K-polystable under suitable conditions. The most accessible case would be

the varieties XCt studied in Chapter 7 because these are complexity 1 T-varieties. Also,

we only show that the toric degenerations are K-polystable when the dual graph of the

underlying curve has no bridges, and it would be very interesting to know what happens

when this restriction is lifted.

With regard to Question 1.5, our toric degenerations as well as the more general

varieties X(C,λ⃗/L), can be interpreted as moduli spaces of framed sheaves on the underlying

curves as in [HJ00].
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Chapter 2

Conformal Blocks and Degenerations

of Moduli Spaces of Vector Bundles

In order to study the K-stability of UC(2, ξ) for a general curve, we degenerate

the curve to a nodal curve. For this paragraph, let ξ = OC . Then as C varies over Mg

the spaces UC(2,OC) are fibers of a flat morphism Vec2,OC ,g → Mg. In order to use

degeneration arguments, we wish to extend this to a family over Mg. The extension of

this family that we will consider in this paper is the one given by the theory of conformal

blocks. This theory constructs a sheaf of algebras overMg whose fibers are called algebras

of conformal blocks. The algebra of conformal blocks over a smooth curve C is the

homogeneous coordinate ring of UC(2,OC), but over a nodal curve it is not obviously

related to any moduli space of bundles. With more work, the theory of conformal blocks

can be used to construct an analogous family overMg,1 whose fibers over smooth curves
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are moduli spaces of vector bundles with fixed determinant of odd degree. We explain

this in Chapter 4.

We start by reviewing the relevant aspects of the theory of conformal blocks. To

be clear, none of the results in this chapter are due to the author, we are simply giving

an exposition of the constructions that we will use for the rest of the paper. In general,

the theory of conformal blocks starts with the choice of a simple complex Lie group, but

we will state all the results for the simple case of SL2 = SL2(C). The starting point is a

construction going back to [TUY89]. Namely, the theory of conformal blocks associates

a vector space, V†
(C,p⃗) (λ⃗, L) to the following data:

1. A pointed stable curve (C, p⃗) ∈Mg,n.

2. A positive integer λi, called a weight, for each marked point pi.

3. An integer L called the level.

We are interested in the global situation as the curve varies.

Proposition 2.1. [Man18] Section 2, [TUY89]: The vector spaces V†
(C,p⃗) (λ⃗, L) are fibers

of a vector bundle V† (λ⃗, L) over Mg,n. Further, the direct sum

V† =⊕
λ⃗,L

V† (λ⃗, L)

admits the structure of a sheaf of multigraded algebras. This sheaf of algebras is relatively

finitely generated, in particular each fiber is finitely generated.
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To connect this theory with moduli spaces of vector bundles on curves, first we

need to recall the notion of parabolic bundles.

Definition 2.2. A rank-two quasi-parabolic bundle (E,E●) on C is a rank-two vector

bundle

π ∶ E → C

equipped with one-dimensional subspace Ei ⊆ E∣pi for each marked point. The bundle E

is also equipped with a trivialization of its determinant

det(E)→̃OC .

A rank-two parabolic bundle is a rank-two quasi-parabolic bundle along with a

choice of integer weights λi (one per marked point) and level L.

Remark 2.3. Usually a parabolic bundle is assigned weights which are rational numbers

between 0 and 1. These numbers correspond to λi/L in our notation, as we will always

have λi ≤ L.

Remark 2.4. We will not discuss principal G-bundles in this paper, but we note that the

reason we include a trivialization of the determinant in the definition is to make E the

associated bundle of a principal SL2-bundle.

The following theorem combines results from many authors ([Fal94], [Kum97],

[BL94], [BLS98], [Pau96]) and connects conformal blocks with moduli spaces of bundles.
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Theorem 2.5. Let (C, p⃗) ∈Mg,n be a smooth stable curve, andMC,p⃗ be the moduli stack

of quasi-parabolic bundles of rank 2. We have:

1. As groups,

Pic(MC,p⃗) ≅ Zn+1.

Elements of Zn+1 correspond to choices (λ⃗, L) of weights and level. Given (λ⃗, L),

we denote by L(λ⃗, L) the corresponding line bundle.

2. The sections of these line bundles are naturally identified with conformal blocks:

V†
(C,p⃗) (λ⃗, L) ≅ H

0 (MC,p⃗,L (λ⃗, L)) .

3. The last item implies

Proj(⊕
k

V†
(C,p⃗) (kλ⃗, kL)) =M(C,p⃗,λ⃗/L)

Where M(C,p⃗,λ⃗/L) denotes the moduli space of parabolic bundles that are semi-stable

with respect to the weights λ⃗ and level L.

Note that we use λ⃗/L in the notation because this space only depends on the ratio,

and because this ratio is the system of weights that usually appear in the definition of

parabolic bundles. See [MS80] for the original construction of these moduli spaces of

parabolic bundles, or [Bho89] for a more algebraic construction.
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Remark 2.6. If there are no marked points then we have

Proj(⊕
k

V†
C (kL)) = UC(2,OC).

In other words, the algebra of conformal blocks on a smooth curve C is the homoge-

neous coordinate ring of the moduli space of rank-two vector bundles on C with trivial

determinant.

If there is one marked point p ∈ C and the corresponding weight and level are both

1 then

Proj(⊕
k

V†
C (k, k)) =M(C,p,1)

In fact, the moduli space of rank-two bundles with parabolic structure of weight 1 at p,

M(C,p,1), is isomorphic to the moduli space UC(2,O(−p)) of semistable bundles. This is

Theorem 9.4 of [BL94].

In summary, the propositions say that

Vg,n(λ⃗, L) ∶= ProjMg,n
(⊕
k∈N
V† (kλ⃗, kL))

is a flat family overMg,n whose fiber over a smooth curve is the moduli space of parabolic

bundles with weights λ⃗ and level L. We will henceforth denote the fiber of this family

over a stable curve (C, p⃗) by

V(C,p⃗)(λ⃗, L)
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and refer to this as a conformal blocks space.

Remark 2.7. Sometimes we do not assign a weight λ to every marked point. In that case

we define

V(C,p⃗)(λ⃗, L) ∶= Proj(⊕
k∈N
⊕
λ⃗′
V† (λ⃗′, kλ⃗, kL))

where λ′ runs over all weightings of marked points not assigned a weight.

For fixed k ∈ N, all but finitely many choices of λ′ will give V† (λ⃗′, kλ⃗, kL) = 0. In

particular, if any component of λ⃗ is negative or larger than L then it will be zero.

Now that we have extended the family of moduli spaces of bundles over the bound-

ary of Mg, we wish to study the conformal blocks spaces over nodal curves. For this,

we recall the main results of the paper [Man18]. This paper relates conformal blocks

spaces on a nodal curve to conformal blocks spaces over the normalization of the curve.

This relationship allows Manon to construct toric degenerations of V(C,p⃗)(λ⃗, L) for special

curves C, and these toric varieties will be the main objects of study for the rest of the

paper.

Specifically, the goal of the rest of this chapter is to explain the following.

Proposition 2.8. ([Man18] Theorem 1.3) Let (C, p⃗) be a graph curve with dual graph Γ

(cf. Definition 2.11), L a positive integer, λ⃗ an assigment of integer weights to some subset

of the marked points p⃗, and denote by U(Γ) the half edges of Γ not assigned a weight.

The conformal block space V(C,p⃗)(λ⃗, L) degenerates to the toric variety X(Γ,λ⃗) defined as

follows. A choice of level L determines an ample line bundle whose associated moment
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polytope PΓ,λ⃗ sits inside MR = RE(Γ)∪U(Γ), the space of real-valued weightings of the edges

of Γ as well as the half edges that have not been assigned a weight λ. For w ∈ MR and

vertex v ∈ V (Γ), let w1(v), w2(v), and w3(v) be the weights of the three edges or half

edges adjacent to v, replacing the w values by λ when appropriate. Then the polytope PΓ,λ⃗

is described by the inequalities

−w1(v) −w2(v) −w3(v) ≥ −L/2

−w1(v) +w2(v) +w3(v) ≥ −L/2

w1(v) −w2(v) +w3(v) ≥ −L/2

w1(v) +w2(v) −w3(v) ≥ −L/2

where this set of inequalities appears for every vertex v ∈ V (Γ). The lattice M ⊂MR is

M = {(we)e∈E(Γ) ∈MR∣we ∈ Z,w1(v) +w2(v) +w3(v) ∈ 2Z for each v ∈ V (Γ)} .

We start explaining the above proposition by setting our conventions for dual

graphs of nodal curves.

Definition 2.9. The dual graph, Γ, of a pointed nodal projective curve (C, p⃗) has one

vertex per irreducible component of C, and two vertices are connected by k edges if the

corresponding components meet in k nodes. For each marked point pi on an irreducible

component of C corresponding to a vertex v, the graph has a half edge which connects
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only to the vertex v. We denote by E(Γ) the set of full edges. Similarly we denote the

vertex set by V (Γ). Sometimes we assign integer weights to the half-edges of Γ, and in

that case we denote by U(Γ) the set of half-edges are not assigned a weight.

For a given edge e ∈ E(Γ), one may normalize the corresponding node in the curve

to obtain a curve (C̃, p⃗, q1, q2) with two extra marked points corresponding q1 and q2 to

the two preimages of the node. In terms of the graph, this corresponds to splitting e into

two half-edges. Now if one assigns a weight α ∈ Z to these two half edges, there is a map

of vector spaces

ρ̂α ∶ V†
(C̃,p⃗,q1,q2)

(λ⃗, α,α,L)→ V†
(C,p⃗) (λ⃗, L) (2.1)

which was proven to be injective in [TUY89]. We refer to the image of this map as the

space of conformal blocks with weight α along e. Now we take (C̃, p⃗, q⃗) to be the partial

normalization of C along a subset I ∈ E(Γ) and choose weights α⃗ to attach to the extra

marked points q⃗. The images of the above maps are linear subspaces

V†
(C,p⃗) (λ⃗, L)α⃗ ⊆ V

†
(C,p⃗) (λ⃗, L)

and as a vector space, V†
(C,p⃗) (λ⃗, L) is the direct sum of these subspaces as α⃗ varies.

Manon in [Man18] Definition 3.2 now uses this to produce valuations on the (func-
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tion field of the) ring

⊕
λ⃗,L

V†
(C,p⃗) (λ⃗, L) = V

†
(C,p⃗).

To do this one fixes a coweighting on the graph. For us this simply means an assignment

of a number θe ∈ [0,1] to each edge e ∈ I. The valuation θ⃗ is defined by giving an element

of V†
(C,p⃗) (λ⃗, L)α⃗ the value

θ⃗ ⋅ α⃗ =∑
e∈I
θeαe,

and to a sum of such elements the maximum valuation of the summands. Manon in

[Man18] proves that this actually defines a valuation.

We note that the corresponding filtration Fθ⃗ on the algebra V(C,p⃗) has filtered

pieces

F≤a
θ⃗
=⊕
λ⃗,L

⊕
α⃗∈ZI

θ⃗⋅α⃗≤a

V†
(C,p⃗) (λ⃗, L)α⃗

for a ∈ N.

Proposition 2.10. ([Man18] Proposition 1.7) Let (C̃, p⃗, q⃗) be the partial normalization

of (C, p⃗) along a set of nodes I ⊆ E(Γ), and let (Cv, p⃗v, q⃗v), be the connected components

of C̃. Also let θ be a coweighting of the edges in I. If all θe are strictly positive then the

associated graded algebra

grθ⃗
⎛
⎝⊕λ⃗,L
V†
(C,p⃗) (λ⃗, L)

⎞
⎠
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is isomorphic to the subalgebra of

V†
(C̃,p⃗,q⃗) ≅⊗V

†
(Cv ,p⃗v ,q⃗v)

which is generated by the subspaces whose weights agree on marked points that map to the

same node in C and whose levels on all Cv agree.

If we fix an orientation on the graph, then we can realize this subalgebra as the

invariant subring of the action of a torus. The torus is (C×2)∣I ∣, and for a given edge e ∈ I

the corresponding C×2 factor acts on the subspace V(C,p⃗,q⃗)(λ⃗, α(q⃗)) with the character

(t1, t2)↦ t
(Li−Lj)
1 t

(α(qi)−α(qj))
2

whenever qi and qj are two half-edges of the dual graph of C̃ corresponding to the edge e

of Γ, and the level on the connected component of qi is Li. The character is determined

by the orientation by letting qi be the half-edge containing the endpoint of e and qj be

the one containing the starting point.

By the Rees algebra construction which is standard in K-stability, see e.g. Section

2 of [BX19], these valuations correspond to C×-degenerations of the spaces V(C,p⃗)(λ⃗, L).

By a C×-degeneration of a variety X we mean a flat morphism

π ∶ X → C
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where X is a scheme with C×-action such that π is equivariant with respect to the standard

C× action on C and π−1(1) ≅X. If we define X0 ∶= π−1(0) we denote this situation by

X ⇒X0

and think of this as a degeneration of X to X0.

The most important case for us will be when C̃ is the normalization of (C, p⃗).

In this case we have that a valuation θ⃗, when θ⃗ has strictly positive entries, induces a

C×-degeneration

V(C,p⃗)(λ⃗, L)⇒X(C,λ⃗/L) ∶=
⎛
⎝ ∏v∈V (Γ)

V(Cv ,p⃗v ,q⃗v)(λ⃗, L)
⎞
⎠

� (C×2)∣E(Γ)∣. (2.2)

Here it is important that the only prescribed weights in V(Cv ,p⃗v ,q⃗v)(λ⃗, L) are the λ⃗

attached to the original marked points p⃗. Also note that this variety only depends on the

ratio of the weights λ and the level, so we only use that ratio in the notation.

The simplest degenerations arising from this construction are in the case when C

is a graph curve.

Definition 2.11. A graph curve is a nodal projective curve with marked smooth points

(C, p⃗) such that each irreducible component Cv is a rational curve with exactly three

special points counted with multiplicity. A special point can be

1. An intersection point between Cv and another component Cv′ : such a point has
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multiplicity 1

2. A marked point which counts with multiplicity 1

3. A node of Cv which counts with multiplicity 2.

The dual graph of a graph curve is a trivalent graph, and the graph determines the curve

up to isomorphism.

In the case of a graph curve, the components of the normalization are smooth

rational curves and have exactly three marked points. Thus we are reduced to studying

conformal blocks on the curve (P1, p, q, r). In this case we have

Proposition 2.12. The space V†
(P1,p,q,r)(a, b, c,L) has dimension either 0 or 1. If a+b+c ≤

2L then we have an isomorphism

V†
(P1,p,q,r)(a, b, c,L) ≅ (Sa ⊗ Sb ⊗ Sc)

SL2

where Sa is the irreducible representation of SL2 of highest weight a, i.e. homogeneous

polynomials of degree a in two variables. The SL2 invariants are taken with respect to the

diagonal action.

As described in Lemma 4.2 of [Bea96], the space V†
(P1,p,q,r)(a, b, c,L) has dimension

19



one exactly when

∣a − b∣ ≤ c ≤ a + b (2.3)

a + b + c ≤ 2L (2.4)

a + b + c ∈ 2Z (2.5)

and is 0 otherwise.

This means that the ring

V†
(P1,p,q,r) = ⊕

a,b,c,L∈Z
V†
(P1,p,q,r)(a, b, c,L)

is the semigroup algebra associated to the semigroup of lattice points in the cone inside

R4 defined by the inequalities (2.3) and (2.4) with respect to the lattice of integer vectors

satisfying (2.5).

This semigroup algebra is graded by L, and if we fix a value for L the corresponding

hyperplane section of the cone is a polytope defining the projective variety V(P1,p,q,r) as

a toric variety. Once a level L is fixed, we will wish to translate the polytope so that it

contains the origin in its interior. The necessary translation is

(a, b, c)↦ (w1 ∶= a −L/2,w2 ∶= b −L/2,w3 ∶= c −L/2)

after which the polytope is defined by the inequalities
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−w1 −w2 −w3 ≥ −L/2

−w1 +w2 +w3 ≥ −L/2

w1 −w2 +w3 ≥ −L/2

w1 +w2 −w3 ≥ −L/2

Now for a graph curve C we will now study the variety

X(Γ,λ⃗/L) =
⎛
⎝ ∏v∈V (Γ)

V(Cv ,p⃗v ,q⃗v)(λ⃗, L)
⎞
⎠

� (C×2)∣E(Γ)∣.

in more depth. Note that for a graph curve C we will often replace the C in our notation

with Γ because C and Γ are equivalent data.

Before taking the quotient by the torus, the variety

∏
v∈V (Γ)

V(Cv ,p⃗v ,q⃗v)(λ⃗, L)

is the projective toric variety associated to the product of the above polytopes which

sits inside (R3)∣V (Γ)∣. In this setting, for a component of C̃ with corresponding vertex

v ∈ V (Γ), we label the coordinates of R3 as (w1(v),w2(v),w3(v)). If one of these weights,

say w1(v), corresponds to a half-edge with weight λi then we require w1(v) = λi − L/2.

Thus to get a full-dimensional polytope we restrict to the 6g − 6 − n-dimensional affine
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subspace of (R3)∣V (Γ)∣ whose corresponding components w1(v) are fixed as above.

Now the quotient of this space by the torus is the subalgebra from Proposition

2.10. In terms of polytopes, this means that we restrict to the subspace of (R3)∣V (Γ)∣

where the weights and levels on half edges coming from the same edge of Γ are required

to agree. Thus we have finished explaining Proposition 2.8.

Remark 2.13. Throughout the rest of the paper, we will mainly use L = 4, because in the

case with no marked points (and in the other cases given certain caveats) this defines a

polytope associated to the anticanonical divisor of the toric variety XΓ. This is because

for UC(2,O), the anticanonical divisor is four times the determinant of cohomology line

bundle (L(1) in the notation of Theorem 2.5) by [MN89].
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Chapter 3

Hecke Transformations

According to the description of the Picard group from Theorem 2.5, the algebras

of conformal blocks, V†
(C,p⃗), are the Cox rings of the moduli stacks MC,p⃗. The objective

of this chapter is to recall the notion of Hecke transformations and to show that they

act as automorphisms of these Cox rings. In particular we will use them to construct

automorphisms of the varieties X(C,λ⃗) from Chapter 2 when the components of C are

rational curves. We work with the stacks of parabolic bundles instead of their moduli

spaces because the Cox rings of the moduli spaces don’t always recover the full Cox rings

of the stacks. This is especially problematic when the curve is P1 with four marked points,

which is our most important case.

We will first apply these automorphisms to the case where C is a graph curve in

Chapter 4. In that case, the existence of these automorphisms will immediately imply the

K-polystability of the toric variety XC when the dual graph of C has no bridges. Because
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the variety is toric, these automorphisms can be seen simply as linear transformations of

the M -lattice which preserve the polytope, and we could describe these without the full

machinery developed in this chapter.

However, to prove the K-stability of UC(2, ξ) we will need to study deformations

of the toric varieties XC and their automorphisms. Specifically, in Chapter 7, given a

graph curve C, we will smooth one node of C to get a family of stable curves (Ct)t∈P1 .

Then the family of varieties XCt will be a one-parameter deformation of the toric variety

XC . In order to use the Luna slice theorem to study the K-stability of UC(2, ξ), we will

need that the Hecke transformations act on the varieties XCt . To show this, we need to

dive into the details of moduli stacks of parabolic bundles on rational curves and their

Cox rings.

Now we will introduce the Hecke transformations. They go back at least to [NR75]

and are described in more modern languange in [AG21].

Definition 3.1. Let (E,E●) be a rank-two quasi-parabolic bundle on a smooth marked

curve (C, p⃗). We define a new quasi-parabolic bundle (Hpi(E,E●),H●) called the Hecke

transformation of (E,E●) at the point pi. The underlying vector bundle of the Hecke

transformation is the kernel in the exact sequence

0→Hp(E,E●)→ E → E∣pi/Ei → 0.

To define the quasi-parabolic structure we restrict this exact sequence to pi and extend
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to the left using Tor to get the exact sequence

0→ TorOC
1 (O∣pi ,E∣pi/Ei)→Hp(E,E●)∣pi → E∣pi → E∣pi/Ei → 0.

We define the parabolic subspace of Hp(E,E●)∣pi as the image of TorOC
1 (O∣pi ,E∣pi/Ei). To

define the parabolic structure at a marked point pj ≠ pi, note that we have an equality of

subsheaves Hpi(E,E●)∣C∖{pi} = E∣C∖{pi}, so we take the same parabolic subspace as on E.

Note that on the level of determinant bundles we have a natural isomorphism

det(Hp(E,E●)) = det(E)(−pi).

We prove the following lemma to show that the Hecke transformation is invertible and to

calculate its inverse.

Lemma 3.2. Let (E,E●) be a quasi-parabolic bundle on a curve C. The twice-iterated

Hecke transformation of (E,E●) at pi is naturally isomorphic to

(E ⊗OC(−pi),E● ⊗O(−pi)).

In particular, to invert the Hecke transformation, you perform the same Hecke transfor-

mation and then tensor by OC(pi).

Proof. If we simply denote the second Hecke transformation of (E,E●) by (H2,H2
● ) then
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we note that H2 is a subsheaf of E and the inclusion fits into the exact sequence

0→H2 → E → E∣pi → 0

where the map on the right is the natural restriction map. This exact sequence is also

obtained by taking

0→ OC(−pi)→ OC → Opi → 0

and tensoring by E. This gives a natural isomorphism between the underlying bundles

H2 ≅ E ⊗OC(−pi). For the parabolic structure, we note that the parabolic structure on

H2 is naturally given by the short exact sequence

0→ TorOC
1 (Op,Ei)→ TorOC

1 (Op,E∣pi)→ TorOC
1 (Op,E∣pi/Ei)→ 0.

Now, this sequence is naturally isomorphic to

0→ Ei ⊗OC(−pi)→ E∣pi ⊗OC(−pi)→ E∣pi/Ei ⊗OC(−pi)→ 0.

To see this, we take the exact sequence

0→ OC(−pi)→ OC → Opi → 0
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and tensor by Ei, E∣pi , and E∣pi/Ei respectively. Tensoring like this gives the diagram

0 0 0

0 TorOC
1 (Op,Ei) TorOC

1 (Op,E∣pi) TorOC
1 (Op,E∣pi/Ei) 0

0 Ei ⊗OC(−pi) E∣pi ⊗OC(−pi) E∣pi/Ei ⊗OC(−pi) 0

0 Ei E∣pi E∣pi/Ei 0

0 Ei ⊗Opi E∣pi ⊗Opi E∣pi/Ei ⊗Opi 0

and the maps between the second and third rows are all 0 because it is given by mul-

tiplication by a defining equation of pi and all sheaves in the diagram are supported on

pi.

Remark 3.3. Note that at the end of the previous proof we want a natural isomorphism

to make sure things work well in families of bundles over a fixed marked curve, and we

do not identify Ei ⊗ OC(−pi) with Ei because we would need to choose a trivialization

of OC(−pi) around pi. We will actually need to choose such trivializations later, but this

needs care because different choices of trivialization can introduce scalars which may get

in the way of certain diagrams commuting. This is only really important for Lemma 3.5.

Now that we have established basic facts about the Hecke transform at one point,

we will assume our curve is P1 with n ≥ 3 marked points and introduce a larger group of

Hecke transformations which will act onMP1,p⃗.
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Definition 3.4. Let e⃗ = (e1, . . . , en) ∈ {0,1}n be such that ∑ni=1 ei = 0 (mod 2) , where

n is the number of marked points on P1. Denote the corresponding vector in (Z/2)n by

e = (e1, . . . , en), and denote the sum of all ei by ∣e⃗∣. Given a quasi-parabolic bundle (E ,E●)

on P1, we define the Hecke transform He(E ,E●) as the kernel in the exact sequence

0→He(E ,E●)→ E ⊗OP1 (∣e⃗∣
2
)→ E ∣∑ eipi
⊕ei=1 Ei

⊗OP1 (∣e⃗∣
2
)→ 0.

Its quasi-parabolic structure is determined at each point exactly as in Definition 3.1.

Lastly, choose an affine chart A1 ⊆ P1 with coordinate t which contains all pi. We

use this to define isomorphisms

OP1(1)→̃OP1(pi)

which send a local section s to s
t−pi . Note that this defines isomorphisms

OP1(pi)→̃OP1(pj)

for all i and j from 1 to n, and these satisfy the cocycle condition. Therefore we can

safely identify any line bundle of the form OP1(∑aipi) for ai ∈ Z with OP1(∑ai).

Lemma 3.5. The Hecke transformations define an action of the group

H0 ∶= {e ∈ (Z/2)n ∣∑ ei = 0 (mod 2)}
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on the stack MP1,p⃗ in the sense of [Rom05].

Proof. Let three elements e, f , g ∈ H0 be given and let He, Hf , and Hg denote the corre-

sponding functors. We need to construct natural isomorphisms

αe,f ∶He ○Hf→̃He+f

satisfying the associativity condition

He ○Hf ○Hg He ○Hf+g

He+f ○Hg He+f+g

.

We define αe,f by identifying He(Hf((E ,E●))) as the kernel of the restriction sequence

0→He(Hf((E ,E●)))→ E ⊗OP1 (∣e⃗∣ + ∣f⃗ ∣
2
)→ E ∣∑(ei+fi)pi ⊗OP1 (∣e⃗∣ + ∣f⃗ ∣

2
)→ 0

with the quasi-parabolic structure at pi determined by tensoring with OP1 ∣pi and extending

to the left using Tor. Then we note that whenever ei = fi = 1, the sequence, locally around

the point pi, simply looks like a twist of the restriction sequence

0→ E ⊗O1
P(−pi)→ E → E ∣pi → 0.
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Thus we canonically identify He ○Hf with

He+f ⊗O1
P (
∣e⃗∣ + ∣f⃗ ∣

2
−∑(eifipi) −∑(ei + f i)pi) ≅He+f

where the last isomorphism is given by the isomorphisms between line bundles O1
P(pi)

that were chosen earlier.

Now the associativity diagram commutes because the isomorphisms αe,f are defined

by including all the quasi-parabolic bundles involved into a twist of the original bundle

(E ,E●) and identifying them as subsheaves. The quasi-parabolic structure is determined

by the inclusion into the twist of (E ,E●) using Tor. The isomorphisms between the twisting

line bundles do not affect commutativity because they satisfy the cocycle condition.

Now we wish to see how this group of Hecke transforms acts on the Picard group

of MP1,p⃗. For this we need to use the standard description of the line bundles L(L, λ⃗)

as in [LS97]. We choose a universal quasi-parabolic bundle (E ,E●) on M × P1 where

M ∶=MP1,p⃗. We denote the quotients EM×{pi}/Ei by Qi. We think of Qi and Ei both as

sheaves onM×P1 supported onM×{pi} and as line bundles onM. Using the projection

πM ∶M × P1, our line bundles are defined as

L(λ⃗, L) ∶= det(RπM∗E)−L ⊗
n

⊗
i=1
(Qi)λi .
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Lemma 3.6. There are isomorphisms

H∗e⃗L(λ⃗, L) ≅ L(H−1e⃗ (λ⃗, L), L)

where

H−1e⃗ (λ⃗, L)k =He⃗(λ⃗, L)k ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

L − λk, if ek = 1

λk, if ek = 0.

Proof. First, we should establish a few points about the determinant of cohomology func-

tor det(RπM∗⋅).

● ([KM76] Page 46) Suppose we are given a short exact sequence of sheaves onM×P1,

0→ F ′ → F → F ′′ → 0

where all sheaves involved are perfect. Then there is an isomorphism det(RπM∗F) ≅

det(RπM∗F ′)⊗ det(RπM∗F ′′).

● If F is a sheaf onM × P1 which is supported onM × {p} for some p ∈ P1, then

det(RπM∗F) ≅ det(F)

where we think of F as a sheaf onM. This is because

πM ∶M × {p}→M
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is essentially the identity.

● For a sheaf F on M × P1 with no torsion along M × {p} and an integer n there is

an isomorphism

det(RπM∗(F ⊗ π∗P1OP1(n))) ≅ det(RπM∗F)⊗ det(F)n∣M×{p}.

This is established inductively using the short exact sequence

0→ F ⊗ π∗P1OP1(n − 1)→ F ⊗ π∗P1OP1(n)→ F ∣M×{p} → 0

and applying the last two bullet points.

Note that at a point pi such that ei = 1 the parabolic structure of He((E ,E●)) is given by

the quotient map

HeE ∣M×{pi} → Ei ⊗ π∗P1 (OP1 (∣e⃗∣
2
)) ≅ Ei.

Therefore we have that

H∗e (L(λ⃗, L)) = det(RπM∗HeE)−L ⊗⊗
ei=1
(Ei)λi ⊗⊗

ei=0
(Qi)λi .

Note that by definition (E ,E●) is equipped with an isomorphism

det(E)→̃OM.
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Thus we have that Ei ≅ Q∗i . Therefore we have

H∗e (L(λ⃗, L)) = det(RπM∗HeE)−L ⊗⊗
ei=1
(Qi)−λi ⊗⊗

ei=0
(Qi)λi .

To deal with the determinant of cohomology portion, we apply the above bullet points to

the defining exact sequence

0→He(E ,E●)→ E ⊗OP1 (∣e⃗∣
2
)→ E ∣∑ eipi
⊕ei=1 Ei

⊗OP1 (∣e⃗∣
2
)→ 0.

This says that

det(RπM∗HeE)−L ≅ det(RπM∗E ⊗OP1 (∣e⃗∣
2
))
−L
⊗⊗
ei=1
QLi ≅ det (RπM∗E)

−L ⊗⊗
ei=1
QLi .

This last isomorphism follows from the third bullet point because of the isomorphism

det(E)→̃OM.

Altogether this gives

H∗e (L(λ⃗, L)) = det(RπM∗E)−L ⊗⊗
ei=1
(Qi)L−λi ⊗⊗

ei=0
(Qi)λi .

Ideally we would like to say that the action of the Hecke transforms onM lifts to
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an action on the Cox ring ofMP1,p⃗. We will show that this is true as long as we extend

the group of Hecke transforms by a torus. Before stating the theorem we should review

some concepts from [AMF+22].

Definition 3.7. Let G be an abelian group. A G-family of line bundles on an algebraic

stack X is a collection of line bundles L⃗ = (Lv)v∈G equipped with isomorphisms Lv ⊗

Lv′→̃Lv+v′ satisfying some coherence conditions which can be found in [AMF+22] Section

1.

This definition is motivated by the fact that a G-family of line bundles has a Cox

ring defined as

Cox(L⃗) ∶=⊕
v∈G

H0(X ,Lv)

with the ring structure defined by the maps

H0(X ,Lv)⊗H0(X ,Lv′)→ H0(X ,Lv ⊗Lv′)→̃H0(X ,Lv+v′).

It also defines a Cox sheaf of OX -algebras

Cox(L⃗) ∶=⊕
v∈G
Lv

whose relative spectrum is written

C(L⃗) ∶= SpecX (Cox(L⃗)).
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Furthermore, if G ⊆ Pic(X ) is free, then by [AMF+22] Theorem 3.3, there is a

unique G-family of line bundles L⃗G that is compatible with the inclusion map G↪ Pic(X ).

This result is crucial for the main results of this section.

Definition 3.8. Let α ∶ G → H be a morphism of abelian groups, L⃗ a G-family of line

bundles on X and K⃗ an H-family. A morphism of families of line bundles with respect to

α is a collection of morphisms

Lv → Kα(v)

for all v ∈ G which are compatible with the tensor isomorphisms.

Fix a finitely generated free subgroup G ⊆ Pic(X ) with corresponding G-family of

line bundles L⃗G, and let T ∶= Hom(G,C∗) be the Néron-Severi torus for the subgroup G.

Definition 3.9. Let G ⊆ Pic(X ) be a subgroup. We denote by AutG(X ) the subgroup

of automorphisms whose induced automorphism of Pic(X ) sends G to G.

We want to lift objects of AutG(X ) to automorphisms of the space C(L⃗G). An

important subtlety that we will need to monitor is the fact that the collection of maps

X → X is itself a groupoid, not just a set. Accordingly we will need to study AutG(X )

and Aut(C(L⃗G)) as 2-groups (really a stack valued in 2-groups, but we are really only

interested in the C-points), so we will review some fundamental concepts of 2-group theory

before moving on.

Definition 3.10. A 2-group, G, is a group object in the 2-category of small groupoids.

Its set of objects up to isomorphism is naturally a group, called π1(G) and each object
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itself has an automorphism group. The automorphism group of the identity is denoted

π2(G). This is an abelian group by the Eckmann-Hilton argument, and is isomorphic to

the automorphism group of any object. Any group can be considered as a 2-group with

trivial π2.

Definition 3.11. A short exact sequence of 2-groups is given by functors

1→ G′ → G→ G′′ → 1

inducing a short exact sequence on the groups π1 and π2.

Definition 3.12. Let H↪ G be a sub-2-group. We define the normalizer of H in G to be

the full subcategory of objects whose isomorphism classes lie in the normalizer of π1(H)

inside π1(G).

Now we start towards the proof of the main theorem of this chapter with the

following lemma, which relates morphisms of families of line bundles to automorphisms

of the Cox sheaves of algebras.

Lemma 3.13. The normalizer of the torus T inside the 2-group Aut(C(L⃗G)), which

we denote by AutT (C(L⃗G)), is equivalent to the groupoid of pairs of isomorphisms (φ ∶

X →̃X , ψ ∶ φ∗L⃗→̃L⃗) where φ ∈ AutG(X ) and ψ is an isomorphism of families of line bundles

with respect to the automorphism φ∗ ∶ G→ G.

Proof. First, we see how given a pair (φ ∶ X →̃X , ψ ∶ φ∗L⃗→̃L⃗), we can construct an auto-

morphism φ̃ ∈ AutT (C(L⃗G)). Because the construction of C(L⃗G) is functorial with respect
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to morphisms of G-families of line bundles, we get the following isomorphisms:

C(L⃗G)→ C(φ∗L⃗)→ C(L⃗G).

Here the first map is induced by ψ and the second is the natural projection from the

pullback. This automorphism normalizes the torus because it is given on the graded

pieces of Cox(L⃗G) by isomorphisms (φ∗L⃗)v → Lφ∗(v) and then extended by linearity. This

construction is clearly functorial with respect to isomorphisms of pairs (φ,ψ).

Now we construct an essential inverse functor from AutT (C(L⃗G)) to the groupoid

of pairs (φ,ψ). Firstly, we need to start with an automorphism φ̃ ∈ AutT (C(L⃗G)) and

construct the corresponding automorphism φ ∈ AutG(X ). Note that C(L⃗G) is a T -

torsor over X , and therefore we have that [C(L⃗G)/T ] ≅ X . Thus, we get a functor

AutT (C(L⃗G)) → Aut(X ) by simply composing an automorphism with the projection

C(L⃗G) → X and noting that because the automorphism normalizes the T -action, the

resulting map is invariant for the T action and thus descends to X .

Now we justify why the image of this functor lands in the subcategory AutG(X ).

Denote the automorphism φ̃ induces on X by φ, so our automorphisms fit into a diagram

C(L⃗G) C(L⃗G)

X X .

φ̃

φ

Therefore φ̃ induces an isomorphism φ∗Cox(L⃗G)→ Cox(L⃗G) of sheaves of rings over
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X . That the automorphism φ̃ normalizes T means that this isomorphism is T equivariant

as long as you twist the pullback T -action on φ∗C(L⃗G) by the automorphism φ̃ induces on

T by conjugation in AutT (C(L⃗G)). Therefore this isomorphism sends the graded pieces of

φ∗Cox(L⃗G) to the graded pieces of Cox(L⃗G). In other words, the pullback of line bundles

in G under φ are still in G, and therefore φ is an object of AutG(X ) as desired.

In fact, that the isomorphism of sheaves of algebras φ∗Cox(L⃗G) → Cox(L⃗G) re-

spects graded pieces means that it is determined by a system of isomorphisms φ∗Lv→̃Lφ∗v

which respect the ring structures on the Cox rings, i.e. a morphism ψ of G-families of

line bundles φ∗(L⃗)→̃L⃗ with respect to the automorphism φ∗ ∶ Pic(X ) → Pic(X ). Thus

we have constructed our pair (φ,ψ). This construction is functorial and gives the desired

essential inverse.

Now we get to the main theorem of this chapter.

Theorem 3.14. Let X be an algebraic stack and G ⊆ Pic(X ) be a subgroup. Assume that

G is free and finitely generated. Let T ∶= Hom(G,C∗) be the subtorus of the Néron-Severi

torus corresponding to the subgroup G (sometimes we abusively call this the Néron-Severi

torus of G). Let Cox(L⃗G) be the Cox sheaf of algebras as in [AMF+22] and denote its

relative spectrum C(L⃗G) ∶= SpecX (Cox(L⃗G)). If we define AutT (C(L⃗G)) as the normalizer

of T , then we have a short exact sequence of 2-groups:

1→ T → AutT (C(L⃗G))→ AutG(X )→ 1.
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Here a sequence of 2-groups is exact if it induces exact sequences on the group of isomor-

phism classes of objects and on the automorphism groups of each object.

Proof. By Lemma 3.13 we can replace AutT (C(L⃗G)) with the groupoid of pairs

(φ ∈ AutG(X ), ψ ∶ φ∗L⃗G → L⃗G).

We start by checking that the map AutT (C(L⃗G))→ AutG(X ) is surjective on objects. Take

an automorphism φ ∶ X → X inside AutG(X ). Now, because G is free, by Theorem 3.3 of

[AMF+22] there is only one structure of G-family of line bundles on L⃗G that is compatible

with the inclusion G ⊆ Pic(X ). Thus we can choose an isomorphism ψ ∶ φ∗(L⃗G)→̃L⃗G with

respect to the automorphism φ∗ ∶ G→ G.

This shows that the morphism of 2-groups AutT (C(L⃗G))→ AutG(X ) is surjective

on objects.

Now we see that AutT (C(L⃗G)) → AutG(X ) induces isomorphisms between spaces

of morphisms. Suppose we have an isomorphism φ → φ′. Then there is a unique way to

fill in the commutative diagram

φ∗(L⃗) L⃗

φ′∗(L⃗) (L⃗)

ψ

id

where the left arrow is induced by the isomorphism φ → φ′. Therefore isomorphisms

between pairs (φ,ψ ∶ φ∗L⃗→̃L⃗) are uniquely determined by what they do to φ.
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Lastly we should check that the kernel of the morphism AutT (C(L⃗G))→ AutG(X )

is T considered as a 2-group with no automorphisms. To see this, note that the kernel is

the collection of pairs (id,ψ ∶ L⃗→̃L⃗). Such a thing is given by a collection of isomorphisms

Lv→̃Lv for all v ∈ G which is compatible with tensor products. In other words, it is a

group homomorphism from G→ C∗.

Corollary 3.15. The ring Cox(MP1,p⃗) admits an action by a group HT which is an

extension of the Hecke transformation group H0 by a quotient T /µ2 of the Neron-Severi

torus T of MP1,p⃗. The ring Cox(MP1,p⃗) is graded by a sublattice of Pic(MP1,p⃗) and HT

permutes the graded components in the same way H0 permutes Pic(MP1,p⃗) as described

in Lemma 3.6.

Proof. Because of Lemma 3.5, we have a map H0 → Aut(MP1,p⃗), so we can define the

group HT as the fiber product in this diagram of fundamental groups

HT H0

π1(AutT (C(MP1,p⃗))) π1(Aut(MP1,p⃗)).

Recall that the fundamental group of a 2-group is its set of isomorphism classes. More

concretely, one can think of points of HT as pairs ([(φ,ψ ∶ φ∗L⃗→̃L⃗)], h) such that the

automorphism φ ofMP1,p⃗ is isomorphic to the Hecke transform h ∈ H0. Here the square

brackets denote the isomorphism class.
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We will now explain that the top row fits into a short exact sequence

1→ T /µ2 →HT →H0 → 1.

The projection HT →H0 is surjective because the map

π1(AutT (C(MP1,p⃗)))→ π1(Aut(MP1,p⃗))

is. This in turn is true because AutT (C(MP1,p⃗))→ Aut(MP1,p⃗) is surjective on the group

of objects, and therefore it is surjective on the group of isomorphism classes.

Now we calculate the kernel of the map HT →H0. A priori, the kernel is the group

of isomorphism classes of the form [(id,ψ ∶ L⃗→̃L⃗)]. Now, the group of pairs (id,ψ ∶ L⃗→̃L⃗)

is T , as explained in the proof of Theorem 3.14. Also in that proof we saw that isomor-

phisms between those pairs are the same as isomorphisms between the automorphisms

φ ∶MP1,p⃗→̃MP1,p⃗. This means that the kernel of HT → H0 is the quotient of T by the

action of the automorphism group of

id ∶MP1,p⃗ →MP1,p⃗

i.e. the automorphism group of the universal parabolic bundle (E ,E●) onMP1,p⃗ ×P1. We

claim that as long as there are at least two marked points p⃗, then this automorphism

group is Z/2, the center of SL2. This is because the general point ofMP1,p⃗ parameterizes
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a bundle of the form O ⊕ O where no global section passes through more than one of

the parabolic subspaces. Such a parabolic bundle is not a direct sum of parabolic sub-

bundles, and therefore its only automorphisms are scalars. However, points ofMP1,p⃗ also

come with trivializations of their determinants, so the only scalars compatible with these

trivializations are ±1.

Now we claim that the automorphism −1 of id ∶MP1,p⃗ →MP1,p⃗ acts on the line bun-

dle L(m1, . . . ,mn, L) by (−1)∑n
i=1mi . For the line bundles given by the universal parabolic

quotients Qi, this is clear because the scalar −1 acting on E acts by −1 on its fiber

E ∣MP1,p⃗×{pi} and so by −1 on its quotient Qi. Thus we only have to check that −1 acts

trivially on the determinant of cohomology line bundle.

To see this note that the complex RπMP1,p⃗∗E is perfect of amplitude [0,1], and

that the scalar −1 acts by −1 on each term of the complex. If you represent this complex

locally by a complex of vector bundles F1 → F2, then the difference in ranks between F1

and F2 is the Riemann Roch number χ(E ∣P1×{(E,E●)}) = 2 for any (E,E●) ∈MP1,p⃗. This

means that −1 acts by (−1)2 = 1 on the determinant of this complex.

Therefore we have shown that if we write Pic(MP1,p⃗) ≅ Zn × Z then the action of

the scalar −1 on the torus T ≅ (C×)n ×C× is trivial on the component that corresponds

to the level and scales each of the components that correspond to the marked points by

−1. Thus the kernel of HT → H0 is the quotient of T by this µ2 action. The torus T /µ2

is the torus whose M -lattice is the sublattice of M(T ) consisting of vectors (m⃗, l) such

that the sum m1 + . . . +mn is even. This explains the strange lattice used to define the
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toric varieties in Proposition 2.8.

By Theorem 3.14 the first statement of the corollary is true with

C(MP1,p⃗) = SpecM(Cox(MP1,p⃗))

replacing Cox(MP1,p⃗). Because Cox(MP1,p⃗) is the ring of global sections of the structure

sheaf of C(MP1,p⃗), we get a map

AutT (C(MP1,p⃗))→ AutT (Cox(MP1,p⃗))

and therefore an action of HT on Cox(MP1,p⃗). The last statement of the Corollary follows

immediately from the constructions.

Now we apply Corollary 3.15 to study the degenerations X(C,λ⃗) in the case where

(C, p⃗) is a stable curve each of whose components is a rational curve. As before, we

denote by (Cv, p⃗v, q⃗v), v ∈ V (Γ), the connected components of the normalization of C.

Here p⃗v lists the preimages of the marked points p⃗ and q⃗v lists the preimages of the nodes.

Suppose we choose two marked points on Cv, qv,i, and qv,j. Then we will be working with

Hecke transformations on Cv of the form He, where only ei and ej equal 1, and we refer

to these as Hecke transformations from qv,i to qv,j.

Proposition 3.16. Let (C, p⃗) be a stable curve whose irreducible components are rational

curves, and Γ be its dual graph. The variety XC,λ⃗ defined by a choice of weighting λ⃗ of
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marked points p⃗ admits the action of a group HT (C, p⃗) which is an extension

0→ (C×)E(Γ)/(µ2)V (Γ) →HT (C, p⃗)→H1(Γ,Z/2)→ 0.

The induced action of H1(Γ,Z/2) on the character lattice ZE(Γ) of (C×)E(Γ) is

given by the map

H1(Γ,Z/2) ×ZE(Γ) → ZE(Γ)

(γ, (me)e∈E(Γ))↦Hγ((me)e∈E(Γ))

where

(Hγ((me)e∈E(Γ)))e =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−me if γ has coefficient 1 along e

me if γ has has coefficient 0 along e.

Proof. Using the concept of a G-family of line bundles, we can rephrase the definition

of XC,λ⃗. In particular, consider the abelian group Z∣E(Γ)∣+1 consisting of vectors (m⃗, k)

where m⃗ is an integer weighting of the full edges of Γ, and k will describe the level. Such a

weighting determines a line bundle L(kλ⃗v, m⃗v, kL) onMCv ,p⃗v ,q⃗v giving the marked points

p⃗v the weights from λ⃗ scaled by k, and giving the preimages of the nodes the m⃗-weights

of the corresponding edges. Recall that when we write XC,λ⃗ we imagine all the weights λ⃗

to be at a fixed level L.

Therefore we get a Z∣E(Γ)∣+1-family of line bundles, L⃗C on ∏v∈V (Γ)MCv ,p⃗v ,q⃗v by
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assigning to (m⃗, k) the exterior tensor product

LC(m⃗, k) ∶= ⊗
v∈V (Γ)

π∗vL(kλ⃗v, m⃗v, kL).

In this language, XC,λ⃗ is defined as the Proj of Cox(L⃗C) with respect to the grading by

k.

Choose a cycle γ = (e1, . . . , el) in Γ, label the vertex at the end of ei as vi, and denote

by qi,1 and qi,2 the marked points on Cvi which correspond to the edges ei and ei+1. We

define the ”Hecke transform along the cycle γ” as the automorphism of ∏v∈V (Γ)MCv ,p⃗v ,q⃗v

which performs the Hecke transformation from qi,1 to qi,2 on the i component. If the cycle

visits a vertex multiple times then we take the product of the Hecke transformations.

This defines an action of the group H1(Γ,Z/2) on ∏v∈V (Γ)MCv ,p⃗v ,q⃗v .

Further, this action preserves the collection of line bundles

⊗
v∈V (Γ)

π∗vL(kλ⃗v, m⃗v, kL)

because it does not change the level or the weights λ⃗, and performs the same Hecke

transformation at both preimages of the same node. Because of this, we get an action of

H1(Γ,Z/2) on Z∣E(Γ)∣+1. Explicitly, by Lemma 3.5, a cycle γ sends (m⃗, k) to the vector

with e-component kL−me whenever e is in γ, me when e is not in γ, and level component

k. This means that L⃗C is isomorphic, with respect to the action of γ on Z∣E(Γ)∣+1, to its

pullback by the Hecke transformation around γ.
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Now we apply Theorem 3.14 to the Cox ring of our Z∣E(Γ)∣+1-family of line bun-

dles L⃗C . This gives the group G which is an extension of H1(Γ,Z/2) by the torus

Hom(Z∣E(Γ)∣+1,C×)/(µ2)V (Γ). This group (µ2)V (Γ) is the automorphism group of the iden-

tity map of ∏v∈V (Γ)MCv ,p⃗v ,q⃗v . An element in (ϵv)v∈V (Γ) ∈ (µ2)V (Γ) acts on an element of

Hom(Z∣E(Γ)∣+1,C×) by scaling the e component by ϵv1ϵv2 when e is the edge between two

vertices v1 and v2. TheM -lattice of this quotient torus is the sublattice of ZE(Γ)+1 consist-

ing of vectors where the sum of the weights of all edges adjacent to any given vertex must

be even. The previous paragraph tells us how H1(Γ,Z/2) acts on this M -lattice. Note

that the C×-factor of the torus of G that corresponds to the level acts trivially on XC,λ⃗

because XC,λ⃗ is the Proj of the Cox ring of L⃗C with respect to that one-parameter sub-

group. This means that the G action factors through the quotient group HT (C, p⃗) whose

torus is Hom(Z∣E(Γ)∣,C×)/(µ2)V (Γ). We identify theM -lattice of this quotient torus as the

sublattice of ZE(Γ)+1 where the level component k is 0 and the weightings of the edges sat-

isfy the above parity condition. The Hecke action on this sublattice is the one described

in the statement of the corollary, so this finishes the proof.
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Chapter 4

K-semistability of moduli spaces of

vector bundles

In this chapter we will prove the K-semistability of the moduli spaces UC(2, ξ) for

a general curve C. We do this using the openness of K-semistability as proved in [BLX22]

and proving the K-polystability of the toric degenerations XΓ of UC(2, ξ) described in

Chapter 2.

First we will show how graphs with half-edges furnish toric degenerations of the

moduli spaces UC(2, ξ) when the line bundle ξ is non-trivial. More specifically, given a

curve with many marked points p1, . . . , pn, a level L, and weightings λ⃗ of the marked

points, if all the weights satisfy λi = 0 or λi = L then X(Γ,λ⃗/L) is a degeneration of

UC(2,O(−∑ni=1 λiL pi)). For simplicity, we will only explain this degeneration in the case

of curves with one marked point, as that is all we need.
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To understand this degeneration, consider a specific level L ∈ N, and the sheaf of

algebras V†(L,L) over Mg,1 as in Proposition 2.1. Over a fixed smooth pointed curve

(C,p), the fiber of this sheaf of algebras is the section ring of the line bundle L(L,L)

on the stack M(C,p⃗). By [BL94] Section 8, this is the homogeneous coordinate ring of

the moduli space UC(2,O(−p)). Therefore the relative proj of this sheaf of algebras is a

flat family overMg,1 with fiber UC(2,OC(−p)) over smooth (C,p) and V(C,p)(L,L) (the

conformal blocks space) over nodal (C,p). Then as before, when (C,p) is a graph curve,

V(C,p)(L,L) admits a C× equivariant degeneration to the toric variety XC,p,1 (i.e. XΓ,1

when we identify (C,p) with its dual graph Γ).

Remark 4.1. This looks strange, because Theorem 2.5 says that this algebra of conformal

blocks of weight L on (C,p) is actually the homogeneous coordinate ring of the moduli

space M(C,p,1) of parabolic bundles with weight equal to the level. However, this space is

in fact isomorphic to the space UC(2,O(−p)). We claim that the explicit isomorphism is

given by taking a parabolic bundle with trivial determinant and taking its Hecke transform

at p to obtain a bundle with determinant OC(−p) and simply forgetting its parabolic

structure. We could prove this is an isomorphism if we extended the results of Chapter

3 to cover moduli spaces of quasiparabolic bundles of fixed non-trivial determinant. In

particular we would consider the isomorphism from the stack of quasiparabolic bundles

with trivial determinant to the stack of quasiparabolic bundles with determinant OC(−p)

given by the Hecke transform at p. The we would show that the pullback of the line

bundle L(0, L) (defined appropriately) under this transformation is L(L,L), and taking
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the corresponding isomorphism of section rings would yield the desired isomorphism.

While this is an interesting result, we do not give the full proof as it is not important for

what follows.

We want to have a better understanding of the toric variety XΓ,λ⃗ and its anti-

canonical polytope in case the graph Γ has half edges with weights equal to L or 0. We

start by analyzing what happens when there is a vertex v with a half-edge of weight λi = 0

i.e. wi = −L/2 in the shifted coordinates w. In this case, for m ∈ P(Γ,λ⃗), i.e. an integer

weighting of the edges satisfying the conditions of Proposition 2.8, the components of m

on the two edges touching v must be equal. Thus, if we remove v from the graph and

replace those two edges by one edge we get a new graph defining the same polytope. This

means we can ignore half-edges with weights wi = −L/2.

Now we analyze the case where a vertex v connects to a half edge with weight

w = L/2. Then the inequalities 2.8 imply that a lattice point m ∈ P(Γ,λ⃗) must be of the

form on the left of Figure 4.1. In this case, as before, we remove v and replace the two

v

v′ v′′

x
-x

v′ v′′x

Figure 4.1: Weight wi = L/2 and the corresponding colored graph

edges touching v with one edge. Furthermore, we arbitrarily choose one of the vertices

touching v and color it black. To one such colored graph, we can associate a polytope
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such that the inequalities supported on the colored vertex have −wi in place of wi as in

Figure 4.2. Here we are identifying an inequality of the form ⟨n,m⟩ ≥ −1 with the vector

n ∈ N and are also choosing level 4. This polytope will be the same as the polytope of

v

-1/2 -1
/2

1/2

v

1/2 1/
2

1/2

v

1/2 -1
/2

-1/2

v

-1/2 1/
2

-1/2

Figure 4.2: Inequalities at a colored vertex.

the original graph.

In conclusion, when studying degenerations of UC(2, ξ), especially when ξ has

odd degree, we will work with a colored graph with no half-edges. This colored graph

construction is from [BGM20].

Remark 4.2. In chapter 7 we will need to distinguish between edges that came from the

original graph, and the new edges that were introduced in this construction to replace

the two edges attached to the vertex with a half edge. We will call this set of edges

C(Γ) ⊆ E(Γ).

Now consider a connected graph curve of genus g and its associated dual graph Γ,

which may have colored vertices. The main result of this chapter is the following.

Theorem 4.3. XΓ is K-polystable if Γ does not contain a bridge, i.e. an edge whose

removal would disconnect Γ.

Proof. We use the theorem from [Ber16] that a projective toric variety is K-polystable if
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and only if the barycenter of the polytope associated to the anti-canonical divisor is 0.

For XΓ, the barycenter being 0 is a simple consequence of the action of

HΓ ∶=H1(Γ,Z/2)

on theM -lattice as described in Proposition 3.16. In particular this action comes from the

action of HT (CΓ) on XΓ, so it preserves the anticanonical polytope of XΓ. This implies

the barycenter is fixed by the HΓ-action. To finish the proof we will show that 0 ∈M is

the only fixed point for the HΓ-action.

It is a basic fact in graph theory that Γ having no bridges is equivalent to every edge

in Γ being contained in a cycle. See for instance [Cha77]. Therefore for (we)e∈E(Γ) ∈ M

and any edge e we can take a cycle containing e and the corresponding automorphism

changes we to −we. Consequently, if this vector were fixed by HΓ, all we would have to

be 0.

An example of a family of bridge-less graphs are the ladder graphs as in Figure

4.3. Because there is a ladder graph for each genus, Theorem 4.3 shows that for each

genus there is at least one toric variety which is K-polystable.

v1 v2 v3 v4

v5 v6 v7 v8

Figure 4.3: A ladder graph of genus 5
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Example 4.4. We give an example of a toric variety XΓ that is not K-polystable. The

graph is the dumbbell graph of Figure 4.4. If we denote by (w1,w2,w3) the weights on

the leftmost edge, central edge, and rightmost edge respectively, then the inequalities from

Proposition 2.8 for L = 4 give

−2w1 −w2 ≥ −2

w2 ≥ −2

2w1 −w2 ≥ −2

at the left vertex. This is because a weight of w1 at the loop gives the weight w1 to both of

the marked points in the normalization of the curve that map to the corresponding node.

The inequalities for the right vertex are the same but with w3 instead of w1.

The polytope described by these inequalities is the square pyramid with vertices

(0,2,0), (±2,−2,±2) whose barycenter is (0,−1,0). In particular its barycenter is not 0 or

even a lattice point.

v1 v2

Figure 4.4: The dumbbell graph.

Example 4.5. Now we give an example of a colored graph Γ which has a bridge but XΓ

is nevertheless K-polystable. For this, we take the dumbbell graph with a colored vertex of
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Figure 4.5. Its polytope for L = 4 has the same inequalities as Example 4.4 for the left

vertex but the inequalities

−2w3 +w2 ≥ −2

−w3 ≥ −2

2w3 +w2 ≥ −2

for the right one.

This describes a tetrahedron with vertices (±2,−2,0) and (0,2,±2) whose barycenter

is 0.

v1 v2

Figure 4.5: The dumbbell graph with extra half-edge.

Corollary 4.6. The moduli space UC(2, ξ) of rank-two semistable vector bundles with

fixed determinant ξ is K-semistable for general C.

Proof. As previously noted, these moduli spaces are isomorphic to either UC(2,OC) or

UC(2,OC(−p)) depending on if deg(ξ) is even or odd respectively. As C degenerates

to a graph curve C ′, we have a flat family with generic fibers UC(2, ξ) and special fiber

the conformal block space VC′ (in the odd-degree case, V(C′,p)(1,1)). Now since the con-

formal block space admits a C×-degeneration to XΓ which is a K-polystable Fano, it is
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K-semistable because K-semistability is open in families [BLX22]. Then again for the

same reason, UC(2, ξ) is K-semistable for a general curve C.

Remark 4.7. In the preceding argument, to apply the openness of K-semistability we

technically needed to make sure the relevant families are Q-Gorenstein. We will usually

not check this hypothesis explicitly because it will always be satisfied for us. One way

to see this is to note that for a trivalent graph Γ, the toric variety XΓ is Gorenstein by

[FM19]. Thus by the results of [WITO69], any flat family over a scheme S with XΓ as

its central fiber is a Gorenstein family in some neighborhood of 0 ∈ S as long as S is

Gorenstein at 0.
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Chapter 5

The Luna Slice Theorem and GIT

Stability

By the Luna Slice Theorem for Algebraic Stacks [AHR20], we know that for each

K-polystable Fano variety X, there is an affine scheme of finite type over C, Spec(R),

equipped with an action of Aut(X) which fixes a distinguished point x ∈ Spec(R), and

an étale map

fAut(X)∶ [Spec(R)/Aut(X)]→MKss

sending x to the class of X. Furthermore, as explained in [ABHLC19] and [AHLH18]

Proposition 4.3, we can assume that the stabilizer of a point p ∈ Spec(R) is the auto-

morphism group of the Fano variety f(p) and that the preimage of the K-semistable,

K-polystable, and K-stable loci in MKss are the GIT-semistable, GIT-polystable, and

GIT-stable loci respectively in Spec(R). Thus, by studying GIT stability on Spec(R), we
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can study which of the irreducible components ofMKss contain K-stable points.

For Γ a colored graph with no bridges and X = XΓ we will fix a choice of such a

scheme Spec(R) for the rest of the paper and call it AΓ = Spec(RΓ). The scheme AΓ is

an equivariant Artin approximation of the versal deformation space of XΓ so we will refer

to it simply as the Artin approximation space.

In order to work with AΓ, we now prove some lemmas concerning the GIT stability

of affine varieties under actions of certain reductive groups. The main result of the chapter

is Lemma 5.6, and the rest of the paper will be devoted to applying this Lemma to be

able to find GIT-stable points in AΓ that parameterize moduli spaces of vector bundles

on smooth curves.

First we recall the formulation of the Hilbert-Mumford criterion in terms of weight

polytopes.

Definition 5.1. Let G be a reductive group with linear representation V . For every

vector v ∈ V and maximal torus T ⊆ G, we will define a weight polytope Wv,T ⊆M(T )R.

Let

V ≅ ⊕
α∈M(T )

Vα

be a decomposition of V into irreducible representations with respect to T . With respect

to this decomposition we have

v =∑ vα

and Wv,T ⊆M(T )R is defined as the convex hull of all α so that vα ≠ 0.
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Proposition 5.2. ([Mum65] Theorem 2.1) Let G be a reductive group and V a linear

representation. A vector v ∈ V is

1. Stable if Wv,T contains the origin in its interior for every maximal torus T . Here

the interior is the union of open subsets of M(T )R contained in Wv,T .

2. Polystable if Wv,T contains the origin in its relative interior for every T . Here the

relative interior means that we take the interior in the induced topology on Wv,T .

3. Semistable if Wv,T contains the origin.

Remark 5.3. This formulation seems to be well-known, but for lack of a suitable reference,

we indicate how to translate the formulation of the Hilbert-Mumford criterion in [Mum65]

to the one we have here. First of all, the criterion is originally stated for projective

varieties with an ample linearization. Our criterion for stability can then be considered

as projective stability for P(V ) with the natural linearization on O(1). This makes sense

because our criterion does not change if we scale the vector v.

The other significant difference is that in [Mum65], one-parameter subgroups are

considered individually. For us, a one-parameter subgroup in G can be considered as a

vector λ ∈ N(T ) for some maximal torus T ⊆ G. Then the weights of V for the C×-action

induced by λ are given by the natural pairing ⟨λ,α⟩ where α runs over the T -weights of V .

For a non-zero vector v ∈ V , we consider the family of lines λ(t)Cv for t ∈ C∗. As t → 0,

this line becomes a weight space for λ of weight r =maxα∈Wv,T
⟨λ,α⟩. The original Hilbert-

Mumford criterion for semistability is then that r ≥ 0 for all one-parameter subgroups λ
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and Cv ∈ P(V ). Considering all λ ∈ N(T ), this is the same as saying that Wv,T contains

the origin. The other criteria follow similarly.

This criterion becomes difficult to apply in the case where G has more than one

maximal torus. Therefore for the rest of the chapter we will work under the following

assumption:

Assumption 5.4. G is a group of the form T ⋊H, where T is a torus and H is a finite

group such that the only one-parameter subgroup (equivalently, character) of T which is

fixed by the conjugation action of H is the constant one, i.e. 0 ∈ N(T ).

In Proposition 6.2 we will show that the automorphism group of the toric variety

XΓ satisfies 5.4 under some mild conditions.

Lemma 5.5. Let G satisfy assumption 5.4, and let V be a finite-dimensional represen-

tation of G. Then the general point of V is GIT-polystable. Further, if no 1-parameter

subgroup of G acts trivially on V , then the general point of V is GIT-stable.

Proof. Choose a basis of V diagonalizing the action of T . Consider the union of all

coordinate hyperplanes with respect to this basis. If a point v ∈ V is not contained in this

union, then v has a non-zero component for each weight that appears in the T action on

V . This means that the weight polytope Wv (we supress T from the notation as it is the

only maximal torus) is the convex hull of all weights appearing in V . We call this generic

weight polytope W .

Now let Vα ⊆ V be the weight space for a character α ∈ Hom(T,C×) = M . We
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have that for h ∈ H, h(Vα) = Vh∗α where h ∗ α(t) = α(h−1th) is the H-action on M. In

particular, the H action onM preservesW and therefore fixes its barycenter. This implies

the barycenter of W is the origin, and the barycenter is always in the relative interior.

Thus we know that the generic v ∈ V is polystable.

Now assume that no 1-parameter subgroup acts trivially. If the generic v ∈ V is not

stable, that means that W has empty interior, and because W contains the origin, it is

therefore contained in a linear hyperplane. Furthermore, since W is a rational polytope,

this hyperplane can be taken as the annihilator of an element λ ∈ NQ and by scaling we

assume λ ∈ N . But this means that λ acts trivially on V , because for α ∈ M ∩W , the

weight of λ acting on Vα is ⟨λ,α⟩ = 0. Thus if no 1-parameter subgroup acts trivially, W

must be full-dimensional, and therefore the generic point in V is stable.

Lemma 5.6. Let G satisfy assumption 5.4, V a G-representation on which no 1-parameter

subgroup acts trivially, and Y ⊆ V an irreducible affine variety not contained in any hy-

perplane. Then Y contains GIT-stable points for the G-action.

Proof. By the proof of the above lemma, V contains GIT-stable points, and the points that

aren’t stable are contained in the union of coordinate hyperplanes for a basis diagonalizing

T . Because Y is irreducible, if Y is contained in the union of these hyperplanes, then it

is completely contained in one of them, which is impossible by hypothesis. Thus, Y must

contain stable points for the action on V .

59



Chapter 6

The Automorphism Group of the

Toric Degenerations

Our strategy to prove the K-stability of UC(2, ξ) is to use the Luna slice theorem.

This reduces the problem to determining the GIT stability of points in AΓ with respect

to its action by Aut(XΓ). In particular, we want to apply Lemma 5.6. The goal of this

chapter is to show that Aut(XΓ) ≅ T ⋊H where T is the torus acting on XΓ and H is

finite, as required by the lemma. To do this, we will apply the theory of Demazure roots.

These are defined using the rays of the fan of a toric variety, so we start with a lemma

describing the rays of the fan ΣΓ corresponding to one of our toric degenerations XΓ.

We start by recalling the lattices M and N associated to XΓ. The lattice M is

defined as the set of integer weightings of the edges such that for any vertex the sum of

the three weights adjacent to it is even. Thus, the lattice N is described as the set of
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weightings of the edges such that the three weights around a vertex are either all integers

or all half-integers.

Now let ΣΓ(1) denote the set of rays of ΣΓ, and for τ ∈ ΣΓ(1) denote by vτ ∈ N

the primitive lattice vector generating the ray. We will refer to the vectors vτ as primitive

generators.

Lemma 6.1. Let Γ be a colored, connected, trivalent graph that has no half-edges, no

bridges, and is not the theta graph of Figure 6.2. The primitive generators of ΣΓ are split

into groups of four, one group for each vertex of Γ. If the vertex is colored white then these

are the vectors of Figure 6.1, and if the vertex is colored black they are the ones of Figure

4.2. These vectors are implied to have weight 0 along all edges that are not pictured.

Proof. Firstly, note that we are assuming our graphs have no loops, because a trivalent

graph with a loop automatically has a bridge.

v

-1/2 -1
/2

-1/2

v

1/2 1/
2

-1/2

v

1/2 -1
/2

1/2

v

-1/2 1/
2

1/2

Figure 6.1: Possible primitive generators.

By construction, the polytope PΓ described by Proposition 2.8 corresponds to an

ample line bundle on XΓ. This means that the fan over the faces of the dual polytope

P̌Γ ⊆ NR is the fan ΣΓ defining XΓ. For L = 4, the polytope P̌Γ is the convex hull of the

vectors in Figure 6.1 (or 4.2 at colored vertices). This is because for L=4, the inequalities
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defining PΓ are of the form ⟨v,m⟩ ≥ −1 for m ∈M and v a vector from Figure 6.1 or 4.2.

This means the primitive generators are the vectors from Figures 6.1 or 4.2 which are

vertices of this dual polytope. We see they are all vertices because they all have norm

√
3/2 in the standard norm on NR.

Now we use this description of ΣΓ to prove the main proposition of this chapter.

Proposition 6.2. Let Γ be a colored, connected, trivalent graph that has no half-edges,

no bridges, and is not the theta graph of Figure 6.2. Then the toric variety XΓ satisfies

Aut(XΓ) = T ⋊H where H is the group of lattice automorphisms of N leaving the fan

invariant.

v1 v2

Figure 6.2: The Theta Graph.

Proof. It is known ([BG99] Theorem 5.4) that there is a short exact sequence

1→ Aut0(XΓ)→ Aut(XΓ)→ Aut(ΣΓ)/ (Aut0(XΓ) ∩Aut(ΣΓ))→ 1

where Aut0(XΓ) denotes the connected component of the identity. This short exact

sequence follows from [BG99] Theorem 5.4 by the second isomorphism theorem, because

that theorem states that there is a subgroup of Aut(XΓ) isomorphic to Aut(ΣΓ) such

that Aut(ΣΓ) and Aut0(XΓ) together generate the entire automorphism group.
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We note that if Aut0(XΓ) = T then this short exact sequence becomes the desired

semidirect product decomposition

Aut(XΓ) ≅ T ⋊Aut(ΣΓ).

This is because T acts trivially on the fan, so the intersection (Aut0(XΓ) ∩Aut(ΣΓ)) is

trivial, and we already have an embedding of Aut(ΣΓ) as a subgroup of Aut(XΓ) so the

sequence splits.

As described in [Nil06] and [Cox92], we can show Aut0(XΓ) = T by checking that

the set of Demazure roots is empty. This is the set

R = {m ∈M ∣For one τ ∈ ΣΓ(1), ⟨vτ ,m⟩ = −1,and for σ ∈ ΣΓ(1) ∖ {τ}, ⟨vσ,m⟩ ≥ 0}.

The semisimple roots are defined as

Rs ∶=R ∩ −R

and when the toric variety has reductive automorphism group all the Demazure roots

are semisimple, as explained in [Nil06]. By [ABHLC19] this is true whenever XΓ is K-

polystable, for instance when Γ has no bridges. Note that if a root m is semisimple

then there are primitive generators vτ and vτ ′ such that ⟨vτ ,m⟩ = −1, ⟨vτ ′ ,−m⟩ = −1 and

⟨vτ ′′ ,m⟩ = 0 for any other τ ′′ ∈ ΣΓ(1). This is a very restrictive condition that we will
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explicitly prove cannot happen for any graphs satisfying our hypotheses.

Now we prove that there are no Demazure roots. Observe that if an element of M

has a non-zero component on an edge e then it has a non-zero pairing with at least two

primitive generators based at a vertex v incident to e. This is because the four primitive

generators in either Figure 6.1 or 4.2 span a 3-d subspace of NR such that any three form

a basis. Thus if an element of m pairs to 0 with three of them it must have components

equal to 0 on all edges touching v.

Now suppose for contradiction that there exists a semisimple root m. By the

assumption that Γ is not the theta graph, there are no pairs of vertices that are incident

to the exact same set of edges. Thus, a primitive generator based at one vertex cannot

equal a primitive generator based at another vertex. This means by the above paragraph,

if m has a non-zero component on an edge e then it will pair non-trivially with at least

four primitive generators, two for each vertex touching e. This proves there can be no

Demazure roots.
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Chapter 7

Deformations of the Toric Varieties

and Their Automorphisms

To use the Luna slice theorem we need to better understand the Artin approx-

imation AΓ along with the action of Aut(XΓ). In particular we need to understand

certain deformations of XΓ, and how automorphisms of XΓ extend to automorphisms of

the deformations. Specifically, in Chapter 8 we will equivariantly embed AΓ into a linear

representation, V , of Aut(XΓ), but we will not be able to apply Lemma 5.6 directly to this

representation because there isn’t an appropriate irreducible subvariety to use. Instead,

we will use the deformations studied in this chapter to span a subspace, V ′, of this linear

representation. The results of this chapter will then be used to show that this subspace is

stabilized by the group HT (CΓ) for the graph curve CΓ, and that no subtorus of this group

acts trivially on this subrepresentation. We will then be able to apply Lemma 5.6 to the
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group HT (CΓ), representation V ′, and an irreducible subvariety that will be constructed

in Chapter 8.

To construct our deformations we first note that for each non-loop edge of Γ,

smoothing the corresponding node gives a 1-parameter family of curves {Ct}t∈P1∖{0,1,∞}

of genus g with rational irreducible components. The dual graphs of these curves are

denoted by Γe and look like Figure 7.1 near e.

e

Figure 7.1: The graph Γ near e (left) and the smoothing, Γe (right).

For the curves Ct we can then consider the varietiesXCt constructed in (2.2). When

considering odd degree vector bundles then we will consider a family of pointed curves

(Ct, pt) and the corresponding varieties X(Ct,1) where the weight on the marked point pt

is 1. For now we will drop pt and its weight from the notation except where it makes a

difference. Since all irreducible components of Ct are rational, by Proposition 3.16 the

group HT (Ct) acts on XCt and the torus subgroup of HT (Ct) is naturally identified with

the subtorus Te of T ⊆ Aut(XΓ) induced by the inclusion

N(Te)Q = QE(Γe) ⊆ QE(Γ) = N(T )Q.

Thus as the curve varies over the 1-parameter family of curves Ct with dual graph Γe,
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the varieties XCt form a family of complexity-1 T-varieties. Further, because we have not

smoothed a loop of Γ, we have

HΓ =H1(Γ,Z/2) ≅H1(Γe,Z/2).

In other words, the group HT (Ct) of Proposition 3.16 can be naturally embedded as the

subgroup

Te ⋊HΓ ⊆ T ⋊HΓ.

The main goal of this chapter is to show that the Luna slice AΓ has points corresponding

to XCt and that these points are stabilized by Te ⋊HΓ but not all of T ⋊HΓ.

An important detail when studying the family XCt is that the theory of conformal

blocks does not naturally give the toric variety XΓ as the limit as t tends to zero. Rather,

it is more natural to place a certain K-semistable variety XΓ,e as the central fiber. Then

XΓ will be the K-polystable degeneration of XΓ,e. We will need to study these varieties

XΓ,e in order to make sure that the varieties XCt appear in the Artin approximation space

and are not stabilized by all of T .

When constructing the toric variety XΓ we needed to choose a coweighting θ⃗ on Γ.

This is a choice of rational number in [0,1] for each edge of Γ. Such a choice then gave

a valuation, also denoted θ⃗, on the conformal blocks space VΓ. Whenever all components

of θ⃗ were positive, the associated graded ring of the algebra of conformal blocks was the

homogeneous coordinate ring ofXΓ. Now in contrast, we will be interested in coweightings
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whose components might vanish. In particular, we make the following definition.

Definition 7.1. Let Γ be a trivalent graph. For e ∈ E(Γ), we consider the coweighting

θ⃗e of E(Γ) which is 0 on e and 1 along all other edges. The variety we get as the Proj of

the associated graded ring will be called XΓ,e.

Remark 7.2. The coweighting θe on E(Γ) gives the same valuation on V†
C as the coweight-

ing on E(Γ) ∖ {e} assigning coweight 1 to all edges.

We will now show that the varieties XCt naturally degenerate to XΓ,e as t tends

to 0, and then we will compute the stabilizers of points in AΓ that correspond to XΓ,e.

Understanding these stabilizers will then give us enough control over the GIT-stable locus

in AΓ to finish the proof of the main theorem.

Proposition 7.3. The varieties XCt fit into a flat family over A1 whose fiber over 0 is

XΓ,e.

Proof. The smoothing of the node of the graph curve C corresponding to the edge e gives

a flat family

Ce → P1,

a so-called F-curve in the moduli space of stable curves, where

1. The fiber over 0 is the graph curve C.

2. The fibers over 1 and∞ are the two other graph curves whose dual graph is Γe after

smoothing an appropriate edge.
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3. The fibers over any other point t ∈ P1 is Ct.

The family Ce → P1 has ∣E(Γ)∣ − 1 sections corresponding to all the nodes that aren’t

smoothed. Taking the normalization along these sections, we get a flat family of curves

C̃e → P1

whose fiber over any point t other than 0,1, or ∞ will be the normalization of Ct and the

fiber over 0 will be the partial normalization Ce → C which resolves all nodes except the

one labeled by e ∈ E(Γ).

By the theory of conformal blocks, the conformal blocks spaces associated to the

fibers of the family Ce themselves fit into a flat family

VCe → P1.

Now consider a level L, a weighting (af)f∈E(Γe) of the edges of Γe, the corresponding

map ρ̂a⃗,L (2.1) for the normalized family C̃e, and the image subsheaf (V†
Ce)a⃗,L ⊆ V

†
Ce . By

Proposition 2.1 this is a vector bundle inside the flat sheaf of algebras V†
Ce over P1 whose

fiber over 0 is V†
C and whose fiber over t ∈ P1∖{0,1,∞} is V†

Ct
. The vector bundle (V†

Ce)a⃗,L

over P1 has fiber over 0 equal to (V†
C)a⃗,L where the weighting a⃗ on E(Γ)∖ {e} assigns the

weight af to all edges f ∈ E(Γ) ∖ {e}.

Now we choose the coweighting θ⃗ on Γe with all entries equal to 1. The value of θ⃗
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on (V†
Ct
)a⃗,L is the same as the value of θ⃗e on (V†

C)a⃗,L. Therefore, the sheaf

∞
⊕
L=0

∞
⊕
j=0
⊕
θ⃗(a⃗)=j

(V†
Ce)a⃗,L

is a flat sheaf of Z2-graded algebras whose fiber over t ≠ 0,1,∞ is grθ⃗(V
†
Ct
) and whose

fiber over 0 is grθ⃗e(V
†
C). Taking the Proj relative to P1 with respect to the grading by L,

we prove the proposition.

Now we move on to study XΓ,e. We wish to work in a way that includes all edges

at once. For this, we enumerate the edges of Γ by numbers between 1 and ∣E(Γ)∣, and

consider the Z∣E(Γ)∣+1-graded C[t1, . . . , t∣E(Γ)∣]-algebra

∞
⊕
L=0

⊕
a⃗∈Z∣E(Γ)∣

⎛
⎝⊕b⃗≤a⃗
(V†

C)b⃗,L
⎞
⎠
ta11 . . . t

a∣E(Γ)∣
∣E(Γ)∣ (7.1)

where the partial order ≤ on ZE(Γ) is given by

(ae)e∈E(Γ) ≤ (be)e∈E(Γ)⇔ ae ≤ be for all e ∈ E(Γ)

Proposition 7.4. The Proj of the C[t1, . . . , t∣E(Γ)∣]-algebra 7.1 with respect to the grading

by L, is a (C×)∣E(Γ)∣-equivariant flat family XΓ → A∣E(Γ)∣ with the following properties.

1. The fiber over any point which is not in a coordinate hyperplane is VΓ.
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2. For any edge e ∈ E(Γ), the fiber over a non-zero point on the e-axis of A∣E(Γ)∣ is

XΓe.

3. The fiber over the origin is the toric variety XΓ.

4. For any θ⃗ ∈ ([0,1]∩Q)∣E(Γ)∣ and m ∈ N such that mθ⃗ ∈ Z∣E(Γ)∣, the base change under

the inclusion

A1 → A∣E(Γ)∣

t↦ (tmθ1 , . . . , tmθ∣E(Γ)∣)

is the C×-degeneration of VΓ associated to the valuation θ⃗ on V†
Γ.

5. The induced (C×)∣E(Γ)∣-action on XΓ is the action induced by the inclusion M ↪

Z∣E(Γ)∣ where M is the character lattice of the torus T ⊆XΓ.

Proof. Flatness follows from Theorem 9.9 of chapter 3 of Hartshorne [Har13]. This is

because for each L ∈ N, the L-th graded piece

⊕
a⃗∈Z∣E(Γ)∣

⎛
⎝⊕b⃗≤a⃗
(V†

C)b⃗,L
⎞
⎠
ta11 . . . t

a∣E(Γ)∣
∣E(Γ)∣

is a free C[t1, . . . , t∣E(Γ)∣]-module with basis

{sa⃗ta⃗∣a⃗ ∈ ZE(Γ), sa⃗ ∈ Va⃗,L,Va⃗,L ≠ {0}}.
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The first two points follow from the fourth point by considering the valuation θ⃗e.

The third point follows from the fourth by considering the valuation θ⃗ = (1, . . . ,1).

The fourth point is true because the map

A1 → A∣E(Γ)∣

on the level of rings sends the monomial ta⃗ to tθ⃗⋅a⃗. Therefore the homogeneous coordinate

ring of the base change is

∞
⊕
L=0
⊕
n∈Z
∑
θ⃗⋅a⃗=n

⎛
⎝⊕b⃗≤a⃗
(V†

C)b⃗,L
⎞
⎠
tn =

∞
⊕
L=0
⊕
n∈Z

⎛
⎝ ⊕θ⃗⋅⃗b≤θ⃗⋅n

(V†
C)b⃗,L

⎞
⎠
tn

which is the Rees algebra of the valuation θ⃗e on VΓ.

The fifth point follows from standard toric geometry.

Proposition 7.5. The family XΓ induces a morphism

α1 ∶ A∣E(Γ)∣ → AΓ

which is equivariant with respect to the morphism (C×)∣E(Γ)∣ → T and fits into a commu-

tative diagram

AΓ

A∣E(Γ)∣ MKss

f

α0

α1

where α0 is the classifying morphism of the family XΓ.
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Proof. Because XΓ is a (C×)∣E(Γ)∣-equivariant family of K-semistable Fano varieties, we

get a classifying morphism

α0 ∶ [A∣E(Γ)∣/(C×)∣E(Γ)∣]→MKss.

We claim that the theory of coherent completeness developed in [AHR20] implies there is

a lifting

α1 ∶ [A∣E(Γ)∣/(C×)∣E(Γ)∣]→ [AΓ/Aut(XΓ)].

The proof is that by Proposition 5.18 of [AHR20], [A∣E(Γ)∣/T ] is coherently com-

plete along the image of 0 ∈ A∣E(Γ)∣. We also know from [AHR20] that [AΓ/Aut(XΓ)] →

MKss, induces an isomorphism of the coherent completions at XΓ. Putting this together,

we see that the morphism α0 factors through the coherent completion of MKss at XΓ,

and therefore lifts to the morphism α1.

Now, Theorem 1.4.8 of the paper [HL14] shows that α1 lifts to the equivariant

morphism α1 that we wished to construct. In particular, our morphism α1 is a C-point

of the stack Filtn([AΓ/Aut(XΓ)]) and the desired lift α1 is any point of the space A+Γ ⊆

Map(An,AΓ) which maps to α1. The space A+Γ is defined in Proposition 1.4.1 of [HL14] as

the space of equivariant maps An → AΓ, and Theorem 1.4.8 writes Filtn([AΓ/Aut(XΓ)])

as an explicit group quotient of that space.

Proposition 7.6. Let Γ be a (possibly colored) trivalent graph which is not the theta
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graph and has no bridges. If Γ has colored vertices consider the set of edges inside Let

L ⊆ A∣E(Γ)∣ denote the union of the axes. Then α1 is injective on L, except it may contract

axes to a point if they correspond to edges in the special set of edges C(Γ) (Remark 4.2)

that were introduced in the construction of the colored graph.

Proof. Consider the axis A1
e ⊆ A∣E(Γ)∣ corresponding to the edge e ∈ E(Γ). This axis

corresponds to a one-parameter subgroup λe of T , given by the vector in N(T ) which is 1

on e and 0 elsewhere. By the Rees construction, this further corresponds to a valuation,

also called λe, on the homogeneous coordinate ring of XΓ,e, as well as a filtration, Fe. We

claim that this axis is contracted to a point if and only if Fe is induced by a grading on

the coordinate ring of XΓ,e.

To prove this, note that α1 is constant on A1
e if and only if the induced map

ψ1 ∶ [A1
e/λe]→ [AΓ/Aut(XΓ)]

being pulled back from the map

ψ2 ∶ [pt/λe]→ [AΓ/Aut(XΓ)]

(coming from the λe action on XΓ) along the constant map

[A1
e/λe]→ [pt/λe].
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By the Rees construction, the data of the family

[XΓ∣A1
e
/λe]→ [A1

e/λe]

associated to the map ψ1 is equivalent to the data of the filtration Fe on the homogeneous

coordinate ring of XΓe .

Similarly the map

[XΓ/λe]→ [pt/λe]

associated to ψ2 corresponds to a grading on the homogeneous coordinate ring of XΓ. If

ψ1 is pulled back from ψ2 then that means XΓe ≅XΓ and the filtration Fe comes from the

grading induced by the λe action on XΓ.

Lemma 7.16 will show that in fact Fe does not come from a grading unless e

belongs to the special set C(Γ).

Before finishing the proof of Proposition 7.6 by studying the filtration Fe we prove

the main results that we will need about the varieties XCt .

Lemma 7.7. Suppose Γ is the dual graph of a graph curve with no bridges which is not

the theta graph, and let e ∈ Γ be an edge not in the special set of edges C(Γ). Suppose

Ye ⊆ AΓ is an irreducible component of the locus parameterizing varieties of the form XCt,

and the closure of Ye contains the image of the e-axis under the map α1 of Proposition

7.5. The subgroup Te ⊆ Aut(XΓ) stabilizes all points of Ye but the entire torus T does not
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stabilize the general point.

Proof. By Proposition 7.6 we know that Te stabilizes the points in the image of α1 pa-

rameterizing XΓ,e, but no element α ∈ T ∖ Te stabilizes them. We also know that a torus

of dimension ∣E(Γ)∣ − 1 stabilizes any point parameterizing XCt for any t ∈ P1 ∖ {0,1,∞}.

Because the dimension of the stabilizer is upper semicontinuous, this implies that only a

strict subtorus of T stabilizes the general point of Ye. Because there are only countably

many subtori of T , they cannot vary in an algebraic family, and therefore Te is exactly the

maximal torus of the stabilizer of the general point of Ye. Note that the last statement is

only true because of the irreducibility of Ye.

Remark 7.8. There actually is a non-empty variety Ye as in the statement. This is because

the toric variety XΓ is K-polystable, K-semistability is open in families and the map

AΓ →MKss is open (it is smooth). More specifically, the openness of K-semistability tells

us that any neighborhood of XΓ in MKss contains a point parameterizing XΓ,e and any

neighborhood of that point contains points parameterizing varieties of the form X(Ct,pt),1.

Proposition 7.9. Consider Γ and Ye ⊆ AΓ as in the statement of Lemma 7.7, except e

can be in the set C(Γ). Each point of Ye is stabilized by some conjugate of the Hecke-

transformation subgroup HΓ ⊆ Aut(XΓ) under T .

Proof. The subgroup HΓ is determined up to conjugacy by T by its action on the fan ΣΓ.

Because of Proposition 3.16, we know the group Te ⋊HΓ acts on XCt and that HΓ acts

on N(TE) ⊆ N(T ) compatibly with its action on N(T ). Therefore we will show that any
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automorphism γ of ΣΓ that on N(Te) acts as a Hecke transform around a loop in Γe is

equal to the Hecke transform around the corresponding loop in Γ. By multiplying by the

inverse of the Hecke transform around the corresponding loop in Γ we can assume that γ

is trivial on N(Te) and we will show that this implies it is trivial on N(T ).

Because γ is trivial on N(Te) we know its action on all rays of Σ except for the eight

distinct rays attached to the two vertices of e. We denote the set of primitive generators

of these eight rays by Σ(1)e. For v1 ∈ Σ(1)e, consider the set

Sv1 ∶= {v1 + v2 ∣ v2 ∈ Σ(1)e, v1 + v2 ∈ N(Te)} ⊆ N(Te).

Note by inspecting Figure 6.1 that the map Σ(1)e → P(N(Te)) sending v to Sv is equiv-

ariant for the action of the stabilizer of N(Te) inside Aut(ΣΓ) and injective when the

graph satisfies our hypotheses. This means that γ acts trivially on Σ(1)e as desired.

7.1 The Filtration Fe and the Algebra of Conformal

Blocks

The rest of this section is dedicated to finishing the proof of Proposition 7.6 by

giving a more explicit description of the ring grθ⃗eV
†
Γ and filtration Fe.

We start by applying Proposition 2.10 to the coweighting on E(Γ)∖ {e} assigning

1 to all edges. We can interpret this as saying that grθ⃗eV
†
Γ is a subalgebra of a tensor
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product of two rings as follows.

1. The first ring is the homogeneous coordinate ring of the toric variety XΓ̃e
associated

to the graph with half-edges, Γ̃e, which is Γ without with the edge e and the two

vertices that it connects to. We keep the edges that used to connect to those vertices

as half edges. We will write this ring as C[CΓ̃e
] because it is the semigroup algebra

corresponding to the cone CΓ̃e
over the polytope PΓ̃e

. In other words CΓ̃e
is the cone

inside MR × R defined by the inequalities 2.8 where L is thought of as a variable,

not a fixed value.

2. The second ring is the algebra of conformal blocks associated to the subgraph, Γ′, of

Γ pictured in the left side of Figure 7.1. Here we interpret that subgraph as having

only two vertices and the four exterior edges are half edges. If any pair of those

exterior edges connected to each other inside Γ we split that edge into half edges,

so that Γ′ always has four half edges.

3. Consider a lattice point m ∈M(Γ̃e)×Z contained inside the cone over the polytope

PΓ̃e
. In other words inside the cone defined by the inequalities 2.8 where L is thought

of as a variable, not a fixed value. Then the homogenous coordinate ring of XΓ̃e
is a

direct sum of one-dimensional spaces Cm as m varies across that cone. Futhermore,

the ring grθ⃗eV
†
Γ is the direct sum of spaces Cm ⊗ V†

Γ′ (a⃗(m), L(m)) where a⃗(m) is

the weighting of the four half edges of Γ′ by the weights that m assigns to the

corresponding half edges of Γ̃e and L(m) is the level of m.
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Now, by considering the base change of the Rees family XΓ to the e-axis, we see

that for n ∈ N the filtration Fe has n-th filtered piece

F≤ne (grθ⃗eV
†
Γ) =⊕

m
⊕
ae∈N
a≤n

(Cm⊗ V†
Γ′ (a⃗(m), L(m))ae)

where ae denotes the weight of the edge e. Therefore we will refer to Fe as the filtration

by the weight along e. We will also denote by Fe the filtration by the weight along e in

the algebra V†
Γ′ . Note that this is the filtration associated to the coweighting of Γ′ that

assigns the coweight 1 to e.

Therefore to finish proving that Fe does not come from a grading, we must give a

more explicit description of the ring V†
Γ′ . We do this by recalling the presentation of this

ring given in [Man15].

Definition 7.10. The ribbon graph RΓ associated to a graph Γ is a 2-d C∞ manifold with

boundary which deformation retracts to a subspace homeomorphic to (the CW complex

associated to) Γ. To the ribbon graph we associate the following data.

1. For each half edge h of Γ, a segment Bh ⊆ ∂RΓ. This is the portion of the boundary

that retracts to h, which is considered as a subset of RΓ.

2. For each vertex v ∈ V (Γ), a region Rv ⊆ RΓ. This is the region inside RΓ consisting

of points which are closer to v ∈ Γ ⊆ RΓ than they are to any other vertex (with

respect to some fixed metric on RΓ).
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3. For any edge e ∈ E(Γ) connecting vertices v1, v2 ∈ V (Γ) a curve segment denoted

Le. This is the boundary between the two regions Rv1 and Rv2 .

Figure 7.2: The ribbon graph of Γ′ with its embedded copy of Γ′.

Definition 7.11. Consider a possibly disconnected, oriented path l ⊆ RΓ with the follow-

ing properties.

1. The interior points of l are contained in the interior of RΓ.

2. The boundary points of l are each contained in some boundary segment Bh of RΓ.

3. The path l is transverse to each curve segment Le.

Denote the half edges of Γ by h1, . . . , hn and let a1, . . . , an ∈ N denote the number of

points of l contained in the respective segments Bhi . In the discussion after Definition

8.10 of [Man15], for an integer L, Manon associates to the pair (L, l) an element of

V†
Γ(L,a1, . . . , an). These elements are called Γ-tensors. They will be 0 when L is smaller

than a certain threshold level.
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Remark 7.12. Technically Manon constructs Γ-tensors as elements of a larger space

V†
Γ(L,a1, . . . , an)⊗ Sa1 ⊗ . . .⊗ San

where for a ∈ N, Sa is the irreducible representation of SL2 of dimension a + 1 as before.

The direct sum of these spaces as the weights ai vary is a ring denoted WΓ. This ring has

a linear action of SL2
n. The conformal blocks algebra is reconstructed as the invariant

subring under the subgroup Un
+ of n-tuples of strictly upper-triangular matrices. Manon’s

construction of Γ-tensors also includes the data of an orientation, which is either UP or

DOWN, for each endpoint of the path l. We denote a basis of torus-invariant vectors in

Sa by

{xiyj ∣ i, j ∈ N, i + j = a}.

Then if a path l has ih endpoints oriented UP and jh endpoints oriented DOWN for

a half edge h, then the Γ tensor is a pure tensor with Sah-component equal to xihyjh .

Because the only U+-invariant vector in Sa, up to scale, is xa, we can get elements of

V†
Γ(L,a1, . . . , an) by considering Γ-tensors with only UP orientiations, and therefore we

simply forget the orientations altogether. We also will be ignoring the orientation of the

entire curve l because a change of orientation only changes the sign of the corresponding

conformal block.

In [Man15] Proposition 8.17 Manon constructs a C-basis of the entire conformal

blocks algebra V†
Γ,h1,...,hn

whose elements are pairs (L,a) where L ∈ N is the level and a is
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what is called a planar Γ-tensor. Planar Γ-tensors are exactly the Γ-tensors coming from

smooth paths.

Proposition 7.13. ([Man15] Corollary 1.3) The product of two planar Γ-tensors given by

(L1, a1), (L2, a2) is a sum of planar Γ-tensors of level L1 +L2 described as follows. First

assume that the paths a1 and a2 meet transversely. Then take their union and resolve

each crossing using the Skein relations (these are exactly given by Figure 7.3). The signs

in the Skein relations don’t seem well defined, but that is fixed if one is careful with the

orientations of the curves. This gives a linear combination of paths with smooth paths,

and which therefore represents a linear combination of planar Γ-tensors.

Proof. The important parts of this proposition are explained in [Man15] Section 9. How-

ever, we’d like to clarify why it is possible to take transverse paths a1 and a2. Firstly the

equivalence relation on paths paths in RΓ given by regarding two paths equivalent if they

define the same Γ-tensor should be isotopy relative to the boundary, but we do not prove

that here. Instead we just note that the Γ-tensor coming from a path (that intersects itself

transversely) is determined by the sequence (as we traverse along a parameterization of

the path) of intersections of the path with the boundary, the segments Le, and itself.

In particular, an isotopy of such a path that preserves the order of those crossings

cannot change the resulting Γ-tensor. This means we can always assume any two planar

Γ-tensors are represented by paths that meet each other and themselves transversely.

Proposition 7.14. For an edge e ∈ E(Γ), consider the coweighting of E(Γ) which is 1

on e and 0 on the rest. For an edge e ∈ E(Γ), consider the coweighting of E(Γ) which
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is 1 on e and 0 on the rest. The corresponding valuation λe (which corresponds to the

filtration Fe) is computed on planar Γ-tensors by counting the number of times the path

crosses the segment Le.

Proof. This is Corollary 8.16 of [Man15]. That the valuation vx from [Man15] Definition

8.1 agrees with the valuation θ⃗ when θ⃗ = x ∈ [0,1]E(Γ) ∩Q follows from the description in

[Man15] section 5 of the factorization map

ρ̂α ∶ V†
(C̃,p⃗,q1,q2)

(λ⃗, α,α,L)→ V†
(C,p⃗) (λ⃗, L)

and correlation map

V†
(C,p⃗) (λ⃗, L)→ (⊗

pi∈C
Sλi)SL2

V (Γ)
.

Here the space Sλi is the SL2 representation associated with the weight λi associated

with the marked point pi of the nodal curve (C, P⃗ ). The tensor product is taken over

all the marked points of C. The correlation map is the global version of the map from

Proposition 2.12 that we saw in the context of the curve P1 with three marked points.

Lemma 7.15. The basis of planar Γ-tensors is adapted to the filtration Fe, i.e. they give

bases of the filtered pieces of Fe. Equivalently, it maps to a basis under the set-theoretic

map

gr ∶ V†
Γ → grFe (V†

Γ) .

Proof. This follows from Proposition 8.17 of [Man15] which says that for each lattice point
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((me)e∈E(Γ), L) in the cone over the polytope PΓ, there is exactly one planar Γ-tensor of

level L whose λe-value is me for all e ∈ E(Γ). Therefore for any level L and m ∈ N, the

number of planar Γ-tensors in the subspace F≤me (V†
Γ)L is exactly the dimension of that

space.

We finally have a sufficiently concrete description of the conformal blocks algebra

associated to Γ′ to prove our Lemma.

Lemma 7.16. Let Γ be a trivalent graph with at most one colored vertex, no half edges,

no bridges, and which is not the theta graph. Then for any edge e ∈ E(Γ), the filtration

Feon grθ⃗e(VC) is not induced from a grading.

Proof. This is true for the corresponding filtration by the weight on e on the ring V†
Γ′

by Figure 7.3. This is because of Lemma 7.15 because if Fe came from a grading,

the Γ′-tensors (l1, L) and (l2, L) (with any positive level L) would be homogeneous ele-

ments because they live in the 1-dimensional filtered pieces F≤1e (V†
Γ′((1,0,1,0), L)) and

F≤1e (V†
Γ′((0,1,0,1), L)) respectively. Here the four-tuple (1,0,1,0) means weight 1 on the

half edges h1 and h3 and 0 on the others. Then their product would also be a homo-

geneous element. The two planar Γ′-tensors on the right hand side of Figure 7.3 would

have to be homogeneous as well because they are each products of two planar Γ′-tensors

(corresponding to the the connected components of the paths) which would have to be

homogeneous for the same reason that l1 and l2 were. Because the two planar Γ′-tensors

in the figure have different λe-degrees, this means it would be impossible for Fe to come

from a grading on V†
Γ′ .
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Now to finish the lemma, we need to find lattice points m1,m2 ∈ CΓ̃e
such that

m1 ⊗ (l1, L) and m2 ⊗ (l2, L) define elements of the ring grθ⃗eV
†
Γ when it is considered as a

subalgebra of C[CΓ̃e
]⊗ V†

Γ′ as described in the start of this section. This is equivalent to

finding Γ-tensors for the entire graph Γ that extend our Γ′-tensors in the smaller graph

Γ′. Note that here we are considering the ribbon graph of Γ′ as a subspace of the ribbon

graph of Γ, although we may need to identify boundary components Bhi and Bhj if the

half edges hi and hj connect in the original graph Γ.

Case 1: The half edge h1 of Γ′ is not connected to the half edge h4 in the original

graph Γ and the same for h2 and h3.

In this case, because e is not a bridge in Γ, RΓ ∖RΓ′ is connected. If there are no

colored vertices then we can connect the endpoints of the paths l1 and l2 inside RΓ ∖RΓ′

to get the desired Γ-tensors.

If Γ has a colored vertex, then RΓ has a boundary component Bh, and a path l

needs to have L-many endpoints in Bh in order for the Γ-tensor (l, L) to be in the ring

we want (the ring of conformal blocks where the weight on the half edge corresponding to

the colored vertex is equal to the level). In this case, we don’t connect the endpoints of

l1 and l2 to each other, rather we connect them to the boundary segment Bh. Then each

l1 and l2 will define Γ-tensors of level 2.

Case 2: Either the half edges h2 and h3 of Γ′ connect inside the graph Γ or the

half edges h1 and h4 do.

Without loss of generality we will assume that h2 and h3 connect, because if h1
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and h4 do then we can simply flip our figures upside down to make it work. Also if both

pairs of half edges are connected then Γ is the theta graph, where the statement is false.

For Case 2, we need to consider the different Γ′ tensors l1 and l2 depicted in Fig-

ure 7.4. The same argument as before concerning homogeneity applies to these other

Γ′-tensors, because each connected component of all depicted Γ′-tensors must be homo-

geneous.

These work when h2 is connected to h3 because the two connected components of

the purple curve meet up when we identify the boundary segments Bh2 and Bh3 inside

RΓ, as do the components of the red curve. The same argument as before concerning

homogeneity applies to these other Γ′-tensors, because each connected component of all

depicted Γ′-tensors must be homogeneous. Then by the same reasoning as in Case 1, we

can extend these connected curves to define the necessary Γ-tensors.

Figure 7.3: Product of Planar Γ′-tensors.

For the proof of the main theorem, we need to prove Lemma 7.7 when there is one

marked point and the edge e is in the set C(Γ).
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Figure 7.4: Another Product of Planar Γ′-tensors.

Lemma 7.17. Suppose Γ is the dual graph of a graph curve with at most one colored

vertex, no bridges, and which is not the theta graph. Let e ∈ Γ be any edge. Suppose

Ye ⊆ AΓ is an irreducible component of the locus parameterizing varieties of the form XCt,

and the closure of Ye contains the image of the e-axis under the map α1 of Proposition

7.5. The subgroup Te ⊆ Aut(XΓ) stabilizes all points of Ye but the entire torus T does not

stabilize the general point.

Proof. The only thing we have left to prove is that if there is a colored vertex, with special

edge e ∈ C(Γ), then the stabilizer of the general point of Ye doesn’t contain the entire

torus T . We should start with a graph curve with one marked point (C,p). Then, instead

of the family of curves

Ce → P1 →Mg

we should consider the base change of this family under the map

Mg,1 →Mg.

Really, we only want the irreducible component of this family which contains (C,p), which
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we’ll denote by

(Ce,1,P)→ T

where T is some rational surface. Then for a point t ∈ T we can consider the variety

X(Ct,pt),1. If we let (Ct, pt) tend towards (C,p) then X(Ct,pt),1 will tend towards X(C,p),e.

However, our goal is only to show that the automorphism group of XCt,pt , e contains Te

but not all of T . Therefore if we can’t use Lemma 7.6 directly, we can degenerate to

a different limit (C ′, p′) where the same edge e is not in the special set of edges C(Γ).

The local picture of the dual graph of (C ′, p′) around the edge e is shown in Figure

7.5. Now, the variety X(C′,p′),e,1 (the analogue of the variety XΓ,e for the graph curve

C ′ with marked point p′ with weight λ equal to the level, so that λ/L is 1) is not toric

because of Proposition 7.6. Therefore by the upper semi-continuity of the dimension of

the automorphism group, the variety X(Ct,pt) is not toric for the general point pt ∈ C0.

v1 v2

p

v1 v2
e

p′

Figure 7.5: The original subgraph Γ′ for (C,p) and the one for the other limit (C ′, p′).

We finish the section with one last lemma we will need for the main proof.
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Lemma 7.18. Let Γ be a trivalent graph with at most one colored vertex which has no

bridges and is not the theta graph. Consider the union Y = ⋃e∈E(Γ) Ye ⊆ AΓ. No subtorus

of T acts trivially on Y .

Proof. We know that the stabilizer of the general point of Ye-axis contains the torus

generated by all λe′ where e′ ≠ e, but this stabilizer does not contain λe. Now, if a

1-parameter subgroup

λ =∑aeλe

acts on Y, with ae not equal to 0 for some edge e, then λ acts like aeλe on Ye and therefore

cannot fix the general point in Ye. Because no 1-parameter subgroup can act trivially on

Y , no subtorus can act trivially on Y .
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Chapter 8

Proof of the Main Theorem

Using the Luna slice theorem, the relationship between GIT-stability and K-

stability explained at the start of Chapter 5, and the openness of K-stability, the following

theorem directly implies Theorem 1.1.

Theorem 8.1. For a toric variety XΓ with Γ satisfying the hypotheses of Proposition 6.2,

the Artin approximation AΓ contains GIT -stable points for the Aut(X)-action. Further,

for some smooth curve C, one of these stable points maps to the class of UC(2, ξ) ∈MKss.

Proof. We ignore the case of the theta graph because in that case XΓ = P3 which is well

understood. Assuming Γ is not the theta graph, we then know that Aut(XΓ) is equal to

T ⋊H by Proposition 6.2. We will also assume for convenience that there are no colored

vertices. The proof goes through with insignificant changes if we consider colored graphs

and moduli spaces UC(2,OC(−p)) varying overMg,1.

Consider the flat family Vg = Proj(V†)→Mg from Chapter 2. For a trivalent graph
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Γ with no bridges, the conformal block space VΓ degenerates to XΓ via C×-degeneration,

and therefore VΓ is K-semistable. Thus, X defines a morphism

U →MKss

where U ⊆Mg is an open neighborhood of the curve corresponding to Γ.

Now consider the pullback square

M AΓ

U MKss

.

We know AΓ is smooth over MKss, and U is smooth, therefore M is smooth. However,

it may have multiple connected components, so choose one and denote its image in AΓ

as M0. Each of these components map smoothly to U so we just have to make sure we

choose one whose image contains a neighborhood of the point [Γ].

Remark 8.2. If the image ofM inside AΓ were irreducible, then the proof would be much

easier. The image ofM would have an action of T ⋊H, we could embed it equivariantly

as an irreducible non-degenerate subvariety of a representation V of T ⋊H, and we could

then apply Lemma 5.6 directly. Unfortunately for us, H may non-trivially permute the

components of M. We will therefore have to work harder to find an appropriate set-up

to apply the lemma.

Now, we claim for every edge e ∈ E(Γ), the orbit closure TM0 contains points
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parameterizing the varieties XCt of Chapter 7. First note that for a general t ∈ P1, XCt

is K-semistable when t is general by the openness of K-stability. Specifically, Proposition

7.3 shows XΓ,e is K-semistable, and Proposition 7.5 shows that XCt is K-semistable for

general t. Further, we know that XCt is a C×-degeneration of VCt and M0 contains

points parameterizing these varieties by definition. This C×-degeneration means there is

a map [A1/C×] → MKss such that the generic point parameterizes VCt and the special

point parameterizes XCt . As in the proof of Proposition 7.5, we can lift this map to an

equivariant map A1 → AΓ such that some non-zero point maps to M0. Therefore the

origin maps into TM0 which establishes the claim.

We write Ye ⊆ TM0 for the closure of the locus parameterizing the varieties XCt .

By Lemma 7.17 and Proposition 7.9, Ye is stable under the action of T and the Hecke

transformations HΓ.

Now we claim that we can find a Aut(XΓ) ≅ T ⋊H-equivariant embedding

AΓ ↪ V

where V is a finite dimensional linear T ⋊H representation. Because AΓ is a finite type

affine scheme with T ⋊H-action, we can find a finite list of generators f1, . . . , fk of the ring

RΓ and these generate a finite dimensional T ⋊H-representation V ∗ ⊆ RΓ. The embedding

above is then given by the surjection of rings

Sym(V ∗)→ RΓ.
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Denote the linear span of Y = ⋃e∈E(Γ) Ye by V ′ ⊆ V . This is in fact a T ⋊ HΓ-

subrepresentation because all Ye are T ⋊HΓ-invariant. Because T ⋊HΓ is reductive there

is a T ⋊HΓ-equivariant projection

p ∶ V → V ′.

Namely, V splits as a direct sum

V = V ′ ⊕ V ′′

of T ⋊HΓ representations where V ′′ is the kernel of p.

We now consider the closure of p(TM0), which is an irreducible subvariety of V ′

which cannot be contained in a hyperplane because it contains a spanning set Y of V ′. We

wish to apply Lemma 5.6, but we must first show that V ′ satisfies the hypotheses of the

lemma, and that stability in V ′ implies stability in V. This will then finish the proof, as it

will show thatM0 contains GIT-stable points, and a general point ofM0 parameterizes

a variety of the form UC(2,OC).

First we show that for v ∈ V , if p(v) ∈ V ′ is GIT stable then v is GIT stable . We

have that for v ∈ V , the weight polytope of p(v) is contained in that of v. This is because

we have simply removed any of the weights that appeared only in V ′′. This means that

if the weight polytope of p(v) contains the origin in its interior then so does the weight

polytope of v.

As an aside, note that the same statement is not true for polystability: if the weight

polytope of p(v) contains the origin in its relative interior, then the weight polytope of
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v contains the origin, but it may be on the boundary. Therefore even though it would

suffice for us to show that UC(2,OC) is K-polystable (it has finite automorphism group),

it is still important to us that no subtorus acts trivially on V ′.

We have checked all the conditions of Lemma 5.6 for the group T ⋊HΓ, represen-

tation V ′, and variety p(TM0), except for the condition that no 1-parameter subgroup

of T acts trivially on V ′. However, this is the statement of Lemma 7.18.

We have proved that Lemma 5.6 applies and this concludes the proof of the theo-

rem.

Remark 8.3. Technically we have provenM0 contains stable points for the action on V ,

but these must be stable as points in AΓ, for instance because they have closed orbits and

finite stabilizers.

We now move on to the proof of Corollary 1.2

Proof. We consider the moduli stack Picdg which parameterizes pairs (C, ξ) where C is a

smooth curve of genus g and ξ is a line bundle on C of degree d. As the curve and line

bundle vary, the spaces UC(2, ξ) naturally form the fibers of a flat family Vec2,d,g → Picdg.

Theorem 1.1 gives a rational map Picdg ⇢MKss from the universal Picard stack to the

moduli stack of K-semistable Fano varieties sending (C, ξ) to the isomorphism class of

UC(2, ξ). This then descends to give a rational map of moduli spaces Picdg ⇢MKps. As

the isomorphism class of UC(2, ξ) depends only on the degree of ξ, this therefore factors
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through a map Mg ⇢ MKps by [Deb01] Lemma 1.15. Note that [Deb01] Lemma 1.15

requires the map Picdg ⇢MKps to be proper. However this map is proper as a map from

its domain (rather, the largest open on which it is defined) to its image. To see this, we

use Nagata’s compactification theorem which says that this map can be factored as an

open immersion followed by a projective morphism. We know by [MN68] that the fibers

of the map are the same as the fibers of the map Picdg → Mg, i.e. Picard schemes of

smooth curves. Therefore its fibers are connected and projective, and so open immersion

part of the Nagata factorization has to be an isomorphism. When ξ has odd degree, the

main result of [NR75] states that this map gives an isomorphism on tangent spaces, and

the main result of [MN68] states that the map is injective. Together these facts imply

that the map Mg ⇢ MKps is a dominant birational map to an irreducible component of

MKps.

This dissertation is in preparation for publication in an academic journal. The

dissertation author was the sole investigator and author of this paper.
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