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Integrating Experience into Bayesian Theory of Mind
Marlene D. Berke (marlene.berke@yale.edu), Julian Jara-Ettinger (julian.jara-ettinger@yale.edu)

Department of Psychology, Yale University

Abstract

Other people’s mental states—what they want, what they
know, and how they combine the two to act—are structured by
the experiences that they’ve had. In line with this, we propose
that inferences about other people’s experiences are a central,
but often neglected, aspect of human Theory of Mind. We ex-
plore this idea by presenting and testing a computational model
that jointly infers others’ desires, knowledge, and experience.
We find that, by focusing inferences on others’ experience,
our model can make richer inferences about other’s knowledge
than would be otherwise possible. Our model quantitatively
fits participant judgments on two experiments above an and
beyond an alternative model. Overall, our work extends the
richness of human Theory of Mind judgements that can be for-
malized as Bayesian inference over a generative model.
Keywords: Theory of Mind; Computational modeling; Social
cognition

Introduction
Imagine visiting a supermarket with your friend. Since the
start of the pandemic, the supermarket has re-arranged their
aisles. As you enter the store, your friend says “I’ll get the
vegetables” and heads off in the wrong direction. From this
simple behavior you can instantly infer that your friend prob-
ably hasn’t been to this supermarket since the pandemic be-
gan. This inference, although simple, can then help you build
a richer model of your friend’s mental representations: she
probably doesn’t know that the vegetables and meat sections
have switched places, or that there’s a new fish counter where
the flowers used to be, but at least the bakery is in the same
place, so they’ll have no trouble finding the bread.

This capacity to build mental models of other people’s
minds is known as a Theory of Mind (ToM; Gopnik et al.,
1997; Wellman, 2014). Over the last decade, behavioral,
computational, and developmental research has found that
people attribute mental states like beliefs and desires through
an expectation that other people behave rationally (see Jara-
Ettinger et al., 2016, for review). In the example above, for
instance, we were able to infer that your friend had an inaccu-
rate representation of where the produce was located, because
her behaviour—heading in the wrong direction—would oth-
erwise be irrational.

But this previous work has missed something. In our exam-
ple above, we not only inferred that our friend did not know
where the produce was, we also inferred that our friend lacked
an experience: visiting the supermarket since the pandemic.
And this experience inference enabled us to deduce not just

where they believed the vegetables were, but also the meat,
flowers, and bread. As this example illustrates, experiences
structure the way that we expect agents to acquire beliefs, en-
abling us expand a belief that is diagnostic of an experience
(e.g., your friend thinks the vegetables are over there), into a
richer representation of their epistemic states (like the loca-
tion of the vegetables, meat, flowers, and bread).

Past research on Theory of Mind has typically equated ex-
perience with perceptual access, treating it as an observable
factor that does not require inference (i.e., perceptual access
implies seeing, and seeing implies knowing; e.g., Baker et al.
2017; Onishi & Baillargeon 2005; Lin et al. 2010; Wimmer
& Perner 1983. Even when we learn from a teacher, it’s as-
sumed that perceptual access to the lesson is a given; e.g.,
Shafto et al. 2014.). In more complex cases, however, such
assumption faces two challenges. First, we are rarely privy
to the vast majority of experiences that other people have had
in their life. Therefore, assuming that an agent has not ex-
perienced something simply because it is not actively in their
visual field would be an error. Second, even when an agent
has direct perceptual access to an object or an event, this does
not imply that the agent is experiencing it: people can drift
off, mind wander, or simply have too much information in
their visual field to process.

Based on this analysis, here we propose that representa-
tions of other people’s experiences are a central component
of human Theory of Mind, forming a cornerstone that helps
us understand and predict other people’s behavior. This view
implies that (1) people should be proficient at inferring other
people’s potential experiences based on their behavior, and
(2) people can then use these inferences to build more nu-
anced representations of other people’s minds. In this paper
we present a first approximation of this idea. We introduce
a simple computational model that aims to capture how rep-
resentations of experience might be integrated into computa-
tional frameworks of Theory of Mind. We also present two
behavioral experiments that aim to evaluate our model and
seek some initial evidence on people’s capacity to infer oth-
ers’ experiences and use these inferences to make sense of an
agent’s behavior.

Computational Model
Previous research suggests that human judgements about an
agent’s mental states can be modeled as Bayesian infer-
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Figure 1: Timelines of example stimuli from Experiments 1
(A) and 2 (B). In A), the green truck moves downward and
then the blue teapot moves downward, one at a time. Alice
falls asleep in one of the three states in this sequence. Alice
then wakes up and chooses a box (outlined in red) to look for
the object she wants. In B), the black dog moves rightward
and then downward. Alice might peek during one of the three
states in this sequence. Alice then opens her eyes and chooses
a box to look for the goal she wants.

ence over a generative model describing how mental states
rationally produce actions (Jara-Ettinger et al., 2020; Jara-
Ettinger, 2019; Jern et al., 2017; Lucas et al., 2014; Baker
et al., 2017). We take this framework as a starting point, and
we extend it to include explicit representations about agents’
experiences. The key difference from previous models is that
our generative model is designed to capture the acquisition
of beliefs structured around experiences. This constrains in-
ferences about an agent’s beliefs to those that are compatible
with one another and compatible with a possible experience
that the agent might have had.

For clarity, we present our model in terms of our experi-
ments, but the model can be applied to arbitrary world states
and actions. Consider an event like the one shown in Figure
1 A. Here, Alice is in a room with four boxes, two of which
contain objects. Alice knows the initial location of the ob-
jects, and she updates her beliefs as the objects move from
one box to another. However, Alice falls asleep at one point
in the event and no longer sees the objects moving. When
Alice wakes up she moves towards one of the boxes to collect
an object, and the goal is to infer (1) when Alice fall asleep,
(2) which of the two objects she was looking for, and (3) her
beliefs about the location of each object.

For instance, when Alice approaches the top left box in
Figure 1A, her action reveals that she was probably looking
for the blue teapot and that she fell asleep before the teapot
moved to the bottom left location. However, this action does
not reveal whether Alice fell asleep at the start, or after the
green truck had moved, so we would be unable to infer ex-
actly when Alice fell asleep or where she thinks the truck

Figure 2: Conceptual model schematic. The yellow box rep-
resents the physical situation (the world state and the agent’s
state) and the blue box represents the agent’s mind. The
shaded areas denote observability.

might be. These are the kinds of inferences that our model
aims to capture.

Generative model
Figure 2 shows a conceptual schematic of our model. In line
with previous work, we define a situation as the combination
of the world state and the agent’s state. The world state con-
sists of all physical information about the scene, including
the objects and their locations. The agent state is the physical
location of the agent, which determines that all changes take
place within the agent’s field of vision. The situation is fully
known to the observer. In these experiments, the world state
changes as objects move, and the agent state changes when
the agent moves toward a box.

Together, the world state and the agent state determine the
space of information the agent might possibly experience.
But the experience variable captures whether the agent re-
ceives and processes that information (e.g. whether the agent
is awake, attentive, and has their eyes open). In Experiment 1,
the agent start off as experiencing (i.e. awake) and switches to
not-experiencing (i.e. asleep) during one of the world states.
In Experiment 2, the agent is assumed to start off as not expe-
riencing (i.e. with their eyes closed) and then briefly switches
to experiencing (i.e. peek) during one of the world states.
When the agent experiences a world state, they update their
beliefs about the locations of the objects to match the cur-
rent world state. When the agent does not experience a world
state (e.g. when they are asleep or have their eyes closed),
the agent does not update their beliefs about the locations of
the objects and instead retains their beliefs based on the last
world state they experienced. In the context of our task, a de-
sire consists of an object that the agent seeks to obtain. None
of these mental states or processes (i.e. desires, beliefs, expe-
riences, and belief updating) are observable.
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In this simple setup, the principle of rational action is im-
plemented as an assumption that the agent will choose the box
where she believes her desired object is located. This action
is observable.

Inference
In both experiments, the task is to infer the agent’s desire D,
beliefs about the state of the world B (which consist of the
location of each object), and the agent’s experience E from
the agent’s observable action A and the observable sequence
of world states W . This can be decomposed into interpretable
terms as follows:

p(D,E,B|A,W ) ∝ p(A|D,B)p(B|E;W )p(E)p(D) (1)

where p(A|D,B) is the probability of the action given a de-
sire and beliefs about the locations of the objects, which is
described by the principle of rational action. p(B|E;W ) is the
updating of beliefs according to experiencing a world state,
which is described by the principle of rational beliefs. p(E)
is the prior over experience (i.e. in Experiment 1, it is prior
over when Alice falls asleep, and in Experiment 2, it is the
prior over if and when Alice peeks), and p(D) is the prior
over desires (i.e. which goal Alice wants). Each of these
terms are described in the generative model.

Conditioning on the sequence of world states and the ac-
tion, we use the generative model to infer the agent’s desire,
experience, and belief about the location of each of the ob-
jects. We implemented inference via Markov Chain Monte
Carlo (MCMC) using Metropolis-Hastings.

Behavioral Experiments
In Experiment 1 we present a first test designed to eval-
uate our computational model and people’s ability to in-
fer other people’s experiences and use these inferences to
build richer mental-state representations. Specifically, here
we ask people to infer 1) which goal an agent desires 2)
what the agent experienced and 3) where the agent be-
lieves each object is. In Experiment 2, we perform a con-
ceptual replication of Experiment 1 in a slightly modified
paradigm, changing the priors over experience (i.e. p(E)
in Eq. 1), so as to enable us to establish further evidence
that these inferences are supported by a nuanced mental
model of how experience affects behavior. Pre-registration,
stimuli, instructions, model predictions, and data for both
experiments available at: (https://osf.io/34nvx/?viewonly =
4ca64e6a902d4b29b f 5ad89c85753609).

Experiment 1
Participants 120 U.S. participants (Age: mean = 29.9
years, range = 18-83 years; Gender: 51 women, 67 men, 2
non-binary) were recruited from Prolific. An additional 8 par-
ticipants were recruited but not included in the study because
they did not complete the experiment (n = 3) or because they
failed to pass the attention check questions (n = 5; see proce-
dure).

Stimuli Stimuli consisted of 18 short videos (see Fig. 1 for
schematic). Each video showed an agent (Alice) in the center
of a room with four boxes and two visible objects, each on
top of a box. The video then showed up to two events, each
consisting of one or both of the objects moving from one box
to another. After the two events, the objects faded into the
boxes and the agent approached one of the boxes.

The full parametric combination of possible starting states,
object movements, and agent choices leads to 16384 possible
trials. However, the set of possible inference patterns in this
paradigm is discrete and much smaller. To reduce this stimuli
space, we ran our model on every possible trial, and used
its inferences to select a set of trials that captured a range
of possible inference values that our model predicts people
should be able to make.

Specifically, we first collapsed all inference values that
our model produced (integrating beliefs, desires, and experi-
ences), and then selected a combination of trials that included
every possible inference value generated by the model. This
resulted in 18 trials that stemmed from six different event
(i.e., object movement) sequences combined with every pos-
sible box that Alice could choose (excluding cases where Al-
ice approached a box that had never had an object). Note
that each trial elicits 13 (not-independent) judgments: two
goal inferences, three experience inferences, and eight belief
inferences, such that this relatively small number of events
enabled us to cover a wide range of possible predictions.

Each video was randomly assigned to one of three test con-
ditions, such that there were six videos per condition (tested
across participants). For each condition, the pattern of object
movements in each trial was randomly rotated (0, 90, 180, or
270 degrees), flipped (no flip or horizontal flip), and assigned
different object icons. This enabled us to reduce visual simi-
larity across videos without affecting the inferences predicted
by our model. Splitting the 18 trials into three conditions also
limited the time it would take a given participant to complete
the experiment (completing all 18 trials in one sitting would
have been infeasible for an online experiment).

Procedure Participants first read a brief tutorial that ex-
plained the logic of the task in the context of a warmup video
and they were asked seven simple attention check questions
to ensure they understood the logic of the task (full exper-
iment available in OSF repository). Only participants who
answered all questions correctly were given access to the ex-
periment. For each comprehension question, the participant
had four opportunities to answer correctly. If they failed all
four times, they were not allowed to continue into the experi-
ment. They had the option to restart the tutorial from scratch
if they chose to.

In the main phase of the task, participants were randomly
assigned to one of the three conditions and watched each of
the condition’s six videos in a randomized order. After watch-
ing each video, participants were asked to answer “Which ob-
ject is Alice looking for?” using a slider, with each end rep-
resenting one object (e.g. the ends labelled “the blue teapot”
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Figure 3: Experiment results 1 for A) The Experience Infer-
ence model and B) the statistical tracking alternative model.
Each point represents a trial with model prediction on the x
axis and participant judgment on the y axis. The black line
shows best linear fit between the model and the data with 95%
confidence bands (in gray). The color of the points represent
the type of judgement – green represent goal attribution, red
represents belief attribution (about an object in a box), and
blue represents the experience attribution (about when Alice
fell asleep).

and “the green truck”). Next, participants were shown three
time frames from the video (as in Fig. 1) and they were asked
to distribute ten clicks across the three key frames (labelled
as “Scene 1”, “Scene 2”, and “Scene 3”) to indicate their be-
lief about when Alice fell asleep (with each click showing
a red dot on the selected scene). Finally, participants were
asked where Alice believes each object is located. For the
first object, participants entered their beliefs by distributing
ten clicks across the four boxes. This process was repeated for
the second object. In each judgment, each click was treated
as representing 10% of the mass of the participant’s posterior
distribution.
Results Each of the 18 trials produced 13 (non-
independent) points: 2 goal inferences (one per object),
8 object location beliefs (4 per object), and 3 inferences
about Alice’s experience (i.e. when she fell asleep). As
Figure 3A shows, our model showed a high quantitative fit
to participant judgments (r = 0.99; CI95%: (0.98,0.99)).
The model fit was similar for each inference type: r = 0.99
for beliefs, r = 0.98 for experiences, and r = 0.99 for
goals. Figure 4A shows results from three example trials,
illustrating how our model captures graded inference patterns
across a range of events.

One alternative possibility is that participants in our task
did not use Theory of Mind and instead relied on a simple
form of statistical tracking. That is, participants may have
tracked the statistical distribution of the position of the ob-
jects and used this distribution to infer Alice’s goals (where
Alice’s goal is given by the relative percentage of time that
each object spent in the chosen box), beliefs (where the be-
lief about the location of each object matches the percentage

of time the object spent in each box), and experience (where
Alice could have fallen asleep at any point in the video). This
statistical tracking model makes theoretically identical infer-
ences to a Bayesian ToM model lacking the principle that
experience structures belief acquisition. In other words, the
statistical tracking model is an algorithm that implements a
Bayesian ToM model with a uniform prior, likelihood, and
posterior over when Alice fell asleep. Crucially, this statis-
tical tracking model made different attributions about expe-
rience and beliefs than did our Experience Inference model.
But since in our Experience Inference Model goal attribution
did not depend on experience, the statistical tracking model
and our Experience Inference model made identical goal at-
tributions.

This statistical tracking model had an overall correlation of
r = 0.78 (CI95%: (0.72,0.84) (see Fig. 3B) with participant
judgements, which was reliable lower than our main model
(δ = 0.21; CI95%: (0.15,0.26)). These results suggest that
inferences about other people’s experiences through Theory
of Mind support people’s reasoning in our task.

Experiment 2

Participants 80 U.S. participants (Age: mean = 24.1 years,
range = 18-39 years; Gender: 32 women, 47 men, 1 non-
binary) were recruited from Prolific. An additional 35 par-
ticipants were recruited but not included in the study because
they did not complete the experiment (n = 6) or because they
failed to pass the attention check questions (n = 29; see pro-
cedure).

Stimuli Stimuli consisted of 10 short videos, that showed
events with the same structure as Experiment 1 (Figure 1B).
To select the trials, we ran our model over every possible
event (n=16384) and used its inferences to select a set of
trials that captured the full range of possible inferences that
people should be able to make in this task. We selected a
set of trials such that they spanned every possible inference
value along each dimension (goal, experience, belief) sepa-
rately (11, 10, and 15 possible different, but not independent,
values for goal, experience, and beliefs inferences). The fi-
nal ten videos were randomly split into two conditions (n=5
videos per condition) and movements and object icons were
randomized in the same way as Experiment 1.

Procedure The procedure was nearly identical to Experi-
ment 1, with the difference that participants were now told
that Alice is playing hide-and-seek and has her eyes closed
but is likely to peek in half of the games that she plays, so as
to set participants’ prior over whether or not Alice peeks. Par-
ticipants were asked eight simple attention check questions to
insure that they understood the logic of the task (full exper-
iment available in OSF repository) and the inclusion proce-
dure was identical to Experiment 1.

Participants then completed the same questions from Ex-
periment 1, with the difference that they were asked whether
and in which scene Alice peeked (with an option for “Alice
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Figure 4: Detailed results for three trials example trials. A) shows results from Experiments 1, and B) shows results on the same
trials in Experiment 2. Each panel presents the results from one trial. At the top of each panel is a schematic showing object
movements and the box that Alice picked outlined in red. In the first two examples, the object movements are the same as in
Figure 1A, but Alice’s choice varies. The third example has the same object movements and choice as in Figure 1B. The lineplot
graph shows the participant judgements (magenta) and model inferences (green) about Alice’s experience: in A) it is which of
the three scenes Alice last saw before falling asleep, and in B) it is whether and when Alice peeked. The barplot labeled “Goal”
displays participant judgements and model inferences about which object Alice wants. Beliefs about each object’s location are
displayed using four barplots in the same arrangement of the four boxes. For example, the top left barplot under “Beliefs about
the blue circle” gives participant judgements (magenta) and model inferences (green) about Alice’s belief that the blue circle
is in the top left box. The y-axis for every graph shown is from 0 to 1. All participant judgements have 95% bootstrapped
confidence intervals.

didn’t peek”), rather than in which scene Alice fell asleep.

Results Each of the 10 trials produced 14 points: 2 goal
inferences (one per object), 8 object location beliefs (4 per
object), and 4 inferences about Alice’s experience (i.e. if and
when she peeked). For detailed results for three example tri-
als, see Figure 4B. As Figure 5 illustrates, our model showed
a high quantitative fit to participant judgments (r = 0.95;
CI95%: (0.92,0.96)). The model fit was similar for each in-
ference type: r = 0.96 for beliefs, r = 0.93 for experiences,
and r = 0.97 for goals. As in Experiment 1, an alternative

possibility is that participants did not use a Theory of Mind
including experience and instead relied on a simple form of
statistical tracking. This alternative model had a correlation
of r = 0.80 (CI95%: (0.70,0.87); Fig. 5B), which was reli-
able lower compared to our main model (δ = 0.15; CI95%:
(0.08,0.23)). These results suggest that the inferences about
other people’s experiences through Theory of Mind support
people’s reasoning in this task.
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Figure 5: Experiment 2 results for A) The Experience Infer-
ence model and B) the Statistical Tracking alternative model.
Each point represents a trial with model prediction on the x
axis and participant judgment on the y axis. The black line
shows best linear fit between the model and the data with 95%
confidence bands (in gray). The color of the points represent
the type of judgement – green represent goal attribution, red
represents belief attribution (about an object in a box), and
blue represents the experience attribution (about if and when
Alice peeked).

Discussion
Here we proposed that representations of other people’s ex-
periences are a central component of human Theory of Mind.
Specifically, we proposed that, by understanding how expe-
rience structures belief acquisition, people can build richer
representations of others’ minds. To explore this idea we
presented a computational model that integrates experience
into Theory of Mind. In two separate experiments we found
that people, like our model, were able to jointly infer another
agent’s experiences and beliefs about the world. Our model
captured human inferences about beliefs, desires, and experi-
ences with quantitative accuracy. Critically, our two experi-
ments were nearly identical, but varied subtly in the structure
of experience (the agent falling asleep in Experiment 1, and
sometimes peeking in Experiment 2). Participant inferences
reflected a sensitivity to these differences (resulting in a good
fit with the model in both cases), which suggests that people
might have an ability to reason flexibly about different types
of experience.

An alternative model lacking the principle that experience
structure beliefs failed to capture the richness of participant
judgments. Interestingly, however, this model was nonethe-
less able to accurately infer the agent’s desires. This finding
points to one potential mechanism that people could use to
infer mental states: statistical tracking may sometimes enable
goal inference; the way the agent pursues the goal might then
reveal their experience; and the inferred experience might en-
able us to draw richer inferences about their mind. This is a
question that we hope to explore in future work.

Our work opens at least three directions for future work.
First, in this work we considered an overly simplified repre-
sentation of experience—a binary variable about whether or

not the agent could receive information. In real life, these
representations are likely graded, capturing degrees of pro-
cessing that are critical for reasoning about states such as dis-
traction or light sleep. Even more importantly, in real life, we
don’t know always the relevant past history of what some-
one may have experienced. That hypothesis space of what
someone may have experienced in their lifetime can be large,
unconstrained, and individualized. Nonetheless, the types of
computations that we specified here might be critical to un-
derstanding others’ behavior in constrained contexts. Intu-
itively, some behaviors are also tightly linked with certain ex-
periences, and these linkings might make the problem more
tractable (e.g., hearing someone speak fluent French would
immediately give us a guess about where they grew up and
what kinds of other experiences they may have had). How
these inferences might support Theory of Mind in the wild is
an open question we hope to explore in future work.

A second and related limitation of our work is that our
model focused only on the role of experience when reason-
ing about others’ goals and knowledge. The inferences that
we make in real life about the causes and consequences of ex-
perience are richer: we can also infer the causes behind a per-
son’s experience or lack of experience. For example, if your
friend is an American History major but can’t remember any-
thing about the presidency of FDR, you might infer that they
skipped or slept though that lecture, and therefore might fur-
ther infer that they find Great Depression Era history boring.
Related work has found that people are proficient at inferring
the causes behind people’s goals (Jara-Ettinger et al., 2016),
opening the possibility that they might be able to do the same
for the causes behind experiences.

Finally, a third direction for future work lies in the integra-
tion of metacognition. People lacking an experience are often
aware of it and may adapt their behavior to account for it. For
example, in Experiment 1, Alice could wake up knowing that
she fell asleep, and it might be more natural for us to expect
Alice to be uncertain about where the objects are since she
might suspect that the objects moved while she was asleep.
Similarly, in Experiment 2, we might expect Alice to use her
metacognition and choose to peek near the end of the video
so as to reduce her uncertainty stemming from the chance that
the animals might move while her eyes are closed.

Overall, our work is a first step in positing that experi-
ence is a central component of human Theory of Mind. Be-
yond being able to read the mental states of another agent,
we are also able to make inferences about that agent’s previ-
ous experiences and how they shape their actions. This work
advances our understanding of the computations behind the
human ability to make rich inferences about another agent’s
mind and history.
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