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Abstract

Most  practitioners  measure  investment  performance  based  on  the  CAPM,
determining  portfolio  "alphas"  or  Sharpe  Ratios.   But  the  validity  of  this
analysis  rests  on the validity  of  the CAPM, which assumes either  normally
distributed (and therefore symmetric) returns, or mean-variance preferences.
Both assumptions are suspect:  even if asset returns were normally distributed,
the returns of  options  or  dynamic strategies would not  be.   And investors
distinguish upside from downside risks, implying skewness preference.  This
has led to the adoption of ad hoc criteria for measuring risk and performance,
such as "Value at Risk" and the "Sortino Ratio."

We  consider  a  world  in  which  the  market  portfolio  (but  not  necessarily
individual  securities)  has  identically  and  independently  distributed  (i.i.d.)
returns.  In this world the market portfolio will be mean-variance inefficient and
the CAPM alpha will mismeasure the value added by investment managers.
The  problem is  particularly  severe  for  portfolios  using  options  or  dynamic
strategies.  Strategies purchasing (writing) fairly-priced options will be falsely
accorded inferior (superior) performance using the CAPM alpha measure.

We show how a simple modification of the CAPM beta can lead to correct risk
measurement for portfolios with arbitrary return distributions, and the resulting
alphas of all fairly-priced options and/or dynamic strategies will be zero.  We
discuss extensions when the market portfolio is not assumed to be i.i.d.
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BEYOND MEAN-VARIANCE:  RISK AND PERFORMANCE MEASURES FOR

PORTFOLIOS WITH NONSYMMETRIC RETURN DISTRIBUTIONS

I.  Introduction

How can one determine whether an investment manager  has added

value relative to risk?  A correct performance assessment requires both good

theory, to determine the proper measure of risk, and appropriate statistical

techniques to quantify risk magnitudes.  This paper focuses on measures of

risk and their implications for investment performance evaluation.

While there have been some notable recent advances in the theory of

performance measurement, most practice is still firmly rooted in the approach

of the Capital Asset Pricing Model (CAPM).1  In the CAPM world, the appropriate

measure of risk of any asset or portfolio p is given by its "beta":  

where rp and rmkt are the random returns on the portfolio p and on the market,

1     Sharpe,  Alexander,  and Bailey [1995] provides a good overview of  current  practice in
Chapter 25. Grinblatt and Titman [1989] review some key issues and provide extensions of
traditional  alpha measurement.   Glosten and Jagannathan [1994] provide an elegant and
general framework.  But applications of their approach required assumptions similar to our
framework below (lognormal index returns and Black-Scholes option pricing), while requiring
greater complexity of implementation. 
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respectively, and rf is the riskfree rate of interest.  In equilibrium, all assets and

portfolios will have the same return after adjustment for risk, implying

Superior performance in the CAPM world is measured by "alpha", which

is the incremental expected return resulting from managerial information (e.g.

stock selection or market timing).  This can be represented formally as

where  E[rp  |  M] is the conditional expected return to the portfolio given the

information M used by manager.2  In the CAPM equilibrium, alphas will be zero

unless a manager has superior information.  A portfolio with positive alpha

2     Measuring conditional expectations when managerial information is not directly observed is
an important econometric challenge.  Early CAPM-based studies (e.g. Jensen [1969]) regressed
portfolio excess return on market excess return.  The constant term was interpreted as the 
alpha of in our equation (3), and the slope coefficient as beta in our equation (1).  Roll [1978] 
indicates the unreliability of alpha measures when the market portfolio proxy is not mean-
variance efficient.  Further difficulties in using alpha as a performance measure when 
managers are able to successfully time the market are discussed by Dybvig and Ross [1984]; 
their results are closely related to the negative state prices observed in the CAPM by Dybvig 
and Ingersoll [1982].  Grinblatt and Titman [1989] propose to solve the problem by using 
positive period-weighting measures (i.e. state price densities), although their later empirical 
study (Grinblatt and Titman [1994]) suggests this makes little difference for evaluating mutual
fund portfolios.  Ferson and Schadt [1996], while retaining the CAPM framework, argue that 
beta should be estimated conditionally on a vector of relevant publicly-available information 
variables which may change through the sample period. 
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offers an expected return in excess of its equilibrium risk-adjusted level and in

this sense has superior performance.3

Underlying the CAPM and its associated risk and performance measures

are strong assumptions:  that either (i)  all  asset returns are normally (and

therefore symmetrically) distributed;  or (ii) investors care only about the mean

and variance of returns, implying that upside and downside risks are viewed

with equal distaste.  Unfortunately, neither assumption justifying the CAPM

approach  is  satisfactory.   Portfolio  returns  are  not  in  general  normally

distributed.  Even if the underlying assets' returns were normal, the returns of

portfolios that use options on these assets, or use dynamic strategies, will not

be.4 

Furthermore,  investors  typically  distinguish  between  upside  and

downside risks.  For example, most investors have a preference for positively

skewed returns, implying that more than the mean and variance of returns is

3     A related but not identical performance measure is the Sharpe ratio (SR) of a portfolio p,
where

The Sharpe ratio provides an appropriate measure of investor welfare when the investor has 
mean-variance preference and invests in the portfolio (and perhaps a risk-free asset) 
exclusively.  Alpha, on the other hand, is a measure of performance when the portfolio is a 
small part of the investor's entire (fully-diversified) portfolio of assets.  A portfolio with a Sharpe
ratio greater than the market's will have a positive alpha, but the converse does not necessarily
hold.
4     Rubinstein and Leland [1981] elucidate the relationship between options and equivalent 
dynamic strategies.  Henriksson and Merton [1985] examine the relationship between options 
and market timing strategies.  
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priced in equilibrium.5  

Thus the basic underpinnings of the CAPM are suspect.  Its risk measure

beta is perforce equally dubious.  When beta doesn't correctly measure risk,

estimates of alpha will be incorrect and the performance of portfolio managers

will be mismeasured.  Some portfolios which offer fair (i.e. equilibrium) returns

for risk will be rated as offering superior performance; others will be rated as

inferior.  While these shortcomings have been cited in the academic literature,

the CAPM is still widely used by practitioners.6  

This paper takes a practical step beyond the mean-variance framework

of performance measurement.  We develop a simple risk measure that requires

no more information to implement than the CAPM, but correctly captures all

elements  of  risk,  including skewness,  kurtosis,  and  higher  order  moments.

Thus,  the  results  apply  to  nonsymmetric return  distributions.   Our  model

requires only two assumptions: 

5     Skewness preference implies a positive third derivative of the investor's utility function,
unlike the quadratic utility function which has zero third (and higher order) derivatives.  An
investor whose risky investments increase as wealth increases must have a positive third
derivative:  see Pratt [1964] and Arrow [1963].  Furthermore, Dybvig and Ingersoll  [1982]
observe that quadratic utility implies that (very) high-return states will have negative marginal
utility  and  therefore  negative  state  prices,  contradicting  the  no-arbitrage  condition  of
equilibrium prices.
Kraus and Litzenberger [1976] extend the CAPM to the case where investors have a cubic 
utility function and hence skewness preference.  We show below that when the market 
portfolio has i.i.d. returns, the average investor must have skewness preference.  
6     This is due in part to the fact that empirical studies of alternative models (e.g. Kraus and 
Litzenberger [1976], Grinblatt and Titman [1994]) exhibit minimal differences from CAPM 
results when applied to typical stock portfolios.  As our results in Section IV show, substantial 
differences will be evident only for portfolios or assets with highly skewed return distributions. 
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(i)  Returns of the market portfolio are independently and

identically distributed (i.i.d.) at each moment in time;  

(ii)   Markets are "perfect":  there are no transactions costs or taxes, 

prices reflect perfect competition, and all relevant risks are traded 

in the market.

Assumption (i), while clearly strong, underlies most econometric studies

and  therefore  is  an  assumption  implicit  in  the  current  risk  measures  of

practitioners.  Section V considers extensions of this assumption.  Assumption

(ii) underlies the CAPM as well, and most other equilibrium models of asset

valuation.

In the limit, as the periods become infinitesimal in length, assumption (i)

implies that the market portfolio's returns will be lognormally distributed over

any finite interval.7  In continuous time the rate of return process will be a

diffusion with constant drift and volatility, and therefore consistent with the

models of Black and Scholes [1973] and Merton [1973].8  

Observe  that  we  are  not  assuming  that  individual  asset  or  portfolio

7     The usual central limit theorem conditions are required.  In a recent empirical examination 
of market returns 1928-1996, Jackwerth [1997] finds that while daily market returns are not 
lognormal, over longer periods (e.g. 3 months) returns are quite "close" to lognormally 
distributed. 
8      Lognormality results from a continuous diffusion process for the rate of return if both the 
drift and volatility of the process are constant.  While requiring constant volatility, Black and 
Scholes' model does not require that the drift of the asset rates of return be constant, and 
therefore distributions other than the lognormal may be consistent with their model.  
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returns  are  lognormal:   our  assumption  of  i.i.d.  returns  and  the  resulting

lognormal return distribution refers  only to the market portfolio.9  Note also

that  we  are  not  (directly)  assuming  any  particular  utility  function  as

representing investor preferences.

We  seek  a  valid  risk  measure  for  portfolios--both  with  and  without

derivatives--which  have  arbitrary  distributions  of  returns.  The  correct  risk

measure  should  have  the  property  that  any  portfolio  strategy  has  zero

measured excess  returns  after  adjustment for  risk,  if  that  strategy can be

implemented without superior information. 

Section II shows that, given assumptions (i) and (ii) alone, the market

portfolio will  not be mean-variance efficient over any finite time interval:  a

dynamic strategy which does not require superior managerial information will

have a higher Sharpe ratio than the market, and therefore a positive CAPM

alpha.  Furthermore, equation (2) no longer holds:  the CAPM beta does not

properly measure risk.  This in turn implies that the CAPM alpha incorrectly

measures  performance.   Mismeasurement  is  particularly  pronounced  for

portfolios with highly skewed returns, such as those using options or following

dynamic strategies.  

We show that strategies that sell fairly-priced options on the market, or

increase  market  exposure  after  market  declines,  will  be  accorded  positive

9     It is well known that a portfolio of assets with lognormal returns will not itself have 
lognormal returns.  However, we are not assuming that lognormality holds for every asset, but
rather for the market alone.
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CAPM alphas; strategies that buy options or decrease market exposure after

market declines will have negative CAPM alphas.  With proper risk measures

these strategies should be accorded a zero alpha, since they do not require

additional  managerial  information  about  asset  returns  in  order  to  be

implemented. 

The CAPM's failure to assess performance correctly results from the fact

that  skewness  matters  under  assumptions  (i)  and  (ii).   Even  though  the

assumptions do not directly presume skewness preference, we show that they

imply that the market places a positive value on skewness.  And skewness

preference in turn implies that upside risks are less important to investors than

downside risk.10

If the CAPM is incorrect when the market portfolio has i.i.d. returns, does

there exist a correct measure of risk?  In Section III, we show that the answer

to this question is affirmative.  A relatively straightforward modification of the

CAPM beta provides a valid risk measure for any asset, portfolio, or dynamic

strategy.  This modified beta requires no more data to estimate than does the

CAPM beta. 

Section IV shows that the differences between the correct beta and the

10     As an ad hoc approach to recognizing the greater importance of downside risk, Sortino and
Vandermeter [1991] have proposed that the Sharpe ratio be modified by replacing the 
variance of returns in the denominator with the lower semi-variance of returns.  A related risk 
measure is "Value at Risk", the loss which could occur over a fixed time period with small 
probability, e.g. 1%.  These approaches are not grounded upon capital market equilibrium 
theory, and may themselves spuriously identify superior or inferior managerial performance.  
See also Kahn and Stefek [1997].
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CAPM beta are small,  and the mismeasurement of  alphas will  be similarly

small,  for assets or portfolios whose returns are jointly lognormal with the

market.  The correct beta differs substantially from the CAPM beta for portfolio

or asset returns which are highly skewed, and thus becomes critical for the

performance  measurement  of  investment  strategies  using  options,  market

timing strategies, or other dynamics.  

Finally,  Section  V  briefly  discusses  the  correct  risk  measure  when

assumption  (i)  does  not  hold,  and  the  market  return  follows  a  stochastic

process which is not i.i.d.

II.  Problems with Mean-Variance Performance Measures in an i.i.d.

World

Below we develop a simple 2-period i.i.d. binomial example which shows

that  the market portfolio is mean-variance inefficient.  We demonstrate that

there  exists  a  simple  dynamic  strategy  that  does  not  require  superior

information  to  implement,  but  has  a  higher  Sharpe  ratio  than  the  market

portfolio. 

II(i).  A Simple Binomial Example
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Let the market portfolio increase by 25% or fall by 20% each year over a

2 year period.  The probability of an up move is assumed to be 80%, giving the

market  an annual expected return of  16%.  The standard deviation of  the

market returns over the two-year period is 29.71%.  The annual riskfree rate is

assumed to be 5%, implying a Sharpe ratio over the two year period of [1.162 -

1.052]/[.2971] = 0.8182.  It is easily shown that the static strategy which puts

half its initial wealth in the risky portfolio, and half in bonds has the same

Sharpe ratio, with an expected return of 22.40% and standard deviation of

14.85% over the two year period.  

Now consider the following dynamic strategy:  start with a 60/40 stock-

to-cash investment ratio.  If the market rises in the first period, sell 44.8% of

the stock holding and convert it  into cash.  (Beginning the second period,

35.4% of holdings will be in stock in stock, and the remaining fraction in cash).

If the market falls in the first period, liquidate all cash holdings and invest them

in stock (beginning the second period, 100% of holdings will be in stock).  After

two years, an initial wealth of $100 will become $131.13 in the (up, up) state,

$112.50 in both the (up, down) and (down, up) states, and $72 in the (down,

down) state.  Using the binomial probabilities above, this strategy will have an

expected return of 22.80% and a standard deviation of 13.48% over the two-

year period.  The former is higher than, and the latter is lower than, the 50/50

static strategy.  The Sharpe ratio is .9310, substantially higher than that of the
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market or the 50/50 strategy.  And a higher Sharpe ratio than the market

implies a positive CAPM-measured alpha.  

While the above strategy is multi-period (and therefore inconsistent with

a single-period CAPM), there exists a static strategy using fairly-priced options

that yields exactly the same result as the dynamic strategy above.  Assuming

the initial risky asset value is normalized to $100, the option-based strategy

would sell 0.794 at-the-money 2-period call options on the risky asset (with

price, based on the binomial model, of $15.75).  The strategy would invest the

initial $100 wealth, plus the receipts of $12.50 from selling the call options, in

the risky asset.  It would not subsequently change its portfolio holdings.  It can

readily  be  verified  that  this  static  strategy  using  options  yields  the  same

payoffs as the dynamic strategy in each future state of the market.

By leveraging the dynamic strategy, or its options equivalent, a higher

expected return and lower risk than the market portfolio can be obtained.  The

simple assumption of i.i.d. market returns therefore implies that the market

portfolio is mean-variance inefficient in a perfect capital market!11

II(ii).  Analysis of the Example

11     In the binomial model, it can be shown that the market is M-V efficient over each 
subperiod. (Hint: in a two-state world, any option on the market portfolio can be perfectly 
replicated by a static portfolio of the market and the riskfree asset).  But since we assume that
the sub-periods can be arbitrarily short (in the limit becoming a logarithmic random walk), the 
market will always be M-V inefficient over any finite interval.  
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The mechanistic dynamic strategy above appears to "beat the market."

Under  traditional  CAPM-based  measures,  it  would  be  accorded  superior

performance, although anyone could follow such a strategy.  

The intuition underlying our example is the following.  It has been shown

elsewhere (Rubinstein [1976], Brennan [1978], He and Leland [1993]) that if

the  market  portfolio's  rate  of  return  is  i.i.d.  and  markets  are  perfect,  the

representative investor (whose preferences determine all prices) must have a

power utility function.12  This utility function has a positive third derivative,

implying  skewness  preference:   skewness  will  be  positively  valued  by  the

market.  Any investor can improve her performance in mean-variance terms by

"selling" skewness, i.e. by accepting negatively skewed returns in return for

improvements in mean and/or variance.  This is  exactly what the dynamic

strategy in our example creates:  negative skewness relative to the market

return.  If only mean and variance are assessed, the negatively-skewed returns

will seem to "outperform".13 Outperformance is a misnomer here, in the sense

that the average investor would not prefer to sacrifice skewness to improve in

12     In the continuous time limit, markets are dynamically complete (Harrison and Kreps 
[1979]) and a representative investor exists even when individual investors have 
heterogeneous utility functions (Constantinides [1982]).
13     The example does not give the highest possible Sharpe ratio.  In continuous time, assume 
the market rate of return process has drift μ and volatility σ, and consider a mean-variance 
investor (who has quadratic utility) with satiation wealth level equal to k.  Then it can be 
shown that at any time t the investor's optimal strategy is to invest a fraction α(t) of wealth 
W(t) in the market portfolio, where  α(t) =  [(μ - r)/σ2][k/W(t) - 1],  for W(t) £ k.  Bajeux-
Besnainou and Portait [1993, revised 1995] further show that when there are many risky 
securities, all dynamic mean-variance efficient strategies are buy-and-hold combinations of 
two funds:  a continuously rebalanced portfolio of these securities, and a zero-coupon bond 
with maturity equal to the investor's horizon. 
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terms of mean and variance only.  Nor, as discussed above, does the CAPM-

based "outperformance" mean that the investment manager has added value

by identifying undervalued assets or by informed market timing. 

II(iii) The performance of strategies using options on the market

A closely-related implication of the above discussion is that portfolios

which  contain  fairly-priced  option  positions  (or  follow  equivalent  dynamic

strategies) also will have their performance mismeasured.  We consider two

classes of option strategies:  those which write a call option on the market

against an underlying position in the market portfolio, and those which buy a

put option.  Option strike prices range from deep "in-the-money" to deep "out-

of-the-money."  We assume the market follows a logarithmic Brownian motion

with  annual  expected  return  of  12%,  and  annual  volatility  of  15%.14  The

riskfree rate is 5%.  Since this is a Black-Scholes world, the option prices will be

determined by the Black-Scholes formula.15  It is straightforward to compute

the expected returns,  covariances with the market,  and CAPM beta of  any

option-based strategy using these parameters  and the lognormality  of  the

market return.  

14     The lognormal distribution parameters are μm = 10.44%, σm = 13.33%. 
15     Rubinstein [1976] shows that the Black-Scholes formula correctly prices options on the 
market in discrete time, when market returns are lognormally distributed and the 
representative investor has power utility. 
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The  first  class  of  option  strategies,  holding  the  market  portfolio  and

writing  one-year  covered calls  on  the market,  creates  payoffs which  are a

concave  function  of  the  market  payoff,  and  thereby  reduces  or  "sells"

skewness.  The dynamic strategies equivalent to writing covered calls have the

feature that they sell the market portfolio as its price rises, and buy as its price

falls, without superior information.  We (loosely) label this class "rebalancing"

or "value" strategies.  Columns (i), (ii), and (iii) of Panel A in Table I lists the

annual expected return, CAPM beta, and CAPM alpha of strategies which write

one-year calls at different strike prices.

The second class of option strategies, which buys put options on the

market,  creates  convex payoffs  and  therefore  creates  or  "buys"  additional

skewness.   We  (again  loosely)  label  these  as  "momentum"  or  "portfolio

insurance"  strategies.   The  equivalent  dynamic  strategy  buys  the  market

portfolio on strength and sells on weakness.  Columns (i), (ii), and (iii) of Panel

B in Table I lists the expected return, CAPM beta, and CAPM alpha of strategies

which buy one-year put options at different strike prices.

When skewness is positively valued, mean-variance based performance

measures will overrate the rebalancing strategies which reduce skewness, and

underrate  the  momentum  or  portfolio  insurance  strategies  which  buy

skewness.16  Figure  I,  based  on  Columns  (i)  and  (ii)  of  Table  I,  plots  the

16     While Dybvig and Ingersoll [1982] suggested that call options could be underpriced due to 
the negative marginal utility of the quadratic utility function at high levels of wealth, our 
argument suggests that call options could be underpriced by the CAPM even if portfolio 
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expected returns and CAPM betas of the two classes of option strategies, for

different strike prices.  The rebalancing or value strategies, which plot above

the security market line (joining the riskless asset and the market portfolio),

hold the market portfolio and sell a fairly-priced one year call option on the

market.  Momentum or portfolio insurance strategies, which plot below the

security market line, hold the market portfolio and buy a fairly-priced 1 year

put option on the market.17  In both cases, option strike prices range from 90 to

140 percent of the current market value.  

CAPM-based alphas are measured by the vertical distance between the

point representing each portfolio and the security market line, and are listed in

column (iii) of Table I.  Alphas are substantially different from zero for strike

prices near the money.18 

Of course, properly measured alphas here should be zero:  options are

assumed to be purchased at a fair market price.  They are not zero because

the CAPM risk measure beta is incorrect, and equation (2) does not hold when

the market is lognormally distributed.  Although the manager has no additional

information (i.e. E[rp|M] = E[rp]), αp in equation (3) is nonzero.  Note that any

returns were bounded to levels of wealth less than the satiation level.  Call options have 
greater skewness than the market, and would be undervalued by CAPM measures which 
ignore the positive value of skewness.
17     Bookstaber and Clarke [1985], while not providing analytical results, observed from 
simulations that option-based strategies seemed to lie above or below the CAPM "market line".
18     When naked options on the market portfolio are considered, the mismeasurement 
becomes even more extreme.  For example, a 1 year call option on the market with strike 
price 110% of the current market value (and parameters as in Table I) has a CAPM beta of 
17.88, whereas its modified beta is 14.32.  A CAPM-based analysis of a naked option position 
(or dynamics replicating this position) would indicate a negative annual alpha of 25%!
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investment  manager  can  "game"  the  CAPM performance  measurement  by

selling options or rebalancing.  

While our examples consider strategies buying or selling options on the

market, similar results are likely when individual security options are bought or

sold,  since  these  strategies  will  also  affect  the  skewness  of  the  managed

portfolio relative to the market.

III.  Correct Measures of Risk and Performance

We have shown that the CAPM-based alpha systematically mismeasures

performance when the market has i.i.d. returns.19  This is because the CAPM-

based beta, the measure of an asset's risk, does not capture skewness and

other higher-order moments of the return distribution which investors value.

The  first  "patch"  might  be  to  incorporate  skewness,  as  in  Kraus  and

Litzenberger [1976].  But this is insufficient, since the power utility function

consistent with a lognormally-distributed market has non-zero derivatives of all

order.  That is,  kurtosis also matters to investors, as do even higher order

moments of the return distribution.20  Any risk measure in this world must

19     See He and Leland [1993] for a discussion of the (unreasonable) stochastic process of the 
market which would be required for the CAPM to evaluate risk correctly.
20     Indeed, it is readily observed that the derivatives of the power utility function alternate in 
sign.  Thus, mean, skewness, and higher odd-numbered moments of the distribution are 
always positively valued by investors; variance, kurtosis, and higher even-numbered moments
are negatively valued.
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capture an infinite number of moments of the return distribution--a daunting

task!

Fortunately,  past  research  has  examined  a  closely  related  problem.

Rubinstein  [1976]  considers  asset  pricing  in  a  model  with  power  utility

functions and lognormal returns for the market portfolio,  both of which are

implied by our assumptions (i)  and (ii).   He derives  an equilibrium pricing

equation which holds for assets with any returns over some time interval:21 

where P0 is the price of any asset, rp and rmkt are the returns to the portfolio and

market over the time interval, ρ[x, y] is the correlation of x and y,  -b < 0 is the

exponent of the marginal utility function of the average investor, and

Dividing both sides of equation (4) by P0 , rearranging terms, and using the fact

that this equation must also hold for the market portfolio gives

21     Rubinstein [1976], equation (3).  Actually there is a misprint in Rubinstein's equation:  the 
numerator contains a covariance which correctly should be a correlation.  Rubinstein's 
equation (2), from which (3) is derived, has the correct term.  The Rubinstein [1976] result is 
closely related to the general single-period result he derives in Rubinstein [1973].
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where

Furthermore, Rubinstein [1976] and Breeden and Litzenberger [1978] show

how the exponent  b is related to the excess return of the market, when the

market is lognormally distributed:

This coefficient is a "market price of risk": the market's instantaneous excess

rate of return divided by the variance of the market's instantaneous rate of

return.22 

Parallel  to the CAPM-based alpha, the appropriate measure of  excess

returns Ap will therefore be

22     In continuous time, b = (μmkt - rf)/σmkt
2, where the market portfolio process is dM/M = μmktdt 

+ σmktdz.  
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Notice that Ap differs from αp in equation (3) only because our measure of risk

Bp differs from βp.  But clearly βp and Bp are related, as a comparison between

equations (1) and (7) shows.  Furthermore, the estimates of Ap and Bp require

no more raw data than the estimates of αp and βp of the CAPM-based model.23

The coefficient  Bp depends on the covariance of the portfolio return and one

plus the market return raised to the -b power.  The coefficient b depends upon

the market return mean and variance and the riskfree rate, parameters which

are required by the CAPM as well.

Table 1, column (iv) presents the correct risk measures B, which can be

compared with the CAPM-based risk measures β in column (ii).  If we replace

the measure of  risk  β with the measure of  risk  B,  the alphas of  optioned

portfolios become zero as is seen in column (v).  That is, using the correct

measure of risk gives the correct result, that managers who buy or sell fairly

priced assets add no value!  

There does not seem to be a useful general substitute for the Sharpe

ratio when applied to dynamic strategies or options.  But previous work by

Leland [1980] and Brennan and Solanki [1981] offer some insights.  Leland

shows that an investor whose risk tolerance grows with wealth more quickly

than  the  average  investor  will  want  portfolio  insurance  (convexity);  if  risk

tolerance  grows  less  quickly  than  the  market's,  a  rebalancing  strategy

23     Note that the many of the econometric problems related to estimating αp mentioned in 
footnote 3 will also be relevant to estimating Ap, including finding an appropriate proxy for the 
market portfolio. 
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(concavity) is optimal.  Risk tolerance grows more quickly when the investor

has greater skewness preference.  Optimal strategies therefore are preference

dependent and no measure which depends only on the distribution of portfolio

returns  will  correctly  rank all  alternatives.   Brennan and Solanki  derive an

interesting  partial  result,  however.   If  rankings  are  limited  to  the  set  of

portfolios  p which have lognormal returns, then the best of that set should

maximize (μp - rf  )/σp  . Furthermore, amongst lognormal portfolios which could

serve as the underlying portfolio for constructing nonlinear payoffs (through

option or dynamic strategies), the best choice is the one which maximizes this

ratio.   The  actual  best  nonlinear  strategy  will  of  course  be  preference-

dependent.

As indicated, applying the Sharpe ratio to a portfolio with nonlognormal

returns will in general produce nonsense as a measure of managerial ability.

But  this  does  not  detract  from  the  modified  alpha  (i.e.  Ap  )  measure  of

performance, since that can identify a manager's ability to select underpriced

assets (or correctly market time).

IV.  B vs. β:  Assets with Lognormal Returns 

We have shown that B, not β, is the appropriate measure of risk of any

asset or portfolio, when the market itself has lognormal returns.  And we have
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shown that the difference between the two may be substantial, when applied

to assets or portfolios whose returns are distinctly skewed, such as options or

dynamic strategies.  

But many portfolios and assets, including most equities, have returns

which  are  approximately  lognormal  (although  the  return  distribution's

parameters may be quite different from the market portfolio's).  If we use  β

rather than  B as the risk measure for such assets, are we making a major

mistake?  The answer is "no", if the intervals over which we make observations

are one year or less.  The Appendix shows that the two risk measures are

closely related in the case of where portfolio and market returns are jointly

lognormal. 

Table II utilizes the theory developed in the Appendix to examine the

difference between  Bp  and  βp  for  portfolios which are jointly lognormally

distributed with the market.  We observe that the deviations between β and B

are relatively small, and consequently the differences between  α and  A are

small.  B tends to be slightly closer to 1 than β.  Furthermore, the differences

become even smaller when the time interval of observations is less than one

year.24

Therefore it appears to matter little whether one estimates  B or  β to

24     Subsequent empirical studies of equity portfolio betas undertaken by Aamir Sheikh of 
BARRA have confirmed that β and B coefficients with 3-month and 6-month measurement 
periods are practically identical.  Grinblatt and Titman [1994] also find that performance 
evaluations of mutual fund returns are relatively insensitive to using the CAPM or power 
(marginal) utility approach. 
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assess  the  performance  of  assets  or  portfolios  whose  returns  are

(approximately) jointly lognormal with the market return.  Other estimation

errors are likely to far outweigh the errors which result from using β rather than

B.   Only  when  portfolios  have  distinctly  skewed  returns  will  there  be  an

important difference between the CAPM and modified technique in measuring

performance.  

V.  When the Market Return is Not i.i.d.

The work of  He and Leland [1993]  suggests a means to extend the

analysis when the market portfolio follows a diffusion process with drift and

volatility components which may change with time and with the market level.

(Examples  would  include  constant  elasticity  of  variance (CEV)  or  Ornstein-

Uhlenbeck mean-reverting processes).  He and Leland show how to derive the

representative  investor's  utility  function  which  supports  a  given  market

stochastic process.  

Knowledge of the representative utility function then allows Rubinstein's

[1973] result that the appropriate risk adjustment (or modified "beta") for a

portfolio is the ratio of the covariance of the portfolio's return with marginal

utility divided by the expected covariance of the market portfolio's return with

marginal utility. 
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It  would be surprising if  the market  utility  function derived from the

market's stochastic process did not exhibit skewness preference (see footnote

5 above).  If this is the case, it continues to follow that the CAPM approach will

over- (under-) value strategies which exhibit negative (positive) co-skewness

with the market return.  Thus the qualitative nature of our earlier results will

hold in a much more general environment:  call-write or rebalancing strategies

will  typically be overrated given by CAPM performance measures,  whereas

portfolio insurance or momentum strategies will be underrated.  As before, the

more pronounced the change in skewness relative to the market return, the

worse the CAPM performance measures will be.
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VI.  Conclusion

The simplest possible assumption about market rates of returns is that

they  are  identically  and  independently  distributed  (i.i.d.).   Under  weak

assumptions, the market return will be lognormally distributed as the number

of compounded i.i.d. subperiods becomes large. 

Remarkably powerful results follow from market lognormality.  Under the

perfect  market  assumption  (ii),  the  average  investor  will  have  a  power

marginal utility function, which in turn can be used to derive equilibrium asset

prices.  This in turn provides a measure of risk (our B) which determines the

required return of any fairly priced asset or portfolio strategy, including those

with  highly  nonsymmetric  return  distributions.   Superior  or  inferior

performance (our A) is the expected return based on managerial information,

less the required return. 

Our risk measure differs substantially from the CAPM beta, when asset or

portfolio returns are highly nonlinear in the market return.  Correctly measuring

risk is essential for assessing the performance of an investment manager when

options  are  used,  or  when  dynamics  (including  market  timing  strategies)

create nonlinear payoffs.  The difference in between B and β, however, will be

relatively small when the portfolio or asset returns are jointly lognormal with

the market.
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Other measures, such as the "Sortino ratio" or "Value at Risk", are  ad

hoc  attempts to incorporate the importance of downside risk.  But as they

totally ignore upside risk, they are generally inaccurate as a appropriate risk

and/or performance measures.  Our measure is exact for any distribution of

asset or portfolio returns, as long as the market return is i.i.d.

What if  the market  return  is  not  lognormally  distributed?  If we can

estimate the market's price process, we can in principle combine the results of

He and Leland [1993] and Rubinstein [1973] to develop appropriate measures

of risk and performance.  He and Leland’s results permit identification of a

marginal utility function consistent with an average investor who will "support"

a  given  market  price  process.   The  appropriately  modified  beta  is  the

covariance between the marginal utility of the average investor and the asset

or portfolio return, divided by the expected covariance between the marginal

utility of the average investor and the market return. 
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APPENDIX:

COMPARISONS OF Bp and βp 

FOR LOGNORMALLY DISTRIBUTED ASSETS

Recall that Bp is defined as

where RM = (1 + rmkt ) and Rp = (1 + rp ).  If RM  and Rp are jointly lognormal,

with 

E[log(RM )] = μM , E[(log(RM ) - μM)2] = σM
2 

E[log(Rp )] = μp , E[(log(Rp ) - μp)2] = σp
2 

Cov[log(RM ), log(Rp )] = σpM 

then
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Factoring numerator and denominator gives 

Now βp = Cov(rp , rM )/Var(rM ) is simply the above expression when b = -1.

Therefore, after simplification 

To a first order Taylor Series expansion,  ex = 1 + x.  It immediately follows

that, to the first order, Bp /βp = (-bσpM /-bσM
2)(σM

2/σpM) = 1.  Over relatively

short  time  periods  (when volatilities  are  small),  both  techniques  will  yield

identical estimates for "beta".  For longer time periods, the two techniques will

not give identical results: see Table II of the text.
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{Figure 1 is unavailable here, but simply plots the information from
Table I below}
Figure 1 plots the security market line, the straight line joining the riskfree
asset point

(β = 0, E(r) = 0.05) with the market portfolio point (β = 1, E(r) = 0.12).  
The annual standard deviation of the market portfolio return is 15%.

The dashing line above the security market line is the plot of rebalancing
or value strategies for alternative strike prices of the call option sold.
The points along this line range from strike price 90 (lower left) to strike
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price 140 (upper right).

The  large dashing  line  below the  security  market  line  is  the  plot  of
momentum or portfolio insurance strategies for alternative strike prices
of the put option bought.  The points along this line range from strike
price 140 (lower left) to strike price 90 (upper right).

Alpha is measured by the vertical distance between the plotted point
and the security

market line.
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  TABLE I:  

CAPM-based β and α vs. Modified B, A

Rebalancing or Value Strategies:    Long the Market; Short 1 Call

   (i)   (ii)   (iii) (iv)            (v)
Strike Price   E(r)                β     α   B
A

 90   5.51% .038  0.24% .073
0

100   6.76% .163  0.62% .251
0

110   8.61% .394  0.85% .515
0

120 10.27% .650  0.72% .753
0

130 11.30% .838  0.57% .900
0

140 11.77% .939  0.20% .967
0

Portfolio Insurance or Momentum Strategies:   Long the Market; Long
1 Put 

   (i)   (ii)   (iii) (iv)             (v)
Strike Price   E(r)                β     α   B   

A

 90 11.49% .962 -0.24% .927 0
100 10.24% .837 -0.62% .749 0
110   8.40% .606 -0.84% .485 0
120   6.73% .351 -0.72% .247 0
130   5.70% .163 -0.44% .101 0
140   5.24% .062 -0.19% .034 0

Column (i) is computed assuming a lognormal market portfolio with annual
mean = 12%, and std. dev. = 15%, and the distributions this implies for
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portfolios with options.

Column (ii) computes equation (1), using the assumptions in column (i).

Column (iii) computes equation (3), with E[rp | M] = column (i).  rf = 5%.

Column (iv) computes equation (7).  Equation (8) implies b = 3.63.

Column (v) computes equation (9).
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TABLE II

Values of Bp (βp) for Lognormally Distributed Assets

               ρp,mkt

  .25 .50 .75
______________________________________________________

.15    .256 (.248)    .508 ( .498)    .756
( .748)

  σp .25    .415 (.405)    .819 ( .813)   1.213
(1.224)

.35    .561 (.551)   1.103 (1.108)   1.625 (1.670)
______________________________________________________

Table II  assumes the portfolio p and the market portfolio returns are jointly
lognormal.

The market has annual mean = 12% and std. dev. = 15%.  The annual riskfree
rate is 5%.

Portfolios  p  with  differ  with  respect  to  their  correlations  with  the  market
(columns), and different volatilities (rows).

Table entries are the computed Bp and, in parentheses, CAPM βp.
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