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Abstract—Geometric multigrid solvers within adaptive mesh
refinement (AMR) applications often reach a point where fur-
ther coarsening of the grid becomes impractical as individual
subdomain sizes approach unity. At this point the most common
solution is to use a bottom solver, such as BiCGStab, to reduce
the residual by a fixed factor at the coarsest level. Each
iteration of BiCGStab requires multiple global reductions (MPI
collectives). As the number of BiCGStab iterations required
for convergence grows with problem size, and the time for
each collective operation increases with machine scale, bottom
solves in large-scale applications can constitute a significant
fraction of the overall multigrid solve time. In this paper, we
implement, evaluate, and optimize a communication-avoiding s-
step formulation of BiCGStab (CABiCGStab for short) as a high-
performance, distributed-memory bottom solver for geometric
multigrid solvers. This is the first time s-step Krylov subspace
methods have been leveraged to improve multigrid bottom solver
performance. We use a synthetic benchmark for detailed analysis
and integrate the best implementation into BoxLib in order to
evaluate the benefit of a s-step Krylov subspace method on the
multigrid solves found in the applications LMC and Nyx on up to
32,768 cores on the Cray XE6 at NERSC. Overall, we see bottom
solver improvements of up to 4.2× on synthetic problems and up
to 2.7× in real applications. This results in as much as a 1.5×
improvement in solver performance in real applications.

Keywords—Multigrid; Communication-avoiding; BiCGStab;

I. GEOMETRIC MULTIGRID

Many large-scale numerical simulations in a wide vari-
ety of scientific disciplines require the solution of elliptic
and/or parabolic partial differential equations on a single-
level domain-decomposed grid or on a hierarchy of adaptively
refined meshes (AMR levels). Simulations that solve time-
dependent systems of equations may run for many time steps
and may require multiple solves per timestep. Often the cost
of solving the elliptic or parabolic equations is a substantial
fraction of the total cost of the simulation.

A variety of techniques are available to solve these equa-
tions. The most widely used are direct solvers, Krylov sub-
space methods, fast multipole methods, and multigrid tech-
niques. For any particular simulation of a given size, one
technique or combination of techniques may be better. Here,
we focus exclusively on geometric multigrid with a Krylov
subspace method coarse grid (bottom of the U-cycle) solver
due to its widespread applicability and use. This combination
is available as an option (or the default) in a number of

progress within one V-cycle	


Fig. 1. A four-level multigrid V-cycle for solving Luh = fh. Superscripts
represent grid spacing. Restriction is terminated at 8h. The performance and
scalability of the bottom solver is the focus of this work.

publicly available software packages, such as BoxLib [1],
Chombo [2], PETSc [3], and hypre [4].

As shown in Figure 1, a typical geometric multigrid V-cycle
coarsens the computational domain until a stopping criterion
is reached. At each level down the V-cycle, the error on the
solution is smoothed using, e.g., the Gauss-Seidel method with
red/black ordering (GSRB), and a new right-hand side for the
coarser level is constructed from the residual. For a simulation
on a single uniform domain, a typical restriction termination
criterion is met when the domain reaches 2-4 cells on a side.

When the domain is decomposed over a large number of
processes, the coarsening would typically stop when each
subdomain (box) reaches this small size. If there are a large
number of subdomains then the problem size of the resultant
bottom solve may be small relative to the finest level, but
still large enough that its computational cost is substantial.
One technique to alleviate this performance bottleneck is to
agglomerate the collection of small boxes into one or more
larger boxes, further coarsen those boxes, and solve on a subset
of the processors. While this technique is very effective for
uniform rectangular meshes, the geometry of non-rectangular
domains or individual AMR levels with irregular coarse/fine
boundaries may preclude the use of this technique. Thus we
are left with the problem of computationally costly bottom
solves, the focus of this paper.

Once the bottom problem has been solved, the coarse
solutions are interpolated to update the solutions on the finer



levels whose errors are then smoothed again. The whole V-
cycle process repeats until the norm of the residual on the
finest grids reaches some specified tolerance.

II. RELATED WORK

The s-step BiCGStab method used in this work is designed
to minimize the communication bottlenecks found in today’s
supercomputers [5]. Research in s-step Krylov subspace meth-
ods is not new; over the past three decades, many recognized
that global synchronizations (in both sequential and parallel
implementations) could be blocked/fused to reduce the com-
munication bottleneck. This has led to many s-step Krylov
subspace methods (see, e.g., [6], [7], [8], [9], [10], [11], [12],
[13], [14]). For a thorough overview, please review [15].

In addition to s-step formulations, there are other ap-
proaches to reducing synchronization cost in Krylov subspace
methods, many of which involve overlapping communication
and computation. In [16], Gropp presents an asynchronous
variant of the conjugate gradient method (CG) with two global
synchronization points per iteration that can be overlapped
with the matrix-vector multiplication and application of the
preconditioner, respectively. Overlapping techniques for solv-
ing least squares problems with Krylov subspace methods on
massively parallel distributed memory machines are presented
in [14].

In [17], a pipelined version of GMRES is presented, where
the authors overlap nonblocking reductions (to compute dot
products needed in later iterations) with matrix-vector multi-
plications. This resulted in speedups and improved scalability
on distributed-memory machines. An analogous pipelined ver-
sion of CG is presented in [18], and the pipelining approach
is discussed further in [19]. Another pipelined algorithm,
currently implemented in the SLEPc library [20], is the
Arnoldi method with delayed reorthogonalization (ADR) [21].
This approach mixes work from the current, previous, and
subsequent iterations to avoid extra synchronization points due
to reorthogonalization.

In [22], the authors present a communication-avoiding
Chebyshev iteration that uses a tiling approach to improve
temporal locality when performing repeated matrix-vector
multiplications (see also [23]). They apply this method as
the smoother in a geometric multigrid solver for the Poisson
equation on a regular 2D grid.

Unlike the overlapping or pipelining techniques which hide
communication, the s-step formulation used here enables
asymptotic reductions in global communication.

III. EXPERIMENTAL SETUP

A. miniGMG

In order to provide a testbed for algorithmic exploration
as well as a platform for detailed performance analysis,
we leverage our miniGMG geometric multigrid benchmark
detailed in Williams et al. [24]. The benchmark provides a
controlled environment in which we may generate a variety of
problems with different performance and numerical properties,
analyze convergence, and provide detailed timing breakdowns

by operation and by level within the V-cycle. miniGMG
creates a global 3D domain and partitions it into subdomains
of sizes similar to those found in real-world AMR multigrid
applications. The subdomains are then distributed among
processes. As in previous work, we choose to solve a finite-
volume discretization of the variable-coefficient Helmholtz
equation (Lu = aαu − b∇ · β∇u = f ) on a cube with
periodic boundary conditions. We create only one 643 box per
process to mimic the memory capacity challenges of real AMR
MG combustion applications — multilevel AMR coupled with
dozens of chemical species significantly limits the memory
available to any one solve. For our synthetic problem, the
right-hand side is a 3D triangle wave whose period spans
the entire domain, and we set the nominally spatially-varying
coefficients α = β = 1.0, and a = b = 0.9. miniGMG uses
piecewise constant interpolation between levels for all points
and solves this problem using standard V-cycles terminated
when each box is coarsened to 43. However, where previous
work used multiple GSRB relaxations at this level [24], we
now use a matrix-free BiCGStab bottom solver. We used the
highly portable OpenMP version of miniGMG. Neither SIMD
optimizations nor communication-avoiding smoothers are used
in this paper as the focus is on the bottom solver.

B. Cray XE6 (Hopper)

All experiments presented in this paper are performed on
Hopper, a Cray XE6 MPP at NERSC. Each compute node has
four 6-core Opteron chips each with two DDR3-1333 memory
controllers [25]. Each superscalar out-of-order core includes
both a 64KB L1 and a 512KB L2 cache, while each chip
includes a 6MB L3 cache. Pairs of compute nodes are directly
connected via HyperTransport to a high-speed Gemini network
chip. The Gemini network chips are connected to form a high-
bandwidth, low-latency 3D torus. There is some asymmetry
within the torus as peak MPI bandwidths are either 3GB/s or
6GB/s depending on direction. Programmers have virtually no
control over job placement, and thus little control over this.
Latencies can be as little as 1.5µs, but are higher in practice.

IV. CLASSICAL BICGSTAB PERFORMANCE

A. BiCGStab

Algorithm 1 presents the classical BiCGStab method as
given by Saad [26], supplemented with convergence checks.
We denote the dot product aT b as (a, b). BiCGStab’s vec-
tor and matrix operations are grid and stencil operations in
miniGMG. Thus, a dot product is implemented with pair-
wise multiplications between the corresponding cells of two
grids followed by a global reduction, while a matrix-vector
multiplication is a ghost zone exchange (point-to-point MPI
communication) followed by the application of a stencil to a
grid (e.g., Apj is a stencil applied to grid pj).

In Algorithm 1, we observe that in each iteration, one
nominally performs two matrix-vector multiplications, four dot
products, and two norms. In miniGMG, BoxLib, and Chombo,
we use the max norm (||r||∞) instead of the L2 norm (||r||2)
to check convergence (the communication cost is the same).



While the matrix-vector multiplications simply require point-
to-point (P2P) communication (MPI_Isend/Irecv) with
neighboring processes, the dot products and norms require col-
lective operations (MPI_AllReduce) — global reductions
across the entire machine. In general, depending on the size of
the problem, communication pattern, and parallel concurrency,
either the local computation, P2P communication, or collective
operations could be the performance bottleneck. As we are
focused on a bottom solver in which each process owns only
a 43 box after coarsening, we expect the bottom solve time to
be dominated by either P2P communication or collectives.

Algorithm 1 Classical BiCGStab for solving Ax = b

1: Start with initial guess x0
2: p0 := r0 := b−Ax0
3: Set r̃ arbitrarily so that (r̃, r0) 6= 0
4: for j := 0, 1, . . . until convergence or breakdown do
5: αj := (r̃, rj)/(r̃, Apj)
6: xj+1 := xj + αjpj
7: qj := rj − αjApj
8: Check ||qj ||2 = (qj , qj)

1/2 for convergence
9: ωj := (qj , Aqj)/(Aqj , Aqj)

10: xj+1 := xj+1 + ωjqj
11: rj+1 := qj − ωjAqj
12: Check ||rj+1||2 = (rj+1, rj+1)1/2 for convergence
13: βj := (αj/ωj)(r̃, rj+1)/(r̃, rj)
14: pj+1 := rj+1 + βj(pj − ωjApj)
15: end for

B. Performance and Scalability of miniGMG with BiCGStab
Figure 2 shows the time-to-solution for a multigrid solve as

one weak-scales from 8 to 4096 processes on Hopper, where
each process has 6 threads (one Opteron chip) and receives
one subdomain (box) of 643 points at the finest grid. Thus,
the problem scales from a domain with N = 1283 points
distributed over 48 cores to N = 10243 using 24,576 cores.
The convergence criterion for miniGMG is to reduce the norm
of the residual on the fine grid by a factor of at least 10−10.
Ideally, geometric multigrid performs O(N) computations, so
one might hope that runtime stays constant while weak-scaling
— reality (solid red line) is far from this.

miniGMG allows us to tabulate time by level. Doing so
allows us to separate the time spent in the traditional multi-
grid V-cycles (dashed green line) from the time spent in
the BiCGStab bottom solver (dashed red line). Whereas the
multigrid part of the solver scales perfectly, the time spent in
the bottom solver grows rapidly. These observations reflect the
general characteristics of weak-scaled applications dependent
on multigrid solvers and motivate the need to address the
performance and scalability of Krylov-based bottom solvers
for geometric multigrid.

C. Breakdown of Bottom Solve Time
Our miniGMG benchmark also allows us to quantify the

breakdown of time in the bottom solver by operation. Fig-
ure 3 (top) clearly shows the vast majority of time in the
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Fig. 2. Breakdown of miniGMG solver time as one weak-scales a problem
with 643 points per process up to 4096 processes (24,576 cores) on Hopper
for our synthetic problem.

bottom solve is spent in MPI_AllReduce. The time spent
in P2P communication is an order of magnitude less and the
time spent in computation is insignificant. Figure 3 (bottom)
shows that the rapid increase in MPI_AllReduce time is
attributable to two effects. First, the total number of BiCGStab
iterations (summed across all V-cycles) increases quickly with
problem size. This should come as no surprise when weak-
scaling an algorithm with potential superlinear computational
complexity. Second, the average time in MPI_AllReduce
per iteration increases with machine scale. This is certainly
plausible given that Hopper’s network topology is a 3D torus
and the PBS job scheduler has been optimized to maximize
machine usage without guaranteeing each job is apportioned
a compact subtorus. The result is an increasing number of
increasingly slower BiCGStab iterations.

As it is difficult to reduce the time required for a collective
operation like MPI_AllReduce without changing either the
MPI implementation, the network architecture, or the job
scheduler, we consider optimizing the bottom solver to reduce
the number of times the collective is performed.

V. CABICGSTAB

Krylov subspace methods are based on projection onto
expanding subspaces, where, in each iteration m, the approx-
imate solution is chosen from the expanding Krylov subspace

Km(A, v) = span{v,Av, . . . , Am−1v}.

The main idea behind s-step Krylov subspace methods is
to block the iteration space into groups of s, splitting the
main loop of the Krylov subspace method into an outer loop
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Fig. 3. Breakdown of the performance effects of the classical BiCGStab
bottom solves as a function of scale. Top: dominant times. Bottom: requisite
iterations vs. MPI_AllReduce time per iteration.

(the communication step) and an inner loop (computation
steps). Each outer loop involves computing a basis for a
Θ(s)-dimensional Krylov subspace and computing a Gram
matrix to encode dot products with the resulting basis vectors.
This formulation, equivalent to a change of basis, then allows
BiCGStab iterate updates to be computed without communi-
cation in the inner loop. For a thorough overview of s-step
Krylov subspace methods see [15].

A. Algorithm

We briefly review the derivation of our communication-
avoiding s-step BiCGStab (CABiCGStab for short) for the
familiar reader; for details, see [5]. Assume we are at some
iteration m and we wish to determine the dependencies for
computing the next s iterations up to m+ s. By induction on
lines 6, 7, 10, 11, and 14 of Algorithm 1, we can write, for
0 ≤ j ≤ s− 1,

pm+j+1,rm+j+1,xm+j+1−xm∈K2s+1(A, pm)+K2s(A, rm),

qm+j ∈ K2s(A, pm) +K2s−1(A, rm), and
pm+j ∈ K2s−1(A, pm) +K2s−2(A, rm).

Let P and R denote bases for the subspaces K2s+1(A, pm) and
K2s(A, rm), respectively. We can then write, for 0 ≤ j ≤ s−1,

qm+j = [P,R]dj ,

xm+j+1 − xm = [P,R]ej+1,

rm+j+1 = [P,R]cj+1, and
pm+j+1 = [P,R]aj+1,

i.e., the length-(4s + 1) vectors dj , aj+1, cj+1, ej+1

are coordinates for the length-N vectors
qm+j , pm+j+1, rm+j+1, xm+j+1 − xm, respectively, in
terms of the columns of [P,R]. In our implementation,
we order columns in P and R in the order they are
computed; this gives the initial values a0 = [1, 01,4s]

T ,
c0 = [01,2s+1, 1, 01,2s−1]T , and e0 = 04s+1,1, where 0i,` is a
zero matrix with i rows and ` columns.

The bases P,R are generated by polynomials satisfying a
three-term recurrence and represented by a (4s+1)-by-(4s+1)
tridiagonal matrix T ′, satisfying

A[P , 0n,1, R, 0n,1] = [P,R]T ′,

where P and R are P and R, respectively, with the last
columns omitted (see [5] for details). Then the two matrix-
vector multiplications needed in the iterate updates for 0 ≤
j ≤ s− 1 can be written as

A[qm+j , pm+j ] = A[P,R][dj , aj ]

= A[P , 0n,1, R, 0n,1][dj , aj ]

= [P,R]T ′[dj , aj ].

Since T ′ is small, each process stores a copy locally, and thus
multiplication by T ′ incurs no communication.

Rather than update the length-N iterates in the inner loop,
we update their respective length-(4s+ 1) coordinate vectors,
replacing multiplications with A by multiplications with T ′.
That is, lines 6, 7, 10, 11, and 14 in Algorithm 1 become

ej+1 = ej + αm+jaj ,

dj = cj − αm+jT
′aj ,

ej+1 = ej+1 + ωm+jdj ,

cj+1 = dj − ωm+jT
′dj , and

aj+1 = cj+1 + βm+j(aj − ωm+jT
′aj).

The length-N iterates can be recovered by premultiplication
of the coordinate vectors by [P,R].

The remaining step is to eliminate the length-N dot
products in lines 5, 9, and 13 of Algorithm 1 that each
incur one MPI_AllReduce per iteration. Let [G, g] =
[P,R]T [P,R, r̃]. Here, G is a (4s+1)-by-(4s+1) matrix and
g is a length-(4s+1) vector. This matrix-matrix multiplication
can be realized with a single MPI_AllReduce. Since G and
g are both small quantities that can be duplicated locally, the
dot products can be computed locally by the relations

(r̃, rm+j) = (g, cj),

(r̃, rm+j+1) = (g, cj+1),

(r̃, Apm+j) = (g, T ′aj),

(qm+j , Aqm+j) = (dj , GT
′dj), and

(Aqm+j , Aqm+j) = (T ′dj , GT
′dj),

for iterations 0 ≤ j ≤ s− 1. Note that since

‖qm+j‖2 = (qm+j , qm+j)
1/2 = (dj , Gdj)

1/2,



and similarly,

‖rm+j+1‖2 = (rm+j+1, rm+j+1)1/2 = (cj+1, Gcj+1)1/2,

the convergence checks in lines 8 and 12 can be performed
locally (no communication) for 0 ≤ j ≤ s− 1.

Using these transformations, we can block BiCGStab iter-
ates into groups of s, resulting in an outer loop that operates on
blocks of iterates and an inner loop that computes s iterations
of iterate updates. The resulting CABiCGStab method is
shown in Algorithm 2. Observe that the same traditional
breakdown criteria appear and are resolved in Algorithm 2
as in Algorithm 1.

B. Polynomial Bases

We have flexibility in selecting polynomials to use in
construction of P and R (bases for K2s+1(A, pm) and
K2s(A, rm), resp.). The condition number and norm of P and
R have important implications for stability and convergence
in finite precision; in the extreme case, an ill-conditioned
basis can lead to divergence of the residual. The simplest
basis for the Krylov subspace Ki(A, v) is the monomial basis,
i.e., [v,Av, . . . , Ai−1v]. It is well-known, however, that the
monomial basis condition number grows exponentially with
basis size (∝ s in our case), which makes its use appropriate
only for small values of s. We can use any basis of the form
[ρ0(A)v, ρ1(A)v, . . . , ρi−1(A)v], where ρj is a polynomial
of degree j. Typical choices resulting in well-conditioned
matrices include Newton and Chebyshev polynomials, which
are based on the spectrum of A (see, e.g., [27]).

C. Stability Improvements

We perform minor adjustments to the convergence checks
in Algorithm 2 to handle finite precision roundoff error. In
finite precision, the use of G in computing lines 14 and 18 can
result in small negative numbers for estimates of ‖qm+j‖2 and
‖rm+j+1‖2. In this case, the result is flushed to 0, indicating
convergence. As these convergence checks are entirely local
(no communication) and operate on the tiny coordinate vec-
tors, they are very fast and do not negate our communication-
avoiding benefits attained elsewhere.

D. Implementation in miniGMG and Performance Potential

CABiCGStab (Algorithm 2) provides potential performance
benefits in three areas — reducing the number of collective
communications, reducing the number of P2P communica-
tions, and eliminating vertical (DRAM) data movement. One
can tailor the implementation to optimize for whichever of
these is the bottleneck for the problem and scale in question.

Inter-process communication only occurs in lines 6, 7, and 8
(there is no inter-process communication in the inner (j) loop).
Moreover, the most computationally expensive routines occur
in these three lines as well. All computations in the inner loop
are operations on tiny length-(4s + 1) vectors. We will thus
focus our analysis on the performance benefits of these lines.

Currently, miniGMG uses the monomial basis, i.e.,

[P,R] = [pm, Apm, . . . , A
2spm, rm, Arm, . . . , A

2s−1rm].

Algorithm 2 CABiCGStab for solving Ax = b

1: Start with initial guess x0
2: p0 := r0 := b−Ax0
3: Set r̃ arbitrarily so that (r̃, r0) 6= 0
4: Construct (4s+ 1)-by-(4s+ 1) matrix T ′

5: for m := 0, s, 2s, . . . until convergence or breakdown do
6: Compute P , a basis for K2s+1(A, pm)
7: Compute R, a basis for K2s(A, rm)
8: [G, g] := [P,R]T [P,R, r̃]
9: Initialize length-(4s+ 1) vectors a0, c0, d0, e0

10: for j := 0 to s− 1 (or convergence/breakdown) do
11: αm+j := (g, cj)/(g, T

′aj)
12: ej+1 := ej + αm+jaj
13: dj := cj − αm+jT

′aj
14: Check ||qm+j ||2 = (dj , Gdj)

1/2 for convergence
15: ωm+j := (dj , GT

′dj)/(T
′dj , GT

′dj)
16: ej+1 := ej+1 + ωm+jdj
17: cj+1 := dj − ωm+jT

′dj
18: Check ||rm+j+1||2 = (cj+1, Gcj+1)1/2 for con-

vergence
19: βm+j := (αm+j/ωm+j)(g, cj+1)/(g, cj)
20: aj+1 := cj+1 − βm+j(aj − ωm+jT

′aj)
21: end for
22: pm+s := [P,R]as
23: rm+s := [P,R]cs
24: xm+s := [P,R]es + xm
25: end for

One can either perform these matrix-vector multiplications
sequentially (Ak+1pm = A(Akpm)), in pairs
([Ak+1pm, A

k+1rm] = A[Akpm, A
krm]), or in a

communication-avoiding matrix powers [23] implementation
that calculates several powers of A by aggregating MPI
communication, reading A only once from DRAM, and
performing some redundant work. The first approach will
require 4s− 1 P2P communications every s steps — roughly
twice the number of P2P communications for s iterations of
classical BiCGStab (two per iteration). This is the approach
currently used in miniGMG. The second approach can return
this to parity with the classical algorithm with the caveat that
the size of each message is doubled. The benefit of the third
approach heavily depends on the value of s, the increased
number of messages for the depth-Θ(s) ghost zones, the
size of the matrix, and the characteristics of the machine. To
date, the third approach has not shown benefits for miniGMG
bottom solves with 7-point stencils and small s, but it is still
an area of active research.

Line 8 of Algorithm 2 shows the construction of the Gram-
like matrix [G, g]. As [P,R, r̃] contains multiple grids as
columns, the operation [G, g] := [P,R]T [P,R, r̃] is effectively
a series of dot products on grids distributed across thousands
of processes. If performed sequentially, these operations would
require at least 4s2 calls to MPI_AllReduce — clearly
a poor choice. It is thus much better to have each process
aggregate the partial sums into a matrix and perform one



MPI_AllReduce on a matrix of size (4s+ 1)-by-(4s+ 2).
Moreover, one can exploit the symmetry of G for additional
savings, although our implementation currently does not. Nev-
ertheless, we have implemented the construction of [G, g]
as a high-performance distributed matrix-matrix multiplica-
tion, using multithreading to compute the local dot products
and operating directly on the structured grid data structures.
Moreover, where the classical algorithm required six calls to
MPI_AllReduce per iteration, CABiCGStab asymptotically
approaches 1/s calls to MPI_AllReduce per iteration.

The current infrastructure of miniGMG does not permit
either exchanging ghost zones or applying the stencil A to
pairs [pm, rm]. As such, we expect miniGMG’s implemen-
tation of CABiCGStab to double the time spent in both the
P2P communication and the application of the stencil (matrix-
vector multiplication).

As some multigrid solves are “easy”, requiring few (perhaps
less than s) iterations in each bottom solve, we have imple-
mented a “telescoping” approach to CABiCGStab in which
the value of s increases over the course of the solve. The
first iteration of the m loop uses s = 1, the second uses
s = 2, and the n-th iteration uses s = min{smax, 2

n}. This
ensures that easy solves do not see high initial startup costs of
computing the full [P,R] and [G, g] while “hard” solves see
the asymptotic benefits.

Finally, we have also implemented a communication-
avoiding version of conjugate gradient (CACG) based on [15].
Although its implementation and performance benefits are
quite similar to CABiCGStab, its performance will not be
presented in this paper because the solves within AMR MG
applications are usually nonsymmetric.

E. Benefits to miniGMG

Figure 4 presents the resultant performance of miniGMG
solver (solid blue line) using our CABiCGStab implementation
with s = 4 on Hopper as we scale to 4096 processes. As
each process is 6-way multithreaded, the final data point uses
24,576 cores and solves a 10243 problem. For reference, we
also include the performance using the classical BiCGStab
implementation (solid red line). Additionally, we break out
the times spent in the respective bottom solves. At 24K cores,
CABiCGStab’s ability to asymptotically reduce the number
of calls to MPI_AllReduce improves bottom solver perfor-
mance by more than 4.2× and the overall multigrid solve time
by nearly 2.5×. Moreover, this dramatically improves parallel
efficiency and helps ensure any superlinear computational
complexity of the bottom solver does not severely impede the
linear computational complexity of geometric multigrid. We
observe the aggregate performance (degrees of freedom solved
per second) improves to nearly linear with CABiCGStab.

Figure 5 presents the reductions in time across all bot-
tom solves using either classical BiCGStab or CABiCGStab
(with s = 4) as the bottom solver. As expected, the sequential
computation of [P,R] resulted in a doubling of the time spent
in P2P communication. It also doubled the time required to
apply the linear operator — however, this time is negligible.
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Fig. 4. miniGMG solve time (top) and performance (bottom) in degrees of
freedom solved per second (DOF/s) using either the classical BiCGStab or
our new CABiCGStab (with s = 4) bottom solver.

Although CABiCGStab now requires more than 150 local
dot products when calculating each process’ partial sum of the
BLAS3-like operation [G, g] = [P,R]T [P,R, r̃], when prop-
erly optimized, this time is tiny compared to the MPI commu-
nication times. Nominally, in s steps, one expects BiCGStab
to call MPI AllReduce 6s times, but CABiCGStab to call
it only once. Thus, if collective performance were always
latency-limited (regardless of message size), then we would
have expected CABiCGStab to reduce the MPI_AllReduce
time by a factor of 24 for s = 4. Unfortunately, the size of the
reductions has increased from an 8-byte double-precision value
to 2448 bytes — the (4s + 1)-by-(4s + 2) double-precision
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[G, g] matrix. This has the effect of limiting the observed
reduction in collective time to only 11.2×.

We selected s = 4 as it provides a good speedup in the
bottom solver without being so aggressive that it demands an
alternative basis like the aforementioned Newton or Chebyshev
bases lest converge be impeded. Figure 6 shows the max norm
of the residual on the finest grid after each V-cycle using
either the classical BiCGStab or our new CABiCGStab bottom
solver. We observe that, as expected, using the communication-
avoiding solver with a moderate choice of s does not signif-
icantly perturb the convergence of the multigrid solver. The
difference in convergence is likely an artifact of using the
L2 norm checks rather than the max norm that miniGMG
nominally uses.

F. Additional Memory Requirements

Our CABiCGStab implementation requires extra storage to
hold [P,R, r̃]. Compared to our BiCGStab implementation,
CABiCGStab requires 4s − 2 additional grids. Although this
overhead may be prohibitive for weak-scaled Krylov solves

on fine grids, in the context of multigrid, it is negligible —
roughly 24KB per process for s = 4.

VI. APPLICATION RESULTS

Thus far, we have used a synthetic problem within the
miniGMG benchmark framework in order to provide some
initial insights into the benefits and challenges of bottom
solvers and communication avoidance within geometric multi-
grid. In order to quantify how well these technologies translate
to real applications, we implemented CABiCGStab within
BoxLib [1], a framework for AMR on block-structured grids,
and evaluated performance on both 2D and 3D applications.
This has allowed us to quantify the performance challenges of
multigrid solves found in real, large-scale science applications
whose AMR strategies are driven by the needs of the entire
simulation, rather than optimized for multigrid performance.

The synthetic problem is perfectly repeatable as neither the
right-hand side nor the coefficients change. Time-dependent
applications typically perform many multigrid solves with
time-varying right-hand sides and possibly time-varying coef-
ficients, thus requiring an ensemble of runs for benchmarking
purposes. In addition, whereas miniGMG tests only periodic
boundary conditions, real applications can have a variety
of boundary conditions including Dirichlet, Neumann, and
combinations of the two. Multigrid solves on a fine level
within an AMR simulation, which rely on Dirichlet boundary
conditions from a coarser level, can be particularly challenging
because of the irregular geometry of the coarse/fine interface.

Although the application results presented here are based
on BoxLib and BoxLib-based applications, the conclusions
should generalize to other structured grid frameworks such
as Chombo, PETSc, and hypre.

A. BoxLib CABiCGStab Implementation

The BoxLib AMR framework provides two versions of its
BiCGStab iterative solver — one written in C++ and one in
Fortran. We implemented both a C++ and a Fortran version
of CABiCGStab (using miniGMG’s version as a reference im-
plementation) within BoxLib to provide drop-in replacements
for the existing solvers. There are a number of features within
BoxLib that are not present in miniGMG that can be used to
realize certain optimizations in CABiCGStab.

As noted, when constructing [P,R], one may construct
the powers sequentially, in parallel, or in a communication-
avoiding manner. Whereas miniGMG constructs them sequen-
tially, the BoxLib implementation constructs the powers in
pairs ([Ak+1pm, A

k+1rm] = A[Akpm, A
krm]). This has the

benefit of reducing the number of times one must read A,
or more precisely, the variable coefficients. Unfortunately,
in itself, this provides no great performance boost to local
computation as the solver is usually run as a bottom solver on
tiny problems that fit in cache. However, this approach allows
one to exploit the communication features in BoxLib that allow
one to exchange the ghost zones for multiple variables with a
minimal number of messages. Thus, where miniGMG requires
a ghost zone exchange for every matrix-vector multiplication



with pm and another ghost zone exchange for every matrix-
vector multiplication with rm, the BoxLib solvers pair up the
ghost zone exchanges and send half as many messages of twice
the size — a clear win for bottom solvers where the messages
are tiny and thus latency-limited. Ultimately, this allows one
to ensure the number of ghost zone exchanges per iteration in
CABiCGStab is the same as the number in classical BiCGStab.

Unfortunately, the boundary conditions found in real ap-
plications coupled with the resultant coarse/fine boundary
conditions in AMR preclude one from simply filling a four-
element deep ghost zone and calculating four powers in a
communication-avoiding manner as in our previous work [24].
Thus, we are currently restricted to calculating [P,R] in pairs.

Like miniGMG, the BoxLib C++ solver uses a telescoping
method, the monomial basis, and smax = 4, while the BoxLib
Fortran solver hard-codes s = 4. Experiments on the bottom
solves in real applications showed that using larger values of
s with the monomial basis necessitated additional V-cycles
and a loss of performance. These additional V-cycles tended
to destroy the performance advantages of a communication-
avoiding bottom solver.

On a final note, whereas miniGMG restricts each box down
to 43 cells, when possible, most BoxLib applications restricts
down to 23. Although this sounds like a small difference, one
must remember that there are thousands of boxes distributed
across thousands of cores. Thus, the bottom problem is still
relatively large and a factor of 8 reduction in problem size
can significantly reduce the number of BiCGStab iterations.
When the number of iterations required in each bottom solve
becomes comparable to the parameter s, the benefits of
CABiCGStab are mitigated.

B. LMC

The Low Mach Number Combustion Code (LMC) simulates
gas-phase combustion using a low Mach number model,
coupled to detailed chemical reaction networks and differential
diffusion [28]. Each timestep of LMC requires two types of
cell-centered linear solves using multigrid on block-structured
AMR grids.

The first type solves (aα − b∇ · β∇)u = f , where u
represents the concentration of a chemical species, a and b
are constants, and α and β may vary spatially. As aα is
non-zero, the matrix A is more diagonally dominant than
the matrix resulting just from the discretization of b∇ · β∇.
In 3D, the stencil uses a 7-point variable-coefficient stencil
with a GSRB smoother. These diffusion solves are relatively
easy in that they require only a few V-cycles, each with few
iterations of the bottom solver. Diffusion solves will likely
see no benefit from a communication-avoiding bottom solver,
but could be accelerated with the communication-avoiding
smoothers described in our previous work [24].

The second type, the mac project solve, is similar to the
first, but specialized to elliptic equations (b∇ · β∇u = f ).
The discretization of this operator is also a 7-point variable-
coefficient stencil, and GSRB smoothers are also used for these
solves. However the mac project solves are often particularly
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Fig. 7. mac project solver speedup arising from the use of CABiCGStab in
the 3D (top) and 2D (bottom) versions of LMC as a function of the number
of cores and programming model.

challenging, requiring 10 or more V-cycles and potentially
hundreds of bottom solver iterations. The mac project solve
is thus an ideal candidate for communication-avoiding bottom
solvers and serves as the basis for our LMC experiments.

Figure 7 shows the performance benefit to the mac project
solves in LMC from replacing the classical BiCGStab bottom
solver with CABiCGStab when weak-scaling the number of
cores on the Cray XE6 (Hopper). We record the total time
spent in the mac project solves across 5 time steps and show
speedup for both flat MPI as well as MPI+OpenMP (6 threads
per process) for both 2D (square domain with one 642 box per
process) and 3D (cubic domain with one 643 box per process)
runs. At the maximum concurrency, we see up to a 2.5×
speedup in the bottom solver and up to a 1.5× speedup in the
3D mac project multigrid solve. The bottom solver speedup
is mitigated by the fact that the classical algorithm constitutes
less than 43% and 54% of the 3D mac project solve time for
the flat MPI and hybrid MPI+OpenMP versions, respectively.
In 2D, the performance benefits of CABiCGStab are more
immediate (1.5× speedup at 64 cores), but the time spent in
the classical bottom solver was less than 35%.

Unlike miniGMG, where CABiCGStab performs almost
exactly the same number of iterations as the classical algo-
rithm, the CABiCGStab bottom solves in each V-cycle of the
mac project solves in LMC perform a similar (within 10%)



number of iterations as the classical algorithm. Nevertheless,
the number of V-cycles remains the same.

C. Nyx

Nyx is a 3D N -body and gas dynamics code that uses AMR
for large-scale cosmological simulations [29]. Nyx tracks the
time evolution of a system of discrete dark matter particles
gravitationally coupled to an inviscid ideal fluid in an expand-
ing universe. The mass of the dark matter particles is deposited
on the AMR grid hierarchy using a cloud-in-cell scheme and
converted to a density field, which is added to the gas density.
This total density defines the right-hand side for a constant-
coefficient Poisson solve (b∇2u = f ) for the gravitational
potential. The gradient of the gravitational potential (−∇u)
is the gravitational force vector which is used to accelerate
both the dark matter particles and the gas. Both the right-
hand side and the gravitational potential are defined on cell
centers, and a standard 7-point discretization of the Laplacian
operator is used, except at coarse/fine interfaces where the
stencil coefficients are modified.

Figure 8 presents the speedup in Nyx’s 3D gravity solve
from using CABiCGStab, as a function of concurrency (num-
ber of cores) and programming model. Like LMC, we conduct
weak-scaling experiments with one 643 box per process and
record the time spent in the solver over the course of 6 time
steps. In the flat MPI programming model, we realized a
2× speedup in the bottom solver over BoxLib’s BiCGStab
baseline. With pure MPI at 4K cores, the bottom solver
constitutes only 26% of the total time spent in the multigrid
solve. Thus, the overall benefit was limited to a 15% speedup.
In a hybrid MPI+OpenMP environment, in which the bottom
solver took as much as 41% of the total multigrid solve time,
the overall benefit was still 14% even though the speedup
of the bottom solver was roughly a factor of 1.6×. The
convergence behavior when using CABICGStab within Nyx
was similar to LMC — a similar number of bottom solver
iterations and exactly the same number of V-cycles.
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Fig. 8. Gravity solve speedup arising from the use of CABiCGStab in Nyx
as a function of the number of cores and programming model.

VII. SUMMARY AND CONCLUSIONS

At scale, geometric multigrid solvers can be bottlenecked
by the performance of their coarse-grid (bottom) solvers. In
this paper, we implemented, evaluated, and analyzed the per-
formance benefits of using an s-step formulation of BiCGStab
as a replacement for the existing classical BiCGStab bottom
solvers used in various multigrid solvers. Using CABiCGStab,
we observed as much as a 4.2× increase in performance in
the bottom solver for synthetic problems and up to 2.7× in
real applications. Overall, replacing the classical algorithm
with our new communication-avoiding variant improved solver
performance by as much as 1.5× on 24,576 cores. We observe
that although the communication-avoiding s-step methods can
asymptotically reduce the number of collective operations,
their performance benefit is limited (even in the absence of
rounding error) by the nontrivial time spent in P2P com-
munication, but also the quadratic increase in the size of
the collective communications and vector-vector operations.
Moreover, we found that roundoff error due to finite precision
effectively limited s to 4 when using the monomial basis
on the solves found in real applications. Larger values of s
with the monomial basis required more bottom solve iterations
and eventually extra v-cycles to reach the same convergence
criterion. Future work will explore the performance benefits
of alternative polynomials such as Newton or Chebyshev.

Although in this paper we evaluated CABiCGStab as a
bottom solver for geometric multigrid on weak-scaled appli-
cations, it should provide similar benefits for strong-scaled
applications with implicit solvers even if they are not they
are preconditioned with multigrid. That is, as one strong-
scales a solver, the problem size per process is ultimately
reduced to the point where communication (likely collective
operations) becomes the bottleneck. This is analogous to the
bottom solver challenges in a geometric multigrid V-cycle.
The use of a communication-avoiding Krylov variant should
allow increased performance and/or increased scalability for
strong-scaled applications.

Although not explored in this paper, an implementation
of the s-step formulation of BiCGStab could be tailored to
provide performance even when bound by local computation.
For example, weak-scaled Krylov solves without multigrid
may be dominated by local matrix-vector multiplications,
which are in turn usually bound by the time required to read
the matrix from DRAM. The s-step formulation allows one to
optimize the construction of [P,R, r̃] to (asymptotically) read
the matrix once ever s steps.

Broadly speaking, the communication-avoiding s-step
Krylov subspace methods expand the co-design space by
allowing hardware and software designers to trade collec-
tive latency for bandwidth. Moreover, one can trade s fine-
grained operations for one large coarse-grained operation that
expresses far more parallelism and may be more appropriate
given the manycore trends in processor architecture. Along
those lines, we plan on expanding this work to GPU and Xeon
Phi processors to evaluate whether communication-avoiding



Krylov subspace methods can ensure that those architectures
can be efficiently utilized.
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