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ABSTRACT OF THE THESIS 

 

 

End of Century Climate Predictions and Vulnerability Assessments  

for Protected Areas and Native Vegetation in the Hawaiian Islands 

 

by 

 

Karina Dutko 

 

Master of Arts in Geography 

University of California, Los Angeles, 2024 

Professor Thomas Gillespie, Chair 

 

The islands of Hawaii consist of an isolated region that may be severely impacted by climate 

change. Currently, 134 endemic Hawaiian plants are considered extinct and 33% of the native 

flora are listed as threatened or endangered under the U.S. Endangered Species Act. Many of 

these species reside in protected areas, yet there have been no comprehensive studies assessing 

the impacts of climate change on this critical region. Our study examines the future climate 

vulnerability of native vegetation types in protected areas by utilizing a bioclimatic variables 

dataset containing baseline and end-of-century (NCAR RCP 8.5) climate projections for the 
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Hawaiian Islands. We assessed seven native vegetation types (Native Dry Forest, Native Dry 

Shrub, Native Mesic Forest, Native Mesic Grassland, Native Mesic Shrub, Native Wet Forest, 

and Native Wet Shrub) using a Forest-Based Classification and Regression approach to 

determine how distribution ranges of these vegetation types will be impacted by climate change 

by the end of the century. Our study determined there are statistically significant differences for 

all pairwise comparisons of the selected native vegetation types in relation to baseline annual 

precipitation means and annual temperature means, apart from temperature overlap between 

Native Mesic Grassland and Native Dry Forest classifications. We utilized a multi-category 

classification approach as well as an individualized single category classification approach to 

determine potential future vegetation distributions under the NCAR RCP 8.5 climate scenario for 

the year 2100. Overall, the multi-category classification model had a higher classification 

accuracy compared to the individualized approach, however the multi-category classification 

approach results in an exclusionary determination of vegetation type for each pixel, whereas the 

individualized approach allows for overlap and may be useful for highlighting regions that can 

sustain two or more vegetation types in the future. Agreement between both methods found that 

across the entire archipelago, Native Dry Shrub is anticipated to experience the greatest 

contraction in range followed by Native Wet Forest, while Native Mesic Forest is anticipated to 

experience the greatest expansion in range, followed by Native Mesic Shrub. Understanding the 

relationship between future climate and vegetation vulnerability can prove to be vital for land 

management and conservation efforts as we plan to allocate resources towards areas that are 

most severely affected by climate change. 
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Introduction 

Climate change is a growing concern as it continues to threaten ecosystems and 

organisms around the world (Malhi et al. 2020; Trew and Maclean 2021). Increasing 

temperatures, altered precipitation patterns, higher sea-level, and shifted seasonal timing are just 

a few of the many variables impacting physiology, phenology, distribution, and composition 

among ecological systems (Fortini et al. 2017; Malhi et al. 2020; Trew and Maclean 2021). A 

solution towards addressing this problem is the implementation of climate and vegetation 

vulnerability assessments (VAs). VAs have been used to synthesize available information to 

determine the potential impacts of climate change on regions and vegetation of interest (Foden et 

al. 2019) providing an opportunity to reanalyze, translate, and combine existing and new 

knowledge within the context of climate change. Typical vulnerability analysis involves three 

steps, covering the stress to which a system is exposed, its sensitivity, and then its adaptation (Li 

et al. 2019). However, there have been limited vulnerability assessments and studies on isolated 

communities that may be more susceptible to climate related extinctions, such as what we see in 

the case of the Hawaiian Islands. 

Climate and Ecosystem Dynamics of the Hawaiian Islands 

A series of local and regional dynamic and thermodynamic systems drive precipitation 

and temperature patterns over the Hawaiian Islands. Nowhere else in the United States are 

rainfall gradients so steep. Annual rainfall averages 1778 mm but ranges from 127 mm to 11,938 

mm (Shlisky 2000). Due to the prevailing trade winds and the topography of the Hawaiian 

Islands, a characteristic climatic distinction between the “windward” and “leeward” sides exists. 

The windward sides are characterized by wet climates that support perennial streams and lush 
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vegetation, while the leeward sides are relatively dry (PIRCA 2012). Hawaii's climate also 

features the important trade wind inversion layer (TWI) that sits at an average altitude of 

approximately 2,200 m (Cao et al. 2007, Longman et al. 2015). This phenomenon prevents deep 

convection from occurring, creating arid areas above the elevation of 2,200 m. TWI is present 

roughly 82% of the time throughout the island chain, although the height of the layer varies daily 

and spatially across the islands (Cao et al. 2007, Feng and Chen 2001). Previous studies have 

assessed potential climatic impacts in the near future for the Hawaiian Islands from the years 

2026-2035 (Fandrich et al. 2022). These future climate simulations show significant increases in 

wet season rainfall, of ∼10%–20%, along the windward slopes of Big Island and Maui. Rainfall 

patterns during the positive Pacific Decadal Oscillation (PDO) phase are projected to reverse in 

sign, leading to drier conditions, by ∼10%–30%, at many locations. Future climate simulations 

also suggest daily rainfall extremes will increase, by up to ∼10%–15%, at many locations. 

Additionally, daily temperature extremes are projected to increase significantly, by up to 1.4 C 

(Fandrich et al. 2022).  

Endemism within the Hawaiian Islands is estimated to be between 86 and 96 percent 

(Mueller-Dombois 1975, Mueller-Dombois and Fosberg 1998). Conversely, the small size of 

island land masses supports small populations, increasing extinction rates, and reducing 

resilience to disturbance (Loope and Mueller-Dombois 1990). The past 200 years have witnessed 

drastic changes to native Hawaiian ecosystems (Shilsky 2000). Few remnants of natural 

vegetation are left in the coastal and lowland areas, and currently more than 75 percent of the 

recognized plant community types remaining in these areas are considered rare (Cuddihy and 

Stone 1994). Montane and subalpine areas have also been severely impacted by development and 

non-native plant and animal invasions (Shilsky 2000). Nevertheless, areas still covered with 
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native vegetation can be found in forest reserves, the State Natural Area Reserve System, State 

Wilderness Preserves, National Parks, and Nature Conservancy Preserves. Given that many of 

the native plants in the Hawaiian Islands are only able to survive in a niche temperature and 

precipitation range (Hawaii Cooperative Studies Unit 2013) it is evident that a climate-based 

vulnerability assessment is essential for conservation efforts in the region. 

Regional Climate Model 

As climate models continue to improve, the demand for more accurate regional climate 

projections increases. However, regional climate projections are subject to a high level of 

uncertainty, especially for the middle and end of the 21st century (Mizukami et al. 2022). A key 

task for climate modelers is to reduce these uncertainties to yield more accurate climate 

projections at the regional level. General circulation models offer a sophisticated representation 

of the general climate system and inform future projections at the global scale. However, GCMs 

are typically at such a coarse resolution that the models do not reproduce fine-scale spatial 

patterns of climate in island regions like the Hawaiian Islands. To address this issue, the 

International Pacific Research Center (IPRC) (Zhang et al. 2016) and the National Center for 

Atmospheric Research (NCAR) (Xue et al. 2020) have both used dynamical downscaling 

approaches to generate a higher resolution regional climate model that use pseudo global 

warming (Kimura 2007) to determine regional model parameters. Both dynamical downscaling 

products are derived using the Weather Research and Forecasting (WRF) model for historical 

and future scenarios (Zhang 2012). The latest version of NCAR projections utilizes General 

Circulation Model averages under future RCP 8.5 emissions (from 2090-2100) to implement 

change to baseline historical conditions (2002-2012). These simulations from NCAR have been 

validated and have well documented results that ensure the reliability and integrity of the data 



4 
 

(Xue et al. 2020). These products could be ideal for modelling future climatic and potential 

native vegetation change for Hawaiian Islands and protected areas.  Using the described end of 

century NCAR models may provide insight into predicted vegetation change due to climate and 

variation in vegetation modelling approaches, accuracy and results to end of century in the 

Hawaiian Islands.  

Potential Vegetation Type (PVT) Modeling 

Species distribution modeling has been used extensively to predict future distributions of 

species under different climates (Graham et al. 2011), but their map products are often too coarse 

for fine-scale operational use (Franklin 2013, Keane et al. 2020). Indeed, single species 

distribution models are subject to biases such as insufficient plot data to fully describe the range 

of a species, species absence from a plot due to non-climate related disturbances, and seedling 

establishment facilitated by microclimate rather than macroclimate (Keane et al. 2020). 

Moreover, because species distribution models are based on single species distributions, 

projected distributions cannot be combined to reflect changes in vegetation communities, as are 

often required for many land management tasks. A recently developed alternative approach 

models Potential Vegetation Types (PVTs) using conventional statistical modeling techniques 

(such as Random Forest) that uses baseline and future climate variables as predictors. One study 

obtained over 50% accuracy across 13 mapped PVTs, which were then compared to two 

previous SDM mapping efforts with over 80% agreement and equivalent accuracy (Keane et al. 

2020). Because PVTs represent the biophysical potential of the landscape to support vegetation 

communities as opposed to the vegetation that currently exists, they can be readily linked to 

climate forecasts and correlated with other, climate-sensitive ecological processes significant in 

land management. PVTs have provided critical information for land planning projects and 



5 
 

resource management because they represent what may occur (e.g. potential vegetation), as 

opposed to what currently exists (e.g. existing vegetation) within a given study area. However, to 

date, PVTs have not been used as a tool for anticipating changing ecosystems and landscapes 

under climate change. 

While Random Forest is often reported to perform well, there are cases where the 

algorithm has predicted species distributions poorly, often linked to the use of presence-only 

species data fitted as binary data by using background samples as the second class (Valavi et al. 

2021). Additionally, comparisons of various SDM and PVT models show that presence–absence 

models tend to perform better than presence-only models (Elith et al. 2006). Previous studies 

have suggested that certain machine-learning modeling methods may outperform others due to 

their ability to capture complexity and non-linear responses (Elith et al. 2006). Random Forest is 

an ensemble method that benefits from a structure that grows thousands of trees with a set of 

randomly selected predictors (Breiman 2001) and has been successfully used in predicting 

species distributions with limited generalization error (Prasad et al. 2006) whereas MaxEnt is a 

common approach for modeling species distributions with presence-only species distribution 

data by finding the probability distribution of maximum entropy subject to a set of constraints 

that derive from the occurrence data. Recent studies have determined that Random Forest may be 

a better alternative because it provides the same or similar high predictive accuracy as the 

MaxEnt model with less computational time and greater stability under general parameters when 

predicting a species' potential distribution (Zhao et al. 2022). However, there has been limited 

research on the accuracy of individual iterations of single-class potential vegetation type 

distributions compared to exclusionary or cohesive multi-type potential vegetation distribution 

predictions using the random forest algorithm, which our study aims to address. The selection of 
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pseudo-absence or background data is another key consideration in SDM building, given that 

most species observations concern presence-only data (Ponder et al. 2001). Relevant aspects 

include the number of pseudo-absences as well as their spatial distribution (i.e., extent and 

geographic stratification), which may affect model performance as well as the relative 

importance of predictor variables (Cengic et al. 2020).  

Problem Statement 

While multiple variations of end-of-century climate data exist (Fortini et al. 2022), there 

is limited analysis assessing the agreement among future projections of temperature and 

precipitation between these models. Furthermore, there is limited knowledge on future effects of 

climate change with respect to native vegetation in protected areas. Our study aims to fill the 

missing gap in knowledge by conducting an assessment on vegetation vulnerability using future 

NCAR RCP 8.5 projections as an example to estimate the direction and amount of change we 

expect of 19 individual bioclimatic variables towards the end of the century (2090 - 2100). In our 

assessment we define climate change vegetation vulnerability as the relative inability of 

vegetation types to survive given anticipated temperature and precipitation ranges modeled under 

future climate change scenarios (Foden 2019). This research had three primary objectives. First, 

we determined if current native vegetation types in the Hawaiian Islands have distinct climate 

niches. Second, using the NCAR RCP 8.5 climate scenario we predicted climate change trends 

for the end of the century and determined which protected areas are expected to have the most 

severe changes in temperature and precipitation. Third, we modeled potential vegetation 

distributions using baseline and future climate data using Forest-Based and Boosted 

Classification and Regression through a single-category prediction method as well as a multi-

category prediction method, where we then assessed the accuracy of both outcomes and provided 
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benefits and limitations for both procedures within the context of land use management and 

conservation.  

Methods 

Study Area 

The Hawaiian Islands include eight major islands: Ni‘ihau, Kaua‘i, O‘ahu, Moloka‘i, 

Maui, Lāna‘i, Kaho‘olawe, and Hawai‘i. Ni‘ihau is a small, elongated island approximately 29 

km in length by 10 km in width and about 180 km2 in area. The maximum elevation (Pānī‘au) 

reaches only 381 m. Human disturbance, primarily agriculture and ranching, have drastically 

changed the vegetation and hydrological parameters of Ni‘ihau, leaving only small native 

vegetation communities (Gustafson et al. 2014). Kaua‘i is the fourth largest of the main 

Hawaiian Islands, with an area of 1,430 km². The island formed about 4.7 Ma as a single shield 

volcano. The highest point on Kaua‘i is Kawaikini at 1,598 m, followed by Mount Wai‘ale‘ale 

near the center of the island at 1,569 m. The windward upper slope of Mount Wai‘ale‘ale is one 

of the wettest spots on earth, with a mean annual rainfall of 11,700 millimeters (mm) and a 

record 17,340 mm of rainfall in 1982. Due to its age and relative isolation, Kaua‘i is second 

among the islands for the highest levels of floristic diversity, and it boasts the highest endemism 

in the Hawaiian Archipelago (Gustafson et al. 2014). O‘ahu, the third largest Hawaiian island, 

extends about 71 km in length and 48 km in width, with a total area of 1,545 km². Ka‘ala, the 

highest point on the island, reaches an elevation of 1,220 m. The summit of Ka‘ala is a plateau 

formed by thick ‘a‘ā lava flows, with poor drainage conditions that produce a montane bog.  

The Maui Nui complex of the Hawaiian Islands consists of the islands of Moloka‘i, Maui, 

Lāna‘i, and Kaho‘olawe, which were connected in the past as a single landmass. The island of 
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Moloka‘i, the fifth largest in the Hawaiian Islands chain, is approximately 61 km in length and 

up to 17 km in width, with an area of about 673 km2. The lower western half of the island is dry, 

and the soil is heavily denuded due to heavy grazing under past land management practices. The 

Mo‘omomi Dunes on the northwest coast provide one of the few remaining areas of intact 

coastal shrub lands in the Hawaiian Islands. Much of the native vegetation on the northern part 

of East Moloka‘i is relatively intact because of its general inaccessibility to humans and 

nonnative animals. Lāna‘i is a relatively small island with a total area of 364 km2. The highest 

point on the island is Lāna‘ihale, which reaches 1,026 m in elevation. As with other areas of the 

Islands, heavy grazing of domestic and feral animals in the nineteenth century destroyed much of 

the native vegetation, eroded soils, and caused major deforestation. Much of the vegetation has 

never fully recovered, although there have been numerous attempts to revegetate upland areas, 

mostly with introduced species. Kaho‘olawe is the smallest of the major Hawaiian Islands, with 

an area of only 116 km² and dimensions of about 18 by 11 km. The topography consists of a 

nearly filled caldera and a rift zone that trends to the southwest, with the highest point being 452 

m at the crater of Lua Makika at the summit of Pu‘u Moa‘ulanui. The island is relatively dry 

because of its low elevation and its position in the rain shadow of Haleakalā. Additionally, 

overgrazing destroyed most of the vegetation of the island, with subsequent erosion removing 

much of the topsoil. More than one-quarter of the island has been eroded down to saprolitic 

hardpan. Maui, the second largest of the Hawaiian Islands, has an area of 1,884 km². The larger 

and younger Haleakalā volcano of East Maui reaches an elevation of 3,055 m. Below the summit 

lies a massive crater, allowing for the entrance of dense clouds and extensive plant cover.  

Hawai‘i, the Big Island, is the largest of the Hawaiian Islands by far, with its total area of 

10,433 km2 comprising almost two thirds of the total land area of the entire State of Hawai‘i. 
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Mauna Kea, the highest point on the island, reaches 4,205 m in elevation. Measured from its true 

base in the deep ocean basin some 6,000 m below sea level, Mauna Kea is the tallest mountain in 

the world, surpassing even Mount Everest.  

The native vascular plant flora of the Hawaiian Islands currently includes 1,207 species, 

comprising 163 ferns and fern allies, 140 monocots, and 904 dicots (Gustafson et al. 2014). A 

remarkable feature of this flora is a level of endemism that is unparalleled anywhere else in the 

world. For the total native flora, 88% of species are restricted in distribution to the Hawaiian 

Islands, with rates of endemism particularly high in the dicots at 93% while monocots and ferns 

with fern allies each have lower levels of endemism at 73% and 75%. When considering the 

native Hawaiian flora levels of individual islands, Maui and Kaua‘i are tied in having the greatest 

number of native species with 629 (Gustafson et al. 2014). O‘ahu is next in diversity with 587 

species while Hawai‘i is significantly lower in richness with a total of 520 species. Moloka‘i has 

almost as many with 494 species, while Lāna‘i has 362 species (Gustafson et al. 2014) whereas 

the smaller and relatively arid islands of Ni‘ihau and Kaho‘olawe have only 99 and 68 native 

species, respectively. 

Climate Data 

The product created by the USGS Pacific Islands Ecosystem Research Center features 

continuous raster data for 19 predictor variables that highlight climatic conditions for the State of 

Hawaii under both baseline and end-of-century (RCP 4.5 and RCP 8.5) scenarios (Fortini et al. 

2022). These bioclimatic variables provide detailed information about annual conditions (annual 

mean temperature, annual precipitation, annual range in temperature and precipitation), as well 

as seasonal mean climate conditions (temperature of the coldest and warmest months, 
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precipitation of the wettest and driest quarters) at 250 m resolution utilizing the most up-to-date 

dynamically downscaled projections based on the Weather Research and Forecasting (WRF) 

model from the International Pacific Research Center (IPRC) and the National Center for 

Atmospheric Research (NCAR). Each of these bioclimatic variables are available for one 

baseline scenario and three projected future scenarios. 

Current Climate Data 

The bioclimatic variables dataset (Fortini et al. 2022) used 250 m resolution observation-

based monthly Pmean from the Rainfall Atlas of Hawai'i (Giambelluca et al. 2013) and monthly 

Tmin, Tmean, and Tmax from the Climate of Hawai'i (Giambelluca et al. 2014) datasets to replicate 

closest estimates of baseline temperature and precipitation patterns across the island system. 

Note that these two datasets have differing historical periods, with the observation-based mean 

annual precipitation data representing a historical period from 1978–2007 and annual 

temperature data representing a historical period from 1957-1980. As of today, these 

precipitation and temperature datasets are considered the most accurate available representation 

of baseline climate across the islands (Fortini et al. 2022). 

Future Climate Data 

Future IPRC (2080-2099) and NCAR (2090-2100) projections are available for one 

simulation under the RCP 4.5 scenario (IPRC) and two simulations under the RCP 8.5 scenario 

(IPRC and NCAR projections). For the purpose of this study, we only utilized the NCAR RCP 

8.5 projection to estimate the changes of the individual bioclimatic variables compared to the 

baseline scenario to determine the direction and amount of change anticipated for our study area 
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(Fortini et al. 2022). These fine-scale WRF regional climate simulations by NCAR provide 10-

year baseline (2002-2012) and future scenarios (2090-2100, RCP 8.5 only) for the Hawaiian 

Islands (Xue et al. 2020). The baseline simulation is based on the ERA-Interim global reanalysis 

data and observed sea surface temperature from the period of October 2002 to September 2012, 

which was selected to represent the hydrologic seasonality of Hawaii and the availability of 

ultra-high resolution climate data at 250 m spatial resolution used in this model setup. The future 

projection uses the Pseudo Global Warming method to implement change based on General 

Circulation Model averages from 2090 to 2100. This dataset has a major advantage of providing 

validated hourly rainfall values for the entire study region, which may result in better accuracy 

compared to other existing simulations. Baseline and future (RCP 8.5 only) projections for Pmean, 

and Tmin, Tmean, and Tmax variables were provided by NCAR at a monthly gridded scale for the 

main Hawaiian Islands (Fortini et al. 2022). 

Vegetation Data 

The Hawaiian Islands have incredible diversity given the small area they occupy, 

containing 960 flowering plants and 168 ferns and fern allies (Wagner et al. 1990). The Hawai‘i 

Natural Heritage Program recognizes 150 distinct natural community types (Shlisky 2000), most 

of which could be classified into nine broad vegetation communities: tropical coastal vegetation, 

lowland grasslands and savanna, montane moist forests, lowland rain forest, montane wet forests 

and bogs, subalpine vegetation, alpine vegetation, and montane dry forests (McNab and Avers 

1994). Our study utilized the classification system from the Carbon Assessment of Hawaii Land 

Cover Map featuring twenty-seven General Land Cover Types (Figure 1), seven of which 

compose the existing native vegetation landscape (Native Dry Forest, Native Dry Shrub, Native 
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Mesic Forest, Native Mesic Grassland, Native Mesic Shrub, Native Wet Forest, and Native Wet 

Shrub) (Jacobi et al. 2017). Non-Native vegetation was grouped together and excluded from this 

analysis as the purpose of this study is only to highlight suitable distribution ranges under a 

changing climate, and cannot consider competition between resources in our machine learning 

algorithm as invasive species are expected to compete and dominate in areas that are considered 

suitable ranges under a future climate. 

Although there have been many maps produced that depict vegetation for the State of 

Hawaiʻi, only a few of these display land cover for all of the main Hawaiian Islands, and most of 

those that were created before the year 2000 have very generalized units or are somewhat 

inaccurate as a result of more recent land use changes or poor resolution (both spatial and 

spectral) in the imagery that was used to produce the map. The Carbon Assessment of Hawaii 

(CAH) Land Cover Map (Jacobi et al. 2017) was utilized to provide high resolution (30 m) land 

cover maps with a detailed hierarchical vegetation group classification system (Figure 1). Base 

maps for this newly compiled CAH land-cover map included vegetation units and boundaries 

from the HIGAP land cover map (Gon et al. 2006), land-use units from the 2005 NOAA C-CAP 

map (NOAA National Ocean Service Coastal Services Center 2012), the “bare” (<5 percent 

vegetation cover) map unit from the Hawaiʻi LANDFIRE map (Rollins 2009, U.S. Geological 

Survey 2009), and data on the distribution of managed tree plantations for the main Hawaiian 

Islands on both state lands (Yoshiko Akashi, Hawaiʻi Division of Forestry and Wildlife, 

unpublished data) and private lands (Nicholas Koch, Forest Solutions Inc., unpublished data). All 

spatial files were projected in UTM Zone 4 using the NAD83 datum. The HIGAP, NOAA C-

CAP, and LANDFIRE maps were all based on LANDSAT TM imagery with 30 by 30 m (900 

m2) pixels. Each land-use or land-cover data layer was reviewed for accuracy of its selected units 
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by comparing the mapped units to more recent high-resolution WorldView 2 digital satellite 

imagery collected by DigitalGlobe in 2010 (<2 m pixel size) and very high-resolution imagery 

from Pictometry Online (POL; Pictometery International 2014), which were also projected in 

UTM Zone 4 NAD 83. Where differences were found between the original mapped land-use and 

land-cover units and the high-resolution imagery, corrections were made to the original raster 

maps by reclassifying pixels to their correct values using raster editing software. The mapped 

units for the CAH land-cover map are linked to the alliance and association levels of the revised 

National Vegetation Classification (rUSNVC) which is based on the National Vegetation 

Classification Standard that was formally adopted by the Federal Geographic Data Committee 

(FGDC) in 2008 (FGDC 2008). These units also correspond with NatureServe’s Terrestrial 

Ecological Systems Classification (NatureServe 2010, 2011). However, one major difference 

between the various CAH land-cover classification levels and the rUSNVC classification is that 

in the CAH land-cover map we did not separate the units into lowland, montane, and alpine 

units. 
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Figure 1: Depicts general land cover types and biomes that represent land use and potential 

vegetation zones (Carbon Assessment of Hawaii Land Cover Map 2017). 

Protected Areas 

The Hawaiian Islands are home to large, protected areas which help make up the over 

8,000 km2 of conservation lands managed by federal, state, local and private agencies (State of 

Hawaii, Office of Planning and Development 2022). These include national parks, wildlife 

refuges, forest reserves, and private land holdings. For the purposes of our study, we will refer to 

The International Union for Conservation of Nature (IUCN) official definition of a protected 
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area, defined as “a clearly defined geographical space, recognized, dedicated and managed, 

through legal or other effective means, to achieve the long-term conservation of nature with 

associated ecosystem services and cultural values” (IUCN Definition 2008). The ranges for 

projected areas of interest are set to fall within 308 zones that cover the natural terrain of the 

Hawaiian island chain. This results in a combined total area of 6,973 km2 of protected regions 

(Figure 2). 

Figure 2: Recognized protected area classifications (Department of Fish and Wildlife 2023). 

Statistical Tests on Climate Ranges by Native Vegetation Type 
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 Species Distribution Models have accurately modeled climate envelopes or climate 

niches using a combination of historical and current climate data to monitor potential ranges for 

individual species, however there is limited knowledge on determining accurate climate ranges 

by vegetation type. Therefore, it is critical to run a series of statistical tests to determine if the 

native vegetation types within our study region have defined climate envelopes using available 

historical precipitation and temperature data. This study will be the first of its kind to implement 

potential vegetation type models as a tool for anticipating changing ecosystems and landscapes 

under climate change towards the end of the century, and by determining these climate envelopes 

using historical temperature and precipitation data as a baseline measure, we are able to set a 

standardized methodology for predicting future potential vegetation types in any region that is 

anticipating severe climate impacts.  

Our first research objective was to assess if specific precipitation and temperature 

parameters resulted in clearly distinguishable climate envelopes or climate niches within seven 

native vegetation types. A one-way Analysis of Variance (ANOVA) test was run on each native 

vegetation type to determine if there is a difference in means between groups regarding the 

annual temperature and annual precipitation variables. This is a critical step prior to running a 

Forest Based and Boosted Classification and Regression because significant difference of 

climate variable means between vegetation types will result in a more accurate future distribution 

model. The null hypothesis (H0) of the ANOVA states there is no difference in means, and the 

alternative hypothesis (Ha) states that the means of each group are different from one another. 

The one-way ANOVA test outputs the degrees of freedom for the independent variable, the 

degrees of freedom for the residuals, the sum of squares, the mean of the sum of squares 

(calculated by dividing the sum of squares by the degrees of freedom for each parameter), the F 
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value, and the p value of the F statistic. The larger the F value, the more likely it is that the 

variation caused by the independent variable is real and not due to chance whereas the p value of 

the F statistic determines how likely it is that the F value calculated from the test would have 

occurred if the null hypothesis of no difference among group means were true. 

 

Zonal Statistics 

 To conduct our assessment on temperature and precipitation changes towards the end of 

the century, we utilized the bioclimatic variables “Annual Mean Temperature” (Band 1) and 

“Annual Precipitation” (Band 12) for the baseline and NCAR RCP 8.5 climate scenarios of the 

Bioclimatic Variables dataset from Fortini et al. (2022) (Table 1). The baseline climate model 

was then subtracted from the annual mean temperature layer and annual precipitation layer of the 

RCP 8.5 NCAR projections using the Raster Calculator (Spatial Analyst) in ArcGIS Pro 3.1.  

Bioclimatic Variable Description 

1 Annual mean temperature 

2 Mean diurnal range (Mean of monthly max temperature - min 

temperature) 

3 Isothermality (Mean diurnal range/ temperature annual range) 

4 Temperature seasonality (Standard deviation of monthly mean 

temperature) 

5 Max temperature of warmest month 

6 Min temperature of coldest month 

7 Temperature annual range (Max temperature of warmest month - 

min temperature of coldest month) 

8 Mean temperature of wettest quarter 

9 Mean temperature of driest quarter 

10 Mean temperature of warmest quarter 

11 Mean temperature of coldest quarter 

12 Annual precipitation 

13 Precipitation of wettest month 

14 Precipitation of driest month 
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15 Precipitation seasonality (Coefficient of variation for monthly 

precipitation) 

16 Precipitation of wettest quarter 

17 Precipitation of driest quarter 

18 Precipitation of warmest quarter 

19 Precipitation of coldest quarter 

Table 1: Bioclimatic Variables 1-19 from Fortini et al. (2022) 

For each of the protected areas, Zonal Statistics (Spatial Analyst) was used in ArcGIS Pro 

3.1 with the value raster of Band 1 and Band 12 of the future climate model calculated in the 

temperature and precipitation assessment. This resulted in calculations for the minimum value, 

maximum value, range, mean, standard deviation, sum, median, and 90th percentile for expected 

change in temperature and expected change in precipitation for each individual polygon in our 

protected areas of interest given each future climate scenario.  

Calculating Native Vegetation Distribution Models and Change 

Comparisons of various SDM and PVT models show that presence–absence models tend 

to perform better than presence-only models (Elith et al. 2006). Thus, presence–absence models 

are increasingly used when only presence data is available, by creating artificial absence data 

(also known as pseudo-absences). We selected randomized point locations of native vegetation 

types by using the Raster to Point tool in ArcGIS Pro to extract raster values to points for each 

land cover type. We then used the Subset Features tool to select a random subset of 10,000 

points for each Native Vegetation type (except for Native Mesic Grassland, which only 

contained 4,831 points), 10,000 points for bare ground, and 20,000 points for all other combined 

categories that did not represent native vegetation or bare ground. This finalized subset was used 

as the presence data input in lieu of species, which also served as pseudo absence data for each 
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native vegetation type. Current native vegetation distribution models were created using a 

random forests (RF) approach, implemented in the Forest-based and Boosted Classification and 

Regression (Spatial Statistics) tool in ArcGIS Pro 3.2. Variables used to create the current 

explanatory raster inputs include elevation (USGS), soil order from the Hawaii Soil Atlas, mean 

annual temperature, mean annual precipitation, precipitation seasonality (Coefficient of variation 

for monthly precipitation), and temperature seasonality (standard deviation * 100). 

This RF model was then used to predict future distributions of native vegetation classes 

across the study area. Here, we used the biophysical gradient under the NCAR RCP 8.5 future 

climate scenario as the predictor variables in the RF model to predict and map seven native 

vegetation class distributions using an individualized approach as well as a multi-category 

classification approach. It is important to note that we are not predicting migrations of native 

vegetation classes themselves under future climates; rather, we are predicting differences in 

spatial patterning of the climatic conditions where current native vegetation assemblages may 

exist under future climates. As stated previously, non-native vegetation was grouped together 

and excluded from this analysis under the category “Other Non-Native Vegetation” because the 

primary purpose of our study is only to highlight suitable distribution ranges under a changing 

climate, and due to the complexity of integrating multiple variables and compromising accuracy 

we cannot consider competition between resources in our machine learning algorithm as invasive 

species are naturally expected to outcompete and dominate in areas that are considered suitable 

for native vegetation. Therefore, practical applications of this study must take additional 

conservation measures to account for the spread of invasive species that may pose as an 

additional threat to native vegetation.  
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 The individualized approach consists of running the Random Forest model using 

presence and absence points for each native vegetation type with separate runs which results in 

seven predicted outputs of baseline and future projections for each category. To create an 

accurate visual of contraction and expansion of range for each species, the baseline and NCAR 

RCP 8.5 Random Forest predicted outputs were reclassified and the sum of the values was 

calculated using the Raster Calculator, creating a new finalized raster output for each vegetation 

type. Prior to adding the baseline and NCAR random forest outputs for each vegetation type, the 

baseline value was reclassified to “0” for “Absent” vegetation type, and “1” for “Present” 

vegetation type, while the NCAR future climate prediction output was reclassified to a value of 

“0” for “Absent” vegetation type and “2” for present vegetation type. When added, a raster value 

of 0 represents an absence of vegetation in both climate scenarios. A raster value of 1 represents 

an absence in the future NCAR scenario while maintaining a presence in the baseline, also 

known as a contraction of range. A raster value of 2 represents an absence in the baseline climate 

scenario and presence of vegetation in the future NCAR RCP 8.5 scenario, also seen as an 

expansion of range. Finally, a raster value of 3 represents presence of vegetation in both baseline 

and NCAR climate scenarios, meaning there is no anticipated change in existing vegetation 

range. Figure 3 outlines the raster reclassification and addition process.    
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Figure 3: Depiction of Random Forest Vegetation Distributions and Raster Output Calculations. 

In addition to producing individualized outputs for each potential future vegetation range, 

the Forest Based and Boosted Classification and Regression tool (ArcGIS Pro 3.2) was utilized 

to create a multi-category assessment where presence only data was provided as an input along 

with the same parameters outlined in the individualized approach. Training features included 

bare ground, native dry forest, native dry shrub, native mesic forest, native mesic grassland, 

native mesic shrub, native wet forest, native wet shrub, and “other”. All categories except for 

“other” and “native mesic grassland” consist of a random sample of 10,000 points extracted from 

the Carbon Assessment of Hawaii Land Cover Map (Jacobi et al. 2017). The “other” category 

consists of a random sample of 20,000 points from all categories outside of the seven native 

vegetation types and bare ground features, and the “native mesic grassland” category contains 

4,831 points due to scarcity.  
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Results 

Native Vegetation and Climatic Niche 

The outputs of our one-way ANOVA suggest that for both Annual Precipitation and Annual 

Temperature, the large F value and small p value of the F statistic indicate that the variation in 

temperature and precipitation (Table 2) can be predicted by the native vegetation type, and we 

are able to reject the null hypothesis (H0) of the ANOVA of no difference in means. 

Native Vegetation 

Types 

DF Sum of 

Squares 

Mean 

Square 

F Value p of F 

Statistic 

Annual Precipitation 6 1.08 e 13 1.80 e 12 1091560 <0.001 

Annual Temperature 6 11983486 1997248 183919 <0.001 

Table 2: ANOVA output for Annual Precipitation and Annual Temperature 

We then checked for homoscedasticity, or homogeneity of variances, which is an 

assumption of equal or similar variances in different groups being compared. This is an 

important assumption of parametric statistical tests because they are sensitive to any 

dissimilarities. Uneven variances in samples result in biased and skewed test results. The 

diagnostic plots in Figure 4 show the unexplained variance (residuals) across the range of the 

observed data. The red line representing the mean of the residuals is horizontal and centered on 

zero, meaning that there are no large outliers that would cause research bias in the model. The 

normal Q-Q plot plots a regression between the theoretical residuals of a perfectly homoscedastic 

model and the actual residuals of the model, and in the case of this model we only encounter 
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minor deviation from the ideal slope of 1. From these diagnostic plots we can say that the model 

fits the assumption of homoscedasticity. 

 

Figure 4: Diagnostic Plots to Determine Homoscedasticity between Grouped Native Vegetation 

Types. These results conform that there is no unexplained variance (residuals) across the range 

of the observed data, and our model of temperature and precipitation by group meets the 

assumption of homoscedasticity. 

While ANOVA determines if there were differences amongst group means, it does not 

determine what those differences were. We ran Tukey's Honestly Significant Difference 



24 
 

(Tukey’s HSD) post-hoc test to determine the difference in means for pairwise comparisons 

using the variables of Annual Precipitation and Annual Temperature for each vegetation group. 

Table 3 reflects the output of these tests. 

Tukey Multiple Comparisons of Means 

95% Family-Wise Confidence Level 

Annual Temperature  

C 

Annual Precipitation 

mm 

Native Vegetation Types Difference p value Difference p value 

Native Dry Shrub vs Native Dry Forest 1.91 <0.001 -40.40 <0.001 

Native Mesic Forest vs Native Dry Forest 3.75 <0.001 904.62 <0.001 

Native Mesic Grassland vs Native Dry Forest 0.13 0.10 2192.11 <0.001 

Native Mesic Shrub vs Native Dry Forest 2.03 <0.001 713.09 <0.001 

Native Wet Forest vs Native Dry Forest 4.45 <0.001 3119.91 <0.001 

Native Wet Shrub vs Native Dry Forest 5.73 <0.001 3056.88 <0.001 

Native Mesic Forest vs Native Dry Shrub 1.84 <0.001 945.01 <0.001 

Native Mesic Grassland vs Native Dry Shrub -1.78 <0.001 2232.50 <0.001 

Native Mesic Shrub vs Native Dry Shrub 0.13 <0.001 753.48 <0.001 

Native Wet Forest vs Native Dry Shrub 2.54 <0.001 3160.30 <0.001 

Native Wet Shrub vs Native Dry Shrub 3.83 <0.001 3097.28 <0.001 

Native Mesic Grassland vs Native Mesic Forest -3.62 <0.001 1287.49 <0.001 

Native Mesic Shrub vs Native Mesic Forest -1.71 <0.001 -191.53 <0.001 

Native Wet Forest vs Native Mesic Forest 0.70 <0.001 2215.29 <0.001 

Native Wet Shrub vs Native Mesic Forest 1.99 <0.001 2152.27 <0.001 

Native Mesic Shrub vs Native Mesic Grassland 1.91 <0.001 -1479.02 <0.001 

Native Wet Forest vs Native Mesic Grassland 4.31 <0.001 927.80 <0.001 

Native Wet Shrub vs Native Mesic Grassland 5.60 <0.001 864.78 <0.001 

Native Wet Forest vs Native Mesic Shrub 2.41 <0.001 2406.82 <0.001 

Native Wet Shrub vs Native Mesic Shrub 3.70 <0.001 2343.79 <0.001 

Native Wet Shrub vs Native Wet Forest 1.29 <0.001 -63.02 <0.001 

Table 3: Output of Tukey’s HSD for Annual Temperature and Annual Precipitation by Group. 

The Tukey’s HSD test runs multiple comparisons of means at the 95% family-wise 

confidence level. The “difference” column highlights the difference between vegetation types for 

the tested variable within the 95% confidence variable for each pairwise comparison. From the 

post-hoc test results, we see that there were statistically significant differences (p < 0.05) for all 
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pairwise comparisons of vegetation type in relation to annual precipitation means. This was also 

true for most of the comparisons of vegetation type in relation to temperature (Table 3). 

However, the comparison of Annual Temperature means between Native Mesic Grassland and 

Native Dry Forest resulted in a p value of 0.10, which was not a statistically significant 

difference in means.  

Predicted Climate Change in Protected Areas 

When comparing baseline and future climate scenarios, NCAR RCP 8.5 predicted a 

minimum of 3.21 °C increase and maximum of 4.79 °C increase across all regions of the 

Hawaiian Islands (Appendix Figure 2A). To calculate percent change for temperature and 

precipitation, the equation (Future Value – Baseline Value) / Baseline Value was implemented. 

For some precipitation statistics where the difference between minimum values are 0, 

calculations were conducted with the assumption that a minimum of 1mm of annual rainfall 

would occur in every area. With regards to precipitation, NCAR RCP 8.5 predicted a maximum 

decrease of 747 mm and maximum increase of 1,408 mm from the baseline of 0 mm of 

anticipated change. The majority of extreme temperature changes are expected to occur on the 

islands of Hawai’i (The Big Island) and Maui.  

Our study assessed 157 protected areas across the Hawaiian Islands (Figure 2). Our 

findings suggest that the highest maximum projected temperature increase includes Mauna Kea 

Ice Age Natural Reserve, Hawaii Volcanoes National Park, Kapapala Forest Reserve, Mauna 

Kea Forest Reserve, Mauna Loa Forest Reserve, Alpine Wildlife Sanctuary, Haleakala National 

Park, Kula Forest Reserve, and Kahikinui Forest Reserve. The highest mean temperature 

increase was found to occur in Mauna Kea Ice Age Natural Reserve, Mauna Loa Forest Reserve, 
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Alpine Wildlife Sanctuary, Keauhou Cooperative Nene Sanctuary, Kipuka Ainahou Nene 

Sanctuary, and Kaonoulu Ranch Cooperative Game Management Area. Table 4 highlights these 

anticipated temperature increases. 

 

Island Protected Area Name Difference in 

MAX 

Anticipated 

Temperature  

°C (%) 

Difference in 

MEAN 

Anticipated 

Temperature  

°C (%) 

Hawaii Mauna Kea Ice Age Natural Reserve 4.78 (63%) 4.68 (76%) 

Hawaii Hawaii Volcanoes National Park 4.78 (20%) 4.05 (29%) 

Hawaii Kapapala Forest Reserve 4.76 (32%) 4.21 (40%) 

Hawaii Mauna Kea Forest Reserve 4.76 (34%) 4.42 (51%) 

Hawaii Mauna Loa Forest Reserve 4.72 (41%) 4.50 (53%) 

Maui Alpine Wildlife Sanctuary 4.63 (53%) 4.62 (57%) 

Maui Haleakala National Park 4.62 (19%) 4.04 (31%) 

Maui Kula Forest Reserve 4.61 (31%) 4.28 (38%) 

Maui Kahikinui Forest Reserve 4.61 (24%) 4.12 (32%) 

Hawaii Keauhou Cooperative Nene Sanctuary 4.52 (37%) 4.39 (44%) 

 

Table 4: Highlights of the top ten most severe anticipated temperature increases of protected 

areas based on maximum and mean anticipated temperature increase from NCAR RCP 8.5. 

 

The islands of Hawai’i and Maui are also expected to endure the most extreme 

precipitation changes (Table 4, Table 5). The NCAR RCP 8.5 projection suggests the most 
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severe decrease in annual precipitation is expected to affect Haleakala National Park, Kau Forest 

Reserve, Hana Forest Reserve, Hawaii Volcanoes National Park, and Koolau Forest Reserve. In 

addition, the lowest mean precipitation values were found to affect Kau Forest Reserve, 

Kaumahina State Wayside, Hanawi Natural Area Reserve, and Kipahulu Forest Reserve. 

Alternatively, regions with the highest mean precipitation values include sections of Hamakua 

Forest Reserve and Manowaialee Forest Reserve. Kohala Forest Reserve and Puu O Umi Natural 

Area Reserve also experienced some of the highest maximum precipitation values. Table 5 

summarizes the most affected protected areas in terms of precipitation. 

Island Protected Area Name Difference in 

MINIMUM 

Anticipated 

Precipitation 

Change 

mm/year 

Difference in 

MAXIMUM 

Anticipated 

Precipitation 

Change 

mm/year 

MEAN 

Anticipated  

Precipitation 

Change 

mm/year 

Maui Haleakala National Park -747  +324  -49 (2% 

decrease) 

Hawaii Kau Forest Reserve -691  +181  -337 (14% 

decrease) 

Maui Hana Forest Reserve -680  +430  +2 (~0% change) 

Hawaii Hawaii Volcanoes National 

Park 

-650  +904  +9 (~0% change) 

Maui Koolau Forest Reserve -641  +312  -111 (2% 

decrease) 

Maui Hanawi Natural Area Reserve -594  +102  -251 (3% 

decrease) 

Maui Kipahulu Forest Reserve -371  -38  -246 (7% 

decrease) 

Maui Hamakua Forest Reserve +1277  +1397  1345 (60% 

increase) 
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Hawaii Manowaialee Forest Reserve +1033  +1364  1180 (35% 

increase) 

Hawaii Kohala Forest Reserve  +285  +1201  685 (24% 

increase) 

 

Table 5: Highlights of most severe anticipated precipitation increases/decreases of protected 

areas sorted by absolute values in precipitation change (mm/year) between historical conditions 

(2002-2012) and end of century NCAR RCP 8.5 projections (2090-2100). 

 

Protected Area Name % Min % Max % Mean 

Kona Hema Preserve (Nature Conservancy) -27.66 -4.48 -20.45 

Kapapala Forest Reserve -96.50 5.73 -16.22 

Kau Forest Reserve -46.69 5.81 -14.61 

Kau Forest Reserve (Kapapala Sec.) -20.51 -4.88 -12.23 

Manuka Natural Area Reserve -33.81 8.30 -11.06 

South Kona Forest Reserve (Kapua-Manuka Sec.) -17.35 -4.02 -10.90 

Kipahoehoe Natural Area Reserve -22.10 0.13 -9.88 

Puu Waawaa Forest Bird Sanctuary -12.62 -6.04 -9.85 

South Kona Forest Res. (Olelomoana Opihihali Sec.) -20.69 -0.91 -9.75 

Kau Preserve (Nature Conservancy) -28.72 3.25 -8.02 

 

Table 6: Highlights of most severe anticipated precipitation decreases of protected areas 

(percentage in relation to baseline of each park)  

 

Protected Area Name % Min % Max 

% 

Mean 

Hapuna Beach State Recreation Area 115.48 164.57 140.37 

Kahoolawe Island Reserve 19.35 100.92 77.06 

Hamakua Forest Reserve (Paauilo Sec.) 60.63 55.19 58.88 

Kaiwi Scenic Shoreline 53.25 61.45 58.59 

Diamond Head State Monument 53.45 49.71 51.95 

Lapakahi State Historical Park 50.01 51.50 51.63 
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Hamakua Forest Reserve (Kalopa Sec.) 46.63 45.14 46.14 

Kawainui Marsh Wildlife Sanctuary 47.45 39.79 44.71 

Hamakua Forest Reserve (Hoea Kaao Sec.) 43.19 41.74 42.77 

Hamakua Forest Reserve (Ahualoa Sec.) 38.37 43.27 40.06 

 

Table 7: Highlights of most severe anticipated precipitation increases of protected areas 

(percentage in relation to baseline of each park) sorted by greatest percent increase in mean 

annual precipitation 

 

 

Protected Area Name % Min % Max % Mean 

Mauna Kea Ice Age Natural Area Reserve 103.05 63.11 76.6 

Alpine Wildlife Sanctuary  60.7 53.49 57.62 

Mauna Loa Forest Reserve 84.89 41.70 53.69 

Mauna Kea Forest Reserve 66.77 34.15 51.45 

Keauhou Cooperative Nene Sanctuary 49.38 37.85 44.80 

Kipuka Ainahou Nene Sanctuary 48.72 36.95 41.99 

Kaonoulu Ranch Coop. Game Manage. Area 46.72 34.94 40.63 

Kapapala Forest Reserve 74.66 32.58 40.10 

Kula Forest Reserve 47.80 31.54 38.24 

Nakula Natural Area Reserve 44.16 27.20 36.77 

 

Table 8: Highlights of most severe anticipated temperature increases of protected areas 

(percentage in relation to baseline of each park). 

Anticipated Future Native Vegetation Ranges based on Single-Category Random Forest 

Classification  

 Anticipated end of century potential distributions for Native Dry Forest, Native Dry 

Shrub, Native Mesic Forest, Native Mesic Grassland, Native Mesic Shrub, Native Wet Forest, 

and Native Wet Shrub were visualized using Forest-Based Classification and Regression with 
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NCAR RCP 8.5 temperature and precipitation inputs via the single category classification 

method in Figures 7-13. Across the entire archipelago, Native Dry Shrub is anticipated to 

experience the greatest contraction in range (Figure 8) followed by Native Wet Forest (Figure 

12), while Native Mesic Forest is anticipated to experience the greatest expansion in range 

(Figure 9), followed by Native Mesic Shrub (Figure 11). Statistics on expansion and contraction 

in range for each vegetation type using Single Category Classification are described more 

thoroughly in Table 9. Protected areas experiencing the highest percentage and areas of 

vegetation loss and gain are summarized in Table 10.  

Vegetation Type % NOT PRESENT % LOSS % GAIN % NO CHANGE 

Native Dry Forest 80.63 8.83 5.73 4.81 

Native Dry Shrub 60.42 13.59 18.20 7.79 

Native Mesic Forest 60.84 8.86 18.89 11.42 

Native Mesic Grassland 93.21 0.55 5.74 0.49 

Native Mesic Shrub 66.78 8.55 15.89 8.79 

Native Wet Forest 70.32 12.49 5.06 12.13 

Native Wet Shrub 72.55 5.77 9.60 12.07 

Table 9: Single Category Classification Future Statistics for each vegetation type 

LOSS OF RANGE GAIN IN RANGE 

Native Dry Forest  

Mauna Kea FR / Wailiku silversword 

sanctuary (50%) 

Kipuka Anaihou Nene Sanctuary (49%) 

Puu Waawaa Forest Bird Sanctuary (48%) 

Kapapala Forest Reserve (47%) 

Kaonoulu Ranch Cooperative Game 

Management (46%) 

 

Native Dry Shrub 

Haena State park (87%) 

Keauhou cooperative Nene Sanctuary (81%) 

Mauna Kea FR / Wailuku Silversword 

sanctuary (75%) 

Native Dry Forest 

Pohakuloa Training Area Reservation 

(100%) 

Kona Hema Preserve (44%) 

Mauna Loa Forest Reserve (34%) 

South Kona Forest Reserve (32%) 

West Maui Natural Area Reserve (28%) 

 

Native Dry Shrub 

Hamakua Forest (Multiple Sectors) (100%) 

Waihou Spring Forest Reserve (100%) 

Wailuku River State Park (100%) 

Manuka State Wayside (100%) 

Manowaialee Forest Reserve (96%) 
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Kanepuu preserve (71%) 

Pohakuloa training area Reservation (67%) 

 

Native Mesic Forest 

Keolonahihi State historical park (100%) 

Pohakuloa training area reservation (100%) 

Puu Waawaa Forest bird sanctuary (86%) 

Puu Alii natural area reserve (72%) 

Olokui Natural Area Reserve (64%) 

 

Native Mesic Grassland 

Puu Alii Natural area reserve (81%) 

Olokui Natural area reserve (64%) 

Makawao Forest Reserve (29%) 

Hono o Na Pali Natural Area Reserve (22%) 

Keauhou Cooperative Nene Sanctuary (21%) 

 

Native Mesic Shrub 

Upper Waiakea Bog Sanctuary (100%) 

Polipoli spring state recreation area (100%) 

Puu Waawaa Forest bird sanctuary (88%) 

Puu Alii Natural Area Reserve (56%) 

Kula Forest Reserve (53%) 

 

Native Wet Forest 

Akaka Falls State Park (100%) 

Wao Kele O Puna (90%) 

Hilo Forest Reserve (Opea sec) (83%) 

Kau Forest Reserve (79%) 

Hamakua marsh wildlife sanctuary (66%) 

 

Native Wet Shrub 

Hilo Forest Reserve (Kaiwiki Sec) (57%) 

Akaka Falls State Park (50%) 

Kohala Forest Reserve (42%) 

Hilo Forest Reserve (41%) 

Nanawale Forest reserve (37%) 

 

Native Mesic Forest 

Keauohana Forest Reserve (100%) 

Lava Tree State Monument (100%) 

Polipoli Spring State Recreation Area 

(100%) 

Hamakua Forest Reserve (87%) 

Alpine Wildlife Sanctuary (80%) 

 

Native Mesic Grassland 

Upper Waiakea Bog Sanctuary (100%) 

Hakalau Forest National Wildlife Refuge 

(85%) 

Hilo Forest Reserve (81%) 

Ewa Forest Reserve (67%) 

Waikamoi Preserve (59%) 

 

Native Mesic Shrub  

Keauohana Forest Reserve (100%) 

Lava Tree State Monument (100%) 

Hamakua Forest Reserve (100%) 

Halekii-pihana Heiau state historic site 

(100%) 

Manuka State Wayside (100%) 

 

Native Wet Forest 

Keolonahihi state historical park (100%) 

Waikamoi preserve (54%) 

Kipuka Ainahou Nene Sanctuary (53%) 

Hamakua Forest Reserve (Paaulio sec) (50%) 

Haleakala National Park (29%) 

 

Native Wet Shrub  

Hamakua Forest reserve (85%) 

Alpine Wildlife Sanctuary (85%) 

Hamakua Forest Reserve (75%) 

Manowaialee Forest reserve (72%) 

Laupahoehoe Natural Area Reserve (71%) 

Table 10: Top Five Most Extreme Gain and Loss by Vegetation Type, Protected Areas. 
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Figure 7: Future Native Dry Forest distributions (2090-2100) across the Hawaiian Islands using 

Forest-Based Classification and Regression with NCAR RCP 8.5 temperature and precipitation 

inputs. 
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Figure 8: Future Native Dry Shrub distributions (2090-2100) across the Hawaiian Islands using 

Forest-Based Classification and Regression with NCAR RCP 8.5 temperature and precipitation 

inputs.  



34 
 

 

Figure 9: Future Native Mesic Forest distributions (2090-2100) across the Hawaiian Islands 

using Forest-Based Classification and Regression with NCAR RCP 8.5 temperature and 

precipitation inputs. 
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Figure 10: Future Native Mesic Grassland distributions (2090-2100) across the Hawaiian Islands 

using Forest-Based Classification and Regression with NCAR RCP 8.5 temperature and 

precipitation inputs. 
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Figure 11: Future Native Mesic Shrub distributions (2090-2100) across the Hawaiian Islands 

using Forest-Based Classification and Regression with NCAR RCP 8.5 temperature and 

precipitation inputs. 
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Figure 12: Future Native Wet Forest distributions (2090-2100) across the Hawaiian Islands using 

Forest-Based Classification and Regression with NCAR RCP 8.5 temperature and precipitation 

inputs. 
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Figure 13: Future Native Wet Shrub distributions (2090-2100) across the Hawaiian Islands using 

Forest-Based Classification and Regression with NCAR RCP 8.5 temperature and precipitation 

inputs. 

Single Class vs Multi Category Classification Approaches 

Amongst all individualized Random Forest (Forest Based Classification and Regression) 

outputs utilizing baseline and NCAR RCP 8.5 predictions, accuracy remained above 82% for 

both training and validation data classification diagnostics. Variable importance varied, with soil 

order consistently ranking as the least important variable and other factors such as temperature 
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and precipitation seasonality ranging from 20-30% in importance when assessing the model. The 

individualized, or Single Category Classification approach, resulted in multiple regions with 

anticipated overlap as seen in Figure 14. More specifically, 33.27% of the area has no overlap 

and predicts no suitability for any of the vegetation types while 12.75% of the area has a 

predicted future suitability for one vegetation type. When considering areas that do contain 

overlap, 20.70% of the area across the islands predicted future suitability for various 

combinations of two vegetation types, and 33.28% predicted future suitability for combinations 

of 3 or more vegetation types.  

Alternatively, the multi-category approach for both baseline and future predictions 

resulted in an accuracy well above 97% in all categories except for “other”, which was at 91% 

accuracy for the baseline climate prediction and 93% accuracy for the future climate prediction. 

Variable importance for both baseline and future predictions ranked precipitation and 

temperature seasonality the highest, with all variables ranging from 19%-26% in importance and 

soil order ranking as the least important variable contributing less than 1% to the model. Table 8 

highlights the change in land cover types between baseline and future scenarios using the multi-

category classification model. Additionally, Figures 15 and 16 visualize these potential 

distribution ranges for each land cover class across the islands under baseline and future climate 

scenarios. In this case, the land cover type with the greatest expansion in range is predicted to 

affect Other/Unclassified non-native vegetation followed by Native Mesic Grassland and Native 

Dry Shrub, while the greatest contraction in range is anticipated to affect Native Dry Forest, 

followed by Native Wet Shrub and Native Wet Forest.  
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In the case of our study, the multi-category classification model had higher performance 

accuracy, yet it is important to note that multi-classification approaches may result in substantial 

bias due to the input of presence only data. The multi-category classification approach results in 

an exclusionary determination of vegetation type for each pixel, whereas the individualized 

approach allows for overlap and may be useful for highlighting regions that can sustain two or 

more vegetation types in the future.  

Land Cover Type % Change 

Bare Ground -5.38 

Native Dry Forest -57.35 

Native Dry Shrub +13.64 

Native Mesic Forest +12.21 

Native Mesic Grassland +44.74 

Native Mesic Shrub -9.43 

Native Wet Forest -46.18 

Native Wet Shrub -50.33 

Other Non-Native Vegetation +53.06 

Table 8: Multi Category Classification Future Statistics for each vegetation type. 
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Figure 14: Number of predicted potential future vegetation types and distributions across the 

Hawaiian Islands (2100 estimate) by assessing product overlap using the Single-Category 

classification method. 
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Figure 15: Baseline (Current) Potential Land Cover distributions using Forest-Based and 

Boosted Classification multi category approach. 
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Figure 16: Future (2100) Potential Land Cover distributions using Forest-Based and Boosted 

Classification (ArcGIS Pro 3.2) multi-category approach. 

Discussion 

Confinements of Scale 

The scale and resolution of data play a critical role in shaping scientific and geographic 

analyses, especially when assessing the effects of climate change. In regions like the Hawaiian 

Islands, which is characterized by diverse topography and microclimates, the resolution of 

climate data affects how accurately localized variations, such as rainfall patterns or temperature 
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changes in coastal versus mountainous areas, are captured (PIRCA, 2012). Coarse-scale data 

may obscure these local differences, while higher-resolution data, though more resource-

intensive, can provide finer details necessary for understanding climate impacts on ecosystems 

(Fortini et al. 2022). Moreover, temporal resolution influences how well short-term fluctuations 

can be distinguished from long-term climate trends, which is crucial for accurate climate 

predictions and adaptation planning. The limits of data resolution also pose challenges in 

understanding the full scope of climate change. High-resolution models allow for a more precise 

simulation of local climate dynamics, such as sea-level rise or extreme weather events, but their 

computational demands make them less feasible for large-scale applications (Fortini et al. 2022). 

On the other hand, coarse-scale models might not fully capture critical small-scale processes or 

the vulnerability of ecosystems, particularly in places like Hawaii, where endemic species and 

communities are highly sensitive to climate fluctuations (Eversole 2014). Thus, balancing data 

resolution with computational limitations is essential to accurately assess climate risks and 

inform effective policy and conservation strategies. 

Climatic Niche of Remaining Native Vegetation 

To assess the impacts of climate change on vegetation types it is critical to understand if 

vegetation types have distinct climate niches. This is commonly done for individual native 

species on individual islands (Rovzar et al. 2016) and across the Hawaiian Islands (Fortini et al. 

2022). However, examining native vegetation types based on high resolution vegetation types is 

less common in the Hawaiian Islands and other islands in the Pacific. Using randomized points 

within seven native vegetation types from the Carbon Assessment of Hawaii Land Cover Map 

from Jacobi et al. (2017) we show that there are significant differences in temperature and 
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precipitation among and between native vegetation types. This suggests that although many 

vegetation types have been deforested and fragmented (e.g. native dry forest) they still maintain 

unique climate niches on the Hawaiian Islands. Indeed, the lowest similarity in climate metrics 

was between native mesic grasslands and native dry forest (Figure 6) and globally it is well 

known that these vegetation types can exist in the same climatic niche and are heavily influenced 

by other factors such as fire and soil moisture (Murphy and Bowman 2012, Ocón et al. 2021). 

Otherwise, all one-on-one comparisons between native vegetation types had different climate 

niches. Understanding native vegetation distributions and dynamics on tropical islands or 

continents is critical for any study of climate and vegetation change and results suggest that high 

resolution vegetation maps and randomized point locations can be used to test this hypothesis in 

the Hawaiian Islands and other regions.  

Predicted Climate Change in Protected Areas 

We examined baseline and downscaled future climate projection using the NCAR RCP 

8.5 projection to estimate the changes of the individual bioclimatic variables compared to the 

baseline scenario to determine the direction and amount of change anticipated for protected areas 

within our study area (Fortini et al. 2022). We selected this model because we felt the national 

NCAR models provide the most detail on methods and effectivity compared to other climate 

projections (Neale et al. 2010) and we wanted to experiment with single category vs multi-

category vegetation models using a single climate model as our environmental input. Results 

based on the NCAR RCP 8.5 projection show significant changes in both the absolute value and 

percentage change of temperature and precipitation metrics within protected areas of the 

Hawaiian Islands.  
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However, it is important to recognize the variability that exists between different climate 

models. Fortini et al. (2023) explored rainfall projections from globally downscaled datasets such 

as CHELSA and WorldClim2, revealing significant variability in their predictions, especially 

when compared to regional models. For the case study of Hawaiʻi, the study identified that these 

global datasets often misrepresent localized precipitation patterns, either overestimating or 

underestimating projected changes. For example, while one dataset might indicate a pronounced 

drying trend in certain regions, another might predict stable or even increasing rainfall, leading to 

inconsistencies. In the case of our NCAR data, the end of century projections have higher annual 

estimated precipitation on average compared to other existing models (Fortini et al. 2023). These 

discrepancies arise partly due to differences in baseline datasets used by global and regional 

models, which significantly influence the magnitude and spatial patterns of projected 

precipitation. Such variations have profound implications for applications reliant on accurate 

precipitation data, such as hydrological modeling or ecosystem impact assessments. Therefore, 

unchecked use of these projections could propagate inaccuracies into downstream analyses. For 

instance, species distribution models derived from biased precipitation data might inaccurately 

forecast habitat shifts, with potentially significant ecological consequences.  

Protected area impacts can be assessed through both absolute change in temperature and 

precipitation (Table 3) as well as percent change in relation to the area’s baseline (Tables 6, 7, 

and 8). With regards to absolute temperature change particularly in areas anticipated to have a 

mean rise in temperature of 4.5 C or higher, Mauna Kea Ice Age Natural Reserve, Hawaii 

Volcanoes National Park, Kapapala Forest Reserve, Mauna Kea Forest Reserve, and Mauna Loa 

Forest Reserve have the highest anticipated change in maximum temperature. However, Mauna 

Kea Ice Age Natural Area Reserve, Alpine Wildlife Sanctuary, Mauna Loa Forest Reserve, 
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Mauna Kea Forest Reserve, Keauhou Cooperative Nene Sanctuary, Kipuka Ainahou Nene 

Sanctuary, Kaonoulu Ranch Cooperative Game Management Area, and Kapapala Forest Reserve 

are all projected to have a mean annual temperature increase of more than 40% by the end of the 

century, meaning that these areas are susceptible to the greatest level of heat related risk. It is 

also important to note that these high-risk areas susceptible to temperature increases are found on 

multiple islands including Hawaii, Kauai, Oahu, and Maui. 

Protected areas are also anticipated to endure a significant amount of change in 

precipitation. With regards to the greatest annual decrease in rainfall, Kona Hema Preserve 

(Nature Conservancy), Kapapala Forest Reserve, Kau Forest Reserve, Kau Forest Reserve 

(Kapapala Sec.), Manuka Natural Area Reserve and South Kona Forest Reserve (Kapua-Manuka 

Sec.) are all anticipated to experience a decrease in mean annual precipitation by 10% or more, 

with some regions expected to have more than 20% change in mean annual precipitation and 

even more drastic changes in minimum and maximum predicted change in annual precipitation. 

However, not all regions across the islands are equally affected. For instance, Wailua 

River State Park, Kaloko-Honokohau National Historical Park, Kawainui Marsh Wildlife 

Sanctuary, James Campbell National Wildlife Refuge, and Kaiwi Scenic Shoreline are 

anticipated to have some of the least severe temperature increases according to the NCAR 

Climate model, however these regions are still tentatively projected to increase by 3 C as we 

approach the end of the century. With regards to precipitation, areas such as Waiakea 1942 Lava 

Flow Natural Area Reserve, Kuaokala Forest Reserve, Waiaha Springs Forest Reserve, Puu 

Honau O Honaunau National Historical Park and Olaa Forest Reserve (Mt. View Sec.) are 

expected to have little to no change in precipitation trends.  
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It should also be noted that while this study utilized the NCAR climate projections for 

bioclimatic variables across the Hawaiian Islands (Fortini et al. 2022) the same data source also 

features access to two other downscaled climate models from the International Pacific Research 

Center, with results on changes in temperature and precipitation are dramatically different than 

our NCAR model. Our study aims to utilize the NCAR model as a potential scenario because it is 

a validated and realistic input (Xue et al. 2020) that utilizes historical simulations to effectively 

reproduce the mean surface temperature, relative humidity, and winds in the model with 

exceedingly low biases and high spatial correlations. However, the methodology described in 

this paper can be used through various climate models if they provide adequate variables that can 

be used to determine potential species ranges under future climates. Indeed, future climate 

models will continue to improve and provide more accurate climate change predictions over 

time, however, there is currently an immense gap in knowledge regarding the proper 

methodology to study the potential impact of climate change on native vegetation in areas with 

high quantities of threatened endemic species. This knowledge is particularly crucial for natural 

resource managers and government officials who rely on a combination of climate models, 

species distribution metrics, and various validation methods to justify these findings and test 

predicted climate and vegetation results under machine learning algorithms. A simple way to 

address the variation in end of century climate models would be to ensemble all of the existing 

IPCC climate models and downscale final model results (Mizukami et al. 2022).However, given 

the uncertainty that comes with an analysis of this scale, our recommended future direction is to 

validate each model individually over time and use the single model that coincides with the 

validation results.  
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There are several satellite sensors that measure land surface temperature and precipitation 

at moderate resolutions that can be used to validate climate change models from 2000 to present. 

NOAA (VIIRS) and EOS (MODIS) provide land surface temperature (LST) products at 1 km 

spatial resolution while remote sensing data on precipitation at 0.1 degree (10 km) from NOAA 

satellites and from the Global Precipitation Measurement Mission is also available. Thus, a near 

25-year time series at 1 km for temperature and 10 km for precipitation is available to test if 

predicted change or trajectories are occurring within protected areas. 

Single Class vs Multi Category Classification Approaches 

This research shows that it is possible to incorporate fine scale baseline and future 

climate projections into a Forest-Based Classification and Regression Model using two different 

approaches to determine potential impacts and changes in distributions for native vegetation 

types by the end of the century in response to climate change. Climate Change Vulnerability 

Assessments (VAs) have been conducted in various regions across the world (Foden et al. 2019, 

Comer et al. 2019) however there has been limited research conducted on the Hawaiian Islands 

due to the complexity of the landscape and the need for very high-resolution climate data that 

covers the region. Furthermore, there has been limited knowledge on vegetation responses to 

climate change in regions defined as protected areas on the Hawaiian Islands. This study is the 

first of its kind to incorporate recent and validated land cover maps from the Carbon Assessment 

of Hawaii (Jacobi et al. 2017) into a machine learning algorithm to group and classify native 

vegetation distributions and create fine scale range maps with a detailed assessment on protected 

area climate impacts for future projections going into 2100. This research provides a framework 

for modeling climate change impacts on the distribution of endangered native species on small, 
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remote Pacific islands, and may be used to conduct vegetation vulnerability assessments on other 

remote regions experiencing similar threats. Evaluating the changes in native vegetation 

distribution and range that may result from climate change allows for reserves to coordinate 

relocation efforts, provide supplemental resources for high-risk regions, and take the necessary 

measures to protect endangered species from extinction.   

When applying this model to practical efforts it is important to note that we are not 

predicting migrations of native vegetation classes themselves under future climates; rather, we 

are predicting differences in spatial patterning of the climatic conditions where current native 

vegetation assemblages may exist under future climates. Furthermore, the results of this model 

should not be used as an absolute identification of native vegetation range on the islands but 

should serve as an indicator for potential suitable habitats that may require additional factors for 

validation. Because the distribution values are estimated from climate and environmental 

variables, many other factors, such as dispersal and competition, are not considered, which will 

ultimately affect the distribution of the native vegetation categories. Both the individualized 

distribution ranges and the multi-category classification assessment provide valuable insight 

regarding ecosystem dynamics and climate change related impacts on these isolated islands. 

While the multi-category classification model has a much higher performance accuracy, it is 

important to consider that multi-classification approaches may result in substantial bias due to 

the input of presence only data (Elith et al. 2006). Additionally, the multi-category classification 

approach results in an exclusionary determination of vegetation type for each pixel, whereas the 

individualized approach allows for overlap and may be useful for highlighting regions that can 

sustain two or more vegetation types. Further refinement may be necessary for this model to 

improve accuracy by incorporating additional environmental variables such as slope, aspect, 
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evapotranspiration, and other factors. Lastly, incorporating different future climate scenarios and 

providing alternative distribution models based on the described methods may better inform land 

management decisions and prepare high risk protected areas in Hawaii.  

Limitations 

While our study is the first of its kind to provide results on potential native vegetation 

ranges utilizing forest-based classification from baseline and future climate projections, there are 

limitations to consider. It is important to note that while there has been extremely limited 

research on the topic, one study found evidence of anticipated mesic forest contraction and dry 

shrubland expansion that directly contradicts our projected expansion of dry shrubland and other 

low-moisture vegetation types into current areas containing wet forest (Fortini et al. 2018). This 

contradiction may be a result of differences in vegetation groupings, baseline and future climate 

data inputs, and the separation of native and non-native vegetation types between studies. 

However, both studies provide valuable input by providing multiple perspectives for land use 

and conservation efforts, especially for areas that show agreement between the two studies 

(Fortini et al. 2018). There have been a number of studies that show how climate change is 

impacting vegetation migrations along elevational (Koide et al. 2017) and latitudinal gradients 

(Holsinger et al. 2018). However, it is currently extremely difficult to validate vegetation change 

under future climate scenarios, and when we consider validation methods for this study we must 

remember that we are not predicting migrations of vegetation classes themselves under future 

climates, but rather we are predicting differences in spatial patterning of the climatic conditions 

where current native vegetation assemblages may exist under future climates. While most studies 

of this variety examine changes in vegetation using NDVI increases to validate expansion and 
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contraction, this approach cannot be applied to our study because changes in NDVI cannot 

clearly indicate the presence of one species over another, and our study does not account for 

factors that affect seed dispersal and migration. Currently the most efficient way to validate this 

study is through the observation of field sites and weather monitoring systems, which can 

effectively validate the results by demonstrating similarities and determining the accuracy of the 

climate model and spatial patterning of suitable climate conditions. It is important to consider 

that future temperature and precipitation patterns play a significant role in determining potential 

suitable ranges for the native vegetation in our study, meaning that the lack of climate model 

variations is another major limitation in our research. Our study utilized one predicted climate 

scenario, NCAR RCP 8.5, however there is wide variation in existing downscaled models for the 

region as well as the existing IPRC models within our bioclimatic variable dataset. Additionally, 

our study utilized mean annual temperature, mean annual precipitation, precipitation seasonality 

(Coefficient of variation for monthly precipitation), and temperature seasonality (standard 

deviation * 100) as our climatic variable inputs, however it is important to note that rage of 

variability and other characteristics of climate may play an additional role in affecting vegetation 

within the region. Our model functions under the simple assumption that the only way climate 

influences vegetation distributions and future potential ranges is through changes in temperature 

and precipitation, therefore those were the only variables that were changed between the baseline 

and future scenarios in our machine learning algorithms. 

There is also the issue of determining the most effective method for assessing anticipated 

vegetation ranges using machine learning. One of our main limitations is our inability to fully 

validate our results of anticipated vegetation expansion, contraction, and areas not anticipated to 

change. For instance, our study had two different methods for determining potential future 
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vegetation ranges, which resulted in moderate variability and differences between the two 

outputs. One primary advantage of the single-category classification approach is the ability to 

clearly illustrate potential zones of expansion and contraction for each vegetation type, which 

can then also be used to map areas of overlapping future climate suitably for each of the 

vegetation categories. On the other hand, the multi-category classification approach simplifies 

this process by determining the most likely vegetation type given the input baseline climate data 

and future climate scenario. While this method creates a clear output that can be used to calculate 

anticipated vegetation distribution ranges for all species, it does not allow the user to clearly 

assess individual expansion and contraction of range for a given land cover category. 

Furthermore, while this method may be the simplest method for land management and 

conservation planning, it does not clearly highlight areas that may have overlapping suitable 

conditions, which could be a critical factor when relocating species found in high-risk regions.  

We must also consider other factors beyond climatic conditions that may impact end of 

century vegetation ranges. One of the most disruptive and unpredictable factors to consider is 

fire. While certain types of vegetation and drought conditions are more prone to wildfire, the 

extent and severity of fire events is impossible to accurately predict. Fire is known to drastically 

impact composition and structure of native vegetation types as seen in the case of Hawaii 

Volcanoes National Park (Ainsworth and Kauffman 2013) where repeated fires resulted in lower 

tree survival and rapid occupation by aggressive herbaceous species. Another critical concern is 

invasive species, which have a multitude of impacts on plant communities through their direct 

and indirect effects on soil chemistry and ecosystem function. For instance, there is evidence that 

invasive plant species may alter nutrient cycles differently from native species by modifying the 

soil environment through root exudates, thus permanently changing the local soil structure and 
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making it increasingly difficult for native plants to adapt and survive (Weidenhamer and 

Callaway 2010). While these concerns cannot be accurately predicted using machine learning 

technology at the moment, it is important to rely on a combination of climate-based future 

vegetation analysis and expert opinions from those who can relay critical local and/or indigenous 

knowledge when considering fire, invasive species, and pest/disease impacts in the context of 

land management and species conservation across the Hawaiian Islands.  

Case Study: Hawaii Volcanoes National Park and Haleakala National Park 

It is critical to assess habitats on both grand and small scales to better prepare specific 

high-risk regions for anticipated climate impacts. In the case of Hawaii Volcanoes National Park, 

about 80% of the total protected area is now composed of fire derived, degraded grasslands 

dominated by non-native species, or sparsely to unvegetated volcanic terrain (Loope et al. 2013) 

while the remaining area of about 250–300 km2 contains vast amounts of diverse native plant 

communities. Both Hawaii Volcanoes National Park and Haleakala National Park are projected 

to experience record breaking peaks in temperature by the end of the century while enduring 

significant decreases in annual precipitation. Therefore, the multi-category approach for Forest 

Based Classification and Regression in ArcGIS Pro was used to quantify potential changes in 

distributions by the end of the century for these protected areas. Current distributions for Hawaii 

Volcanoes National Park are 30% bare ground, 5% Native Dry Forest, 6% Native Dry Shrub, 

13% Native Mesic Forest, 7% Native Mesic Grassland, 20% Native Mesic Shrub, 4% Native 

Wet Forest, 6% Native Wet Shrub, and 9% for other vegetation types. Bare ground and Native 

Dry Shrub are expected to have the greatest expansion of range by 2100, increasing by 7% and 

12% respectively. Alternatively, Native Mesic Grassland, Native Wet Forest, and Native Wet 
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Shrub are anticipated to experience the most severe contraction in range, decreasing by 4%, 3%, 

and 5%. Haleakala National Park’s baseline distributions are 8% Bare Ground, 2% Native Dry 

Forest, 6% Native Dry Shrub, 8% Native Mesic Forest, 26% Native Mesic Grassland, 16% 

Native Mesic Shrub, 15% Native Wet Forest, 11% Native Wet Shrub, and 8% for other land 

cover types. Native Dry Shrub and Native Mesic Forest are anticipated to expand by 4% and 

12% respectively, while Native Mesic Grassland and Native Wet Forest are anticipated to 

decrease by 11% and 4% in range. Figures 17 and 18 highlight these new potential vegetation 

distribution ranges for these regions by the end of the century.  

 

 



56 
 

Figure 17: Projected potential vegetation distributions for Hawaii Volcanoes National Park 

featuring baseline and future (2100) scenarios using NCAR RCP 8.5 climate projections as an 

input for the Forest Based and Boosted classification and regression tool (ArcGIS 3.2) through 

the multi-category classification approach. 

 

Figure 18: Projected potential vegetation distributions for Haleakala National Park featuring 

baseline and future (2100) scenarios using NCAR RCP 8.5 climate projections as an input for the 

Forest Based and Boosted classification and regression tool (ArcGIS 3.2) through the multi-

category classification approach. 
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In addition, we determined the areas of overlapping potential suitability for all seven 

native vegetation types using the Single-Category classification method for both national parks 

to further assess discrepancies and accuracy between the two classification methods. Figures 19 

and 20 depict these predicted potential future vegetation types and distributions for 2100.  

 

Figure 19: Number of predicted potential future vegetation types and distributions in Hawaii 

Volcanoes National Park (2100 estimate) by assessing product overlap using the Single-Category 

classification method. 
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Figure 20: Number of predicted potential future vegetation types and distributions in Haleakala 

National Park (2100 estimate) by assessing product overlap using the Single-Category 

classification method. 

Future research 

Our study is the first of its kind to develop PVT models to examine the future climate 

vulnerability of native vegetation land cover types in protected areas by incorporating a 

bioclimatic variables dataset containing baseline and end-of-century climate projections for the 

Hawaiian Islands. While our research has provided a foundational understanding of potential 
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methods for assessing vegetation distribution changes in the context of climate change, there are 

many avenues for future research that are critical towards developing this knowledge further. 

Remote sensing of land surface temperature, precipitation, and cloud cover should be examined 

for all PAs to identify significant changes along a time series (e.g. BFAST models) and used to 

validate the trend or trajectory of our NCAR model along with other single or ensembled models. 

The Breaks for Additive Seasonal and Trend (BFAST) framework (Verbesselt et al. 2010) has 

been used to detect vegetation changes, including forest disturbances and NDVI response to 

drought, with minimal influence from seasonal amplitudes and in spite of time series irregularity 

(DeVries et al. 2015; Forkel et al. 2013; Xu et al. 2020). Field methods that can be used to 

measure, monitor, and validate anticipated vegetation change in the Hawaiian Islands include the 

over 300 sites from the United States Geological Survey’s Forest Inventory and Analysis (FIA) 

program (Tinkham et al. 2018) and the OpenNahele, a community-level forest plot database for 

the Hawaiian Islands (Craven et al. 2018). 

However, our study has successfully mapped potential expansion and contraction of 

ranges for each native vegetation category, determined areas of suitability overlap, and 

highlighted areas that are clearly anticipated to change in response to climate by the end of the 

century. While some regions are anticipated to convert from one vegetation type to another 

(Figures 15-16) or have suitability for multiple vegetation types (Figure 14), there are other 

regions found in our study that are anticipated to decrease in native vegetation or increase in 

areas that previously weren’t suitable. For this reason, rather than conducting field surveys over a 

wide area, our recommendations are to focus on the highlighted areas with a high predicted 

vegetation change to conduct selective field surveys and validate the model over time.  
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Aside from surveying field sites, the utilization of remote sensing methods may also 

prove useful in validating our results. In order to identify vegetation change you have to know 

the species composition, structure, and function of native vegetations types. Some vegetation 

changes are easily to quantify such as bare area into grasslands or grassland into forest. 

However, identifying changes from native wet forest to mesic forest on the Hawaiian Islands or 

migration in highly fragments native dry forests are difficult using remote sensing.   

Over the last two decades, there has been a rapid evolution in spaceborne remote sensing 

sensors, methods and techniques that have changed the way we measure and monitor vegetation 

types. Measuring includes identifying the x, y location of field plots, delineating vegetation 

types, and collecting metrics on a vegetation type. Monitoring is the use of time series 

spaceborne data to study dynamics over time and this has significant applications for vegetation 

change and conservation. Indeed, we can now collect real time remote sensing data on 

temperature, precipitation, fire, vegetation productivity, phenology, and health (Table 9). These 

metrics can be used to validate climate models and changes in native vegetation type function. 
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Table 9. Metrics that can be examined over randomized points or field plots within native 

Hawaiian vegetation types to identify changes in vegetation over time 

 

There are several standard 2D metrics that can be quantified for a Hawaiian native 

vegetation type monitored since 2000 (Table 9). There are several continuous or gradient 

satellite-derived measures of two-dimensional vegetation such as fraction of absorbed 

photosynthetically active radiation (FPAR), net primary productivity, leaf area index (LAI), 

above-ground biomass, percent vegetation cover (Running et al. 2004, Skidmore et al. 2021).  

Using our randomized point locations for each native vegetation type time, series data on 

productivity, phenology, biomass, and percent vegetation cover since 2000 using Landsat (30 m) 

and 2016 using Sentinel (10 m) in GoogleEarh Engine. Identifying predicted vegetation 

migration and change should be easy (if ANOVA’s results say significantly different like climate 

metrics), and locations with a high probability of vegetation change can be closely examined for 

species and vegetation growth or mortality (due to heat or water stress).  

 Metric Units Pixel size Sensors 

Climate     

 Precipitation cm 10 km GPM 

 Land surface temper. degrees C 1 km, 100 m MODIS, Landsat 

 Cloud cover % 1 km, 100 m MODIS, Landsat 

Vegetation     

 Primary Productivity g C m−2 yr−1 500 m MODIS  

 Photosynthetic activity  -1 to 1 4 m to 500 m DOVE, MODIS 

 Canopy cover tree % 30 m Landsat 

 Leaf Area Index 1 to 6 300 m, 1 km Sentinel 2 

 Canopy height m 10 m, 30 m GEDI, Landsat 

 Above ground biomass Mg ha-1 250 m  MODIS 

 Phenology leaf off, leaf on dates 20 m, 30 m  Sentinel, Landsat 

Soils     

 Albedo % 20 m, 30 m Sentinel, Landsat 
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There are also recent 3D spaceborne datasets that quantify the three-dimensional 

structure of vegetation or the vertical arrangement of canopy layers and plants life forms such as 

maximum, mean canopy height, and standard deviation (Lang et al. 2023). Recently, spaceborne 

data from the Global Ecosystem Dynamics Investigation (GEDI) on the International Space 

Station offer an unprecedented opportunity for studying biodiversity at lower latitudes. GEDI has 

three lasers which produce full waveforms within a 25 m circular footprint that can measure the 

3-dimensional structure of forests and terrain. Each footprint is separated by 60 m along track, 

with an across-track distance of approximately 600 m between each of the eight tracks. GEDI 

covers areas between 51°North and South latitude and gathers data for approximately 4% of the 

earth's surface (Dubayah et al. 2020). More recently, GEDI has provided high-resolution lidar 

data on the Earth’s forests and topography (Dubayah et al. 2020). GEDI data has been combined 

with Landsat to produce global canopy height models at 30 m spatial resolution (RMSE = 7-9 m) 

(Potapov et al. 2021) and Sentinel to produce 10 m spatial resolution (Lang et al. 2023) global 

canopy height models. This raw lidar and modelled vegetation structure data can be used as 

benchmarks for vegetation structure and associated native vegetation type into the future and 

could be used to identify change in native vegetation types.  

Additionally, our research still lacks certainty regarding the effectiveness of our climate 

model inputs with regards to predicting vegetation change. To tackle this uncertainty, the next 

research steps would utilize a variety of different downscaled climate model inputs to recreate 

the process for single category and multi-category vegetation analysis, in order to determine 

trends and similarities as well as changes in accuracy that may result from the varying climate 

inputs. We would also recreate the same methodology by implementing the NCAR RCP 8.5 

model with baseline and future projections going into 2040 and 2050 in order to determine the 
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model with the most statistically likely outcome and highest performance. By modeling into the 

middle of the century, we are also able to see a mid-way change and get a better understanding 

of our vegetation trajectory and anticipated shifts over time. These mid-century predictions are 

also expected to be less extreme than our end of century projections and may prove easier to 

validate over time using a combination field and remote sensing methods. Ultimately, by 

projecting these changes at multiple time intervals, we can better understand the association 

between climate patterns and suitable native vegetation ranges, meaning that we are therefore 

able to validate more extreme anticipated trends if the projections of mid-century scenarios prove 

to be accurate and consistent with what is seen in the field.  

 Beyond our current scope of research, it is critical to highlight the valuable applications 

of this research towards unprotected or ambiguous areas across Hawaii that are affected by 

climate change. Climate change is anticipated to increase the frequency and severity of natural 

disasters in Hawaii, particularly wildfires and floods (Nugent et al. 2020). Rising temperatures, 

prolonged droughts, and altered precipitation patterns are contributing to conditions conducive to 

the ignition and spread of wildfires. In particular, the combination of dry vegetation, heightened 

temperatures, and reduced rainfall is creating an environment where wildfires can spread more 

rapidly across both native forests and grasslands (Trauernicht 2019). These fires pose significant 

threats to biodiversity, human infrastructure, and the economy, particularly in areas where 

development encroaches upon vulnerable ecosystems. In addition to wildfires, climate change is 

also expected to intensify the occurrence of extreme weather events, such as heavy rainfall and 

flash floods (Xue et al. 2020). These floods not only endanger human populations but also cause 

extensive damage to agricultural lands, infrastructure, and fragile ecosystems, further 

complicating efforts for recovery and resilience building across the islands (Storlazzi et al. 
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2024). Understanding climate trends under multiple end of century projections may better equip 

this region for a variety of anticipated natural disasters, and is therefore a valuable asset in the 

context of risk assessment and emergency preparedness in addition to environmental 

conservation and regulation.  

While our research focused on protected areas across the islands of Hawaii, we must 

recognize that the impacts of climate change on vegetation across non-protected areas are 

substantial. Native plant species, many of which are uniquely adapted to the islands' specific 

climatic conditions, are increasingly vulnerable to the stresses imposed by rising temperatures, 

altered rainfall patterns, and more frequent extreme weather events (Shilsky 2000). In non-

protected areas, where human activity such as urban development, agriculture, and tourism 

already contributes to habitat degradation, these changes exacerbate the loss of native vegetation 

(Barton et al. 2021). Invasive species, which tend to be more resilient to fluctuating climatic 

conditions, are likely to expand their range, outcompeting native plants and altering ecosystem 

structure and function (Vorsino et al. 2014). This vegetation loss not only threatens the integrity 

of Hawaii's ecosystems but also disrupts key ecological processes, including water retention and 

soil stabilization, making these areas more prone to erosion, landslides, and flood events (Nugent 

et al. 2020). 

Research on climate change and vegetation dynamics in Hawaii offers significant 

translational value for broader environmental management and conservation efforts. By 

examining the specific impacts of climate change on Hawaii’s unique ecosystems, researchers 

can identify effective strategies for managing and conserving native plant species, particularly in 

regions vulnerable to invasive species and habitat degradation. The insights gained from these 
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studies can be applied to other island ecosystems or coastal regions facing similar climate-related 

challenges. Furthermore, the development of adaptive management strategies, such as targeted 

invasive species control and ecosystem restoration, has the potential to mitigate the ecological 

and socio-economic impacts of climate change in Hawaii and beyond. This research thus serves 

not only to inform localized conservation efforts but also to contribute to expanded strategies for 

enhancing ecosystem resilience, mitigating natural disaster risks, and promoting sustainable land 

and water management practices across the pacific islands. 

Conclusion 

Understanding the relationship between future climate and vegetation vulnerability can 

prove to be vital for land management and conservation efforts as we plan to allocate resources 

towards areas that are most severely affected by climate change. Our study is the first of its kind 

to examine the future climate vulnerability of native vegetation land cover types in protected 

areas by utilizing a bioclimatic variables dataset containing baseline and end-of-century (NCAR 

RCP 8.5) climate projections for the Hawaiian Islands. We assessed seven native vegetation 

types (Native Dry Forest, Native Dry Shrub, Native Mesic Forest, Native Mesic Grassland, 

Native Mesic Shrub, Native Wet Forest, and Native Wet Shrub) using data provided by the 

Carbon Assessment of Hawaii (Jacobi et al. 2017). Our results determined there are statistically 

significant differences for almost all pairwise comparisons of the selected native vegetation types 

in relation to baseline annual precipitation means and annual temperature means. Additionally, 

our study outlined a new methodology for a multi-category classification approach as well as an 

individualized single category classification approach to determine potential future vegetation 

distributions under the NCAR RCP 8.5 climate scenario using Random Forest. Agreement 
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between both methods found that across the entire archipelago, Native Dry Shrub is anticipated 

to experience the greatest contraction in range followed by Native Wet Forest, while Native 

Mesic Forest is anticipated to experience the greatest expansion in range, followed by Native 

Mesic Shrub. We also utilized the single category classification method to determine anticipated 

overlap for native vegetation suitability, and found that across our study area, 33.27% of the area 

has no overlap and predicts no suitability for any of the vegetation types while 12.75% of the 

area has a predicted future suitability for one vegetation type. Alternatively, 20.70% of the area 

across the islands predicted future suitability for various combinations of two vegetation types, 

and 33.28% predicted future suitability for combinations of 3 or more vegetation types. Overall, 

we found that the multi-category classification model had a higher classification accuracy 

compared to the individualized approach, however the multi-category classification approach 

results in an exclusionary determination of vegetation type for each pixel, whereas the 

individualized approach allows for overlap and may be useful for highlighting regions that can 

sustain two or more vegetation types in the future. 

This research has the potential to provide critical updates for stakeholders and climate 

investigators who aim to protect native vegetation that is at risk. Today, with less than 0.2% of 

the land area of the United States, the Hawaiian Islands hold more than a third of the nation’s 

entire listing of endangered and threatened species under the U.S. Endangered Species Act 

(Gustafson et al. 2014). The evolutionary history and geographic isolation of the Hawaiian 

Islands have predisposed the flora to characteristics of distribution, population structure, and 

reproduction that have inherently produced fragile conditions for species survival. This aspect of 

isolation can be readily seen, as it applies to geographic range and habitat occurrence. Among 

endemic flowering plant species in the Hawaiian Islands, 68% have a range restricted to a single 
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island, and 78% of species exhibit relatively narrow ranges of habitat distribution (Gustafson et 

al. 2014). Protection of native vegetation is a priority because native forests in Hawaii are 

ecologically and culturally valuable plant species more likely to support endemic bird and insect 

populations (Tsang et al. 2019).  

Over the next decades the Hawaiian flora and fauna are expected to be impacted by 

changes in temperature, precipitation, and sea level (Eversole 2014). The flora of the Hawaiian 

Islands is undergoing significant extinctions; 134 endemic plants are considered extinct or 

extinct in the wild (Wood et al. 2019). Thirty-seven percent of the extant endemic or 33% of the 

native flora (454 taxa) are listed as threatened or endangered under the U.S. Endangered Species 

Act (USFWS 2021) and the State of Hawaii, and many species are still lacking assessments. 

Despite these and other examples, rigorous research detailing the specific impacts of climate 

change on Hawaiian terrestrial ecosystems is still sparse. At this point in time, research and 

monitoring resources are too sparse to substantially advance our understanding of the ecological 

impacts of climate change on this intricate island system without a rigorous concerted effort. 
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Appendix 

 

Figure 1A: Depicts the status, or degree of disturbance, to plant communities on the main 

Hawaiian Islands utilizing the Carbon Assessment of Hawaii Habitat Status Map (2017).  
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Figure 1B: Concentration of Threatened and Endangered Plant Species on the main Hawaiian 

Islands. All island coverages were digitized from Division of Forestry and Wildlife's mylar 

threatened and endangered plant species maps. DOFAW's maps were created using The Nature 

Conservancy's Rare & Endangered Species maps. Digitized by the Office of Planning from 

source described above, March 1992. 
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Figure 2A: Anticipated Change in Temperature and Precipitation across the Hawaiian Islands by 

the year 2100, NCAR RCP 8.5 Climate Projection 
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