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A B S T R A C T

We introduce a method to reconstruct the kinematics of neutral-current deep inelastic scattering (DIS) using
a deep neural network (DNN). Unlike traditional methods, it exploits the full kinematic information of both
the scattered electron and the hadronic-final state, and it accounts for QED radiation by identifying events
with radiated photons and event-level momentum imbalance. The method is studied with simulated events at
HERA and the future Electron–Ion Collider (EIC). We show that the DNN method outperforms all the traditional
methods over the full phase space, improving resolution and reducing bias. Our method has the potential to
extend the kinematic reach of future experiments at the EIC, and thus their discovery potential in polarized
and nuclear DIS.
. Introduction

The process of deep-inelastic scattering (DIS) is governed by the
our-momentum transfer squared of the exchanged boson 𝑄2, the in-
lasticity 𝑦, and the Bjorken scaling variable 𝑥 [1–3]. These kinematic
ariables are related via the relation 𝑄2 = 𝑠𝑥𝑦, where 𝑠 is the square of
he center-of-mass energy.

Conservation of momentum and energy over constrain the DIS
inematics and leads to a freedom to calculate 𝑄2, 𝑦 and 𝑥 from
easured quantities [4–11]. Each of these methods has advantages and
isadvantages and no single approach is optimal over the entire phase
pace. In addition, each method exhibits different sensitivity to QED
adiative effects, which further complicates the choice of an optimal
pproach. It is a critical time to re-examine reconstruction techniques
iven ongoing analyses of data from HERA and the future electron–ion
olliders in the USA (EIC) [12,13] and China (EicC) [14], as well as the
roposed Large Hadron electron Collider (LHeC) at CERN [15,16].

Machine learning is a promising tool for kinematic reconstruction
n DIS because of its potential to automatically synthesize many dimen-
ions at once. Deep learning has been proposed for a variety of tasks in
adronic final-state (HFS, ℎ) reconstruction, including particle identifi-
ation [17–21], jet-energy reconstruction [22–27], jet tagging [28–31],
nfolding [32–40], and more [41–46].

We develop a method to reconstruct DIS kinematic variables and
ccount for QED radiation that relies on deep-neural networks (DNNs).
his paper is organized as follows. Section 2 briefly reviews the current

∗ Corresponding author.
E-mail address: owen.long@ucr.edu (O. Long).

1 In the following, the lepton can be an 𝑒− or 𝑒+ but will generically just be referred to as an electron.

methods for kinematic reconstruction in DIS. A DNN trained using
fast simulations of the proposed ATHENA detector at the future EIC
is studied in Section 3 and the same approach is demonstrated in
full simulations of the H1 detector at HERA in Section 4. Section 5
explores the impact of additional acceptance and resolution effects on
a fast simulation in comparison with a full detector simulation. The
paper ends with conclusions and outlook in Section 6. Concurrently
to our proposal, M. Diefenthaler et al. [47] studied the application of
DNNs for the combination of the input and output variables of three
reconstruction methods for 𝑄2 and 𝑥 in NC DIS.

2. Basic kinematic reconstruction in DIS

Fig. 1 illustrates the process of lepton–proton scattering,1 which is
defined by the incoming electron four-vector 𝑘, the outgoing electron
four-vector 𝑘′, the incoming proton four-vector 𝑃 , and the four-vector
of the HFS defined as the sum of all four-vectors that originate from
the hadron vertex. Using the photon four-vector 𝑞 = 𝑘 − 𝑘′, the QED
Born-level kinematics are described by:

𝑠 = (𝑘 + 𝑃 )2 , 𝑄2 = −𝑞2 , 𝑦 =
𝑞 ⋅ 𝑃
𝑘 ⋅ 𝑃

, and 𝑥 = 𝑄2∕(𝑠𝑦) . (1)

Due to azimuthal symmetry and ignoring mass effects, only two
variables of the outgoing four-vectors are of relevance. The usual choice
is

• the scattered electron energy 𝐸 and its polar angle 𝜃, and
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Fig. 1. Illustration of 𝑒𝑝 scattering. Left: (QED) Born-level diagram. Middle: generic illustration of a radiative leptonic tensor including higher-order QED corrections at the lepton
vertex (the box-diagrams are additive and not shown). Right: practical implementation of QED higher-order corrections in MC event generators in terms of initial state radiation
(ISR, green), final state radiation (FSR, red), and an effective coupling (orange). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
Table 1
Summary of basic reconstruction methods that employ only three out of five quantities: 𝐸0 (electron-beam energy), 𝐸 and 𝜃
(scattered electron energy and polar angle), 𝛴 and 𝛾 (longitudinal energy–momentum balance, 𝛴 =

∑

HFS(𝐸𝑖 − 𝑝𝑧,𝑖), and the
inclusive angle of the HFS). Alternatively, the A4 method makes use of the HFS total energy 𝐸ℎ. Shorthand notations are
used for the longitudinal energy–momentum balance of the electron, 𝛴𝑒, and for the transverse momentum of the HFS, 𝑇 .
The 𝐸𝛴𝑇 and 𝐸0𝐸𝑇 methods are under-constrained and have two solutions, referring to two possible electron polar angles,
and several more are existent when using 𝐸ℎ (see Ref. [7] for two examples). The two bottom rows provide the equations of
the 𝛴 and 𝑒𝛴-methods, which combine quantities of different basic reconstruction methods, while further methods (like the
PT (rD𝛴), D𝛴, r𝑒𝛴 or mixed method) are found, e.g., in Ref. [9,11].
Method name Observables 𝑦 𝑄2 𝑥 ⋅ 𝐸𝑝

Electron (𝑒) [𝐸0, 𝐸, 𝜃] 1 − 𝛴𝑒

2𝐸0

𝐸2 sin2 𝜃
1−𝑦

𝐸(1+cos 𝜃)
2𝑦

Double angle (DA) [6,7] [𝐸0, 𝜃, 𝛾]
tan

𝛾
2

tan
𝛾
2
+tan

𝜃
2

4𝐸2
0 cot

2 𝜃
2
(1 − 𝑦) 𝑄2

4𝐸0𝑦

Hadron (ℎ, JB) [4] [𝐸0, 𝛴, 𝛾] 𝛴
2𝐸0

𝑇 2

1−𝑦
𝑄2

2𝛴

ISigma (I𝛴) [9] [𝐸, 𝜃, 𝛴] 𝛴
𝛴+𝛴𝑒

𝐸2 sin2 𝜃
1−𝑦

𝐸(1+cos 𝜃)
2𝑦

IDA [7] [𝐸, 𝜃, 𝛾] 𝑦DA
𝐸2 sin2 𝜃

1−𝑦
𝐸(1+cos 𝜃)

2𝑦

𝐸0𝐸𝛴 [𝐸0, 𝐸, 𝛴] 𝑦ℎ 4𝐸0𝐸 − 4𝐸2
0 (1 − 𝑦) 𝑄2

2𝛴

𝐸0𝜃𝛴 [𝐸0, 𝜃, 𝛴] 𝑦ℎ 4𝐸2
0 cot

2 𝜃
2
(1 − 𝑦) 𝑄2

2𝛴

𝜃𝛴𝛾 [8] [𝜃, 𝛴, 𝛾] 𝑦DA
𝑇 2

1−𝑦
𝑄2

2𝛴

Double energy (A4) [7] [𝐸0, 𝐸, 𝐸ℎ] 𝐸−𝐸0

(𝑥𝐸𝑝 )−𝐸0
4𝐸0𝑦(𝑥𝐸𝑝) 𝐸 + 𝐸ℎ − 𝐸0

𝐸𝛴𝑇 [𝐸, 𝛴, 𝑇 ] 𝛴
𝛴+𝐸±

√

𝐸2+𝑇 2

𝑇 2

1−𝑦
𝑄2

2𝛴

𝐸0𝐸𝑇 [𝐸0, 𝐸, 𝑇 ] 2𝐸0−𝐸∓
√

𝐸2−𝑇 2

2𝐸0

𝑇 2

1−𝑦
𝑄2

4𝐸0𝑦

Sigma (𝛴) [9] [𝐸0, 𝐸, 𝛴, 𝜃] 𝑦I𝛴 𝑄2
I𝛴

𝑄2

4𝐸0𝑦

𝑒Sigma (𝑒𝛴) [9] [𝐸0, 𝐸, 𝛴, 𝜃] 2𝐸0𝛴
(𝛴+𝛴𝑒 )2

2𝐸0𝐸(1 + cos 𝜃) 𝐸(1+cos 𝜃)(𝛴+𝛴𝑒 )
2𝛴
𝑝
e
t
𝛾
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• the energy–momentum balance of the HFS, 𝛴 = 𝐸ℎ−𝑝𝑧,ℎ, and the
inclusive angle of the HFS 𝛾.

he HFS quantity 𝛴 can be calculated as the sum of all HFS particles
=
∑HFS

𝑖 (𝐸𝑖−𝑝𝑧,𝑖), and 𝛾 is defined using the transverse momentum of
he HFS, 𝑇 , through tan 𝛾

2 = 𝛴
𝑇 . Together with the electron-beam energy

𝐸0, five observables are known, while three of them suffice to define a
basic reconstruction method for 𝑄2, 𝑦 and 𝑥. Only for 𝑥 one further needs
the proton beam energy 𝐸𝑝.

Table 1 summarizes some of the most common reconstruction meth-
ods, which use derived quantities from the scattered electron and HFS
including 𝑝2𝑇 ,𝑒 = 𝐸2 sin2 𝜃, 𝑝𝑧,𝑒 = 𝐸 cos 𝜃, 𝛴𝑒 = 𝐸 − 𝑝𝑧,𝑒 = 𝐸(1 − cos 𝜃),
tan 𝜃

2 = 𝛴𝑒
𝑝𝑇 ,𝑒

and 𝑇 2 = 𝑝2𝑥,ℎ + 𝑝2𝑦,ℎ = (
∑HFS

𝑖 𝑝𝑥,𝑖)2 + (
∑HFS

𝑖 𝑝𝑦,𝑖)2 = 𝐸2
ℎ sin

2 𝛾 =
𝛴2 cot2 𝛾

2 = 𝛴(2𝐸ℎ − 𝛴).
Each of these methods has pros and cons, and yield good perfor-

mance in limited kinematic ranges [7,9,11]. For example, the methods
that mostly rely on the scattered electron yield the best resolution
in events with large 𝑦, but their resolution on 𝑥 quickly diverges at
low 𝑦. In contrast, the methods that rely mostly on the HFS variables
yield better performance at low 𝑦, but are rather limited at high 𝑦.
Consequently, the H1 and ZEUS collaborations have used different
methods in different kinematic ranges (see Refs. [48,49] and references
therein). For example, in Refs. [50–52], the electron method is used for
 e

2

𝑦 ≳ 0.19, while the 𝛴 or 𝑒𝛴 method are used at lower 𝑦, and DA method
is employed for calibration.

In a massless, Born-level calculation, all methods yield equivalent
results because of momentum and energy conservation (2𝐸0 = 𝛴 + 𝛴𝑒,
𝑇 ,𝑒 = 𝑇 and 𝑄2 = 𝑠𝑥𝑦). However, once (real) higher-order QED
ffects are considered, the various methods yield different results and
he calculated quantities for 𝑄2, 𝑦 and 𝑥 are not representative for the
∕𝑍 + 𝑝 scattering process at the hadronic vertex.

Higher-order QED effects at the lepton vertex are generically rep-
esented as a correction to the leptonic tensor, as displayed in the
iddle diagram of Fig. 1. Such radiative corrections include QED

remsstrahlung off the lepton, photonic lepton-vertex corrections, self-
nergy contributions at the external lepton lines, and fermionic con-
ributions to the running of the fine-structure constant, and additional
ox-diagrams representing multi-boson exchange. The complete first-
rder corrections are calculable semi-analytically [53–57]. For an im-
lementation in Monte-Carlo (MC) event generators, these calculations
re split by partial-fraction decomposition into initial-state and final-
tate photon radiation (ISR and FSR) and using effective couplings, as
isplayed in the right diagram of Fig. 1.

Two techniques are commonly applied to reduce sensitivity to QED
adiation. The first technique is to merge the FSR photons with the

lectron, thus providing the four-vector linked to the exchanged boson,
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and the second technique is to take the ISR radiation to be collinear,
which implies that (𝛴 + 𝛴𝑒)∕2 provides the incoming electron beam
energy that contributes in the interaction. For soft and collinear FSR,
the first is done implicitly also at detector level, e.g. when the photon
is measured in the same calorimeter cell as the electron. ISR photons
often escape undetected through the beam hole of the detector.

In cross-section measurements, the radiative particle-level is com-
monly just an intermediate step, and additionally requires the appli-
cation of well-defined QED correction factors. For precision measure-
ments, these factors should be small. Common definitions for cross
sections in DIS are:

∙ Structure–function measurements are made as a function of
𝑄2 and 𝑥 and are quoted at the ‘Born-level’ and thus have
to correct for all higher-order QED effects, such that the fine-
structure constant factorizes from the calculation of the structure
functions.

∙ At HERA, measurements of the HFS were quoted as non-radiative
𝛾∗𝑝 cross sections, which are corrected for first-order QED and
electroweak effects.

A radiative cross section can be defined by merging any radiated
photon with the scattered electron that is closer to the scattered elec-
tron than to the electron beam. By specifying a single reconstruction
method, a well-defined, meaningful and almost model-independent
definition of 𝑄2, 𝑦 and 𝑥 is obtained.

In the following, we will deal carefully with radiated photons at the
particle level and the detector level to determine kinematic quantities
𝑄2, 𝑦 and 𝑥, in an optimal way. These observables can then be used
for subsequent cross-section measurement with small and well-defined
QED corrections.

3. Method

We use TensorFlow [58] to construct and train a DNN to estimate
the DIS kinematics using both the scattered electron and the HFS. To
demonstrate our methodology, we use a fast simulation of the proposed
EIC experiment ATHENA using the Delphes package [59,60]. After
presenting results for ATHENA, we will show results applying the same
methodology to a full simulation of the H1 experiment [61–63]. Both
studies use the Rapgap MC generator [64], which employs routines from
Refs. [7,65–67]. For H1, Rapgap version 3.1 is used, while version 3.3
s used for the ATHENA studies. In addition, the MC generator Djangoh
.4 [68] is used to test prior dependence. Both MC generators employ
he Heracles routines [53–55] for the simulation of higher-order QED
ffects.

We restrict our study to events with 𝑄2 > 200 GeV2. This kinematic
egion is well measured, since the electron is scattered into the central
egions of the detector. However, no single reconstruction method gives
ptimal performance over the full phase space [9].

.1. Fast simulation of the ATHENA experiment

Neutral-current DIS events are generated with the Rapgap 3.3 event
generator for electron–proton scattering with beam energies of 𝐸0 =
18GeV and 𝐸𝑝 = 275GeV and processed with the Delphes fast simulation
of the ATHENA detector at the EIC. The scattered electron is selected
as the highest-𝑝𝑇 track that satisfies the following criteria: correct
charge, 𝑝𝑇 > 5 GeV, electromagnetic fraction in the calorimeter > 0.80,
and isolation < 0.20, where isolation is defined as the scalar 𝑝𝑇 sum
of all other tracks and neutral hadrons within a cone of 𝛥𝑅 < 0.5
around the electron direction divided by the electron 𝑝𝑇 . The HFS
is reconstructed from the sum of all Energy-Flow candidates (tracks,
photons, and neutral hadrons), excluding the scattered electron and
any photon candidates that is within a cone of 𝛥𝑅 < 0.4 around the
cattered electron. We require 𝛴 + 𝛴𝑒 to be within ±4GeV of 2𝐸0 to
uppress ISR events.
 a

3

3.2. QED radiation and categorization of events

We introduce a practical categorization of events, which is closely
related to our proposed radiative cross-section definition above:

∙ if the radiated photon is closer to the electron-beam direction, it
is an Initial-State Radiation event (ISR);

∙ if the radiated photon is closer to the scattered-electron direc-
tion, it is a Final-State Radiation event (FSR);

∙ if no photon radiation is emitted by the generator, it is a non-
radiative event (NoR).

ithin Rapgap, which implements first-order QED corrections, the ra-
iated photon either branches off from the beam electron before it
nteracts with the proton, or it branches off of the scattered electron
fter interacting with the proton. This leads to the natural interpreta-
ion of the former as ISR and the latter as FSR, which agrees with our
ractical definitions in 94% of QED radiation events.

To define the target values of 𝑄2, 𝑦 and 𝑥 for events with QED
adiation, we use the generated beam electron after radiation for ISR
vents and the generated scattered electron prior to radiation for FSR
vents. While this definition can be considered as the true kinematic

quantities,2 alternative definitions in terms of particle-level observables
are also possible. For example, by applying FSR merging and using the
equations of ISR insensitive reconstructions methods for calculating 𝑄2,
𝑦 and 𝑥. In our studies, these different definitions yield indistinguish-
able results. The generator-level quantities are generically denoted with
a subscript ‘gen’ in the following.

3.3. DNN inputs

For our main goal of determining 𝑄2, 𝑦 and 𝑥, the task of the
DNN is in fact two-fold. In the absence of QED radiation, the task of
the DNN would be to learn to compute 𝑄2, 𝑦 and 𝑥 from the input
quantities subject to finite-resolution and acceptance effects. In events
with QED radiation, the DNN needs to learn to quantify the extent
of QED radiation and account for it while calculating 𝑄2, 𝑦 and 𝑥.
Hence, the regression DNN must learn to treat ISR, FSR, and NoR
events separately in order to achieve optimal performance. This is a key
feature of our DNN method, which is absent in traditional methods.

We define the following variables to characterize the strength of
QED radiation in the event:

𝑝bal𝑇 = 1 −
𝑝𝑇 ,𝑒
𝑇

= 1 −
𝛴𝑒 tan

𝛾
2

𝛴 tan 𝜃
2

and 𝑝bal𝑧 = 1 −
𝛴𝑒 + 𝛴
2 𝐸0

. (2)

hen calculating them at particle level, both quantities 𝑝bal𝑇 and 𝑝bal𝑧 ,
re zero for events with no QED radiation, but positive for events with
SR and ISR, respectively. The 𝑝bal𝑇 (𝑝bal𝑧 ) value indicates the strength of
SR (ISR).

The following observables that help indicate QED radiation in the
vent are included as inputs to the regression DNN for 𝑄2, 𝑦 and 𝑥:

• The values of 𝑝bal𝑇 and 𝑝bal𝑧 .
• The energy, 𝜂, and 𝛥𝜙 of the reconstructed photon in the event

that is closest to the electron-beam direction, where 𝛥𝜙 is with
respect to the scattered electron.

• The sum ECAL energy within a cone of 𝛥𝑅 < 0.4 around the scat-
tered electron divided by the scattered-electron track momentum.

• The number of ECAL clusters within a cone of 𝛥𝑅 < 0.4 around
the scattered electron.

hese seven observables are combined with the following eight:

• Scattered-electron quantities 𝑝𝑇 ,𝑒, 𝑝𝑧,𝑒 and 𝐸.

2 Note that learning the true value from detector-level quantities introduces
prior dependence [23].
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• HFS four-vector quantities 𝑇 , 𝑝𝑧,ℎ and 𝐸ℎ.
• 𝛥𝜙(𝑒, ℎ) between the scattered electron and the HFS momentum

vector.
• The difference 𝛴𝑒 − 𝛴.

The transverse momenta of the scattered electron and the HFS are
highly correlated. We replace the pair of 𝑝𝑇 values with the difference
and the sum of the 𝑝𝑇 values, which removes the correlation and aids
the DNN training. The sum 𝛴𝑒+𝛴 appears in the definition of 𝑝bal𝑧 and is
sharply peaked at twice the electron-beam energy, making the 𝛴 values
anti-correlated; hence, we include the orthogonal combination 𝛴𝑒 − 𝛴
in addition.

3.4. DNNs for the classification or quantification of QED radiation

To determine the ability of the DNN to identify and quantify QED
radiation, we investigated two approaches: a classification network and
a regression network for 𝑝bal𝑇 and 𝑝bal𝑧 . Both DNNs differ only in the
activation function for the final layer, the learning targets, and the loss
function for the training.

We followed a heuristic approach in designing the DNN, guided by
prior experience. We chose to have the number of nodes per hidden
layer grow in the first layers, reach a peak size, and then fall at a
rate that is symmetric about the peak layer. Several trial configurations
were tested, each with a different number of hidden layers and/or
number of nodes per layer, though we did not perform a thorough scan.
We also tried a few sets of optimizer hyperparameters before finding
values that gave good results in a reasonable amount of training time.
Various standard activation functions were tested with no appreciable
differences in the results. This basic DNN design is effective for a variety
of tasks, including classification and regression, as we explain below.
The same design works well for both the ATHENA fast simulation and
the H1 full simulation. Our design explorations were terminated once
we achieved DIS reconstruction performance that exceeded the con-
ventional methods. We have not carried out thorough hyperparameter
scans, so further improvements may be possible.

The QED-classification DNN consists of a sequential network with
8 layers. The 15 DNN inputs, defined in the previous section, are
transformed prior to training to have zero mean and unit RMS using
the sklearn StandardScaler [69]. The learning targets are three
binary (0 or 1) state variables to tag the events as ISR, FSR, or NoR. The
activation function is a rectified linear unit (relu) for the first layer,
scaled exponential linear unit (selu) [70] for the middle layers, and
the softmax function for the final output layer. The numbers of nodes
per layer are 64, 128, 512, 1024, 512, 128, and 64, with 3 outputs in
the final layer. The outputs are three numbers, each between 0 and
1, that sum up to 1. The loss function for the training is categorical
cross entropy. The training is performed with the Adam optimizer [71]
with a learning rate of 10−4. The total number of parameters of the

NN model is 1,199,555. The training and validation are performed
sing over 28 million simulated events with half for training and half
or validation. The batch size for the training is 128. The training
erminates after 38 epochs, finding no further improvement in the
alidation loss function.

Fig. 2 shows distributions for the three outputs of the
ED-classification DNN. Some events have clear evidence of QED

adiation and are strongly identified. Some degree of mis-classification
s to be expected, since neither soft ISR/FSR, nor collinear FSR induce
measurable signal in the detector.

In the second study, the QED regression for 𝑝bal𝑇 and 𝑝bal𝑧 , the DNN
as the same structure as the QED-classification DNN except for the
ollowing differences. The activation function is the linear function

for the final output layer, which has 2 nodes instead of 3. The learning
targets are the particle-level values of 𝑝bal𝑇 and 𝑝bal𝑧 , which are trans-
ormed to have zero mean and unit RMS prior to training. The loss
unction for the training is Huber loss [72] with a transition between
 a

4

quadratic and linear loss at ±0.01. The batch size for the training is
1024. The training and validation are done using the same sample as
for the QED-classification DNN.

Fig. 3 shows distributions of the DNN predictions for 𝑝bal𝑇 and 𝑝bal𝑧 ,
eparately for ISR, FSR, and NoR events, as well as scatter plots of the
redicted values vs the particle-level values. The predicted 𝑝bal𝑇 distribu-
ion for FSR events is shifted to positive values for FSR events, while the
redicted 𝑝bal𝑧 distribution is shifted to positive values for ISR events, as
xpected. For many events, the DNN is able to accurately estimate both
bal
𝑇 and 𝑝bal𝑧 . There are also QED-radiation events where the prediction
s zero, which correspond to cases where the radiated photon is either
ut of acceptance or not clearly identified.

.5. Regression DNN for DIS kinematic variables 𝑄2, 𝑦 and 𝑥

We estimate 𝑄2, 𝑦 and 𝑥 using a regression DNN that has a similar
tructure as the QED regression DNN described above, except for the
inal output layer that has three nodes corresponding to the target
ariables 𝑄2, 𝑦 and 𝑥. The learning rate is 10−5 and the batch size is
024. Since the distributions of 𝑄2, 𝑦 and 𝑥 are approximately expo-
ential, the DNN is trained to predict the logarithm of each variable.
he training and validation are performed using over 28 million events,
sing half for validation and half for training.

As a pilot study, we consider three different choices for the input
ariables to the DNN:

∙ add the three QED-classification DNN outputs (FSR, ISR, NoR)
as inputs, in addition to the 15 variables.

∙ add the QED-regression DNN predictions 𝑝bal𝑇 and 𝑝bal𝑧 as inputs,
in addition to the 15 variables.

∙ use the same 15 inputs as in the QED-classification and regres-
sion DNNs.

e found that the results of these three approaches are essentially the
ame. This suggests that the QED-classification and the QED-regression
NNs do not provide any additional information beyond what the

egression DNN for 𝑄2, 𝑦 and 𝑥 learned. In light of this, we chose
he simplest (third) option, which uses only the original 15 variables
s inputs. The total number of parameters for the DNN model is
,199,619. The training terminates after 103 epochs, finding no further
mprovement in the validation loss function.

.6. Benchmark of the DNN reconstruction vs. standard methods

Fig. 4 shows the results for the DNN and traditional methods using
vents with 𝑄2 > 200 GeV2 and two 𝑦 regions, obtained with the
THENA fast simulation. The resolutions from the DNN exhibit
peak at unity and mostly Gaussian-like tails; in contrast, classical
ethods yield a peak but larger tails caused by their limited use of

he reconstructed quantities and the presence of ISR or FSR.
The properties of the resolutions, their mean and RMS, are displayed

n Fig. 5 for small intervals of 𝑦.3 The DNN reconstruction has the
mallest RMS among all methods, for all three kinematic variables and
ll 𝑦 intervals. Also, the mean distributions are unbiased for 𝑄2, 𝑦 and
for all 𝑦 intervals, while the classical methods exhibit large biases.

We examine more closely the resolution and bias for events with and
ithout QED radiation in Figs. 6 and 7, where we use the definition of
oR, ISR and FSR events from Section 3.2. The RMS for events with
o QED radiation gives a measure of the core resolution, free from the
ails that are visible in the distributions of Fig. 4 for the conventional
ethods. All methods, except the hadron method, show no bias in NoR

vents. For 𝑥 and 𝑦, the electron method has a better core resolution
han the DNN for 𝑦 > 0.15; however, it suffers from poorer resolution
nd a strong bias in events with QED radiation. The DNN reconstruction

3 More detailed representations of the resolutions for the different methods
re shown in Appendix A.
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Fig. 2. Distributions of the QED-classification DNN predictions for the ATHENA fast simulation. The distributions are normalized to equal area.
Fig. 3. Distributions of the QED-regression DNN predictions and particle-level values of 𝑝bal𝑇 and 𝑝bal𝑧 for the ATHENA fast simulation.
has some loss in performance in QED-radiation events, but it is about
a factor of two better than the electron method in these events, and
shows no bias. We conclude that the DNN has successfully learned to
mitigate the effects of QED radiation that spoil the resolution and bias
the calculations of the conventional methods.

4. Demonstration using the full simulation of the H1 experiment

We apply our DNN methodology to simulated events of the H1
experiment at HERA. The events were simulated by the H1 Collabo-
ration using the Rapgap 3.1 [64] and Djangoh 1.4 [68] generators for
the beam energies 𝐸0 = 27.6GeV and 𝐸𝑝 = 920GeV. The generators
employ the Heracles routines [53–55] for QED radiation, the CTEQ6L
PDF set [73], and the Lund hadronization model [74] with parameters
fitted by the ALEPH Collaboration [75]. The simulation of the H1
experiment [62,63] employs the Geant 3 package [61] and includes real
calorimeter noise and fast shower simulations [76–81]. The simulation
includes time-dependent properties (‘run-specific’), where the detector
5

state and beam properties correspond altogether to the HERA-II data
taking periods.

The simulated events are reconstructed just like data, in particular,
an energy-flow algorithm [82–84] is used to define objects whose sum
yields the HFS four-vector, and the scattered electron candidate are
defined using the same approach as Refs. [40,51,85]. The simulated
events also undergo the same (in-situ) calibration procedure as real
data, using the latest calibration by the H1 Collaboration [51,85,86].
Some technical selections and fiducial cuts are applied as it would be
done similarly to real data. In particular, events are required to have
45 < 𝛴 + 𝛴𝑒 < 65GeV to suppress ISR events; a veto on QED Compton
events is imposed; and since a trigger simulation is included, our study
is limited to 𝐸 ≳ 11GeV [85]. The simulated events are processed
within H1’s computing environment [87] and altogether several 108

events were simulated, and after ‘run’-selection, acceptance effects and
our selection of 𝑄2 > 200GeV2 yield about 7 ⋅ 107 simulated and
reconstructed events for our DNN studies.
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Fig. 4. Resolution for 𝑄2 (left), 𝑦 (middle), and 𝑥 (right) for the DNN, electron, and double-angle (DA) methods for the fast simulation of the ATHENA experiment. The top
(bottom) row is for events with 𝑦gen > 0.15 (𝑦gen < 0.15). All distributions are normalized to the same area.
Fig. 5. Resolution on the reconstruction of 𝑄2 (left), 𝑦 (middle), and 𝑥 (right) as a function of the generated 𝑦 for the fast simulation of ATHENA. The top (bottom) row shows
the RMS (mean) of the measured-over-generated distribution as a function of generated 𝑦gen. The RMS and mean are calculated using events with the measured-over-generated
ratio within the interval 0 to 2.
t

a

We use the same regression DNN structure, input variables, and
training methods for the simulated H1 events as previously for the
ATHENA events. We take a sample of over 12 million Rapgap events
and use half of the events for training and half for validation. The
training terminates after 125 epochs, finding no further improvement
in the validation loss function.

Fig. 8 shows the resolutions for the DNN and two classical methods
in two intervals of 𝑦. Similarly to the results obtained with the ATHENA
simulation, the DNN yields a peak at unity and no asymmetric tails for
all three quantities, in contrast with classical methods. The mean and
RMS of the resolutions are displayed as a function of 𝑦 in Fig. 9. The
DNN yields the smallest RMS. The mean of the DNN reconstruction is
closest to unity over a wide range of 𝑦. Only for 𝑄2, or at highest 𝑦, the
electron method achieves comparably good RMS and mean. In contrast,
 S

6

at lower 𝑦 the DNN provides a significant improvement and results in
a bias-free reconstruction of 𝑦 and 𝑥 with superior resolution.4

To assess a possible bias in our DNN methodology that may arise
from the details of the MC event generator that is used to train the
DNN, we study the performance of the DNN reconstruction using two
different MC event generators, Rapgap and Djangoh. The two event gen-
erators differ in the modeling of higher-order QCD radiation that results
in significant differences in the prediction of the HFS. Djangoh employs
he color-dipole model, while Rapgap employs a matrix-element plus

parton shower model, where the parton shower is in the leading-
logarithmic approximation. In this study, we use H1’s full simulation

4 More detailed representations of the resolutions for the different methods
re collected in Appendix B, where also further reconstruction methods from
ection 2 are studied with a real detector simulation.
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Fig. 6. Comparison of the RMS of the resolution of 𝑄2, 𝑦 and 𝑥 (from left to right) for NoR (top), ISR (middle), and FSR (bottom) events. The RMS is calculated using events
ith the measured-over-generated ratio within the interval 0 to 2.
Fig. 7. Comparison of the mean of the resolution distributions of 𝑄2, 𝑦 and 𝑥 (from left to right) for NoR (top), ISR (middle), and FSR (bottom) events. The mean is calculated
sing events with the measured-over-generated ratio within the interval 0 to 2.
D
f
n
H
i

5

m

nd train the DNN with a Rapgap event sample. Subsequently this DNN
s applied to a statistically independent Rapgap event sample and to a
imulated Djangoh sample.

Fig. 10 shows the 𝑄2, 𝑦 and 𝑥 resolutions as a function of the
enerated 𝑦 for both the Rapgap and Djangoh samples when using
he same DNN, where the measured-over-generated ratio is calculated
n an event-by-event basis with the respective generated values. The
esults from the Djangoh event sample are nearly indistinguishable
rom the Rapgap sample. In particular, the mean of the distribution
s unbiased. This result suggests that any generator-specific systematic
rrors in the DNN predictions is negligible.
 o

7

The resolution (RMS) for 𝑦 and 𝑥 increase at lower 𝑦, even for the
NN reconstruction. Since this pattern is not present in the ATHENA

ast simulation results and may be attributed to further acceptance,
oise, or resolution effects that deteriorates the measurement of the
FS [88]. A dedicated study using a Delphes fast simulation is presented

n the following section.

. Impact of further acceptance and resolution effects at low 𝒚

At low 𝑦, the HFS-based methods perform better than the electron
ethod. The reason is, that the ratio 𝐸(1 − cos 𝜃)∕2𝐸0 gets close to

ne and cannot be measured accurately because of large values of 𝐸.
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Fig. 8. Resolution for 𝑄2 (left), 𝑦 (middle), and 𝑥 (right) for the DNN, electron, and double-angle (DA) reconstruction methods for the full simulation of the H1 experiment. The
top (bottom) row is for events with 𝑦gen > 0.15 (𝑦gen < 0.15). All distributions are normalized to the same area.
Fig. 9. Resolution on the reconstruction of 𝑄2 (left), 𝑦 (middle), and 𝑥 (right) as a function of the generated 𝑦 for the full simulation of H1. The top (bottom) row shows the
RMS (mean) of the measured-over-generated distribution as a function of the generated 𝑦. The RMS and mean are calculated using events with the measured-over-generated ratio
within the interval 0 to 2.
Likewise, however, the HFS momentum balance 𝛴 goes to zero as 𝑦
goes to zero. Although for kinematic reconstruction at low 𝑦 the usage
of 𝛴 is preferred over 𝛴𝑒, the quantity 𝛴 is particularly sensitive to
resolution and acceptance effects. In particular HFS components that
are more in the central region of the calorimeter contribute more, such
making 𝛴 at low 𝑦 especially sensitive resolution effects or efficiency
losses in the central part of the detector or fake components from
calorimetric noise.

The Delphes fast simulation does not include calorimeter noise hits,
nor does it account in a full-fledged manner for single-particle ac-
ceptance effects and efficiency losses as they can be present at the
boundaries of calorimeter stacks or because of insensitive material. To
test the hypothesis that such detector effects can be responsible for the
resolution decrease in 𝑥 and 𝑦 for hadronic reconstruction methods at
low 𝑦 (𝑦 ≲ 0.15), we have implemented the H1 experiment in Delphes.
Fig. 11 shows the 𝑥 resolution for the standard reconstruction methods
8

for our fast simulation of H1 compared to the full simulation. The
agreement between the fast and full simulation at high 𝑦 is fairly good.
At low 𝑦, however, there is a low-side tail for the 𝛴, hadron and DA
method for events processed with the full H1 simulation, while that tail
is absent in the fast simulation, and also the mean value is shifted.

We apply an additional additive component with random sign to the
HFS to the fast simulated events, which mimics further detector effects,
like acceptance or efficiency losses, reduced resolution or artificial
components from electronic noise in the calorimeter. The model we
use to simulate these effects is to generate random numbers from
TRandom::Landau in Root [89] with mu=0 and sigma=0.05 in
units of GeV, and add it with a random sign to the 𝑝𝑥, 𝑝𝑦, and 𝑝𝑧
components of the reconstructed HFS four-vector.

The results are also displayed in Fig. 11. We find that adding such
an additional detector effect to the HFS in the fast simulation brings the
fast simulation into good agreement with the full detector simulation.
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Fig. 10. Resolution comparison of the Rapgap and Djangoh generators on the DNN reconstruction of 𝑄2 (left), 𝑦 (middle), and 𝑥 (right) as a function of the generated 𝑦 for the
full simulation of H1. The top (bottom) row shows the RMS (mean) of the measured-over-generated distribution as a function of the generated 𝑦. The red (blue) curves show the
results for the Rapgap (Djangoh) event sample, while the DNN was trained with the Rapgap sample in both cases.
Fig. 11. Resolutions for 𝑥 in various 𝑦 ranges and reconstruction methods obtained with a full Geant simulation of H1 (shaded area) and a fast simulation based on Delphes with
full line) and without (dashed line) an added ad-hoc noise contribution.
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dding these ad-hoc detector effects produces a low-side tail in the 𝑥
esolution at low 𝑦 but does not affect the 𝑥 reconstruction at high 𝑦.
he electron remains naturally unaltered in that procedure.

This study suggests that further detector effects that are otherwise
ot included in the Delphes fast simulation impact the precise measure-
ent of the HFS and reduce the 𝑥 and 𝑦 resolution at low 𝑦. We do
ot currently have an estimate for how large that effect in ATHENA
ill be, what is the actual correspondence in the full simulation (an
cceptance, efficiency, resolution or noise effect), or to which extent
 A

9

t is impacted by calibration or noise-suppression algorithms. Though,
ue to a larger coverage of the calorimeter, less dead material and
ewer detector technologies of ATHENA as compared to H1, we expect
his additive component to be significantly smaller for ATHENA than
hat our ad-hoc model adds to H1 to bring the fast and full simulation

nto agreement.
To place an upper bound on the impact of these effects in the

THENA results, we investigated adding our ad-hoc component to the
THENA fast simulation. The full analysis is then repeated, including
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D

Fig. 12. Resolution on the reconstruction of 𝑄2 (left), 𝑦 (middle), and 𝑥 (right) as a function of the generated 𝑦 for the fast simulation of ATHENA with the ad-hoc additive
resolution effects model added. The top (bottom) row shows the RMS (mean) of the measured-over-generated distribution as a function of the generated 𝑦. For comparison, the

NN curves for that unaltered sample are shown in black for comparison.
Fig. A.13. Resolutions for 𝑄2 in various 𝑦 ranges and reconstruction methods from the Delphes fast simulation of ATHENA for events with 𝑄2 > 200 GeV2. The tails in the
distributions are from events with ISR and FSR radiation.
the DNN training. The results are shown in Fig. 12 for both the con-

ventional reconstruction methods and the DNN reconstruction, where

the DNN reconstruction for the unaltered ATHENA sample is included
10
for comparison. The DNN resolution does get worse below 𝑦 of around

0.2 and there is a small bias at very low 𝑦, as we expected based on

the H1 study. The 𝑄2 reconstruction is insensitive to that, since it is
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Fig. A.14. Resolutions for 𝑦 in various 𝑦 ranges and reconstruction methods from the Delphes fast simulation of ATHENA for events with 𝑄2 > 200 GeV2. The tails in the distributions
are from events with ISR and FSR radiation.
dominated by the electron reconstruction. The results in Fig. 12 show
that also with a very conservative ad-hoc model, the DNN outperforms
all standard reconstruction methods.

6. Summary and outlook

We have presented a novel method to reconstruct the DIS kinematic
variables (𝑄2, 𝑦 and 𝑥) using a deep neural network (DNN) that takes
as input the electron and hadronic-final-state measurements as well as
observables that can indicate the presence of QED radiation.

We have introduced our methodology using a Delphes-based fast
simulation of the ATHENA experiment for the EIC and validated our
methods using the well-understood full simulation of the H1 experi-
ment at HERA.

Our method outperforms traditional methods over a wide kinematic
range, improving the resolution, and decreasing the bias. We validated
that our method is independent of the Monte Carlo event generator
used to train the DNN. We further performed a study to validate the fast
simulation approach by comparing a Delphes model of the H1 detector
with the H1 full simulation; these comparisons allowed us to identify
key effects for low 𝑦 events.

Our DNN-based method shows promise for improving the resolu-
tion and extending the kinematic reach of flagship EIC measurements.
Given that EIC experiments are being designed, our method offers a
way to benchmark detector performance against DIS using an optimal
combination of electron and HFS measurements.
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Appendix A. Detailed resolution plots for the ATHENA fast simu-
lation

In this section detailed resolution plots for the variables 𝑄2

(Fig. A.13), 𝑦 (Fig. A.14) and 𝑥 (Fig. A.15) for the ATHENA fast simula-
tion at the EIC with

√

𝑠 = 141GeV are shown. Our DNN-reconstruction
method is compared to four widely used basic reconstruction methods
(I𝛴, hadron, double-angle and electron-method) for 𝑄2 > 200GeV2 in
five kinematic ranges in 𝑦 .
gen
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Fig. A.15. Resolutions for 𝑥 in various 𝑦 ranges and reconstruction methods from the Delphes fast simulation of ATHENA for events with 𝑄2 > 200 GeV2. The tails in the distributions

are from events with ISR and FSR radiation.
Fig. B.16. Resolutions for 𝑄2 in various 𝑦 ranges and reconstruction methods from the full simulation of H1 for events with 𝑄2 > 200 GeV2.
12
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Fig. B.17. Resolutions for 𝑄2 in various 𝑦 ranges and reconstruction methods from the full simulation of H1 for events with 𝑄2 > 200 GeV2.
Fig. B.18. Resolutions for 𝑦 in various 𝑦 ranges and reconstruction methods from the full simulation of H1 for events with 𝑄2 > 200 GeV2.
13



M. Arratia, D. Britzger, O. Long, B. Nachman Nuclear Inst. and Methods in Physics Research, A 1025 (2022) 166164
Fig. B.19. Resolutions for 𝑥 in various 𝑦 ranges and reconstruction methods from the full simulation of H1 for events with 𝑄2 > 200 GeV2.
Fig. B.20. Resolutions for 𝑥 in various 𝑦 ranges and reconstruction methods from the full simulation of H1 for events with 𝑄2 > 200 GeV2.
14
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Appendix B. Detailed resolution plots for the H1 full simulation

In this section detailed resolution plots for the variables 𝑄2

(Figs. B.16 and B.17), 𝑦 (Fig. B.18) and 𝑥 (Figs. B.19 and B.20)
for H1’s full simulation at HERA at

√

𝑠 = 319GeV are shown. Our
DNN-reconstruction method is compared to the full set of eight basic
reconstruction methods (I𝛴, hadron, double-angle (DA), electron (𝑒),
IDA, 𝐸0𝐸𝛴, 𝐸0𝜃𝛴, and 𝜃𝛴𝛾-method) for 𝑄2 > 200GeV2 in five
kinematic ranges in 𝑦gen. The double-energy method is omitted since 𝐸ℎ
is not measurable due to relevant acceptance losses through the forward
beam-hole. For 𝑦 there are only four unambiguous independent basic
methods.
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