
UC San Diego
Technical Reports

Title
Coping with Internet catastrophes

Permalink
https://escholarship.org/uc/item/83d48056

Authors
Junqueira, Flavio
Bhagwan, Ranjita
Hevia, Alejandro
et al.

Publication Date
2005-02-17
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/83d48056
https://escholarship.org/uc/item/83d48056#author
https://escholarship.org
http://www.cdlib.org/


Coping with Internet Catastrophes

Flavio Junqueira, Ranjita Bhagwan, Alejandro Hevia, Keith Marzullo and Geoffrey M. Voelker

Department of Computer Science and Engineering

University of California, San Diego

Abstract— In this paper, we propose a new approach for
designing distributed systems to survive Internet catastrophes
called informed replication, and demonstrate this approach with
the design and evaluation of a cooperative backup system called
the Phoenix Recovery Service. Informed replication uses a model
of correlated failures to exploit software diversity. The key
observation that makes our approach both feasible and practical
is that Internet catastrophes result from shared vulnerabilities.
By replicating a system service on hosts that do not have the
same vulnerabilities, an Internet pathogen that exploits a vul-
nerability is unlikely to cause all replicas to fail. To characterize
software diversity in an Internet setting, we measure the software
diversity of host operating systems and network services in a
large organization. We then use insights from our measurement
study to develop and evaluate heuristics for computing replica
sets that have a number of attractive features. Our heuristics
provide excellent reliability guarantees, result in low replication
factors, limit the storage burden on each host in the system, and
lend themselves to a fully distributed implementation. We then
present the design and prototype implementation of Phoenix, and
evaluate it on the PlanetLab testbed.

I. INTRODUCTION

The Internet today is highly vulnerable to Internet epi-

demics: events in which a particularly virulent Internet

pathogen, such as a worm or email virus, compromises a

large number of hosts. Starting with the Code Red worm in

2001, which infected over 360,000 hosts in 14 hours [49],

such pathogens have become increasingly virulent in terms

of speed, extent, and sophistication. Sapphire scanned most

IP addresses in less than 10 minutes [47], Nimda reportedly

infected millions of hosts, and Witty exploited vulnerabilities

in firewall software explicitly designed to defend hosts from

such pathogens [48]. We call such epidemics Internet catas-

trophes because they result in extensive wide-spread damage

costing billions of dollars [49]. Such damage ranges from

overwhelming networks with epidemic traffic [47], [49], to

providing zombies for spam relays [52] and denial of service

attacks [64], to deleting disk blocks [48]. Given the current

ease with which such pathogens can be created and launched,

further Internet catastrophes are inevitable in the near future.

Defending hosts and the systems that run on them is

therefore a critical problem, and one that has received con-

siderable attention recently. Approaches to defend against In-

ternet pathogens generally fall into three categories. Prevention

techniques, such as patching and overflow guarding, preclude

pathogens from exploiting vulnerabilities and thereby reduce

the size of the vulnerable host population and limit the extent

of an outbreak [68], [72], [73]. Treatment techniques, such as

disinfection and vaccination, remove software vulnerabilities

after they have been exploited and thereby reduce the rate

of infection as hosts are treated [18], [62]. Containment

techniques, such as throttling and filtering, block infectious

communication and reduce the contact rate of a spreading

pathogen [50], [76], [77].

Such approaches can mitigate the impact of an Internet

catastrophe, reducing the number of vulnerable and com-

promised hosts. However, they are unlikely to protect all

vulnerable hosts or entirely prevent future epidemics and

risk of catastrophes. For example, fast-scanning worms like

Sapphire can quickly probe most hosts on the Internet, making

it challenging for worm defenses to detect and react to them

at Internet scale [50]. The recent Witty worm embodies a

so-called zero-day worm, exploiting a vulnerability very soon

after patches were announced. Such pathogens make it increas-

ingly difficult for organizations to patch vulnerabilities before

a catastrophe occurs. As a result, we argue that defenses are

necessary, but not sufficient, for entirely protecting distributed

systems and data on Internet hosts from catastrophes.

In this paper, we propose a new approach for designing

distributed systems to survive Internet catastrophes called in-

formed replication. The key observation that makes informed

replication both feasible and practical is that Internet epi-

demics exploit shared vulnerabilities. By replicating a system

service on hosts that do not have the same vulnerabilities,

a pathogen that exploits a vulnerability cannot cause all

replicas to fail. For example, to prevent a distributed system

from failing due to a pathogen that exploits vulnerabilities in

Web servers, the system can place replicas on hosts running

different Web server software.

A service implemented as a distributed system is at risk

to vulnerabilities in its own software as well as the other

software on its hosts. The software of every system inherently

is a shared vulnerability that represents a risk to using the

system, and substantial effort has gone into making systems

themselves more secure. However, with the dramatic rise of

worm epidemics, such systems are now increasingly at risk to

large-scale failures due to vulnerabilities in unrelated software

running on the host. Informed replication is an approach that

reduces this new source of increased risk.

This paper makes four contributions. First, we develop

a system model using the core abstraction [35] to represent

failure correlation in distributed systems. A core is a reliable

minimal subset of components such that the probability of

having all hosts in a core failing is negligible. To reason

about the correlation of failures among hosts, we associate

attributes with hosts. Attributes represent characteristics of the



host that can make it prone to failure, such as its operating

system and network services. Since hosts often have many

characteristics that make it vulnerable to failure, we group host

attributes together into configurations to represent the set of

vulnerabilities for a host. A system can use the configurations

of all hosts in the system to determine how many replicas are

needed, and on which hosts those replicas should be placed,

to survive a worm epidemic.

Second, the efficiency of informed replication fundamen-

tally depends upon the degree of software diversity among

the hosts in the system. More homogeneous host populations

require more replicas. To evaluate the degree of software

heterogeneity found in an Internet setting, we measure and

characterize the diversity of the operating systems and network

services of hosts in the UCSD network. The operating system

is important because it is the primary attribute differentiating

hosts. And network services represent the targets for exploit by

worms. The results of this study indicate that such networks

have sufficient diversity to make informed replication feasible.

Third, we develop heuristics for computing cores that have

a number of attractive features: 1) They provide excellent

reliability guarantees; 2) They have low overhead; 3) They

bound the number of replicas stored by any host, limiting the

storage burden on any single host. Additionally, the heuristics

lend themselves to a fully distributed implementation for

scalability. Any host can determine its replica set (its core)

by contacting a constant number of other hosts in the system,

independent of system size.

Finally, to demonstrate the feasibility and utility of our

approach, we apply informed replication to the design and im-

plementation of Phoenix. Phoenix is a cooperative, distributed

remote backup system that protects stored data against Internet

catastrophes that cause data loss [48]. The usage model of

Phoenix is straightforward: users specify an amount F of

bytes of their disk space for management by the system, and

the system protects a proportional amount F/k of their data

using storage provided by other hosts, for some value of k.

We implement Phoenix as a service layered on the Pastry

DHT [60] in the Macedon framework [59]. We evaluate the

performance of Phoenix running on the PlanetLab testbed, and

validate its ability to survive emulated catastrophes.

The rest of this paper is organized as follows. Section II

discusses related work. Section III describes our system model

for representing correlated failures. Section IV describes our

measurement study of the software diversity of hosts in a large

network, and Section V describes and evaluates heuristics for

computing cores. Section VI describes the design and imple-

mentation of the Phoenix Recovery Service, and Section VII

describes the evaluation of Phoenix on PlanetLab. Finally,

Section VIII concludes.

II. RELATED WORK

Informed replication bridges fault-tolerant systems with the

prevention of network epidemics. The study of fault-tolerant

systems, distributed or not, is a major area of research.

Several sophisticated tools exist for evaluating the reliability

and availability of a system given failure probabilities and

covariances (for example, see [61]). The SIFT project [75] was

the first to separate such analysis from system design in the

context of distributed systems. It assumed that no more than

a certain number t of components could be simultaneously

faulty. A value for t can then be computed off-line using the

tools mentioned above. Considerable work has been done in

the analysis of various problems in distributed computing as a

function of the failure model, the environmental assumptions,

and the upper bound t.
The SIFT project was the formal design and verification of

a fly-by-wire system. This was an embedded system that was

designed so that failures were independent. Most distributed

systems, though, are not designed such that failures are inde-

pendent, and there has been recent interest in protocols for sys-

tems where failures are correlated. Quorum-based protocols,

which implement replicated update by reading and writing

overlapping subsets of replicas, are easily adapted to correlated

failures. A model of dependent failures was introduced for

Byzantine-tolerant quorum systems [43]. This model, called

a fail-prone system, is a dual representation of the model

(cores) that we use here. Our model was developed as part of

a study of lower bounds and optimal protocols for Consensus

in environments where failures can be correlated [35].

The ability of Internet pathogens to spread through a vul-

nerable host population on the network fundamentally depends

on three properties of the network: the number of susceptible

hosts that could be infected, the number of infected hosts ac-

tively spreading the pathogen, and the contact rate at which the

pathogen spreads. Various approaches have been developed

for defending against such epidemics that principally address

each of these properties.

Prevention techniques prevent pathogens from exploiting

vulnerabilities, thereby reducing the size of the vulnerable host

population and limiting the extent of a worm outbreak. Such

techniques include static and dynamic testing to eliminate

vulnerabilities [16], [72], patching vulnerabilities before they

are exploited using virus detection software [68] and software

update mechanisms [46], and shields that filter traffic exploit-

ing known vulnerabilities in applications [73]. However, these

approaches have the traditional limitations of ensuring sound-

ness and completeness, or leave windows of vulnerability due

to the time required to develop, test, and deploy.

Treatment techniques remove software vulnerabilities after

they have been exploited, thereby reducing the rate of infection

as hosts are treated. Recent proposals include anti-worms that

disinfect hosts using the same propagation methods as the orig-

inal worm [15], [18], and vaccinating hosts by automatically

detecting infection in software and generating and applying

patches online [62]. Such techniques are reactive in nature, and

some hosts still become infected. Further, counter-worms have

questionable legality, and automatic vaccination has limiting

constraints on deployment (e.g., requiring source to patch).

Containment techniques block infectious communication

between infected and uninfected hosts, thereby reducing or

potentially halting the contact rate of a spreading pathogen.

2



Such techniques include reducing connection rates [41], [76]

and network filtering [50], [70]. The efficacy of reactive

containment fundamentally depends upon the ability to quickly

detect the onset of a new pathogen [39], [51], [56], [66], [78],

characterize the pathogen to create filters specific to infectious

traffic [29], [36], [37], [63], and deploy such filters in the net-

work [42], [71]. Unfortunately, containment at Internet scales

is challenging, requiring short reaction times and extensive

deployment [50], [77]. Again, since containment is inherently

reactive, some hosts will always become infected.

Various approaches take advantage of software heterogene-

ity to make systems fault-tolerant. N-version programming

uses different implementations of the same service to prevent

correlated failures across implementations. Castro’s Byzantine

fault tolerant NFS service (BFS) is one such example [13]

and provides excellent fault-tolerant guarantees, but requires

multiple implementations of every service. Scrambling the

layout and execution of code can introduce heterogeneity

into deployed software [1]. However, such approaches can

make debugging, troubleshooting, and maintaining software

considerably more challenging. In contrast, our approach takes

advantage of existing software diversity among hosts.

Lastly, Phoenix is just one of many proposed cooperative

systems for providing archival and backup services. For ex-

ample, Intermemory [14] and Oceanstore [38] enable stored

data to persistent indefinitely on servers distributed across the

Internet. As with Phoenix, Oceanstore proposes mechanisms

to cope with correlated failures [74]. The approach, how-

ever, is reactive and does not enable recovery after Internet

catastrophes. With Pastiche [17], pStore [2], and CIBS [40],

users relinquish a fraction of their computing resources to

collectively create a backup service. However, these systems

target localized failures simply by storing replicas offsite.

Such systems provide similar functionality as Phoenix, but

are not designed to survive wide-spread correlated failures of

Internet catastrophes. Finally, Glacier is a system specifically

designed to survive highly correlated failures like Internet

catastrophes [30]. In contrast to Phoenix, Glacier copes with

catastrophic failure via massive replication.

III. SYSTEM MODEL

In this section we describe our system model for represent-

ing and reasoning about correlated failures, and discuss the

granularity at which we represent software diversity.

A. Representing correlated failures

Consider a system made up of a set H of hosts each of

which is capable of holding certain files. These hosts can fail

(for example, by crashing), and to keep these files available,

they need to be replicated. A simple replication strategy is to

determine the maximum number t of hosts that can fail at any

time, and then maintain more than t replicas of each file.

However, using this value of t may lead to excessive

replication when host failures are correlated. As a simple

example, consider three hosts {h1, h2, h3} where the failures

of h1 and h2 are correlated while h3 fails independent of the

other hosts. If h1 fails, then the probability of h2 failing is

high. This implies that one might wish to set t = 2. However,

if we place replicas on h1 and h3, the file’s availability may

be acceptably high with just two replicas, and we need not

make t + 1 or 3 replicas as this strategy suggests.

To better address issues of optimal replication in the face

of correlated failures, we defined an abstraction that we call

a core [35]. A core is a minimal set of hosts such that, in

any execution, at least one host in the core does not fail.

In the above example, both {h1, h3} and {h2, h3} are cores.

{h1, h2} would not be a core since the probability of both

failing is too high and {h1, h2, h3} would not be a core (it

is not minimal). Using this terminology, a central problem of

informed replication is the identification of cores based on the

correlation of failures.

An Internet catastrophe causes hosts to fail in a correlated

manner because all hosts running the targeted software are

vulnerable. Operating systems and web servers are examples

of software commonly exploited by Internet pathogens [49],

[65]. Hence we characterize a host’s vulnerabilities by the

software they run. We associate with each host a set of at-

tributes, where each attribute is a canonical name of a software

package or system that the host runs; in Section III-B below,

we discuss the granularity at which we can represent different

software packages. We call the combined representation of

all attributes of a host the configuration of the host. An

example of a configuration is {Windows, IIS, IE}, where

Windows is a canonical name for an operating system, IIS for

a web server package, and IE for a web browser. Agreeing on

canonical names for attribute values is essential to ensure that

dependencies of host failures are appropriately captured.

An Internet pathogen can be characterized by the set of

attributes A that it targets. Any host that has none of the

attributes in A is not susceptible to the pathogen. A core is

a minimal set C of hosts such that, for each pathogen, there

is a host in C that is not susceptible to the pathogen. Most

Internet pathogens target a single (possibly cross-platform)

vulnerability, and the ones that target multiple vulnerabilities

target the same operating system. Hence, for now, we assume

that any attribute is susceptible to attack and that a core is a

minimal set C of processes such that no attribute is common

to all hosts in C. In Section V-D, we relax this assumption

and we show how to extend our results to tolerate pathogens

that can attack multiple vulnerabilities.

To illustrate these concepts, consider the system described

in Example 3.1. In this system, hosts are characterized by

six attributes, which we classify into operating system, Web

server, and Web browser.

Example 3.1:

Attributes: Operating System = {Unix, Windows};
Web Server = {Apache, IIS};
Web Browser = {IE, Netscape}.

3



Worm Form of infection (Service) Platform

Code Red port 80/http (MS IIS) Windows

Nimda multiple: email; Trojan horse versions Windows
using open network shares (SMB: ports
137–139 and 445); port 80/HTTP
(MS IIS); Code Red backdoors

Sapphire port 1434/udp (MS SQL, MSDE) Windows

Sasser port 445/tcp (LSASS) Windows

Witty port 4000/udp (BlackICE) Windows

TABLE I

RECENT WELL-KNOWN PATHOGENS AND THEIR FORMS OF INFECTION.

Hosts: H1 = {Unix, Apache, Netscape};
H2 = {Windows, IIS, IE};
H3 = {Windows, IIS, Netscape};
H4 = {Windows, Apache, IE}.

Cores = {{H1, H2}, {H1, H3, H4}}.

H1 and H2 comprise what we call an orthogonal core,

which is a core composed of hosts that have different val-

ues for every attribute. Given our assumption that Internet

pathogens target only one vulnerability or multiple vulnera-

bilities on one platform, an orthogonal core will contain two

hosts. {H1, H3, H4} is also a core because there is no attribute

present in all hosts, and it is minimal.

The smaller core {H1, H2} might appear to be the better

choice since it requires less replication. Choosing the smallest

core, however, can have an adverse effect on individual hosts

if many hosts use this core for placing replicas. To represent

this effect, we define load to be the amount of storage a

host provides to other hosts. In environments where some

configurations are rare, hosts with the rare configurations may

occur in a large percentage of the smallest cores. Thus, hosts

with rare configurations may have a significantly higher load

than the other hosts. Indeed, having a rare configurations can

increase a host’s load even if the smallest core is not selected.

For example, in Example 3.1 H1 is the only host that has a

version of Unix as the operating system. Consequently, H1 is

present in both cores.

To make our argument more concrete, consider the worms

summarized in Table I, which are well-known worms un-

leashed in the past 3 years. For each worm, given two hosts

with one not running Windows or not running a specific server

such as a web server or a database, at least one would have

survived the attack. Given even a very modest amount of

heterogeneity, our method of constructing cores would include

such pairs of hosts.

B. Attribute granularity

Attributes can represent software diversity at many different

granularities. The choice of attribute granularity balances

resilience to pathogens, flexibility for placing replicas, and

degree of replication. An example of the coarsest represen-

tation is for a host to have a configuration comprising of

a single attribute for the generic class of operating system,

e.g., “Windows”, “Unix”, “MacOS”, etc. This single attribute

represents the potential vulnerabilities of all versions of soft-

ware running on all versions of the same class of operating

system. As a result, replicas would always be placed on hosts

with different operating systems. A less coarse representation

is to have attributes for the operating system as well as all

network services running on the host. This representation

yields more freedom for placing replicas. For example, we

can place replicas on hosts with the same class of operating

system if they run different services. The core {H1, H3, H4}
in Example 3.1 is an example of this since H3 and H4

both run Windows. More fine-grained representations would

have attributes for different versions of operating systems

and applications. For example, we can represent the various

releases of Windows, such as Windows 2000 and Windows XP,

or even versions such as NT 4.0sp4 in the attributes. Such fine-

grained attributes provide considerable flexibility in placing

replicas – e.g., we could place a replica on an NT host and

an XP host to protect against worms such as CodeRed that

exploit an NT service but not an XP service – but doing so

greatly increases the cost and complexity of collecting and

representing host attributes, as well as computing cores to

determine replica sets.

Our initial work [34] suggested that informed replication

can be effective with relatively coarse-grained attributes for

representing software diversity. As a result, we use attributes

that represent just the class of operating system and network

services on hosts in the system, and not their specific versions.

In subsequent sections, we show that, when representing di-

versity at this granularity, hosts in an enterprise-scale network

have substantial and sufficient software diversity for efficiently

supporting informed replication. Our experience suggests that,

although we can represent software diversity at finer attribute

granularities such as specific software versions, there is no

compelling need to do so.

IV. HOST DIVERSITY

Two issues with informed replication are (1) the difficulty

of identifying cores and (2) the resulting storage load. Both

of these issues are influenced by the actual distribution of

attributes among a set of hosts. To better understand these

two issues, we measured the software diversity of a large

set of hosts at UCSD. In this section, we first describe the

methodology we used, and discuss what biases and limitations

our methodology imposes. We then characterize the operating

system and network service attributes found on the hosts, as

well as the host configurations formed by those attributes.

A. Methodology

On our behalf, UCSD Network Operations used the nmap

tool [32] to scan IP address blocks owned by UCSD to de-

termine the host type, operating system, and network services

running on the host. Nmap uses various scanning techniques

to classify devices connected to the network. To determine

operating systems, nmap interacts with the TCP/IP stack on

the host using various packet sequences or packet contents that

produce known behaviors associated with specific operating

system TCP/IP implementations. To determine the network

services running on hosts, nmap scans the host port space

4



to identify all open TCP and UDP ports on the host. We

anonymized host IP addresses prior to processing.

Due to administrative constraints collecting data, we ob-

tained the operating system and port data at different times.

We had a port trace collected between December 19–22, 2003,

and an operating system trace collected between December

29, 2003 and January 7, 2004. The port trace contained

11,963 devices and the operating system trace contained 6,395

devices.

Because we are interested in host data, we first discarded

entries for specialized devices such as printers, routers, and

switches. We then merged these traces to produce a combined

trace of hosts that contained both operating system data and

open port data for the same set of hosts. When fingerprinting

operating systems, nmap determines both a class (e.g., Win-

dows) as well as a version (e.g., Windows XP). For added

consistency, we discarded host information for those entries

that did not have consistent OS class and version info. The

result was a data set with operating system and port data for

2,963 general-purpose hosts.

• Worms exploit vulnerabilities that are present in network

services. We make the assumption that two hosts that

have the same open port are running the same network

service and thus have the same vulnerability. In fact, two

hosts may use a given port to run different services, or

even different versions (with different vulnerabilities) of

the same service.

• Ignoring hosts that nmap could not consistently finger-

print could bias the host traces that were used.

• DHCP-assigned host addresses are reused. This implies

the following: 1) Given the time elapsed between the

time operating system information was collected and port

information was collected, an address in the operating

system trace may refer to a different host in the port

trace; 2) A host may appear multiple times with different

addresses either in the port trace or in the operating

system trace. As a consequence, we may have combined

information from different hosts to represent one host or

counted the same host multiple times.

The first assumption can make two hosts appear to share

vulnerabilities when in fact they do not, and the second

assumption can consistently discard configurations that other-

wise contribute to a less skewed distribution of configurations.

The third assumption may make the distribution of configura-

tions seem less skewed, but operating system and port counts

either remain the same (if hosts do not appear multiple times

in the traces) or increase due to repeated configurations. The

net effect of our assumptions is to make operating system and

port distributions appear to be less diverse than it really is,

although it may have the opposite effect on the distribution of

configurations.

Another bias arises from the environment we surveyed.

A university environment is not necessarily representative of

the Internet, or specific subsets of it. We suspect that such

an environment is more diverse in terms of software use

than other environments, such as the hosts in a corporate

OS

Name Count

Windows 1604 (54.1%)

Solaris 301 (10.1%)

Mac OS X 296 (10.0%)

Linux 296 (10.0%)

Mac OS 204 (6.9%)

FreeBSD 66 (2.2%)

IRIX 60 (2.0%)

HP-UX 32 (1.1%)

BSD/OS 28 (0.9%)

Tru64 Unix 22 (0.7%)

(a)

Port

Number Count

139 (netbios-ssn) 1640 (55.3%)

135 (epmap) 1496 (50.4%)

445 (microsoft-ds) 1157 (39.0%)

22 (sshd) 910 (30.7%)

111 (sunrpc) 750 (25.3%)

1025 (various) 735 (24.8%)

25 (smtp) 575 (19.4%)

80 (httpd) 534 (18.0%)

21 (ftpd) 528 (17.8%)

515 (printer) 462 (15.6%)

(b)

TABLE II

TOP 10 OPERATING SYSTEMS (A) AND PORTS (B) AMONG THE 2,963

GENERAL-PURPOSE HOSTS.

environment or in a governmental agency. On the other hand,

there are perhaps thousands of such university with large

settings connected to the Internet around the globe, and so

the results we draw from our data is undoubtedly not singular.

B. Attributes

Table II shows the ten most prevalent operating systems and

open ports identified on the general purpose hosts (ignoring

all other device types), from a total of 2,569 attributes repre-

senting operating systems and open ports. Columns one and

two show the number and percentage of hosts running the

named operating systems. As expected, Windows is the most

prevalent OS (54% of general purpose hosts). Separately Unix

variants vary in prevalence (0.03–10%), but collectively they

comprise a substantial fraction of the hosts (38%).

Columns three and four show the most prevalent open ports

on the hosts and the network services typically associated with

those port numbers. These ports correspond to services running

on hosts, and represent the points of vulnerability for hosts.

On average, each host had seven ports open. However, the

number of ports per host varied considerably, with 170 hosts

only having one port open while one host (a firewall) had 180

ports open. Windows services dominate the network services

running on hosts, with netbios-ssn (55%), epmap (50%), and

domain services (39%) topping the list. The most prevalent

services typically associated with Unix are ssh (31%) and

sunrpc (25%). Web servers on port 80 are roughly as prevalent

as ftp (18%).

These results show that the software diversity is significantly

skewed. Most hosts have open ports that are shared by many

other hosts (Table II lists specific examples). However, most

attributes are found on few hosts, i.e., most open ports are

open on only a few hosts. From our traces, we observe that

the first 20 most prevalent attributes are found on 10% or more

of hosts, but the remaining attributes are found on fewer hosts.

These results are encouraging for the process of finding

cores. Having many attributes that are not widely shared makes

it easier to find replicas that cover each other’s attributes,

preventing a correlated failure from affecting all replicas. We

examine this issue next.

5



Windows

Solaris

Mac OS X

Linux

Mac OS

other

 0  1000  2000  3000  4000  5000  6000

C
o
n
fi
g
u
ra

ti
o
n
s

Port number

Fig. 1. Visualization of configurations from UCSD traces.

C. Configurations

Each host has multiple attributes comprised of its operating

system and network services, and together these attributes

determine its configuration. The distribution of configurations

among the hosts in the system determines the difficulty of

finding core replica sets. The more configurations shared by

hosts, the more challenging it is to find small cores.

Figure 1 is a qualitative visualization of the space of host

configurations. It shows a scatter plot of the host configurations

among the UCSD hosts in our study. The x-axis is the port

number space from 0–6500, and the y-axis covers the entire

set of 2,963 host configurations, grouped by operating system

family. A dot corresponds to an open port on a host, and

each horizontal slice of the scatter plot corresponds to the

configuration of open ports for a given host. We sort groups

in decreasing size according to the operating systems listed

in Table II: Windows hosts start at the bottom, then Solaris,

MacOS X, Linux, etc. Note that we have truncated the port

space in the graph; hosts had open ports above 6500, but

showing these ports did not add any additional insights and

made it more difficult to see patterns at lower, more prevalent

port numbers.

Figure 1 shows a number of interesting features of the

configuration space. The marked vertical bands within each

group indicate, as one would expect, strong correlations of net-

work services among hosts running the same general operating

system. For example, most Windows hosts run the epmap (port

135) and netbios (port 139) services, and many Unix hosts run

sshd (port 22) and X11 (port 6000). Also, in general, non-

Windows hosts tend to have more open ports (8.3 on average)

than Windows hosts (6.0 on average). However, the groups of

hosts running the same operating system still have substantial

diversity within the group. Although each group has strong

bands, they also have a scattering of open ports between the

bands contributing to diversity with the group. Lastly, there is

substantial diversity among the groups. Windows hosts have

different sets of open ports than hosts running variants of

Unix, and these sets even differ among Unix variants. We

take advantage of these characteristics to develop heuristics

for determining cores in Section V.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

H
o
s
ts

 (
%

)

Configurations (%)

100+
Multiple

All

Fig. 2. Configuration distribution.

Figure 2 provides a quantitative evaluation of the diversity

of host configurations. It shows the cumulative distribution

of configurations across hosts for different classes of port

attributes. If every host had a unique configuration, then the

curves would be straight diagonal lines. Instead, the results

show that the distribution of configurations is skewed, with a

majority of hosts accounting for only a small percentage of all

configurations. For example, when considering all attributes,

50% of hosts comprise just 20% of configurations. In addition,

reducing the number of port attributes considered further

skews the distribution. For example, when only considering

ports that appear on more than one host, shown by the “Mul-

tiple” line, 50% of hosts comprise 15% of the configurations.

And considering only the top 100 port attributes, 50% of hosts

comprise 8% of the configurations. Skew in the configuration

distribution makes it more difficult to find cores for those

hosts that share more prevalent configurations with other hosts.

In the next section, however, we show that host populations

with diversity similar to UCSD are sufficient for efficiently

construct cores that result in a low storage load.

V. SURVIVING CATASTROPHES

With informed replication, each host h constructs a core

Core(h) based on its configuration and the configuration of

other hosts. 1 Unfortunately, computing a core of optimal size

is NP-hard, as we have shown with a reduction from SET-

COVER [33]. Hence, we use heuristics to compute Core(h).
In this section, we first discuss a structure for representing

advertised configurations that is amenable to heuristics for

computing cores. We then describe four heuristics and evaluate

via simulation the properties of the cores that they construct.

As a basis for our simulations, we use the set of hosts H
obtained from the traces discussed in Section IV.

A. Representing advertised configurations

Our heuristics are different versions of greedy algorithms: a

host h repeatedly selects other hosts to include in Core(h) until

some condition is met. Hence we chose a representation that

makes it easier for a greedy algorithm to find good candidates

to include in Core(h). This representation is a three-level

hierarchy.

1More precisely, Core(h) is a core constrained to contain h. That is,
Core(h) \ {h} may itself be a core, but we require h ∈ Core(h).

6



The top level of the hierarchy is the operating system

that a host runs, the second level includes the applications

that run on that operating system, and the third level are

hosts. Each host runs one operating system, and so each

host is subordinate to its operating system in the hierarchy

(we can represent hosts running multiple virtual machines as

multiple virtual hosts in a straightforward manner). Since most

applications run predominately on one platform, hosts that run

a different operating system than h are likely good candidates

for including in Core(h). We call the first level the containers

and the second level the sub-containers. Each sub-container

contains a set of hosts. Figure 3 illustrates these abstractions

using the configurations of Example 3.1.

More formally, let O be the set of canonical operating

system names and C be the set of containers. Each host h has

an attribute h.os that is the canonical name of the operating

system on h. The function mc : O → C maps operating

system name to container; thus, mc(h.os) is the container that

contains h.

A
p

a
ch

e

Unix

N
e

ts
ca

p
e

II
S

Windows

A
p

a
ch

e

N
e

ts
ca

p
e

IEH1H1 H3H2 H4 H2

H3 H4

Fig. 3. Illustration of containers and sub-containers.

Let h.apps denote the set of canonical names of the

applications that are running on h, and let A be the canonical

names of all of the applications. We denote with S the set of

sub-containers and S(c) the sub-containers associated with a

container c. The function ms : C × A → S maps a container

and application to a sub-container; thus, for each a ∈ h.app,

host h is in each sub-container ms(mc(h.os), a).
At this high level of abstraction, advertising a configuration

is straightforward. Initially C is empty. To advertise its config-

uration, a host h first ensures that there is a container c ∈ C
such that mc(h.os) = c. Then, for each attribute a ∈ h.apps,

h ensures that there is a sub-container ms(c, a) containing h.

B. Computing cores

The heuristics we describe in this section compute Core(h)
in time linear with the number of attributes in h.apps. These

heuristics reference the set C of containers and the three

functions ms, mc and S(c), but they do not reference the full

set A of attributes. In addition, a host h does not need to

enumerate H, but it does need to be able to reference the

configuration of any host h′ (which it will find by enumerating

sub-containers). Thus, the container/sub-container hierarchy is

the only data structure that the heuristics use to compute cores.

1) Metrics: We evaluate our heuristics using three metrics:

• Average core size: |Core(h)| averaged over all h ∈ H.

This metric is important because it determines how much

capacity is available in the system. As the average core

size increases, the total capacity of the system decreases.

• Maximum load: The load of a host h′ is the number of

cores Core(h) of which h′ is a member. The maximum

load is the largest load of any host h′ ∈ H. If one heuristic

results in a higher maximum load than a second heuristic,

then the first heuristic is less fair in its distribution of

work than the second one.

• Average coverage: We say that an attribute a of a host

h is covered in Core(h) if there is at least one other host

h′ in Core(h) that does not have a. Thus, an exploit of

attribute a can affect h, but not h′, and so not all hosts

in Core(h) are affected. The coverage of Core(h) is the

fraction of the attributes of h . The average coverage is

the average of the coverages of Core(h) over all hosts h ∈
H. A high average coverage indicates a higher resilience

to Internet catastrophes: many hosts have most or all of

their attributes covered. We return to this discussion of

what coverage means in practice in Section V-C, after we

present most of our simulation results for context.

For brevity, we use the terms core size, load, and coverage

to indicate average core size, maximum load, and average

coverage, respectively. Where we do refer to these terms in

the context of a particular host, we say so explicitly.

A good heuristic will determine cores with small size, low

load, and high coverage. Coverage is the most critical metric

because it determines how well it does in guaranteeing service

in the event of a catastrophe. Coverage may not equal 1 either

because there was no host h′ that was available to cover an

attribute a of h, or because the heuristic failed to identify such

a host h′. As in the following sections, the second case rarely

happens with our heuristics.

Note that, as a single number, the coverage of a given

Core(h) does not fully capture its resilience. For example,

consider host h1 with two attributes and host h2 with 10

attributes. If Core(h1) covers only one attribute, then Core(h1)
has a coverage of 0.5. If Core(h2) has the same coverage, then

it covers only five of the ten attributes. There are more ways

to fail all of the hosts in Core(h2) than those in Core(h1).
Consequently, we also use the number of cores that do not

have a coverage of 1 as an extension of the coverage metric.

2) Heuristics: We begin by evaluating a naive heuristic

called Random that we use as a basis for comparison. It is

not a greedy heuristic and does not reference the advertised

configurations. Instead, h simply chooses at random a subset

of H of a given size containing h.

The first row of Table III shows the performance of Ran-

dom using a single run of our simulator. We set the size of the

cores to five, i.e., Random chose five random hosts to form a

core. The coverage of 0.977 may seem high, but there are still

many cores that have attributes not covered. The load is 12,

which is significantly higher than the lower bound of 5.2 And

choosing a core size smaller than five results in even lower

coverage.

Our first greedy heuristic Uniform (“uniform” selection

2To meet this bound, number the hosts in H from 0 to |H|−1. Let Core(h)
be the hosts {h, h⊕1, h⊕2, h⊕3, h⊕4} where ⊕ is addition modulo |H|.

7



Core size Coverage Load

Random 5 0.977 12

Uniform 2.56 0.9997 284

Weighted 2.64 0.9995 84

DWeighted 2.58 0.9997 91

TABLE III

A TYPICAL RUN OF THE HEURISTICS.

among operating systems) operates as follows. First, it chooses

a host with a different operating system than h.os to cover

this attribute. Then, for each attribute a ∈ h.apps, it chooses

a both a container c ∈ C \ {mc(h.os)} and a sub-container

sc ∈ S(c) \ {ms(c, a)} at random. Finally, it chooses a host

h′ at random from sc. If a 6∈ h′.apps then it includes h′ in

Core(h). Otherwise, it tries again by choosing a new container

c, sub-container sc, and host h′ at random. Uniform repeats

this procedure diff OS times in an attempt to cover a with

Core(h). If it fails to cover a, then the heuristic tries up

to same OS times to cover a by choosing a sub-container

sc ∈ mc(h.os) at random and a host h′ at random from sc.

The goal for having two steps, one with diff OS and

another with same OS, is to first exploit diversity across

operating systems, and then to exploit diversity within hosts

within the same operating system class. Referring back to

Figure 1, the set of prevalent services among hosts running

the same operating system varies across the different operating

systems. If, for some reason, the attribute cannot be covered

with hosts running other operating systems, the diversity

within an operating system group may be sufficient to find

a host h′ without attribute a.

In all of our simulations, we set diff OS to 7 and

same OS to 4, since these values seem to provide a good

trade-off between number of useless tries and obtaining good

coverage. However, we have yet to study how to in general

choose good values of diff OS and same OS.
Pseudo-code for Uniform is as follows.

Algorithm Uniform on input h:

integer i;

core ← {h};
C′ ← C \ {mc(h.os)}
for each attribute a ∈ h.apps

i← 0
while (a is not covered) ∧

(i ≤ diff OS + same OS)

if (i ≤ diff OS) choose randomly c ∈ C′

else c← mc(h.os)
choose randomly sc ∈ ms(c) \ {mh(c, a)}
choose a host h′ ∈ sc : h′ 6= h

if (h′ covers a) add h′ to core

i← i + 1
return core

The second row of Table III shows the performance of

Uniform for a representative run of our simulator. The core

size is close to the minimum size of two, and the coverage

is very close to the ideal value of one. This means that using

Uniform results in significantly better capacity and improved

resilience than Random. On the other hand, the load is very

high: there is at least one host that participates in 284 cores.

The load is so high because h chooses containers and sub-

containers uniformly. When constructing the cores for hosts of

a given operating system, the other containers are referenced

roughly the same number of times. Thus, Uniform considers

hosts running less prevalent operating systems for inclusion

in cores a disproportionately large number of times. A similar

argument holds for hosts running less popular applications.

This behavior suggests refining the heuristic to choose

containers and applications weighted on the popularity of

their operating systems and applications. Given a container

c, let Nc(c) be the number of distinct hosts in the sub-

containers of c, and given a set of containers C, let Nc(C)
be the sum of Nc(c) for all c ∈ C. The heuristic Weighted

(“weighted” OS selection) is the same as Uniform except that

for the first diff OS attempts, h chooses a container c with

probability Nc(c)/Nc(C \ {mc(h.os)}). Heuristic DWeighted

(“doubly-weighted” selection) takes this a step further. Let

Ns(c, a) be |ms(c, a)| and Ns(c, A) be the size of the union

of ms(c, a) for all a ∈ A. Heuristic DWeighted is the same as

Weighted except that, when considering attribute a ∈ h.apps,

h chooses a host from sub-container ms(c, a
′) with probability

Ns(c, a
′)/Ns(c,A \ {a}).

In the third and fourth rows of Table III, we show a repre-

sentative run of our simulator for both of these variations. The

two variations result in comparable core sizes and coverage as

Uniform, but significantly reduce the load. The load is still

very high, though: at least one host ends up being assigned to

over 80 cores.

Another approach to avoid a high load is to simply disallow

it at the risk of decreasing the coverage. That is, for some value

of L, once a host h′ is included in L cores, h′ is removed

from the structure of advertised configurations. Thus, the load

of any host is constrained to be no larger than L.

What is an effective value of L that reduces load while still

providing good coverage? We answer this question by first

establishing a lower bound on the value of L. Suppose that

a is the most prevalent attribute (either service or operating

system) among all attributes, and it is present in a fraction x of

the host population. As a simple application of the pigeonhole

principle, some host must be in at least l cores, where l is

defined as:

L =

⌈
|H| · x

|H| · (1− x)

⌉
=

⌈
x

(1− x)

⌉
(1)

Thus, the value of L cannot be smaller than l. Using

Table II, we have that the most prevalent attribute (port 139)

is present in 55.3% of the hosts. In this case, l = 2.

Using simulation, we now evaluate our heuristics in terms

of core size, coverage, and load as a function of the load limit

L. Figures 4, 5, 6, and 7 present the results our of simulations.

In these figures, we vary L from the minimum 2 through a

high load of 10. All the points shown in these graphs are the

averages of eight simulated runs. (We also plot 95% confidence

intervals for each point, although they are too narrow to be

seen). When using load limit as a threshold, the order in which

hosts request cores from H will produce different results. In

our experiments, we randomly choose eight different orders of

enumeratingH for constructing cores. For each heuristic, each

8



 2

 3

 4

 5

 6

 7

 8

 9

 10

 2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 c

o
re

 s
iz

e

Load limit

Random
Uniform

Weighted
DWeighted

Fig. 4. Average core size.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 c

o
v
e
ra

g
e

Load limit

Random
Uniform

Weighted
DWeighted

Fig. 5. Average coverage.

run of the simulator uses a different order. Finally, we vary

the core size of Random using the load limit L to illustrate

its effectiveness across a range of core sizes.

Figure 4 shows the average core size for the four algorithms

for different values of L. According to this graph, there is

not much difference in terms of core size among Uniform,

Weighted, and DWeighted. The average core size of Random

increases linearly with L by design.

In Figure 5, we show results for coverage. Coverage

is slightly smaller than 1.0 for Uniform, Weighted, and

DWeighted when L is greater or equal to three. For L =
2, Weighted and DWeighted still have coverage slightly

smaller than 1.0, but Uniform does significantly worse. Using

weighted selection is useful when L is small. Random has

better coverage with increasing L because the size of the

cores increases. Note that, to reach the same value of coverage

obtained by Uniform, Weighted, and DWeighted, Random

requires a large core size of 9.

There are two other important observations to make about

this graph. First, coverage is roughly the same for Uniform,

Weighted, and DWeighted when L > 3. Second, as L contin-

ues to increase, there is a small decrease in coverage. This is

due to the nature of our traces and to the random choices made

by our algorithms. Ports such as 111 (portmapper, rpcbind)

and 22 (sshd) are open on several of the hosts with operating

systems different than Windows. For small values of L, these

hosts rapidly reach their threshold. Consequently, when hosts

that do have these services as attributes request a core, there

 0.001

 0.01

 0.1

 2  3  4  5  6  7  8  9  10

A
v
e
ra

g
e
 f
ra

c
ti
o
n
 o

f 
u
n
c
o
v
e
re

d
 h

o
s
ts

Load limit

Random
Uniform

Weighted
DWeighted

Fig. 6. Average fraction of uncovered hosts.

are fewer hosts available with these same attributes. On the

other hand, for larger values of L, these hosts are more

available, thus slightly increasing the probability that not all

the attributes are covered for hosts executing an operating

system different than Windows. We observed this phenomenon

exactly with ports 22 and 111 in our traces.

This same phenomenon can be observed in Figure 6. In this

figure, we plot the average fraction of hosts that are not fully

covered, which is an alternative way of visualizing coverage.

We observe that there is a share of the population of hosts

that are not fully covered, but this share is very small for

Uniform and its variations. Such a set is likely to exist due to

the non-deterministic choices we make in our heuristics when

forming cores. These uncovered hosts, however, are not fully

unprotected. From our simulation traces, we note the average

number of uncovered attributes is very small for Uniform and

its variations. In all runs, we have just a few hosts that do

not have all their attributes covered, and in the majority of the

instances there is just a single attribute not covered.

Finally, we show the resulting variance in load. Since the

heuristics limit each host to be in no more than L cores, the

maximum load equals L. The variance in actual indicates how

fair the load is spread among the hosts. As expected, Random

does well, having the lowest variance among all the algorithms

and for all values of L. Ordering the greedy heuristics by

their variance in load, we have Uniform ≻ Weighted ≻
DWeighted. This is not surprising since we introduced the

weighted selection exactly to better balance the load. It is

interesting to observe that for every value of L, the load

variance obtained for Uniform is close to L. This means

that there were several hosts not participating in any core and

several other hosts participating in L cores.

A large variance in load may not be objectionable in practice

as long as a maximum load is enforced. Given the extra work

of maintaining the functions Ns and Nc, the heuristic Uniform

with a small load limit greater than three is the best choice

for our application. However, should load variance be an issue,

one can use one of the other heuristics.

C. Translating to real pathogens

In this section, we discuss why we have chosen to tolerate

exploits of vulnerabilities on a single attribute at a time. We

9



 0

 2

 4

 6

 8

 10

 2  3  4  5  6  7  8  9  10

V
a
ri
a
n
c
e

Load limit

Random
Uniform

Weighted
DWeighted

Fig. 7. Average load variance.

do so based on information about past worms to support our

choices and assumptions.

Worms such as the ones in Table I used services that

have vulnerabilities as vector for propagation. Code Red, for

example, used a vulnerability in the IIS Web server to infect

hosts. In this example, a vulnerability on a single attribute

(Web server listening on port 80) was exploited. In other

instances, such as with the Nimda worm, more than one

vulnerability was exploited during propagation, such as via

e-mail messages and Web browsing. Although these cases

could be modeled as exploits to vulnerabilities on multiple

attributes, we observe that previous worms did not propagate

across operating system platforms: in fact, the worms targeted

services on various versions of Windows.

By covering classes of operating systems in our cores, we

guarantee that pathogens that exploit vulnerabilities on a single

platform are not able to compromise all the members of a core

C of a particular host h, assuming that C covers all attributes

of h. Even if Core(h) leaves some attributes uncovered, h is

still protected against attacks targeting covered attributes. And,

from Figure 6, the majority of the cores have a coverage of 1.

We also observed in the previous section that, for cores that do

not have a coverage of 1, usually it is only a single attribute

that is not covered.

Under the assumptions we have made in this paper, in-

formed replication mitigates the effects of a worm that ex-

ploits vulnerabilities on a service that exists across multiple

operating systems, and of a worm that exploits vulnerabilities

on services in a single operating system. Figure 6 presents

a conservative estimate on the percentage of the population

that is unprotected in the case of an outbreak of such a

pathogen. Assuming conservatively that every host that is not

fully covered has the same attribute not covered, the numbers

in the graph give the fraction of the population that can be

affected in the case of an outbreak. As can be seen, this

fraction is very small.

With our current use of attributes to represent software

heterogeneity, a worm can be effective against informed repli-

cation only if it can exploit vulnerabilities in services that

run across operating systems, or if it exploits vulnerabilities

in multiple operating systems. To the best of our knowledge,

there has been no large-scale outbreak of such a worm. Of

course, such a worm could be written. In the next section, we

discuss how to modify our heuristics to cope with exploits of

vulnerabilities on multiple attributes.

D. Tolerating exploits of vulnerabilities on multiple attributes

To tolerate exploits on multiple attributes, we need to build

cores such that, for subsets of attributes possessed by members

of a core, there must be a number of core members that do

not have these attributes. We call a k–resilient core C a group

of hosts in H such that, for every k attributes of members of

C, there is at least one host in C that does not contain any of

these attributes. In this terminology, the cores we have been

considering up to this point have been 1-resilient cores.

To illustrate this idea, consider the following example. Hosts

run Windows, Linux, and Solaris as operating systems, and IIS,

Apache, and Zeus as Web servers. An example of a 2–resilient

core in such a system is a subset composed of hosts h1, h2, h3

as follows:

• h1 = {Linux, Apache};
• h2 = {Windows, IIS};
• h3 = {Solaris, Zeus};

In this core, every pair of attributes is such that at least one

host contains none of them.

To build a k–resilient core for a host h, we use the following

heuristic:

1) Search for k − 1 hosts, h1 through hk, that have an

operating system different than h;

2) Use Uniform to search for a 1–resilient core C for h
3) For each i ∈ [1 . . . k], use Uniform to search for a 1–

resilient core Ci for hi;

4) Merge all Ci into a single set C;

5) Output C ∪ Ci ∪ . . . ∪Ck as a k–resilient core for h.

Intuitively, to form a k–resilient core we need to gather

enough hosts such that we can split these hosts into k subsets,

where at least one subset is a 1–resilient core. Moreover, if

there are two of these subsets where, for each subset, all of the

members of that subset share some attribute, then the shared

attribute of one set must be different from the shared attribute

of the other set. Our heuristic is conservative in searching

independently for 1–resilient cores because the problem does

not require all such sets to be 1–resilient cores. In doing so,

we protect clients and at the same time avoid the complexity

of optimally determining such sets.

From Appendix A, we have that searching for a k–resilient

core is at least as hard as searching for a 1–resilient core

and we also show that searching for a 1–resilient core is

an NP-complete problem. Thus, there is no polynomial-time

optimal solution for such a problem unless P = NP. Our

greedy heuristic, however, searches for cores in polynomial

time. More specifically, it runs in O(k · Λ), where Λ is

the size of the largest configuration. This upper bound on

time complexity assumes constant-time access to containers. If

access to containers is not done in constant time, and instead

it takes at most c · f(C), where c > 0 is a constant and f(·, ·)
is a polynomial time function of a set of containers C, then

the heuristic runs in O(k · f(C) · Λ).

10



L Avg. 2–coverage Avg. 1–coverage Avg. Core size

5 0.829 (0.002) 0.855 (0.002) 4.19 (0.004)

6 0.902 (0.002) 0.917 (0.002) 4.59 (0.005)

7 0.981 (0.001) 0.987 (0.001) 5.00 (0.005)

8 0.995 (0.0) 1.0 (0.0) 5.11 (0.005)

9 0.996 (0.0) 1.0 (0.0) 5.14 (0.005)

10 0.997 (0.0) 1.0 (0.0) 5.17 (0.003)

TABLE IV

SUMMARY OF SIMULATION RESULTS FOR k = 2 FOR 8 DIFFERENT RUNS.

In Table IV, we show simulation results for this heuristic for

k = 2. The first column shows the values of load limit (L) used

by the Uniform heuristic to compute cores. We chose values

of L ≥ 5 based on the argument presented in Appendix C. In

the second and third columns, we present our measurements

for coverage with 95% confidence limits in parentheses. For

each computed core Core(h), we calculate the fraction of pairs

of attributes such that at least one host h′ ∈ Core(h) contains

none of attributes of the pair. We name this metric 2-coverage,

and in the table we present the average across all hosts and

across all eight runs of the simulator. 1-coverage is the same

as the average coverage metric defined in Section V-B. Finally,

the last column shows average core size.

The coverage results show that the heuristic does well in

finding cores that protect hosts against potential pathogens that

exploit vulnerabilities in at most two attributes. A beneficial

side-effect of protecting against exploits on two attributes is

that the amount of diversity in a 2–resilient core permits

better protection to its client against pathogens that exploit

vulnerabilities on single attributes. For values of L greater

than seven, the average 1–coverage metric is one with a null

95% confidence interval, indicating that all clients have all

their attributes covered.

Having a system that more broadly protects its hosts re-

quires more resources: core sizes are much larger to obtain

sufficiently high degrees of coverage. Compared to the results

in Section V-B, we observe that we need to double the

load limit to obtain similar values for coverage. This is not

surprising. In our heuristic, for each host, we search for two

1-resilient cores. We therefore need to roughly double the

amount of resources available for use.

Of course, there is a limit to what can be done with informed

replication. As k increases, the demand on resources continues

to grow, and a point will be reached in which there is not

enough diversity to withstand an attack that targets k + 1
attributes. Using our diversity study results in Table II, if a

worm were able to simultaneously infect machines that run

one of the first four operating systems in this table, the worm

could potentially infect 84% of the population. The release of

such a worm would most likely cause the Internet to collapse.

An approach beyond informed replication would be needed to

combat an act of cyberterrorism of this magnitude.

VI. THE PHOENIX RECOVERY SERVICE

A cooperative recovery service is an attractive architecture

for tolerating Internet catastrophes. It is an attractive system

for individual Internet users, like home broadband users, who

do not wish to pay for commercial backup service or deal with

Id (bi bits)

Zone
(bo bits)

Sub-zone
(ba bits)

Fig. 8. Phoenix ring.

the inconvenience of making manual backups. If Phoenix were

deployed, users would not need to exert significant effort to

backup their data, and they would not require local backup

systems. Phoenix makes specifying what data to protect as

straightforward as specifying what data to share on file-sharing

peer-to-peer systems. Further, a cooperative architecture has

little cost in terms of time and money; instead, users relinquish

a small fraction of their disk, CPU, and network resources to

gain access to a highly resilient backup service.

A. System overview

A Phoenix host selects a subset of hosts to store backup

data, expecting that at least one host in the subset survives an

Internet catastrophe. This subset is a core, chosen using the

Uniform heuristic described above.

Choosing cores requires knowledge of host software con-

figurations. As described in Section V, we use the container

mechanism for advertising configurations. In our prototype,

we implement containers using the Pastry [60] distributed hash

table (DHT). Pastry is an overlay of nodes that have identifiers

arranged in a ring. This overlay provides a scalable mechanism

for routing requests to appropriate nodes.

Phoenix structures the DHT identifier space hierarchically.

It splits the identifier space into zones, mapping containers

to zones. It further splits zones into sub-zones, mapping sub-

containers to equally-sized sub-zones. Figure 8 illustrates this

hierarchy. Corresponding to the hierarchy, Phoenix creates host

identifiers out of three parts. To generate an identifier for itself,

a host concatenates the hash representing its operating system

h.os, the hash representing an attribute a ∈ h.apps, and the

hash representing its IP address. Figure 8 illustrates the three

parts of a host identifier. Each part has bo, ba, and bi bits,

respectively. To advertise its configuration, a host creates a

hash for each one of its attributes. Therefore, it generates

as many identifiers as the number of attributes in h.apps.

It then joins the DHT at multiple points, each point being

characterized by one of these identifiers. Since the hash of

the operating system is the initial, or the “most significant”

part of all the host’s identifiers, all identifiers of a host lie

within the same zone.

To build a core for itself according to heuristic Uniform,

a host h selects hosts at random from sub-containers, also

selected at random. Selecting a container corresponds to

choosing a number c randomly from [0, 2bo − 1]. Similarly, to

select a sub-container and a host within this sub-container, we

choose a random number sc within [0, 2ba − 1] and another

random number id within [0, 2bi − 1], respectively. A host

11



creates a Phoenix identifier by concatenating these various

components as (c ◦ sc ◦ id). It then performs a lookup on the

Pastry DHT for this identifier. The host h′ that satisfies this

lookup informs h of its own configuration. If this configuration

covers attribute a, h adds h′ to its core. If not, h repeats this

lookup with another randomly chosen sub-container.

The hosts in h’s core maintain backups of its data. These

hosts periodically send announcements to h. In the event of

a catastrophe, if h loses its data, it waits for one of these

periodic announcements from a host in its core, say h′′. After

receiving such a message, h requests its data from h′′. Since

recovery is not time-critical, the period between consecutive

announcements that a host sends can be large, from hours to a

day. Consequently, we assume that hosts send such announce-

ments once a day, although the parameter is configurable and

can be changed according to system demands.

A host may permanently leave the Phoenix system after

having backed up its files. In this situation, other hosts need

not hold any backups for this host and can use garbage

collection to retrieve storage used for the departed host’s files.

Therefore, Phoenix hosts assume that if they do not receive an

acknowledgment for any announcement sent for a large period

of time (e.g., a week), then this host has left the system and

its files can be discarded.

Since many hosts share the same operating systems, Phoenix

identifiers are not mapped in a completely random fashion

into the DHT identifier space. This could lead to some hosts

receiving a disproportionate number of requests. For example,

consider a host h that is either the first of a populated zone

that follows an empty zone or is the last host of a populated

zone that precedes an empty zone. Host h receives requests

sent to the empty zone because, by the construction of the

ring, its address space includes addresses of the empty zone.

Although the load limit the heuristic imposes guarantees that

the amount of storage required of h is constrained, such hosts

may still receive a disproportionate number of requests.

Experimenting with the Phoenix prototype, we found that

constructing cores performed well even with an unbalanced

ID space. But a simple optimization can improve core con-

struction further. The system can maintain an OS hint list that

contains canonical names of operating systems represented in

the system. When constructing a core, a host then uses hashes

of these names instead of generating a random number. Such a

list could be maintained externally or generated by sampling.

We present results for both approaches in Section VII.

B. Service design

The Phoenix software a host runs is composed of two

mechanisms, an agent and a server. The Phoenix agent is

responsible for interacting with a user application on top of it

and with a Pastry agent underneath. Figure 9 is a state machine

description of the behavior of the Phoenix agent. The agent

begins in the Init state, and changes to Joining when the

user application requests it to join the Phoenix ring. In the

Joining state, it creates a session for each Phoenix address

of the host. Each of these sessions has its own routing table and

leaf set, and thus participates in the DHT as an independent

Pastry agent. After joining all the sessions, a Phoenix agent

change its state to Uncovered. At this point, the agent

requires input from the user application. If the application

specifies that the host needs a core to backup data, the agent

undergoes transition “3”, changing to state to Covering. If,

on the other hand, the application specifies that the host has

lost data, it generates a request that causes the agent to use

transition “7”, changing its state to Waiting.

UncoveredJoining

Covering

Waiting

Core

Init

Covered

1 2
3

4
5

6

78

Fig. 9. State machine for Phoenix agent.

In state Covering, the agent uses heuristic Uniform to

select a core. Note that containers and sub-containers in the

original specification of Uniform map to zones and sub-zones,

respectively. After selecting a core, the agent notifies the

application and changes its state to Core. The application

then has to decide if the core satisfies its expectations, or if

the agent should try again. If it decides to accept the core,

then the agent sends Data messages containing the data to

be backed up to the Phoenix servers of the core components.

When the data backup completes on all all the hosts in the

core, the host transitions to state Covered.

If, while in state Uncovered, the Phoenix agent undergoes

a transition to Waiting, then it waits until it receives an

announcement from a host in its core. Hosts holding data on

behalf of other hosts send these messages periodically so that

hosts learn of the members of their core in the event of a

catastrophe. Upon reception of an announcement, a host in

state Waiting sends a request to the core member that made

the announcement to restore its data. The Phoenix server of the

core member receives the request and replies with the content

requested.

The two main responsibilities of the Phoenix server of a

host are managing storage, and sending announcements and

responding to requests to restore data. When a Phoenix server

of a host h participates in a core, it commits to store the data

of the requester. If it receives data from the requester, then

h stores this data, and starts sending announcements to this

host. The requester, however, may decide not to include h in

its core. In this case, the requester may ignore the reply or send

a release message. If the requester sends a release message,

then h removes the data it it already have it. Otherwise, the

12



acceptance eventually times out, and h again rejects data from

the requester. Release messages also serve the purpose of

releasing data stored on core members. This happens in the

case that a user decides to select another, core or if a core

partially fails.

Since recovery is not time-critical, the period between

consecutive announcements sent to the same host can be

relatively large, from hours to a day. For this reason, we

assume that hosts send such announcements once a day,

although the parameter is configurable and can be changed

according to the demands on the system. These messages are

acknowledged by the receiver. Note that not getting a reply

to an announcement does not necessarily mean that the host

left the system ungracefully, since the particular host that did

not reply might have failed. At the same time, it is necessary

to garbage collect backups of hosts that are not part of the

system anymore. For this reason, we assume that if a host h
does not receive a reply to announcement messages it sent to

h′ within a large period of time, say a week, then it garbage

collects the data it holds on behalf of h′. A week is sufficient

time for users to notice that they lost their data and request a

restore.

We now turn our attention to the protocol used by Phoenix

to communicate among servers. Phoenix implements this pro-

tocol using the following message types:

• request: requests participation in a core;

• reply: in response to a request to participate in a core, a

host h replies indicating whether it agrees to participate

or not. This decision depends on the number of other

hosts already being serviced by this host. If h decides to

accept, then it sends its own configuration along with the

reply message;

• release: if a host h′ decides not to use h as a core

member for its data, it sends this message to h so that h
is notified that it is not a core member for h′.

• announce: a host h periodically sends this message to

host h′ if h is in h′s core and stores a copy of h′s data;

• data: a host h sends this message containing its data to

be backed up to a host h′ if h′ has agreed to participate

in the core constructed by h;

• request restore: after a catastrophe, a host sends

this message as soon as it discovers a member of its core

storing its data, i.e., as soon as it receives an announce

message;

• restore: once a host receives a restore request,

it replies with the data it stored on behalf of the requesting

host.

We implemented Phoenix using the Macedon [59] frame-

work for implementing overlay systems. The Phoenix client on

a host takes a tar file of data to be backed up as input together

with a host configuration. In the current implementation, users

manually specify the host configuration. We are investigating

techniques for automating the configuration determination, but

we expect that, from a practical point of view, a user will want

to have some say in which attributes are important.

C. Attacks on Phoenix

Phoenix uses informed replication to survive wide-spread

failures due to exploits of vulnerabilities in unrelated software

on hosts. However, Phoenix itself can also be the target of

attacks mounted against the system, as well as attacks from

within by misbehaving peers.

The most effective way to attack the Phoenix system as a

whole is to unleash a pathogen that exploits a vulnerability in

the Phoenix software. In other words, Phoenix itself represents

a shared vulnerability for all hosts running the service. This

shared vulnerability is not a covered attribute, hence an attack

that exploits a vulnerability in the Phoenix software would

make it possible for data to be lost as a pathogen spreads

unchecked through the Phoenix system. To the extent possible,

Phoenix relies on good programming practices and techniques

to prevent common attacks such as buffer overflows. However,

this kind of attack is not unique to Phoenix or the use of

informed replication. Such an attack is a general problem for

any distributed system designed to protect data, even those

that use approaches other than informed replication [30]. A

single system fundamentally represents a shared vulnerability;

if an attacker can exploit a vulnerability in system software

and compromise the system, the system cannot easily protect

itself.

Alternatively, hosts participating in Phoenix can attack the

system by trying to access private data, tamper with data, or

mount denial-of-service attacks. To prevent malicious servers

from accessing data without authorization or from tampering

with data, we can use standard cryptographic techniques [33].

In what follows, we detail the security measures that the client

and server must carry out to achieve the above goals. Here,

we only provide a high level description of the design; the full

description and analysis appear in Appendix D.

The system uses symmetric encryption and signatures

(cf. [45]) to guarantee the privacy and integrity of the stored

data. In the basic design, a client uses a secret key to

encrypt and sign the data, which is then sent to the server.

In addition, requests from client hosts are signed to prevent

impersonation by third parties. In particular, the client uses the

user’s passphrase to derive a pair of public and signing keys

(pkc, skc) and a symmetric encryption key k. The public key

pkc is sent to each server in the client’s core. To prevent attacks

that overwrite data or send unauthorized release messages, the

client deletes all key material after data storage operations.

Any subsequent operation that requires the client’s secret key

must request the passphrase from the user and re-generate the

keys. After a catastrophe, rogue third parties may return old

copies of the data. In order to preclude this attack, if multiple

announcement messages are received by the client, the client

must reply to each and request its data. The client decrypts the

data returned and keeps the latest copy of the data received.

The security of the design assumes some authenticated

mechanism is in place in the underlying network or, alter-

natively, that the network is such that “man in the middle”

13



attacks are infeasible to mount.3 Privacy and integrity of the

data is guaranteed using encryption and signatures as long

as no secret key is compromised. Since all secret material is

erased after each sensitive operation, the key is safe as long

as the user does not supply the passphrase to the application

during the time the host is infected. Regarding availability, if

the server host contacted by the client host is honest, the server

eventually sends an announcement message to the client host

and the client recovers an authentic copy of the stored data.

Malicious servers can mount a denial-of-service attack

against a client by agreeing to hold a replica copy of the

client’s data, and subsequently dropping the data or refusing

recovery requests. Although the basic design (Appendix D.2)

does not protect against dishonest servers that purportedly

delete data, the system does guarantee that no other disruptive

behavior may happen. Dishonest servers, for example, cannot

tamper nor obtain information from other host’s saved data,

nor can dishonest clients replace or modify some other client’s

data. Nonetheless, intentional erasure of data may still be a

concern in some environments. One technique to identify such

misbehavior is to issue signed receipts. A signed receipt is a

message signed by the server that binds a specific backup

operation with the identities of both the client and server

involved (see Appendix D.3 for details). Clients can use such

receipts to claim that servers are misbehaving. Thus, servers

that purposely delete other host’s data can be eventually

identified and removed from the system.

Hosts could also advertise false configurations in an attempt

to free-ride in the system. By advertising attributes that make

a host appear more unreliable, the system will consider the

host for fewer cores than otherwise. As a result, a host may

be able to have its data backed up without having to back

up its share of data. To provide a disincentive against free-

riders members of a core can maintain the configuration of

hosts they serve, and serve a particular client only if their

own configuration covers at least one client attribute. By

sampling servers randomly, it is possible to reconstruct cores

and eventually find misbehaving clients.4

Similarly, host may attempt to overload the servers in the

system. An important feature of our heuristic that constrains

the impact of malicious hosts on the system is the load limit:

if only a small percentage of hosts is malicious at any given

time, then only a small fraction of hosts are impacted by

the maliciousness. Hosts not respecting the limit can also be

detected by random sampling.

We can further enhance the security of phoenix when extra

resources are available (see Appendix D.3). For instance, if

users have smartcards or other protected devices with (pos-

sibly limited) computing power, it is possible to “split” the

secret keys between the smartcard and the client host using

key insulation techniques [22]. This method guarantees the

availability of some recent copy of the host’s data even in

3Entity authentication can be strictly enforced if some distributed authority
is implemented.

4Indeed, detection can be guaranteed if the configurations are digitally
signed.

the presence of pathogens that quietly corrupt the client host

and attempt to erase the host’s data by performing store and

delete operations without the user’s consent. We stress that

this last technique is orthogonal to the security enhancements

mentioned before (eg. that of signed receipts), and therefore

either one can be implemented independently if needed.

VII. PHOENIX EVALUATION

In this Section, we evaluate our Phoenix prototype on the

PlanetLab testbed using the metrics discussed in Section V. We

also simulate a catastrophic event – the simultaneous failure

of all Windows hosts – to experiment with Phoenix’s ability

to recover from large failures.

A. Prototype evaluation

We tested our prototype on 63 hosts across the Internet,

62 PlanetLab hosts and one UCSD host. To simulate the

diversity we obtained in the study presented in Section IV,

we selected 63 configurations at random from our set of 2963

configurations of general-purpose hosts, and made each of

these configurations an input to the Phoenix service on a

host. In the population we have chosen randomly, out of the

63 configurations, 38 have Windows as its operating system.

Thus, in our setting roughly 60% of the hosts represent

Windows hosts. This configuration implies that the load limit

L must be at least three, otherwise some hosts would not be

fully covered even assuming an optimal distribution.

For the results we present in this section, we use an OS

hint list while searching for cores. Varying L, we obtained

the values in Table V for coverage, core size, and load

variance for one run of our prototype. For comparison, we

also present results from our simulations with the same set of

configurations used for the PlanetLab experiment for coverage,

core size, and load variance.

Coverage is perfect in all cases, demonstrating that we were

able to protect all the hosts using these values of L. And fully

covering hosts did not require extensive replication. From the

average core size, the majority of cores had two replicas. Note

that core sizes account for the clients as well. Thus, if a core

has size two, it contains the client and some other host. In

addition, the average core size showed no significant variation

as we increased the value of L.

The major difference in increasing the value of L is the

respective increase in load variance. As L increases, load

balance worsens. We also counted the number of requests

issued by each host in its search for a core. Different from

simulations, we set a large upper bound on the number of

request messages (diff OS + same OS = 100) to verify

the average number of requests necessary to build a core and

we had hosts searching for other hosts only outside their own

zones (same OS = 0). The averages for number of requests are

14.6, 5.2, and 4.1 for values of L of 3, 5, and 7, respectively.

Hence, we can tradeoff load balance and message complexity.

We also ran experiments without using an OS hint list. The

results are very good, although worse than the implementation

that uses hint lists. We observed two main consequences in

14



Load limit (L) Core size Coverage Load var.
Imp. Sim. Imp. Sim. Imp. Sim.

3 2.12 2.22 1 1 1.65 1.94

5 2.10 2.23 1 1 2.88 2.72

7 2.10 2.22 1 1 4.44 3.33

TABLE V

RESULTS FROM PLANETLAB EXPERIMENT. SIMULATION RESULTS ARE

ALSO PRESENTED FOR COMPARISON. “IMP.” STANDS FOR

IMPLEMENTATION, AND “SIM.” STANDS FOR SIMULATION.

not using a hint list. First, the average number of requests is

considerably higher (over 2x). Second, for small values of L
(L = 3, 5), some hosts did not obtain perfect coverage.

B. Simulating catastrophes

Next we examine how the Phoenix prototype behaves in a

severe catastrophe, the exploitation and failure of all Windows

hosts in the system. This scenario corresponds to a situation in

which a worm exploits a vulnerability present in all versions

of Windows, and corrupts the data on the compromised hosts.

Note that this scenario is far more catastrophic than what we

have experienced with worms to date. For the worms listed in

Table I, for example, there were Windows hosts not vulnerable

at the time these worms were unleashed because they were

patched or not running a particular service required by the

worm to infect.

The catastrophe proceeded as follows. Using the same

experimental setting as above, hosts backed up their data under

a load limit constraint of L = 3. We then triggered a failure

in all Windows hosts, causing the loss of data stored on them.

Next we restarted the Phoenix service on the hosts, causing

them to wait for announcements from other hosts in their

cores (Section VI-A). We then observed which Windows hosts

received announcements and successfully recovered their data.

All 38 hosts recovered their data in a reasonable amount

of time. For 35 of these hosts, it took on average 100

seconds to recover their data. For the other three machines, it

took several minutes due to intermittent network connectivity

(these machines were in fact at the same site). Two important

parameters that determine the time for a host to recover are

the frequency of announcements and the backup file size

(transfer time). We used an interval between two consecutive

announcements to the same client of 120 seconds, and a total

data size of 5 MB per host. The announcement frequency

depends on the user expectation on recovery speed. In our

case, we wanted to finish each experiment in a reasonable

amount of time. Yet, we did not want to have hosts sending

a large number of announcement messages unecessarily. For

the backup file size, we chose an arbitrary value since we are

not concerned about tranfer time in this experiment. On the

other hand, this size was large enough to hinder recovery when

connectivity between client and server was intermittent.

It is important to observe that we stressed our prototype

by causing the failure of these hosts almost simultaneously.

Although the number of nodes we used is small compared

to the potential number of nodes that Phoenix can have

as participants, we did not observe any obvious scalability

Size (GB) 1 hour 1 day 1 week

Aggregate bandwidth

0.1 1.20 Gb/s 50.1 Mb/s 7.16 Mb/s

1 12 Gb/s 0.5 Gb/s 71.6 Mb/s

10 120 Gb/s 5 Gb/s 716 Mb/s

100 1.2 Tb/s 50 Gb/s 7.2 Gb/s

Per-host bandwidth (L = 3)

0.1 0.6 Mb/s 27.8 Kb/s 4.0 Kb/s

1 6.7 Mb/s 278 Kb/s 39.7 Kb/s

10 66.7 Mb/s 2.8 Mb/s 397 Kb/s

100 667 Mb/s 28 Mb/s 3.97 Mb/s

TABLE VI

BANDWIDTH CONSUMPTION AFTER A CATASTROPHE.

problems. On the contrary, the use of a load limit helped in

constraining the amount of work a host does for the system,

independent of system size.

C. Recovering from a catastrophe

Finally, we examine the bandwidth requirements for recov-

ering from an Internet catastrophe. In a catastrophe, many

hosts will lose their data. When the failed hosts come online

again, they will want to recover their data from the remaining

hosts that survived the catastrophe. With a large fraction of

the hosts recovering simultaneously, a key question is what

bandwidth demands the recovering hosts will place on the

system.

The aggregate bandwidth required to recover from a catas-

trophe is a function of the amount of data stored by the

failed hosts, the time window for recovery, and the fraction

of hosts that fail. Consider a system of 10,000 hosts that

have software configurations analogous to those presented in

Section IV, where 54.1% of the hosts run Windows and the

remaining run some other operating system. Next consider a

catastrophe similar to the one above in which all Windows

hosts, independent of version, lose the data they store. Table VI

shows the bandwidth required to recover the Windows hosts

for various storage capacities and recovery periods. The first

column shows the average amount of data a host stores in the

system. The remaining columns show the bandwidth required

to recover that data for different recovery periods.

The first four rows show the aggregate system bandwidth

required to recover the failed hosts: the total amount of data to

recover divided by the recovery time. This bandwidth reflects

the load on the Internet during recovery. Even for relatively

large backup sizes and short recovery periods, this load is

small. Note that these results are for a system with 10,000

hosts and that, for an equivalent catastrophe, the aggregate

bandwidth requirements will scale linearly with the number

of hosts in the system and the amount of data backed up.

The second four rows show the average per-host bandwidth

required by the hosts in the system responding to recovery

requests. Recall that the system imposes a load limit L that

caps the number of replicas any host will store. As a result, a

host will only have to recover at most L other hosts. Note that,

because of the load limit, per-host bandwidth requirements for

15



hosts involved in recovery are independent of both the number

of hosts in the system and the number of hosts that fail during

a catastrophe.

The results in the table show the per-host bandwidth re-

quirements with a load limit L = 3, where each host responds

to at most three recovery requests. The results indicate that

Phoenix can recover from a severe catastrophe in reasonable

time periods for useful backup sizes. As with other cooperative

backup systems like Pastiche [17], per-host recovery time

will depend significantly on the connectivity of hosts in

the system. For example, hosts connected by modems can

serve as recovery hosts for a modest amount of backed up

data (28 Kb/s for 100 MB of data recovered in a day).

Such backup amounts would only be useful for recovering

particularly critical data, or recovering frequent incremental

backups stored in Phoenix relative to infrequent full backups

using other methods (e.g., for users who take monthly full

backups on DVD but use Phoenix for storing and recovering

daily incrementals). Broadband hosts can recover failed hosts

storing orders of magnitude more data (1–10 GB) in a day, and

high-bandwidth hosts can recover either an order magnitude

more quickly (hours) or even an order of magnitude more data

(100 GB).

Although there is no design constraint on the amount of

data hosts back up in Phoenix, for current disk usage patterns,

disk capacities, and host bandwidth connectivity, we envision

users typically storing 1–10GB in Phoenix and waiting a day to

recover their data. According to a recent study, desktops with

substantial disks (> 40 GB) use less than 10% of their local

disk capacity, and operating system and temporary user files

consume up to 4 GB [11]. Recovery times on the order of a day

are also practical. For example, previous worm catastrophes

took longer than a day for organizations to recover, and

recovery through organization backup services can often take

a day for an administrator to respond to a backup request.

VIII. CONCLUSIONS

In this paper, we proposed a new approach for design-

ing distributed systems to survive Internet epidemics that

cause catastrophic damage. In contrast to previous approaches

for defending against Internet epidemics, our approach uses

informed replication and a model of correlated failures to

survive them. Using host diversity characteristics derived from

a measurement study of hosts on the UCSD campus, we

developed and evaluated heuristics for determining the number

and placement of replicas that have a number of attractive

features. Our heuristics provide excellent reliability guarantees

(over 0.99 probability that objects survive attacks of single-

and double-exploit pathogen), result in low replication factors

(less than 3 replicas for single-exploit pathogens; less than 5

replicas for double-exploit pathogens), limit the storage burden

on each host in the system, and lend themselves to a fully

distributed implementation. We then demonstrated the use of

this approach in the design and evaluation of a cooperative

backup system called the Phoenix Recovery Service. Based

upon our results, we conclude that our approach is a viable

and attractive method for surviving Internet catastrophes.

ACKNOWLEDGEMENTS

We would like to thank Pat Wilson and Joe Pomianek for

providing us with the UCSD host traces. We would also like to

thank Chip Killian for his valuable assistance with Macedon.

REFERENCES

[1] E. G. Barrantes et al. Randomized instruction set emulation to disrupt
binary code injection attacks. In Proc. of CCS, 2003.

[2] C. Batten, K. Barr, A. Saraf, and S. Treptin. pStore: A secure peer-to-
peer backup system. Unpublished report, Dec. 2001.

[3] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a
multi-user setting: Security proofs and improvements. In Advances in

Cryptology – EUROCRYPT 2000, volume 1807 of LNCS, pages 259–
274. Springer-Verlag, 2000.

[4] M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions
revisited: The cascade construction and its concrete security. In 37th
Annual Symposium on Foundations of Computer Science (FOCS ’96),
pages 514–523. IEEE, Oct. 1996.

[5] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to
the design and analysis of authentication and key exchange protocols.
In Proceedings of the 30th Annual ACM Symposium on Theory of

Computing, STOC’98, pages 419–428. ACM Press, 1998.
[6] M. Bellare, A. Desai, E. Jokipii, and R. Rogaway. A concrete security

treatment of symmetric encryption. In 38th Annual Symposium on
Foundations of Computer Science, pages 394–403. IEEE, 1997.

[7] M. Bellare and S. Goldwasser. The complexity of decision versus search.
SIAM Journal on Computing, 23(1), Feb 1994.

[8] M. Bellare and P. Rogaway. The exact security of digital signatures—
how to sign with RSA and Rabin. In Advances in Cryptology—

EUROCRYPT 96, volume 1070 of LNCS, pages 399–416. Springer-
Verlag, 1996.

[9] M. Bellare and A. Sahai. Non-malleable encryption: Equivalence
between two notions, and an indistinguishability-based characterization.
In Advances in cryptology — CRYPTO ’99, volume 1666 of Lecture
Notes in Computer Science, pages 519–536. Springer-Verlag, 1999.

[10] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The
case of dynamic groups. In CT-RSA’05, The Cryptographers’ Track at

RSA Conference, Lecture Notes in Computer Science. Springer-Verlag,
2005.

[11] A. R. Butt, T. A. Johnson, Y. Zheng, and Y. C. Hu. Kosha: A peer-
to-peer enhancement for the network file system. In Proceedings of
ACM/IEEE Supercomputing, Nov 2004.

[12] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels. In Advances in Cryptology –

EUROCRYPT ’ 01, volume 2045 of Lecture Notes in Computer Science,
pages 453–472. Springer-Verlag, 2001.

[13] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In OSDI:

Symposium on Operating Systems Design and Implementation, pages
173–186. USENIX Association, Co-sponsored by IEEE TCOS and ACM
SIGOPS, 1999.

[14] Y. Chen. A prototype implementation of archival intermemory. In
Proceedings of the Fourth ACM International Conference on Digital
Libraries, 1999.

[15] Codegreen. http://www.winnetmag.com/Article/

ArticleID/22381/22381.html.
[16] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,

P. Wagle, Q. Zhang, and H. Hinton. StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks. In Proceedings of

the 7th USENIX Security Conference, pages 63–78, San Antonio, Texas,
Jan. 1998.

[17] L. P. Cox and B. D. Noble. Pastiche: Making backup cheap and easy. In
Proceedings of Fifth USENIX Symposium on Operating Systems Design

and Implementation, Boston, MA, Dec. 2002.
[18] Crclean. http://www.winnetmag.com/Article/ArticleID/22381/22381.html.
[19] W. Dai. Crypto++ library. http://www.eskimo.com/∼weidai/cryptlib.html.
[20] A. Desai, A. Hevia, and Y. L. Yin. A practice-oriented treatment

of pseudorandom number generators. In Advances in Cryptology—

EUROCRYPT 2002, volume 2332 of LNCS, pages 368–383. Springer-
Verlag, 2002.

16



[21] H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160: A strength-
ened version of RIPEMD. In Fast Software Encryption FSE’96, volume
1039 of LNCS, pages 71–82. Springer-Verlag, 1996.

[22] Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key
cryptosystems. In Advances in Cryptology – EUROCRYPT’ 2002,
volume 2332 of LNCS, pages 65–82. Springer-Verlag, 2002.

[23] A. Fujioka, T. Okamoto, and S. Miyaguchi. ESIGN: An efficient digital
signature implementation for smart cards. In Advances in Cryptology
(EUROCRYPT ’91), volume 547 of LNCS, pages 446–457. Springer,
Apr. 1991.

[24] M. R. Garey and D. S. Johnson. Computers and Intractability: A guide
to the theory of NP-Completeness. W. H. Freeman and Company, 1979.

[25] O. Goldreich. Foundations of Cryptography, volume Basic Tools.
Cambridge University Press, 2001.

[26] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of

Computer and System Sciences, 28(2):270–299, 1984.

[27] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on
Computing, 17(2):281–308, 1988.

[28] P. Gutmann. Cryptlib security toolkit.
http://www.cs.auckland.ac.nz/∼pgut001/cryptlib/index.html.

[29] H. A. Kim and B. Karp. Autograph: Toward automated, distributed
worm signature detection. In Proc. of the 13th Usenix Security

Symposium, 2004.
[30] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly durable,

decentralized storage despite massive correlated failures. In Proc. of

NSDI, May 2005.

[31] IEEE. P1363: Standard specifications for public key cryptography, 2004.
[32] Insecure.org. The nmap tool. http://www.insecure.org/nmap.

[33] F. Junqueira, R. Bhagwan, A. Hevia, K. Marzullo, and G. M. Voelker.
Coping with internet catastrophes. Technical Report CS2005–815,
UCSD, Feb 2005.

[34] F. Junqueira, R. Bhagwan, K. Marzullo, S. Savage, and G. M. Voelker.
The Phoenix Recovery System: Rebuilding from the ashes of an Internet
catastrophe. In Proc. of HotOS-IX, May 2003.

[35] F. Junqueira and K. Marzullo. Synchronous Consensus for dependent
process failures. In Proceedings of the ICDCS 2003, pages 274–283,
May 2003.

[36] J. O. Kephart and W. C. Arnold. Automatic extraction of computer
virus signatures. In Proceedings of the 4th Virus Bulletin International

Conference, pages 178–184, Abingdon, England, 1994.
[37] C. Kreibich and J. Crowcroft. Honeycomb – Creating Intrusion Detec-

tion Signatures Using Honeypots. In Proceedings of the USENIX/ACM

Workshop on Hot Topics in Networking, Cambridge, MA, Nov. 2003.

[38] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
Oceanstore: An architecture for global-scale persistent storage. In
Proceedings of ACM ASPLOS, 2000.

[39] J. Levin, R. LaBella, H. Owen, D. Contis, and B. Culver. The Use
of Honeynets to Detect Exploited Systems Across Large Enterprise
Networks. In Proc. of the IEEE WIA, June 2003.

[40] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard.
A cooperative internet backup scheme. In Proc. of USENIX Annual

Technical Conference, pages 29–42, San Antonio, TX, 2003.

[41] T. Liston. Welcome To My Tarpit: The Tactical and Strategic Use of
LaBrea. Technical report, 2001. http://www.threenorth.com/
LaBrea/LaBrea.txt.

[42] J. W. Lockwood, J. Moscola, M. Kulig, D. Reddick, and T. Brooks.
Internet worm and virus protection in dynamically reconfigurable hard-
ware. In Proc. of MAPLD, Sept. 2003.

[43] D. Malkhi and M. Reiter. Byzantine quorum systems. In Proceedings

of the 29th Annual ACM Symposium on Theory of Computing, pages
569–578. ACM Press, 1997.

[44] NTT Multimedia Communications Laboratory. ESIGN-EMSA5 source
code, 2001. http://www.nttmcl.com/sec/Esign/esign.html.

[45] A. J. Menezes, P. C. van Oorschot, and S. A. Vanston, editors. Handbook

of Applied Cryptography. CRC Press, 1996.

[46] Microsoft Corporation. Microsoft windows update. http://

windowsupdate.microsoft.com.

[47] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver. Inside the Slammer Worm. IEEE Privacy & Security,
1(4):33–39, Jul 2003.

[48] D. Moore and C. Shannon. The spread of the Witty worm.
http://www.caida.org/analysis/security/sitty/.

[49] D. Moore, C. Shannon, and J. Brown. Code-red: a case study on
the spread and victims of an internet worm. In Proceedings of

the ACM/USENIX Internet Measurement Workshop (IMW), Marseille,
France, Nov. 2002.

[50] D. Moore, C. Shannon, G. M. Voelker, and S. Savage. Internet
quarantine: Requirements for containing self-propagating code. In
Proceedings of the IEEE Infocom Conference, San Francisco, California,
Apr. 2003.

[51] D. Moore, G. M. Voelker, and S. Savage. Inferring Internet denial of
service activity. In Proceedings of the USENIX Security Symposium,
Washington, D.C., Aug. 2001. Best paper.

[52] Lurhq. mydoom word advisory. http://www.lurhq.com/

mydoomadvisory.html.

[53] National Institute of Standards and T. Technology. DES model of
operation. FIPS PUB 81, 1980.

[54] National Institute of Standards and T. Technology. Advanced Encryption
Standard (AES). FIPS PUB 197, 2001.

[55] National Institute of Standards and Technology. Secure hash standard
(sha1). FIPS PUB 180-1, 1995. Supersedes FIPS PUB 180 1993 May
11.

[56] D. Plonka. FlowScan - Network Traffic Flow Visualization and Report-
ing Tool.

[57] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Advances in Cryptology –

CRYPTO ’91, volume 576 of LNCS, pages 433–444. Springer-Verlag,
1991.

[58] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Comm. of the ACM, 21(2):120,
Feb. 1978.

[59] A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and A. Vahdat. Mace-
don: Methodology for automatically creating, evaluating, and designing
overlay networks. In Proc. of NSDI, Mar 2004.

[60] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
Middleware, pages 329–350, 2001.

[61] R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance and Reliability

Analysis of Computer Systems: An Example-Based Approach Using the
SHARPE Software Package. Kluwer Academic, 1996.

[62] S. Sidiroglou and A. D. Keromytis. A network worm vaccine architec-
ture. In Proc. of IEEE Workshop on Enterprise Security, 2003.

[63] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated Worm
Fingerprinting. Poster at SOSP 2003.

[64] Lurhq. sobig.a and the spam you received today. http://www.

lurhq.com/sobig.html.

[65] Sophos anti-virus. W32/sasser-a worm analysis. http://www.

sophos.com/virusinfo/analyses/w32sassera.html,
May 2004.

[66] S. Staniford. Containment of Scanning Worms in Enterprise Networks.
to appear in the Journal of Computer Security, 2004.

[67] J. Stern, D. Pointcheval, M.-L. Malone-Lee, and N. P. Smart. Flaws in
applying proof methodologies to signature schemes. Lecture Notes in

Computer Science, 2442:93–110, 2002.

[68] Symantec. Symantec Security Response. http://

securityresponse.symantec.com/.

[69] O. Team. OpenSSL project. http://www.openssl.org/.

[70] T. Toth and C. Kruegel. Connection-history Based Anomaly Detection.
In Proceedings of the IEEE Workshop on Information Assurance and

Security, West Point, NY, June 2002.

[71] J. Twycross and M. M. Williamson. Implementing and Testing a Virus
Throttle. In Proceedings of the 12th USENIX Security Symposium,
Washington, D.C., Aug. 2003.

[72] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A First Step towards
Automated Detection of Buffer Overrun Vulnerabilities. In Proceedings
of the Network and Distributed System Security Symposium, pages 3–17,
San Diego, CA, Feb. 2000.

[73] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield:
Vulnerability-Driven Network Filters for Preventing Known Vulnera-
bility Exploits. In Proceedings of the ACM SIGCOMM Conference,
Portland, Oregon, Aug. 2004.

[74] H. Weatherspoon, T. Moscovitz, and J. Kubiatowicz. Introspective
failure analysis: Avoiding correlated failures in peer-to-peer systems.
In Proceedings of the International Workshop on Reliable Peer-to-peer

Distributed Systems, Oct. 2002.

17



[75] J. Wensley et al. Sift design and analysis of a fault-tolerant computer
for aircraft control. Proceedings of the IEEE, 66(10):1240–1255, Oct.
1978.

[76] M. Williamson. Throttling Viruses: Restricting Propagation to Defeat
Malicious Mobile Code. Technical Report HPL-2002-172, HP Labora-
tories Bristol, June 2002.

[77] C. Wong et al. Dynamic quarantine of internet worms. In Proceedings

of DSN, 2004.

[78] C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and early
warning for internet worms. In Proceedings of the CCS, Oct. 2003.

APPENDIX

A. The complexity of finding cores

In this section, we discuss the complexity of searching for

cores in a set of hosts. Informally, a core is a subset of hosts

that is diverse enough for a given task. What “enough” means

depends on the application. In the case of the Phoenix recovery

system, the members of a core must have sufficiently different

software configurations so that not all members share a non-

empty set of exploitable vulnerabilities.

We show that finding such cores is an intractable problem.

First, we provide a few definitions to formalize our ideas. We

define a system as follows:

Definition 1.1: A system is a triple 〈H,A, α〉, where H is a

finite set of hosts, A is a finite set of attributes, and a mapping

α : h ∈ H → A ⊆ A.

We define a k–resilient core as follows:

Definition 1.2: Given a system 〈H,A, α〉, a set of hosts

C ⊆ H is a k–resilient core, k > 0 ∧ k ∈ N, if and only

if there is no A ⊆ A, |A| ≤ k, such that for every h ∈ C,

α(h)∩A 6= ∅, where α : h ∈ H → A ⊆ A. Such a subset must

be also minimal: ∀hc ∈ C, ∃a ∈ α(h) : ∀h′
c ∈ C \ {hc}, a 6∈

α(h′
c
).

Although not necessary, we define for convenience what it

means when we say that a subset is a k–resilient core for some

host h in particular.

Definition 1.3: A k–resilient core C is a k–resilient core

for h ∈ H if and only if h ∈ C.

This definition is convenient because hosts use cores to

accomplish tasks. Thus, it is useful to refer to the requester of

the service.

We now move on to define two important problems for

the purposes of this paper. The Set-Cover problem is a well-

studied NP-Complete problem [24]. We repeat its definition

here for the sake of clarity:

Problem: SC decision problem

Instance: Collection C of subsets of a finite set S, positive

integer k ≤ |C|;
Question: Does C contain a cover for S of size at most k?

Now the problem we are interested in:

Problem: k-Core decision problem

Instance: A system 〈H,A, α〉, a host h ∈ H, a positive

integer s > 0;

Question: Is there a k–resilient core C ⊆ H for h of size at

most s?

We show with the following two claims that the 1-Core

decision problem is NP-Complete. By doing so, we later

argue in this section that there cannot be a polynomial-time

algorithm that outputs a minimal 1–resilient core, unless P=

NP . In other words, the correspondent search problem cannot

be easier to solve than the decision problem. In the next

section, we discuss in more details the problem of searching

for a minimal k–resilient core for a value of k greater

than one. Intuitively, such a problem is at least as hard as

searching for a minimal 1–resilient core. As such, if there is no

polynomial-time algorithm that outputs a minimal 1–resilient

core given a system 〈H,A, α〉, there cannot be a polynomial-

time algorithm that outputs a minimal k–resilient core given

a system 〈H,A, α〉, for values of k greater than one.

Claim 1.4: SC ≤m 1-Core

Proof: We need to provide a polynomial-time algorithm

that, given an instance 〈S, C, k〉 of the SC problem, returns an

instance 〈〈H,A, α〉, h, s〉 of the Core Problem, such that the

following holds:

i) If 〈S, C, k〉 ∈ SC, then 〈〈H,A, α〉, h, s〉 ∈ 1-Core;

ii) If 〈〈H,A, α〉, h, s〉 ∈ 1-Core, then 〈S, C, k〉 ∈ SC.

We describe such an algorithm as follows:

Algorithm SCtoC: 〈S, C, k〉

1) A ← ∅; H ← {h};
2) A← ∅;
3) For every element x of S,

A ← A∪ {ax, âx};
A← A ∪ {ax};

4) α← [α : h← A];
5) For every element c of C,

H ← H∪ {hc};
A← ∅;
∀ax ∈ A, if (x ∈ c) then A← A ∪ {âx};

else A← A ∪ {ax};
α← [α : hc ← A];

6) s← k;

Every step of the algorithm runs in polynomial time. Con-

sequently, time complexity is given by the sum of the com-

plexities of the individual steps. This is clearly polynomial.

It remains to show that Properties i) and ii) hold for SCtoC.

First, we show i. For an instance 〈S, C, k〉 of the SC problem,

suppose there is a subset C′ of C such that |C′| ≤ k and C′

is a cover for S. We construct a 1–resilient core Ω for the

instance of the Core Problem returned by our algorithm as

follows:

1) ∀c ∈ C′ : Ω← Ω ∪ {hc};
2) Ω← Ω ∪ {h}.

By construction, for every attribute a ∈ α(h), there is in

Ω at least one host hc such that a ∈ α(hc). According to the

description of SCtoC, a host hc only covers an attribute ax

of h if x ∈ c. Because C′ is a cover for S, Ω must be a

1–resilient core for h. Moreover, Ω must have size at most

s = k.

Now we show ii). Given an instance 〈〈H,A, α〉, h, s〉 of the

1-Core problem, suppose there is a 1–resilient core Ω for h of

18



size at most s. From the definition of a core, we have that a

host hc is in Ω only if it covers at least one attribute of h. By

the construction of SCtoC, if a host hc covers an attribute ax

of h, then x ∈ c. Thus, we can construct a cover C′ for S by

including in C′ all the sets c ∈ C such that hc ∈ Ω. Again by

construction, C′ must cover S, and |C′| ≤ k. This completes

our proof.

Now we show that 1-Core is in NP .

Claim 1.5: 1-Core ∈ NP .

Proof: We need to provide a polynomial-time verifier for

1-Core. The verifier takes as input an instance 〈〈H,A, α〉, h, s〉
of the 1-Core problem and a certificate C. This certificate

consists of a subset of H. Thus, the verifier has to check

whether the subset provided as a certificate is an 1–resilient

core of size at most s for the instance provided. We now

describe such a verifier as follows:

Verifier V: 〈〈H,A, α〉, h, s〉, C

1) Parse C into a subset Ω of processes;

2) Check if Ω ⊆ H;

3) Check if |Ω| ≤ s;

4) Check if h ∈ Ω;

5) For every attribute a ∈ A, check if there are at least one

host in Ω that does not contain a;

6) If any of these checks fail, then reject, otherwise accept.

Each step of the verifier executes in polynomial time on

the size of the input. Thus, the total execution time has to be

polynomial on the size of the input. This concludes the proof

of our claim.

With these these two claims, we have shown that there is no

polynomial-time algorithm for 1-Core if P 6= NP . From [7],

we have that search reduces to decision for NP-Complete

problems. The search problem for k-Core is as follows:

Problem: k-Core search problem

Instance: A system 〈H,A, α〉 a host h ∈ H, a positive

integer s > 0;

Search for k-Core: Find a subset H ⊆ H such that H is a

k–resilient core, h ∈ H , and |H | ≤ s, or output ⊥.

Thus, we conclude that there is a polynomial-time algorithm

for the 1-Core search problem if and only if there is a

polynomial-time algorithm that solves the 1-Core decision

problem. Furthermore, the following optimization problem

clearly reduces to the k-Core search problem:

Definition 1.6:

Problem: k-MinCore

Input : A system 〈H,A, α〉 a host h ∈ H;

Output : a subset H ⊆ H such that H is a k–resilient core

and h ∈ H;

Cost function : f(H) = |H |;
Goal : Minimize.

Given an oracle OSk-Core that solves the k-Core search

problem in polynomial time on the size of the input, we can

solve the optimization problem by calling the oracle with

increasing values of s, until the oracle outputs a k–resilient

core. Note that we need to call the oracle at most |H| times

in the worst case. Thus, running such an algorithm still takes

polynomial time on the size of the input. Note also that this

description is valid for any k > 0, and consequently it is valid

for the case k = 1, which is the one we discussed above.

B. Searching for k–resilient cores

In the previous section, we concentrated on the 1-Core

problem, although we stated all the definitions in terms of

k. The problem of searching for a 1–resilient core consists

more descriptively in determining a subset H of hosts such

that the intersection of the set of attributes across all hosts of

H is empty. The generalization for k > 1 is as follows:

∃ H1, . . . , Hk ⊆ H :
∧∃i ∈ [1 . . . k] : Hi is a 1–resilient core

∧∀i, j ∈ [1 . . . k], i 6= j : (∩h∈(Hi∪Hj)h) = ∅

Claim 1.7: k-Core ≤m (k + 1)-Core k ≥ 1
Proof: We have to show that there is a polynomial-time

algorithm KtoK+1 such that given an instance of the K-Core

problem, it outputs an instance of the (k + 1)-Core. Such an

instance must be such that:

i) If 〈〈H,A, α〉, h, s〉 ∈ k-Core, then

〈〈H′,A′, α′〉, h′, s′〉 ∈ (k + 1)-Core;

ii) If 〈〈H′,A′, α′〉, h′, s′〉 ∈ (k + 1)-Core, then

〈〈H,A, α〉, h, s〉 ∈k-Core.

We now describe KtoK+1:

Algorithm KtoK+1:〈〈H,A, α〉, h, s〉

1) H′ ← H∪ {h∗};
2) A′ ← A∪ {a∗};
3) α← [α : h∗ → {a∗}];
4) h′ ← h;

5) s′ ← s + 1;

6) output 〈〈H,A, α〉, h′, s′〉;

The algorithm clearly runs in polynomial time, since every

step is executed in polynomial time on the size of the input.

It remains to show i) and ii). First, we show i. Let C ⊆ H
be a k–resilient core of size at most s. We then have that

C′ = C ∪ {h∗} is a (k + 1)–resilient core. By assumption,

C is a k–resilient core. Consequently, there is no subset A of

k or less attributes such that for all h ∈ C, α(h) ∩ A is not

empty. The host we add to C to form C′ has a single attribute

that is not shared by any other host. There are two cases to

analyze. First, let A′ be a subset of k+1 attributes that does not

include a∗. Such a subset of attributes cannot intersect every

host in C′ because it does not intersect at least h∗. Second, let

A′′ be a subset of k + 1 attributes such that A′′ includes a∗.

Such subset cannot intersect the configuration of every host

in C′ either. Otherwise, there is a subset of k attributes in A′′

that intersects the configuration of every host in C, thereby

contradicting our assumption that C is a k–resilient core. We

thus have that there is no subset of k + 1 or less attributes

such that for all h ∈ C, α(h) ∩ A is not empty, and C′ has

size at most s′ = s + 1.

19



We now show ii. Let C′ be a (k + 1)–resilient core of

size at most s′ for the instance of (k + 1)-Core output by

KtoK+1. If C′ does not contain h∗, then there is a host h′

in C′ such that C′ \ {h′} is a k–resilient core. This must be

true, otherwise there is a subset of at k + 1 that intersects the

configurations of all the hosts in C′. Now, if C′ does contain

h∗, then C′ \ {h∗} is a k–resilient core of size at most s. To

see why C′ \ {h∗} must be a k–resilient core observe that

if it is not, then there exists a set A′ of k attributes of A
such that they intersect the configurations of all the hosts in

C′ \ {h∗}. In this case, C′ cannot be a (k + 1)–resilient core

either because A′ ∪ {a∗} intersects all the configurations of

C′. This concludes our proof.

Using a simple recursive argument, we have that 1-Core

reduces to k-Core for any k > 1. We therefore have that

k-Core cannot be solved in polynomial time, unless 1-Core

has a polynomial-time solution.

C. Lower bound on the value of L for 2-resilient cores

In Section V-B, we compute a lower bound for the value of

L when constructing cores that are 1-resilient. In this Section,

we also compute a lower bound on the value of L, but now

we want to construct 2-resilient cores.

Compare to the 1–resilient core case, the value of the lower

bound is computed differently because all pairs of attributes

in a core must be covered. That is, for every attribute a of

the client, its core must contain at least two other hosts with

different configurations to be 2-resilient. Thus, a core must

have at least three members to be 2-resilient. To compute a

lower bound, we assume that every host has a 2–resilient core

of minimal size three. Let x be the fraction of hosts that have

the most prevalent attribute. Out of the remaining (1−x) · |H|
hosts, suppose a fraction y · (1 − x) has the most prevalent

attribute for this group of hosts. As a simple application of

the pigeonhole principle, some host must be in at least the

following number of cores:

l =

⌈
|H| · x

|H| · ((1 − x)− y(1− x))

⌉

Using the data from our diversity study, we have the

following. The most prevalent attribute is port 139, which

is present in 1,640 of the hosts. The hosts that have port

139 as an attribute are mostly hosts running the Windows

operating system: out of the 1,640 hosts, 1,491 run Windows.

The first most prevalent attribute that is mostly present in hosts

not running Windows is port 22. This attribute is present in

910 hosts, out of which 901 run operating systems different

than Windows. The difference between the total number of

hosts and the number of hosts with port 139 as an attribute is

1,323. Out of these 1,323 hosts, 780 hosts have port 22 as an

attribute, but not port 139, which is approximately 59% of the

remaining hosts. Plugging these values into the equation for l
(x = 1, 640/2, 963 = 0.553 and y = 780/1, 323 = 0.590.),
we have that l = 4.

In the experiments of Section V-D, the minimum value of

L we considered is five, because the efficiency measured with

coverage is poor for lower values. The reason for not meeting

the lower bound relies both in the nature of the configura-

tions we used, and the way we compute cores. First, many

configurations overlap in their attributes, thus requiring more

than four hosts to form a 2–resilient core. To meet the lower

bound, most of the cores must have size at most three. Second,

the heuristic computes two 1–resilient cores independently and

merge into one 2–resilient core. Consequently, the 2–resilient

cores we compute have size at least four.

D. Phoenix Security

In this section, we elaborate on the techniques we suggested

to secure the data in the Phoenix system in Section VI-C. First,

we generalize the problem and define a class of (abstract)

protocols, the archival-recovery protocols, which allow hosts

to save data on behalf of other hosts – precisely the goal of

the Phoenix system. We explain the syntax and meaning of the

messages exchanged by the hosts when one of them initiates

a backup process. Then, we present two protocols: the basic

protocol and the enhanced protocol. Both of them are concrete

instantiations of an (abstract) archival-recovery protocol. Our

first protocol, the basic protocol, is easily implemented using

available open-source software libraries and provides some

basic security guarantees. This protocol is explained and

analyzed in Section D.2. The enhanced protocol requires more

resources (namely, user smartcards and support for public

keys), but provides stronger security guarantees. The protocol

and its analysis is presented in Section D.3.

1) Functional View of the Protocol: In this section, we

revisit the concept of an archival-recovery service. Our goal is

to identify the components whose implementation and analysis

are critical for security. First, we define explicitly what it

means for a protocol to provide an archival-recovery system.

Then, we precisely define when an archival-recovery system

is secure.

An archival-recovery service is a system in which hosts

store (save) data on behalf of other hosts. Moreover, hosts

can continuously submit pieces of data, ask for the deletion

(release) of such pieces and, when needed, ask for a copy

of the stored data. A more concrete description follows. In

an archival-recovery system, hosts can act both as clients and

as servers. A host acts as client when it generates the data

(which needs to be saved by some other host); it acts as a

server when it saves data on behalf of some other host. Each

host has an identifier id. For simplicity, we assume that each

client may need to backup, at most, a single piece of data at

a time – if more pieces of data are to be backup, each new

piece overwrites the previous piece.5

In what follows, we formally describe an abstract archival-

recovery protocol in terms of functions both the client and the

server must execute to generate and process the exchanged

5 Generalizations to multiple pieces are possible by requiring the client to
issue an explicit release message for a given piece before such piece is
replaced.

20



messages. In particular, this protocol depends on four client

functions (with prefix client ) and four server functions (with

prefix server ). Any protocol that implement an archival-

recovery service must implement these functions.

Formally, we say a protocol implements an Archival-

Recovery system if it follows the sequence of messages and

actions detailed below. Every archival-recovery protocol is

divided in three main phases: Backup, Release, and Recovery

phase.

• Backup Phase: This phase is triggered each time a new

piece of data D is available in the client. The goal of this

phase is to store a copy of D on the server.

The parties proceed as follows:. first, the client com-

putes a message M as the output of the function

client gen data(D). We call this message M a “data

message”. This message is then sent to the server. The

message includes a data identifier did that uniquely

identifies D. Upon reception of this message, the server

executes function server save data(M) which saves

M locally. Additionally, once the server holds data on

behalf of other hosts, it must advertise it. At least once,

the server must generate an “announce message”. This

message is used by the server to announce that it currently

stores a piece of data with identifier did on behalf

of client cid. The actual message is computed as the

output of the function server gen announce(did, cid).
The message, which includes a data identifier did and a

client identifier cid, is then sent to all clients.

• Release Phase: This optional phase is triggered each time

a client decides it no longer needs the data associated to

identifier did. The goal of this phase is to erase the copy

of the data with such identifier stored on the server.

The parties proceed as follows:. First the client com-

putes a message M as the output of the function

client gen release(did). We call this message M a

“release message”. The message is then sent from the

client to the server. The message includes a data identifier

did. Upon reception of this message, the server executes

function server erase data(M) which, if applicable,

erases the data with identifier did locally.

• Recovery Phase: This phase is triggered after the client

has suffered a catastrophe. The goal of this phase is to

recover a copy of the data stored on the server.

The parties proceed as follows: whenever client cid
receives an announce message (containing client iden-

tifier cid and data identifier did), the client com-

putes a message M as the output of the function

client request restore(did). We call this message M
a “request restore message”. The message, which

includes data identifier did, is then sent to the sender of

the announce message. Upon reception of this message,

the server executes function server retrieve data(M)
which first extracts did from M and then retrieves the

data with identifier did from the data stored locally. The

output of function server retrieve data(M) is another

message M ′. We call this message M ′ a “restore

message”. Message M ′ is then sent from the server to the

client. Upon reception of this message, the client executes

the function client restore data(M) which outputs the

client’s data D or ⊥ if message M is not valid.

In Section D.2 and Section D.3, we show how to use some

cryptographic tools to provide two concrete instantiations for

archival-recovery protocols. In next section, we present a

definition of security of any archival-recover protocol.

WHAT SECURITY MEANS: THE MODEL. In what follows,

we say a host is “honest” if it strictly follows all protocol

instructions, including deleting information.

There are three security goals for the system.

1) Data privacy: “Any host other than the client host

should not obtain any partial information from the data

stored on the server host”.

2) Data integrity: “Any tampering of the backup data

should be detectable by the client host”.

3) Data availability: “If a backup is made by the client

host on an honest server host before the catastrophe, the

client host eventually is able to recover a copy of the

same backup from that server host”.6

In order to formally prove the above properties, we define a

security model using the concept of experiments, adversaries

and “oracles” (initiated in Goldwasser and Micali’s work [26]

but refined extensively later [4], [6], [9], [3], [10]). Defining an

experiment or “game” for the system aims to formally capture

the type of interactions (actions and messages) an adversary

may exploit when attacking the system.7 The resources avail-

able to the adversary are represented by oracles, interactive

programs that reply to queries from the adversary. Oracles

simulate the type of actions (and messages) adversaries can

trigger (or obtain) in the system. In particular, in our setting,

oracles play the role of honest clients and servers. The

adversary can freely interact with the oracles, that is, we make

no assumption on how messages are delivered in the system,

other than messages are eventually delivered. Thus, messages

can be delivered in any order or at any time as long as they

eventually arrive.The output of the experiment under a given

adversary is a single bit; the bit is set to 1 if and only if any

of the security goals of the system are broken. The idea is to

prove that no practical adversary can cause the experiment to

return 1 with high probability, no matter what the adversary

does.

As usual, adversaries in the experiment are modeled by

arbitrary polynomial-time computable programs with oracle

access. The oracles provided to the adversary are Client-Ob(·)
and Server-O(·). The former simulates the execution of honest

clients while the latter simulates the execution of honest

6 Notice that, if the backup is made on a dishonest server, no claims are
made. In Section D.3, we show how to achieve a stronger property where
such dishonest servers are always detected using “signed receipts”.

7In practice, we consider “worst case” adversaries, Internet pathogens that
may attempt to target the logic of the system, that is, possible flaws in the
protocol itself.

21



servers. They capture the adversary’s ability to interact with

many clients and servers in parallel. Both oracles are stateful

and simulate the actions of multiple hosts (clients and servers)

following the protocol, except for a few modifications we now

explain. First, the oracles allow the adversary to schedule the

actions taken by client and servers (by sending queries for

specific actions at specific times). This means the adversary

can control, for example, when and how many times each

client submits data for backup or send out “release” mes-

sages, when a catastrophe occurs for a given client, or when

“announce” and “request restore” messages are sent.

Although, in practice, the adversary may not have such control,

this choice only strengthen our results, since we show that no

practical adversary, not even one with that power, can break

the security guarantees of the system. Secondly, we allow

the adversary to restrict the data that each (simulated) client

submits to the server for archival. Specifically, the simulated

client must select one of two strings data0 and data1, both

chosen by the adversary. The selection only depends on a

bit b fixed at the onset of the experiment, the same for all

the simulated clients. This aspect of the model follows the

standard notion of indistinguishability under chosen-plaintext

attacks [6], and allows us to define privacy: any adversary

guessing bit b can be seen as somehow extracting information

from the data. Our design does not tolerate even such (appar-

ently innocuous) action, so we see such adversary as violating

the privacy of the system. Finally, the adversary’s ability

to eavesdrop the interaction between pairs of honest clients

and servers is modeled by allowing the adversary to start a

“virtual” interaction between Client-Ob and Server-O. The

interaction is virtual in the sense adversary only gets a copy

of the exchanged messages between a given client (simulated

by Client-Ob) and a given server (simulated by Server-O).

However, the adversary still can affect the interaction by

controlling the schedule of messages and by impersonating

third clients and servers.

More concretely, oracle Client-Ob(·) works as follows. All

the information for the simulated clients are maintained in a

table Q. Concretely, for any client cid, Q[cid] contains all local

variables used by client cid. Additionally, table Q is used by

the oracle to keep track of some information per simulated

client: variable Q[cid].ActiveBackup[sid, did] is set to Yes if

client cid has submitted data with identifier did for backup

to server sid; variable Q[cid].AllData maintains the set of all

pieces of data that a client cid has submitted for backup; and

variable Q[cid].failed is set to Yes if client cid has failed.

All queries accepted by the oracle take two parameters: a

client identifier cid and a server identifier sid. The adversary’s

identifier is a fixed but arbitrary string different from any client

or server identifier: without lost of generality, we assume that

it is the sender identifier specified in the first query made to

any oracle. The sid identifier must always be the arbitrary

identifier unless the adversary has started a virtual interaction

for such client; in this case, sid can be set to any of the servers

for which the client has a virtual interaction.

The types of queries accepted by oracle Client-Ob(·) are

the following:

1) start(cid), starts the simulation of client with identifier

cid. It sets up any local variables if required by the

protocol.

2) start data(cid, sid, D0, D1), instructs simulated

client cid to initiate a data message with Db

as the intended data to backup. The oracle

executes function client gen data(Db) on behalf

of simulated client cid and obtains an output M .

This output includes a data identifier did. Also,

the oracle adds Db in set Q[cid].AllData, and sets

Q[cid].ActiveBackup[sid, did] ← Yes. The query

returns as output M .

3) start release(cid, sid, did), instructs simulated

client cid to initiate a release message

with data identifier did. The oracle first sets

Q[cid].ActiveBackup[sid, did]← No. Then, the oracle

returns the output of function client gen release(did)
(as it were executed by client cid) as the reply to the

query.

4) fail(cid), instructs simulated client cid to fail, as if a

catastrophe has occurred; it sets Q[cid].failed ← Yes .

5) announce(cid, sid, did), instructs simulated client cid
to act as if an announce message specifying data

identifier did was received. The query returns nothing.

6) start request restore(cid, sid, did), instructs sim-

ulated client cid to to initiate a request restore

message with data identifier did. The query returns the

output of function client request restore(did) as it

were executed by client cid.

7) start restore(cid, sid, M ′), instructs simulated client

cid to act as if a restore message M ′ was re-

ceived. In particular, the oracle computes d ←
client restore data(M ′). The query returns “Good

backup” if d 6= ⊥ (in which case it sets

Q[cid].ActiveBackup[sid, did] ← No) and “Bad

backup” otherwise.

Oracle Server-O(·) works as follows. All the information

for each simulated server (its local variables and tables) are

maintained in a table Q′ indexed by server identifier. As

with the client oracle Client-Ob, all queries accepted by this

oracle take two parameters: a client identifier cid and a server

identifier sid. The cid identifier must be set to the identity

of the adversary (an arbitrary but fixed string) unless the

adversary has started a virtual interaction for such server; in

this case, cid can be set to any of the clients for which the

server has a virtual interaction.

The types of queries accepted by oracle Server-O(·) are:

1) start(sid), starts the simulation of server with identi-

fier sid by initializing any local variables for sid.

2) data(sid, cid, M), instructs simulated server sid to act

as if data message M was received. In particular,

server sid executes function server save data(M).
This query returns nothing.

3) release(sid, cid, M), instructs simulated server

22



sid to act as if release message M was

received. In particular, server sid executes function

server erase data(M). This query returns nothing.

4) start announce(sid, cid), instructs simulated server

sid to initiate an announce message for any data

held from client cid. The query returns the output of

function server gen announce(M) as it were executed

by server sid.

5) request restore(sid, cid, M), instructs simulated

server sid to act as if a request restore message M
was received. The query returns the output of function

server retrieve data(M) as it were executed by

server sid.

In order to make the model meaningful, we impose some

restriction for the queries. A query to oracle Client-Ob (respec-

tively, Server-O) is ignored if: (a) the query specifies a server

(respectively, client) identifier which is already simulated by

the opposite oracle;8 (b) the query is not start and specifies

a client (respectively, server) identifier not yet defined; and

(c) it is a start data(cid, ·) query with a data identifier did
smaller than that of any previous start data(cid, ·) query,

for the same client.9 Also, the adversary is required to send

a query of type start announce(sid, cid, ·) at least once

after submitting a query data(sid, cid, ·), for any sid, cid.

Otherwise, the adversary is considered invalid. This restriction

models that all servers interacting with the adversary are

honest and, consequently, they must send announcements if

they hold backups.

Additionally, we add a new set of queries to initiate the

“virtual” interaction between Client-Ob and Server-O oracles.

(Recall that virtual interactions aim to capture the adversary’s

ability to eavesdrop and affect the interaction between an

honest client and an honest server.) We define the special query

start(cid, sid) as the query that has the same effect than

start(cid) and start(sid) when submitted to both oracles

at the same time. Once a query start(cid∗, sid∗) is made

for some client cid∗ and server sid∗, we say that a virtual

interaction between virtual client cid and virtual server sid∗

has begun. Thereafter, the effect of any of the previously

defined queries for oracles Client-Ob and Server-O remains

unchanged except in the case the same pair cid∗, sid∗ ever

appears again in a query. In such a case, the answer to this

query is not only returned to the adversary, but it is also

sent to the other oracle, in the form of a message to the

virtual client or sender indicated in the query (namely sid∗

if the query was originally for oracle Client-Ob or cid∗ if it

was for Server-O). Even though the adversary receives the

replies of such queries immediately, the adversary is allowed

to schedule the delivery of the virtual replies to the virtual

clients or server. Furthermore, the adversary must deliver all

such messages before it finishes execution. Intuitively, in a

virtual interaction, the two oracles exchange messages almost

undisturbedly (except for the fact that the adversary may delay

8 This captures the fact that the channel is authenticated.
9 This captures that the identifiers must be strictly increasing values.

the delivery of some of the messages), only sending copies of

such messages to the adversary. We remark that the adversary

still has control on which messages are sent (if they are not

message replies), the order and delivery times of them, and

the choice of the identities of the communicating parties.

Now we describe the experiment. For any adversary A and

archival-recovery system Γ we define the Archival-Recovery

experiment:

Exp
Arch−Rec
Γ (A) :

1) Select a random bit b.

2) A starts executing. A is allowed to make multiple queries

to Client-Ob(·), Server-O(·) until it stops and outputs a

bit d.

3) Experiment outputs 1 (that is, adversary “wins”) if any

of the following holds:

• (Data privacy condition) Adversary guess bit b
correctly, that is, d = b.

• (Data integrity condition) There exists client cid and

data D such that

a) A made a start restore(cid, sid, M ′) query

such that Client-Ob internally recovered data

equal to D and returned “Good Backup”, but

b) D 6∈ Q[cid].AllData, that is, no

adversary’s query was ever of the form

start data(cid, , D0, D1) where Db = D.

• (Data availability condition) There exists values

cid, sid, did, that satisfy the following conditions:

a) A made a start(cid, sid) query,

b) A made a start announce(cid, sid) query, and

c) After all restore(cid, sid, ) messages have

been delivered, it holds that Q[cid].failed = Yes

and Q[cid].ActiveBackup[sid, did] = Yes .

In the above experiment, if adversary A wins the experiment

because c = 1, we say A wins trivially.

The advantage of adversary A, denoted by Adv
Arch−Rec
Γ (A),

is defined as follows

Adv
Arch−Rec
Γ (A)

def
= 2 · Pr

[
Exp

Arch−Rec
Γ (A) = 1

]
− 1

Notice this is a value between 0 and 1.

Let ℓ > 0 be an integer, the security parameter. We

define the advantage function for the archival-recovery sys-

tem Γ, denoted Adv
Arch−Rec
Γ (ℓ) as the maximum of function

Adv
Arch−Rec
Γ (A) over all possible adversaries A with time-

complexity polynomial in the security parameter ℓ. We say

archival-recovery system Γ is secure if Adv
Arch−Rec
Γ (k) is small

for all reasonable values of ℓ.

Next section presents one of the concrete instance of

archival-recovery system that we propose for the Phoenix

system.

2) Basic Protocol: The protocol uses only software tools.

We make the following assumptions about the client host.

The user controlling a client host knows a (long enough)

passphrase which the user enters to the client host. The setup,

backup and recovery operations will require this passphrase.

23



The client host also has access to a reliable local clock –

not necessarily synchronized with any other clock – which

we assume external entities cannot modify. There are no

extra assumptions about the host when acting as server. With

respect to the network, we only assume message delivery is

reliable (all sent messages are eventually received) and the

communication between each pair of host is authenticated

(each message has an unforgeable sender identifier).

The cryptographic tools used in this solution are standard.

We use secure symmetric encryption (cf. [6]), secure digital

signature schemes (cf. [27], [58], [8], [23], [44]). pseudo-

random bit generators [25], [20], and cryptographic hash

functions [55], [21] (see also [45], [31] for background and

standards). Open-source implementations of these primitives

can be found in [19], [28], [69]. In what follows, SE = (E ,D)
denotes the symmetric encryption scheme used (e.g. AES in

counter mode [53], [54]) and SS = (K, Sig, Vf ) the signature

scheme (e.g. RSA [58] or ESIGN [23] with PSS [8]). When

describing the protocol we use the following notation. We

write C ← E(k, M) to denote that C is the encryption of

message M under key k, and M ′ ← D(k, C) means M ′ is

the decryption of ciphertext C under key k. For the signature

scheme, (pk, sk) ← K(r) denotes the process where the

key pair pk, sk is generated by the key-generation algorithm

K using random bits r; σ ← Sig(sk, M) means σ is the

signature of M under signing key sk and b ← Vf (pk, M, σ)
denotes the process of verifying if σ is a valid signature of

message M under verification key pk: if b = 1 then the

signature is valid, b = 0 otherwise. We also write k1 ◦ k2 ←
G(k) to denote that the concatenation of k1 and k2 is the

result of running the pseudorandom bit generator G on input

k. Finally, we write h← H(M) when h is the output of the

cryptographic hash function on input M .

THE BASIC PROTOCOL: The input for each client is a pass

– provided interactively by the user – and one or more piece

of data D to backup.10 Each server host maintains a local

counter numClients with the number of client it is currently

serving, and a table T indexed by client identifier that stores

data and identifiers for all served clients. Each server stores

at most one backup (one copy of data) for each client.

In this implementation, the data identifiers are timestamps

generated from the client’s local clock. Without lost of gener-

ality, we see these values are positive and strictly increasing

integers. Additionally, the client employs local keys which

must be generated from its passphrase. In order to generate

such keys, the client uses function setup, which takes a single

argument, a passphrase pass, and deterministically computes

the keys by (r, k) ← G(H(pass)), (pk, sk) ← K(r). The

output is (pk, sk, k), where pk, sk are the signing key and

verification key and k is the encrypting key.11

We now explain how to implement the client ∗ (·) and

10 In fact, we assume new pieces of data are generate dynamically and
continually by the client.

11 Formally, our analysis treats H as a random oracle but this assumption
can be removed by using more sophisticated randomness extraction tech-
niques.

server ∗ (·) functions for each phase. We call this protocol

simply Phoenix.

Backup Phase:

• client gen data(D):

1) Recompute keys (pk, sk, k) from its passphrase

pass by running setup(pass). Let cid be the iden-

tifier of the client running this function.

2) Compute C ← E(k, D) as the encryption of D
under key k. Let R← (C ◦ ts ◦ pk ◦ cid) where

ts is the value in the local time (timestamp), and ◦
denotes string concatenation.

3) Compute the signature of R as s← Sig(sk, R) and

set M ← R ◦ s.

4) Erase keys (pk, sk, k).
5) Output M .

• server save data(M):

1) Parse M as R ◦ s and then R as C ◦ ts ◦ pk ◦ cid.

2) If cid is a new client, check that the number

numClients of currently served clients is less than

L. If so, increase the counter numClients by one.

Otherwise (if numClients = L), abort.

3) If cid is not a new client (that is, there exists an

entry M ′ = (C′ ◦ ts′ ◦ pk′ ◦ cid ◦ s′) associated

to the same cid in T ), check if the signing keys

match (pk = pk′), and that the timestamp ts is

more recent than ts′. If any of the checks fail, abort.

4) Check that the request was properly signed by the

client, namely that Vf (pk, R, s) = 1. If so, store

T [cid]←M . If not, abort.

• server gen announce(did, cid):

1) If it holds data (with identifier did) from client cid
in local table T , compute M ← “announce”◦ cid ◦
did and output M . Otherwise, abort.

Release Phase:

• client gen release(did):

1) Recompute keys (pk, sk, k) from its passphrase

pass by running setup(pass). Let cid be the iden-

tifier of the client running this function.

2) Compute a signed release request by R ←
“release” ◦ did ◦ pk ◦ cid and s← Sig(sk, R).

3) Set M ← R ◦ s.

4) Erase keys (pk, sk, k).
5) Output M .

• server erase data(M):

1) Parse M as R ◦ s and then R as “release” ◦ ts ◦
pk ◦ cid.

2) Verify that both the signing key pk and timestamp

ts match the ones stored in local table T under

index cid.

3) Check the request was properly signed, namely that

Vf (pk, R, σ) = 1.

4) If all the checks pass, erase entry T [cid]. Otherwise,

if any of the checks fail, abort.

Recovery Phase:

24



• After a catastrophe, the client sets its local variable

latest ts to (−∞).
• client request restore(did):

1) Recompute keys (pk, sk, k) from the passphrase

using function setup. Let cid be the identifier of

the client running this function.

2) Let R ← “request restore” ◦ did ◦ pk ◦ cid.

Compute the signature of R as s← Sig(sk, R).
3) Set M ← R ◦ s.

4) Erase keys (pk, sk, k).
5) Output M .

• server retrieve data(M):

1) Parse M as R ◦ s and then R as

“request restore” ◦ ts ◦ pk ◦ cid.

2) If it holds no data for client cid in local table T ,

abort. Otherwise, verify that both verification key

pk and identifier ts match the ones stored in table

T under index cid.

3) Checks that the request was properly signed, namely

that Vf (pk, R, σ) = 1. If any of the checks fail,

abort.

4) Retrieve entry M ′ ← T [cid]. Output M ′.

• client restore data(M ′):

1) Recompute keys (pk, sk, k) from the passphrase

using function setup. Let cid be the identifier of

the client running this function.

2) Parse M as R′ ◦ s′ and then R′ as C′ ◦ ts′ ◦ pk′ ◦
cid′ ◦ s′.

3) Check that ts′ is more recent than latest ts. If so,

set latest ts ← ts.

4) Check the authenticity of the received data R′ by

verifying that pk equals pk′ and that the signature

of R′ is valid, that is Vf (pk, R′, s′) = 1.

5) If all checks pass, compute D ← D(k, C′). Other-

wise, compute D ← ⊥.

6) Erase keys (pk, sk, k).
7) Output D.

Next section analyzes the security of this protocol.

SECURITY ANALYSIS: Next result shows that data privacy

and data integrity are preserved. Indeed, privacy is guaranteed

by the usage of encryption, and integrity is guaranteed by the

use of signatures, as long as the key is not compromised. In

particular, malicious hosts cannot tamper with saved (backup)

data.

Claim 1.8: Consider the Phoenix archival-recovery proto-

col. If the symmetric encryption scheme SE is secure (in the

sense of [57]) and the signature scheme scheme SS is secure

(in the sense of [27]) then data privacy and data integrity

hold with overwhelming probability.

Proof: The proof is by reduction to the security of the

encryption scheme and the security of the signature scheme.

Given an adversary A that makes experiment Exp
Arch−Rec
Phoenix (A)

output 1 with noticeable probability by violating either the

privacy or the integrity condition, we can build either an

adversary B1 that breaks the security of the underlying encryp-

tion scheme (in the sense of privacy under chosen-plaintext

attacks [6]) or an adversary B2 that breaks the security of

the signature scheme (in the sense of unforgeability under

chosen-message attacks [27]). Let Adv
Arch−Rec
Pheonix (A) denote the

advantage function of Phoenix when restricted to the experi-

ment outputting 1 because the data privacy or the data integrity

condition.

For the case of adversary B1, the proof is almost identical

to the one by Bellare, Boldyreva and Micali [3, Theorem

4.1]. If fact, their model and ours are essentially the same

when considering only the queries that deal with encryption

(even though their setting is asymmetric encryption). Follow-

ing the construction of [3], we obtain an adversary B1 that

satisfies Adv
ind−cpa

SE
(B1) ≥ 1/(nqe) · Adv

Arch−Rec
Phoenix (A), where

Adv
ind−cpa

SE
(B1) is the advantage function of the encryption

scheme SE = (E ,D) for privacy under chosen-plaintext

attack, n is a bound on the number of clients, and qe is the

number of start data queries.

For the case of adversary B2, the reduction is straight-

forward. Adversary B2 simulate completely the execution

environment for adversary A (including oracles), guesses the

client identifier under whose key A will produce the forgery

and then assign it the challenge verification key (that is, the

key given as input to B2) to that client. The probability we

obtain a forgery under the challenge verification key is 1/n
the probability A breaks the data integrity condition. Then

Adv
uf−cpa

SS
(B2) ≤ 1/n·Adv

Arch−Rec
Phoenix (A), where Adv

uf−cpa

SS
(B2)

is the advantage function of the signature scheme SS =
(K, Sig, Vf ) for unforgeability under chosen-message attach.

As before, n is a bound on the number of client hosts started

by A.

Neither B1 nor B2 is guaranteed to work with noticeable

probability if A does, but both adversaries combined are.

Indeed, we obtain

Adv
Arch−Rec
Pheonix (A)

≤ nqe · Adv
ind−cpa

SE
(B1) + n · Adv

uf−cpa

SS
(B2) (2)

This result says that, as long as encryption scheme SE is

secure (that is, its advantage function is small) and signature

scheme SS is secure (that is, its advantage function is small)

are small, the advantage function for the archival-recovery

scheme Phoenix under data privacy and data integrity is small,

and in consequence, Pheonix is secure.

Regarding availability, if the server host contacted by the

client host is honest, the server will eventually send an

announce message to the client host, and the client will obtain

the stored data D. If any other server host does provide the

client host with a “valid” backup copy D′, then the copy is

either equal to D or older than D. This is detected if there is

a more recent backup copy. Also, client impersonating during

the backup and release phases cannot occur since every server

checks for valid client signature in all data and release

messages.

Claim 1.9: If the communication in the system is authenti-

cated then data availability holds.

25



Proof: It follows from the operation of the “virtual in-

teraction” between oracle Client-Ob and Server-O. Indeed,

assume the experiment returns 1 because of the availability

condition. Then, there exists a tuple cid∗,sid∗, and did∗, such

that there was a start(cid∗, sid∗) query (that is, a virtual

interaction), Q[cid∗].failed = Yes (that is, client cid∗ failed)

and Q[cid∗].ActiveBackup[sid, did] = Yes (that is, there is

an existent backup). The intuition is that, the simulated client

cid∗ cannot recover its backup data, even though it submitted

the data (Q[cid∗].ActiveBackup[sid, did] = Yes), never erase

it (otherwise Q[cid∗].ActiveBackup[sid, did] would be No),

and contacted an honest server (start(cid∗, sid∗) query).

We now show that the probability that any

adversary A causes experiment Exp
Arch−Rec
Phoenix (A) output

1 (because of the availability condition) is 0. If

Q[cid∗].ActiveBackup[sid, did] = Yes, since sid∗ is

honest, it must be that (a) either the announce, the

request restore, or the restore message was tampered

with or dropped, or (b) the server received a release

message from cid, or (c) the client received an invalid

backup (restore message) from sid. Case (a) contradicts

the assumption on authenticated channels or the assumption

that messages are eventually delivered, and (b) and (c)
again contradict the authenticated channel assumption. Since

the simulation is perfect and the assumptions hold with

probability 1, we have that the Adv
Arch−Rec
Phoenix (A) = 0 when

restricted to the availability condition.

DISCUSSION: There are some threats to the system that are not

capture by the above model: malicious servers that purposely

delete other host’s data, malicious servers that advertise false

configurations, and malicious clients that attempt to overload

a server. First, we notice that none of these threats can be

fully prevented due to the nature of the system. Nonetheless,

we claim that the security impact of those is small. Indeed,

a malicious server that purposely deletes other host’s data,

specially if repeated offender, is likely to be capture by

external monitoring.12 Similarly, external monitoring can be

used to detect repeated offenders among those that advertise

false configurations. For example, contrasting the configura-

tion advertised as a server with the configuration used as a

client by the same host can help to identify offenders. Finally,

malicious clients that attempt to overload a given server can

only do it up to the maximum load limit L. This bound can

be set to reasonable levels for most servers.

The security claims of this section (Claim 1.8 and Claim

1.9) rely on two assumptions. First, we assume that the

communication is authenticated. This assumption is reasonable

in many environments, specially close networks. If it does

not hold, the availability property may be compromised but

not the privacy or integrity. Indeed, authenticated channels

are only required in the Recovery Phase to prevent third

hosts from preventing successful recoveries: a third party,

impersonating an honest server, may inject fake restore

12 For settings in which detection of even a single misbehaving server is
critical, “signed receipts” must be used. Those are discussed in next section.

messages which may lead a client to think a server’s backup

is invalid. Therefore, the protocol can still be successfully

implemented in practice in environments where message in-

jection or message tampering is detectable. Moreover, in next

section, we show how to eliminate the authenticated channels

by using a distributed public key infrastructure. The second

assumption is in the failure mode; we assume only fail-stop

failures. In this model, after a catastrophe, the compromised

client only fails by stopping. A way to enforce this property

is by requiring the passphrase not be supplied to the host

during the time the host is compromised. Although reasonable

in some settings, this last condition may be hard to enforce

in practice – pathogens may silently infect the host without

the user noticing it. Such an attack can be very effective: once

this “silent pathogen” gains access the client’s secret keys it

can issue release or data requests, thus causing the data to

be deleted or overwritten. In the following section, we show

how to prevent these attacks, provided that users have access

to smartcards.
3) Enhanced Protocol (Sketch): In case extra resources

are available, it is possible to design protocols with stronger

security guarantees. In particular, we show how to cope

(detect) misbehaving servers who purposely drop the backup

data, and how to relax the two assumptions described in the

previous section (authenticated channels and fail-stop failure

model). In this section, we describe an enhanced solution that

provides extra security as long as the following assumptions

hold:

• The user of a client host has access to a smartcard (or

similar device with limited computational power). It is

not required that the device be tamper resistant.

• The setup, backup and recovery operations require access

to the user smartcard.

• The infection of a client host can be detected within some

fixed amount of time, say d minutes.

• There is a public key infrastructure (PKI) infrastructure

available. Namely, the public keys can be authenticated,

that is, anyone who receives a public key knows the

identity of the corresponding owner. The PKI can be

open or closed. As standard, we assume each entity first

chooses its own keys and then the link between identities

and verification keys is made public.

First, using the existent PKI, authenticated channels can

easily be implemented on top of unauthenticated ones using

standard cryptographic techniques [5], [12].

In order to cope with “silent pathogens”, we do the follow-

ing. The overall strategy is to split time into periods of length

t > d minutes. Any server stores the backup data from the

two last periods. Only one update operation is allowed within

one period of time. If more than one update is done for one

period, the update will apply only the data for the current

period. The data for the previous period is not modified. After

a new update is issued in a new period, the oldest backup data

is removed in the server.

We remark that requiring the server store two backups re-

stricts the amount of storage available (indeed, it is a tradeoff:

26



if server space cannot be increased, this strategy effectively

halves the space available to clients; if available client space

cannot be decreased, server space must be doubled).

In this protocol, we use key-insulated signature and en-

cryption schemes [22]. A key-Insulated signature scheme

works like a signature scheme but “splits” the signing key

between a physically protected device (e.g. the smartcard)

and an insecure computer (the client host). By splitting the

key, these schemes guarantee that, even though the insecure

computer may be compromised (attacked) at time t, as long

as the device is not compromised, no other time periods

t′ 6= t will be compromised. Key-Insulated encryption schemes

satisfy a similar property. We use this property to prevent a

compromised client from erasing the current backup copy as

follows. The system enforces the restriction that only one copy

of saved data can be erased or overwritten during a single

period of time. Therefore, as long as the host compromise is

discovered (and the host restored to the honest state) in time

less than t (the time of a period) no compromised client host

is able to delete both data backups.

DETECTING SERVERS WHO PURPOSELY DELETE DATA: A

malicious server that purposely deletes other host’s data,

if repeated offender, is likely to be capture by external

monitoring. Nonetheless, this approach may not work if the

malicious server only acts occasionally. To detect these cases,

the enhanced protocol uses “signed receipts”. A signed receipt

is an unforgeable message that the server returns to the client

after a successful completion of a backup phase. This message,

signed with the publicly-known verification key of the server,

must include the identity of the client requesting the backup

operation, a timestamp, and a cryptographic digest of the data.

Accordingly, the backup operation is not considered successful

unless the client obtains a valid receipt. This receipt can be

exhibited as a proof of misbehavior if later the server refuses

to restore the client’s backup. Hosts who are shown to be

dishonest servers may then be removed from the system.

Notice that the problem of preserving the receipt is not

trivial. Since the client is subject to failures, the receipt can

either be saved in append-only storage or shared with a third

party (say, the other servers in the client’s core). We leave

as open the interesting engineering problem of designing a

practical system that allow host to save the signed receipts

and use them to “prove” any server misbehavior in a simple

but efficient way.

THE ENHANCED PROTOCOL: The following protocol illus-

trates the techniques described in this section.

The user smartcard stores a 2ℓ-bit-long key K = K1 ◦K2

(where ℓ is a large enough security parameter, say 128), and

the client stores one or more pieces of data D that needs to

backup.

Setup Phase: Before the client contacts any server.

1) The client smartcard deterministically generates a long-

lived (master) secret and public key pair (mskc, pkc)
from key K1. Then, the smartcard sends the client

the public key pkc. This public key remains constant

throughout the periods.

2) The client certifies key pkc with the PKI authority.

Backup Phase: (period i > 0)

1) The client smartcard computes the secret keys skc[i],
k[i] for the current period, by using the long-lived master

secret key skc and K2. Then skc[i],k[i] are sent to the

client.

2) The client computes the encryption of D ◦ ts under key

k[i] and then signs it under key skc[i]. We denote by M
the result.

3) The client sends M to the server host as part of the data

message.

4) The server verifies that the request was signed by the

client under the public key corresponding to the client’s

identifier.

5) The server sends an acknowledgment of the operation

(a “signed receipt”), A = “backup” ◦ cid ◦ i ◦H(M),
and its signature s = Sig(sks, A) back to the client.

Recovery Phase: (period i > 0)

1) The client smartcard generates the secret keys corre-

sponding to the current time period skc[i] and k[i], and

sends them the the client.

2) The client waits until an announce message is re-

ceived from a server host. The client sends out a

request restore message.

3) The server host send the stored data to the client host.

4) The client host verifies the authenticity of the received

data by using key skc[i]. If it fails, abort the communi-

cation with the server host.

5) The client decrypts the backup data using k[i], and

compares the decrypted timestamp with the timestamps

of any previously received data. If the timestamp is the

most recent one received, it keeps the data. Otherwise,

the client erases the data.

6) If any other announce message is received, repeat the

above steps until no other announce messages exist.

SECURITY ANALYSIS: (SKETCH) The enhanced protocol

achieves the same properties that the basic protocol achieves

(the proof is analogous and hence omitted). Availability, how-

ever, is strengthen by means of the “signed receipts”. Indeed,

in the enhanced protocol any client host is able prove the

misbehavior of servers who claim that no backup was ever

performed by the client when, instead, the backup was done

and they purposely deleted the client’s data.

Claim 1.10: If the signature scheme SS is secure (in the

sense of [27]) any server who purposely deletes a client’s data

after a successful backup operation (provided that no release

request was made by the client) is detected with overwhelming

probability.

Proof: The proof is straightforward. After a successful

backup operation, the client obtains a signature from the

server (the signed receipt). As long as the client checks the

validity of the signature, the server (who may drop the data

or refuse to honor recovery requests from the client) cannot

later repudiate the signed message. More technically, there are

27



two cases: one, in which the client generates a signed receipt

on its own, and two, where the server generates more than

one message for the same signature. The latter case, called

a duplicate signature [67], is not ruled out by the standard

unforgeability notion [27] provided that the malicious signer

can generate its own signing and verification keys (see [67] for

a discussion). For the first case, assume a message/signature

pair (m, s) corresponding to the signed receipt is output by

an adversarial client with non-negligible probability, with the

condition that the signature s is valid for message m under

the verification key vk corresponding to the server. Then,

such adversary contradicts the unforgeability property of the

signature scheme.

In the second case, there may exist a second pair (m′, s)
(where the message m′ is different from the message m
shown as proof of backup by the client), also valid under

verification key vk, such that the server may claim that it was

message m′ (and not m) the actual signed value. We claim

that, even in such a case, the server cannot claim it did not

signed that message (m, s). The reason is that such “duplicate

signatures” can only exist in settings where the signer (the

server) purposely chooses key pairs that are “weak” [67].

Since, in a public key infrastructure where signers (hosts)

choose their own keys (as the one assumed here), no other

host may affect such choice, no signer (server) can repudiate

a signature of its own.

Additionally, the enhanced protocol prevents against

pathogens that manage to access the client’s secret keys. and

issue data or release requests.

Claim 1.11: If the encryption scheme SE is a secure key-

insulation encryption scheme, and the signature scheme SS
is a secure key-insulation signature schemes [22], then any

honest client recovers the most recent or second-most-recent

saved data with overwhelming probability.

Proof: The proof is by reduction to the security of the key-

insulation encryption and signature schemes.

28




