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Abstract
The thermal equation of state (TEOS) for solids is a mathematic model among pres-
sure, temperature and density, and is essential for geophysical, geochemical, and 
other high pressure–temperature (high P–T) researches. However, in the last few 
decades, there has been a growing concern about the accuracy of the pressure scales 
of the calibrants, and efforts have been made to improve it by either introducing a 
reference standard or building new thermal pressure models. The existing thermal 
equation of state, P(V, T) = P(V, T0) + Pth(V, T), consists of an isothermal compres-
sion and an isochoric heating, while the thermal pressure is the pressure change in 
the isochoric heating. In this paper, we demonstrate that, for solids in a soft pres-
sure medium in a diamond anvil cell, the thermal pressure can neither be determined 
from a single heating process, nor from the thermal pressure of its calibrant. To 
avoid the thermal pressure, we propose to replace the thermal pressure with a well-
known thermal expansion model, and integrate it with the isothermal compression 
model to yields a Birch–Murnaghan-expansion TEOS model, called VPT TEOS. 
The predicted pressure of MgO and Au at ambient pressure from Birch–Murna-
ghan-expansion VPT TEOS model matches the experimental pressure of zero (0) 
GPa very well, while the pressure prediction from the approximated Anderson PVT 
TEOS exhibit a big deviation and a wrong trend.
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1  Introduction

The thermal equation of state (TEOS) is a mathematical expression among the 
thermophysical properties of solids, including temperature, pressure, and den-
sity. It is essential for interpreting geophysical and material science observations. 
However, there have been extensive controversies in the accuracy of the pressure 
scales, and large discrepancies in pressure determination using different pressure 
standards or different thermal equations of state for the same standard have been 
reported [1–5]. The uncertainty in the pressure scale has led to a large contro-
versy on the origins of seismic velocity discontinuities [3]. The existing TEOS 
P(V, T) = P(V, T0) + Pth(V, T), called PVT TEOS, consists of two constituents, 
one isothermal compression pressure at room temperature, and one isochoric 
heating at high pressure. The isothermal compression term has been well-estab-
lished and well accepted by the high pressure–temperature (high P–T) commu-
nity, while efforts have been made to improve the thermal pressure term by either 
introducing a reference standard [1], inter-calibration [4], or building new ther-
mal pressure models [6–11].

The first and the most popular thermal pressure model is the Anderson model 
[12, 13], Pth = ∫ �PKT dT  , an integral of the product of thermal expansion coef-
ficient αp and bulk modulus KT over a temperature range. Since both αp and KT 
are temperature and pressure dependent, and both are cross-linked, the mathe-
matical integration of αp⋅KT is not straightforward. The most popular solution is 
to simplify it and reduce the product of αp⋅KT to α0⋅K0. As α0⋅K0 is both pres-
sure independent and temperature independent, the integration of α0⋅K0 at high 
P–T become possible, while this approximation brings in some error. To fix this 
deviation, the approximation induced pressure scale error will be investigated at 
ambient pressure up to 1400 K. In addition, there are a variety of other thermal 
pressure models, such as Maxwell relation [14], first-principles and molecular 
dynamics [6, 7, 15], Mie–Grüneisen–Debby [4, 8], finite elements [9, 10], and 
Holland and Powell [11]. To prove these models, experimentally determined ther-
mal pressure are required.

In this report, the thermal pressure from experiment perspective is discussed 
and a thermal expansion model is proposed to replace the thermal pressure 
model. A Birch–Murnaghan-expansion VPT TEOS is proposed and its validation 
at ambient pressure is presented.

2 � Thermal Pressure at High P–T Conditions in PVT TEOS

2.1 � The Thermal Pressure is the Pressure Change in an Isochoric Heating

The textbook “Equations of State of Solids for Geophysics and Ceramic Science” 
[13] has become a guideline for the principles, theory, and practical applica-
tion of thermal equations of state (TEOS) [16]. In this book, thermal pressure is 
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considered as the pressure required to keep the volume constant when the tem-
perature is raised. In other words, the thermal pressure is the pressure change 
in an isochoric heating process [12, 13]. In 1968, Anderson [17] developed his 
thermal pressure equation from an isobaric heating and an isothermal compres-
sion. According to thermal expansion law, solids of positive thermal expansion 
coefficient expand when heated either under pressure or under ambient. Anderson 
equations [17] are rewritten as V = V(T, P), as shown below

To get an isochoric heating, i.e., dV = 0

By introducing the definition of bulk modulus 
(

�V

�P

)

T
= −

V

KT

 and the definition of 

thermal expansion coefficient 
(

�V

�T

)

P
= V ∗ �P , Eq. 2 is transformed to 

(

ΔP

ΔT

)

V
= � ⋅ K , 

then integrate over temperature and get

(1)dV =
(

�V

�P

)

T
dP +

(

�V

�T

)

P
dT .

(2)0 =
(

�V

�P

)

T
dP +

(

�V

�T

)

P
dT ,

(3)Pth = ∫
T2

T1

(� ⋅ K) dt.

Fig. 1   Schemes of isochoric processes. In (a), an isothermal compression and an isobaric heating make 
an isochoric process. In (b), an isobaric heating plus an isothermal compression generate an isochoric 
process. Both (a) and (b) demonstrate that an isochoric process is not a regular heating process, but a 
combination of heating and compression
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According to Eq. 2, to get an isochoric process, volume change by the 
(

�V

�P

)

T
dP 

in an isothermal compression process has to be canceled by 
(

�V

�T

)

P
dT  in a subse-

quent isobaric heating process. The isothermal compression process and isochoric 
process are illustrated in Fig. 1(a). To keep volume constant after heating, pressure 
needs to be adjusted accordingly, as illustrated in Fig. 1(b). In other words, an iso-
choric process can only be achieved by a dual process which consists of isobaric 
heating and an isothermal compression; any single isobaric/non-isobaric heating 
process cannot be practically reached at high pressure. By Eqs. 2 and 3, the thermal 
pressure is the pressure pushing the sample’s volume back to the volume prior to 
heating. As a result, in any heating process which is approximated to be isochoric, 
its thermal pressure should be zero. For any sample whose thermal expansion coef-
ficient is zero, its thermal pressure should be zero.

To experimentally measure thermal pressure, one has to construct an isochoric 
heating process first, then measure the pressure change in this isochoric process. An 
isochoric heating can be easily achieved for a gas or fluid, but not for a solid sample 
in a pressure medium such as a diamond anvil cell (DAC) or large volume press 
(LVP) [5, 18, 19]. As Eqs. 2 and 3, the thermal pressure is the integration of the 
product of αp⋅KT in an isochoric heating process. In the isochoric heating process, 
(1) temperature and pressure are changed accordingly, (2) both αp and KT are tem-
perature and pressure dependent, and are inter-cross-linked, so the integration on of 
αp⋅KT is not straightforward.

In early low and moderate pressure–temperature experiments using DACs, ther-
mal expansion of the DACs and sample chambers were negligible, so the heated 
sample was considered to be under isochoric conditions. The pressure changes dur-
ing heating in these experiments were assumed to be thermal pressure [20–22]. 
However, an isochoric sample chamber is not an isochoric sample. It has been 
reported that regular resistive heating at high pressure is not isochoric [23–25], but 
partially isochoric [5], or intermediate between isochoric and isobaric [26]. Pre-
cisely speaking, for a DAC, the pressure change during a non-isochoric heating is 
not exactly the thermal pressure. The inaccurate thermal pressure assumptions from 
non-isochoric processes might be the main error source, causing the discrepancies 
among the common pressure standards.

Thermal pressure was suggested to measure the pressure change along the iso-
choric contour [23, 27, 28], but constructing an isochoric contour is a challenge.

2.2 � Thermal Pressure of a Sample Cannot be Determined from a Calibrant

From Pth = ∫ �PKT dT  , �sample ≠ �calibrant , and Ksample ≠ Kcalibrant , we have:

The Eq. 4 shows that the Pth of the sample does not equal the Pth of a pressure cali-
brant. Thermal pressure in Eq. 3 is a process variable over a temperature, not a state 

(4)� �sampleKsample dT ≠ � �calibrantKcalibrant dT .



1 3

International Journal of Thermophysics (2022) 43:169	 Page 5 of 15  169

variable. The above argument demonstrates that a calibrant’s thermal pressure cannot 
be used as sample’s the thermal pressure determination in the heating process, even at 
each state, the pressure of a calibrant equals to the pressure of a sample. As a conclu-
sion, measuring the sample’s thermal pressure from its pressure marker is not accurate.

2.3 � Thermal Pressure, Grüneisen Parameter, and High T Bulk Modulus Fitting

Thermal pressure is the pressure change in isochoric heating in a certain temperature 
range. Even the pressure at high P–T can be determined by a calibrant, but the sample’s 
thermal pressure doesn’t equal its calibrant’s thermal pressure. For the solid in a soft 
pressure medium, an isochoric heating can be accomplished by a compression after a 
heating, and a single heating process at high P–T is not an isochoric, and thermal pres-
sure cannot be determined directly from a single heating process. This might be the 
reason why pressure accuracy at high P–T has not been consistent widely.

In addition to the Anderson thermal pressure model, another most popular model to 
calculate the thermal pressure is called Mie–Grüneisen–Debby, where The Grüneisen 
parameter, γ, named after Eduard Grüneisen, describes the effect that changing the vol-
ume of a crystal lattice has on its vibrational properties. Even though there are vari-
ous ways to calculate the Grüneisen parameter, accurate thermal pressure is required 
to validate the Mie–Grüneisen–Debby model. Similarly, accurate thermal pressure is 
required to fit temperature dependent bulk modulus as well.

3 � Thermal Expansion Model at High P–T Conditions

In Sect. 2, we demonstrate that a single heating for DAC is not isochoric process, and 
the pressure determined from a non-isochoric heating process is not exact its thermal 
pressure. On the contrary, isobaric heating for diamond anvil cell at high pressure have 
been reported [29–38], either with aid of membrane for a DAC or by adjusting the load 
for an LVP. Pressure dependent thermal expansion is the thermal expansion process in 
an isobaric heating process. In reference [39], Yan and Yang proposed a revertible heat-
ing/cooling process to measure pressure dependent thermal expansion coefficient by a 
diamond anvil cell experimentally, when a diamond anvil cell is equipped with a mem-
brane. In a revertible heating/cooling technique, an isobaric process was justified as the 
heating data and cooling data are revertible, and no pressure determination at high P–T 
during heating is required, and thus it eliminates the pressure measuring issue at high 
P–T conditions.

In next section, thermal expansion will be combined with isothermal compression, 
yielding Birch–Murnaghan-thermal expansion model.
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4 � VPT TEOS and Birch–Murnaghan‑Expansion VPT TEOS

In the existing TEOS, pressure (P) is expressed as a function of volume (V) and tem-
perature (T), and this might be the reason why this TEOS is called PVT TEOS. The 
pathway of developing a PVT TEOS is illustrated in Fig. 2a along the green path-
way. In addition to PVT TEOS, another thermal equation of state along the red path-
way in Fig. 2(a) was reported [40–42]. Along the red pathway, it consists an isobaric 
heating at ambient pressure and an isothermal compression at high temperature. To 
differentiate the red pathway with the green pathway of PVT TEOS, we call the red 
pathway model PTV TEOS. For the PTV TEOS, there is no thermal pressure term, 
but measuring reliable pressure, KT, and K �

T
 at high P–T is a big challenge.

In addition to green pathway PVT TEOS, and red pathway PTV TEOS, we pro-
pose a blue pathway in Fig. 2(b). In this model, the volume (V) is expressed as a 
function of pressure (P) in the isothermal compression and a function of tempera-
ture (T) in the isobaric heating, so, we name the blue pathway model VPT TEOS. 
The beginning state (V0, P0, T0), the intermediate state (V1, P, T0), and the final state 
(V, P, T) are illustrated in Fig. 2(b). Along the blue pathway, temperature remains 
constant in the isothermal compression process from the initial state (V0, P0, T0) 
to intermediate state (V1, P, T0), while the pressure remains constant in the process 
from the intermediate state to the final state. The advantage of the blue pathway over 

Fig. 2   Schematic to build the mathematical relation between P, V, and T. In (a), the pressure is a function 
of volume and temperature. The green pathway represents the typical PVT TEOS. In (b), the volume is 
a function of pressure and temperature. The red pathway indicates a model consisting of isobaric heat-
ing at ambient pressure and isothermal compression under high temperature. The blue pathway of VPT 
TEOS consists of an isothermal compression at room temperature and an isobaric heating at high pres-
sure (Color figure online)
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the red pathway is that no pressure determination at high temperature is required, 
and both volume and temperature are easily measured.

Along the blue pathway of the VPT TEOS, the isothermal compression from the 
beginning state (V0, P0, T0) to the intermediate state (V1, P, T0) can be expressed 
by various models, such as Murnaghan [43], modified Tait [44], natural strain [45], 
Vinet [46], Birch–Murnaghan [47], and others. The general form of all of these iso-
thermal compression models is the pressure (P) as a function of the volume (V),

Here P is the pressure value at the intermediate state (V1, P, T0), and V1 is the vol-
ume at the intermediate state (V1, P, T0), illustrated in Fig. 2(b). Subscript 0 refers to 
the initial state, and subscript 1 refers to the intermediate state. The inverse function 
of Eq. 5 is expressed as

In the isobaric heating process from the intermediate state (V1, P, T0) to the final 
state (V, P, T), the volume at (V, P, T) can be solved using the isobaric thermal 
expansion process,

In Eq.  7, x is the integral variable from T0 to T. αp is the pressure dependent 
thermal expansion coefficient, and also it is a function of temperature. Substituting 
volume V1 in Eq. 7 with V1 in Eq. 6 yields

In Eq. 8, the volume (V) is a function of pressure (P) and temperature (T), and 
this is the reason why this TEOS is called VPT TEOS, and has no thermal pressure 
term in it.

The coefficients in these three different TEOSs are different: (1) the coefficients 
for green pathway PVT TEOS are αp, KT, and K0

’; (2) the coefficients for red path-
way PTV TEOS are α0, KT and KT

’; and (3) the coefficients for blue pathway VPT 
TEOS are αp, K0, and K0

’.
To simplify Eq. 8, divide exp

(∫ T

T0
�P ⋅ dx

)

 into both sides, and get

Set V ⋅ exp
(

−∫ T

T0
�P ⋅ dx

)

 on the left side as VM, where M is called modified 
volume,

(5)P = f −1
(

T0,V1,V0,K0,K
�

0

)

.

(6)V1 = f
(

T0,P,V0,K0,K
�

0

)

.

(7)V = V1 × exp

(

∫
T

T0

�P ⋅ dx

)

.

(8)V = f
(

T0,P,V0,K0,K
�

0

)

⋅ exp

(

∫
T

T0

�P ⋅ dx

)

.

(9)V ⋅ exp

(

−∫
T

T0

�P ⋅ dx

)

= f
(

T0,P,V0,K0,K
�

0

)

.
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and Eq. 9 becomes

The Eq. 11 gives the general form of VPT TEOS for volume at high pressure high 
temperature. It describes the mathematical relationship between volume, pressure, 
and temperature for solids in a pressure medium. It has the same “appearance” as 
the isothermal compression in Eq. 6 except the modified volume on the left side. 
The inverse function of Eq. 11 is

The Eq. 12 is the general form of the VPT TEOS for pressure at a given tempera-
ture and volume. It has the same appearance as the isothermal compression in Eq. 5 
except that its volume is replaced by the modified volume.

Taking the 3rd order Birch–Murnaghan equation as an example, P can be solved 
for a given volume (V) and temperature (T) by:

The Eq. 13 describes a specific form of mathematical relationship among pres-
sure, volume, and temperature based on the 3rd order Birch–Murnaghan model, 
called Birch–Murnaghan-expansion VPT TEOS model.

One issue is that, to calculate the pressure from Eq. 13 for any (V, T) data, the 
unknow pressure, PV,T, is on the left side of Eq. 13, and the unknown pressure asso-
ciated thermal expansion coefficient on the right side as well, so there is no pres-
sure analytical solution. However, for any known monotonic alpha (P), the pressure 
monotonically decreases with volume, and there is only one pressure numeric anal-
ysis solution corresponding to a specific volume value at specific temperature, so 
the pressure can be solved by any small computer code. For example, (1) choose a 
reasonable (P1, P2,…Pn) range, it yield to a (α1,α2….αn) array, (2). integrate the 
α array into Eq.  13 with given (V, T), and solve a calculated pressure array(P’1, 
P’2,…P’n), (3) find the numerical solution which fall into the preset threshold. Sim-
ilarly, there is no analytical solution but a numerical solution for the general volume 
expression of Eq. 11 and general pressure expression of Eq. 12 of VPT TEOS.

In summary, the VPT TEOS consists of one isothermal compression at room tem-
perature and one isobaric thermal expansion at high pressure. There is no thermal 
pressure term in it. The general form of VPT TEOS for pressure looks like the same 
as the isothermal compression expression of Eq. 5 except the modified volume in it.

(10)VM = V ⋅ exp

(

−∫
T

T0

�P ⋅ dx

)

(11)VM = f
(

T0,P,V0,K0,K
�

0

)

.

(12)P = f −1
(

T0,VM,V0,K0,K
�

0

)

.

(13)

PV ,T =
3K0

2

[(

(

V0

VM

)
7

3

)

−

(

V0

VM

)
5

3

]{

1 +
3

4

(

K
�

0
− 4

)

[(

(

V0

VM

)
2

3

)

− 1

]}

.
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5 � Validation of Birch–Murnaghan‑Expansion VPT TEOS 
and Comparison with Birch–Murnaghan‑Approximated Anderson 
PVT TEOS at Ambient Pressure

5.1 � Experiments

As discussed in Sect. 2.1, in an isochoric heating process over a certain tempera-
ture range, (1) both αp and KT are temperature dependent and pressure dependent, 
and both are cross-linked, (2) temperature and pressure are changed accordingly to 
achieve an isochoric heating, as a result, the integration on of αp⋅KT is not straight-
forward. To simplify, the product of αp⋅KT is reduced to α0⋅K0 [13, 41, 48, 49]. In 
this section, the reduced α0⋅K0 refers to the approximated thermal pressure. For the 
VPT TEOS, since α0 at ambient pressure for most pressure calibrants are available, 
and limited αp at high pressure, the verification of the Birch–Murnaghan-expansion 
VPT TEOS model will be constrained to ambient pressure in this study. This is the 
reason why we specifically add “at ambient pressure” to the title. In this section, 
the comparison of both Birch–Murnaghan-expansion VPT TEOS and Birch–Mur-
naghan-Approximated Anderson PVT TEOS results at ambient pressure will be 
introduced.

For the high P–T experiments, volume and temperature are measured directly and 
accurately, while pressure at high P–T is calculated by a TEOS. At the moment, 
the pressures calculated from PVT TEOS at high P–T are not consistent [1–5], but 
the pressure of ambient pressure (0 GPa) itself is accurate and well accepted. To 
validate the VPT TEOS model at ambient pressure, we collect a reliable MgO (V, P, 
T) dataset at ambient pressure, predict pressure using Birch–Murnaghan-expansion 
VPT TEOS and Birch–Murnaghan-Approximated Anderson PVT TEOS, and com-
pare the predicted pressure values with the ambient pressure of zero (0) GPa.

An accurate volume of MgO was collected by synchrotron X-ray diffraction 
(XRD), in beamline 12.2.2 at advanced light source (ALS), Lawrence Berkeley 
National Laboratory [50]. The sample was loaded in a capillary, and its pressure 
in the open capillary was 1 bar (0.0001 GPa). The sample temperature was meas-
ured by a thermocouple. Figure 3 shows the schematic experimental setup, and more 

Fig. 3   The schematic experi-
mental setup
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Fig. 4   Left: The 2D X-ray diffraction pattern at 473 K; Right: the integration of the left pattern

Table 1   Experimental temperature, volume, and pressure, along with model prediction pressure from 
Birch–Murnaghan-expansion VPT TEOS, and Birch–Murnaghan-Approximated Anderson PVT TEOS

a Indicated that the data were collected when cooling
b Indicated that the data were extrapolated
c Pressure predicted from PV,T =

3K0

2

[(

(

V0

VM

)
7

3

)

−
(

V0

VM

)
5

3

]{

1 +
3

4

(

K
�

0
− 4

)

[(

(

V0

VM

)
2

3

)

− 1

]}

 , where 

VM = V ⋅ exp
(

−∫ T

T0
�P ⋅ dx

)

d Pressure predicted 

fromPV,T =
3K0

2

[(

(

V0

V

)
7

3

)

−
(

V0

V

)
5

3

]{

1 +
3

4

(

K
�

0
− 4

)

[(

(

V0

V

)
2

3

)

− 1

]}

+ �0 ⋅ K0(T − T0)

Exp. temperature 
(K)

Exp. volume (Å3) Exp. pressure 
(GPa)

VPT TEOS predicted 
P (GPa)c

PVT TEOS 
predicted P 
(GPa)d

298 74.6 ± 0.023 0.0 0.00 ± 0.01 0.00 ± 0.1
473 75.0 ± 0.011 0.0 0.13 ± 0.05 0.14 ± 0.05
573 75.3 ± 0.008 0.0 0.15 ± 0.03 0.19 ± 0.03
673 75.7 ± 0.009 0.0 0.11 ± 0.04 0.18 ± 0.04
773 76.0 ± 0.008 0.0 0.06 ± 0.03 0.17 ± 0.03
873 76.3 ± 0.013 0.0 0.02 ± 0.05 0.20 ± 0.05
973 76.6 ± 0.014 0.0 0.08 ± 0.06 0.31 ± 0.05
1073 77.0 ± 0.026 0.0 0.05 ± 0.11 0.36 ± 0.1
1173 77.2 ± 0.03 0.0 0.11 ± 0.12 0.50 ± 0.11
1023a 76.8 ± 0.015 0.0 0.14 ± 0.06 0.40 ± 0.06
823a 76.1 ± 0.017 0.0 0.11 ± 0.07 0.25 ± 0.07
623a 75.5 ± 0.021 0.0 0.14 ± 0.09 0.19 ± 0.08
423a 74.9 ± 0.023 0.0 0.12 ± 0.10 0.13 ± 0.1
323a 74.6 ± 0.024 0.0 0.02 ± 0.1 0.02 ± 0.1
1223b 77.4 0.0 0.07 0.51
1323b 77.7 0.0 0.07 0.61
1423b 78.1 0.0 0.07 0.72
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detail of the setup is available in ref. [51]. During the heating/cooling process, a 
100 µm diameter open capillary was used, heated up to 1173 K, and then cooled 
down to room temperature. Angle-dispersive diffraction data were collected at an 
energy of 25  keV with a well-focused (10 × 10 μm2  spot size) synchrotron X-ray 
beam. The XRD patterns were collected from a MAR345 image plate. Sample vol-
umes were fitted by the method of Celref [52]. A 2-D XRD images at 473 K and 
its integrated XRD patterns show in Fig. 4. The experimental data of temperature, 
volume, and pressure are listed in Table 1 as “Exp. Temperature (K)”, “Exp. Volume 
(Å3)”, and “Exp. Pressure (GPa)”, respectively, and plotted in Fig. 5.

The unit cell volume at room temperature from this study is 74.55 Å3, which is 
very close to the 74.56 Å3(11.227cm3/mole) [53]. Both heating data and cooling 
data are plotted in Fig. 5. To extend its temperature range, 3 extra data points are 
extrapolated, listed in Table 1 as double star (**), and plotted in Fig. 5 as triangles. 
The zero order of thermal expansion coefficient of MgO from 297 to 1173 K was 
fitted as 4.13 ± 0.04 × 10–5 K−1, and it agrees with the experiment data in ref. [54].

5.2 � Validation of Birch–Murnaghan‑Expansion VPT TEOS

To validate the VPT TEOS model, we predict the pressure of MgO from the model 
and check if the predicted pressure matches the experimental value of zero (0) GPa. 
The inputs for Eq. 13 are the experimental MgO volume and temperature in Table 1, 
the bulk modulus K0 of 160.2 GPa, pressure derivative bulk modulus K ′

0
 of 3.99, V0 

of 74.55 Å3 fitted from our data, and the thermal expansion coefficient at ambient 
pressure �0 of 4.13 ± 0.04 × 10–5 K−1 from Fig. 5, respectively.

Using the Eq.  13 of Birch–Murnaghan-expansion VPT TEOS, pressures are 
predicted and listed in Table 1 as “VPT TEOS predicted P (GPa)”, and plotted in 
Fig. 6 as VPT TEOS. The predicted pressures are around 0.1 ± 0.1 GPa and have a 
flat trend throughout the entire experimental temperature range, and match with the 
experimental data very well. The error propagation of variation of both VPT pres-
sure predicted and PVT pressure predicted in this project are only from the volume 
variation, none of them from variation of bulk modulus, pressure derivative bulk 

Fig. 5   The volume vs. tempera-
ture of solid MgO in a capillary
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modulus, etc. It looks like there is a bump around 550 K for the pressure prediction 
from both Birch–Murnaghan-expansion VPT TEOS and Birch–Murnaghan-Approx-
imated Anderson PVT TEOS. The reason might be that the room temperature data 
point is the reference point, so there is least deviation at this point.

The VPT TEOS formulations Eqs.  8, 12, and Birch–Murnaghan-expansion 
Eq. 13 are supposed to be applicable to high pressure, but due to lack of pressure 
dependent thermal expansion coefficients at high P–T for most common pressure 
calibrants, validation of Birch–Murnaghan-expansion VPT TEOS for high pressure 
cannot be provided at the moment in this report.

5.3 � Prediction from Birch–Murnaghan‑Approximated Anderson PVT TEOS

The Anderson thermal pressure model is the original and widely used model for 
thermal pressure. As mentioned before, since both αp and KT are pressure and 
temperature dependent, the integration of product of αp⋅KT not straightforward, 
and approximated to α0⋅K0. Combined the most common 3rd order Birch–Mur-
naghan equation and approximated Anderson thermal pressure model, the ther-
mal equation of state is expressed below, called Birch–Murnaghan-Approximated 
Anderson PVT TEOS,

(14)

PV,T =
3K0

2

[(

(

V0

V

)
7

3

)

−

(
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V

)
5

3

]{

1 +
3

4

(

K
�

0
− 4

)

[(

(

V0

V

)
2

3

)

− 1

]}

+ �0⋅K0

(

T − T0

)

.

Fig. 6   The pressure calculated from Birch–Murnaghan-expansion VPT TEOS and Birch–Murnaghan-
Anderson PVT TEOS based on the experimental volume and temperature values, of solid MgO at ambi-
ent pressure in Table 1. The trend line of Birch–Murnaghan-Anderson PVT TEOS and Birch–Murna-
ghan-expansion VPT TEOS are displayed, respectively
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Inputting the same K0, K ′

0
 , V0, �0 , and experimental volume and tempera-

ture value of MgO in Table  1, the predicted pressures from Birch–Murnaghan-
Approximated Anderson PVT TEOS are calculated from Eq. 14, listed as “PVT 
TEOS predicted P (GPa)” in Table 1 and plotted in Fig. 6 as PVT heating/cool-
ing. According to the Fig, 6, the pressure prediction from Birch–Murnaghan-
approximated Anderson PVT TEOS overestimates the pressure values, and the 
higher the temperature, the bigger the deviation. The approximated PVT TEOS 
exhibits a wrong upward trend from the real ambient pressure of zero (0) GPa. 
The main deviation might be from the approximation of αp⋅KT to α0⋅K0.

Not only does the MgO data in this project validates the Birch–Murnaghan-
expansion VPT TEOS model, but the data of gold (Au) from literature does as well. 
For details of Au data, please refer to the supplemental material. Both Au and MgO 
Birch–Murnaghan-expansion VPT TEOS have a flat trend that matches with experi-
mental data of zero (0) GPa in the whole experimental range, while pressure predic-
tion from the approximated traditional PVT TEOS shows a wrong trend.

In summary, from the experimental data of volume and temperature, Birch–Mur-
naghan-expansion VPT TEOS model predicted pressure matches the ambient pres-
sure of zero (0) GPa very well. On the contrary, the pressure prediction from the 
approximated Anderson PVT TEOS exhibit a big deviation and a wrong trend. It 
would be more convincing to prove Birch–Murnaghan-expansion VPT TEOS 
at high pressure. But unlike the case of ambient pressure (zero (0) GPa) are well-
known, there is a big discrepancy of the pressure scale at high pressure, s, the vali-
dation of VPT TEOS for high pressure cannot be provided at the moment.

6 � Conclusion

In the PVT thermal equation of state, thermal pressure is the pressure change in an 
isochoric heating process. It is the pressure pushing the sample’s volume back to 
the volume prior to heating. In this report, it is demonstrated that (1) One heating 
followed by a pressure adjusting could make isochoric heating, but any single high 
pressure heating in a DAC is not an isochoric heating, so the pressure change in a 
non-isochoric process is not exactly the thermal pressure. (2) The thermal pressure 
cannot be determined by the thermal pressure of its calibrant. Without direct experi-
mental thermal pressure, temperature dependent KT in the Anderson thermal pres-
sure model and Grüneisen parameter in the Mie–Grüneisen thermal pressure model 
cannot be fitted easily and accurately. In this report, it is proposed to substitute the 
thermal pressure model with the thermal expansion model. Integrating any isother-
mal compression model at room temperature with the thermal expansion model at 
high pressure yield an alternative VPT TEOS model. The Birch–Murnaghan-expan-
sion VPT TEOS were proved by MgO and Au at ambient pressure. Since there is 
limited high pressure αp for most calibrants at the moment, verifications of VPT 
TEOS at high P–T range is desirable in future research.
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