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RESEARCH Open Access

Oscillation-specific nodal alterations in early
to middle stages Parkinson’s disease
Xiaojun Guan1, Tao Guo1, Qiaoling Zeng1, Jiaqiu Wang2, Cheng Zhou1, Chunlei Liu3,4, Hongjiang Wei4,
Yuyao Zhang4, Min Xuan1, Quanquan Gu1, Xiaojun Xu1*, Peiyu Huang1, Jiali Pu2, Baorong Zhang2 and
Min-Ming Zhang1*

Abstract

Background: Different oscillations of brain networks could carry different dimensions of brain integration. We
aimed to investigate oscillation-specific nodal alterations in patients with Parkinson’s disease (PD) across early stage
to middle stage by using graph theory-based analysis.

Methods: Eighty-eight PD patients including 39 PD patients in the early stage (EPD) and 49 patients in the middle
stage (MPD) and 36 controls were recruited in the present study. Graph theory-based network analyses from three
oscillation frequencies (slow-5: 0.01–0.027 Hz; slow-4: 0.027–0.073 Hz; slow-3: 0.073–0.198 Hz) were analyzed. Nodal
metrics (e.g. nodal degree centrality, betweenness centrality and nodal efficiency) were calculated.

Results: Our results showed that (1) a divergent effect of oscillation frequencies on nodal metrics, especially on nodal
degree centrality and nodal efficiency, that the anteroventral neocortex and subcortex had high nodal metrics within
low oscillation frequencies while the posterolateral neocortex had high values within the relative high oscillation
frequency was observed, which visually showed that network was perturbed in PD; (2) PD patients in early stage
relatively preserved nodal properties while MPD patients showed widespread abnormalities, which was consistently
detected within all three oscillation frequencies; (3) the involvement of basal ganglia could be specifically observed
within slow-5 oscillation frequency in MPD patients; (4) logistic regression and receiver operating characteristic curve
analyses demonstrated that some of those oscillation-specific nodal alterations had the ability to well discriminate PD
patients from controls or MPD from EPD patients at the individual level; (5) occipital disruption within high frequency
(slow-3) made a significant influence on motor impairment which was dominated by akinesia and rigidity.

Conclusions: Coupling various oscillations could provide potentially useful information for large-scale network and
progressive oscillation-specific nodal alterations were observed in PD patients across early to middle stages.

Keywords: Parkinson’s disease, Network, Functional magnetic resonance imaging, Oscillation frequency, Graph theory
analysis, Akinesia and rigidity

Background
Parkinson’s disease (PD) is a chronic and progressive move-
ment disorder characterized by heterogenous motor symp-
toms including tremor, akinesia and rigidity [1, 2]. Damage
to substantia nigra pars compacta resulting in the depletion
of dopamine is frequently considered as an important
pathological hallmark of PD [3, 4], which functionally leads

to disruption of the basal ganglia, a trigger of clinical
motor symptoms [5]. Clinical magnetic resonance
imaging (MRI) has detected robust abnormalities in
substantia nigra [6, 7], basal ganglia [8–10], neocortex
[11–13] and cerebellar cortex [14, 15] across the vari-
ous parkinsonian statuses. Nevertheless, the parkinson-
ian network abnormalities are not fully understood, so
more integrated and comprehensive approaches to
identify possible pathogenesis are highly desired.
Neurons and networks are endowed with complex dy-

namics, including their intrinsic abilities to resonate and
oscillate at multiple frequencies, and these different
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oscillations of brain networks could carry information
about different dimensions of brain integration [16].
Although resting functional MRI (fMRI) provides dy-
namical brain network information with a broad power
spectrum, oscillatory coupling is usually examined
within a single frequency band [8–10, 17–20]. As excep-
tions, there have been studies that decomposed fMRI
oscillation into multiple distinct frequency bands. How-
ever, these studies revealed oscillation-specific functional
abnormalities in PD patients by measuring local spon-
taneous brain function [21–23]. Because human brain
works as a large-scale network connected with intricate
edges [24, 25], local measurements could not thoroughly
clarify the potential PD pathogenesis [21–23] neither the
measurement merely focusing on the alterations of
striatum-based functional connectivity [26]. Therefore,
restoring human brain to a large-scale network with
multiple oscillation frequencies could make insightful
contributions to a better understanding of PD.
Graph theory-based analysis models the human brain as

a complex large-scale network and provides a powerful
mathematical framework to characterize topological
organization of the human brain network [24, 27, 28]. By
employing this method, a number of studies found that
the integration and segregation of the global network top-
ology were disturbed in PD patients [7, 17, 18, 29, 30]. In
the estimation of each node function in the constructed
large-scale network, nodal abnormalities in the sensori-
motor and temporal-occipital regions were observed in
PD patients [17, 18]; in particular, one of the studies
reported that the nodal centrality was associated with dis-
ease stages [17]. However, although these studies clarified
PD pathogenesis in a network perspective, the BOLD sig-
nal oscillation was still analyzed within a single frequency
band, overlooking the distinctive information provided by
multiple frequency bands [21, 22, 26, 31–33]. Therefore,
the influence of different frequency bands on nodal prop-
erties in the large-scale network in PD patients and aging
population remains unclear. More specifically, the poten-
tial progressive alterations of oscillation-specific nodal
properties across different disease stages and their rela-
tionships with motor function deficits are still unexplored
in PD. Since it was suggested that specific firing patterns
of the motor network mediate the heterogenous motor
symptoms in PD [5], the relationships between oscillation-
specific nodal alterations and specific motor symptoms,
i.e. akinesia/rigidity and/or tremor, are unknown.
To address these questions, we first constructed large-

scale network matrixes within various oscillation frequen-
cies. Next, graph theory-based analysis was performed to
measure the nodal properties within each oscillation
frequency. Furthermore, the effects of different oscilla-
tion frequencies on nodal properties were investigated.
We also explored oscillation-specific progressive nodal

abnormalities in PD patients across early to middle
stages. Finally, clinical correlation analyses were con-
ducted between altered nodal properties and motor se-
verity, taking into account which component of motor
symptoms (akinesia/rigidity and tremor) contributed
dominantly.

Methods
Subjects
All PD patients and control subjects signed informed con-
sent forms and all procedures performed in studies involv-
ing human participants were in accordance with the ethical
standards of the institutional research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. PD diagnosis was made by a
senior neurologist according to United Kindom Parkinson’s
Disease Society Brain Bank criteria [34]. For each patient,
demographic information including age, gender, education,
disease history and clinical assessments including the Uni-
fied Parkinson’s Disease Rating Scale (UPDRS) score, the
Mini-Mental State Examination (MMSE) score, Hoehn-
Yahr stage and disease duration were obtained. In detail,
the UPDRS motor tremor score (sum of items 20 and 21)
and the UPDRS motor akinesia/rigidity score (sum of items
22–27 and 31) as representatives of different motor impair-
ments were calculated [8, 35]. For normal controls, above
demographic and clinical information including age, gen-
der, disease history, UPDRS motor score and MMSE score
were collected. Clinical data and fMRI data were obtained
after overnight withdrawal of treatment (at least 12 h) for
PD patients taking anti-parkinsonian drugs.
Subjects were excluded depending on their disease his-

tory and medication status: (1) with schizophrenia, n = 1;
(2) with blindness, n = 1; (3) with metal artifact for MRI
scanning, n = 8; (4) with potentially cognitive impair-
ment according to previous suggestions weighted by
Chinese education (MMSE score ≤ 17 for illiterate sub-
jects, ≤ 20 for grade-school literate, and ≤ 23 for junior
high school and higher education literate) [36, 37], n = 3;
(5) with excessive head motion (greater than 2mm in
transformation and 2° in rotation), n = 6; (6) with more
than 1/3 bad time points removed after scrubbing, n = 4;
(7) without drug withdrawal for PD patients, n = 1.
In total, 88 PD patients with Hoehn-Yahr stage ran-

ging from 1 to 2.5 and 36 controls were included in the
study. Patients with Hoehn-Yahr stage ranging from 1 to
1.5 were defined as early stage PD (EPD) while patients
with Hoehn-Yahr stage ranging from 2 to 2.5 were de-
fined as middle stage PD (MPD). Due to the advanced
PD patients were not the target cohort of current re-
search project, the small sample size of PD patients with
Hoehn-Yahr stage ranging from 3 to 5 made it impracti-
cal to be included in this study.
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MRI scanning
MRI scanning was performed on a 3.0 Tesla system (GE
Medical Systems, Discovery 750) equipped with an
eight-channel head coil. During MRI scanning, the head
of each subject was stabilized with restraining foam
pads. Earplugs were provided to reduce the noise during
scanning. The fMRI scanning was performed in dark-
ness, and the participants were explicitly instructed to
relax, close their eyes and not fall asleep during the fMRI
acquisition. fMRI images were acquired using a Gradient
Recalled Echo/Echo Planar Imaging sequence: repetition
time = 2000ms; echo time = 30 ms; flip angle =77 de-
grees; field of view = 240 × 240mm2; matrix = 64 × 64;
slice thickness = 4 mm; slice gap = 0mm; 38 interleaved
slices. A total of 205 volumes were acquired from each
subject. Structural T1 images were acquired using a Fast
Spoiled Gradient Recalled sequence: repetition time =
7.336 ms; echo time = 3.036ms; inversion time = 450ms;
flip angle = 11 degrees; field of view = 260 × 260mm2;
matrix = 256 × 256; slice thickness = 1.2 mm; 196 con-
tinuous sagittal slices.

fMRI data preprocessing
fMRI data preprocessing was performed using the Data
Processing & Analysis for (Resting-State) Brain Imaging,
DPABI (http://rfmri.org/dpabi) [38]. The first 10 volumes
of rsfMRI data were discarded due to the consideration of
instability of the initial MRI signal, thus 195 time points
were implemented into following procedures: slice timing,
realignment, nuisance covariates (Friston’s 24 head mo-
tion parameters, white matter and cerebrospinal fluid sig-
nal) regression, spatial normalization with resampling to
3 × 3 × 3mm3 through structure images, smoothing with a
Gaussian kernel of 6 × 6 × 6mm3 full width at half max-
imum, detrending and scrubbing. Head motion parameter
from each subject was collected for further regression ana-
lysis. To investigate functional network oscillations with
different frequencies, we further divided the full frequency
range (0–0.25 Hz) into five oscillation frequencies: slow-6
(0–0.01Hz), slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.073
Hz), slow-3 (0.073–0.198 Hz) and slow-2 (0.198–0.25Hz)
[16, 32]. Because signal from slow-6 and slow-2 mainly
reflect low frequency drift, white matter signals, and high-
frequency physiological noises, respectively [32, 39], we
did not construct functional network within these two
oscillations.

Network construction
Whole brain network is composed of nodes and edges
between nodes [24, 27]. Nodes represent brain regions,
i.e., a collection of voxels. Edges represent the interre-
gional statistical coherences of blood oxygen level-
dependent signals (functional connectivity). First of all,
to define the nodes, as basal ganglia dysfunction is

cardinally involved in PD [5, 8–10], the atlas with 112
subcortical and cortical regions of interest generated
from a probabilistic atlas of Harvard-Oxford Structural
Atlas that defines regions based on standard anatomical
boundaries (probability threshold = 25%) [40] was used
in the present study. Each region of interest was repre-
senting a node of the network. Then, we extracted the
mean time course of each node and interregional
resting-state functional connectivity was evaluated by
calculating the Pearson correlation between the time
courses of each node pair. Fisher’s r-to-z transformation
was applied to improve data distributions for parametric
statistical analysis. Finally, network matrixes (112 × 112)
within three corresponding oscillations (slow-5, slow-4
and slow-3) for each subject were generated for follow-
ing graph theory-based network analysis.

Graph theory-based network analysis
Before calculating network metrics, each constructed
matrix was thresholded into a binarized matrix with a
fixed sparsity value which defined as the total number of
edges in a network divided by the maximum possible
number of edges. Because the topological property com-
putation has a strong dependency on network sparsity, a
range of sparsity from 5 to 50% with an interval of 5% in-
stead of a single threshold was selected, in which the con-
structed network has prominent small-world properties
[25]. Therefore, by setting a sparsity-specific threshold,
the networks to be analyzed from each group had the
same number of edges and the potential discrepancies in
the overall functional connectivity would be minimized.
Finally, to investigate group differences in these networks,
we calculated the area under the curve (AUC) for each
network metric (property), which provides a summarized
scalar for topological characterization of brain networks
independent of single threshold selection [17, 18, 41].
For the constructed functional networks, we calculated

topological nodal metrics for each subject [24, 27, 28, 42].
The metrics included nodal degree centrality, nodal effi-
ciency and nodal betweenness centrality. Briefly, degree
centrality for a given node reveals its information commu-
nication ability in the functional network; nodal between-
ness centrality reflects its effect on information flow
between other nodes; and nodal efficiency characterizes
the efficiency of parallel information transfer of that node
in the network.
To detect group differences in AUC values for each

nodal metric, general linear model was used with age,
gender and head motion as covariates of no interests.
For multiple comparisons of nodal properties, we used a
false-positive correction of each one (112 nodes in total),
p = 1/112 (1/N) = 0.009, where N is the number of com-
parisons, which implies that we expected less than one
false positive per analysis on average [41, 43]. Of note,
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when the comparisons of nodal metrics in general linear
model mentioned above were performed among three
groups (EPD, MPD and controls), the p value was ad-
justed by using Bonferroni correction. For example, the
threshold of ‘p = 0.009’ from the comparison of each
nodal metric among three groups was first adjusted on
multiple-group level with Bonferroni correction and
then on multiple-node level (1/112).
All these network analyses were conducted using the

GRETNA toolbox (http://www.nitrc.org/projects/gretna/)
[28] and IBM SPSS 19.0 and the results were visualized using
BrainNet Viewer (http://www.nitrc.org/projects/bnv/) [44].

Statistics analysis for demographic and clinical
information
The normal distribution of data was confirmed using the
one-sample Kolmogorov–Smirnov test. Differences in
the age, education, disease duration, UPDRS motor score
(including akinesia/rigidity score and tremor score) and
Hoehn-Yahr stage distribution between whole PD group
and normal controls or PD groups or among EPD, LPD
and controls were compared with independent t test or
analysis of variance. Gender distribution between/among
groups was compared with Pearson chi-square. Due to
the non-normality of data distribution, the differences of
MMSE score and head motion between the two PD
groups or among three groups were compared with
Mann-Whitney U test or Kruskal-Wallis test appropri-
ately. The AUC value from each nodal metric showing
significant differences in intergroup comparisons was
used to perform partial correlation analysis with clinical
motor score (i.e. UPDRS motor score) first. Age, gender
and head motion were regressed out. Then, considering
the heterogeneity of motor impairment in PD, motor
subscale, like akinesia/rigidity score and tremor score,
was separately input into partial correlation analysis with
additionally regressing out the other motor subscale.
These analyses were conducted by using IBM SPSS 19.0.

Validations
(1) Since no existing study had investigated the effect of
oscillation frequencies on large-scale networks, previous
documents detected that on a local measurement of
brain function (amplitude of low-frequency fluctuation,
ALFF; or fractional ALFF, fALFF) [22, 23, 31–33]. There-
fore, in the present study, we replicated their results to
confirm the fluctuations of regional measurement on dif-
ferent oscillations in our database, which could help com-
pare the oscillatory effect on large-scale network. In the
present study, we first used the unfiltered preprocessed
data to calculate the fALFF which has an improved sensi-
tivity and specificity in detecting spontaneous brain activ-
ities compared with ALFF [45, 46]. For a timeseries, ALFF
is calculated as the sum of amplitudes within a specific

low frequency range. fALFF is the ALFF of a given fre-
quency band expressed as a fraction of the sum of ampli-
tudes across the entire frequency range detectable in a
given signal. Consequently, the fALFF from each oscilla-
tion frequency (slow-5, slow-4 and slow-3) was computed.
Finally, z transformation was applied to improve data dis-
tributions for parametric statistical analysis. All these steps
were completed in DAPBI (http://rfmri.org/dpabi) [38].
Multiple comparisons correction was performed using
false discovery rate (FDR) p < 0.05 with an extending
cluster size > 10.
(2) Given that the constructions of large-scale functional

networks from each oscillation frequency could provide
sensitive and comprehensive measurements, as a control,
we repeated the calculation of functional network within
the commonly used frequency band (0.01–0.1 Hz) and
compared the nodal properties among the groups.
(3) Though all of the subjects recruited in the present

study were cognitively normal and the intergroup differ-
ence of MMSE did not survive after education regres-
sion, PD patients (in particular for MPD patients) had a
lower MMSE score than normal controls. Therefore, we
reworked graph theory-based network analysis and par-
tial correlation analysis by regressing out MMSE score
as an extra covariate.
(4) To validate the robustness of network properties at

individual level, we first performed logistic regression to
identify the most important variables that having ability
to discriminate PD patients from controls or between
EPD and MPD. To fully identify all the relevant vari-
ables, the initial valuables input into logistic regression
model were composed of two parts: i. those nodal prop-
erties with statistical intergroup difference (p < 0.009); ii.
nodal properties contralateral to them with a trend to be
statistically significant (p < 0.05) because they might
have similar discriminative ability, otherwise these vari-
ables with low importance could be removed by logistic
regression. Then, receiver operating characteristic (ROC)
curve was used to plot the compositive score (probabil-
ity) from the logistic regression model. Some indices,
e.g. sensitivity, specificity and AUC value, were calcu-
lated, and Youden index was used to determine the best
discriminative result.

Results
Demographic and clinical information
Though potential cognitively impaired subjects were ex-
cluded in the present study, compared with normal con-
trols, PD patients had decreased MMSE score (p = 0.001)
and education (p = 0.002). In detail, we observed that
both MMSE score and education score in MPD patients
were lower than that in EPD patients (p = 0.004 and p =
0.005, respectively) and normal controls (p < 0.001 for
each). Of note, such difference did not survive after
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education was regressed out as a covariate of no interest
(Table 1). Among EPD, MPD and normal controls,
MPD patients were older than EPD patients (p = 0.005).
Finally, except for the significant differences of disease
severity (e.g. UPDRS motor score, akinesia/rigidity score,
tremor score and Hoehn-Yahr stage) between/among
groups, no other significant difference was observed.
Table 1 showed the specified information.

The effect of oscillation frequency on network properties
Figure 1 visualized the alterations of nodal metrics
among three oscillation frequencies and Additional file 1
showed the detailed statistical information (exact p
values and t values). For degree centrality, in both PD
patients and normal controls, higher values were ob-
served in the frontal lobe (excluding frontal pole), infer-
ior temporal gyrus, temporal fusiform cortex and
subcortex (e.g. basal ganglia, thalamus etc.) and lower
values were observed in the regions mainly located in
parietal, middle and superior temporal and occipital
lobes within low oscillation frequencies (slow-5 and
slow-4) than within high oscillation frequency (slow-3).
Moreover, compared with normal controls, substantial
perturbations of network properties calculated in each
oscillation frequency were visually observable in PD pa-
tients. Similar alterations could be observed in nodal ef-
ficiency. For nodal betweenness centrality, the nodal
alterations among three oscillation frequencies distrib-
uted more sparsely compared with degree centrality and
nodal efficiency though a similar trend could still be
found. In summary, the anteroventral neocortex (exclud-
ing frontal pole) and deep grey matter had high values
within the low oscillation frequencies (slow-5 and slow-
4) while the posterolateral neocortex had high values
within the relatively high oscillation frequency (slow-3),

and PD patients suffered from more observable wide-
spread network perturbations across different oscillation
frequencies compared with normal controls.

Oscillation-specific nodal alterations in parkinsonian
status
For nodal degree centrality (Fig. 2 and Table 2), com-
pared with normal controls, significantly increased de-
gree centrality in basal ganglia (bilateral putamen and
right thalamus) and decreased degree centrality in left
occipital pole were observed within the slow-5 oscilla-
tion frequency in PD patients. Within slow-4 oscillation
frequency, PD patients had a significantly decreased de-
gree centrality in left inferior frontal gyrus and right oc-
cipital pole and increased degree centrality in left
accumbens and right frontal orbital cortex. There was a
single region (left frontal medial cortex) showing in-
creased degree centrality in PD patients within slow-3
oscillation frequency. For nodal efficiency (Fig. 3 and
Table 3), within slow-5 oscillation frequency, signifi-
cantly increased efficiency was observed in bilateral pu-
tamen, right brain-stem and right angular gyrus while
reduced efficiency was observed in left occipital pole in
PD patients compared with controls. Within slow-4 os-
cillation frequency, significantly increased efficiency in
left accumbens and frontal orbital cortex and decreased
efficiency in left inferior frontal gyrus were observed in
PD patients compared with controls. No significant dif-
ference was found in nodal efficiency within slow-3 os-
cillation frequency and in betweenness centrality within
all three oscillation frequencies.
Further, among three oscillation frequencies, the only

node showing both lower degree centrality and efficiency
in EPD than those in controls was left inferior frontal
gyrus within slow-4. Severely, widespread alterations of

Table 1 The distribution of demographic and clinical information

Item PD EPD MPD NC P(PD vs. NC) P(EPD vs. NC) P(MPD vs. NC) P(MPD vs. EPD)

Number (F/M) 88 (38/50) 39 (18/21) 49 (20/29) 36 (20/16) 0.210 0.491 0.195 0.668

Age, mean ± SD 59.72 ± 8.99 56.48 ± 8.15 62.30 ± 8.86 58.14 ± 8.09 0.360 1.000 0.078 0.005

Duration, mean ± SD 3.73 ± 3.32 3.37 ± 3.58 4.01 ± 3.11 – – – – 0.375

MMSE, mean ± SD 27.22 ± 2.51 28.08 ± 1.87 26.53 ± 2.76 28.69 ± 1.65 0.001ab 0.096ab < 0.001ab 0.004ab

Education, mean ± SD 8.34 ± 4.82 10.03 ± 4.09 7.00 ± 4.96 11.23 ± 3.63 0.002a 0.157a < 0.001a 0.005a

Hoehn-Yahr stage, mean ± SD 1.69 ± 0.54 1.14 ± 0.23 2.13 ± 0.22 – – – – < 0.001

UPDRS motor score, mean ± SD 24.68 ± 13.52 14.79 ± 6.09 32.55 ± 12.61 0.64 ± 1.13 < 0.001 < 0.001 < 0.001 < 0.001

Akinesia/rigidity score, mean ± SD 15.95 ± 9.54 8.85 ± 3.92 21.61 ± 8.89 – – – – < 0.001

Tremor score, mean ± SD 4.05 ± 3.95 2.54 ± 1.77 5.24 ± 4.74 – – – – < 0.001

Head motion, mean ± SD 0.128 ± 0.077 0.121 ± 0.077 0.134 ± 0.077 0.129 ± 0.065 0.512a 0.252a 0.922a 0.380a

aMann-Whitney U test or Kruskal-Wallis test
bNo significance after adjusting education
-: Data not available
PD Parkinson’s disease, EPD Early stage Parkinson’s disease, MPD Middle stage Parkinson’s disease, NC Normal controls
MMSE Mini-Mental State Examination, UPDRS United Parkinson’s disease Rating Scale
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degree centrality and efficiency located in the subcortex
(e.g. putamen, pallidum, accumbens and thalamus,),
frontal lobe (e.g. frontal orbital cortex), temporal lobe
(e.g. middle temporal gyrus), parietal lobe (e.g. angular
gyrus) and occipital lobe (e.g. occipital pole and lateral
occipital cortex superior division) were investigated in
MPD patients.
In brief, nodal alterations were more widespread in

MPD patients than in EPD patients. More interestingly,
oscillation-specific alterations could be observed in PD pa-
tients in different stages, e.g. enhanced nodal properties in
basal ganglia and thalamus were specifically observed
within slow-5 oscillation frequency in MPD patients.

Clinical relationships between altered oscillation-specific
network and motor severity
Among those intergroup comparisons within each oscilla-
tion frequency, we performed partial correlation analyses to
obtain clinically related nodal alterations. Though several
weak correlations were observed and occipital disruption

was detected in the three oscillation frequencies, only
the correlations between nodal properties in occipital
lobe within slow-3 oscillation frequency and motor se-
verity survived after multiple comparisons correction
(Bonferroni approach). Specifically, the nodal degree
centrality of bilateral lateral occipital cortices superior
division (r = − 0.3266, p = 0.0023 for left side, and r = −
0.3741, p = 0.0004 for right side) and bilateral occipital
poles (r = − 0.3708, p = 0.0005 for left side, and r = −
0.4328, p < 0.0001 for right side) had significantly nega-
tive correlations with UPDRS motor scores. Further, by
splitting UPDRS motor score into tremor and akinesia/
rigidity scores, we detected that the above correlations
were only related to akinesia/rigidity but not tremor
(Fig. 4). Similar correlations were shown in nodal effi-
ciency within slow-3 oscillation frequency (Fig. 5). Of
note, the correlation between left occipital pole and
akinesia/rigidity score did not survive after Bonferroni
correction. No other significant clinical correlation was
observed in other nodal metrics.

Fig. 1 The effect of oscillation frequencies on network properties. Paired t-tests were performed to identify the effect of oscillation frequencies. We
used a false-positive correction of each node, p = 1/112 (1/N) = 0.009, where N is the number of comparisons, which implies that we expected less
than one false positive per analysis on average. All the nodes showing in this figure had significantly differences between frequencies. The red color
represented increased values and the blue color represented decreased values. The bigger nodal size indicated the larger absolute t value
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Validations
(1) To a large extent, the effect of oscillation frequencies
on fALFF was different from that on nodal properties of
large-scale network (see Fig. 1 and Additional file 2).
Compared with fALFF within slow-4, fALFF within
slow-5 was significantly decreased in subcortex (e.g.
basal ganglia, thalamus etc.) and dorsolateral cortex
while it was significantly increased in ventral cortex and
cerebellum, which was largely consistent with previous
studies [22, 31–33]. And the fALFF perturbation was
visually more widespread in PD patients than that in
controls among different oscillation frequencies. While
comparing fALFF in low frequencies (slow-5 and slow-4)
with high frequency (slow-3), subcortex showed lower
fALFF and cortex showed higher fALFF within slow-5
and slow-4 than that within slow-3, which was also
largely consistent with one recent investigation [33].
(2) For the nodal degree centrality, among the groups,

all the findings observed in the network constructed in
the commonly used frequency band (0.01–0.1 Hz) could

be detected but assigned to different networks calculated
from corresponding oscillation frequencies. More interest-
ingly, the result of bilateral putaminal dysfunction did not
survive in the network with 0.01–0.1 Hz in the PD (MPD)
patients (Additional file 3). For the nodal efficiency,
enhanced brain-stem was additionally observed in the
networks with oscillation frequency of slow-5, while other
findings kept similar between two methods (Add-
itional file 4). These findings reflects that oscillation-
specific network construction is sensitive in detecting
nodal abnormalities and could provide distinctive infor-
mation of nodal alterations in PD.
(3) After regressing out MMSE score, the results of

nodal alterations were largely similar to those obtained
without MMSE regression except for some individual
fluctuation(s) and these statistical data were shown in
Additional files 5 and 6. For correlation analysis, no sig-
nificant change was observed.
(4) In the discrimination between PD patients and

controls, the variables finally entered into the logistic

Fig. 2 Oscillation-specific alterations of nodal degree centrality in parkinsonian status. Red nodes indicated PD patients had higher decree
centrality than normal controls while blue nodes indicated PD patients had lower degree centrality than normal controls. The big nodes were
significantly different between groups (p < 0.009). For a better visualization and comparison, if one of either side node showing a significant
difference (p < 0.009), the contralateral nodes with p < 0.05 were also visualized but in the small size
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regression model included degree centrality in the left
inferior frontal gyrus in the oscillation frequency of
slow-4 (X1) and left frontal medial cortex in the oscil-
lation frequency of slow-3 (X2), and nodal efficiency
in the right angular gyrus (X3) and left putamen (X4)
in the oscillation frequency of slow-5. The sensitivity,
specificity, AUC value and p value were 0.830, 0.639,
0.820 and < 0.001, respectively (Fig. 6a). The logistic
regression formula was:

logit P1ð Þ ¼ −3:938−0:121� X1 þ 0:121� X2 þ 11:061
� X3 þ 12:647� X4

In the discrimination between EPD and MPD patients,
the variables selected by the logistic regression model
were the degree centrality in right occipital pole in the
oscillation frequency of slow-5 (X1), right accumbens in
the oscillation frequency of slow-3 (X2) and right occipi-
tal pole in the oscillation frequency of slow-3 (X3), and
the nodal efficiency in the right angular gyrus in the os-
cillation frequency of slow-4 (X4) and lateral occipital

cortex superior division in the frequency of slow-3 (X5).
The sensitivity, specificity, AUC value and p value were
0.878, 0.744, 0.869 and p < 0.001, respectively (Fig. 6b).
The logistic regression formula was:

logit P2ð Þ ¼ 2:574−0:099� X1 þ 0:230� X2−0:149
� X3 þ 25:341� X4−25:216� X5

Discussion
In the current study, we aimed to investigate oscillation-
specific nodal alterations in PD patients across early
stage to middle stage. Here, we had three main findings.
First, different from the fALFF, the anteroventral neo-
cortex and subcortex had high nodal properties within
low oscillation frequencies while the posterolateral neo-
cortex had high values within the relatively high oscilla-
tion frequency, where observable perturbation of nodal
properties among three oscillation frequencies was
detected in PD. Second, oscillation-specific progressive

Fig. 3 Oscillation-specific alterations of nodal efficiency in parkinsonian status. Red nodes indicated PD patients had higher nodal efficiency than
normal controls while blue nodes indicated PD patients had lower nodal efficiency than normal controls. The big nodes were significantly different
between groups (p < 0.009). For a better visualization and comparison, if one of either side node showing a significant difference (p < 0.009), the
contralateral nodes with p < 0.05 were also visualized but in the small size
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alterations of nodal properties could be observed in PD
patients across early to middle stages, which had the
ability to well discriminate PD patients from controls or
between EPD and MPD (both AUC values > 0.8) at the
individual level. Third, occipital dysfunction within slow-
3 oscillation frequency had significant correlations with
motor severity which was dominated by akinesia/rigidity.
The coupling of two or more oscillations could provide

enhanced combinatorial opportunities for storing complex
temporal patterns and optimizing synaptic weights [16].
Although the relationship between the oscillation-specific
power distribution and physiological functions is not yet
fully understood, it was considered that neuronal proper-
ties and cytoarchitectonic complexity may contribute to
oscillatory power [47]. In the present study, despite the
organization hierarchy of large-scale network was different
from that of fALFF, we observed a divergent effect of spe-
cific oscillations on brain intrinsic function that the ante-
roventral neocortex and subcortex had high nodal
properties within low oscillation frequencies while the
posterolateral neocortex had high values within the

relatively high oscillation frequency in both PD patients
and controls, which uncovered the intrinsic hierarchies of
large-scale network in human brain. Since fALFF reflects
the intensity of spontaneous brain activity locally [45],
nodal properties from large-scale network have the advan-
tage to evaluate the large-scale network integration [24, 27].
The different effects of oscillations on the different network
measurements, e.g. in comparison with slow-4 oscillation
frequency, basal ganglia where long time scales (low fre-
quency) of neuron spiking activity, could be observed [48]
showed increased nodal properties in the graph-theory ana-
lysis but decreased values in the fALFF measurement
within slow-5 oscillation frequency, probably indicated that
human brain network is composed of high-dimension in-
trinsic self-organization varying from different oscillation
frequencies and algorithmic hierarchies [16]. More than
that, by visual cross-sectional comparisons, we observed
that both distributions of altered nodal properties and
fALFF in PD patients were more extensive and significant
than that in controls, which showed that network was per-
turbed in parkinsonian status.

Fig. 4 Correlations of occipital degree centrality with clinical symptoms in specific slow-3 oscillation frequency. a-d separately showed clinical correlations
of four occipital nodes. Significant correlations between occipital degree centrality and total motor score (UPDRS motor score) were first observed, which
was survived after Bonferroni correction. Then, in order to identify which component of motor symptoms contributed dominantly to the alterations of
nodal decree centrality, we correlated each motor subscale (akinesia/rigidity and tremor) with occipital degree centrality. The red solid regression line
indicated that the correlation was significant. And the blue dot line indicated the 95% prediction interval of the regression line (red solid line)
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Through analyzing PD patients across early to middle
stages, we observed that there were relatively preserved
nodal properties in PD patients in the early stage while
widespread abnormalities occurred in the middle stage,
which was consistently seen within all three oscillation
frequencies. Luo et al. [18] systematically investigated
the widespread distribution of abnormal network top-
ology and found functional disruption in temporal-
occipital, sensorimotor and orbitofrontal regions in PD
patients with Hoehn-Yahr stages = 1 and 2. Though a re-
cent study showed a correlation between nodal property
and Hoehn-Yahr stage [17] in PD, the early alteration
and the potential progression of network were not de-
tected. Pathologically, neocortex has been involved fol-
lowing an upward topological sequence with disease
progression in symptomatic PD patients [49]. Compat-
ible with them, in the present study, nodal dysfunction
of neocortex including orbitofrontal, temporal-occipital
and parietal regions were observed in MPD patients.
Likewise, growing neuroimaging evidence demonstrated

structural atrophy and decreased metabolism in inferior
frontal gyrus [50, 51], decreased function in occipital
lobe [8, 22, 23], and increased function in frontal medial
cortex, frontal orbital cortex, middle temporal gyrus and
angular gyrus [19, 20, 26] in PD patients. In brief, with
disease exacerbation, the perturbation of large-scale
nodal properties became conspicuous, which indicated a
potential neural mechanism of PD.
Importantly, we found that some of these alterations

were intrinsically oscillation-specific, e.g. the cardinal
involved region of PD, basal ganglia and thalamus [5],
showing increased degree centrality and nodal effi-
ciency, could be specifically detected within slow-5 os-
cillation frequency, which was significantly affected in
MPD patients. Consistent with a pilot experiment in
our previous study using another independent PD co-
hort [8], the dysfunction of basal ganglia and thalamus
was not significantly observed in early stage PD but en-
hanced eigenvector centrality in these regions was de-
tected in whole PD group. High nodal degree centrality

Fig. 5 Correlations of occipital nodal efficiency with clinical symptoms in specific slow-3 oscillation frequency. a-d separately showed clinical
correlations of four occipital nodes. Significant correlations between occipital nodal efficiency and total motor score (UPDRS motor score) were
first observed, which was survived after Bonferroni correction. Then, in order to identify which component of motor symptoms contributed
dominantly to the alterations of nodal efficiency, we correlated each motor subscale (akinesia/rigidity and tremor) with occipital nodal efficiency.
The red solid regression line indicated that the correlation was significant. And the blue dot line indicated the 95% prediction interval of the
regression line (red solid line)
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and efficiency in basal ganglia and thalamus require
hyper metabolism to support [52]. Metabolic analyses
consistently reported the hyper metabolism and high
perfusion in these regions [53–57], and study also con-
firmed the specificity of hyper metabolism in these re-
gions in differentiating PD from atypical parkinsonism
[56]. These findings have been considered as reflecting
the release of the basal ganglia from nigral dopamin-
ergic inhibition [54]. Taken together, overconnected
basal ganglia and thalamus observed in the large-scale
network provided new information to support their
roles in the physiological mechanism of PD, and such
observation specifically seen within low oscillation fre-
quency (slow-5) indicated that the dysfunction of basal
ganglia and thalamus had a specific rhythm of network
organization that was perturbed in parkinsonian status.

Though accumbens was not commonly introduced
in neuroimaging studies of PD [17, 18, 29], we did ob-
serve enhanced nodal function in accumbens for the
first time. It was known that as an important node of
ventral striatum, accumbens has projections from
dopaminergic neurons of mesolimbic pathway [58].
Functionally, no significant devoid of dopaminergic in-
nervation occurs in parkinsonian accumbens [59], but
its structure would be enlarged under chronic expos-
ure of levodopa treatment [60], which was accordance
with our enhanced accumbens function observed in
PD patients in the later disease stage, a majority of
whom were undertaking levodopa medication. There-
fore, future studies through recruiting drug-naïve PD
patients and putting insight into the accumbens alter-
ations may help deepen our finding.

Fig. 6 ROC curves for the discriminations between PD patients and controls and between EPD and MPD according to the logistic regression
analyses. a showed the ability of altered nodal properties within specific oscillation frequencies to discriminate PD patients from controls, while
(b) showed the ability of altered nodal properties within specific oscillation frequencies to discriminate MPD from EPD patients. The red points
were representing the locations of the best discriminative results determined by Youden index
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Visual impairment is becoming recognized in PD pa-
tients [11, 61], which has a correlation with gait impair-
ment [62] and akinesia and rigidity [8]. In the present
study, disrupted occipital nodal degree centrality and ef-
ficiency were observed in MPD patients in all three os-
cillation frequencies. It has been described that PD
patients show a higher dependence on visual informa-
tion for motor control [63], which was confirmed by the
evidence that visual cueing can improve walking in PD
[64]. Though the mechanism of visual-motor loop in PD
has not been fully studied [11], the significant correla-
tions between impaired occipital nodes and motor sever-
ity dominated by akinesia/rigidity not tremor specifically
within slow-3 oscillation frequency further supported
the critical role of visual modulation in parkinsonian
akinesia and rigidity. Thus, our result suggested that the
oscillation-specific occipital nodes whose disruption ac-
companied with motor exacerbation might be a critical
target to modulate motor controls.
Our study had several limitations. First of all, for the

59 PD patients who were under medication, lasting anti-
parkinsonian treatment might influence the network
organization though clinical assessments and image
scanning were carried out after withholding anti-
parkinsonian medicine for overnight. Future investiga-
tions to detect the immediate influence of levodopa on
oscillation-specific network in PD are needed, which is
also in progress as an extension of current study. Sec-
ond, since it was the first study to detect oscillation-
specific alterations of large-scale network in parkinson-
ian brains across early to middle stages, replicated stud-
ies are expecting to confirm our findings including the
consideration of PD subtypes, e.g. PD with depression,
freezing of gait and rapid eye movement sleep behavior
disorder. Third, it would be helpful to fully understand
PD pathogenesis by exploring the network alterations in
PD patients in the advanced stage, which was not done
in our study for the limited population. Finally, to date
the commonly used scanning protocols studying low os-
cillations BOLD signal were lasting 290 s to 480 s (390 s
in the present study) [21, 22, 31, 32], which might be in-
fluencing the stability of network analysis in the low os-
cillations, therefore, improved protocol with longer
scanning time would be necessary to validate current
findings in the low oscillations.

Conclusions
By coupling various oscillation frequencies, the intrinsic
hierarchy of functional large-scale network was explored
and progressive oscillation-specific perturbations of
nodal properties were observed in PD. Clinical motor
impairment, dominated by akinesia and rigidity, was sig-
nificantly linearly influenced by the occipital disruption
within slow-3 frequency.
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