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Abstract

Machine Learning and Computational Mathematics: Studies of Accelerating Polymer

Phase Discovery and Finding Optimal Policies for a Pandemic

by

Yao Xuan

Two directions of utilizing machine learning techniques in computational mathematics

are explored with case studies on two real-world projects.

The first direction is in the supervised learning category where data generated from

traditional numerical solvers are leveraged to train a machine learner for fast prediction

or other specific task, like an inverse problem. A new framework that leverages data

obtained from self-consistent field theory (SCFT) simulations with deep learning to ac-

celerate the exploration of parameter space for block copolymers is presented in the first

project. Deep neural networks are adapted and trained in Sobolev space to better capture

the saddle point nature of the SCFT approximation. The proposed approach consists of

two main problems: 1) the learning of an approximation to the effective Hamiltonian as

a function of the average monomer density fields and the relevant physical parameters

and 2) the prediction of saddle density fields given the polymer parameters. There is

an additional challenge: the effective Hamiltonian has to be invariant under shifts (and

rotations in 2D and 3D). Two different methods are developed to achieve the invariance:

1) a data-enhancing approach and an appropriate regularization and 2) a designed con-

volutional neural network (CNN). Generative adversarial networks (GAN) are connected

with the SCFT models to predict the initial saddle density fields. These fields are selected

from either GAN generations or the training set, and are fine-tuned by the deep Sobolev

space-trained neural networks to get the final prediction.

viii



The second direction is in the unsupervised learning category where machine learning

techniques are developed to solve a previously unsolvable system. The proposed new ap-

proach embeds deep neural networks inside numerical schemes, builds suitable objective

functions, and determines the neural network parameters by minimizing the objective

functions. As a case study, a multi-region SEIR (Susceptible - Exposed - Infectious -

Recovered) model based on stochastic differential game theory is proposed. This model’s

aim is to aid in the formulation of optimal regional policies for infectious diseases. Specif-

ically, the standard epidemic SEIR model is enhanced by taking into account the social

and health policies issued by multiple region planners. This enhancement makes the

model more realistic and powerful. However, it also introduces a formidable compu-

tational challenge due to the high dimensionality of the solution space brought by the

presence of multiple regions. This significant numerical difficulty of the model structure

motivates a generalization of the deep fictitious algorithm introduced in [Han and Hu,

MSML2020, pp.221–245, PMLR, 2020]. As a result, an improved algorithm, which uses

deep neural networks to approximate the value function and control parameters and that

builds objective functions based on the error of the approximated value function at the

terminal time is developed. The proposed extended model and the new deep learning-

based algorithm are applied to study the COVID-19 pandemic in three states: New York,

New Jersey and Pennsylvania. The results show the effects of the lockdown/travel ban

policy on the spread of COVID-19 for each state and how their policies affect each other.
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Chapter 1

Introduction

The past two decades have witnessed the great development of machine learning tech-

niques and the applications of machine learning in many scientific fields. Machine learning

(ML), part of artificial intelligence (AI), is the study of computational algorithms based

on mathematics, statistics and computational science to solve problems by computers.

Computational mathematics focuses on computational algorithms or numerical meth-

ods and their application and analysis. Computational mathematics plays an important

role in Engineering and Science realms by providing numerical algorithms and associated

software for solving a spectrum of problems in ordinary differential equations (ODEs), dif-

ferential algebraic equations (DAEs), and partial differential equations (PDEs)[1]. Since

most of computational mathematics algorithms are based on computers, the revolution

of computational power brought by machine learning naturally might become a driving

force in advancement of computational mathematics. The main topic of this dissertation

is to explore this new marriage of computational mathematics and machine learning on

algorithms and applications in scientific fields.

Applied mathematics relies often on numerical methods to find approximations of

solutions to intricate models of a given system. However, in many instances, these com-
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Introduction Chapter 1

putations can quickly become prohibitively expensive. In order to utilize machine learning

to improve the efficiency of numerical methods or to solve previously intractable prob-

lems, we propose two innovative general directions and validate them with real-world

problems.

The first direction is to learn the model and underlying physics through data gen-

erated by numerical simulations. The mathematical models translate the physics into

mathematical equations. The data generated by a few numerical simulations contain

information of both the physics captured by the model and the relation between the

relevant variables. Thus, learning a map between the model’s variables from data by ma-

chine learning methods can provide an economical and accurate approach to accelerate

scientific computation and lead to an expedited prediction of the model’s unknown vari-

ables. In the subsequent prediction, numerically solving complicated systems is replaced

by the evaluation of the learner, a new surrogate for the model, which will significantly re-

duce computation time. Moreover, the computation of intermediate variables is skipped

and this further reduces both computational complexity and time. This new supervised

learning-based approach offers a the bridge between the traditional mathematical models

and a fast machine learning predictor.

The second direction is to solve problems that were previously intractable by tradi-

tional numerical methods. Numerical methods for high dimensional differential equations

and/or coupled systems often suffer from low computational efficiency and instability.

The lack of more effective numerical methods make some problems unsolvable and it

becomes impossible to generate training data. Suppose we are trying to solve for u(t)

from a system F (u(t)) = 0, t ∈ [0, T ]. We could approximate u(t) by a neural net-

work NN(t), discretize F (NN(t)) and implement simulation, trying to minimize say

g(NN()) = ‖F (NN(t))‖ in an Lp norm. This type of method can be viewed as an

upgraded version of ”the method of undetermined coefficients” based on machine learn-

2
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ing. Instead of taking a function basis like polynomials or trigonometric functions in the

method of undetermined coefficients, we use the composition of linear (more precisely

affine) functions and nonlinear activation functions to simulate the system and search for

the coefficients which minimize a messure of the error by stochastic gradient methods.

Much of the work in this area focuses on stochastic differential equation systems and uses

Monte-Carlo simulation to estimate the expectation of variables of interest. This type

of methods can be broadly considered as unsupervised learning-based because no data is

generated in advance of training.

This thesis contains efforts in both directions with the design of new algorithms

and their application in real-world applications. The first project merges polymer self-

consistent field theory (SCFT) and deep learning algorithms. We generate data using

traditional SCFT computational methods and try to learn the physics from the data.

This is Direction 1 mentioned above, where the machine learning algorithm learns the

model from numerical data. We propose to train machine learners in Sobolev space and

then apply a gradient-based method to search for local minimizers of the learner. This

framework could be applied to general optimization/inverse problems. We specifically

apply this new framework to quickly predict saddle density fields in SCFT to acceler-

ate polymer phase discovery. To keep the true relation between density fields and the

Hamiltonian, we also develop techniques to equip machine learning learners with rota-

tion/translation invariance. The learner trained by the SCFT data matches accurately

the direct SCFT results and is much more efficient to evaluate.

The second project is to solve previously unsolvable high dimensional problems by

using machining learning method to approximate the solution of a system to model a

pandemic. The model is based on the stochastic game approach to explore an optimal

control for the pandemic. This is the aforementioned Direction 2, where we use a deep

neural network to approximate the solution of a high dimensional system, plug it into

3
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the numerical simulation of the system, determine the neural network parameters by

minimizing the loss on some variables after simulation. The mathematical model is

SEIR (Susceptible - Exposed - Infectious -Recovered). The corresponding Hamilton-

Jacobi-Bellman (HJB) and Backward Stochastic Differential Equation (BSDE) systems

are high dimensional and are a formidable challenge for traditional numerical methods.

In this thesis, we approximate the value function and the optimal control by deep neural

networks. We discretize the BSDE system, simulate the system with the neural network-

approximated solution, and then search for the parameters of the solution by minimizing

the loss at the terminal time. The numerical solution satisfies all the constraints of the

system and provides a good approximation to the true solution.

The rest of the dissertation is organized as follows. The first project on accelerating

polymer discovery based on self-consistent field theory leveraged with machine learning

is included in Chapter 2 and Chapter 3. Chapter 2 introduces the self-consistent field

theory and the design of machine learning algorithms to accelerate the computations for

one spatial dimension. Chapter 3 develops machine learning algorithms to accelerate the

computations for polymer phase discovery in 2D or higher spatial dimensions.

1.1 Permissions and Attributions

1. The content of Chapter 2 and Appendix A is the result of a collaboration with Kris

T. Delaney, Hector D. Ceniceros and Glenn H. Fredrickson, and has been accepted

by Journal of Computational Physics (“Deep Learning and Self-Consistent Field

Theory: A Path Towards Accelerating Polymer Phase Discovery”).

2. The content of Chapter 3 is the result of a collaboration with Kris T. Delaney,

Hector D. Ceniceros and Glenn H. Fredrickson, and is in preparation for submission.

4
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3. The content of Chapter 4 and Appendix B is the result of a collaboration with

Robert Balkin, Jiequn Han, Ruimeng Hu and Hector D. Ceniceros, is to be appeared

in the (conference) Mathematical and Scientific Machine Learning 2021 and is to

be published at Proceedings of Machine Learning Research (“Optimal Policies for

a Pandemic: A Stochastic Game Approach and a Deep Learning Algorithm”).
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Chapter 2

Deep Learning and Self-Consistent

Field Theory: 1D Polymer Phase

Discovery

2.1 Introduction

Numerical simulations using self-consistent field theory (SCFT) are a valuable method

to study the energetics and structure of polymer phases [2, 3, 4]. However, these compu-

tations are generally expensive. Relaxation methods to the SCFT (saddle point) solutions

are slow to converge and each iteration is costly as it requires the solution of one or several

modified diffusion (Fokker-Planck) equations [2, 5, 6]. There are some recent attempts to

combine SCFT with machine learning. Nakamura [7] proposed to predict polymer phase

types by a neural network with a theory-embedded layer that captures the characteristic

features of the phase via coarse-grained mean-field theory. Wei, Jiang, and Shi [8] intro-

duced a neural network approach as a solver to the SCFT modified diffusion equations

to accelerate the computation of the mean fields. In this work we leverage techniques

6
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of machine learning to obtain fast and accurate predictions of SCFT solutions after a

suitable map from parameter space and average monomer density is learned. This new

approach, which merges computer-simulated data with supervised learning, works for a

large range of parameters after one single training and has the potential to dramatically

accelerate the discovery and study of new polymer phases.

The proposed approach consists of two main problems: 1) the learning of an approx-

imation to the effective Hamiltonian as a function of the average monomer density fields

and the relevant physical parameters and 2) the prediction of saddle density fields given

the polymer parameters. There is an additional challenge: the effective Hamiltonian has

to be invariant under shifts (and rotations in 2D and 3D). A data-enhancing approach

and an appropriate regularization are introduced to effectively achieve said invariance.

The rest of the chapter is organized as follows. In Section 2.4, we propose the neural

network-based method to approximate H in Sobolev space. By using a Sobolev metric

we are able to predict both H and its gradient (thermodynamic force) simultaneously.

Additional properties are added to the neural network based on the periodic shift invari-

ance of the modeled system and the mathematical existence of the desired neural network

is rigorously proved. Section 2.6 is devoted to a summary of numerical results for an AB

diblock system and for an AB3 mikto-arm star system, both with density-field variations

in only one space dimension. Finally, some concluding remarks, including the prospects

for extension to higher spatial dimensions, are given in Section 2.7.

2.2 The SCFT AB Diblock Copolymer Model

To describe the proposed approach in more detail, we discuss the self-consistent field

theory on an incompressible AB diblock copolymer melt. The effective Hamiltonian of

7
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an AB diblock copolymer melt is expressed in terms of two fields, wA and wB [2]

H[wA, wB] =

∫
[−(wA + wB)/2 + (wB − wA)2/(4χN)]dr− V lnQ[wA, wB], (2.1)

where χ is the Flory parameter and measures the strength of binary contacts, N is the

copolymer degreee of polimerization, and V is the system volume. Q[wA, wB] is the

partition function for a single copolymer with field wA acting on the A block and field

wB acting on the B block. This functional can be evaluated by the formula

Q[wA, wB] =
1

V

∫
q(r, 1; [wA, wB]), (2.2)

where q(r, s; [wA, wB]) is the copolymer propagator (s is the contour variable which

parametrizes a copolymer chain) which satisfies the Fokker-Planck equation (often re-

ferred to as the modified diffusion equation)

∂q

∂s
= ∇2q − ψq, q(r, 0; [wA, wB]) = 1. (2.3)

Here,

ψ(r, s) =


wA(r), 0 ≤ s ≤ f,

wB(r), f < s ≤ 1,

(2.4)

where f is the average volume fraction of type A blocks. The SCFT solution corresponds

to saddle points of H, where H is a minimum with respect to the chemical potential-like

field

w−(r) ≡ 1

2
[wB(r)− wA(r)] (2.5)

8
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and a maximum with respect to pressure-like field

w+(r) ≡ 1

2
[wB(r) + wA(r)]. (2.6)

To find the saddle point fields, via gradient descent (for w−) and gradient ascent (for

w+) we need to evaluate the first variation (“gradient”) of H. This can be done in terms

of monomer density fields ρA and ρB:

δH[w+, w−]

δw+(r)
= ρA(r; [w+, w−]) + ρB(r; [w+, w−])− 1,

δH[w+, w−]

δw−(r)
=

2

χN
w− + ρB(r; [w+, w−])− ρA(r; [w+, w−]).

(2.7)

In turn, ρA and ρB are computed using the Feynmman-Kac formulas

ρA(r; [w+, w−]) =
1

Q[w+, w−]

∫ f

0

q(r, s; [w+, w−])q†(r, 1− s; [w+, w−])ds,

ρB(r; [w+, w−]) =
1

Q[w+, w−]

∫ 1

f

q(r, s; [w+, w−])q†(r, 1− s; [w+, w−])ds,

(2.8)

where the propagator q† accounts for the lack of head-to-tail symmetry of the diblock.

Analogously to q, q† satisfies the equation,

∂q†

∂s
= ∇2q† − ψ†q†, q†(r, 0; [wA, wB]) = 1, (2.9)

where

ψ†(r, s) =


wB(r), 0 ≤ s < 1− f,

wA(r), 1− f ≤ s ≤ 1.

. (2.10)

A typical SCFT computation requires hundreds or thousands of evaluations of (2.7) and

hence of solutions to the Fokker-Planck equations. This makes polymer SCFT simulations

9
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very expensive.

2.3 Problem Definition and General Strategy

In this section, we formulate the problems from the bottleneck of SCFT models and

describe the general strategy to solve the problems based on machine learning approach.

As shown in Section 2.2, in the model of incompressible AB diblock copolymer melt, the

relevant parameters are χN (χ is the Flory parameter and N is the copolymer degree

of polymerization), which measures the strength of segregation of the two components,

L, the cell length in units of the unperturbed radius of gyration Rg, and f , the volume

fraction of component A. Let ρ = ρA be the local average monomer density of blocks A.

Then, the framework we propose consists of solving the following two problems:

• Problem 1: Learn a map (χN,L, f, ρ) 7−→ H̃(χN,L, f, ρ), where H̃ is an accurate

approximation of the field-theoretic intensive Hamiltonian H, the Helmholtz free-

energy per chain at saddle points.

• Problem 2: For specific values χN∗, L∗, f ∗, find accurately and efficiently the

density field ρ∗ that minimizes H̃.

Once H̃, a surrogate for the effective Hamiltonian at the saddle points, is learned (Prob-

lem 1), the procedure to solve Problem 2 can be expediently applied to screen the pa-

rameter space for new phase candidates.

To solve the first problem we recast H as

H(χN,L, f, ρ) = χNf − χN

Ld

∫
ρ2dr +R(χN,L, f, ρ), (2.11)

by extracting the leading (quadratic) interaction term, and focus on learning, via neural

networks, the remainder or residual term R, which contributes to polymer entropy, but

10
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not enthalpy. In Eq. (2.11), d is the spatial dimension. The rationale for splitting H

is simply that we know the exact expression for the enthalpic part of H, and it is both

local and economical to compute while the entropic part is not known in closed form and

is computationally expensive. We present numerical results in Appendix A.1 that show

learning only the entropic part R produces superior results for the predicted density field

ρ∗ than those obtained by learning the full functional H.

Note that in an auxiliary field theory the effective Hamiltonian H, which coincides

with the free energy at the SCFT saddle point, is a functional of one or more potential-

chemical-like fields and one pressure-like field. The ρ dependence is generally integrated

out using Gaussian integral identities and ρ is instead evaluated from these auxiliary

fields. Here, we seek instead to learn directly an approximation of H, or more precisely

of R, as a function of ρ.

Both Problem 1 and Problem 2 are challenging for the following reasons. First, the

training data set for machine learning is generated from SCFT simulations, which produce

physically meaningful information only at the saddle point. Thus, we only know H at the

saddle point solutions, a reduced set of a much larger complex manifold. But ultimately,

we would like to find a minimizer of H over all possible ρ fields, including both saddle

points and non-saddle points. Therefore, additional assumptions about the map are

necessary. Second, the input is very high dimensional; the density field ρ becomes a large

vector whose components correspond to values of ρ at regular mesh points in physical

space. Consequently, even with a successfully learned map in Problem 1, Problem 2 is

still a formidable optimization problem due to its high dimensionality. Moreover, H can

have many local minima, thus finding a global minimum is a difficult task. Finally, the

learned map H̃ needs to be invariant under translations (and rotations in 2D and 3D)

and this poses an additional challenge to the map-learning process.

In this work, we propose to learn a map from (χN,L, f, ρ) to the free energy, using

11



Deep Learning and Self-Consistent Field Theory: 1D Polymer Phase Discovery Chapter 2

SCFT-generated data, which is a good approximation of H and its gradient around

saddle points and is invariant under spatial shifts of the density field. This is achieved

by constructing a novel deep neural network in Sobolev space. Then, we pre-screen

candidates for minimizers of the learned map to find, via gradient descent, predictors

of new SCFT saddle points. In this chapter, we focus on one-dimensional (in physical

space) systems to allow for a thorough exploration and development of the proposed

methodology. Extension to higher dimensional systems are discussed in Chapter 3.

2.4 The Neural Network Model

We describe in this section the deep neural network trained in Sobolev space that we

propose to accurately describe H and its gradient in the vicinity of field-theoretic saddle

points.

2.4.1 Methodology

Henceforth, we use x = (χN,L, f, ρ) to denote all parameters of the model, which

for concreteness is an incompressible diblock copolymer melt. Here, ρ is a vector whose

components are the values of the local average density field ρ at the spatial grid points.

We need to learn a map (χN,L, f, ρ) 7−→ H̃(χN,L, f, ρ) which approximates the effective

Hamiltonian H of the field theory at the saddle points.

Suppose M = {(x1, H1), (x2, H2), ..., (xNT , HNT )} is the training set of size NT gener-

ated by SCFT simulations, where xi = (χNi, Li, fi, ρi) represents the ith training point

and Hi is the corresponding H value (free energy) for the ith training point.

As mentioned in the introduction, we start by rewriting H as

H(x) = χNf − χN

L

∫
ρ2dr +R(x), (2.12)

12
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and learn the entropic remainder function R. An appropriate model for this task is

one that matches both the functional value of R and its gradient (first variation in the

continuum case) because at a saddle point ρ∗, necessarily δH
δρ
|ρ=ρ∗ = 0. We will call NN

the approximation to R obtained via a neural network approach that we specify in detail

below. Hence, at the end, the approximate effective Hamiltonian map has the expression

H̃(x) = χNf − χN

L

∫
ρ2dr +NN(x). (2.13)

In a neural network, there are many parameters in the form of weights and biases. These

parameters are determined by minimizing a cost or loss function, which is defined based

on the desired properties of the neural network. For our problem, we first choose a basic

version of cost function as

C(α) =

NT∑
i=1

(H̃(xi)−Hi)
2 + β

NT∑
i=1

‖∇ρH̃(xi)‖2, (2.14)

where α refers to the all the parameters in the neural network (hidden in the structure

of H̃) and β is a parameter that controls the size of the penalty term
∑NT

i=1 ‖∇ρH̃(xi)‖2,

which favors vanishing gradients at training points and adds smoothness to the learned

map and prevents overfitting. More importantly, this regularizing term effectively en-

forces that the gradient of the learned H̃ approximates the zero vector at the training

points (all training points are saddle points of H). It is important to emphasize that the

learned map will ultimately match accurately both the function value of H and its van-

ishing gradient at training points. This property of the model represents a new approach

to predict SCFT saddle points.

13
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Note that for each data point (xi, Hi), in view of (2.12) and (2.13), NN should match

Ri = Hi − χNifi +
χNi

Li

∫
ρ2i dr. (2.15)

Moreover, after discretizing in space we have

∇ρH̃(xi) = −2χNi

Li
∆r ρi +∇ρNN(xi), (2.16)

where ∆r is the spatial mesh size. Then, we can rewrite the cost function (2.14) in terms

of the residual map NN as

C(α) =

NT∑
i=1

(NN(xi)−Ri)
2 + β

NT∑
i=1

‖∇ρNN(xi)−
2χNi

Li
∆r ρi‖2. (2.17)

From Eq. (7), the cost function we seek to minimize is just the distance between the

predicted map, NN , and the actual map we are trying to approximate, R, in the sense of

the Sobolev norm. The existence of a neural network to approximate a map to a desired

accuracy has been established for different activation functions [9, 10]. Thus, a natural

question is: does there exist a neural network that approximates both the map and its

gradient, i.e. in the sense of Sobolev norm? The answer is yes and our approach is built

on this solid theoretical foundation.

A single hidden layer feedback network constructs functions of the form

g(x) =

q∑
j=1

ωj G(θj · x̃), (2.18)

where G is an activation function (e.g. sigmoid, softmax, ReLU, etc.), x̃ = (1, x), ωj

represents hidden-to-output layer weights and the vectors θj (of dimension equal to the

dimension of x plus 1) represent input-to-hidden layer weights. Collectively, these pa-

14
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rameters are the vector α appearing in the cost or loss function (2.17). If this class of

functions is dense in a functional space F under some specific metric, then for any f ∈ F ,

there is a neural network of the form (2.18) that approximates f to a given accuracy in

that metric. Hornik, Stinchcombe, and White [11] proved this is the case with the Sobolev

norm. This result guarantees the existence of a single-hidden-layer neural network that

approximates both a functional and its functional gradient simultaneously and provides

the theoretical foundation for our proposed cost function (2.17). Moreover, there also

exists, as proved by Czarnecki, Osindero, Jaderberg, Swirszcz, and Pascanu [12], a single

layer neural network that matches both the functional and its functional gradient with

zero training loss. That is, theoretically, there exists α∗ such that C(α∗) = 0. A more

technical summary of these important theorems is presented in the Appendix A.2.

We use stochastic gradient descent methods, employing back propagation and the

Adam method, to find the network’s parameters by minimizing (2.17). We designed a

deep neural network with 6 hidden layers to learn NN ; the architecture of this deep

neural network is shown in Table 2.1. The width and depth of neural network, which

control the generalization power and convergence rate, are tunable hyperparameters. We

selected these hyperparameters guided by an ablation study, which is summarized in

Appendix A.3.

Hidden layer 1 2 3 4 5 6
Number of neurons 60 180 180 180 180 60

Table 2.1: Architecture of the deep neural network: number of neurons (cells) in each
hidden layer.
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Figure 2.1: Density field in any period window generates the same effective Hamiltonian.
This global shift-invariance is required for the learned map.

2.4.2 Neural Network with Global Shift-Invariance

In the SCFT model, with periodic boundary conditions, the effective Hamiltonian is

invariant under shifts in ρ. Hence, our approximation H̃ should have the property

H̃(x) = H̃(Tsx), (2.19)

where Tsx = (χN,L, f, Tsρ) and Tsρ is a spatial shift of the periodic den-

sity field ρ, i.e., Tsρ(r)=ρ(r + s). Equivalently, H̃(χN , L, f, [ρ1, ρ2, ...]) =

H̃(χN , L, f, [ρ1+s, ρ2+s, ...ρ1, ..., ρs]). This is illustrated in Figure 2.1: any period-window

of ρ generates the same effective Hamiltonian. This is of course also the case for the

entropic remainder term R. Machine learning techniques with global shift-invariance are

not yet common in the literature. Some popular deep learning architectures, such as the

convolutional neural network (CNN), have local shift-invariance. However, it is easy to

construct examples in which a small change in input can result in a huge change of the

output in a CNN [13]. Our goal here is to construct a deep neural network with global
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shift-invariance. This can be achieved by combining data augmentation and the addition

of a penalty or regularization term in the loss function. Data augmentation consists in

adding (cyclically) shifted data points to training set so that the neural network can learn

the pattern of periodic shift-invariance directly from the data.

Suppose M = {(xi, Hi), 1 ≤ i ≤ NT} is the original training set, the new training set

after augmentation is defined as:

M̃ = {(Tsxi, Hi), 1 ≤ i ≤ NT , 1 ≤ s ≤ Ns},

where Ns is number of possible shifts. We also modify the cost or loss function with an

additional penalty term as follows

C(α) =
Ns∑
s=1

NT∑
i=1

(NN(Tsxi)− H̃i)
2 (2.20)

+ β
Ns∑
s=1

NT∑
i=1

‖∇ρNN(Tsxi)−
2χNi

Li
∆rTsρi‖2

+ γ
Ns∑
s=1

NT∑
i=1

(NN(xi)−NN(Tsxi))
2.

The last term penalizes the differences of NN at shifted points. It is worth noting that

while global shift-invariance is essential for many physical models, the machine learning

literature on that topic is scarce. Global shift-invariance is a challenging problem because

it results in a much smaller subspace of the general neural network approximation space.

Therefore, the existence of a neural network, in the global shift-invariant space, that

approximates accurately a functional in the Sobolev norm is an important and non-

trivial question. Indeed, if the subspace is not large enough, the existence of a network

to approximate accurately any given functional is not guaranteed. Fortunately, we are

able to prove the existence of a neural network that approximates a given functional under
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the Sobolev norm and has global shift-invariance at the same time. In more precise terms,

we have the following result.

Theorem 1 There exists a neural network NN(x) with a ReLU (or a leaky ReLU)

activation function such that the neural network has zero training loss with loss function

(2.20).

Proof: Let f(x) = R(x), i.e. the true remainder of the effective Hamiltonian and

g(ρ) = 2χN
L

∆rρ, the true gradient of the remainder. Then, we can take any extension of

g(ρ), say g̃(x), such that g̃(x) matches g(ρ) on all the coordinates corresponding to ρ. By

Theorem 6 in the Appendix, there is a neural network such that NN(x) matches f(x)

and NNx(x) matches g̃(x) exactly, on the training set. Since we only need the gradient

with respect to ρ, by the definition of g̃(x), NNρ is equal to g(ρ) on the training set.

This directly makes the first two terms vanish in cost function (2.20). For the third term,

noting that

NN(Tsxi) = R(Tsxi) = R(xi) = NN(xi),

for all i, s, we get NN(xi)−NN(Tsxi) = 0. Thus, there exists a neural network NN(x)

that leads to a zero training loss with the cost function (2.20). In other words, it is

possible to achieve simultaneously the desired approximation in the Sobolev norm and

global shift-invariance with one neural network.

2.4.3 Searching for Saddle Points

As described above, the map H̃ is trained in Sobolev space. Once this is achieved,

we can use local minimizers of H̃, obtained via gradient descent, as predictors of the

saddle point density fields of the effective Hamiltonian.1 To solve ∇ρH̃ = 0 we employ

1Henceforth, we call the local minimizer of H̃ a saddle point predictor or a predicted saddle point.
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the gradient descent method because it is simple and fast to evaluate the learner and its

gradient at any x.

Given arbitrary (χN∗, L∗, f ∗), we eliminate these variables in H̃(x) so that H̃ can

be viewed as a function of ρ alone. Then, we proceed with gradient descent method

to find a local minimizer ρ̂NN as an approximation to a saddle point ρ∗ of the effective

field-theoretic Hamiltonian:

ρn+1 = ρn − ε∇ρH̃(xn), (2.21)

where xn = (χN∗, L∗, f ∗, ρn) and ε is the step size. Note that, as expressed in (2.16),

∇ρH̃(x) = −2χN
L

∆r ρ+∇ρNN(x), (2.22)

where ∇ρNN(x) can be efficiently evaluated by the Chain Rule applied to the neural

network, e.g. ∇ρg(x) =
∑q

j=1 ωj∇ρG(θj · x̃) for a single-layer neural network. This is

easy to compute even for a multiple-layer neural network because a computation graph

is automatically generated for the neural network to gather gradient information for

backward propagation. Again, here ∆r is the spatial mesh resolution. The gradient

descent iteration (3.18) is terminated when ‖∇ρH̃‖ decreases below a target specified

small value.

One important component of the gradient descent method is the initial iterate ρ0.

Here we propose a selection strategy for ρ0 that fully uses the information of the training

set. For a given (χN∗, L∗, f ∗), we scan all the density fields in the training set to find the

one that generates the smallest ‖∇ρH̃‖ at (χN∗, L∗, f ∗). Since a neural network is just

a composition of a series of linear functions and simple (nonlinear) activation functions,

this evaluation is extremely fast in comparison with the evaluation of the full SCFT
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model.

2.4.4 Strategies to Tune Hyperparameters

Hyperparameter tuning is an important procedure in deep learning. The weights and

biases in the network, denoted collectively as α above, are parameters. There are multiple

hyperparameters in a neural network model, such as the strengths of the penalization

terms β and γ in the loss function, the hyperparameters defining the architecture of the

network, such as the number of layers and the number of nodes per layer, and the learning

rate (step size) used in the training process.

Following standard practice, we split the dataset into three parts: a training set, a

validation set, and a test set. For various combinations of different values of hyperpa-

rameters, the neural network is trained on the training set and the results are compared

with the data in the validation set. After selecting the optimal combination of hyperpa-

rameters based on the performance on the validation set, we evaluate the best model on

the test set to check the error. This comparison requires the specification of a metric.

For the given validation set with parameters (χN∗i , L
∗
i , f

∗
i ) where 1 ≤ i ≤ NV , we define

the metric or loss function on the validation set as follows

CV (α) =
Ns∑
s=1

NV∑
i=1

(NN(Tsx
∗
i )−Ri)

2 (2.23)

+ βV

Ns∑
s=1

NV∑
i=1

‖∇ρNN(Tsx
∗
i )−

2χN∗i
L∗i

∆rTsρ
∗
i ‖2

+ γV

Ns∑
s=1

NV∑
i=1

(NN(x∗i )−NN(Tsx
∗
i ))

2

+ θV

NV∑
i=1

‖ρ̂NNi − ρ∗i ‖2,

where x∗i = (χN∗i , L
∗
i , f

∗
i , ρ

∗
i ) and ρ̂NNi is the predicted density field corresponding to
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(χN∗i , L
∗
i , f

∗
i ). The first two terms provide a measure of the accuracy of the learner and

its gradient. The third term measures the shift-invariance. The fourth term measures

the deviation of predicted minimizers ρ̂NN from the saddle points. Thus, with this metric

on the validation set we can find hyperparameters that lead to a neural network that

not only approximates the effective Hamiltonian and its gradient but also predicts the

saddle point after gradient descent searching. In the implementation, we can adjust the

weights (βV , γV and θV ) to each of the terms in CV to prioritize the approximation of

NN , its gradient, its shift-invariance, or a saddle point, local density field or to balance

the scaling.

2.4.5 The Algorithm

In training deep networks it is common to add a regularization term to the loss

function that penalizes the size of weights and biases and provides smoothness to the

model. Here, we follow that practice and modify our loss function by adding the term

λ‖α‖22, i.e.

C(α) =
Ns∑
s=1

NT∑
i=1

(NN(Tsxi)−Ri)
2

+ β

Ns∑
s=1

NT∑
i=1

‖∇ρNN(Tsxi)−
2χNi

Li
∆rTsρi‖2

+ γ

Ns∑
s=1

NT∑
i=1

(NN(xi)−NN(Tsxi))
2 + λ‖α‖22.

(2.24)

Algorithm 1 provides the sequence of steps for deep learning H and to obtain predic-

tions of SCFT saddle points. Training of the neural network is done under the Sobolev

norm to obtain accurate predictions of both H and its gradient. With this network, after

selecting a good, data-based initial guess, the gradient descent method is used to find
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accurate approximations of the saddle point.

Algorithm 1: Neural network method to learn the effective Hamiltonian and

to obtain a saddle point density field prediction.

Input: Training set M , validation set MV , test set MT

1. Hyperparameter tuning:

for hyperparameter λi, βj, γk do
use Adam method to search for αijk = arg minαC(α)

evaluate CV (αijk) on MV

end

λ, β, γ = arg minλi,βj ,γk CV (αijk)

2. Prediction of effective Hamiltonian on MT :

for x = (χN,L, f, ρ) do

H̃(x) = χNf − χN
L

∫
ρ2dr +NN(x)

end

3. Prediction of saddle point corresponding to χN∗, L∗, f ∗:

for ρi from M do

Evaluate H̃(χN∗, L∗, f ∗, ρi), ∇ρH̃(χN∗, L∗, f ∗, ρi)

end

ρ0 = arg minρi ‖∇ρH̃(χN∗, L∗, f ∗, ρi)‖
while ‖∇ρH̃(χN∗, L∗, f ∗, ρi)‖ > δ do

ρn+1 = ρn − ε∇ρH̃(xn)

end

ρn → ρ̃NN which is the estimated saddle point corresponding to χN∗, L∗, f ∗

2.5 Exploring a Simpler Data-Based Learner

As we show in Section 2.6, our deep NN-based approach is remarkably accurate and

efficient in building a shift-invariant surrogate for the field-theoretic effective Hamiltonian

in the vicinity of saddle points. There is however a vast number of other data-based learn-

ers that one could potentially use within our proposed framework to accelerate the explo-

ration of parameter space in polymer SCFT. In fact, the first learner we tried, inspired by
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the pioneering work of Snyder, Rupp, Hansen, Blooston, Müller, and Burke [14, 15, 16],

was Kernel Ridge Regression (KRR).

In KRR, one constructs the approximate map H̃ from an expansion of the form

H̃(x) =

NT∑
j=1

αjK(x, xj), (2.25)

where, as before, x = (χN,L, f, ρ), xi represents ith training point, K is a fixed function

known as the kernel (e.g. the Gaussian function), and NT is the training set size. Because

the number of parameters αj is not fixed and depends on the size NT of the data , KRR

is a simple data-adaptive regression approach.

To use KRR as the data-based learner in our proposed, accelerated SCFT framework

we need 1) to train KRR (i.e. determine α1, α2, ..., αNT ), in Sobolev space to approximate

simultaneously H and its gradient, and 2) to constrain the KRR learner to be shift-

invariant. While we could solve 1) explicitly, we were unable to find a satisfactory

solution for 2). Although this is a serious limitation of KRR in the context of polymer

SCFT, the extension of the KRR to Sobolev space training could be useful for other

applications that do not require the global invariance. With this in mind, we present

below this extension and compare this approximation with that produced by the deep

NN learner.

Specifically, to train KRR in Sobolev space and determine α1, α2, ..., αNT , we minimize

the cost function

C(α) =

NT∑
i=1

(H̃(xi)−Hi)
2 + β

n∑
i=1

‖∇ρH̃(xi)‖2 + λαTKα, (2.26)

where ∇ρH̃(xi) stands for the gradient of H̃ with respect to ρ evaluated at xi, α =

(α1, α2, ..., αNT )T , and K is a matrix with entries Kij = K(xi, xj). The regularization

23



Deep Learning and Self-Consistent Field Theory: 1D Polymer Phase Discovery Chapter 2

term λαTKα penalizes the size of the coefficients α in the metric induced by the kernel

and limits overfitting. The gradient term in C(α) favors approximations with a vanishing

gradient, consistent with SCFT saddle points.

We now derive an explicit expression for α in our Sobolev space KRR model. We

employ the Gaussian kernel

K(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)
, (2.27)

where

‖xi − xj‖ =
√
c1(χNi − χNj)2 + c2(Li − Lj)2 + c3(fi − fj)2 + ‖ρi − ρj‖22, (2.28)

‖ · ‖2 is the l2 norm, and c1, c2, c3 are positive hyperparameters.

Theorem 2 The Sobolev space-trained Kernel Ridge Regression (2.25) with Gaussian

kernel (2.27) , which minimizes (2.26), has coefficients α that satisfy linear system

(KTK + βK̃ + λK)α = KTH, (2.29)

where K̃ =

NT∑
i=1

K̃i and K̃i is a matrix with (K̃i)jm = 1
σ4K(xi, xj)K(xi, xm)〈ρj − ρi, ρm −

ρi〉.
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Proof: Since H̃(x) =
∑NT

j=1 αjK(x, xj), we have

∇ρH̃(x) =

NT∑
j=1

ρj − ρ
σ2

αjK(x, xj),

‖∇ρH̃(xi)‖2 = 〈∇ρH̃(xi),∇ρH̃(xi)〉

= 〈
NT∑
j=1

ρj − ρi
σ2

αjK(xi, xj),

NT∑
m=1

ρm − ρi
σ2

αmK(xi, xm)〉

=

NT∑
j=1

NT∑
m=1

αjαm
1

σ4
K(xi, xj)K(xi, xm)〈ρj − ρi, ρm − ρi〉

= αT K̃iα,

where K̃i is a matrix with (K̃i)jm = 1
σ4K(xi, xj)K(xi, xm)〈ρj − ρi, ρm − ρi〉. Thus,

NT∑
i=1

‖∇ρH̃(xi)‖2 =

NT∑
i=1

αT K̃iα = αT K̃α, (2.30)

where K̃ =

NT∑
i=1

K̃i. Note that both K̃i and K̃ are symmetric matrices. The cost function

(2.26) can now be rewritten as

C(α) =

NT∑
i=1

(H̃(xi)−Hi)
2 + β αT K̃α + λαT K̃α

= (H −Kα)T (H −Kα) + β αT K̃α + λαTKα,

(2.31)

Therefore

∂C

∂α
= 2(−KT )(H −Kα) + β(K̃ + K̃T )α + λ(K +KT )α = 0 (2.32)
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and consequently, α is the solution of the linear system

(KTK + βK̃ + λK)α = KTH. (2.33)

This result is an attractive feature of KRR; there is an explicit expression for α, i.e. the

learner is easy to train.

There are 6 hyperparameters in our KRR method: c1, c2, c3, λ, σ, and β. They could

either be determined by the methods in Section 2.4.4 or by k-fold cross validation. Once

the KRR learner is obtained, we proceed as in the deep neural network case, to minimize

H̃, via gradient descent, to find saddle point predictors

ρn+1 = ρn − ε∇ρH̃(xn), (2.34)

where the gradient is evaluated explicitly:

∇ρH̃(x) =

NT∑
j=1

ρj − ρ
σ2

αjK(x, xj). (2.35)

2.6 Results

We conducted several numerical experiments to validate the proposed SCFT-deep

learning framework. We summarize our results in this section.

We considered two systems: an AB diblock copolymer melt and an AB3 star copoly-

mer melt, both in one spatial dimension. There were two stages in the numerical ex-

periments. First, we trained a machine learning architecture (the deep neural network
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here, but other machine learning methods could be used in this step) to predict the

effective Hamiltonian H and its gradient from the parameters, χN , L, f and average

monomer (A) density field ρ. The deep neural network learner is equipped with global

shift-invariance obtained through a data augmentation technique and the addition of a

penalty term in the loss function. Second, we selected an initial guess for the density field

from the training set and searched by gradient descent for a density field that minimizes

the learned map H̃.

2.6.1 AB Diblock Copolymer with Low-to-Moderate χN

In this experiment, we first test the algorithms on an AB diblock system for χN in

the range [20, 35] for A-block volume fractions f ∈ {0.3, 0.4}. The training, validation,

and test data for f = 0.3 are as follows:

• The training set consists of the combination of χN ∈ {n ∈ N : 20 ≤ n ≤ 35},

L ∈ {n+ 0.2, n+ 0.5, n+ 0.8 : 3 ≤ n ≤ 6} and f ∈ {0.3}. The size of the training

set is 16 ∗ 3 ∗ 4 = 192.

• The validation and test sets consist of the combination of χN ∈ {n, n+0.5 : 20 ≤

n ≤ 35, n ∈ N}, L ∈ {n, n+0.1, n+0.3, n+0.4, n+0.6, n+0.7, n+0.9 : 3 ≤ n ≤ 6}

and f ∈ {0.3}. Note that this larger set has no overlap with the training set. We

randomly take 192/3 = 64 points by uniform distribution from this set as our

validation set and apply the rest as the test set.

All the data points are obtained by numerically solving the SCFT model for each corre-

sponding set of parameters. The modified diffusion equations were solved using periodic

boundary conditions and pseudo-spectral collocation in space with 64 mesh points in

1D. 100 contour steps were made using second-order operator splitting [17, 18]. Auxil-

iary fields, initialized with smooth fields with a fixed number of periods, were relaxed

27



Deep Learning and Self-Consistent Field Theory: 1D Polymer Phase Discovery Chapter 2

to saddle-point configurations using the semi-implicit Seidel iteration [5]. L was var-

ied rather than set to the value that minimizes the effective Hamiltonian in building the

datasets. This gave more richness to the training set by including stressed configurations.

However, as L increases, solutions with an increased number of periods become feasible;

the algorithm selects the density field that produces the smallest effective Hamiltonian

among these solutions with different periods. We use a similar strategy to generate the

data for the case f = 0.4. The deep neural network is trained separately for f = 0.3 and

f = 0.4.

Figure 2.2 shows the excellent accuracy of the predicted H̃ as a function of χN and

L. H̃ coincides with the SCFT mean-field free energy H to two digits of accuracy. As

mentioned above, global shift-invariance is an important property the SCFT model so-

lutions. Figure 2.3a displays the output of the deep network for all the possible periodic

shifts (cyclic permutations) of the density array input (from 0 to 63) for some representa-

tive cases. As this figure demonstrates, the proposed deep network preserves with good

accuracy (2–3 digits) the desired, global shift-invariance.

We now test the ability of our deep learning model to predict saddle point SCFT

densities. As mentioned earlier this is done using gradient descent of the learned map.

The search process starts from the density field in the training set that generates a

gradient of the learner H̃ closest to 0. Then, in each iteration, we evaluate the gradient

of the learner by summing up the gradient of the leading order term and the gradient of

the deep-learned remainder R, computed by the Chain Rule. Because the training is done

in Sobolev space, a minimizer of the learner H̃ yields an accurate approximation of the

true SCFT saddle point density field. Figure 2.4 presents four examples of the predicted

density field and compares them with the corresponding SCFT solution. The accuracy

of the deep learning model predictions is outstanding. Table 2.2 lists the specific errors

of the predictions on the test set for both the AB diblock and the AB3 star copolymer.
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(a) χN = 27.5, 3 ≤ L ≤ 6.9, and f = 0.3. (b) L = 3.6, 20 ≤ χN ≤ 35.5, and f = 0.3.

(c) χN = 28.5, 3 ≤ L ≤ 6.9, and f = 0.4. (d) L = 5.6, 20 ≤ χN ≤ 35.5, and f = 0.4.

Figure 2.2: AB diblock copolymer with low-to-moderate χN : comparison of the deep
learned effective Hamiltonian with the SCFT effective Hamiltonian. In (d), there is a
jump because the optimal density field switches from two periods to one period at that
point and this leads to a smaller effective Hamiltonian.

χN Structure f EH EG EI

low χN
AB diblock

0.3 0.017 0.018 0.006
0.4 0.006 0.023 0.005

AB3 star 0.4 0.013 0.035 0.005

high χN
AB diblock

0.3 0.011 0.050 0.006
0.4 0.012 0.046 0.017

AB3 star 0.4 0.017 0.065 0.012

Table 2.2: Performance of the Sobolev space-trained deep neural network on the test
set (root mean square error): EH is the error of predicted effective Hamiltonian, EG is
the error of predicted effective Hamiltonian gradient, EI is the difference of predicted
effective Hamiltonian of shifted density fields. Low χN refers to χN ∈ [20, 35.5] for all
cases. High χN refers to χN ∈ [50, 65.5] for the AB diblock with f = 0.3 and for the
AB3 star system, and to χN ∈ [45, 60.5] for the AB diblock with f = 0.4.
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(a) AB diblock copolymer (b) AB3 star copolymer

Figure 2.3: Global shift-invariance validation for some representative cases: (a)low-to-
moderate χN and high χN cases for AB diblock system, (b)low-to moderate and high
χN cases for AB3 star system.

(a) χN = 33.5, L = 3.4, and f = 0.3. (b) χN = 30.5, L = 6.6, and f = 0.3.

(c) χN = 26.5, L = 4.1, and f = 0.4. (d) χN = 24.0, L = 6.6, and f = 0.4.

Figure 2.4: AB diblock copolymer with low-to-moderate χN : predicted and SCFT saddle
density fields.
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We are using a relatively small training set but get fairly accurate approximations. In-

creasing the number of data points would generally improve the performance. As proved

by Chen, Jiang, Liao, and Zhao [19], there exists a deep ReLU architecture such that

the mean squared error of the approximation converges at the rate of O(n−
2(s+α)

2(s+α)+d log3 n)

when n points are sampled to approximate a Hölder function in Hs,α supported on a

d-dimensional Riemannian manifold isometrically embedded in RD with sub-Gaussian

noise and a data intrinsic dimension of d.

2.6.2 AB Diblock Copolymer with High χN

We now consider the case of high χN , i.e. strong segregation. This is a notoriously

difficult case from the SCFT computational point of view. High χN SCFT simulations

usually require high spatial resolution and are numerically stiff, taking hundreds or thou-

sands of iterations to converge. Here, we select χN in the range [50, 65] for f = 0.3 and

χN in the range [45, 60] for f = 0.4, using a similar procedure with same number of

spatial and contour grid points as Section 2.6.1 to generate the dataset.

Figure 2.5 shows representative predictions of the effective Hamiltonian map H from

(χN,L, f, ρ), and Figure 2.3a displays representative results for global shift-invariance.

As in the low-to-intermediate χN cases, the deep learner produces excellent predictions.

Table 2.2 demonstrates that we still have several digits of accuracy in H, its gradient,

and in preserving global shift-invariance. However, as expected, the error in the gradient

is larger for the high χN cases because of the sharper interfaces.

Predictions of the SCFT saddle point density field for a given (χN∗, L∗, f ∗) are shown

in Figure 2.6. The deep learner in combination with gradient descent is able to predict

the density profiles for these higher values of χN almost as accurately as for the lower

χN values. We emphasize that high χN SCFT computations are computationally much
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(a) χN = 50.5, 3 ≤ L ≤ 6.9, and f = 0.3. (b) L = 4.6, 50 ≤ χN ≤ 65.5, and f = 0.3.

(c) χN = 58.5, 3 ≤ L ≤ 5.8, and f = 0.4. (d) L = 3.6, 45 ≤ χN ≤ 60.5, and f = 0.4.

Figure 2.5: AB diblock copolymer with high χN : comparison of the learned and SCFT
Hamiltonian.

more expensive than those for smaller χN due to the requirement of higher numerical

resolution and slower convergence of the saddle point iterations. In contrast, with the

deep learning method we can obtain an accurate prediction of the saddle point density

field for high χN fast, at the same cost as that for obtaining a density prediction for low-

to-moderate χN case; in both cases, it is just several evaluations of a neural network,

which is a combination of linear functions and activation functions as shown in Eq. (2.18).

After generating hundreds of training data points and a one-time training, the Sobolev

space-trained neural network becomes a valuable, fast computational tool to predict

accurately the effective Hamiltonian from density fields on any dataset, for example a

large scale dataset with tens of thousands of data points to evaluate. No additional
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(a) χN = 59.5, L = 3.6, and f = 0.3. (b) χN = 60.0, L = 6.7, and f = 0.3.

(c) χN = 52.0, L = 3.0, and f = 0.4. (d) χN = 57.5, L = 5.3, and f = 0.4.

Figure 2.6: AB diblock copolymer with high χN : predicted and SCFT saddle density
field.

training or fine-tuning is needed during the subsequent polymer phase discovery process.

To illustrate the running time difference between the predictions by the numerical solution

of SCFT and the new deep neural network model, we take 200 samples of (χN,L, f) with

61 ≤ χN ≤ 65, to compare both approaches. The running times are shown in Table 2.3.

The SCFT CPU and the neural network CPU times are from the same machine (MacBook

Pro, 2.2 GHz Intel Core i7 Processor, 16 GB 1600 MHz DDR3 Memory). The neural

network GPU time is the running time on a Tesla P100 GPU. The same stopping criterion

was used CPU and GPU neural network experiments. The superiority of the deep neural

network model is clear and the computational savings would even more dramatic in 2D

and 3D. Finding saddle point, local density fields with large 3D SCFT computations
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can take several hours whereas we should expect the proposed deep learning approach to

accomplish the same task in seconds. In addition, as the size of sample set to be predicted

increases, the neural network approach becomes more efficient because it is implemented

based on tensor operations and the running time increases slowly as the size of input set

increases.

Model SCFT CPU neural network CPU neural network GPU
Prediction time 1123s 5.97s 3.27s

Table 2.3: Comparison of the direct SCFT and the deep neural network approach in
terms for 200 samples.

2.6.3 AB3 Star Copolymer

To show the generalizability of our model, we now test our deep learning model for

an AB3 star copolymer melt, which has a different molecular architecture than the AB

diblock melt. In an AB3 star system, three B blocks are attached at a point to the A

block terminus. In both systems, strand lengths (including degeneracy factor) sum to 1.

In the AB diblock case, fA + fB = 1 while fA + 3fB = 1 for the AB3 star system.

We employ the same technique for the AB3 star system as used for the AB diblock

melt, where we wrote the effective Hamiltonian as the sum of the enthalpic term (ex-

plicitly extracting the quadratic interaction) and a remainder that contains the polymer

entropy and is deep learned in Sobolev space. Experiments are run on both a low-to-

moderate χN case and a high χN case, and in both cases accurate results are obtained.

The predicted map from (χN,L, f, ρ) to effective Hamiltonian H is shown in Fig. 2.7

and a validation of the global shift-invariance is presented in Fig. 2.3b. Just as for the

AB diblock, the predictions for the AB3 star copolymer are, as Table 2.2 quantifies, very
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(a) χN = 22, 3 ≤ L ≤ 6.9, and f = 0.4. (b) L = 5.6, 20 ≤ χN ≤ 35.5, and f = 0.4.

(c) χN = 58.5, 3 ≤ L ≤ 6.9, and f = 0.4. (d) L = 5.6, 50 ≤ χN ≤ 65.5, and f = 0.4.

Figure 2.7: AB3 star copolymer: comparison of predicted and SCFT effective Hamilto-
nian.

accurate. The density profile predictions are also excellent for both low and high χN as

Fig. 2.8 demonstrates.

2.6.4 Comparison with the Kernel Ridge Regression Learner

We implemented the Sobolev space-trained Kernel Ridge Regression (KRR) learner

introduced in Section 2.5 for the AB diblock copolymer and the AB3 star copolymer.

Even though the KRR does not comply with the shift invariance constraint, a comparison

with the deep NN-based method offers information on the capability of the Sobolev space-

trained KRR to approximate simultaneously H and its gradient, which might be useful

for other applications.
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(a) χN = 24.5, L = 3.0, and f = 0.4. (b) χN = 23.0, L = 5.1, and f = 0.4.

(c) χN = 59.5, L = 4.1, and f = 0.4. (d) χN = 64.5, L = 6.9, and f = 0.4.

Figure 2.8: AB3 star copolymer: predicted and SCFT saddle density fields.

Table 2.4 shows a comparison of the accuracy of the deep NN and the KRR for ap-

proximating H and its gradient, for both the AB block copolymer and the AB3 star

copolymer. The accuracy in H is slightly better for the deep NN but the KRR yields

a more accurate approximation of the gradient. The latter is not surprising given the

additional shift-invariance requirement in the deep NN which effectively reduces the ap-

proximating space. It is in fact remarkable that the deep NN yields comparable accuracy

with that of the constraint-free KRR. This underlines the generalization power of the deep

NN while handling additional learning constraints. On the other hand, for systems that

do not require a global shift (and/or rotational) invariance, the Sobolev space-trained

KRR could provide a simple, accurate, and explicitly trained learner.
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Structure learner f EH EG EI

AB diblock
NN 0.3 0.017 0.018 0.006

KRR 0.3 0.021 0.006 –

AB3 star
NN 0.4 0.017 0.065 0.012

KRR 0.4 0.020 0.007 –

Table 2.4: Comparison of the NN and the KRR learners trained in Sobolev space for the
AB diblock and the AB3 star system with low χN . EH is the error of predicted effective
Hamiltonian, EG is the error of predicted effective Hamiltonian gradient, and EI is the
difference of predicted effective Hamiltonian of shifted density fields. The KRR learner
does not have this approximate shift invariance.

2.7 Conclusions

In this chapter, we presented a deep learning framework to accelerate the exploration

of parameter space for block copolymer systems based on field theoretic models. The

central idea is to use data sets obtained from SCFT simulations to train in Sobolev space

and learn the effective Hamiltonian of the system as a function of the relevant average

monomer density field and the model parameters. The proposed neural network learner

is built from rigorous universal approximation results in Sobolev space and accurately

preserves global shift-invariance. Once this learning process is done, one can expeditiously

find, via gradient descent method, an accurate prediction for a saddle point density field.

Moreover, we can potentially combine any global optimizer with this neural network

approach to search for a global minimum.

The proposed SCFT-deep learning approach could also be used to accelerate the

solution of the inverse design problem: given target properties of the system, find the

parameters and composition that generate those properties. This could be done by

optimizing a suitable fitness function, which measures deviations from the target system,

and whose evaluation can be expeditiously done through a deep-learned functional.

There are, of course, several other machine learning models beside deep neural net-

works. As we show in Section 2.5, we could replace the learner by other learner in this
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framework and they too have great performance.

The focus of this chapter has been on systems in one spatial dimension to allow us

properly develop and test the proposed framework. Work on 2D is shown in chapter

3. In the higher-dimensional case we need global shift invariance along all axes, as

well as rotational invariance. Both can be incorporated with the data enhancement and

regularization approach proposed here. We will do some modifications on the architecture

and methodology to improve the performance in high dimensional cases.
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Chapter 3

Deep Learning and Self-Consistent

Field Theory: 2D Polymer Phase

Discovery

3.1 Introduction

In Chapter 2, we introduced deep learning methodologies for polymer self-consistent

field theory (SCFT) in one spatial dimension. In this chapter, we discuss this new

marriage of polymer SCFT and deep learning in two spatial dimensions for polymer

phase discovery. There are two main challenges: (1) the size of the input, density field

space increases exponentially as the spatial dimensions increase and (2) the Hamiltonian

must be invariant under both translational and rotational spatial transformations of the

density field.

Following the framework developed in the one-dimensional case, we train a machine

learner in Sobolev space and employ it to approximate the effective Hamiltonian and

to ultimately predict saddle point density fields. In order to tackle the aforementioned
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challenges and to ensure the algorithms work efficiently, we upgrade our methodologies

as follows:

1. We view the density fields as 2D images and train a Convolutional Neural Network

(CNN) [20] in Sobolev space. This ensures that the neural network approximates

accurately and efficiently the effective Hamiltonian and its gradient in the vicinity of

saddle points. CNN’s have proved to be a powerful tool for multiple image-related

problems [21].

2. We use a rotation-invariant representation of the polymer cell parameters and de-

sign a CNN architecture based on circular padding to achieve strong rotation and

translation invariance.

3. We propose to use a Generative Adversarial Network (GAN) [22] to generate initial

saddle point density fields without memorizing the training set. This saves enor-

mous computer memory/computation time, and makes it more feasible to generate

uncommon saddle point density fields.

The rest of the chapter is organized as follows. Section 3.2 details the two-dimensional

problem. Section 3.4 introduces the Convolutional Neural Network trained in Sobolev

space, which approximates the effective Hamiltonian and its gradient, and preserves

strong rotation/translation invariance. Section 3.4 introduces the developments in the

methodology to predict saddle point density fields by generating initial saddle point

density fields via a GAN and then fine-tuning the saddle point density fields with the

Sobolev space-trained CNN. Section 3.5 presents experimental results of effective Hamil-

tonian prediction and saddle density fields prediction on the two-dimensional AB diblock

polymer system. Finally, concluding remarks about the results and the proposed method-

ologies are given in Section 3.6.
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3.2 Problem Definition and General Strategy

To formulate the problem and illustrate the methodology, we use the concrete example

of a 2D incompressible AB diblock copolymer melt. The relevant parameters are χN

(χ is the Flory parameter and N is the copolymer degree of polymerization), which

measures the strength of segregation of the two components, cell vectors ~a1 and ~a2, which

correspond to the adjacent sides of the cell parallelogram, in units of the unperturbed

radius of gyration Rg, and f , the volume fraction of component A. Let ρ = ρA be the

local average monomer density of blocks A. As in the one-dimensional case, we formulate

two problems to solve:

• Problem 1: Learn a map (χN,~a1,~a2, f, ρ) 7−→ H̃(χN,~a1,~a2, f, ρ), where H̃ is

an accurate approximation of the field-theoretic intensive Hamiltonian H, the

Helmholtz free-energy per chain at saddle points.

• Problem 2: For specific values χN∗, ~a∗1, ~a
∗
2, f

∗, find accurately and efficiently a

density field ρ∗ that minimizes H̃.

The map H̃ is trained to approximate the Hamiltonian near the saddle points in

Problem 1. This surrogate functional can thus be evaluated much more efficiently than

through direct SCFT computation and provides an expedited way to screen for the

density field saddle point candidates in Problem 2.

As the one-dimensional case, we recast effective Hamiltonian H as

H(χN,~a1,~a2, f, ρ) = χNf − χN

|~a1 × ~a2|

∫
ρ2dr +R(χN,~a1,~a2, f, ρ), (3.1)

by extracting the leading quadratic interaction term and focus on learning the remainder

of Hamiltonian which contributes to polymer entropy but not enthalphy, where × is
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the cross product thus the denominator of the second term is the cell volume. In this

way, we directly evaluate the main part which is cheap to compute and approximate the

expensive part by neural networks. The advantages of learning the remainder R instead

of the entire Hamiltonian H is discussed in Appendix A.1.

The two-dimensional setting shares the same challenges as the one-dimensional one.

For instance, we only have data of effective Hamiltonian at saddle points, a reduced

set of a much larger complex manifold. Thus we need make assumptions on the data

manifold to guarantee that local minimizers of the learned Hamiltonian, search among

saddle and non-saddle points, are accurate approximations of the actual SCFT saddle

points. In addition, the exponential increase of in the size of input (discretized) density

fields compounds the challenge to accurately approximate H and to predict saddle density

fields. The translation invariance also involves more possible shifts in 2D and rotation

invariance adds another non-trivial challenge.

To handle these issues, we upgrade the methodology introduced in Chapter 2. To

solve Problem 1, instead of training a fully connected feedforward neural network in

Sobolev space, we train a CNN in Sobolev space to learn the effective Hamiltonian. In

order to implement the CNN on the density fields, we view these as images as use them

as input for the CNN. We use the rotation-invariant representation of parameters ~a1

and ~a2 to make the method invariant to rotations. Taking advantage of the local shift

invariance of CNN, we design the architecture of the CNN to make it have strongly

global shift invariance instead of the weakly global shift invariance in one-dimensional

case. To solve problem 2, we add an additional step: use generative adversarial network

to generate a initial saddle point density field pool. In 1D case, our initial density

fields come from training set. With the help of GAN, it is unnecessary to memorize

the training set and dramatically saves memory since the training set is large in high

dimensional case. It is unnecessary to evaluate the training set to get the initial saddle
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density fields, which reduces time complexity. In addition, the randomness of the GAN

increases the possibility to generate unseen initial density fields and hence it enhances

the capability of the proposed methodology for the discovery of new polymer phases.

Then, we select the initial density fields with the smallest magnitude of gradients by the

Sobolev space-trained CNN in Problem 1 and fine-tune the density fields by gradient

descent methods.

3.3 Methodology: Approximation of the Effective

Hamiltonian by a Convolutional Neural Network

In this section, we describe the methodology to approximate the effective Hamiltonian

from the relevant physocal parameters and density fields by a Sobolev space-trained

CNN. The 2D density field ρ can be represented as a matrix and thus viewed as image.

Then, the density field is processed by several convolutional layers, concatenated with

the parameters. Finally, an approximation to the effective Hamiltonian emerges after

going through several fully connected layers.

3.3.1 Convolutional Neural Networks to Learn the Entropic Re-

mainder

CNN’s are an important class of neural networks based on local convolutions. They

have become one of the dominant machine learning techniques for a variety of computer

vision tasks [23]. A typical CNN consists of convolutional layers, pooling layers, activa-

tion layers and fully connected layers1. Generally, the convolutional layer utilizes local

convolution to perceptive local signals and pooling layers to extract local features and

1Deatils on CNN and animation of these layers could be found at https://cs231n.github.io/

convolutional-networks/.
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achieve dimensionality reduction. A CNN learns spatial features by the combination

of these layers. The parameters of a CNN, such as kernel (convolution) weights, are

determined by backpropagation.

In each convolutional layer, a local kernel or filter is applied to the input tensor, where

the element-wise products of the kernel and a same-size neighbourhood of the tensor are

computed and added together. Multiple kernels might be applied to the input tensor

to generate multiple channels and the kernel weights are neural network parameters

determined by stochastic gradient descent methods. Figure 3.1 shows a schematics of

how a convolutional layer works.

A pooling layer is usually a downsampling operation that reduces the dimension of the

feature map [23]. Common pooling layers include the Max pooling, where the maximal

value in each neighbourhood is taken, and the Average pooling, where the average value

in each neighbourhood is selected. There are also a Global Maximal Pooling layer and a

Global Average Pooling layer, where global maximal/average is taken.

Activation layers increase the non-linearity and the learning ability of the CNN. After

several blocks of convolution, pooling, and activation layers, we can send the feature map,

into fully connected layers to generate the final output.

Considering CNN’s astonishing power for making predictions based on image inputs,

we use it as the main tool to approximate the effective Hamiltonian in 2D. According to

Equation 3.1,

Going back to the central problem of constructing a surrogate functional for H, we

again split the effective Hamiltonian H into its enthalpic and entropic parts and use

a CNN to learn the latter, which here we refer to as the remainder. Our proposed
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Figure 3.1: Illustration of convolutional layer

approximation has the form

H̃(x) = χNf − χN

|~a1 × ~a2|

∫
ρ2dr +NN(x), (3.2)

where x = (χN,~a1,~a2, f, ρ) and NN(·) is a CNN learner that takes density fields as

image inputs and process the information of parameters in the fully connected layer.

The specific architecture of the proposed CNN is provided in Section 3.3.2.

3.3.2 Rotation and Translation Invariance

The main goal of Problem 1 is to produce an accurate approximation of H which is

invariant under both translations and rotations of the density field. Rotation invariance

and translation invariance is illustrated in Figure 3.2, where picture (c) results from the

rotation of picture (a), and picture (b) results from the translation of picture (a). All

three share the same effective Hamiltonian. We opt to represent the 2D density fields

by the matrices corresponding to the values of H at equi-spaced grids. Mathematically,
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Figure 3.2: Rotation invariance and translation invariance.

setting the input parameters and the density field as x = (χN,~a1,~a2, f, ρ), the rotation

of density fields could be represented by

Rx = (χN,R~a1,R~a2, f,Rρ) = (χN,R~a1,R~a2, f, ρ),

which means that the rotation of the density field is equivalent to rotate the two cell

vectors, given the fixed arrangement of density field matrix. Thus, the rotation invariance

requirement can be succinctly expressed as

H̃(Rx) = H̃(x). (3.3)
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The main part of H̃, given in Equation 3.2, is invariant under rotation because |R~a1 ×

R~a2| = |~a1 × ~a2|. Therefore, we seek a learner with the property

NN(Rx) = NN(x). (3.4)

To equip the learner with rotation invariance, we employ a rotation-invariant repre-

sentation of (~a1, ~a2) which keeps all the necessary information of the adjacent vectors.

This is the natural representation, (l1, l2, θ), where l1 = ‖~a1‖, l2 = ‖~a2‖ and θ is the

angle between ~a1 and ~a2. This new representation is evidently invariant under rotation,

i.e., ‖~ai‖ = ‖R~ai‖, i = 1, 2 and θ(~a1,~a2) = θ(R~a1,R~a2), thus using this representation

as input ensures the output of the CNN preserves strongly rotation invariance. Hence-

forth, we set x = (χN, l1, l2, θ, f, ρ), which is equivalent to the previous definition but has

rotation invariance. Equation 3.2 can now be rewritten as,

H̃(x) = χNf − χN

|l1l2 cos θ|

∫
ρ2dr +NN(x). (3.5)

We now address the constraint of translation invariance. Mathematically, translation

invariance is described as

H̃(T x) = H̃(x), (3.6)

where T x = (χN, l1, l2, θ, f,T ρ) and T ρ(i0+i, j0+j) = T ρ(i0, j0) for some (i, j) and all

(i0, j0). To build a CNN with the global invariance property, we design the network using

circular padding. In the convolutional layer and the pooling layer of neural networks, the

element-wise product of the kernel and the input near the boundary is not well-defined

because the boundary element does not have neighbours outside of the boundary. The

most common solution is to use zero padding, where we assume that there are neighbours

with values zero near the boundary to compute the convolution, as shown in Figure 3.3a.
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However, convolution with zero padding unfortunately does not have the translation

invariance. Therefore, we endow the CNN with circular padding, which is similar to

periodic boundary conditions in PDEs, where we append the values from the opposite

boundary of the cell to each boundary. As shown in Figure 3.3b, the periodic boundary

allows the output tensor to have the same elements with a shift. Note that, in order

to make the operator commutative to the translation operator, the convolutional layer

and pooling layer should have stride 1. We denote a convolution with size k, stride 1

and circular padding as Convck,1,p(k)(), where p(k) is the size of padding which equals to

(k−1)/2 when k is odd and k/2 when k is even. Similarly, we denote the Average Pooling

layer with size k, stride 1 and circular padding as AvgP c
k,1,p(k)(), the Maximal Pooling

layer with size k, stride 1 and circular padding as MaxP c
k,1,p(k)(), global average layer

as GlA(), global maximal layer as GlM(), and element-wise activation function layer as

AcF (), (e.g. Relu as Relu(), Sigmoid function as Sigmoid(),....), fully connected layers

as FC().

Lemma 3 Convck,1,p(k)(), AvgP c
k,1,p(k)(), MaxP c

k,1,p(k)() and AcF () all commute with the

translation T . GlM() and GlA() are invariant under translation.

Proof: Suppose the input tensor is I, a spatial translation of I is T I. Then after the

convolutional layer with stride 1 and circular padding, Convck,1,p(k)(T I) only differs from

Convck,1,p(k)(T I) by a shift because they have the same set of neighbourhood batches

and only the starting batch changes. So Convck,1,p(k)(T I) = T Convck,1,p(k)(I). Similarly,

MaxP c
k,1,p(k)(T I) = T MaxP c

k,1,p(k)(I), AvgP c
k,1,p(k)(T I) = T AvgP c

k,1,p(k)(I). Since AcF

is element-wise operation, AcF (T I) = T AcF (I). Trivially, GlM(T I) = GlM(I) and

GlA(T I) = GlA(I).
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(a) Zero padding

(b) Circular padding

Figure 3.3: Zero padding and circular padding.

We design the CNN with the following architecture:

ρ→ Convc5,1,2()→ Relu()→ ...→ Convc5,1,2()→ Relu()︸ ︷︷ ︸
×5

→ GlA()

→ concat with (χN, l1, l2, θ, f)→ FC()︸ ︷︷ ︸
×3

, (3.7)
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where “concat with (χN, l1, l2, θ, f)” means the concatenation of the numbers derived in

each channel and the parameters. After GlA() or GlM(), the output is in the form of

several channels and each channel only has one single number (global maximum or global

average), say (c1, c2, ...cm) where m is the number of channels. So we could concatenate

the vector of all the channels with the parameters to get (c1, c2, ...cm, χN, l1, l2, θ, f), and

put them into several fully connected layers to make the final predictions.

Theorem 4 The convolutional neural network in Equation 3.7 has shift invariance with

respect to ρ.

Proof: From Lemma 3,

GlA ◦ (AcF ◦ Convck,1,p(k))n(T ρ) = GlA ◦ (T ◦ (AcF ◦ Convck,1,p(k))n(ρ)) (3.8)

= GlA ◦ (AcF ◦ Convck,1,p(k))n(ρ), (3.9)

for any n, where ◦ stands for composition of operators. Since each channel outputs

only one single number in the end, the fully connected layers preserves the translation

invariance. Our case is a special case with AcF = Relu, k = 5 and n = 5, which inherits

the translation invariance.

Note that we could also add the pooling layers with circular padding into the neural

network, e.g. AvgP c
k,1,p(k)(), MaxP c

k,1,p(k)(), and the network would still preserve transla-

tion invariance according to Lemma 3. Since the architecture designed in Equation 3.7

without adding the pooling layers after convolutional layers already works very well, we

did not include it for computation efficiency.

Based on the considerations above, we have effectively constructed an approximation

H̃ in Equation 3.2 with NN(x) in Equation 3.7, and H̃ keeps rotation and translation
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invariance, i.e.,

H̃(Rx) = H̃(x),

H̃(T x) = H̃(x).

3.3.3 Convolutional Neural Network in Sobolev Space

In Section 3.3.2, we developed the convolutional neural network to approximate effec-

tive Hamiltonian H with the rotation/translation invariance. In this section, we propose

to train the CNN in Sobolev space to fully solve Problem 1 and thus obtain a powerful

tool to solve Problem 2.

As in the one-dimensional case, all the training points are saddle points which should

have vanishing Hamiltonian gradients on the training set. We encode this valuable in-

formation into the objective function to train an approximation H̃ which matches both

the Hamiltonian and its gradient. This approach has many advantages, for instance,

it makes the prediction more accurate by imitating the gradient behaviour of the true

system, and it ensures the approximation has vanishing gradients on saddle points which

is significant for the predicted field in Problem 2.

Considering the vanishing gradient at saddle points, we select parameters of the CNN

to minimize the obejctive function,

C(α) =

NT∑
i=1

(H̃(xi)−Hi)
2 + β

NT∑
i=1

‖∇ρH̃(xi)‖2, (3.10)

where β controls the importance of the penalty terms on gradients and favours vanishing

gradients on saddle points and also serves as a regularization for smoothness.

For each data point (xi, Hi), according to Equation 3.1 and Equation 3.2, NN(xi)
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should match

Ri = Hi − χNifi +
χNi

|l1il2i cos θi|

∫
ρ2i dr. (3.11)

Based on the spatial discretization,

∇ρH̃(xi) = −2χNi

l1il2i
∆l1i ∆l2i ρi +∇ρNN(xi), (3.12)

where ∆l1 and ∆l2 are the spatial mesh size of the l1 direction and l2 direction. Then we

rewrite the cost function in Equation 3.10 as

C(α) =

NT∑
i=1

(NN(xi)−Ri)
2 + β

NT∑
i=1

‖∇ρNN(xi)−
2χNi

l1il2i
∆l1i ∆l2i ρi‖2, (3.13)

which is in the form of typical Sobolev norm, where we aim to train a map which matches

both the functional and functional gradients by minimizing the objective function. Since

the neural network is trained in Sobolev space, it is expected to predict the Hamiltonian

and its gradient simultaneously. At the same time, with the architecture described in

Equation 3.7, the approximation preserves rotation and translation invariance. With all

the pieces together, H̃ is able to approximate the effective Hamiltonian in Problem 1 and

also its gradient, which is useful for the saddle point density predictions in Problem 2.

3.4 Methodology: Saddle Point Density Field Pre-

diction by Generative Adversarial Networks

In Section 3.3, we developed a Sobolev space-trained CNN with strong rotation and

translation invariance, i.e. we fully solved Problem 1. In this section, we focus on the

solution to Problem 2 by employing a generative adversarial network (GAN) and the

Sobolev space-trained CNN of Problem 1.
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3.4.1 GAN, cGAN and DCGAN

Our methodology to predict saddle points is built by merging GAN, cGAN (Condi-

tional GAN) and DCGAN (Deep Convolutional GAN). In this section, we briefly intro-

duce the three architectures and the motivation to apply it on saddle points prediction.

A GAN [22] is a network where a Generator (G) is trained to generate, from random

noise, images similar to the images in the training set. A GAN has also a Discriminator

(D) which is trained to estimate the probability that the input image is from the training

set rather than from the Generator. After several rounds of training, G is expected to

generate images which could fool D and D is expected to tell the difference from the true

image and the fake image. In the end, G takes random noise as input and could generate

images that imitate the training set. For instance, if the training set are pictures of

human faces, G is expected to generate pictures of human faces because it learned how

to extract the latent features to the type of images. The loss function for a GAN is

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (3.14)

Based on the loss function, D is trained to maximize the probability that D(x) = 1

for all the x in the training set and the probability that D(G(z)) = 0 for all the images

generated by G. G is trained to minimize the probability that D identifies the fake images

and fool D by driving D(G(z)) to 1.

Conditional GAN (cGAN) was proposed in [24] to send labels to the Generator to gen-

erate the images corresponding to the label, for example the cGAN trained on MNIST2,

which is a dataset containing the images of 60K handwritten digits. The architecture and

training process is similar to GAN, with a difference that the Generator has an extra in-

put, the labels. Thus, the Generator has two types of inputs, random noise and labels of

2http://yann.lecun.com/exdb/mnist/
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the digits. After training, the Generator is expected to generate the digits corresponding

to the true label.

DCGAN [25] is an extended version of GAN, with an architecture where D is mainly

made up of convolutional layers and G is mostly composed of transposed convolutional

layers. A transposed convolutional layers is an upsampling layer, whose output has larger

dimension size than the input. A detailed introduction of transposed convolutional layer

is can be found here3. Since the transposed convolutional layers have the ability to expand

dimensions, we could see the noise vector of dimension n as an image with n channels

and size 1× 1 in each channel. Then by repeating transposed convolutions, each channel

could be expanded into the image size, e.g. 32× 32. With the transposed convolutional

layers in the Generator and convolutional layers in the Discriminator, DCGAN could

generate higher quality images.

3.4.2 ScftGAN

As described above, GAN-based models try to learn the relationship between the

latent feature space and the images with common styles, then generate the similar-style

images from a random noise with fixed dimensions, thus lying in a subspace considered

as latent feature space. In our Problem 2, we can regard all the saddle point density

fields as points on a high dimensional manifold. Could GAN learn the map from a latent

feature space equivalent to the saddle point manifold? If so, we could use the Generator

to generate density fields from the saddle density field manifold. In order to predict

saddle density fields corresponding to the specific combination of parameters, (χN∗, l∗1,

l∗2, θ
∗, f ∗), we could pass the parameters to the Generator (G) as done in a cGAN.

After training with the structure of saddle point density field manifold together with

the relationship between parameters and saddle point density fields, G is expected to

3https://towardsdatascience.com/what-is-transposed-convolutional-layer-40e5e6e31c11
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generate saddle point density fields corresponding to the parameters from random noise,

drawn from the latent space of the saddle point manifold.

The new GAN architecture we propose for saddle points density fields, which we

henceforth call ScftGAN, is shown in Figure 3.4. G generates “fake” density fields from

random noise and the parameters. The fake density fields together with the parameters

(shown as Information in Fig. 3.4) are sent into Discriminator (D). These examples are

labeled “fake” to train D. The true density fields are also sent into the D, labeled as

“true” during the training process. With the education from the true examples and

fake examples, D is trained to accurately classify the examples. In turn, the results of

D are utilized to update G in a stochastic gradient descent method, by maximizing the

probability that D identifies as “true” the fake examples (generated by the G). To educate

the D with the relationship between parameters and the corresponding density fields, we

also send the true density fields with the shuffled Information (parameters), i.e. assigning

a random Information (parameters) from the pool to the density fields, and penalizing

the probability that D classify these as true pairs, to avoid the risk that D makes decision

without considering the parameters. The knowledge that only saddle point density fields

corresponding to the input parameters should be generated, is enhanced in training. The

loss function for our proposed ScftGAN is

min
G

max
D

V (D,G) = Eρ∼pdata(ρ)[logD(ρ|y)] + Ez∼pz(z)[log(1−D(G(z|y)|y))]

+Eρ∼pdata(ρ)[log(1−D(ρ|S(y)))], (3.15)

where y is the tuple of parameters (χN , l1, l2, θ, f) and S(y) means a random shuffle of

all the Information (parameters) in the data set. Compared with loss function defined in

Equation 3.14 of the classical GAN, parameter information is sent to both G and D, and

the additional term enforces D to output ”0” for the input of wrong pairs of parameters
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Figure 3.4: ScftGAN, generative adversarial networks for SCFT. The Information block
represents parameters, i.e., (χN , l1, l2, θ, f).

and density fields, so that D could learn the correct relationship between parameters and

saddle density fields.

The architecture of G is :

z → concat with y → ConvT4,1,0()→ Bnorm()→ Relu()

→ concat with y→ ConvT4,2,1()→ Bnorm()→ Relu()︸ ︷︷ ︸
×2

→ concat with y → ConvT4,2,1()→ Bnorm()→ Relu()

→ concat with y→ ConvT5,1,2()→ Bnorm()→ Relu()︸ ︷︷ ︸
×6

→ ConvT5,1,2()→ Sigmoid() (3.16)

where ConvTm,n,k() stands for transposed Convolution of size m, stride n and zero

padding of size k, Bnorm() represents batch normalization, “concat with y” refers to
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the operation that treats each parameter in y has a constant channel and append the

parameter channels to the input tensor. We frequently repeat inputting the parameters

to the neural networks to stress the importance of parameters in saddle density fields

prediction.

The architecture of D is:

ρ→ concat with y → Conv3,1,1()→ LeakyRelu()

→ ConvT4,2,1()→ Bnorm()→ LeakyRelu()︸ ︷︷ ︸
×3

→ Conv4,1,0()→ Sigmoid(), (3.17)

the output is a number between 0 and 1 which measures the probability that the input

density field ρ is the saddle density fields of the corresponding parameters y.

After training, given specific parameters (χN∗, l∗1, l
∗
2, θ

∗, f ∗), GAN could generate a

batch of candidates for saddle density fields by taking various inputs of random noise.

The result is shown in Section 3.5. Then we could use the Sobolev space-trained CNN

in Section 3.3 to select the optimal density field, fine-tune the density field and predict

the corresponding Hamiltonian.

3.4.3 Saddle Density Field Prediction

In Section 3.4.2, we introduced the ScftGAN to generate predictions of saddle density

fields corresponding to the given parameters. Using various random noise, we could

generate a pool of saddle density fields. In this section, we combine the predictions

from ScftGAN with the Sobolev space-trained CNN to finalize the saddle density field

prediction.

Since we do Sobolev space-training for the approximation of the Hamiltonian, the
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saddle point density fields will yield small or vanishing Hamiltonian gradients. Therefore,

we plug all the saddle point density fields generated by ScftGAN into H̃ and compute

the gradients ∇ρH̃. We select the density field in the pool with the smallest ‖∇ρH̃‖ as

the initial density field. Notice that in the one-dimensional work, we proposed to use

the density field in training set with the smallest ‖∇ρH̃‖ as initial density field. There

are several advantages using this GAN-based generation of initial density field. First, we

do not need to memorize the training set for the saddle point density fields prediction,

which saves an enormous amount of computer memory. Second, the strong dependence

of performance on the training set is weaken so that the algorithm is more robust. Third,

the ScftGan could generate multiple candidates given different noise, which increases the

diversity of the candidate pool and consequently the probability to discover new polymer

phases.

After selecting the initial density field, we use gradient descent to fine-tune the density

field to get a local minimizer of H̃, which is an approximation of a saddle point density

field of the effective Hamiltonian. The gradient of H̃, i.e., which is an approximation

to the true Hamiltonian gradient, can be computed explicitly by Equation 3.12, where

∇ρNN is easily computed by backward propagation. In each step of gradient descent,

the saddle point density field prediction is updated by,

ρn+1 = ρn − ε∇ρH̃(xn). (3.18)

After the gradient descent method, we get the finalized prediction of the density field.

The experimental results are shown in Section 3.5.
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3.5 Results

In this section, we present results of numerical experiments for a two-dimensional AB

diblock system to validate the efficiency of the proposed methods. The data are generated

for the common range of parameters, i.e., χN = 16, l1 ∈ [3, 5], l2 ∈ [3, 5], θ ∈ [π/2, 5π/6],

f ∈ [0.3, 0.5]. We sample data points on equidistributed nodes in the given interval of

each parameter by running the direct SCFT solver to compute the corresponding saddle

point density fields and the effective Hamiltonian. The modified diffusion equations are

solved using periodic boundary conditions and pseudo-spectral collocation in space with

32 × 32 mesh points in 2D. Auxiliary fields, initialized with smooth fields with a fixed

number of periods, are relaxed to saddle-point configurations using the semi-implicit

Seidel iteration [5]. l1, l2 are varied rather than set to the value that minimizes the

effective Hamiltonian in building the datasets. After building the dataset, we randomly

pick 70% of the data as training set, 15% as the validation set, and 15% as the test set.

In the generated dataset there are both hexagonal cylinders (HEX) and lamellar phase

(LAM). Our experimental results show the capability of the Sobolev space-trained CNN

to accurately approximate the effective Hamiltonian for both phases. In other words, we

do not need to train separate learners for different phases.

3.5.1 Approximation of the Effective Hamiltonian

In this section, we show the performance of the Sobolev space-trained CNN to ap-

proximate the effective Hamiltonian and its gradient. Table 3.1 lists the mean square

error for these quantities. The Sobolev space-trained CNN achieves 3 digits of accuracy

on H prediction and 2 digits of accuracy on its gradient.

We randomly pick 30 data points form the test set and plot the predicted Hamiltonian

and SCFT effective Hamiltonian. Figure 3.5 shows that the CNN-predicted prediction is
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Hamiltonian Error Hamiltonian Gradient Error
Training set 0.0060 0.0129
Test set 0.0063 0.0128

Table 3.1: (Mean Square) Error of the CNN

accurate throughout the entire range of parameters.

Figure 3.5: Comparison of effective Hamiltonian and the CNN approximation for a ran-
dom set of 30 data points.

3.5.2 Saddle Point Density Field Predictions

In this section, we demonstrate the performance of our proposed ScftGAN for saddle

point density prediction. At the start we train the ScftGAN, which takes random noise

and parameter (χN∗, l∗1, l
∗
2, θ

∗, f ∗) as input. We show the performance of the ScftGAN

on the validation set during the training process in Figure 3.6. For each subplot, the

left columns are saddle density fields computed by direct SCFT simulation and the right

60



Deep Learning and Self-Consistent Field Theory: 2D Polymer Phase Discovery Chapter 3

column are the saddle density fields predicted by the ScftGAN. In the beginning (epoch

0), the ScftGAN predicts random density fields but the predictions dramatically improve

with the number of training epochs.

After training ScftGAN, for each combination of parameters, (χN∗, l∗1, l
∗
2, θ

∗, f ∗), we

generate 20 saddle point density fields candidates based on the same number of random

noise input. Then, we select the density field with smallest magnitude of gradient of

the the Sobolev space-trained CNN approximation H̃. Finally, we employ the gradient

descent method to fine-tune the density field prediction as shown in Equation 3.18. After

the fine-tuning, the new density field yields a density field with a reduced Hamiltonian

which suggest that this fine-tuning procedure leads to a more accurate minimizer.

The comparison of the Hamiltonian from the fine-tuned-density field and initial den-

sity field is displayed in Figure 3.7. The full procedures of saddle point density prediction

is illustrated in Figure 3.8.

Finally, we take some representative cases from the test set to check the ultimate

prediction of saddle point density fields. The results are summarized in Figure 3.9. The

left column contains the saddle points density fields computed by direct SCFT and the

right column has the density fields predicted by the ScftGAN with the final fine-tuning.

This completes the solution to Problem 2.

3.6 Conclusions

In this chapter, we solved two problems on the two-dimensional phase discovery. First,

we developed a CNN in Sobolev space, which approximates the effective Hamiltonian

and its gradient from the relevant physical parameters and corresponding saddle point

density fields. This CNN approximation also preserves rotation invariance and translation

invariance, which are necessary in SCFT theory. Second, we developed an algorithm
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(a) epoch 0 (b) epoch 13

(c) epoch 121 (d) epoch 4999

Figure 3.6: Predictions of saddle point density fields on the validation set during the
training of ScftGAN.
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Figure 3.7: Comparison of the effective Hamiltonian from the fine-tuned-density field
and initial density field

Figure 3.8: Procedures of saddle point density fields prediction. The Information block
represents parameters, i.e., (χN , l1, l2, θ, f).
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Figure 3.9: Saddle point density fields predictions for representative cases in the test set.
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to generate saddle density fields from the physical parameters by using GAN’s and a

fine-tuning process of the density fields using the Sobolev space-trained CNN and the

gradient descent method. It is important to note that the Sobolev space-trained CNN

yields an accurate approximation of H (ands its gradient) which is fast to evaluate. In

fact, we could also equip the trained-CNN with other screening methods to enhance

the prediction of saddle point density fields, such as Markov chain Monte Carlo or the

Hamiltonian Monte Carlo algorithms.
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Chapter 4

Optimal Policies for a Pandemic: A

Stochastic Game Approach and a

Deep Learning Algorithm

4.1 Introduction

The pandemic of coronavirus disease 2019 (COVID-19) has brought a huge impact

on our lives. Based on the CDC Data Tracker, as of early December 2020, there have

been more than 15 million confirmed cases of infection and more than 290 thousand

cases of death in the United States. Needless to say, the economic impact has also been

catastrophic, resulting in unprecedented unemployment and the bankruptcy of many

restaurants, recreation centers, shopping malls, etc.

In a classic, compartmental epidemiological model each individual is assigned a label,

e.g., Susceptible, Exposed, Infectious, Removed, Vaccinated. The labels’ order shows

the flow patterns between the compartments (SIR, SEIR, SIRV models). Other ap-

proaches include network models, which explicitly include the interaction of individuals,

66



Optimal Policies for a Pandemic: A Stochastic Game Approach and a Deep Learning Algorithm
Chapter 4

in addition to the modeling of each individual’s dynamics, and agent-based models that

are useful in informing decision making when accurately calibrated. Moreover, the con-

sideration of pharmaceutical and/or non-pharmaceutical intervention policies naturally

couples game theory to epidemiological models by controlling when and how the game

is played in such models. For example, in some early studies [26, 27], one can use non-

repeated games to incorporate game theory into modeling at the individual level, where

individuals (known as “players” in the game theory) maximize their gain by weighing

the costs and benefits of different strategies. We refer to the review paper [28] and the

references therein for more details.

Differential games, initiated by [29], as an offspring of game theory and optimal con-

trol, provide modeling and analysis of conflict in the context of a dynamical system.

They have been intensively employed across many disciplines, including management

science, economics, social science, biology, military, etc. One of the core objectives in

differential games is to compute Nash equilibria that refer to strategies by which no

player has an incentive to deviate. However, a major bottleneck comes from the no-

torious intractability of N -player games, and the direct computation of Nash equilibria

is extremely time-consuming and memory demanding. In a series of recent works by

[30, 31, 32, 33], the deep fictitious play (DFP) theory and algorithms were developed for

stochastic differential games (SDG) with a large number of heterogeneous players. The

DFP framework embeds the fictitious play idea, introduced by [34, 35], into designed

architectures of deep neural networks to produce accurate and parallelizable algorithms

with convergence analysis, and resolve the intractability issue (curse of dimensionality)

caused by the complex modeling and underlying high-dimensional space in SDG.

Building from the DFP theory and algorithms for computing Nash equilibria in SDG,

we propose here to strengthen the classical SEIR model by taking into account the social

and health policies issued by multiple region planners. We call this new model a stochastic
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multi-region SEIR model because it couples the stochastic differential game theory with

the SEIR model, making it more realistic and powerful. The computational challenge

introduced by the high-dimensionality of the multi-region solution space is addressed by

generalizing the deep fictitious algorithm proposed by [31]. This new approach leads

to an enhanced deep fictitious play algorithm to overcome the curse of dimensionality

and further reduce the computational complexity. To showcase the performance of the

proposed model and algorithm, we apply them to a case study of the COVID-19 pandemic

in three states: New York (NY), New Jersey (NJ), and Pennsylvania (PA). We present the

optimal lockdown policy corresponding to the Nash equilibrium of the multi-region SEIR

model. We remark that our work is not to predict a pandemic, but to provide a game-

themed framework, a deep learning algorithm and possible outcomes for competitive

region planners. We hope that information can provide some qualitative guidance for

policymakers on the impact of certain policies. The parameters used in the numerical

experiments are based on the current knowledge of the Coronavirus, which is still under

development. In practice, at the beginning of the Coronavirus, a governor might not

be able to trace the infections fully, and infected cases may not be fully identified. All

these may lead to the inaccuracy of parameter estimations despite our using of the best

available data. Therefore, it may be hard to match the predicted results with practical

observation.

The rest of the paper is organized as follows. In Section 4.2, we propose a novel multi-

region epidemiological model and explain how social and health policies issued by region

planners are integrated into dynamics, leading to a game feature of the problem. We

explain the numerical challenge in Section 4.3 and propose an enhanced deep fictitious

play algorithm for memory and computational efficiency. Section 4.4 focuses on a NY-NJ-

PA case study with detailed discussions on parameter choices and the resulted optimal

policies. We present some concluding remarks in Section 4.5 and provide technical details
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in the appendices.

4.2 Mathematical modeling: A multi-region SEIR

model

We consider a pandemic spreading in N geographical regions, and each planner con-

trols the loss of her region by implementing some policies. We aim to study how the

region planners’ policies affect each other, and the equilibrium policies.

Let us start with a modified version of the very-known epidemic SEIR model (cf. [36]),

where each region’s population is assigned to compartments with four labels: Susceptible,

Exposed, Infectious, and Removed. Individuals with different labels denote S: those who

are not yet infected; E: who have been infected but are not yet infectious themselves;

I: who have been infected and are capable of spreading the disease to those in the

susceptible category, and R: who have been infected and then removed from the disease

due to recovery or death. The region planners can issue certain policies to mitigate the

pandemic, for instance, policies that can help reduce the transmission rates and death

rates. Mathematically, denote by Snt , E
n
t , I

n
t , R

n
t the proportion of population in the four

compartments of region n at time t. We consider the following stochastic multi-region

SEIR model:

dSnt = −
N∑
k=1

βnkSnt I
k
t (1− θ`nt )(1− θ`kt ) dt− v(hnt )Snt dt− σsnSnt dW sn

t , (4.1)

dEn
t =

N∑
k=1

βnkSnt I
k
t (1− θ`nt )(1− θ`kt ) dt− γEn

t dt+ σsnS
n
t dW sn

t − σenEn
t dW en

t , (4.2)

dInt = (γEn
t − λ(hnt )Int ) dt+ σenE

n
t dW en

t , (4.3)

dRn
t = λ(hnt )Int dt+ v(hnt )Snt dt, n ∈ N := {1, 2, . . . , N}, (4.4)
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where `t ≡ (`1t , . . . , `
N
t ) and ht ≡ (h1t , . . . , h

N
t ) are policies chosen by the region planners

at time t. Each planner n seeks to minimize its region’s cost within a period [0, T ]:

Jn(`,h) := E
[ ∫ T

0

e−rtP n
[
(Snt +En

t + Int )`nt w+ a(κInt χ+ pInt c)
]

+ e−rtη(hnt )2 dt

]
. (4.5)

We now give detailed description of this model (4.1)–(4.5):

S: βnk denotes the average number of contacts per person per time. The transition

rate between Sn and En due to contacting infectious people in the region k is

proportional to the fraction of those contacts between an infectious and a suscep-

tible individual, which result in the susceptible one becoming infected, i.e., βSnt I
k
t .

Although some regions may not be geographically connected, the transmission be-

tween the two is still possible due to air travels but is less intensive than the

transmission within the region, i.e., βnk > 0 and βnn � βnk for all k 6= n.

`nt ∈ [0, 1] denotes the decision of the planner n on the fraction of population being

locked down at time t. We assume that those in lockdown cannot be infected.

However, the policy may only be partially effective as essential activities (food

production and distribution, health, and basic services) have to continue. Here we

use θ ∈ [0, 1] to measure this effectiveness, and the transition rate under the policy

` thus become βnkSnt I
k
t (1− θ`nt )(1− θ`kt ). The case θ = 1 means the policy is fully

effective.

hnt ∈ [0, 1] denotes the effort the planner n decide to put into the health system,

which we refer as health policy. It will influence the vaccination availability v(·)

and the recovery rate λ(·) of this model.

v(hnt ) denotes the vaccination availability of region n at time t. Once vaccinated,

the susceptible individuals v(hnt )Snt become immune to the disease, and join the
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removed category Rn
t . We model it as an increasing function of hnt , and if the

vaccine has not been developed yet, we can define v(x) = 0 for x ≤ h.

E: γ describes the latent period when the person has been infected but not infectious

yet. It is the inverse of the average latent time, and we assume γ to be identical

across all regions. The transition between En and In is proportional to the fraction

of exposed, i.e., γEn
t .

I: λ(·) represents the recovery rate. For the infected individuals, a fraction λ(hn)In

(including both death and recovery from the infection) joins the removed category

Rn per time unit. The rate is determined by the average duration of infection D.

We model the duration (so does the recovery rate) related to the health policy hnt

decided by its planner. The more effort put into the region (i.e., expanding hospital

capacity, creating more drive-thru testing sites), the more clinical resources the

region will have and the more resources will be accessible by patients, which could

accelerate the recovery and slow down death. The death rate, denoted by κ(·), is

crucial for computing the cost of the region n; see the next item.

Cost: Each region planner faces four types of cost. One is the economic activity loss due

to the lockdown policy, where w is the productivity rate per individual, and P n

is the population of the region n. The second one is due to the death of infected

individuals. Here κ is the death rate which we assume for simplicity to be constant,

and χ denotes the cost of each death. The hyperparameter a describes how planners

weigh deaths and infections comparing to other costs. The third one is the inpatient

cost, where p is the hospitalization rate, and c is the cost per inpatient day. The last

term η(hnt )2 is the grants putting into the health system. We choose a quadratic

form to account for diminishing marginal utility (view it from η(hnt )2 to hnt ). All

costs are discounted by an exponential function e−rt, where r is the risk-free interest
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rate, to take into account the time preference. Note that region n’s cost depends

on all regions’ policies (`,h), as {Ik, k 6= n} appearing in the dynamics of Sn. Thus

we write is Jn(`,h).

The choices of epidemiological parameters will be discussed in Section 4.4.1. Next, we

summarize the key assumptions in the above model:

1. The dynamics of an epidemic are much faster than the vital (birth and death)

dynamics. So vital dynamics are omitted in the above model.

2. The planning is of a short horizon and will be adjusted frequently as the epidemic

develop. For simplicity, we assume this is no migration between regions over the

time [0, T ].

3. Individuals who once recovered from the disease, are immune and free of lockdown

policy.

4. The dynamics obeys the conservation law: Snt + En
t + Int + Rn

t = P n. This means

that the process Rn is redundant.

5. The dynamics of S, E and I are subjected to random noise, to account for the

noise introduced during data recording, false-positive/negative test results, excep-

tional cases when recovered individuals become susceptible again, minor individual

differences in the latent period, etc.

6. Individuals who are not under lockdown have the same productivity, no matter

their categories. We assume this for simplicity remark that this can be improved

by assigning different productivity to individuals with or without symptoms.

The above modeling and objectives can be viewed as a stochastic differential game

between N players1. Here, we view the whole problem as a non-cooperative game, as

1Henceforth, we shall use planner and player interchangeably.
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many regions make decisions individually and indeed even compete for scarce resources

(frontline workers, personal protective equipment, etc.) during the outbreak. Each player

n controls her states (Sn, En, In, Rn) through her strategy (`n, hn) in order to minimize

the associated cost Jn. The optimizers then are interpreted as the optimal lockdown

policy and optimal effort putting into the health system.

For a non-cooperative game, one usually refers to Nash equilibrium as a notion of

optimality. For completeness, we review the definition here.

Definition 4.2.1 A Nash equilibrium is a tuple (`∗,h∗) = (`1,∗, h1,∗, . . . , `N,∗, hN,∗) ∈ AN

such that

∀n ∈ N , and (`n, hn) ∈ A, Jn(`∗,h∗) ≤ Jn((`−n,∗, `n), (h−n,∗, hn)), (4.6)

where `−n,∗ represents strategies of players other than the n-th one:

`−n,∗ := [`1,∗, . . . , `n−1,∗, `n+1,∗, . . . , `N,∗] ∈ AN−1, (4.7)

A denotes the set of admissible strategies for each player and AN is the produce of N

copies of A. For simplicity, we have assumed all players taking actions in the same space.

In the sequel, to fix the notations, we shall use

• a regular character with a superscript n for an object from player n;

• a boldface character for a collection of objects from all players, i.e., St ≡ [S1
t , . . . , S

N
t ]T;

• a boldface character with a superscript −n for a collection of objects from all players

except n, i.e., S−nt ≡ [S1
t , . . . , S

n−1
t , Sn+1

t , . . . , SNt ]T.

A Markovian Nash equilibrium is a Nash equilibrium defined above with A being

the set of Borel measurable functions: (`, h) : [0, T ] × R3N → [0, 1]2. In other words,
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the policies (`nt , h
n
t ) at time t are functions of the time t and the current values of all

players’ state processes (St,Et, It). We omit the dependence on Rt as it is redundant as

a consequence of the conservation law.

We derive below the Hamilton-Jacobi-Bellman (HJB) equations characterizing the

Markovian Nash equilibrium. To simplify the notation, we first rewrite the dynamics of

(St,Et, It) defined in (4.1)–(4.3) into a vector form

Xt ≡ [St,Et, It]
T ≡ [S1

t , · · · , SNt , E1
t , · · · , EN

t , I
1
t , · · · , INt ]T ∈ R3N .

Again, we shall drop the redundant process Rt. The dynamics of Xt reads:

dXt = b(t,Xt, `(t,Xt),h(t,Xt)) dt+ Σ(Xt) dWt, (4.8)

where b,Σ are deterministic functions in R3N and R3N×2N , and {Wt}0≤t≤T is a 2N -

dimensional standard Brownian motion. Each player n aims to minimize the expected

running cost

E
[∫ T

0

fn(t,Xt, `
n(t,Xt), h

n(t,Xt)) dt

]
. (4.9)

We defer the specific definitions of b,Σ,W , and fn to Appendix B.1.1 to facilitate the

exposition. We now define the value function of player n by

V n(t,x) = inf
(`n,hn)∈A

E
[∫ T

t

fn(s,Xs, `
n(s,Xs), h

n(s,Xs)) ds|Xt = x

]
. (4.10)
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By dynamic programming, it solves the following HJB system


∂tV

n + inf(`n,hn)∈[0,1]2 H
n(t,x, (`,h)(t,x),∇xV

n) + 1
2
Tr(Σ(x)THessxV

nΣ(x)) = 0,

V n(T,x) = 0, n ∈ N ,
(4.11)

where Hn is the usual Hamiltonian defined by

Hn(t,x, `,h,p) = b(t,x, `,h) · p+ fn(t,x, `n, hn), (4.12)

∂t denotes the time derivative, ∇xV and HessxV denote the gradient and the Hessian of

the function V with respect to x, respectively, and Tr stands for the trace of a matrix.

Finding the optimal policies for N regions is equivalent to solving N -coupled 3N +

1 dimensional nonlinear equations (4.11). For example, when N = 3, each PDE is

10-dimensional and conventional methods start to lose their efficiency. The recently

proposed deep learning algorithm in [31], known as deep fictitious play (DFP), has shown

excellent numerical performance in solving high-dimensional, coupled HJB equations with

convergence analysis [32]. In the next section, we will first review and then propose an

enhanced version of DFP to tackle some new issues.

4.3 Numerical methodology: Enhanced deep ficti-

tious algorithm

We first briefly review the deep fictitious play (DFP) algorithm for solving equation

(4.11) and we refer readers to [31] for full details. With the idea of fictitious play, DFP

recasts the N -player game into N decoupled optimization problems, which are solved

repeatedly stage by stage. Each individual problem is solved by the deep BSDE method
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[37, 38]. The algorithm starts with some initial guess (`0,h0), where the superscript 0

stands for stage 0. At the (m + 1)th stage, given the optimal policies (`m,hm) at the

previous stage, the algorithm solves the following PDEs


∂tV

n,m+1 + inf(`n,hn)∈[0,1]2 H
n(t,x, (`n, `−n,m, hn,h−n,m)(t,x),∇xV

n,m+1)

+1
2
Tr(Σ(x)THessxV

n,m+1Σ(x)) = 0,

V n,m+1(T,x) = 0, n ∈ N ,

(4.13)

and obtains the (m+ 1)th stage’s optimal strategy by:

(`n,m+1, hn,m+1)(t,x) = arg min
(`n,hn)∈[0,1]2

Hn(t,x, (`n, `−n,m, hn,h−n,m)(t,x),∇xV
n,m+1(t,x)).

(4.14)

Here, (`−n,m,h−n,m) stands for others’ optimal policies from the mth stage and are con-

sidered to be fixed functions when solving the PDE at the current stage. In the sequel,

to simplify notations we omit the stage label m in the superscript when there is no risk

of confusion. To solve (4.13) at each stage, it is first rewritten in the DFP as

∂tV
n +

1

2
Tr(Σ(x)THessxV

nΣ(x)) + µn(t,x; `−n,h−n) · ∇xV
n (4.15)

+ gn(t,x,Σ(x)T∇xV
n; `−n,h−n) = 0, (4.16)

with some functions µn and gn. The solution is then approximated by solving the equiv-

alent BSDE (Xn
t , Y

n
t , Z

n
t ) ∈ R3N × R× R2N :


Xn

t = x0 +

∫ t

0

µn(s,Xn
s ; (`−n,h−n)(s,Xn

s )) ds+

∫ t

0

Σ(Xn
s ) dWs,

Y n
t =

∫ T

t

gn(s,Xn
s , Z

n
s ; (`−n,h−n)(s,Xn

s )) ds−
∫ T

t

(Zn
s )T dWs,

(4.17)

(4.18)
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in the sense of (cf. [39, 40, 41])

Y n
t = V n(t,Xn

t ) and Zn
t = Σ(Xn

t )T∇xV
n(t,Xn

t ). (4.19)

The high-dimensional BSDE (4.17)–(4.18) is tackled by the deep BSDE method proposed

in [37, 38].

In [31], the algorithm solves the BSDE by parametrizing V n(t,x) using neural net-

works (NN) and then obtains the approximate optimal policy by plugging the NN outputs

into (4.14). For memory efficiency, the algorithm only stores the NNs’ parameters at the

current and the one-step previous stages. This strategy works well for games like the

linear-quadratic game, but it would be ineffective if `−n or h−n explicitly appears in the

minimizer in (4.14). In this case, when evaluating others’ strategy `−n or h−n at stage m,

it does not only need NNs at stage m but also at stages m− 1, m− 2, ..., 0. This means

one needs to store NNs’ parameters for all the previous stages from 1, . . . ,m, and evaluate

the associated output. Therefore, the time complexity of evaluating (`−n,h−n)(s,Xn
s )

up to stage m is O(m2) and the memory complexity is O(m). This is infeasible in prac-

tice, as for real problems it hundreds of stages are needed. To overcome this significant

problem, we propose an enhanced version of the original algorithm which reduces the

time complexity to O(m) and the memory complexity to O(1). We present this new,

enhanced algorithm (with pseudocode).

4.3.1 Algorithm

In order to reduce the computational complexity of evaluating (`−n,h−n)(s,Xn
s ) in

the situation when `−n or h−n explicitly appears in the minimizer in (4.14), we pro-

pose the Enhanced Deep Fictitious Play which parametrizes both V n(t,x) and policy

(`n, hn)(t,x) by NNs. For simplicity, we state the algorithm based on a generic stochas-
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tic differential game, where (possibly high-dimensional) controls are denoted by αn(t,x)

for player n.

In each stage of the Enhanced Deep Fictitious Play, for each planner n, the loss that

our algorithm aims to minimize consists of two parts: (1) the loss related to solving

(4.17)–(4.18) and (2) the error of approximating the optimal strategy αn within some

hypothesis spaces. The resulted approximation α̃n will be used in the next stage of

fictitious play:

inf
Y n0 ,α̃

n,{Znt }0≤t≤T
E(|Y n

T |
2 + τ

∫ T

0

‖αn(s,Xn
s )− α̃n(s,Xn

s )‖22 ds)

s.t. Xn
t = x0 +

∫ t

0

µn(s,Xn
s ; α̃−n(s,Xn

s )) ds+

∫ t

0

Σ(Xn
s ) dWs,

Y n
t = Y n

0 −
∫ t

0

gn(s,Xn
s , Z

n
s ; α̃−n(s,Xn

s )) ds+

∫ t

0

(Zn
s )T dWs,

αn(s,Xn
s ) = arg min

βn
Hn(s,Xn

s , (β
n, α̃−n)(s,Xn

s ), Zn
s ), 2

(4.20)

where ‖ · ‖2 denotes the 2-norm, α̃−n denotes the collection of approximated optimal

controls from the previous stage except player n, and τ is a hyperparameter denoting

the weight between two terms in the loss function. As detailed in Section 4.3.2, the

hypothesis space for which we search α̃n is characterized by another NN, in addition

to the one to approximate Y0 and {Zn
t }0≤t≤T . Although representing α̃n with a neural

network introduces approximation errors, it allows us to efficiently access the proxy of

the optimal strategy α−n in the last stage by calling corresponding networks, instead

of storing and calling all the previous strategies α−n,m−1, . . . ,α−n,1 due to the recursive

dependence.

Numerically we solve a discretized version of (4.20). Given a partition π of size NT

on the time interval [0, T ], 0 <= t0 < t1 < .... < tNT = T , the algorithm reads (to ease

2Here we have assumed that the Hamiltonian Hn depends on ∇xV through ΣT∇xV .
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the notation, we replace the subscript tk by k):

inf
ψ0∈Nn

′
0 ,{φk∈Nnk ,ξk∈Nn′′k }

NT−1

k=0

E{|Y n,π
T |

2 + τ
∑
k

‖αn,πk − α̃
n,π
k (Xn,π

k )‖22 ∆tk} (4.21)

s.t. Xn,π
0 = X0, Y n,π

0 = ψ0 (Xn,π
0 ) , Zn,π

k = φk (Xn,π
k ) , α̃n,πk (Xn,π

k ) = ξk(X
n,π
k ),

(4.22)

αn,πk = arg min
βn

Hn(tk,X
n,π
k , (βn, α̃−n,πk )(Xn,π

k ), Zn,π
k ), k = 0, . . . , NT − 1 (4.23)

Xn,π
k+1 = Xn,π

k + µn
(
tk,X

n,π
k ; α̃−n,πk (Xn,π

k )
)

∆tk + Σ (tk,X
n,π
k ) ∆Wk, (4.24)

Y n,π
k+1 = Y n,π

k − gn
(
tk,X

n,π
k , Zn,π

k ; α̃−n,πk (Xn,π
k )
)

∆tk + (Zn,π
k )T ∆Wk, (4.25)

where ∆tk = tk+1 − tk, ∆Wk = Wtk+1
−Wtk , and N n′

0 , {N n
k }

NT−1
k=0 , {N n′′

k }
NT−1
k=0 are

hypothesis spaces for player n, which will be specified later through neural network

structures.

The expectation in (4.21) is further approximated by Monte Carlo samples of (4.24)-

(4.25). The parameters in the hypothesis spaces are determined by stochastic gradient

descent (SGD) algorithms such that the approximated expectation is minimized, which

in turn gives the optimal deterministic functions (ψ∗0, φ
∗
k, ξ
∗
k). We expect that (ψ∗0, φ

∗
k, ξ
∗
k)

will approximate (V n,∇xV
n, αn) well when this proxy of (4.21) is small. Particularly,

{ξ∗k}
NT−1
k=0 serves as an efficient tool to evaluate the optimal policy at the current stage for

finding Nash equilibrium. Implementation details and the full algorithm are presented

in Section 4.3.2. Note that when τ = 0 and α̃ are replaced by α in the above algorithm,

the Enhanced Deep Fictitious Play degenerates to the Deep Fictitious Play proposed in

[31].
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4.3.2 Implementation

Here we provide some detail to implement the methodology in Section 4.3.1. First,

we specify the hypothesis spaces for neural networks N n′
0 ,{N n

k }
NT−1
k=0 , {N n′′

k }
NT−1
k=0 , corre-

sponding to V n,∇xV
n, αn (the superscript m is dropped again for simplicity). V n(t, x) is

parametrized directly by a neural network NN(t,x) . Corresponding map Σ(X)T∇xV
n(t,X)

that defines Zn
t in the optimization problem (4.20) could be parametrized by Σ(x)∇xNN(t,x).

Naturally, Σ(x)∇xNN(tk,x) is a hypothesis function in N n
k . Under this parametrization

rule, the hypothesis functions in N n′
0 and {N n

k }
NT−1
k=0 share the same set of parameters.

The policy function αn(t,x) is parametrized by another neural network ÑN(t,x) and then

ÑN(tk,x) plays the role of a hypothesis function in N n′′

k . In other words, {N n′′

k }
NT−1
k=0

share the same set of neural networks. In a stochastic game of N players, there are 2N

neural networks in total, with N neural networks corresponding to V n(t,x) and N neural

networks corresponding to αn(t,x). At stage m, the N V -networks are trained to ap-

proximate the solution of PDE (4.15) and the N α-networks are trained to approximate

the current optimal policy computed by (4.14) using the optimal strategies in the last

stage. The updated neural networks at stage m would be used at stage m+1 to simulate

paths {Xn,π
k }

NT−1
k=0 and optimal strategies by (4.14). In this work, fully connected neural

networks with three hidden layers are used.

Second, at each stage, the 2N neural networks could be decoupled to N pairs of

V -network and α-network based on players. Then, the N pairs of neural networks could

be trained in parallel, which dramatically reduces computational time. As [31] and [42]

pointed out, it is not necessary to solve the individual control problem accurately in each

stage; the parameters at each stage are updated starting from the optimal parameters in

the last stage without re-initialization. This requires only a moderate number of epochs

for the stochastic gradient descent at each stage.
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The full implementation of Enhanced Deep Fictitious Play is shown in Algorithm 2.

For simplicity, we state the algorithm based on a generic stochastic differential game.

Algorithm 2: Enhanced Deep Fictitious Play for Finding Markovian Nash
Equilibrium

1: Require: N = # of players, NT = # of subintervals on [0, T ], M = # of
total stages in fictitious play, Nsample = # of sample paths generated for each
player at each stage of fictitious play, NSGD per stage = # of SGD steps for each
player at each stage, Nbatch = batch size per SGD update, α0 : the initial
policies that are smooth enough

2: Initialize N deep neural networks to represent V n,0 and N deep neural
networks to represent αn,0, n ∈ N
3: for m← 1 to M do

for all n ∈ N parallelly do

Generate Nsample sample paths {Xn,π
k }

NT
k=0 according to (4.24) and the

realized approximate optimal policies α̃−n,m−1(tk,X
n,π
k ) (Remark: α̃

represents social and health policies in the multi-region SEIR model)
for e← 1 to NSGD per stage do

Update the parameters of the nth V -neural network and α-neural
network one step with Nbatch paths using the SGD algorithm (or its
variant), based on the loss function (4.21)

Obtain the approximate optimal policy α̃n,m represented by the latest
policy neural network

Collect the approximate optimal policies at stage m: α̃m ← (α̃1,m, . . . , α̃N,m)

4: return The approximate optimal policy α̃M

Due to page limits, the exact choice of NN architectures will be detailed in Ap-

pendix B.2.1. To determine the total stages of fictitious play M , we monitor the relative

changes of αn and V n, and stop the process when the relative change from stage to stage

is below a threshold. Regarding the total number of SGD per stage, as shown in [31,

Figure 1], the original DFP is insensitive to the choice of NSGD per stage. We find the

enhanced version sharing the same behavior when apply to the COVID-19 case study.

We give more details in Section 4.4.2, and further experiments regarding different choices

of M and NSGD per stage in Appendix B.2.2.

For problems without analytical solutions, one natural concern is the reliability of
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numerical solutions. Theoretically, the quantity (4.21) serves as the indicator of the

numerical accuracy. In the original DFP where the second term in (4.21) does not exist,

Theorem 3 in [33] ensures the convergence to the true Nash equilibrium under technical

assumptions when (4.21) is small enough for each fictitious play stage and with sufficiently

large M and small ∆tk. In practice, the quantity in (4.21) is approximated by its Monte

Carlo counterpart, which we define as the loss function of our algorithms. Therefore,

having small training losses during all stages will ensure convergence. Extending Theorem

3 in [33] to the current setting is beyond the scope of this paper and is left for further

work.

4.4 Application on COVID-19

Our case study is based on COVID-19. We focus mainly on the lockdown/travel ban

policy between different regions. Therefore, to simplify the presentation, we omit the

health policy h in the following discussion and make v(·) = v, λ(·) = λ, and η = 0.

Moreover, as vaccines are not available to the population yet, we let v(·) = v = 0.

4.4.1 Parameter choices

In single-region SEIR models, the transmission rate, β, is the basic reproductive

number divided by the length of time an individual is infectious. In our model, we assume

that there is a region-independent constant β that underlies the rate of infections for each

population. The transmission rates βnk between regions are related to the underlying

transmission rate β, and the amount of travel between regions n and k.

To quantify the size of travel between regions, we assume there is a constant fraction

of people from region n that travel to region k, fnk, at any given moment in time. We

note that realistically one may expect fnk to depend on time and also on the epidemic

82



Optimal Policies for a Pandemic: A Stochastic Game Approach and a Deep Learning Algorithm
Chapter 4

status of regions n and k. However, for simplicity, we will not consider these scenarios

in our numerical experiments. We assume that fnn � fnk, fnn � fkn, ∀k 6= n, meaning

that most of the population n resides in region n at any given time, and also that most of

the people in region n at a given time are from n and not travelers from another region.

We will see later that this implies βnn � βnk ∀k 6= n.

To further clarify the transmission of infection from one region due to another, we

need to describe the set of parameters {βnk : n, k ∈ N}. Here, βnk represents the rate

of transmission from region k to region n. Specifically, βnk is the number of infected

people in population n per a contactable, infectious individual in population k per day,

assuming that 100% of population n is susceptible. This definition of βnk comes from

the derivation of the SDE system itself (4.1)–(4.3). Accounting for infection in region n

by individuals in region k from travel to both region n and k, we have that

βnk =


β(fnkfkk + fknfnn)P

k

Pn
, if k 6= n

β(fnn)2, if k = n.

(4.26)

We defer the detailed derivation of (4.26) to Appendix B.1.3.

Therefore, to specify βnk, we need to provide β and fnk. We will specify fnk for New

York (NY), New Jersey (NJ), and Pennsylvania (PA) in the next section. To estimate

β, we choose a basic reproductive number R0 = 2.2, which is consistent with [43], and

assume that the length of each individual being infectious is 13 days. More precisely, we

assume infectious individuals either recover or die in 13 days. Under these assumptions,

we obtain β = 2.2
13
≈ 0.17, consistent with [44] as a 13 day median time until death from

illness onset is used.

The infection fatality rate, or IFR, is the fraction of those infected who died from

the infection. We choose the IFR to be 0.65% according to the CDC estimate. This is
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also consistent with [45], which suggests a point estimate of 0.68%. The assumptions of

an IFR of 0.65% and an infectious period of 13 days determines that the recovery rate

(including both recovery and death due to infection) is λ = 1
13
≈ 0.0769, and the death

rate is κ = (0.65%)
13

= 0.0005. We choose the latent period to be 5 days according to [46].

This means that the we will have γ = 1
5
. Note that this choice has also been used in

other models such as [47] and [48]. We assume that the parameters for noise-level σsn , σen ,

n ∈ N are all 0.0002, and the extent to which one adheres to the social distancing policy,

θ, is either θ = 0.9 or θ = 0.99.

With most of the parameters for the SDE model (4.1)-(4.3) discussed, we now address

those specific to defining the cost. Regarding the risk-free-rate r, note that U.S. Treasury

yields are historically low and the uncertainty in the current level of inflation. We choose

for simplicity that r = 0. Also, considering that we are interested in simulations with

time periods of less than a year, the discounting is negligible. The parameter w represents

the dollar output per individual per day. To estimate w, we use GDP per capita per day,

yielding the estimate w = 172.6 dollars per person per day. Following [47] and [49], we

use the value of a statistical life, χ, to be 20 times GDP per capita. This results in

χ = 1.95 · 106 dollars per person. According to the CDC summary of U.S. COVID-19

activity, the hospitalization rate was 228.7 per 100,000 population by 11/14/2020. Thus,

we set p = 228.7 × 10−5. The cost per inpatient day is c = 73300/13 dollars, estimated

according to [50]. The attention hyperparameter a takes various values in the case study,

and will be specified in Section 4.4.2.

4.4.2 NY-NJ-PA COVID-19 case study

In this section, we apply our model (4.1)–(4.5) to analyze COVID-19 related policy in

three adjacent states: New York, New Jersey, and Pennsylvania. This case study is done
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over 180 days starting from 03/15/2020, using the Enhanced Deep Fictitious Play algo-

rithm introduced in Section 4.3 (cf. Algorithm 2) and the parameters discussed in 4.4.1.

The exact formulas of µn and hn in equation (4.15) are derived in Appendix B.1.2.

We refer to New York State as region 1, New Jersey State as region 2, and Pennsyl-

vania State as region 3. Their respective populations are P 1 = 19.54 million, P 2 = 8.91

million, and P 3 = 12.81 million. Regarding βnk, ∀n, k = 1, 2, 3, we assume that: (a)

90% of any state’s population is residing in their state at a given time; (b) the remaining

population (travelers) visit the other regions in an equal proportion; and (c) there is no

travel outside of the considered regions, i.e., the NY-NJ-PA is a closed system. The rea-

soning for (c) is that, under our model assuming that infection only occurs in the regions

considered, (c) is equivalent to allowing people traveling outside the considered regions,

but the travelers cannot be affected. For simplicity, we assume this is the case. Under

these assumptions, we will have fnn = 90% for n = 1, 2, 3 and fnk = 5% for n 6= k, and

obtain the values of βnk through (4.26).

Figure 4.1 presents the equilibrium policy issued by the governors of NY, NJ, and PA

when the policy effectiveness is θ = 0.99, i.e., 99% of the population follow the lockdown

order. The hyperparameter is a = 100, i.e., each governor values people’s death 100

times the lockdown cost. In this scenario, the governors take action at an early stage

and soon reach the strictest policy. Once the disease is under control, they may relax

the policy later. The percentage of Susceptible, Exposed, Infectious, and Removed stays

almost constant in the end. As a comparison, Figure 4.2 illustrates how the pandemic

gets out of control if governors show inaction or issue mild lockdown policies.

Experiment 1: dependence on a. We further analyze how the planners’ view on the

death of human beings changes their policies. In reality, economic loss is not the only

factor the planners concern about. It is also important to mitigate the infections and

deaths within the budget and available resources. Different views and values from the
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Figure 4.1: Plots of optimal policies (top-left), Susceptibles (top-right), Exposed
(bottom-left) and Infectious (bottom-right) for three states: New York (blue), New Jer-
sey (orange) and Pennsylvania (green). The shaded areas depict the mean and 95%
confidence interval over 256 sample paths. Choices of parameters are in Section 4.4.1,
a = 100 and θ = 0.99.

planners will lead to different policies. In this experiment, we consider different attitudes

towards the infection, especially death caused by COVID-19. This is reflected by the

attention hyperparameter a. Large a implies that planners care more about human

beings and are willing to spend more effort or endure more economic loss on lockdown

to avoid further infection and death. In comparison, smaller a implies that planners care

less about infection and death and instead pay more attention to minimizing the total

cost.

The numerical results in Figures 4.3 and 4.4 are consistent with intuition. With a

large a (top-left panels), meaning the planners give more consideration to infection and

death, they tend to issue a restrict lockdown policy, which helps slow down the disease

spreads and reduce the percentage of infected people. As a becomes smaller (top-right

panels), planners weigh more the economic loss and spend fewer efforts on lockdown.
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Figure 4.2: An illustration that governors’ inaction or mild control leads to disease spread-
ing.

When the attention a is small enough, some states even give up controlling the disease

spread due to economic concern (bottom panels). As a result, the pandemic would get

out of control by the end of the simulation period. This mild lockdown policy leads to a

natural spread of disease (also shown in Figure 4.2).

Experiment 2: dependence on θ. We next analyze how the residents’ willingness

to comply with the lockdown policy changes the optimal policies and the development

of a pandemic. The larger the θ is, the more likely the residents will follow the lock-

down policy, and the larger the difference the control makes on the pandemic situation.

Conversely, small θ weakens the effect of the lockdown policy. In the extreme case of

θ = 0, no matter how strict the lockdown policy is, the pandemic will become a natural

spread because the control term in (4.1) disappears. In short, this willingness to policy

compliance should be an essential factor in decision-making.

To this end, we compare the optimal policy when θ = 0.9 and θ = 0.99 in Figure
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Figure 4.3: Plots of optimal policies with different choice of a for three states: New York
(blue), New Jersey (orange) and Pennsylvania (green), when the lockdown efficiency is
θ = 0.9.

4.5. Panels (a-d) show the difference of optimal policies `(t) and the Susceptible S(t)

in the tri-state game under different θ when a = 50. In both situations, the pandemic

is well-controlled, with the percentage of susceptible people staying stable in the end.

Moreover, in the case of θ = 0.99, people are more willing to comply with the policies.

Consequently, the planners are allowed to use a less strict lockdown policy as shown in

Figure 4.5(b) compared to 4.5(a), which saves the lockdown cost. Figure 4.5 (e-h) shows

an interesting case in the comparison of θ = 0.9 and θ = 0.99. In this scenario, with

the same attention parameter (a = 25), θ = 0.9 leads to a mild lockdown policy, see

Figure 4.5(e), while θ = 0.99 provides a possibility to stop the spread of virus, see Figure

4.5(f). We believe that the decision when θ = 0.9 is a compromise as the lockdown is not

efficient enough to reduce largely the infection and death loss by paying lockdown cost,

and also due to the limited simulation period, i.e., the policies could have been different
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Figure 4.4: Plots of optimal policies with different choice of a for three states: New York
(blue), New Jersey (orange) and Pennsylvania (green), when the lockdown efficiency is
θ = 0.99.

if we had the simulation until the disease dies out. We also believe that the early give-up

by NJ drives NY and PA to lift lockdown policies at a later stage, because even NY

and PA issue strict policies, they are still facing severe infections from NJ due to its

high infected percentages and the existence of travel between states whatever the policy

is. So their interventions are not worth the candle. Figure 4.5(f)(h) further elucidate

the importance of residents’ support in slowing down the pandemic. Further experiments

based on different sets of (a, θ) reveal the possibility of having multiple Nash equilibrium,

with more elaboration in Appendix B.2.3.

To summarize, the numerical experiments illustrate that both the balance of economy

and infection/death from the view of plan-makers and the willingness of residents to follow

the lockdown policy play an important role in decision-making. In reality, all three states

issued stay-at-home orders in March, and attempted to reopen in June. By comparing
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Figure 4.5: Comparison of optimal policies for three states (NY = blue, NJ = orange,
PA = green) and their susceptibles between different policy effectiveness θ and hyperpa-
rameter a.

real world policies and our simulations of `(x), we may infer α and θ for NY, NJ, and

PA in our model, i.e., θ = 0.99 and a = 25.
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4.5 Conclusion

In this paper, we propose a novel multi-region SEIR model to study optimal policies

under a pandemic. Our new model, built on game theory, takes into account how the so-

cial and health policies issued by multiple region planners affect the progress of infectious

diseases. This feature makes the model more realistic and powerful but also introduces a

formidable computational challenge due to the high-dimensionality of the solution space

and the strong coupling of planners’ policies. We propose the enhanced deep fictitious

play algorithm to overcome the curse of dimensionality and use the model and algorithm

in a case study of the COVID-19 pandemic in three states, New York, New Jersey, and

Pennsylvania. The model parameters are estimated from real data posted by the CDC.

We are able to show the effect of lockdown/travel ban policy on the spread of COVID-19

for each state and how people’s willingness to comply and planners’ attitude towards

deaths influence the equilibrium strategies as a consequence of the competition between

regions. We hope our model can draw more attention to studying optimal interventions

in infectious diseases using game theory. Our numerical simulations can shed light on

public policies.

In reality, during a pandemic, the planning is usually for short periods and adjusted

frequently. This can be modeled using repeated games, and planners may infer other re-

gions’ cost functional from past game outcomes. The assumptions that some parameters

are identical across different regions can be relaxed and the health policy can also be

added for more accurate simulations. These will be left for future work.
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Conclusion

In this thesis, we explore two directions to leverage machine learning with scientific com-

puting to accelerate computations or to solve previously intractable problems in compu-

tational mathematics. The first direction is to generate data by traditional numerical

methods, and then train a machine learning system to learn the relationship between

variables. The second direction is to use a machine learner as an approximation to the

solution of a previously unsolvable system, plug the learner in the system, run numerical

simulation of the system on the top of the learner, quantify the loss between the the

theoretical value of the interested variable and the one derived from the learner after the

simulation, then determine the parameters of the learner by minimizing the loss.

In the first direction, we focus on the case study of accelerating polymer phase dis-

covery based on machine learning and self-consistent field theory. We solve both the

one-dimensional and the two-dimensional problems. In the one-dimensional case, we

generate data from SCFT simulations and train feedforward neural networks in Sobolev

space to accurately approximate the effective Hamiltonian and its gradient. We also

develop a technique, extendable to other architectures, to equip the neural network with

translation invariance. The existence of a neural network in Sobolev space which pre-
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serves shift invariance is rigorously proved. We then apply the gradient descent method

on the Sobolev space-trained neural network to find saddle point density field predictions.

In the two-dimensional case, we train convolutional neural networks (CNN’s) in Sobolev

space to obtain accurate approximations of the effective Hamiltonian and its gradient.

We take advantage of the CNN architecture to equip it with strong rotation and trans-

lation invariance. We then develop generative adversarial neural networks (GAN’s) to

generate a saddle point density field pool, select the optimal one and refine it using the

Sobolev space-trained CNN and gradient descent. The framework we propose for saddle

point density field prediction could also be extended to a general inverse/optimization

problem, where we can train a neural network for fast evaluation, generate initial pre-

diction from the training set or by GAN, then screen and/or fine-tune the candidates to

get the finalized prediction.

In the second direction, we take the case study to model the COVID-19 pandemic and

determine the optimal policy based on stochastic game strategy. The stochastic game

based on multi-region SEIR models introduced a high dimensional coupled HJB systems

to solve for Nash Equilibrium. To solve these problems with no traditional solvers, we

propose the enhanced deep fictitious algorithm, where we use neural networks to approx-

imate the optimal control and value function, plug them in the systems to do numerical

simulations on the corresponding Backward Stochastic Differential Equations, and search

for the parameters by using stochastic gradient descent method to minimize the difference

at terminal time. This provides the framework to solve previously unsolvable numerical

system by machine learning methods.

There are still many other exciting directions to combine computational mathematics

with the fast-developing machine learning techniques. For these two projects, polymer

phase discovery and Nash equilibrium of stochastic game for a pandemic, there is still

plenty of room for improvement. This work aims at providing a stepping stone to broad
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and exciting new area of applied mathematics.
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Appendix of Chapter 2

A.1 Learning H Versus Learning R Only

We present here numerical evidence that the proposed splitting of the Hamiltonian

to focus on learning the entropic part R only produces superior results for the predicted

saddle point density field than those produced by learning the full functional H. To make

a fair comparison of the two strategies, we trained the two NN learners with the same

architecture in the same set-up. Both methods produce comparable accuracy for H and

its gradient and are both capable of enforcing shift invariance accurately but as Fig. A.1

shows, the splitting approach yields significantly more accurate density field predictions.

A.2 Universal approximation

Consider the Sobolev space Wm
p (U) ≡ {f ∈ L1,loc(U)|∂αf ∈ Lp(U, λ), 0 ≤ |α| ≤ m}.

There are two significant results on the existence of neural network approximation neural

network in Sobolev space. These are the following theorems.

Theorem 5 [11] If G is l-finite, 0 ≤ m ≤ l, U is an open bounded subset of Rr and
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(a) χN = 33.5, L = 3.4, f = 0.3: learn the remainder
(b) χN = 33.5, L = 3.4, f = 0.3: learn the entire Hamilto-
nian

(c) χN = 30.5, L = 6.6, f = 0.3: learn the remainder
(d) χN = 30.5, L = 6.6, f = 0.3: learn the entire Hamilto-
nian

Figure A.1: Learning H versus learning R only. Predicted saddle point density fields
prediction for the AB diblock copolymer with low-to-moderate χN : left panels (a and c)
are the predictions based on learning the entropic remainder R only, right panels (b and
d) are the predictions based on learning the entire Hamiltonian H.

C∞0 (Rr) is dmp -dense in Wm
p (U) then Σ(G) is also dmp -dense in Wm

p (U).

For a natural number l, G is l-finite if G ∈ C l(R) and 0 <
∫
|DlG|dλ < ∞. Most

commonly used activation functions are l-finite. In Theorem 2 dmp is the Sobolev norm up

to mth derivative induced, by Lp norm. The condition that C∞0 (Rr) is dmp -dense in Wm
p (U)

is easy to satisfy. As pointed out by Hornik et al. [11], for all U which is a bounded domain

star-shaped with respect to a point O (equivalently, any ray with origin O has a unique

intersection with the boundary of U) C∞0 (Rr) is dmp -dense in Wm
p (U). This means that

for most common subsets of Rr, the aforementioned condition is naturally true. In [11],
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the authors also proved several other versions of this universal approximation result for

single layer neural networks with respect to the Sobolev norm. These theorems support

the existence of such neural networks that simultaneously approximates a functional and

its functional gradient.

Theorem 6 [12] Given any two functions f : S → R and g : S → Rd and a finite set

U ⊂ S, there exits neural network NN with a ReLU (or a leaky ReLU) activation such

that ∀x ∈ U : f(x) = NN(x) and g(x) = ∂NN
∂x

(x).

This theorem guarantees the existence of a Sobolev space-trained neural network with 0

training loss.

A.3 Ablation Study

In this section, we summarize results of a study that guided our choice of the network

size. We consider the approximation error, in both H and its gradient, as the networks

depth (number of hidden layers) and the network width (number of cells per layer) is

changed while the training and test sets and all the other hyperparameters are kept fixed.

We also examine the behavior of the training and validation loss functions as the number

of epochs (iterations on the stochastic gradient descent method) increases.

In the first batch of experiments, all the hyperparameters are fixed except for the

network depth. Seven neural networks with different number of hidden layers are trained

on the same training set and evaluated on the same test set independently. In the second

batch of experiments, the number of cells (network width) in the middle hidden layers

are the only variable while all other hyperparameters are fixed. Again, seven neural

networks with different widths are trained on the same training set and evaluated on the

same test set. Figure A.2 shows that the approximation is relatively stable with respect
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to the network size (both in depth and width) for the range considered. This suggests

that for the relatively modest training set size there is no discernible improvement of the

approximation as the network size grows beyond 6-8 levels. In other words, the training

set is not big enough to benefit from the use of larger networks. This observation is

consistent with the results reported by D’souza, Huang, and Yeh [51] on a convolutional

neural network with a small sample size.

(a) error vs. number of hidden layers (b) error vs. number of cells in middle hidden layers

Figure A.2: Relationship between the error on test set (root square error of H and its
gradient) and the size of neural network: (a) error versus number of hidden layers (depth),
(b) error versus number of hidden cells (width) from hidden layer 2 to hidden layer 5.

Figure A.3: Training and validation loss functions against the number of epochs (stochas-
tic gradient descent iterations).
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We now look at the behavior of the training and validation loss functions as number of

epochs (iterations on the stochastic gradient descent method) increases. The training loss

functions and the validation loss function (the sum of the loss of the effective Hamiltonian,

the effective Hamiltonian gradient and the shift invariance term) after 100 epochs are

presented in Fig. A.3. Both training loss function and the validation loss function (not

used in training) decrease as expected as the number of epochs increases.

A.4 Hyperparameters Employed in the Numerical

Experiments

We list in Table A.1 the hyperparameters we used for the experiments in Section 2.6.

We took β = 1 to stress the equal priority of approximating both the Hamiltonian

χN Structure f learning rate λ β γ

low χN
AB diblock

0.3 0.0001 8.15e-08 1 Ns/(Ns − 1)
0.4 0.001 8.44e-09 1 Ns/(Ns − 1)

AB3 star 0.4 0.0001 5.23e-08 1 Ns/(Ns − 1)

high χN
AB diblock

0.3 0.001 4.97e-10 1 Ns/(Ns − 1)
0.4 0.001 2.80e-10 1 Ns/(Ns − 1)

AB3 star 0.4 0.001 4.93e-11 1 Ns/(Ns − 1)

Table A.1: Hyperparameters employed in the numerical experiments. Ns is the number
of possible shifts.

and its gradient also to match the coefficient of the Sobolev norm. We chose γ =

Ns/(Ns − 1), which is close to 1. This choice takes into account that one of the possible

shifts, s = Ns, is a one-period shift and leads to a 0 difference with NN(xi) in formula

(2.20) (only Ns − 1 valid terms in the summation). We employed the hyperparameters-

tuning strategies described in Section 2.4.4 to select the optimal learning rate and the

regularization coefficient λ. We took βV = β and γV = γ in the validation loss (2.23)

and θV = Ns to balance the summation. Note that one could also view β and γ as
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hyperparameters and tune them as done for the learning rate and λ, which might generate

better results. We did not do this because with the more expedited use of fixed values

of β and γ the deep NN already produced impressive results.

In Step 2, when we search for saddle density fields by gradient descent, we performed

500 iterations after selecting the initial density fields from training set.
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B.1 Technical Details to the Stochastic Multi-region

SEIR Model

B.1.1 The dynamics of Xt in Section 4.2

In Section 4.2, for the ease of notations and clarity of the presentation, we rewrite

the dynamics of (Snt , E
n
t , I

n
t ) defined in (4.1)–(4.3) in the vector form

dXt = b(t,Xt, `(t,Xt),h(t,Xt)) dt+ Σ(Xt) dWt, (B.1)

where Xt ≡ [St,Et, It]
T ≡ [S1

t , · · · , SNt , E1
t , · · · , EN

t , I
1
t , · · · , INt ]T ∈ R3N , the Markovian

controls (`,h) are given by `(t,x) = [`1, . . . , `N ]T(t,x) and h(t,x) = [h1, . . . , hN ]T(t,x).

In the sequel, for a vector x ≡ (s, e, i) ∈ R3N , we shall index them in two ways,

(s1, · · · , sN , e1, · · · , eN , i1, · · · , iN) or (x1, . . . , x3N). (B.2)

101



Appendix of Chapter 4 Chapter B

and use them interchangeably. The former one emphasizes the dependence on each

category, while the later notation is more condensed. Similarly, for partial derivatives,

we will have two set of notations

(∂s1 , · · · , ∂sN , ∂e1 , · · · , ∂eN , ∂i1 , · · · , ∂iN ) or (∂x1 , · · · , ∂x3N ). (B.3)

We give precise definitions of (B.1) in this appendix. b(t,x, `,h) = [b1, . . . , b3N ]T(t,x, `,h)

is a deterministic vector-valued function:

bj(t,x, `,h) =


−
∑N

k=1 β
jksjik(1− θ`j(t,x))(1− θ`k(t,x))− v(hj(t,x))sj, j ∈ N ,∑N

k=1 β
j′ksj′ik(1− θ`j

′
(t,x))(1− θ`k(t,x))− γej′ , j ∈ N +N,

γej′ − λ(hj
′
(t,x))ij′ , j ∈ N + 2N, and j′ = j mod N.

(B.4)

Σ(x) = (Σj,k(x)) is a matrix-valued deterministic function in R3N×2N with non-zero

entries given below:

Σj,j(x) = −σsjsj, Σj+N,j(x) = σsjsj, (B.5)

Σj+N,j+N(x) = −σejej, Σj+2N,j+N(x) = σejej, j ∈ N . (B.6)

and {Wt}0≤t≤T is a 2N -dimensional standard Brownian motion:

Wt = [W s1
t , · · · ,W sN

t ,W e1
t , · · · ,W eN

t ]T.

According to (4.5), each region’s running cost fn defined in (4.9) is

fn(t,x, `,h) = e−rtP n[(sn + en + in)`n(t,x)w+a(κinχ+ pinc)] + e−rtη(hn(t,x))2. (B.7)
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B.1.2 The decoupled HJB equations in the form of (4.15)

Recall that we aim to solve (4.13) using the BSDE approach (nonlinear Feynman Kac

relation). To this end, in this appendix, we will rewrite it in the form of (4.15) and identify

µn and gn. The first step is to identify the minimizer in the Hamiltonian (4.12). Keeping

in mind that our testing case is COVID-19 where vaccines are not fully developed yet,

the term v(hnt ) = 0 is essentially zero in the past. Also, to focus on the lockdown/travel

ban policy between different regions (as we did in the case study), we shall exclude the

health policy h(t,x) from planners’ decision problem, i.e., v(·) = 0, λ(·) = λ, and η = 0

in the following derivations, and remove the dependence of h in all relevant functions.

We remark that including the health policy h(t,x) is a straightforward generalization.

Recall that the Hamiltonian in (4.13) reads:

Hn(t,x, (`n, `−n,m),∇xV
n,m+1) (B.8)

= b(t,x, (`n, `−n,m)) · ∇xV
n,m+1 + fn(t,x, `n) (B.9)

=
3N∑
j=1

bj(t,x, (`
n, `−n,m))

∂V n,m+1

∂xj
+ e−rtP n[(sn + en + in)`n(t,x)w + a(κinχ+ pinc)],

(B.10)

and recall that `−n,m = (`1,m, . . . , `n−1,m, `n+1,m, . . . , `N,m) represents the mth stage strate-

gies of all players other than n, which are given functions in this derivation. The first
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order condition requires for `n:

0 =
N∑
j=1
j 6=n

(1− θ`j,m)

[
βjnsjin

(
∂V n,m+1

∂ej
− ∂V n,m+1

∂sj

)
+ βnjsnij

(
∂V n,m+1

∂en
− ∂V n,m+1

∂sn

)]

(B.11)

+2(1− θ`n)βnnsnin

(
∂V n,m+1

∂en
− ∂V n,m+1

∂sn

)
− 1

θ
e−rtP n(sn + en + in)w.

(B.12)

The critical point given by the above equation indeed gives a minimizer of the Hamilto-

nian, as long as it is in [0, 1]. Because we can show
(
∂V n,m+1

∂en
− ∂V n,m+1

∂sn

)
> 0 by comparing

V n,m+1(t,x+ εn+N) and V n,m+1(t,x+ εn) using their definitions, where εj is a 3N -vector

with only one nonzero entry ε � 1 at jth position. Intuitively, with all others players’

initial condition the same, if player n starts with a higher exposed proportion en + ε, it

will produce more cost, comparing with the same increase proportion still being suscep-

tible sn + ε. To summarize, we deduce the optimal policy for player n at stage m+ 1 is

given by:

`n,m+1(t,x) =

{
2βnnsnin

(
∂V n,m+1

∂en
− ∂V n,m+1

∂sn

)
− 1

θ
e−rtP n(sn + en + in)w (B.13)

+
∑
j=1
j 6=n

(1−θ`j,m)

[
βjnsjin

(
∂V n,m+1

∂ej
− ∂V n,m+1

∂sj

)
+ βnjsnij

(
∂V n,m+1

∂en
− ∂V n,m+1

∂sn

)]}

(B.14)

×
{

2θβnnsnin

(
∂V n,m+1

∂en
− ∂V n,m+1

∂sn

)}−1
∧ 1 ∨ 0, (B.15)

where we use the conventional notations a ∧ b = min{a, b} and a ∨ b = max{a, b}.

Plugging (B.13) into equation (4.13) and by straightforward computation, one obtains

104



Appendix of Chapter 4 Chapter B

for the (m+ 1)th stage, µn,m+1(t,x; `−n,m) = [µn,m+1
1 , . . . , µn,m+1

3N ](t,x; `−n,m)T is

µn,m+1
j = −βjnsjin(1− θ`j,m(t,x))−

N∑
k=1
k 6=n

βjksjik(1− θ`j,m(t,x))(1− θ`k,m(t,x)),

(B.16)

j ∈ N \ n (B.17)

µn,m+1
n = −βnnsnin −

∑
k=1
k 6=n

βnksnik(1− θ`k,m(t,x)) (B.18)

µn,m+1
N+j = −µn,m+1

j − γej, µn,m+1
2N+j = γej − λij, j ∈ N . (B.19)

To write gn,m+1 as a function of (t,x, z), we first compute

Σ(x)T∇xV
n(t,x) (B.20)

=

[
σs1s1

(∂V n

∂e1
− ∂V n

∂s1

)
, · · · , σsN sN

(∂V n

∂eN
− ∂V n

∂sN

)
, σe1e1

(∂V n

∂i1
− ∂V n

∂e1

)
, · · · , σeN eN

(∂V n

∂iN
− ∂V n

∂eN

)]T
.

(B.21)

and then gn,m+1 is given by:

gn,m+1(t,x, z; `−n,m) =
θ2

σsn
βnnznin[`n,m+1(t,x)]2 (B.22)

+

e−rtPn(sn + en + in)w − 2
θ

σsn
βnnznin −

N∑
j=1
j 6=n

θ(1− θ`j,m(t,x))(
βnj

σsn
znij +

βjn

σsj
zjin)

 `n,m+1(t,x)

(B.23)

+ e−rtPna(κinχ+ pinc). (B.24)

(B.25)
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B.1.3 The derivation of the transmission rate βnk in (4.26)

We denote by β the underlying transmission rate of the virus, which is assumed to

be region independent. This transmission rate is the average number of people infected

by an infectious person per day (assuming that the susceptible population is 100%).

Thus, if a proportion S of the population is susceptible, then βS represents the average

number of people infected per infectious person per day. If there are a total of P people

in a population with a fraction I being infectious, then βS(PI) is the number of newly

infected per day.

Thus, in the context of a single-region SEIR model, the number of newly infected

(or the influx to the exposed population) that occurs within (t, t + dt) is given by

βS(t)(I(t)P ) dt. Dividing by P , the influx to the scaled exposed population in (t, t+ dt)

is βS(t)I(t) dt.

Now let us consider the multi-region case and temporarily ignore the effect of lock-

down. The term from (4.1)–(4.3) that gives the influx to En due to infection from Ik is

βnkSn(t)Ik(t) dt. To determine βnk, we build this exact influx from core assumptions.

First, we quantify the number of people from region n that are infected by those

from region k. Specifically, the influx in the interval (t, t + dt) to the unscaled exposed

population n due to transmission from population k is given by

∑
`

(βfn`Sn(t))(fk`Ik(t)P k) dt, (B.26)

where f ij is the (assumed constant) fraction of people from i currently in region j at any

moment in time.

Equation (B.26) is obtained by summing the number of infections in population n due

to population k across each region. The summand represents these infections occurring

in region `. This can be seen as the term fn`Sn(t) is the proportion of population n that
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are susceptible and within region `. Of this population, there will be βfn`Sn(t) infections

per infectious individual per day. Since the number of infectious from k that are in `

is fk`Ik(t)P k, we have that (βfn`Sn(t))(fk`Ik(t)P k) dt is the number of new infections

in population n due to population k occurring in the region ` within the time interval

(t, t+ dt).

Let us assume for now that n 6= k. Since we assume that 1 > fnn � fnk, the terms

in (B.26) besides the cases where ` = n or ` = k are negligible. Removing the negligible

terms and dividing by the population P n, we see that the influx to the scaled exposed

population En due to transmission from population k over the interval (t, t+ dt) is

P k

P n
β(fnnfkn + fnkfkk)Sn(t)Ik(t) dt, (B.27)

which is exactly the influx represented by the model of βnkSn(t)Ik(t) dt. This verifies

the form of βnk for n 6= k in (4.26). Similarly if we take n = k in (B.26) and ignore all

terms other than ` = n(= k), then we derive the formula for βnn in (4.26).

B.2 Detailed discussions on the enhanced DFP algo-

rithm

B.2.1 Implementation details

In the NY-NJ-PA case study, we choose feedforward architectures for both V -networks

and α-networks. Both have three hidden layers with a width of 40 neurons. The acti-

vation function in each hidden layer is tanh(x). We do not apply activation function

to the output layer of V -networks, and choose sigmoid function ρs(x) = 1
1+e−x

for the

α-networks. Other hyperparameters are summarized in the table below.
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hyperparameter lr M NSGD per stage Nbatch NT τ
value 5e-4 250 100 256 40 1e−3/180

Table B.1: Hyperparameters in the case study: lr denotes the learning rate in stochastic
gradient descent method, M is the total stages of fictitious play, NSGD per stage is the
number of stochastic gradient descent done in each minimization problem (4.21), Nbatch

is batch size in each stochastic gradient descent, NT is the discretization steps on [0, T ],
and τ is the weight of the control part in the loss function (4.21).

B.2.2 Discussion on the choice of M and NSGD per stage

We provide further experiments here on various choices of M and NSGD per stage. In

Figure B.1, we plot both validation loss and log loss against M for three states, which

are produced by evaluating the NNs using unseen data after each fictitious play stage. In

each panel, loss curves associated with different number of SGDs per stage are presented

in different colors (blue = 50, orange = 75, green = 100, red = 125, purple = 150).

The numerical results show that the validation losses for all states decrease as the

number of DFP stages M increases. Moreover, it shows that different NSGD per stage

generates loss curves with similar patterns. Smaller NSGD per stage is more stable on the

validation loss of PA. This result is consistent with [31] and [42], which convey that it is

unnecessary to solve the problem extremely accurate in each stage and that a moderate

number of NSGD per stage is sufficient. As a result, we choose NSGD per stage = 100 in our

case study.

B.2.3 Stability over different experiments

Here we present experiments to investigate the Nash equilibrium of the model with

different combinations of parameters. For each combination of parameters, we use the

same hyper-parameters and repeat the experiments several times. We run the algorithm

for a certain computational budget, and then filter out the results with a fluctuating

loss near the stopping and check the converged equilibrium. In the first combination of
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Figure B.1: Loss curves of each state. Left: validation losses versus rounds M of the en-
hanced deep fictitious play; Right: log10 validation loss versus rounds M of the enhanced
deep fictitious play. The loss curves with respect to NSGD per stage = 50, 75, 100, 125, 150
are depicted in blue, orange, green, purple and red. A smoothed moving average with
window size 3 is applied in the final plots.

parameters, we take θ = 0.99 and a = 100, corresponding to the case that a governor

weighs the deaths much more than the economic loss and tries to avoid it, and the

residents have a strong willingness to follow the governor’s policies. Intuitively, the

pandemic is possible to get well-controlled. Our numerical experiments confirm this

intuition: all converging trails lead to the same Nash equilibrium. A representative plot

of X(t) = (S(t), E(t), I(t)) is shown in Figure B.2.
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Figure B.2: With the parameter combination θ = 0.99, a = 100, the algorithm identifies
one Nash equilibrium for the NY-NJ-PA case study.

In the second batch of experiments, we take θ = 0.9 and a = 50, corresponding to

the case that a governor pays less attention to the number of death and the residents are

less willing to follow the policies compared to the first batch of experiments. The change

leads to the possibility of multiple Nash equilibrium and the pandemic being out of

control. In this case, with different NNs’ initialization, the algorithm identifies two Nash

equilibria: 75% of the experiments converge to the Nash equilibrium that the pandemic

gets controlled and 25% of the experiments converge to the other Nash equilibrium where

the pandemic gets out of control.

In conclusion, it is possible to have multiple Nash equilibria depending on the param-

eter chosen in our stochastic multi-region SEIR model. There is usually a single Nash

equilibrium for parameters chosen at extreme values, while for the parameters selected

in the middle range, there could exist multiple Nash equilibria. When multiple equilibria

exist, we conjecture that the possibility to reach a particular one depends on where we

start the fictitious play (the initialization of the NNs’ parameters).
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Figure B.3: With the parameter combination θ = 0.9, a = 50, the algorithm identifies two
possible Nash equilibria: an under control one (topic panels, with 75% of the experiments)
and on out-of-control one (bottom panels, with 25% of the experiments).
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