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1 

This paper describes the design and implementation of an adaptive memory hierarchy in a board­
level prototype using off-the-shelf FPGA and memory parts. While using these COTS parts, the 
AMRM board develops the capability to architect and adaptively configure the CPU-memory 
hierarchy to suit application needs. Performance gain in latency and available bandwidth can 
be achieved by using application-adaptive architectural mechanisms, hardware-assisted blocking, 
prefetching and dynamic cache structures that optimize movement and placement of application 
data through the memory hierarchy. For a description of the AMRM approach to architectural 
adaptation the reader is referred to [1 J [2] [3]. 

The AMRM prototype board was designed to serve two purposes. It allows rapid prototyping 
of a variety of memory hierarchy architectures and adaptive caching mechanisms. Applications 
running on a host processor can be instrumented to use the board's memory hierarchy. Processor 
independence is provided through use of the PCI bus interface. The board is also designed to 
support a chip-level prototype on a daughter card. In presence of this daughter card, the board 
is designed to serve as a platform with on-board memory acting as main memory. 

The design and usage of this board is enabled by key EDA tools. The paper also discusses 
the key challenges and opportunities for EDA tools to make design and efficient architectural 
exploration possible. 

2 System Design Overview 

The function of the AMRM prototype board is to emulate a reconfigurable memory hierarchy. 
Applications running on a host processor can be instrumented to use the memory hierarchy on 
the AMRM board. The board has a PCI interface that allows it to be driven by an execution­
driven reference stream or an address trace from the host processor. The PCI bus interface allows 
the board hardware to be used for emulating the memory hierarchy of several popular processor 
architectures. This allows proposed changes to the memory hierarchy to be evaluated for several 
processors. 

The memory controllers on the board are implemented inside an FPGA. This allows an in­
system hardware reconfiguration of the AMRM memory hierarchy. The board implementation 
necessarily hard-wires certain parameters of the memory hierarchy. This includes the board's 
clock. In order to perform detailed and accurate simulation of the memory hierarchy at any clock 
speed, a hardware "virtual clock" has been implemented as part of the performance monitoring 
hardware. Performance monitoring hardware primarily includes various event counters which are 
readable from the host processor. The virtual clock emulates a target system's clock; the clock 
rate is determined by the target system's memory hierarchy design and technology parameters. 
The units in the design can be "programmed" through the use of configurable counters to take a 
certain number of virtual clock cycles for an operation. E.g. an 11 hit may be assigned n virtual 
clocks, a miss fetch may be programmed to take m clocks etc. The 11 cache controller handshakes 
with the virtual clock generation unit to increment the virtual time counter appropriately in each 
case. A unit can take multiple physical clocks to perform a certain access and increment virtual 
time only once. E.g. the tag and data stores of Ll cache can be a single RAM while virtual time 
may reflect a design with two separate RAM's. The virtual clock generation unit also increments 
virtual time appropriately when multiple units are operating in parallel. 
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The board includes performance-monitoring hardware in the form of event counters for read/write 
hits and misses, number of write-backs (for write-back caches) and simulation time in terms of 
virtual clocks. These counters can be read or reset using a command interface. Other registers 
that can be accessed are status and configuration registers. Status registers contain information 
about the internal state of the design, for example error codes for debugging purposes. Configu­
ration registers can be used to configure the memory hierarchy; the various choices include cache 
size, line size, write policy etc. The delays in terms of virtual clocks for cache hit, miss fetch, 
write-through and write-back and miss fetch can also be configured. 

As mentioned earlier, a processor in the system can access the board via memory mapped 
commands. Each command consists of a set of four words that specify the operation (e.g. 
memory read/write, register read/write), the address of the location to access and data in case 
of a write. Operations are available for cached/uncached access to the memory on the board. 
Commands are also provided for accessing the performance counters on the board and writing 
the configuration registers to "program" the memory hierarchy. For read commands, a read 
response is generated and data is written into host memory. 

The prototype board currently implements reconfigurability of the memory hierarchy and can 
be extended to implement a range of adaptive hardware mechanisms like prefetching, stream 
buffers etc. Figure 1 shows the main components used in the implementation of the board. It 
contains: 

ii A PCI 9080 chip that provides the board's interface to the PCI bus [4]. 

ii An Altera Flex lOK FPGA that contains the core of the design. It has controllers for the 
SRAM and DRAM and an 11 cache controller. 

• Clock generation and distribution logic. 

ii An SRAM bank and a footprint for another bank for a total of lMB. The SRAM is used 
as the multiplexed tag and data store of the 11 cache. 

ii Two DIMM banks used as main memory, for a total of 512MB. 

ii A mezzanine connector to support a mezzanine card. This card can be used for a variety 
of purposes including providing a slot for a chip-level prototype. 

Monitor Program 

For the purpose of testing the AMRM board, and running programs using the board we have 
written a GUI program that enables easy access to the internal structure of the board. Figure 2 
shows some menus from this monitor program. 

We have envisioned that initial testing of the board will be done in several steps, so the program 
was written to address the needs of all those steps. The initial step is testing communication 
with the board. The board contains a set of thirteen internal registers. We have an interface to 
read values from or write to those registers. 

The next step is to test direct accesses to the DRAM on the board and do uncached accesses to 
the SRAM. We have an interface for reading and writing a range of values from those memories. 
When the uncached accesses have been sufficiently tested, we can test the cached access to the 
memory. Using the configuration registers we can configure the cache size, associativity and line 
size and perform experiments. 
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Figure 1: Block Diagram of AMRM Prototype Board 

3 Implementation Methodology 

3.1 FPGA Design and Implementation 

J 

The AMRM board features a re-programmable FPGA part that allows the system architect to 
download statically or at runtime memory controllers specific to a memory architecture. Figure 
3 shows a block diagram view of the current FPGA design. The design is partitioned into the 
following modules: 

• Sram control: Interface to the synchronous SRAMs on the board. · The interface allows 
burst reads and writes of length 1, 2 and 4 on the SRAMs. 

• Dram control: Interface to the DIMM modules on the board. The DIMMs are asyn­
chronous; the synchronous state machine for the controller is thus written for a specific 
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Figure 2: Monitor Program Dialog Boxes 

clock frequency. The interface allows single word reads and writes on the DIMMs. The 
interface implements the initialization condition for the DIMM that involves generating 
eight refresh cycles after reset. One refresh cycle is generated every 15ns to meet refresh 
requirements (all rows should be refreshed every 64ms). 

• PLX Interface: This portion of the FPGA design interfaces with the PLX chip local bus. 
It contains input and output register files for getting command words and generating read 
responses. 
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• Command Processor: Reads commands from the PLX interface and decodes them to find 
the operation type (e.g. cached read/write, uncached sram read/write, register read/write 
etc.). It invokes the correct module to perform the operation. In case of reads, a response 
command is generated and passed back to the PLX interface module. 

• Ll control: Implements the Ll cache controller. The cache controller design is configurable 
over a range of cache sizes (SK B, 16, 32, ... , 512) and cache-line sizes (SB, 16, 32, ... , 512). 
The write mechanism can be chosen to be write-through or write-back. The operating 
configuration is controlled by the host by writing the configuration registers inside the 
FPGA. Different applications or different sections of an application can use different values 
of the cache parameters. Note that the cache needs to be flushed before changing any of 
these parameters within an application. 

• AMRM Register File: Contains control, status and performance monitoring registers that 
can be read and written/reset by the host through the command interface for the board, 
as described earlier. 

• Virtual Clock Unit: Implements the virtual clock functionality as described earlier. 

The FPGA design was carried out by splitting the design into these modules. Each of the 
modules was then written as one or more state machines with datapath in VHDL. The design 
sequence was chosen so as to fix the external interface of the FPGA as early as possible so that 
the board could be manufactured in parallel with FPGA design. 

The design has two different clocks; the interface to the PLX chip inside the FPGA runs at 
half the clock frequency of the rest of the design. 

3.1.1 Design Issues and Challenges 

The FPGA defines the degree of architectural adaptivity possible with the AMRM board. Con­
sequently the primary design challenge is to fit the best synthesized implementation that also 
satisfies the target clock period. The target clock frequency for most of the design was 66MHz 
(l5.15ns) and 33MHz for the PCI specific portion. 

Static timing analysis was carried out after each synthesis run and the critical paths were mod­
ified to improve timing. For example, asynchronous signals going across modules were changed 
to latched (with the associated timing changes) if they were in the critical path. Other design 
changes that improved timing were removing multiplexers on busses, duplicating signals with 
large fanout and splitting large state machines into smaller ones. 

Signals with very large fan-outs appeared frequently in the critical paths, for instance, tri-state 
control signals for busses. These signals were generated at one flip-flop and were routed to a lot 
of inputs, sometimes far away from the generation point introducing large delays in the absence 
of global routes. A solution to this problem is to make copies of the high fanout signals in the 
design itself giving the P &R engine more flexibility in placing the control signals. Splitting large 
state machines into smaller state machines also lead to timing improvement by simplifying the 
decoding logic at the cost of making the design more complex. 

The set of beneficial design changes was arrived at iteratively. Changes did not always improve 
timing as expected. Further, the process was time-consuming as the whole design had to be re­
synthesized to evaluate any alterations. There was lack of tool support for modification of a 
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part of the design or accurate timing estimation for a particular design change. Improvement in 
timing was thus achieved very slowly. Other sources of timing improvements were changing the 
FPGA component and manual placement of the datapath. These are discussed in the section on 
synthesis. 
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3.2 Verification Methodology 

Verification of the custom designed part of the FPGA inside the AMRM board was done through 
simulation using Synopsys VSS. Simulation was done bottom-up starting with sub-modules. 
Gate-level and timing simulation were also performed (5]. Figure 4 shows the verification flow. 

3.2.1 Modeling the Environment 

The FPGA design contains controllers for the memories on the board, the 11 cache controller 
and interface to PCI controller on board (P1X 9080). To perform functional simulation of the 
FPGA design, we needed models for the memories and the P1X chip. Models for the memories 
were generated using the memory modeling tools from Denali [8]. DIMM models were extended 
to include refresh and initialization requirements peculiar to our DIMMs. A simple functional 
model for the P1X chip's interface to the FPGA was written. 

Availability of memory models saved us the effort of having to write these models on our own. 
A lot of timing errors in the controller state machines were immediately flagged by the models 
including some subtle errors during the latter stages of design. For example, when the clock 
period was increased from 15ns to 20ns, the number of clocks being counted to time DIMM 
refreshes (asynchronous) was not reduced. The refresh checks that were added to the DIMM 
model flagged this error. 

An important realization was the need to use models developed out of context as far as possible 
so that they are not influenced by the design at hand. For example, in our case, the dram refresh 
check was added to the model externally. The check initially counted clock cycles (not actual 
time) and verified that refresh was being done every certain number of clocks. This check thus 
assumed a certain period for the clock. The problem was later corrected but would obviously 
have let the previously mentioned bug slip by. 

3.2.2 Structuring verification 

Though the sub-modules were designed in a particular order with the aim of fixing the external 
interface of the FPGA as early as possible, it also helped structure the verification. Initially, the 
memory controllers were verified using the memory models as part of the test-bench. The high 
reliability of the models ensured that any bugs surfacing during simulation were due to errors in 
the controllers themselves. Next a pseudo cache controller was written that was later converted 
into the 11 cache controller. It was integrated with the memory controllers and the three units 
were simulated together; verification mostly helped find errors in the cache controller since the 
memory controllers were stable. Thus the tested modules were used as part of the test-bench for 
the remaining modules. 

3.2.3 Test-bench automation 

The regularity of memory design allowed us to automate our test-bench to a high degree. For 
the SRAM controller state machine, we needed to verify operation for burst writes and reads of 
length 1, 2 and 4. This was done by writing random data at a memory location and then reading 
it back and comparing with the value written. This was done for different random addresses 
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and data. Different possible combinations and inter-leavings of these accesses were simulated. 
Output messages from the memory models were also monitored to check for errors. 

For dram control, some other cases were tested for apart from simple reads and writes. These 
included the refresh mechanism; simulation was run as long as at least one refresh cycle was 
generated so that the tests in the DIMM were exercised. The checks for initialization added to 
the D IMM model were also exercised. ' 

In order to cleanly separate test-vectors from the test-bench, a command language was defined. 
For example, there was a command each for resetting the design, sram read, write, dram read, 
write etc. The test-bench read the command file and 'executed' the commands on the design. 
This allowed us to change the test-vectors without recompiling the test-bench and maintain 
different sets of vectors. 

The cache controller was verified in isolation initially to verify correctness of caching mecha­
nisms. Some simple tests were written for the different possible scenarios (e.g. read hit/miss, 
write hit/miss, write-through, write-back) and the waveforms in these cases were manually veri­
fied to check correct operation. On integration with the other modules, much larger random test 
sets were added for all possible combinations of line size, cache size and write policy. Testing 
for correctness of memory accesses was automated by writing values into memory and reading 
them back. The addresses to write were generated so as to ensure the cases mentioned earlier 
got exercised. 

Manual verification of caching mechanisms was not very convenient especially in the face of 
the quick verification iterations needed when the design was changed during synthesis runs. A 
better approach, on reflection, would have been to write an executable specification of the cache 
and compare the results produced off-line from this model with the VHDL simulation results. 

3.2.4 Board Schematics Verification 

Another important step in the verification effort was verification of the board netlist. The board 
schematics indicating connections between components, were drawn using Mentor Graphics' 
schematic capture tools [9]. The primary verification strategy was visual inspection. A VHDL 
dump of a portion of the schematics was generated. This had entities for the components 
connected through signals as in the schematics, with 'black-box' architectures. We substituted 
our simulation models for these components and carried out simulation. 

Since the purpose of the simulation was to test connectivity, dummy models were written for 
some of the components. E.g. clock generation was done inside the crystal component, reset 
was generated inside the reset button etc. The memory models were extended with assertions at 
VCC and GND ports. Resistors on the board were also modeled with different architectures for 
series, pull-up and pull-down resistors. 

We were able to discover a few potentially fatal errors in the interconnections, during our 
board-level simulation runs. Interestingly, most of the errors were found while setting up the 
simulation e.g. while doing the VHDL port maps, as we looked at the schematics from a different 
perspective. Some bugs were also discovered during simulation. 
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3.2.5 Verification Issues 

Regularity of cache/memory designs presents the opportunity of developing a standard suite of 
tests for exercising most of the possible error scenarios. It seems feasible to define a set of test 
vectors to exorcise most bugs in the memory hierarchy. In our case, this methodology could not 
be formalized due to lack of time but this is certainly a possibility. This will prove enormously 
useful to memory hierarchy designers. 

The final test-bench had eighteen commands of the form described earlier. In addition there 
were models of the environment including PLX, memory models and transceivers. Also included 
was code for automatically checking the results. Thus the test-bench grew to be. quite complex. 
As a result, correcting errors in the test-bench itself consumed a significant portion of the veri­
fication time. Thus it is important for verification to proceed in tandem with design to ensure 
there is enough time to do a good job. 

Using the right test vectors to detect most of the possible bugs is important. But an equally 
important thing is tracing the error to its source after it is known that a bug exists. This step, we 
estimate, consumed more than 90% of the manual effort spent on verification. The basic method 
was to run a set of test-vectors; if the test-bench detected an error, the waveforms were studied 
to find the source of the problem. This process was very cumbersome especially at the top-level 
of the design where there were hundreds of signals to sift through. The use of debugging aids 
was not found to be effective in reducing this time substantially. 

3.3 Synthesis Methodology 

Figure 4 shows the overall synthesis :flow. The VHD L code for the design was synthesized to gates 
using Synopsys Design Compiler (DC). The necessary target library and Designware library for 
DC synthesis were provided by Altera. Gate level EDIF netlist generated from DC was passed 
on to Altera's MaxPlus for performing place and route [7]. 

We followed a top-down compile :flow for synthesis in DC. In this :flow, the designer specifies 
constraints for the top level design, sets synthesis directives for sub-designs and performs synthesis 
on the entire design hierarchy in one step. The class of constraints to DC can be divided 
into "Design Rule Constraints (DRC)" and "Optimization Constraints". In our scripts, we 
specified driving strength of the input pins and load capacitance at the output pins as DRC. For 
optimization constraints, we specified clocks, input delays, output delays and the false paths in 
our design. 

The gate level EDIF netlist generated by DC and a constraints file was input to Maxplus for 
performing place and route, clock tree and reset tree synthesis. We experimented with different 
options of synthesis available from Maxplus to get the optimum settings in the constraints file for 
our design. FLEXlOK devices have two dedicated nets for clock tree routing and four global nets 
[6]. These nets can be routed to all parts of the die with minimum skew. We used the dedicated 
clock nets for the two clocks in our design and one of the four global nets for the asynchronous 
reset. 
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Metric Value 
Total Area Estimated 2571.5 units (area of one LUT = 1 unit) 
Critical Path Length (w.r.t 20ns clock) 58.7lns (slack= -38.7lns) 
Critical Path Length (w.r.t 40ns clock) 26.02ns 
Total number of L UTs in design 2365 
Total number of FFs in design 1644 
Total number of nets in design 4629 

Table 1: DC synthesis results 

Metric Value 
Maximum Clock Period (w.r.t. 20ns elk) 2l.8ns 
Maximum Clock Period ( w.r.t. 40ns elk) 24.0ns 
Number of Logic Cells used 3311 (approx 40K gates) 
FPGA utilization 66% 

Table 2: Maxplus synthesis results 

3.3.1 Synthesis Results and Issues 

The two clocks in our design were constrained at 66Mhz (l5.l5ns) and 33Mhz. These were later 
relaxed to 50MHz (20ns) and 25 MHz respectively. We performed a detailed reporting on the 
gate-level netlist. FlexlOK FPGAs use different routing structures for local, row and column 
interconnects. When the design is not placed and routed, there is no information on the routing 
and hence the delays reported by DC here are highly unrealistic. However, we could get the 
nature of critical paths (e.g. fanout count, levels of logic) in our design by analyzing the timing 
reports. We used this information to specify additional constraints to DC and to alter the design 
for better results. The quality of results report from DC appears in table 1. The results are 
highly pessimistic. 

The timing constraints to Maxplus are clock frequency, input setup time and clock to output 
delay. We iterated through different P &R runs on Maxplus to get the optimum settings for 
the optimization constraints. FSMs were designated as "cliques" to encourage Maxplus to place 
them as groups thus reducing internal routing delays for the modules. 

To reduce the FPGA utilization and provide room for future growth to the design, we also tried 
mapping the design to a bigger FPGA. This device was unconventional compared to the other 
FLEXlOK devices. In this device the row interconnects were slower than column interconnects. 
However, the Maxplus P&R algorithm, because of it's inherent assumptions about FLEXlOK 
devices, placed highly interconnected signals along a row. So we did not get significant timing 
improvements in the larger FPGA. However when we migrated to a smaller FPGA for which the 
P & R algorithm is tailored, we got an jump in achieved clock frequency. 

Table 2 shows the synthesis statistics after Maxplus place and route. 
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Figure 5: Photograph of AMRM Prototype Board (top half) 

3.3.2 Issues with synthesis and place and route 

We were unable to realize one-hot encoding for our designs using DC. The recommended method­
ology by Synopsys requires the designer to code the FSM such that the only registers in the FSM 
are the state registers. Thus all of the FSM outputs have to be non registered outputs. This 
type of FSM design is cumbersome when there is a large amount of datapath. 

Since the quality of results reported by DC were unrealistic, we had to take the design through 
Maxplus place and route for each DC synthesis run. This was time consuming since one place and 
route run could be as long as 9-10 hours. This issue can be overcome to a good extent with the 
use of accurate wireload models for synthesis. Since FPGAs use non uniform routing, predicting 
an accurate wireload model prior to a place and route run is impossible. Thus it is essential that 
the designer generate a custom wireload model after an initial iteration on place and route. This 
custom wireload model should be used for next synthesis iterations. However, with Maxplus 
there is no backward path from post layout netlist to DC synthesis. Tighter coupling is needed 
between the synthesis and place and route tools to make design iterations faster. 

Maxplus provides very little support for incremental design change once the design pin-out is 
fixed. In our case we discovered a small design bug after we got the PCB. To fix the bug we had 
to recode the VHDL to introduce an extra flip flop into the design. Since we already had the 
PCB designed, we had to use the same pin assignment as the PCB. Our design clock went up 
from 18ns to 2lns with one FF addition because of the additional pin constraints. Such results 
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from the P & R tool are unacceptable when trying to redesign the FPGA for implementing a 
different memory hierarchy. 

4 Status 

The AMRM prototype board has been manufactured and is currently undergoing testing. The 
board implements the configurable memory hierarchy described in this paper. In its current 
form, the board can be used to perform efficient memory simulations for a variety of 11 cache 
configurations. Currently application adaptivity is implemented in software. After the current 
phase of testing we can start using the board for our experiments. Figure 5 shows a photograph 
of the board. 

5 

We have presented the design of a board-level prototype of an adaptive and reconfigurable mem­
ory hierarchy. The board can be used as a platform for experimenting with hardware implemen­
tations of adaptive caching mechanisms. The board is processor independent and can thus be 
used for experimenting with a variety of processor architectures. 

The design, verification and synthesis methodology used has also been described. Several key 
EDA tools were used in the design. Our experiences using these tools and possible opportunities 
for improvement have been documented. The board designed using this methodology has already 
been manufactured and is available for experimentation. The next step is to test the board and 
run experiments on it. 
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