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Abstract of the Thesis

Contrast Learning on ChIP-Seq Data of

Transcription Factors

by

Yuju Lee

Master of Science in Statistics

University of California, Los Angeles, 2014

Professor Qing Zhou, Chair

In this study, we analyzed the TF ChIP-Seq data of 105 (i.e., 15 choose 2)

pairs. Each pair is based on two TF and three binding-dependent (BD) sequence

datasets. The BD were generated from the two TF ChIP-Seq datasets in each

pair. That is, the three scenario datasets are containing TFBS sequences of type

1, 2 or both (i.e., 1 and 2) TF.

The objective is to identify motif 1, 2 or even both (i.e., interactive motifs) by

contrasting two of the three BD datasets at a time by using the contrast-motif-

finder (CMF) algorithm. Each of the CMF’s output not only provides estimated

consensus motifs based on its full name PWM but also provides likelihood ratios

(LRs) as a measure of the enrichment of an identified motif. Using this idea, we

construct a dataset where the first column lists the locations of identified enriched

motif in the genome, column 2 to n+1 contains the estimated consensus motifs

and the last column shows a binary (i.e., 0/1) of which set it is from and n is the

number of consensus motifs.

Once these datasets are obtained, we use statistical model such as logistics

regression, support vector machine (SVM) and classification tree models to de-

termine their performance (i.e., error rates) and selection power. We have shown
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that the SVM Radial kernel seems to have the best performance when using all

the motifs in the dataset whereas classification tree selects the fewest motifs in

almost every analyzed datasets but at the same time, the error rates and selec-

tion power do not drop as much. As a result, we believe the classification tree

model is a better model since it not only provides a competitive predictive power

with simpler models but also takes far less computational time than the other two

models.
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CHAPTER 1

Introduction

One of the most popular and exciting fields to emerge recently in bioinformatics is

the development of algorithms that can accurately identify a transcription factor

(TF) motif, based on genome-wide ChIP data. Contrast-motif-finder (CMF) (3)

and predictive modeling approach (6) are two of such algorithms for finding TF

motifs. In both papers, Mason and Zhou have shown that their approaches have

a better accuracy rate than other well-known methods for identifying TF motifs.

In this study, we have developed a novel procedure for identifying TF motifs by

applying and merging their two ideas together, combining contrast-motif-finder

(CMF) techniques with predictive modeling approaches. Based on the CMF’s

design, we can strategically generate TF pairs (i.e, Oct4/Sox2) and binding-

dependent (BD) sets so that we know what TF to expect in each CMF’s output

and sampling dataset for any two contrast inputs.

Since some predictive models can provide a way to reduce a dataset’s dimen-

sionality by selecting important variables/motifs while maintaining its predictions

or creating even better ones compared to the full model. We hope to go one step

further in determining whether selected motifs in reduced models have expressions

similar to their consensus motifs.

Three types of well-known predictive modelings are used: logistics regression,

support vector machine (SVM) and classification tree. The goal is to discover

a model that would reduce its data dimensionality by the greatest amount (i.e.,

fewest selection variables) and produce the best performance (i.e., error rates)
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based on the summarized results from all 38 analyzed pairs.

1.1 Biological Concept

All living organisms are composed of cells. Each cell contains many chromosome.

Cells are the basic unit of life, which contain of deoxyribonucleic acid (DNA)

and proteins. DNA is made of two long complimentary nucleotide strands of four

nucleic acids twisted around each other in opposite directions forming a double

helix. These nucleic acids are Adenine (A), Cytosine (C), Guanine (G), and

Thymine (T). They are joined by a sugar and phosphate backbone where hydrogen

bond pair Adenine with Thymine (A-T) and Cytosine with Guanine (C-G) from

each side of the helix. This structure is called a base pair (bp) or bps in plural.

A gene is a basic unit of heredity in a living organism and resides on a stretch

of DNA sequence that codes protein and has a function in the organism. Genes

can hold information to build and maintain an organism’s cells and pass genetic

traits and characteristics. Gene expression is comprised of two major stages. First,

ribonucleic acid (RNA) is produced from DNA and then a protein is produced from

RNA. This stage is called transcription, the process of making RNA from DNA.

The second stage is called translation, where RNA produced by transcription is

read by the ribosome to produce a particular amino acid chain which is folded

into an active protein. This process of making proteins from DNA is often called

the central dogma in molecular biology.

The genome of a living organism contains both genes and non-coding sequences

of the DNA. Genes are composed of sequences of DNA in various locations in a

genome. The non-coding portion of sequence usually lie in the upstream reg-

ulatory regions or before transcription start site (TSS). A regulatory region is

the region of the DNA that regulates the transcription of the gene. It can be a

positive/negative regulation in which transcription factors (TFs) bind/block the
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promoter and enhancer regions and therefore turn on/off its expression. The pro-

moter region is usually at the beginning of a gene and is the region of DNA where

the RNA polymerase binds to the DNA to begin to transcribe a gene. The en-

hancer region is the region of DNA where certain TFs may bind to increase the

transcription process.

TF expressions usually share similar patterns with some nucleotide position(s)

different. These patterns are often called motifs. A motif is usually short, con-

sisting of 5 to 14 bps, which makes it hard to detect such regions experimentally

and computationally. A change at a variable nucleotide position in a TFBS may

only have a small effect on the binding affinity whereas a change at an invariant

position may have a strong effect. Identifying and characterizing these TFBSs

may provide a better understanding of the function of a TF. A recent developed

biology experiment method, called ChIP-Seq, is able to locate genome-wide tran-

scription factor binding sites (TFBSs) at the resolution within less than 100 of

bps. This is a big step in biology since scientists now can develop motif-finding

algorithms or models based on genome-wide ChIP-Seq data to understand gene

transcription mechanisms.

1.2 ChIP-Seq Dataset

In this study, we focus on mouse Embryonic Stem Cells (ESC) ChIP-Seq datasets.

13 TFs and 2 transcription regulator datasets are available in the GEO database

under ID number GSE11431 [1]. The 13 TF datasets are Nanog, Oct4, STAT3,

Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Esrrb, Tcfcp2l1, E2f1, and CTCF. The 2

transcription regulators are p300 and Suz12.

ChIP-Seq is a technology which combines ChIP-chip technology with massively

parallel DNA to map the locations of sequence specific TF and transcription

regulators. Each ChIP-Seq dataset is composed of two major procedures: 1)
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The raw images of each TFBSs have been processed using the Soxlexa Pipeline,

and then mapped to the reference genome using Eland software with maximal two

mismatches. Each dataset contains chromosome number, peak location and count

of reads (signal intensity) of a TFBS. A total of 20 chromosomes are recorded since

a mouse has 19 plus an X chromosomes. Each peak location is translated into a

sequence region in its genomic coordinates and often refer it to TFBS (1). Each

genomic coordinate contains two numbers (i.e., beginning/ending) of a TFBS

region so that it is easy to convert them to a nucleotide format.

1.3 Structure of this thesis

This study intends to discover the best performing predictive selection model giv-

ing the lowest dimensionality at the same time that selects the greatest number of

motifs that accurately match the consensus motif. Chapter 2 gives a list of pro-

cedures for constructing contrasted datasets, Chapter 3 discusses the three types

of predictive models, Chapter 4 offers the summarized results based on analyzed

pairs, and Chapter 5 demonstrates how we analyzed a pair (i.e., Oct4/Sox2) in

detail. Finally, Chapter 6 provides conclusions and suggestions.
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CHAPTER 2

Methods

In this chapter, our goal is to construct the three sampling datasets for each pair

from their TF ChIP-Seq datasets. We summarize our procedures in the following:

1 Expanding TFBSs Window Size,

2 Creating three Binding-Dependent (BD) sets,

3 Converting all TFBSs in BD Sets to DNA Nucleotide Sequences.

4 Once the number of TFBSs was discovered in each BD set from step 3, our

analysis only included pairs > 300 TFBSs in all three BD sets. Then, we

applied the following steps to those pairs.

5 Contrasting BD sets by CMF,

6 Constructing Predictive Datasets based on the Outputs from step 5,

7 Applying the Sampling Approach to the Resulted Datasets from step 6.

For each pair, we performed the 7 steps describe above, which is going to be

discussed greater detail in the following section.

2.1 Expanding TFBS Window Size

For each TF data, we created an expanded set based on the first column of a

ChIP-Seq data (See Section 1.2). The first column of each row corresponded to
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a binding sequence (BS). Each sequence provided its chromosome number and

genomic coordinate in a mouse genome. We parsed and stored them into a Xn×3

matrix where n and 3 are the number of TFBSs in the data and the chromosome

numbers, the starting and ending locations in each row, respectively.

Then, we subtracted (starting) and added (ending) 100 bps in column two and

three. We searched every combination of two rows/sequences and merged them if

they were less than 200 bps apart from either side of a TFBS sequence in the same

chromosome. We stored the minimum and maximum of their genomic coordinates

into the Xn×3 matrix and removed the two merged sequences. We stopped this

process until no more such cases existed. We denoted the final matrix as an

expanded set and treated it as our raw data.

2.2 Creating Binding-Dependent (BD) Sets

For each pair, we proposed three subset datasets based on the two TF sets dis-

cussed in Section 2.1, that is, for a given TF pair, S1 and S2, we defined the three

datasets as TFBSs contained only type 1, 2, or both (i.e., 1 and 2) TF in the

resulted sets. Each TFBS in the three sets must be at least 200 bps apart from

either side of another sequence. To create an interactive set (i.e., 1 and 2), we

iteratively merged two sequences from S1 and S2 if they were less than 200 bps

apart from either side of another sequence and stopped once no more such cases

existed. Then, we recorded the minimum and maximum of their merged genomic

coordinates and stored them into Si1 .

As a note, it is possible that two or more expanded TFBS sequences are

merged. This is the reason we made expanded sets first so that we know it was

an interactive sequence when two sequences merged. Obviously, the number of

TFBS in S1 and S2 were expected to be less after creating Si1 . We denoted them

as Sa1 , and Sb1 , respectively. We call the three subsets as ”binding-dependent
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(BD)” datasets.

2.3 Converting TFBSs to DNA Nucleotide Sequences

Once the three BD sets were created (See Section 2.2) for each pair, we converted

each of their genomic coordinates (TFBSs) to nucleotide sequences using an inte-

grated software called Cisgenome. Specifically, a program name genome getmaskedseq c

was used on a Mac OS machine (2) to convert each BD sequence in Sa1 , Sb1 , and

Si1 to nucleotide sequences. The program automatically filtered out sequences

that were out of a genome range. We believe that the automatically filtered out

sequences were difficult to avoid and the chances of detecting them were slim so

we did not think it was a big issue to filter them out.

Each nucleotide sequence consisted of a combination of lower and upper case

letters of {A, a, C, c,G, g, T, t}. A position with lower case letter (i.e., a, c, t, g)

in a sequence indicated it is masked out so we can safely ignore it. A sequence

was also filtered out if it contained less than 20 bps of upper case letters for

computation reasons. After these filtering steps, we denoted the three BD sets

that composed of nucleotide sequences as Sa, Sb, and Si.

2.4 Filtering Out Pairs by Number of TFBSs

Once Sa, Sb, and Si were constructed (See Section 2.3) for each pair, the number

of TFBSs in them may be a concern for certain pairs when contrasting these

BD sets. In order to ensure there were enough TFBSs in each one of them, we

eliminated pairs that contained less than 300 TFBSs in one of the Sa, Sb, or Si

sets and 37 pairs were eliminated.
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2.5 Contrasting BD Sets

For each selected pair (See Section 2.4), we contrasted all combinations of two

among the three BD sets using CMF. CMF was specifically designed to discrim-

inate between the two sets of TFBSs and provide an estimation of PWMs and

consensus motifs. CMF not only corrected for false positives but also masked out

dominant motifs signals present in both datasets, allowing weaker signals to be

detected (3).

In specific, we contrasted Sa with Sb, Sa with Si, and Sb with Si. For each

selected pair (See Section 2.4), we denoted these outputs as the three predictive

datasets: Sab, Sai, and Sbi. Based on the design of BD sets and CMF, we are

expected CMF to detect consensus motifs from both a and b in Sab, and from a

and b in Sbi and Sai accordingly. The reason is that when a contrasted with i,

the portion of a in i should be canceled out with a since they should have similar

patterns and the b portion in i should be enriched. The same reasoning applies

to Sbi scenario. However, Sab was a special case where the resulting motifs should

contain both a and b motifs. Since nothing can be contrasted from both sets and

we did not know exactly how to interpret the results from this type of contrast

set, we decided to focus on the results from Sai and Sbi. As a note, we filtered out

pairs split out errors when applying to CMF. This happened in 3 (i.e., Oct4Esrrb,

Stat3K1f4, and cMycTcfcp211) pairs and implied and a total of 64 (=105-37-3)

of them were considered for further study. We called them the ”selected pairs”.

Moreover, the BD data were not compatible with CMF’s input, a series of

data transformations were needed. In each CMF implementation, we selected the

contrast mode and the default parameters. That is, We set the length of a motif

seed, the number of mismatch in the seed, FDR level, the number of motif seeds,

enrichment mode, lower and upper bound on length of motifs, and c/g content

filter to 7 (=w), 2 (=m), .667 (=F ), 10 (=t), 2 (=d), 5 (=l), 20 (=u), and 0 (=c),
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respectively. A brief summary of the CMF algorithm is outlined in Appendix A

and for more information please refer to (3).

In each CMF output, z and enrichment scores were provided for each motif

seed. A z and enrichment scores were a measure of significant sequence patterns

and enriched sequences in both contrasted sets, respectively. Each dataset we

usually found 15 − 25 consensus motifs. For each motif seed, a list of enriched

motifs, their locations and their sequence length were recorded for both contrasted

sets.

Enriched motifs were based on an initial motif seed, which consisted of the

same sequence length and at most two (m = 2) mismatches with each other but

the mismatch positions could be different from one to the other. In addition, the

length of enriched motifs could be different from the motif seed depending on the

flanking positions. This implies that all the enriched motifs could be shorter or

longer than a given initial seed. Furthermore, once all the enriched motifs were

obtained, a PWM summarized the most probable nucleotide of all the enriched

motifs, which we called an ”estimated consensus motif.”

Moreover, CMF provides likelihood ratio (LR) scores as a measure of detecting

subtle regulatory signals within each enriched motif which is a crucial point for

making the predictive datasets, which is discussed in the next section.

2.6 Constructing Predictive Modeling Dataset

After getting the predictive datasets for all selected pairs (See Section 2.5), we

constructed predictive datasets based on CMF’s output by using the estimated

consensus motifs and their enriched motifs as LR scores for both contrasted sites.

We believe there may be a few potential obstacles in creating predictive datasets.

First, CMF sometimes reported the same consensus motif more one than once,

this is a good sign, but we believe they did not give much more additional informa-
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tion by including them other than to reduce a dataset’s dimensionality. In order

to overcome this concern, we chose the one with the highest absolute enrichment

score. This was because the enrichment scores of a consensus motif were positive

for the first set and negative for the second set.

Moreover, we removed a consensus motif that did not provide enriched motifs

from set 1 and/or 2. This was a problem in creating the predictive dataset since its

response variable indicated which set an enriched motif belongs to. Furthermore,

we chose the maximum LR if two or more LRs (i.e., enriched motifs) were recorded

in the same TFBS sequence. This was due to the fact that two enriched motifs were

identified in the same enriched sequence but at a different starting or ending point.

We denoted the number of selected/filtered consensus motifs to be considered as

n.

After filtering consensus motif(s), we extracted the locations and LRs of en-

riched motif for each consensus motifs individually into a Xd×2 matrix where d

was the number of enriched motif locations. The first and second column each

contained enriched locations and LRs of those enriched locations. n such sets were

created for each CMF’s output.

Then, we merged them to form a predictive dataset. We denoted it asX(l+r+n)×k.

For each data construction, the first and second column contain enrich motif loca-

tions from both TF sets and a binary (-1/1). 1 meant the motif was from the first

set and -1 otherwise. Then, we merged each of n Xd×2 matrices by their sequence

locations one at a time. If a TFBS location did not have an enriched motif score

(LR) for that particular consensus motif, a zero was placed otherwise we placed

the log of its LR score instead. At the end, we removed an entire row if a TFBS

sequence did not have a LR score among all n consensus motifs. The number of

rows, k, remaining at the end implied the number of enriched motifs that were

used at least once among n estimated consensus motifs.

Finally, three X(l+r+n)×k predictive datasets were constructed for each of the
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selected pairs based on Sab, Sai, and Sbi and the number of enriched motifs in a,

b, or i in the three predictive datasets were different. For example, the number

of enriched sequences of a in Sab and Sai are different. We denoted the three

resulting datasets as predictive datasets (Xabp , Xaip , and Xbip). In each of the

predictive datasets, the first column consisted of enriched motif locations from

both sets in the genome, column three thru n consisted of LRs from n selected

consensus motifs and the second column is composed of a binary (-1/1) response

indicator showing whether a TFBS was from both sets. The -1 and 1 in the

response variable correspond to the enriched motif in the first and second set. For

example, -1 and 1 implied a sequence from a and b in Sab respectively.

2.7 Applying Sampling Approach to Predictive Dataset

After obtaining predictive datasets in Section 2.6, we realized there were two

potential problems: 1) the number of -1’s in the responses variable of a dataset

may dominate the number of 1’s or vice versa. This may cause a problem when

we build a predictive model, such as the classification tree model, since it was

unlikely to split into two groups; and 2) it would be computationally expensive if

a predictive dataset contains too many observations especially when applying the

selection methods.

Hence, we proposed taking a sampling approach to fix these potential prob-

lems. For a predictive dataset, we first subdivided it into two groups according

to their class 1 (pos) and -1 (neg) as Spos and Sneg and set the ratio of their size

to be 0.5 (=r). This controlled the number of enriched motifs in the larger subset

to be no more than (1 + r) times of the smaller subset. We also set the maximum

data size to be 3000 (=s) for each subset. That is, the number of enriched motifs

in both subsets combined is 2× s. Then, the steps are as follows:

1. If the number of enriched motifs in Spos and Sneg > s, then sample each

11



subset s times.

2. If the number of enriched motifs in Spos > s and < Sneg and, if the ratio

between the number of enriched motifs in Sneg and Spos < r, and

If the number of enriched motifs in Sneg multiplied by (1 + (1− r)) < s,

a) then randomly sample 1 from Sneg (1+(1−r)) times, b) otherwise sample

−1 from Sneg s times.

3. If the number of enriched motifs in Sneg > s and < Spos and, if the ratio

between the number of enriched motifs in Sneg and Spos < r, and

If the number of enriched motifs in Spos multiplied by (1 + (1− r)) < s,

a) then randomly sample 1 from Spos (1+(1−r)) times, b) otherwise sample

−1 from Spos s times.

4. If the number of enriched motifs in Spos and Sneg < s,

a) If the number of enriched motifs in Spos > Sneg, and if the number of

enriched motifs in Sneg is less or equal to r times of Spos, and if the number

of enriched motifs in Sneg multiplied by (1 + (1 − r)) times is less than s,

then randomly sample 1 (1 + (1− r)) times from Sneg.

b) If the number of enriched motifs in Sneg > Spos, and if the number of

enriched motifs in Spos is less or equal to r times of Sneg, and if the number

of enriched motifs in Spos multiplied by (1 + (1 − r)) times is less than s,

then randomly sample 1 (1 + (1− r)) times from Spos.

We then combined the two sample subsets and referred them as the sampling

dataset. We repeated the same process for all the predictive datasets. We denoted

the resulting output as sampling datasets (Xabs , Xais , and Xbis). We note that

if Spos and Sneg did not meet the conditions of 1− 4, we used the same Spos and

Sneg as before applying the sampling procedures. Finally, we can apply these

”sampling datasets” to a number of different predictive models.
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CHAPTER 3

Predictive Modelings

In this chapter, we introduce the three types of predictive models, their variable

selection algorithms (if any) and the R (a statistical software language) packages

used for this study. The three types of models are the logistics regression (logit),

support vector machine (SVM), and classification tree (tree). The variable selec-

tion algorithms are the stepwise logistics regression, Scad SVM, and classification

tree.

3.1 Logistic Regression

A logistic regression is a transformation of an ordinary least squares (OLS) re-

gression. This transformation is also referred to as a logit function. OLS and

logit regressions can be used when a dependent variable is a categorical and in-

dependents are of any type. But, the difference is that logit’s predictions are

between 0 and 1 whereas the OLS may predict values above 1 or below 0. More-

over, logit enables us to estimate the odds of a certain event occurring in terms

of probabilities.

We used the glm (generalize linear model) function in R to implement each

logit model. We specify logit as the parameter in the glm function and used

defaults for other parameters. Since logit regressions are widely used, we only

provide an overview of the algorithm in Appendix B.
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3.1.1 Variable Selection by Stepwise Logistic Regression

A software package was used to build stepwise regression models. More precisely,

we used the stepAIC function in the MASS package in R (10). This function used

Akaike information criterion (AIC) as a penalty function when selecting motifs

or variables. AIC’s definition is: AIC = 2k − 2logL, where k is the number of

parameters in the model, and L is the maximized value of the likelihood function

(MLE) for the estimated model. It is usually described as the tradeoff between

bias and variance (accuracy vs complexity) in such a model.

The algorithm is calculated the solution by an iterative process from a set of

variables until AIC converges to the minimum AIC. We set the method to check

both directions and k = 2. It searched forward/adding and backward/deleting in

each iterative step until the minimum AIC is obtained. AIC not only rewarded

goodness of fit, but also included a penalty when the model is over-fitting. The

AIC methodology attempted to find the model, among a candidate set of models,

that best explained the data with the fewest free parameters.

3.2 Support Vector Machine (SVM)

Support Vector Machines (SVMs) were first proposed as a classification problem

of a binary class (i.e., yes/no) by separating 2 classes with a linear classifier

function in a finite space. The ideas were later extended to multiple classes (i.e.,

yes/maybe/no), and non-linear classifier functions. Then, Vapnik suggested an

idea of using soft margin to improve its predictions, which takes mislabeled (by

some penalty) data points into account when maximizing the margin. However,

the algorithm can still not perfectly label all the data points. Our goal is to find

optimal separating hyperplane which a classifier maximizes the margin.

Let’s take a look of a concrete example using a linear classifier function and
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Figure 3.1: SVM Example

binary response variable in Figure 3.1. Both plots are based on simple two di-

mension SVM analysis. The points annotated by + and o are from two separate

classes, there can always be a one line that can separate these classes as far as

possible. Notice that one data point in each group is mis-labeled. The algorithm

calculated the line by incorporating a slack variable (i.e., soft margin) in the im-

plementation. However, just by looking at the two plots, one can easily tell the

line in (a) is better than that in (b). The reason is simply because the former line

separates these points further than the latter one.

In this study, we used the svm function in the e1071 package to implement

SVM models (8). We used defaults parameters except using the classification

mode, both linear and radial kernel functions. An overview of SVM algorithm

can be found in Appendix C.

3.2.1 Variable Selection by Scad-SVM

A function called scadsvc in the penalizedSVM package is able to select important

motifs (7). This is an add-on from the svm function. It borrows the idea of the
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SVM algorithm and scad penalty function to do the predictions. This implies that

this package uses the linear classifier in the SVM. We chose to use the smoothly

clipped absolute deviation (Scad) to select significant features since it has been

shown to have better theoretical properties than the L1 function (9) and used

the selected motifs to do predictions. However, it sometimes does not choose any

motif, so no predictions were given.

The optimal hyperplane with maximal margin is solved by convex optimiza-

tion. Maximizing the margin can be achieved by solving:

minb,w
∑

[1− yif(xi)] + penλ(βi) (3.1)

The penalization term for SCAD SVM has the form

penλ(βi) =
d∑
i=1

pλ(βi) (3.2)

where the Scad penalty function for each coefficient βi is defined as

pλ(βi) =


λ|βi| if |βi| ≤ λ

− (|βi|2−2aα|βi|+λ2)
2(a−1) if |βi| ≤ aλ

(a+1/λ2)
2

if |βi| > aλ

(3.3)

with a linear kernel function, tuning parameters a = 3.7 and λ = 0.01. pλ(β)

corresponds to a quadratic spline function with knots at λ and a. For small

coefficients, the scad takes on the same behavior as the L1. For large coefficients,

however, the Scad applies a constant penalty, in contrast to the L1 penalty, which

increases linearly as the coefficient increases. This absolute maximum of the scad

penalty, which is independent from the input data, decreases the possible bias for

estimating large coefficients (7).
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3.3 Classification Tree - Recursive PARTitioning Algo-

rithm

Until now, many people have developed classification algorithms and most algo-

rithms are implemented based on the ideas of CART (classification and regression

tree). It has a classification or regression implementation depending on the char-

acteristics (i.e., continuous, or categorical) of the response variable. A similar

algorithm is also available in R which is called Recursive PARTitioning (rpart)

algorithm. It gives an option to choose the two implementations. We use the

default parameters except setting the classification mode since the dependent

variable in the every sampling dataset is categorical (8). The algorithm has two

major procedures:

• It first finds a predictor variable that best splits data into two groups, then

applies the same process separately to each subgroup or other variables

recursively until the subgroups either reach a minimum size or until no

improvement can be made.

• The method above could make the tree too complicated, so the algorithm

then trims the full tree from the back using cross-validation (CV). The final

model contains subtrees with the lowest estimate of risk and is much simpler

than the one before.

A brief summary of the Tree algorithm is outlined in Appendix D and for more

information, please refer to (8).

Evidently, rpart automatically created and pruned a tree, so we used the nodes

of the tree as its selected motifs. We did not have the full model like in the logistics

regression or support machine vector models.
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CHAPTER 4

Empirical Analysis

In this chapter, we present the consensus motifs obtained from Transfac (13), the

analyzed pairs and their training and 5-fold CV analysis results for each predictive

models. A total of 8 variations of predictive models are used in this study. Once all

the error rates are obtained from each analyzed pair, we summarize each model’s

result in a boxplot and compute the accuracy by comparing each data’s motif

with known consensus motifs.

4.1 Consensus Motifs

Transfac provided 12 different TF’s PWM(s) and each TF may have a multiple of

PWMs (13). The goal was to translate each TF’s PWM(s) into a motif consen-

sus. For each PWM, we intended to find a nucleotide (i.e., A, C, G, T) in each

position which occurred more frequently than the other three nucleotides. We

randomly picked a nucleotide if there were two or more nucleotides that had the

same maximum count of that position. We assumed they are invariant positions.

Then, if there was more than one PWM for a TF, we summarized them into one

consensus since there was always a good portion of bps that were overlapping. It

was often the case that the consensus motif’s length was shorter than the original

ones. The 12 motifs are shown in Table 4.1.

We used these consensus motifs in Table 4.1 to compare with the motifs se-

lected by a model.
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Oct4 Sox2 Nanog Esrrb

TATGCAAAT CATTGTT CGATTA AAGGTCA

Stat3 cMyc nMyc E2f1

TTCCCGGAA ACCACGTG CCACGTGAC TTTGGCGCG

Smad1 Zfx Tcfcp211 p300

CAGACA AGGCCTGG AACCAGT GGGAGTG

Table 4.1: Summarized Consensus Motifs

4.2 Analyzed Pairs

We want to correctly identify motifs among the motifs selected by each predictive

model. That is, we compare each selected motifs from the model with the expected

TF’s consensus. Since there were only 12 consensus motifs (See Section 4.1),

among the 66 (i.e., 12 choose 2) pairs only 38 of them were ”selected pairs” (See

Section 2.4) however, we got results from 51 ”selected pairs”. This number was

reduced from 64 because some dataset could not convergent points when applying

to certain datasets of a selected pair.

In order to have consistent results when comparing each model’s performance

(i.e., error rates) and selection power (i.e., selected vs consensus motifs), we fo-

cused on these 38 pairs instead. We called these pairs as ”analyzed pairs”. As we

mentioned before, we cannot draw a solid conclusion about the results from Sabs

(See Section 2.7) data so we mainly focused on the results from Sais and Sbis .

For each Sais and Sbis in the analyzed pairs, we compared each model’s per-

formance using training and CV data to conclude the best model. The training

data was the input data which was the same as the sampling dataset (See Section

2.7). A CV data contained approximately a 1/5 of dimension in observation (i.e.,

enriched motifs) size than training’s dataset. To create the 5-fold data, we first

split the training data by their class (i.e., -1/1), and then we created five subsets
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(randomly selected without replacement) for both classes. Finally, we combined

the two subsets of different class to form the five datasets, with the size of each

dataset being roughly equal to each other. These data were used for the 5-fold

CV analysis.

We summarized the number of TFBSs of S1, S2, Sa, Sb, and Si in Table ??

for each pair, which was discussed in Chapter 2. We assigned each pair a number

between 1 and 105 in the first column. The two TF names for that pair is shown

in the second column. For example, Oct4Sox2 means Oct4 and Sox2 is from S1

and S2, respectively. The number of TFBSs in S1, S2, Sa, Sb, and Si is presented

in the 3rd through 7th columns. The 8th and 9th columns indicate whether a pair

was a selected or analyzed pair, respectively.

4.3 Eight Predictive Models

We proposed 8 different variations of predictive models based on logistics regres-

sion, support machine vector and the classification tree model as follows:

1. Logistics Regression (L)

2. SVM by Linear Kernel (LS)

3. SVM by Radial Basis Kernel (RS)

4. Stepwise Logistics Regression (Sl)

5. SVM by Scad (S)

6. RS by variables selected in L (SlR)

7. RS by variables selected in S (SR)

8. Classification tree (T)
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The parentheses at the end of a line indicates the abbreviation for that model.

For example, L indicates Logistics regression and S represents Scad SVM. We

applied these 8 models described above to each training and 5-fold CV to get

summarize results.

We note that some models sometime may not converge (i.e., LS or S) when

applying to some datasets. For the results shown in the following sections, we

first checked which contrast dataset(s) in a selected pair followed such case, then

we filtered out those pairs in our analysis if at least one model could not find a

convergent point of a contrast dataset.

4.4 Computing Error Rates

For each predictive model, we wanted to construct a 2 × 2 contingency table to

compute its error rates. The ”predict” function in R, a statistical software, can

predict each motif class (i.e., -1/1) directly. However, it did not work for L, Sl,

and S. These three types of models provided fitted values of a range between 0

and 1 for L or −∞ and ∞ for S instead. We chose a cutoff value to be .5 for L

and Sl and 0 for S. That is, if a fitted value was greater than .5 in L, we set it as 1

and −1 otherwise. The same reasoning applied to S. Also, sometimes R may give

warning when the ”predict” function predict 0 or 1 for a particular enriched motif

of a logit models. This was due to the fact that CMF tried to discriminate the 2

sets of datasets. Once we had the predictions, we constructed a 2× 2 contingency

table based on the predicted and observed class frequency counts.

We also applied the 5-fold CV method to quantity predictive power. We used

a combination of four folds as the training set and used the remaining one as the

testing set to make predictions (i.e., -1/1) one at a time and for a total of five

cycles. Then, we constructed a 2 × 2 contingency table from the five observed

and predicted CV sets. It is worth noting that for Sl, S and T , we used four CV
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sets’ selected motifs and made predictions based on the testing set for each CV

procedure.

Once the counts of a contingency table were obtained for both the training and

5-fold CV analysis, we can easily calculate a model’s error rates. It is calculated

by taking the sum of the two off-diagonal values and dividing it by the sum of all

four values in a contingency table. The two diagonal counts indicate that it was

accurately identified.

In the following sections, we aim to discuss the model performance when using

all variables, model selection methods, and reduced model methods. We also

calculate the percentage of correctly and incorrectly identified motifs for each

model.

4.5 Performance Testing - Original Method

We have demonstrated the overall error rates of L, LS, RS, T , TL, and TR of

Sais , and Sbis in all analyzed pairs in Table 4.1. We note that L, LS, RS used

all the motifs in Sais or Sbis to do the predictions. Here, we included T , TL, and

TR to show that TL and TR had better performance (i.e., error rates) than T ’s

predictions since T is one of the three types of models that we are studying.

For the two, Sais , Sbis , datasets in each pair, we computed its error rates (See

Section 4.4) and summarized each model’s error rates in Figure 4.1. Each boxplot

consisted of 76 (= 38 × 2) values. We multiplied by two because the error rates

from Sais , and Sbis data. The error rates between Sais , and Sbis were very similar

for the same type of predictive model so we aggregated them altogether. Also, we

generally drew the same conclusions if we only ran models on training data based

on the 55 pairs’ result. It was 9 pairs short because some models did not predict

two classes (i.e., -1/1) or converge based on a classifier function (i.e., linear kernel)

in both training or 5-fold CV methods.
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Figure 4.1: a and b are the distributions error rates of the training and CV based

on the original method.
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Both plots in Figure 4.1 have clearly shown that the RS (Radial SVM) had

the lowest overall mean and median error rates when using all motifs/variables in

the dataset since the radial kernel was designed to make good predictions in high

dimensions. However, it was very interesting to see that TL (L using selected

motifs from Tree) and TR’s (RS using selected motifs from Tree) predictions are

not lower than T ’s. We conclude that using T ’s model, one does not need to apply

its selected motifs to the RS model to improve its prediction rates.

Model Min. 1st Qu. Median Mean 3rd Qu. Max.

Ln 0.1721 0.2260 0.2637 0.2594 0.2882 0.3524

LSn 0.1753 0.2337 0.2670 0.2636 0.2934 0.3615

RSn 0.1233 0.1697 0.2162 0.2115 0.2428 0.3175

Tn 0.1490 0.2159 0.2550 0.2511 0.2837 0.3468

TLn 0.1790 0.2327 0.2778 0.2709 0.2989 0.3589

TRn 0.1616 0.2235 0.2557 0.2561 0.2852 0.3545

L 0.1253 0.1790 0.2121 0.2109 0.2394 0.3172

LS 0.1223 0.1772 0.2117 0.2129 0.2447 0.3165

RS 0.1198 0.1738 0.2054 0.2062 0.2347 0.3073

T 0.1515 0.1933 0.2216 0.2252 0.2586 0.3126

TL 0.1397 0.1933 0.2299 0.2286 0.2588 0.3211

TR 0.1402 0.1875 0.2220 0.2200 0.2493 0.3180

Table 4.2: 5-Number Summary of Error Rate

The five-number summary for these models are shown in Table 4.2. The sub-

script n indicated the results were from the training data and the 5-fold CV

otherwise. In general, the error rates from CV tended to be lower than the train-

ing’s and both methods indicated that RSn seemed to have the lowest error rates

among all. However, it was quite interesting to note that T performed the second

best overall and the number of motifs used for each dataset was 4.5 on average.
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4.6 Performance Testing - Selection Method

We intended to find a model that minimized the error rates and number of se-

lected motifs, and at the same time maximized the number of matched motifs

after applying model selection methods. We demonstrated the performance of

Sl, S, and T . Then, we compared their selected motif with the consensus motifs

described in Section 4.1.

In Figure 4.2a, the prediction errors for T seemed to be better than Sl and S.

However, SlR and SR have yet better predictions than T . In the last section, we

have shown that the predictions did not improve if we applied the selected motifs

from T to TL or TR. This is why we only showed T ’s predictions in Figure 4.2a

and it is the same as the boxplot shown in Figure 4.1.

By looking at S, Sl and T ’s results, S’s selection method seemed to be unstable

and sometimes did not select motifs because of the way the method chose λ for

the its penalty function. We used λ=0.01 for all the datasets and it was very

computationally intensive to apply a reasonable λ to each dataset, especially when

we performed the CV procedures. This is reason we didn’t compute CV results for

S model. However, we usually drew the same conclusion between the training and

the 5-fold CV results in terms of performance when comparing the same models.

In Figure 4.2b, we can see that SlR’s prediction was better than T ’s, but the

number of motifs selected in SIR was usually about four times more than T ’s on

average.

Let’s take a closer look at the five-number summary of these models’ error rates

in Table 4.3. The mean of the overall error rates in SlRn and SRn were 0.2291

and 0.2241, respectively. Each selected about 12 or 14.5 motifs on average for each

training dataset. That was about 44.4% or 32.4% of dimension reduction from the

original dataset. Each original dataset contained about 21.4 motifs. In general,

SRn gave a better prediction than SlRn because it selected more variables/motifs
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Figure 4.2: a and b are the distributions error rates of the training and CV based

on the selection method.
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Model Min. 1st Qu. Median Mean 3rd Qu. Max.

Sln 0.1721 0.2278 0.2662 0.2606 0.2913 0.3539

SlRn 0.1407 0.1966 0.2269 0.2291 0.2611 0.3239

Sn 0.1778 0.2360 0.2665 0.2646 0.2989 0.3615

SRn 0.1376 0.1820 0.2216 0.2241 0.2635 0.3372

Tn 0.1490 0.2159 0.2550 0.2511 0.2837 0.3468

Sln 0.1252 0.1813 0.2113 0.2113 0.2384 0.3203

SlRn 0.1202 0.1714 0.2067 0.2067 0.2347 0.3218

Tn 0.1515 0.1933 0.2216 0.2252 0.2586 0.3126

Table 4.3: 5-Number Summary of Selection Error

in the same dataset but this was not always the case since Sl and S may sometimes

select different motifs. One thing to note is that the mean of Tn’s error rate only

differs by about 2.7% (0.2511) with SRn’s but the number of selected motifs drops

significantly. The two models differ by almost 10 motifs per model.

Moreover, S did not produce any kind of ranking system like in SlR or T , nor

did it always select motifs for us to evaluate. We attempted using a brute force

method by iteratively setting λ equal to .0001, .0005, .001, .005, .01 and increased

from .05 to 2 by .05 increment at a time. We stopped the iteration if the number of

selected motif(s) was/were less than or equal to T . Otherwise, we did not consider

that particular dataset since we cannot compare the variable selection methods

between the three (i.e., Sl, S, and T ) models. There were many problems to this

approach, since T often selected only one motif so it was almost impossible to

compare them. Therefore, we did not include the results in this study.

We believe SR may not be an ideal method since the computation time was

not very stable and occasionally did not select motifs since every dataset should

have at least one important motif identified by CMF. The second-best performance

model selection method was SlR, because its overall average error rate was 0.2291
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and it selected at least one motif in most of datasets. In addition, we can use the

p-value of each selected motif as rankings to conclude their motif selection. Lastly,

the error distribution range was smaller in SlRn than in SRn.

4.7 Selection Method - Motif Selection Power

In the previous two sections, we have seen that RS, SlR and T seemed to give a

good performance under different situations. In this section, we want to compare

the consensus motifs (See Section 4.1) with the ones selected by the model’s

selection and reduced model methods based on the error rates from each training

dataset.

For any comparison, we assumed a selected motif is matched with the consen-

sus motif (See Section 4.1) only if a selected motif is at least five bps long and

matched the consensus motif in a sliding window containing at most two mis-

matches. Our procedure was as follows: Given two (selected vs consensus) motifs,

we used the longer sequence to compute its reverse complement. Then, we used

the shorter motif to compare with the longer one with both its original strand

and reverse complement by every possible sliding window. A sliding window is

matched if it was at least five bps long and contained at most two positions that

are mismatched.

A special case was when we were comparing the starting and ending positions.

If the first or last five positions of a shorter motif are matched and the shorter

one was more than five bps long, we considered them as matched motifs. For

example, ACGTGCAT and GGACGCG is a match since the last five positions of

the shorter motif is matched with the first five positions in the longer one.

We recorded motif(s) selected by Sl, S and T . Then, we compared them with

the consensus motifs (See Section 4.1) based on the two analyzed TFs in each

pair. For any pair 1 and 2 TFs, we are expected to find 2 and 1 TF motifs in Xais
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and Xbis , respectively. For the sake of simplicity, we always checked motifs 1 and

2 regardless of the type of dataset (ai, or bi). In this way, we are able to calculate

if CMF identified an unexpected TF motif.

The expected and unexpected percentage for each model is calculated based

on the 38 pairs. The procedure of calculating correct and incorrect percentage is

as follows:

1 For each model and dataset, if there was at least one matched motif from b

in Xais or a in Xbis , then we recorded 1 as correct, and 0 otherwise.

2 For each model and dataset, if there is at least one matched motif from a in

Xais , and b in Xbis , then we recorded 1 as incorrect, and 0 otherwise.

3 We computed the expected and unexpected percentage by summing up the

total counts divided by the number of datasets analyzed.

The results in Table 4.4 indicate that each dataset was composed of about

21.4 variables/motifs on average among the 76 (= 38 × 2) datasets. In addi-

tion, T seemed to have better overall predictions among the three selection

models (Sln and Sn) and its overall mean is about 0.2511. It selected about

four motifs on average with 79% of dimension reduction.

4.8 Selection Method - Reduced Model

In the last section, the results indicated that T and Sl may be good methods

to use. However, Sl usually selected too many motifs per dataset compared

to T . In order to make a reasonable comparison in terms of the number

of motifs for each model, we proposed two types of models since L and Sl

provide p-values for each estimated coefficient as follows:

1 Select motif(s) with p-value ≤ .005 for both the L and Sl model and
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use the selected motifs to run SR. We denote them as rL and rSl.

2 Select motif(s) with p-value ≤ .005 for both L or Sl model and motifs

use in T and used the selected motifs to run SR. We denote them as

rLT and rSlT .

In this way, we can reduce the number of selected motif(s) and have a better

comparison with the T . The expected and unexpected percentage of these

models are shown in Table 4.4.

Model Expected Unexpected # of Motif

T 0.816 0.421 4.47

rL 0.829 0.329 6.123

rSl 0.842 0.474 6.97

rLT 0.882 0.566 7.61

rSlT 0.882 0.632 8.27

Sl 0.882 0.855 11.91

S 0.908 0.737 14.40

All 0.934 0.947 21.35

Table 4.4: Selection Error Rates

In Table 4.4, All used all the motifs in a dataset. This gave us a way to

see the upper bound of the correct and incorrect percentages. It turned

out that 93% of the dataset had at least one motif matched with consensus

motif. This was equivalent to 71 of the 76 datasets contained at least one

estimated consensus motif correctly identified by CMF.

The Table 4.4 is sorted by the average motifs used in each model. The

expected percentage in rLT , rSlT and Sl were the same, which was 88.2%

and about 5.3% different when comparing the results to the correctness of

All motifs. The number of motifs selected by rLT was about 13.7 less than
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Figure 4.3: a and b are the error rates and CV distributions based on the reduced

method.

All. One interesting fact was that the expected % and the number of motifs

in T and rL were the lowest and closest. The unexpected % and the number

of selected motifs were the lowest in model rL and the expected % was about

12% lower than the All model but the difference between the motifs used

was about 17. Also, the error rates obtained from 5-fold CV analysis for T

was lower than rL. Therefore, we strongly believe that T was a much better

model.

Let’s take a look at the overall distributions of what each of these models

in Figure 4.3. We constructed the 5-fold CV analysis results for rSlT . For

each of the four CV combinations as training data, we used the union of the
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motifs/coefficient whose p-value less or equal to .005 in L. Then, we selected

T and then used RS (i.e., SVM radial kernel) to fit a model; We used the

testing set to get its prediction errors. Once we obtained the predictions for

all five testing sets, we computed a contingency table and error rates (See

Section 4.4). A similar reasoning can be applied to rL, rSl and rLT . We

note that rL and rSl did not take the selected motif from T into account.

As we can see from both plots in Figure 4.3, the results for each model was

relatively similar and we have not found one method that was significantly

better than the other in terms of predictions power. However, we have

shown in the previous sections that T seemed have the best performance by

considering the number of motifs used for each dataset.
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CHAPTER 5

Demonstrating Our Analysis Procedures

Using Oct4/Sox2 Pair

In this chapter, we demonstrate our analysis procedures by choosing Oct4/Sox2

pairs since these are well-known TFs and it is quite difficult to present each

pair’s findings. In each sampling dataset in Oct4/Sox2, we present 1) the

number of enriched TFBSs before and after applying the sampling proce-

dures (See Section 2.7), 2) the performance of each model (See Section 4.3),

3) the number of selected motifs that are matched with the consensus motifs

in the contrast data (See Section 4.1), and 4) the number of expected and

unexpected motifs identified by model selection methods.

5.1 Number of Enriched TFBSs in the Sampling Datasets

The number of enriched Oct4 and Sox2 TFBSs in the sampling dataset

before (original) and after (sampling) applying the sampling method (See

Section 2.7) are shown in Table 5.1.

type Original Oct4 Original Sox2 Sampling Oct4 Sampling Sox2

ab 2306 1946 2306 1946

ai 1048 1768 1048 1768

bi 1199 2327 1199 2327

Table 5.1: Number of Enriched TFBSs in Oct4 and Sox2 Datasets
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The number of TFBSs in the Original and Sampling sets were the same for

both TFs since the preset cutoff was 3000 bps (See Section 2.7). We note

that the Sab dataset was not used in any analysis but we presented it here

for completion.

5.2 Model Performance

For each data type (i.e., Sab, Sai, Sbi), we constructed 8 predictive models

which were discussed in Section 4.3. Let’s take a closer look of each model’s

2× 2 contingency table and their corresponding error rates in the next few

sections.

5.2.1 Oct4 contrasts with Sox2

In Table 5.2, RS model had the lowest error rates for both training and

5-fold CV results among all the models. The Sl and T had the lowest error

rates in the training and CV among the three (i.e., SR, S and T ) selection

models, respectively. The training results have shown that T used only 2

motifs to make predictions while Sl used 13 and the error rate was only

about 1.4% higher. We believe T was a better model based on the 5-fold

CV results. The table also showed that Sl improved about 2.5% by applying

SlR and reduction rates were approximately 40% (=1-13/21) and 29% (=1-

15/21). We have shown in the last chapter that the λ in S was very sensitive

so that its predictions were very unstable from data to data. We believe that

SlR’s result was more robust. In addition, the motifs selected in Sl and S

may not be the same. Even though the number of selected motifs for S is

higher, SR did not always have a lower error rate compared to SlR which

was the case in the table shown above.

rLR, rSlR, rLTR and rSlTR are shown to indicate that T may be a better
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Training Result CV Result

Model 1 1 -1 1 1 -1 -1 -1 Error # of Motif 1 1 -1 1 1 -1 -1 -1 Error

L 1942 364 519 1427 0.2076670 21 1935 371 526 1420 0.210959548

LS 1986 320 574 1372 0.2102540 21 1990 316 587 1359 0.212370649

RS 2015 291 484 1462 0.1822672 1950 356 541 1405 0.210959548

S 1994 312 587 1359 0.2114299 15 NA NA NA NA NA

SR 2015 291 489 1457 0.1834431 15 NA NA NA NA NA

Sl 1943 363 518 1428 0.2071966 13 1926 380 522 1424 0.2121355

SIR 2025 281 496 1450 0.1827375 13 1962 344 540 1406 0.2079022

T 1690 616 323 1623 0.2208373 2 1775 531 435 1511 0.2271872

TL 1981 325 658 1288 0.2311853 2 2008 298 728 1218 0.2412982

TR 1957 349 617 1329 0.2271872 2 1932 374 572 1374

0.2224835

rLR 2002 304 591 1355 0.2104892 5 1996 310 612 1334 0.2168391

rSlR 1983 323 494 1452 0.1921449 7 1965 341 510 1436 0.2001411

rLTR 2002 304 591 1355 0.2104892 5 1987 319 595 1351 0.2149577

rSlTR 1983 323 494 1452 0.1921449 7 1965 341 510 1436 0.2001411

Table 5.2: Error Rate for Sab Dataset

model model to choose from since the number of motifs selected lower but

at the same time and it correctly identify the consensus motif more than

80% of the time.

5.2.2 Oct4 contrasts with Oct4 co-bound with Sox2

In the Table 5.3, the lowest error rates were RS, T and SR in their com-

parison groups. The results here again were consistent with previous ones.

However, SR had a lower overall error rate than SlR’s error rate for both

methods. Since the difference is not much, we still believe SlR’s prediction

was more robust.
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Training Result CV Result

Model 1 1 -1 1 1 -1 -1 -1 Error # of Motif 1 1 -1 1 1 -1 -1 -1 Error

L 572 476 337 1431 0.2887074 21 1940 366 519 1427 0.2081373

LS 571 477 343 1425 0.2911932 21 2000 306 580 1366 0.2083725

RS 666 382 345 1423 0.2581676 21 1943 363 552 1394 0.2151929

S 577 471 337 1431 0.2869318 10 NA NA NA NA NA

SR 664 384 358 1410 0.2634943 10 NA NA NA NA NA

Sl 570 478 343 1425 0.2915483 10 1940 366 519 1427 0.2081373

SlR 665 383 363 1405 0.2649148 10 1961 345 544 1402 0.2090781

T 541 507 277 1491 0.2784091 4 1763 543 408 1538 0.2236595

TL 543 505 315 1453 0.2911932 4 1995 311 669 1277 0.2304798

TR 572 476 330 1438 0.2862216 4 1918 388 592 1354 0.2304798

rLR 592 456 371 1397 0.2936790 2 1997 309 622 1324 0.2189558

rSlR 608 440 354 1414 0.2819602 4 1962 344 521 1425 0.2034337

rLTR 619 429 364 1404 0.2816051 5 1992 314 610 1336 0.2173095

rSlTR 632 416 354 1414 0.2734375 7 1962 344 520 1426 0.2031985

Table 5.3: Contingency table and Error Rate in Sai Dataset

5.2.3 Sox2 contrasts with Oct4 co-bound with Sox2

In Table 5.4, the model with the lowest error rates were RS, T and SlR

relative to their comparison models. Again, the results here were consistent

with previous findings. However, SR’s error rate was lower in the training

and higher in the 5-fold CV analysis. Since the CV result was less biased,

we believe SlR’s prediction was better.

5.3 Number of Matched and Selected Motifs

In the last section, we have seen the prediction performance of each predic-

tive model. In this section, we want to show the number of matched motif(s)

in each type of dataset. The criteria for matching was explained in Section
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Training Result CV Result

Model 1 1 -1 1 1 -1 -1 -1 Error # of Motif 1 1 -1 1 1 -1 -1 -1 Error

L 546 653 261 2066 0.2592172 20 1935 371 522 1424 0.2100188

LS 513 686 253 2074 0.2663074 20 1986 320 581 1365 0.2119003

RS 601 598 206 2121 0.2280204 20 1949 357 544 1402 0.2119003

S 528 671 254 2073 0.2623369 12 NA NA NA NA NA

SR 603 596 230 2097 0.2342598 12 NA NA NA NA NA

Sl 546 653 261 2066 0.2592172 13 1940 366 529 1417 0.2104892

SlR 624 575 228 2099 0.2277368 13 1961 345 545 1401 0.2093133

T 613 586 307 2020 0.2532615 6 1734 572 396 1550 0.2276576

TL 533 666 264 2063 0.2637550 6 2022 284 740 1206 0.2408278

TR 597 602 276 2051 0.2490074 6 1919 387 590 1356 0.2297742

rLR 566 633 267 2060 0.2552467 5 1994 312 618 1328 0.2187206

rSlR 566 633 267 2060 0.2552467 5 1964 342 522 1424 0.2031985

rLTR 597 602 276 2051 0.2490074 6 1994 312 618 1328 0.2187206

rSlTR 597 602 276 2051 0.2490074 6 1964 342 522 1424 0.2031985

Table 5.4: Contingency table and Error Rate in Sbi Dataset

4.1. Let’s us just take a look at the number of matched motifs in Sl, S, and

T , which is shown in the Table 5.5.

Type SlOct4 SlSox2 SOct4 SSox2 TOct4 TSox2

ab 1 5 1 5 0 2

ai 0 4 0 5 0 2

bi 7 12 6 11 5 5

Table 5.5: Number of Matched and Selected Motifs in Oct4 and Sox2 Data

The consensus motif of Oct4 and Sox2 are TATGCAAAT and CATTGTT,

respectively.

In Sab data, we expected matched motifs from both Oct4 and Sox2. A motif

named ATTATGCAAAT was matched with consensus motif of Oct4 in both
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Sl and S. However, T did not select any motif. The same five matched mo-

tifs in Sl and S were AGAACAATGG, GAACAAAGGA, AGAACAATGGA,

AGAACAAAGGA, and AGAACAATGGG. T ’s matched with AGAACAATGG,

and GAACAAAGGA. These two matched motifs were also in the union of

Sl and S.

In Sai data, we expected matched motifs from Sox2 only. As we can see from

Table 5.5, we did not find Oct4 motif matched in all three models. The four

matched motifs in Sl were CATAACAAAGG, ACAAAGG, CCATTGTTAT

and ACAAAGAA. The five matched motifs in S were the same matched mo-

tifs in Sl plus ATGACAAAGG. The two matched motifs in T were ACAAA-

GAA, and CCATTGTTAT. These two motifs were also included in S and

Sl’s selection.

In Sbi data, we expected matched motifs from Oct4 only. The five matched

motifs in T were ATGCAAA, ATTTGCATAACAATGGC, CATTTGCAT-

GACAATGGA, CCTTTGTTATGCAAAT and CATTTGCATAACAAAGG.

The six matched motifs for S were those matched in T , plus CATTTG-

CATAACAATGG. The seven matched motifs for Sl were those matched in

S, plus CATTTGCATGACAATGG.

In addition, Table 5.5 also has shown that there were unexpected mo-

tifs. T ’s unexpected motifs were ATTTGCATAACAATGGC, CATTTG-

CATAACAAAGG, CATTTGCATGACAATGGA, CCTTTGTTATGCAAAT,

and GAACAATGGA. S’s were the same as the motifs in T ’s plus AGAA-

CAATGGG, CATTTGCATAACAAAGG, GGAACAATGGG, GAGAACAATGGA,

GAGAACAATGGG, and TCCATTGTTCC. Sl’s are AGAACAATGGA,

CATTTGCATAACAAAGG, CATTTGCATAACAATGG, GAGAACAATGGG,

GAGAACAATGGA, GGAACAATGGG, and TCCATTGTTCC.

Since there was so many unexpected motifs identified in all three models,

we believe there may be Context-Dependent (CD) in bi data which was
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discuss in Mason’s paper. For this data, we went ahead to find if such CD

motifs exist, we found that AACAATG and AACAAAG were CD scenarios

where AACAATG is an unexpected motif (Sox2), and AACAAAG was a

CD motif (Oct4 co-bound with Sox2) where the position of these two motifs

were aligned by their positions.

Furthermore, based on this detailed analysis, we can see that T ’s motif se-

lection gave the least motifs and the number of motifs used to do predictions

was less than the other ones. Again, it seemed T can effectively find motifs

that correctly match the consensus motifs.
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CHAPTER 6

Conclusion and Recommendations

6.1 Conclusion

In this study, we have demonstrated how to generate the three BD sets,

predictive and sampling datasets for each analyzed pair. Our finding sug-

gested that RS (i.e., SVM with the Radial kernel) was the best method

when including all variables/motifs but it did not improve prediction rates

(i.e., low error rates) when running RS on the motifs selected from the clas-

sification tree model. Moreover, the predictive model of selection methods

based on CMF’s output was a good way to reduce a data’s dimension and

its false positive motifs, while keeping its performance and selection power

competitive.

We specifically compared the RS including all variables in the dataset (the

best performance model) and with the classification tree model in every

analyzed dataset. The dimensionality of the classification tree model (i.e., T )

selected about 17 fewer motifs than RS. In addition, about 82% of each T ’s

model contained at least one correct motif compared with RS’s 93%. As we

can see, there was only an 11% difference. Moreover, at least one unexpected

motif selected by T was 42% compared with RS’s 94%. In terms of error

rates, RS’s training and 5-fold CV was 21.15% and 20.62%, compared with

T ’s 25.11% and 22.52%, of which RS was only better by less than 1% and 2%

in both methods, respectively. Also, we performed 50 simulations to test the
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total time to construct the same dataset for both models, and we found that

T ’s time is 48.731 seconds compared with RS’s 182.549 seconds, which was

about 3 times longer than T ’s. Based on careful investigation, we conclude

that classification tree models are generally time efficient to construct and

provide reasonable error rates while correctly identifying motifs compared

with the other predictive models.

6.2 Recommendations

Although our study did not focus on Sabs data, we believe the selected motifs

in this type may contain some portion motifs from both a and b and had a

different motif expression, which can be explored in our future studies.

The classification tree model had a high chance of selecting expected motifs

for each dataset; however, we believe the classification tree can also cor-

rectly identify unknown or new motif(s) that no one has discovered thus

far. This may be one of the reasons why the number of unexpected motif

rates is so high for all the models. One can confirm our claim by using our

findings based on stepwise logistics regression to perform a series of actual

experiments to confirm whether or not it is correct. Of course, it is not

necessary to test all GC enriched motifs since stepwise logistics regression

usually includes all the selected motifs as the ones in the classification tree

model and gives a nice ranking system (p-value) of each selected motifs in

its output table.

CMF seems to correctly identify motifs, but there is much improvement

needed. The unexpected motif rate for each model is pretty high assuming

all the unexpected motifs are wrong. This is why Mason mentioned context-

dependent (CD) motifs which do not happen often. Another issue is that

by setting a different seed number in CMF’s input, the performance of pre-
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dictive models may give a worse results. Of course, the result for motif (i.e.,

selected vs consensus) comparison may also change. In the future, we may

adapt CMF or related algorithms for studies more suitable for our purposes,

so that not as many input parameters should be allowed.
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APPENDIX A

CMF Algorithm

CMF algorithm takes in 2 sets of nucleotide sequences, S1 and S2. The

algorithm first computes all possible w-mers of each sequence in both sets

and each position contains one of the 4 nucleotides ({A, C, G, T}). For

every w-mer in a TFBS sequence, we define it as X = (x1, . . . , xw) where w

is 7 in this project. LR is computed as follows:

LR(x) =

∑w
i=1 θixi∑w

i=1 θ0(xi−1, xi)
(A.1)

where θ0(xi−1, xi) is the background model. Then, it predicts BSs by com-

puting likelihood ratios (LRs) of all w-mer greater than τ (=2/3) to prevent

too many false positives contributing to the resulting PWM. The author

claims that τ = 2/3 works the best. (3). The author claims by correcting

for the influence of false positives in Equation A.2, the algorithm becomes

robust to the discretiztion of τ .

In addition, CMF finds enriched w-mers in S1 and compare with w-mers in

S2. Then, a z-score is computed for each w-mer as follows:

z(x) =
p̂1 − p̂2√

p̂(1− p̂( 1
L1

+ 1
L2

)
(A.2)

where L1 and L2 are defined as the total number of w-mer in S1 and S2

and p̂1 = C1

L1
, p̂2 = C2

L2
and p̂ = C1+C2

L1+L2
with C1 and C2 the number of time a

w-mer in S1 and S2, respectively. It does not use t-score distribution since

43



the value of L1 and L2 are usually large enough to follow as close to a z

distribution as possible.

Furthermore, the author defines a seed center at a w-mer x by incorporating

neighboring w-mers, where a w-mer y is considered a neighbor of x if it

matches x with at most m=2 mismatches and include only those neighbors

y that are overrepresented in the same set of sequences as the center w-

mer, x, is included in the seed (i.e., {y : z(y)z(x) > 0}). The algorithm

then defines sub-neighborhood yj of the central w-mer x as those neighbors

with the same mismatch position(s) k, where k is a size m subset of {1,

. . . , m}. For each sub-neighborhood yk, it computes the z-score with the

counts C1 and C2 being the total number of counts of w-mers in yk and the

best sub-neighborhood is selected. Each seed is summarized by two m by

4 count matrices, N
(1)
1 and N

(2)
2 , where N

(1)
1 and N

(2)
2 are composed of the

best sub-neighborhood sites in S1 and S2, respectively. This step is called

seed creation in the paper.

Once the best sub-neighborhoods are determined, Mason uses an iterative

approach to update the PWM for each seed whose sub-neighborhood z-

score ranks within the T=10, the number of top seeds to test. The iterative

algorithm is summarized in the following:

For t = 1, 2, 3, . . ., T

1. Given initialize N
(1)
1 and N

(2)
2 by seed creation, add 5% pseudo-counts to

each position in N (t) and normalize each row into probabilities to prevent

CMF from being trapped in a local mode;

2. Update PWM, Θ(t) from normalized pseudo-count matrices and

N (t) = (N
(t)
ij )w×4 = max(N

(1)
t −N

(2)
t , 0); (A.3)

3. Scan S1 and S2 with Θ(t) and determine τ (t). The false discovery rate of

the sites in both S1 and S2 are taking into account;
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4. Use sites with LR(x) > τ (t) to create N
(1)
t+1 and N

(2)
t+1;

5. Algorithm stops once the distance between Θ(t+1) and Θ(t) is less than

some ε by d(t) = max|θ(t+1)
ij - θ

(t)
ij |.

At each iteration, the algorithm determines whether the motif should grow

or shrink by 1 bp on either side based on the Bayes factors at the flanking

positions (3). For each request seed, the output provides the location of the

enriched sequence locations, its features and LRs from both sets, and the

estimated PWM that is calculated by using each enriched feature.
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APPENDIX B

Logistics Regression Algorithm

Logistic regression (logit) function has a excellent property which predicts

the log odds of an observation equal to 1 (i.e, P (Y = 1)). The odds of an

event is defined as the ratio of the probability that an event occurs (i.e.,

P (Y = 1)) to the probability that it fails to occur as follows:

odds(Y = 1) =
Pr(Y = 1)

1− Pr(Y = 1)
=

P

1− P
(B.1)

Let P = π. The log odds is a logit function as follow:

log(odds(Y = 1)) = logit(π) = log

(
π

1− π

)
(B.2)

where,

log

(
π

1− π

)
= β0 + β1x1 + β2x2 + . . .+ βkxk = x

′

iβ (B.3)

where xi = (1, xi1, . . . , xik)
′

and β = (β0, β1, . . . , βk)
′

and,

πi(Y = 1) =
exp(x

′
iβ)

1 + exp(x
′
iβ)

(B.4)

The odds scale is bounded by 0 and ∞ shown in equation B.1. Each value

between 0 and 1 can be transformed when the roles of the response variable

is switched by taking its inverse (i.e., 1/value) to a value in the range of 1

and ∞. The log odds scale varies from (-∞, ∞). The roles of the response

variable is switched by multiplying -1 of the log odds. The outcomes (i.e.,

0/1) are equally likely in both odds and log odds.
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The logit function shown in equation B.4 as an example maps any value of

the OLS estimates to a probability between 0 and 1. If log odds are linearly

related to Xs, then the relation between Xs and πi(Y=1) is nonlinear, and

has the form of the S-shaped curve like in the following:

Now the question is: How do we measure the fit of the model? In linear

regression, one can use R2 of the model, but it is not available in the logis-

tics regression. A deviance is provided in each model instead. In general,

the smaller the deviance the better the model is. Logistics regression uses

Maximum Likelihood (ML) to find the smallest possible deviance between

the observed and predicted values. This is an iterative method in which the

algorithm tries all possible solutions until it gets the smallest possible de-

viance. Once it finds the solution, it provides a final value for the deviance

which is known as −2logL. L is ML. The ML equation is derived from the

probability distribution of the dependent variable. Since each yi represents

a binomial count in the ith population, the joint probability density function

of Y for n observations is:
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L =
n∏
i=1

(
exp(x

′
iβ)

1 + exp(x
′
iβ)

)∑n
i=1 Yi (

1− exp(x
′
iβ)

1 + exp(x
′
iβ)

)n−∑n
i=1 Yi

(B.5)

A convenient way to conclude the overall fit of a model is comparing the

null (−2logLNull) and residual (−2logLp) deviances. People often call the

differences between these two terms a likelihood ratio (LR):

LR = −2log

(
LNull
Lp

)
∼ χ2 (B.6)

where, the degree of freedom (df) = the difference between the model with

predictors and the null model. LR is assumed to follow a χ2 distribution.

The idea here is to see if the model with predictors (i.e. residual model)

fits significantly better than a model with just an intercept (i.e. a null

model). One can test the goodness of fit using χ2 statistic on LR. The χ2

p-value can be obtained based on LR and df differences. If α = .05 and if

an associated p-value is less than 0.05, then it signifies that the model fits

significantly better than a null model as a whole, and one should include

the independent variable(s) in the model.

The material described here is based on (4) and (5).
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APPENDIX C

Support Machine Vector Algorithm

Let us consider consider a training data D containing a set of n observations

D =
{

(x1, y1), . . . , (xn, yn)
}
, x ∈ Rp, yi ∈ {−1, 1} (C.1)

where yi indicates whichXi belongs to a group and eachXi is a p-dimensional

real vector. The goal is to have a hyperplane that divides the points of 1

and -1 in Rp. A hyperplane is defined as w · x + b = 0. w is a normal

vector and perpendicular to the hyperplane.

It is desirable to obtain w and b that maximizes the margin while still

separating the data. If the training data are linearly separable, we can

select the two hyperplanes of the margin in a way that there are no points

between them and then try to maximize their distance. We can find the

distance between these two hyperplanes is 2
‖w‖ , so we need to minimize w.

We have to prevent data points falling into the margin, so the algorithm

adds the following constraint for both classes:

mini|w · xi + b| = 1 (C.2)

A hyperplane then must satisfy the following constraints,

yi(w · xi + b) ≥ 1, i = 1, . . . n (C.3)

Thus, a method called soft margin is introduced. It tries to split the classes

as cleanly as possible while still maximizing the margin to the nearest cleanly
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split examples by introducing a slack variable, ξ. It is a measure of the degree

of misclassification errors. The modified constraint is:

yi(w · xi + b) ≥ 1− ξi, i = 1, . . . n (C.4)

The way to have a hyperplane that optimally separates the data is by min-

imizing ‖w‖ + C
∑
ξi (objective function) but it is very difficult to solve.

However, it is possible to alter it by solving 1
2
‖w‖2 + C

∑
ξi instead with-

out changing the solution. The objective function is increased by a function

which penalizes non-zero ξi, and the optimization becomes a tradeoff be-

tween a large margin and a small error penalty. If the penalty function is

linear, the optimization problem becomes:

minw,b
1
2
‖w‖2 + C

∑n
i=1 ξi

subject to yi(w · xi + b) ≥ 1− ξi, ξi > 0
(C.5)

The above optimization problem can be solved by Lagrangian as:

Φ(w, b, α, ξ, β) = 1
2
‖w‖2 + C

∑n
i=1 ξi

−
∑n

i=1 αi[yi(w · xi + b)− 1 + ξi]−
∑n

i=1 βiξi
(C.6)

αi and βi are Lagrange multipliers. It is reasonable to solve the problem in

dual form. The previous problem can be thought as:

maxαW (α, β) = maxα,β {minw,b,ξΦ(w, b, α, ξ, β)} (C.7)

By taking the partial derivatives of w, b, and ξ. We obtain the following:

maxαW (α) = maxα − .5
n∑
i=1

n∑
j=1

αiαjyiyj(xi · xj) +
n∑
k=1

ak (C.8)

Hence, the solution to the problem is:

α∗ = argminα
1

2

n∑
i=1

n∑
j=1

αiαjyiyj(xi · xj)−
n∑
k=1

ak (C.9)
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with constraints,
n∑
j=1

αjyj = 0 and 0 ≤ αi ≤ C, i = 1, . . . n (C.10)

It?s not difficult to generalize this linear case to the nonlinear by replacing

(xi · xj) with a nonlinear function K(xi · xj):

α∗ = argminα
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi · xj)−
n∑
k=1

ak (C.11)

where K(x,x′) is the kernel function performing the non-linear mapping

into feature space and the constraints are the same as in equation C.10.

Solving equation C.11 with constraints equation C.10 determines the La-

grange multipliers, and a hard classifier implementing the optimal separating

hyperplane in the feature space is given by,

f(x) = sgn(
∑

αiyiK(xi, x) + b) (C.12)

where, (w∗·x) =
∑n

i=1 αiyiK(xi, x), b∗ = −1
2

∑n
i=1 αiyi[K(xi, xr)+K(xi, xr)]

There are several kernel functions people use, but we applied linear and

radial basis kernel functions in this study:

1 Linear Kernel:

K(xi, xj) = x′i × xj (C.13)

2 Radial Basis Kernel:

K(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0 (C.14)

Radial basis kernel is a tool for measuring similarity of two sample cases. It’s

quite natural to think that if an observation is more similar to group 1 than

group 2, we should classify it into group 1. We used linear kernel to compare

the difference between the 2 kernel functions. The concept presented here

is based on (11) and (12).
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APPENDIX D

Recursive Partitioning and Regression Trees

Algorithm

The algorithm first looks for a node A to split two childs into AL (left child)

and AR (right child) using the following formula:

P (AL)r(AL) + P (AR)r(AR) ≤ P (A)r(A) (D.1)

where P(A) ≈
∑C

i=1 πiniA/ni,

– πi is the prior probabilities of each class,

– ni and nA are the number of observations in the sample that are class

i and node A, respectively,

The idea is to choose a split which decreases risk of r(A). There are some

problems with this approach. One way to fix it is to use a measure of

impurity of a node A as follows:

I(A) =
C∑
i=1

f(pia) (D.2)

where f is some impurity function and pia is the proportion of those in A

that belong to class i for future sample. These can be thought as lookahead

rules. The goal here is to have I(A) = 0 when A is pure, so f must be

concave function with f(0) = f(1) = 0. Then, rpart uses maximal impurity

reduction to split node A between information index f(p) = −plog(p) and

Gini index f(p) = p(1− p) as follows:

∆I = p(A)I(A)− p(AL)I(AL)− P (AR)I(AR) (D.3)
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It makes sense to incorporate losses in impurity function. The algorithm

incorporates losses using altered priors method to extend the impurity func-

tion.

Let’s first denote risk of A as:

R(A) =
C∑
i=1

piaL(i, τ(A)) =
C∑
i=1

πiL(i, τ(A))(nia/ni)(n/na) (D.4)

where R(A) is chosen to minimize the risk

– τ(A) is the class assigned to A as a final node,

– L(i, τ(A)) is the loss matrix for incorrectly classifying an i as a τ(A).

It assumes there exists π̃ and L̃

π̃iL̃(i, j) = πiL(i, j) ∀i, j ∈ C (D.5)

It’s clear that R(A) is unchanged under the new losses and priors. If L̃

is proportional to the loss matrix then the priors π̃ should be used in the

splitting criteria. This is possible only if L is of the form

L(i, j) =

 Li i 6= j

0 i = j
(D.6)

where,

π̃i =
πiLi∑
i=j πjLj

(D.7)

An impurity function I(A) =
∑
f(pi) has its maximum at p1 = p2 = . . . =

pc = 1/C. When altered priors are used, they affect only the choice of split.

The ordinary losses and priors are used to compute the risk of the node. The

altered priors simply help the impurity rule choose splits that are likely to

be as good as in terms of the risk. After building the tree, the tree structure

is often too complicated and the algorithm then tries to prune the tree.
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– Let T1, T2, . . . , Tk be the terminal nodes of a tree T and,

– Let |T | = number of terminal nodes.

– Let T = R(T ) =
∑k

i=1 P (Ti)R(Ti) be the risk of a model.

– Let α ∈ [0, ∞] which measures the cost of adding another variable to

the model. α is call the complexity parameter.

– Let R(T0) be the risk for the zero split tree

Define,

Rα(T ) = R(T ) + α|T | (D.8)

to be the cost for the tree. Let Tα to be that subtree of the full model which

has minimal cost. Obviously, T0 = the full model and T∞ = the model with

no splits at all. The following results are shown in [].

– If T1 and T2 are subtrees of T with Rα(T1) = Rα(T2), then either T1 is

subtree of T2 or T2 is subtree of T1.

– If α > β then either Tα = Tβ or Tα is a strict subtree of Tβ.

The result above suggests that one can uniquely define Tα as the smallest tree

T for which Rα(T) is minimized and all possible values of α can be grouped

into m intervals, m < |T | as I1 = [0, α1], I2 = (α1, α2], . . ., Im = (αm−1,∞]

where all α ∈ Ii share the same minimizing subtree.

Then, CV is used to choose a best value for α by the following steps:

– Fit the full model on the dataset and compute I1, I2, . . . , Im and set

β1 = 0, β2 =
√
α1α2, . . ., βm−1 =

√
αm−2αm−1, βm =∞.

– Divide the data set into s groups G1, G2, . . . , Gs each of size s/n, and

for each group separately:

1) fit a full model on the data set everywhere except Gi and determine

Tβ1, Tβ2, . . . , Tβm for this reduce dataset,
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2) compute the predicted class for each observation in Gi, under each

of the models Tβj for 1 ≤ j ≤ m,

3) compute the risk for each subject from 2).

– Sum over the Gi to get an estimate o risk for each βj. For that β with

smallest risk compute Tβ for the full data set, this is chosen as the best

trimmed tree.

We do not discuss rpart’s implementation about missing values since it never

happens in our case. For more information, please refer to (8).

55



APPENDIX E

Tables

Table E.1: Number of TFBSs in Each Group

Pair Raw Data BD Data Analysis

Number Name S1 S2 Sa Sb Si Selected? Analyzed?

1 Oct4Sox2 3761 4526 2134 2547 1331 Yes Yes

2 Oct4Nanog 3761 10343 2014 7263 1447 Yes Yes

3 Oct4Esrrb 3761 21647 2569 19079 878 No No

4 Oct4Stat3 3761 2546 3049 1891 391 Yes Yes

5 Oct4cMyc 3761 3422 3107 3006 333 Yes Yes

6 Oct4nMyc 3761 7182 2796 6338 645 Yes Yes

7 Oct4K1f4 3761 10875 2541 9323 904 Yes No

8 Oct4E2f1 3761 20699 2154 18002 1306 Yes Yes

9 Oct4Smad1 3761 1126 2986 542 455 Yes Yes

10 Oct4Zfx 3761 10338 2902 9470 543 Yes Yes

11 Oct4Tcfcp211 3761 26910 2362 23213 1097 Yes Yes

12 Oct4Ctcf 3761 39609 3100 35663 342 Yes No

13 Oct4p300 3761 524 3280 315 161 No No

14 Oct4Suz12 3761 4215 3391 4156 46 No No

15 Sox2Nanog 4526 10343 1643 6478 2259 Yes Yes

16 Sox2Esrrb 4526 21647 2838 18922 1061 Yes Yes

17 Sox2Stat3 4526 2546 3443 1864 423 Yes Yes

Continued on next page...
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Table E.1 – Continued from Previous Page

Pair Raw Data BD Data Analysis

Number Name S1 S2 Sa Sb Si Selected? Analyzed?

18 Sox2cMyc 4526 3422 3730 3209 130 No No

19 Sox2nMyc 4526 7182 3577 6702 283 No No

20 Sox2K1f4 4526 10875 3022 9381 852 Yes No

21 Sox2E2f1 4526 20699 2890 18316 997 Yes Yes

22 Sox2Smad1 4526 1126 3313 439 562 Yes Yes

23 Sox2Zfx 4526 10338 3566 9711 306 Yes Yes

24 Sox2Tcfcp211 4526 26910 2595 23014 1313 Yes Yes

25 Sox2Ctcf 4526 39609 3597 35738 265 No No

26 Sox2p300 4526 524 3678 292 184 No No

27 Sox2Suz12 4526 4215 3837 4181 20 No No

28 NanogEsrrb 10343 21647 6944 18200 1810 Yes Yes

29 NanogStat3 10343 2546 8070 1674 617 Yes Yes

30 NanogcMyc 10343 3422 8492 3150 185 No No

31 NanognMyc 10343 7182 8268 6575 413 Yes Yes

32 NanogK1f4 10343 10875 7388 8933 1325 Yes No

33 NanogE2f1 10343 20699 7262 17865 1472 Yes Yes

34 NanogSmad1 10343 1126 7938 247 755 No No

35 NanogZfx 10343 10338 8259 9576 440 Yes Yes

36 NanogTcfcp211 10343 26910 6742 22304 2039 Yes Yes

37 NanogCtcf 10343 39609 8410 35731 277 No No

38 Nanogp300 10343 524 8463 255 220 No No

39 NanogSuz12 10343 4215 8654 4182 21 No No

40 EsrrbStat3 21647 2546 19199 1530 756 Yes Yes

41 EsrrbcMyc 21647 3422 19330 2725 604 Yes Yes

Continued on next page...
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Table E.1 – Continued from Previous Page

Pair Raw Data BD Data Analysis

Number Name S1 S2 Sa Sb Si Selected? Analyzed?

42 EsrrbnMyc 21647 7182 18649 5691 1291 Yes No

43 EsrrbK1f4 21647 10875 17422 7709 2561 Yes No

44 EsrrbE2f1 21647 20699 16890 16186 3129 Yes Yes

45 EsrrbSmad1 21647 1126 19503 548 450 Yes Yes

46 EsrrbZfx 21647 10338 18142 8202 1823 Yes Yes

47 EsrrbTcfcp211 21647 26910 16091 20408 3971 Yes No

48 EsrrbCtcf 21647 39609 18444 34510 1518 Yes No

49 Esrrbp300 21647 524 19774 310 168 No No

50 EsrrbSuz12 21647 4215 19610 3876 324 Yes No

51 Stat3cMyc 2546 3422 2109 3162 170 No No

52 Stat3nMyc 2546 7182 1926 6624 360 Yes Yes

53 Stat3K1f4 2546 10875 1587 9514 706 No No

54 Stat3E2f1 2546 20699 1380 18358 914 Yes No

55 Stat3Smad1 2546 1126 2040 752 243 No No

56 Stat3Zfx 2546 10338 1917 9647 366 Yes Yes

57 Stat3Tcfcp211 2546 26910 1494 23500 803 Yes Yes

58 Stat3Ctcf 2546 39609 2100 35824 181 No No

59 Stat3p300 2546 524 2167 365 112 No No

60 Stat3Suz12 2546 4215 2269 4195 8 No No

61 cMycnMyc 3422 7182 788 4437 2547 Yes No

62 cMycK1f4 3422 10875 2337 9212 995 Yes No

63 cMycE2f1 3422 20699 836 16765 2506 Yes Yes

64 cMycSmad1 3422 1126 3308 967 25 No No

65 cMycZfx 3422 10338 1887 8567 1439 Yes Yes

Continued on next page...
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Table E.1 – Continued from Previous Page

Pair Raw Data BD Data Analysis

Number Name S1 S2 Sa Sb Si Selected? Analyzed?

66 cMycTcfcp211 3422 26910 2536 23495 801 No No

67 cMycCtcf 3422 39609 2939 35610 395 Yes No

68 cMycp300 3422 524 3314 458 17 No No

69 cMycSuz12 3422 4215 3310 4182 21 No No

70 nMycK1f4 7182 10875 4876 8104 2107 Yes No

71 nMycE2f1 7182 20699 2257 14529 4732 Yes No

72 nMycSmad1 7182 1126 6900 914 79 No No

73 nMycZfx 7182 10338 4278 7306 2700 Yes Yes

74 nMycTcfcp211 7182 26910 5271 22578 1716 Yes Yes

75 nMycCtcf 7182 39609 5955 34976 1036 Yes No

76 nMycp300 7182 524 6945 441 34 No No

77 nMycSuz12 7182 4215 6843 4065 135 No No

78 K1f4E2f1 10875 20699 5889 14922 4366 Yes No

79 K1f4Smad1 10875 1126 9841 615 380 Yes No

80 K1f4Zfx 10875 10338 8070 7865 2149 Yes No

81 K1f4Tcfcp211 10875 26910 7484 21531 2799 Yes No

82 K1f4Ctcf 10875 39609 9018 34814 1201 Yes No

83 K1f4p300 10875 524 10068 331 146 No No

84 K1f4Suz12 10875 4215 10037 4031 170 No No

85 E2f1Smad1 20699 1126 18930 657 347 Yes Yes

86 E2f1Zfx 20699 10338 14264 5013 5001 Yes No

87 E2f1Tcfcp211 20699 26910 15052 20075 4273 Yes Yes

88 E2f1Ctcf 20699 39609 17565 34297 1727 Yes No

89 E2f1p300 20699 524 19139 352 126 No No

Continued on next page...
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Table E.1 – Continued from Previous Page

Pair Raw Data BD Data Analysis

Number Name S1 S2 Sa Sb Si Selected? Analyzed?

90 E2f1Suz12 20699 4215 19159 4097 106 No No

91 Smad1Zfx 1126 10338 914 9934 79 No No

92 Smad1Tcfcp211 1126 26910 562 23861 442 Yes Yes

93 Smad1Ctcf 1126 39609 960 35971 31 No No

94 Smad1p300 1126 524 855 338 138 No No

95 Smad1Suz12 1126 4215 987 4199 4 No No

96 ZfxTcfcp211 10338 26910 8005 22289 2026 Yes Yes

97 ZfxCtcf 10338 39609 9090 35077 927 Yes No

98 Zfxp300 10338 524 9972 438 37 No No

99 ZfxSuz12 10338 4215 9836 4025 174 No No

100 Tcfcp211Ctcf 26910 39609 22328 34046 1990 Yes No

101 Tcfcp211p300 26910 524 24139 328 152 No No

102 Tcfcp211Suz12 26910 4215 23934 3846 355 Yes No

103 Ctcfp300 39609 524 35984 459 17 No No

104 CtcfSuz12 39609 4215 35856 4058 142 No No

105 p300Suz12 524 4215 472 4200 3 No No
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