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Flexible methods for segmentation evaluation: Results from CT-
based luggage screening

Seemeen Karimia,*, Xiaoqian Jianga, Pamela Cosmana, and Harry Martzb

aUniversity of California, San Diego, CA, USA

bLawrence Livermore National Laboratories, Livermore, CA, USA

Abstract

BACKGROUND—Imaging systems used in aviation security include segmentation algorithms in 

an automatic threat recognition pipeline. The segmentation algorithms evolve in response to 

emerging threats and changing performance requirements. Analysis of segmentation algorithms’ 

behavior, including the nature of errors and feature recovery, facilitates their development. 

However, evaluation methods from the literature provide limited characterization of the 

segmentation algorithms.

OBJECTIVE—To develop segmentation evaluation methods that measure systematic errors such 

as oversegmentation and undersegmentation, outliers, and overall errors. The methods must 

measure feature recovery and allow us to prioritize segments.

METHODS—We developed two complementary evaluation methods using statistical techniques 

and information theory. We also created a semi-automatic method to define ground truth from 3D 

images. We applied our methods to evaluate five segmentation algorithms developed for CT 

luggage screening. We validated our methods with synthetic problems and an observer evaluation.

RESULTS—Both methods selected the same best segmentation algorithm. Human evaluation 

confirmed the findings. The measurement of systematic errors and prioritization helped in 

understanding the behavior of each segmentation algorithm.

CONCLUSIONS—Our evaluation methods allow us to measure and explain the accuracy of 

segmentation algorithms.

Keywords

Segmentation evaluation; computed tomography; luggage screening; feature recovery

1. Introduction

Modern applications of image segmentation have complex goals, such as extracting multiple 

objects from a cluttered setting. The objects’ image-based features must be computed for 

decision-making or subsequent processing. For example, in medical imaging, non-
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destructive testing or luggage scanning, qualitative or theoretical evaluation is not enough, 

and quantitative evaluation is necessary. Various evaluation methods have been suggested 

based on the accuracy of edges, goodness measures within labeled regions, feature recovery, 

or on divergence from a ground truth (GT) [1–24]. The appropriateness of the methods is 

application-dependent, and frequently, there is no single best measure.

Our objective is the performance evaluation of segmentation algorithms applied to x-ray 

computed tomography (CT) scans of luggage. In aviation security, checked passenger 

luggage is imaged by CT-based explosives detection systems (EDS). In EDS, objects are 

segmented from the CT images and then sent to automatic threat recognition (ATR) 

algorithms. An important problem in this field is that non-threat objects may produce false 

alarms. Resolving false alarms involves high labor cost because false-alarm bags must be 

unpacked or sent for secondary screening. The main difficulties for accurate segmentation in 

luggage screening are the variety and heterogeneity of non-threat and threat objects found in 

bags. Another difficulty is image artifacts. These difficulties cause segmentation algorithms 

to split an object into multiple pieces, or to merge different objects into a single one.

The U.S. Department of Homeland Security has identified requirements for future systems, 

including increasing threat categories and lowering false alarms [25]. To encourage the 

development of new segmentation algorithms for CT security systems, a database of CT 

images of suitcases was generated by the ALERT group at Northeastern University, and 

distributed to five research groups at universities and corporations [26]. The database 

contained no threats; the requirement was to segment all objects present in each suitcase. 

Segmentation results for a sample of this data were obtained for detailed quantitative 

evaluation. In this project, objects missed by the segmentation algorithm correspond to type 

II error (false negative) in binary classification and spurious objects created by the 

segmentation algorithm correspond to type I error (false positive).

Quantitative evaluation of segmentation algorithms is a challenging task in luggage 

screening because multiple splits and merges are possible. In addition to an accuracy score, 

we would like to gain a deeper understanding of the algorithms’ behavior. First, we would 

like to know if an algorithm systematically oversegments or undersegments images or if the 

error is random. A knowledge of systematic errors allows us to tune the parameters of a 

segmentation algorithm, or supplement the segmentation algorithm with additional steps 

such as region merging [27]. Second, the ability of a segmentation algorithm to capture 

object features must be evaluated, because evaluation of object features is critical in ATR. 

Third, since it is often more important to correctly segment some objects than others, a 

method to assign priorities to segments is desirable when evaluating the algorithm. Priorities 

may be based on image intensity, homogeneity, particular texture or any other image features 

that define objects of interest. Fourth, a segmentation algorithm may have varying accuracy 

across the feature range, and this knowledge can be used to establish confidence in a given 

segment. There can be no restriction on the number or nature of objects. All these 

considerations are important in luggage scanning but are not adequately addressed by 

existing evaluation literature.
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Various goodness measures have been proposed to evaluate a segmentation without a GT 

[1,2,19]. The goodness measures are based on entropy, intra-region similarity and inter-

region discrepancy, surface smoothness and other properties of regions. However, objects 

found in luggage are inherently heterogeneous, i.e., made up of different materials that have 

different textures and attenuation properties. Their sizes and shapes are varied and 

unpredictable. Therefore, goodness measures are not applicable to our problem.

There are many methods that evaluate segmentation against GT by computing a distance 

between the sets of edge pixels [1,3,4] or surface voxels [24]. However, edge or surface 

distances do not measure feature retrieval. Mass or volume may be well retrieved, but have 

large edge distances due to artifacts or other segmentation errors. Therefore, using 

discrepancy between sets of edges does not appear to be a good solution for luggage 

screening.

An error measure was defined to measure the discrepancy among manual segmentations 

performed by multiple humans. This measure was designed to be unaffected by refinements 

[5]. In the luggage application, object splitting and merging replace refinement errors, and 

cannot be considered alternate truths. Therefore, we tested another error measure created 

with the objective of quantifying the splitting and merging, called the object consistency 

error (OCE) [6]. OCE is sensitive to refinement. We found that OCE does not perform well 

with split and merge errors that are not simple refinements. This issue is illustrated in 

Section 4 using synthetic examples.

Another method breaks down the evaluation problem into the identification of correct 

detection, over-segmentation, undersegmentation, missing objects, and spurious detection 

[7]. However, the method depends on the existence of planar surfaces in the image. The 

measures discussed in [8] interpret the different labeled regions as clusters, and measure 

distance between clusterings. The wide range of the number of labels from the different 

machine segmentation (MS) algorithms makes it unsuitable to apply pair-wise clustering 

interpretations to the labels (such as the Rand index [28]) because some of the labels have 

small cardinality.

The segmentations may be viewed as different partitionings. A metric was defined as the 

minimum number of elements that must be moved from one partitioning in order to get to 

the other partitioning [9]. In these methods, no calculation of systematic errors, no feature-

based evaluation and no assignment of priorities among partitions was described, which is 

needed for our application and may be important in others. Other single-valued measures 

include [21–23].

The evaluation methods cited above are based on volume or surface overlap. However, there 

are other features of objects that are more relevant for ATR than volumes or surfaces. A 

measure called ultimate measurement accuracy (UMA) computes a distance between the 

measurements of a feature made in the GT and segmented images [10]. This measure works 

on single foreground objects. A multidimensional evaluation is in [18] but systematic errors 

are not quantified. The treatment of segmented images as probability mass functions was 

suggested for a 2-class problem [11]. The divergence measure is similar to the Kullback-
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Leibler (KL) divergence. The idea was improved upon, to measure features of collections of 

similar objects by creating histograms of feature values for populations of similar objects, 

and comparing them using standard histogram comparison measures [12]. Similarly, image-

distance measures were suggested in [14], based on feature distribution similarity.

We propose two new methods of evaluation to meet the application needs described above, 

and address many limitations of existing methods. In the first method, we calculate a 

weighted mutual information (WMI) of features from their joint distribution. In the second 

method, which we call Feature Descriptor Recovery (FDR), we measure systematic and 

overall errors in feature recovery, and extract additional information about behavior over 

feature ranges. The two methods provide different evaluation perspectives. They are flexible 

in that they can operate on features, they impose no restrictions on the type or number of 

segmented objects, and can prioritize segments by feature values or user preference.

In luggage screening, air, which occupies a large portion of the images, is not segmented. In 

this project, we treat air differently from other labels so that missing objects are penalized, 

but spurious objects are not. The spurious objects are bag parts and image quality 

verification phantoms present in the scans that were labeled by some of the research groups, 

but were not labeled in the GT. We do not want to penalize (or reward) these spurious 

objects. Our methods allow us to discard the spurious objects. This is different from the ATR 

problem, where the spurious objects are analogous to a false alarm. Although we do not 

specifically discuss false alarms due to the classified nature of threats and ATRs, it is 

certainly desirable for EDS vendors and testing agencies to assign penalties using 

appropriate weights within our framework. As we will see later, we cannot treat air as 

simply another label, because that would allow purely nominal scoring methods to reward 

missed objects.

We applied our evaluation methods to images from the ALERT dataset. Our evaluation 

methods were validated (1) by applying them to simple synthetic problems, and (2) by 

comparing the methods’ results on suitcases with an evaluation done by a human observer. 

In information theory, the F1 score is an accepted measure of performance for binary 

classification problems [29]. We have also compared our results against a multi-class 

generalization of the F1 score.

2. CT images and ground truths

Suitcases were scanned on a volumetric medical CT scanner. A volume rendering of a CT 

image is shown in Fig. 1. The suitcases contain objects such as clothing, shoes, electronics, 

food, books, toys and various contained liquids. These suitcases do not contain threats or 

simulants. The CT image dimensions were 512 × 512 pixels per image slice, with about 800 

slices in each (3D) image. Segmentation algorithms were developed by five different 

research groups for this project: Siemens Corporate Research, Marquette University, 

University of East Anglia, Stratovan Corp, and Tele-Security Systems. Each algorithm was 

run on five test images and generated a label image (except one image by one research 

group), so we have a total of 24 MS label images. Further details are in [26]. A description 
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of the segmentation algorithms is beyond the scope of this paper but some references are 

available for the interested reader [30–32].

We developed a computer-assisted method to generate GT label images from volumetric CT 

images. This method was used by researchers at Northeastern university to generate ground 

truths from the suitcase images. Objects found in luggage are so varied in size and shape, 

and heterogenous in material composition, that human interaction is required to define the 

GT. However, segmentation performed solely by a human is limited in accuracy by the 

observer’s ability to manually contour objects. The objects are not only three-dimensional, 

but sometimes hollow or thin and with large surface areas. Further, the objects are blurred by 

the transfer function of the CT scanner. It is therefore impractical to segment these objects 

by an exclusively manual method. In our method, manual contouring is complemented with 

manually-seeded region-growing, allowing the observer to segment complicated shapes. 

Manual segmentation by multiple observers has been addressed [33,34]. However, our 

challenge comes not from subjective perception, but rather from the difficulty of the manual 

task, which necessitates some automation. Another 3D GT generation method [17] uses 

mesh models. Our approach is simpler and does not require modeling.

A unique label is assigned to each object that is individually packed into the suitcase. For 

example, a liquid is assigned the same label as its container. While the validity of this rule 

may be argued, it overcomes the issue of subjective perception. There is no soft 

(probabilistic) label assignment for image voxels. A label value of zero indicates air, which 

is background. Objects with an average CT value of less than −500 Hounsfield units (HU), 

such as clothes, were assigned the label of air. In the HU scale, air is −1000 and water is 

zero.

Each bag image file contains hundreds of image slices. However, the user does not have to 

contour objects in every slice. Interpolation is performed between contours across slices, 

allowing the GT segmentation to be completed in roughly two hours per bag. The 

interpolated contours are filled in and labeled as one object. Objects in a bag are segmented 

one at a time, given unique labels and accumulated into a GT label image. Figure 2 shows a 

flowchart of the computer-assisted GT extraction process. There are two parallel paths. The 

right half of the flowchart illustrates the manual contouring, contour interpolation and 

contour filling processes. The output of this path is an image of a filled three-dimensional 

contour, labeled A in the flowchart. The left half illustrates the seeded region-growing path. 

The user selects seeds and region growing parameters for the current object. The output of 

this path is a region-grown mask in image B. The common voxels in images A and B are 

assigned a user-selected label value, Λ. The label image for this object is accumulated with 

previously segmented labels in image C. We use the maximum operation instead of a binary 

“or” operation to set a rule for overlapping labels. This rule is useful when there are 

touching objects. If the first object is labeled Λ1, as the user segments the second object Λ2, 

the two labels may overlap. The user resolves the problem by selecting Λ2 < Λ1 for the 

second object’s label if he decides that the common voxels should belong to the first label or 

Λ2 > Λ1 if they should belong to the second one.

Karimi et al. Page 5

J Xray Sci Technol. Author manuscript; available in PMC 2017 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The flowchart in Fig. 2 was implemented in MeVisLab [35] a graphical programming 

language that provides image processing and visualization modules that can be connected 

together. In our program, DICOM images are read in and multi-planar reformatted (MPR) 

slices are generated and displayed. The user selects an MPR axis and contours an object in 

any slices along the chosen axis. We used a drawing tool that incorporates active contours. 

The active component helps the contour to be attracted to gradients or curvature as 

determined by user-defined penalties. A contour can be copied and pasted to other slices. 

The contours are linearly interpolated to all slices between the first and last contour. The 

observer subjectively decides whether the contour interpolation provides acceptable results. 

If the results are not acceptable, more contours can be added and interpolation repeated. The 

interpolated contours are filled in with a user-selected label value. Binary dilation is 

performed to include edge voxels.

In the second parallel path, the user selects seed voxels from the object, and sets upper and 

lower thresholds for region growing. The user can overlay the region grown mask on the CT 

image to decide whether the mask is acceptable, and modify seeds or thresholds if deemed 

necessary to repeat the region growing process.

3. Segmentation evaluation methods

We first describe the WMI for volume-based evaluation, and then describe our extension for 

mass-based evaluation. Next, we show the weighting functions that allow us to prioritize 

objects. Then we describe the FDR method which gives systematic errors and total error. 

Feature descriptors may also be weighted to prioritize objects. Finally, we describe the 

multi-class extension of F1 scores, which we use for comparisons.

Let G and S denote the number of labels in the GT and the MS images, respectively, not 

including the air segment (label 0). Let XG(i) be the set of voxels in GT segment i, and XS(i) 
be the set of voxels in MS label i. We use the terms segment and label interchangeably.

3.1. Weighted Mutual Information (WMI)

Mutual Information (MI) can be used when the label images are expressed as joint and 

marginal probability densities [36]. We generate a confusion matrix from the GT and MS 

images. We first compute the MI and entropies without air so that MI, which is ordinal, does 

not reward the air label. Then we include the type II errors with a multiplicative factor. We 

neglect type I errors for the reasons explained in Section 1. Let NG,S (i, j) denote the number 

of voxels that belong to GT label i and MS label j.

Let vG,S (i, j) denote the joint probability mass function (pmf) based on volume:

(1)

We define the marginal pmfs for the GT and MS labels from the joint pmf.
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(2)

and

(3)

A normalized mutual information score is generated in the following manner, as first 

described in [15]:

(4)

where the normalization factor Z is the square root of the product of entropies, or the GT 

entropy if the MS entropy is zero:

(5)

We now incorporate type II errors. Referring to Fig. 3, we take the ratio of the total voxels in 

the inner matrix (dark shaded) to the total voxels in the outer matrix (all shaded).

(6)

This ratio is analogous to recall in a binary classification problem, if all objects were 

considered to belong to one class and air was considered the second class. Recall is also 

called sensitivity or true positive rate. The unshaded row contains type I error. We multiply 

this ratio, r, with H. To make this factor more general, an additional weight can be used so 

that missed data receive larger or smaller penalty. Our WMI score is given as

(7)
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We now use WMI to measure mass-based score, and then prioritize objects by weighting the 

confusion matrix. For the mass score, a confusion matrix cell contains not the number of 

voxels common to a pair of GT and MS labels, but rather, the common mass, which is 

calculated by summing values from the CT image. Let the CT image be denoted C. Then the 

mass in cell (i, j) is given by

(8)

The joint and marginal pmfs for the mass-feature are computed from the confusion matrix in 

a manner similar to that shown for volume. The mass WMI score can be considered a 

weighted volume score, with weights equal to the CT number being assigned to each voxel.

Note that these calculated values of volume and mass should be multiplied by voxel size and 

CT scaling factors to obtain true volume and mass, but these multiplicative factors are 

constants and can be neglected. Aside from the constant scaling factors, the mass is not the 

true physical mass of the object, but an approximation. CT image intensity is proportional to 

the material linear attenuation coefficient, which itself is proportional to the physical density 

of the material if we neglect the atomic number of the material and the energy-dependence 

of the attenuation coefficient.

Next we describe using a weighted confusion matrix (Section 3.1.1) to weight objects and 

errors. Specifically, we demonstrate uniformity (a regional feature).

3.1.1. Weighted confusion matrix (WCM)—We assign priorities to segments by 

weighting the cells of the confusion matrix before computing WMI scores. We define 

weights that assign greater importance to homogenous (also called uniform) objects. 

Uniformity is not a feature of interest in ATR, but as we will show later, it demonstrates 

interesting behavior of the segmentation algorithms. The mass confusion matrix rows were 

weighted by a measure of uniformity. This measure of uniformity can be considered a 

texture feature, weighted by mass to prioritize heavier objects. Alternately, it can be 

considered a mass feature, weighted to prioritize homogenous objects.

(9)

where σG(i) is the standard deviation of the CT numbers in GT label i and is given by

(10)
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where NG(i) denotes the number of voxels in GT segment i. In the above equation the mean 

CT number is given by

(11)

where MG(i) is the mass within the GT label i given by

(12)

A natural extension of this idea is cell-wise weighting. We also defined cell-wise weights 

with the goal of assigning non-uniform costs to different classification errors as shown 

below. The weights of the cells are lower if they are from dissimilar objects:

(13)

The cellwise weights were applied to the volume confusion matrix vG,S (i, j).

3.2. Feature descriptor recovery (FDR)

The FDR method measures how well the features of each object are recovered. Feature 

descriptors have more flexibility than the WMI framework because label-wise features can 

be used. For example, one can use label-averages or inter-label separation divided by intra-

label uniformity. As before, weighting can be incorporated. The weighted features and 

uniformity are conceptually similar but not identical to those used in the WMI-score, as 

explained in Section 3.2.1.

The numbering of labels in the GT and MS images is arbitrary. We establish the optimal 

one-toone correspondence between the GT and MS labels. We used the Hungarian method 

[37] to maximize the total volume intersection between all GT labels and MS labels. Instead 

of the volume intersection, another cost function could have been used, such as the mass 

intersection.

A feature descriptor PG is generated by calculating some feature within each label in the GT. 

PG is a vector, such that for each label 1 ≤ l ≤ G, PG (l) is the value of the feature computed 

with respect to the original CT image, within that label. Another feature descriptor PS is 

generated for the MS. The feature descriptors PG and PS are generated independently of 

each other.
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3.2.1. Features—Analogous to WMI scores, the features we have used are volume, mass, 

and uniformity, because of their relevance to ATR. As before, the volume of the label is the 

total number of voxels within the label and the mass of the label is the summed CT value 

within the label. Similar to the uniformity for WMI in Eq. (9), we define uniformity as the 

inverse of standard deviation multiplied by the mass, calculated per label. The uniformity 

feature is shown below for GT labels. It is also calculated for MS labels.

(14)

This feature is similar but not identical to the uniformity-weighted mass of the WCM which 

had a row-wise weighting. In the WCM, it was not meaningful to consider the standard 

deviation of the voxels in a cell because a cell can have a small number of voxels.

In the FDR method, there is no weighting corresponding to cell-wise weighting wcell of the 

WMI.

3.2.2. Feature recovery scatter plots—For each object in the MS image and GT 

image, we generate features as explained in the previous section. For a feature, we generate 

a scatter plot of the matched labels of PS against PG, and call this a feature recovery scatter 

(FRS) plot. In any bag, the number of GT and MS labels may not be the same, so the 

minimum is plotted. The data from all the bags were combined. As explained in Section 4, 

the slope of the line fitted to the data tells us if there are systematic errors. We have used a 

robust fit to reduce the impact of outliers [38].

3.2.3. Residual errors—In order to compute the residual errors from feature recovery, we 

applied commonly used error statistics, including Cramer-von-Mises (CVM) [39], Kullback-

Leibler divergence (KL) [40] and L1 error normalized by the sum of GT feature values. The 

L1-based score is shown below.

(15)

Although the FRS plots contain the minimum of the number of labels in the MS and GT, the 

residual error is computed on the maximum of the number of labels. Where a label does not 

exist, its feature value is zero. The slope of the fitted line and the residual error together 

provide the performance result.

3.2.4. Behavior over feature range—In addition to over and undersegmentation, the 

pairing of segments allows us to investigate how accuracy changes over a feature range, and 

to identify outliers. We take the sliding average (geometric mean) of the feature ratio of the 

label pairs. The ratio is that of the larger to the smaller feature value. We plot this mean as a 
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function of the sliding geometric mean of the GT labels. This plot indicates the average 

feature retrieval error against average feature value.

(16)

Ratios are more meaningful than differences in this computation because of the large 

dynamic range of the feature. In log-scales, this ratio would be the absolute value of the 

difference and the geometric mean would be the arithmetic mean, corresponding to taking a 

sliding L1 error. This prevents opposite polarity errors from canceling.

From the FRS plots, we can obtain outliers. For each pair of GT and MS points, we compute 

the following distance.

(17)

We fit a normal distribution to the distances and obtain its standard deviation, σ. Points i : ||
d(i)|| > 3σ are considered outliers.

3.3. Multiclass F-score ( )

In information theory, the F-score is an accepted measure of performance for binary 

classification problems [29]. It is natural to explore a multiclass extension, . We 

generated a multi-class extension of the score to help validate and offer some perspective on 

our results. The definition of F1 score is

(18)

where r is recall and p is precision (also called positive predictive value). Standard 

definitions of recall and precision are

(19)

where c is true positive, c′ is the type II error, and d is the type I error. The luggage 

screening application has a multi-class segmentation problem. Therefore, the standard 

definition of the precision and recall, given in Eq. (19), cannot be used. Our multi-class 

adaptation defines recall and precision as

Karimi et al. Page 11

J Xray Sci Technol. Author manuscript; available in PMC 2017 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the above equation j′(i) is the MS label that best matches GT label i as per the Hungarian 

algorithm matching. Using the equation for precision given above, we penalize missing 

portions of segments, missing segments, and split segments equally. The denominator may 

not include all the MS labels S, because that would penalize splitting more than missed 

detection (which is unreasonable).

4. Synthetic problems

To evaluate our measures against intuitive reasoning, we generated simple problems with 

different kinds of errors. We consider splitting, merging, partial splitting and merging, and 

missed objects (type II error). We do not consider spurious objects (type I errors) because we 

do not penalize them, as described earlier. The different test cases illustrate the behavior of 

the evaluation measures, including singularities, discontinuities and non-linearities. There 

are eight cases in which the GT has two object labels, each with 500 voxels. The cases are 

shown as confusion matrices in Fig. 4. In an ideal segmentation, the only populated cells 

would be along the matrix diagonal. Cases 1–5 consist of errors in which one or more voxels 

from the first label are misclassified as belonging to the second label as shown below. 

Consider Case 1: there are two MS labels, but one voxel from segment 1 is misclassified as 

belonging to segment 2. This error splits GT segment 1 and merges with GT segment 2. The 

results of applying the various evaluation measures to this case are in the column labeled 

Case 1 of Table 1. Similarly other columns contain the results for the other cases. In Case 9, 

one GT label (plus air) is split in two by the MS. We compare our measures against OCE [6] 

and multiclass F1.

There are discontinuities in the OCE, but not in the other measures. The OCE jumps from 

zero at perfect segmentation to 0.25 in our two-label problem when a single pixel is 

misclassified (Case 1). This is because OCE treats it as a new segment of equal importance 

as the segment that is a near-perfect match for the GT label. If more voxels are moved over 

(Cases 2–5), the OCE monotonically increases. However, if instead, one pixel is moved from 

the second label to the first, as shown by Case 6, there is another jump from 0.25 to 0.5. The 

discontinuities are an undesirable property of OCE. We contrast Case 6 with Case 2. 

Intuitively, the error is smaller in Case 6 than 2, and less significant in the luggage screening 

application, but OCE says the opposite and gives a poorer score to Case 6. In Case 7, there is 

no penalty for missing an entire object, demonstrating another undesirable property of OCE. 

 monotonically decreases as error increases. It penalizes merging more than missing or 

split segments, as shown by Cases 7–9, according to the argument that we have not only 

missed one object but expanded another. This is a combined type I and type II error, which 

does not occur in two-class problems. However, we could argue that there is only one 

underlying error, and that we want the merged segments to be penalized no worse than the 

other types of error. But that is a limitation of the F1-score definition. Note that the 
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confusion matrix can be weighted, e.g., to assign greater penalty to type II error, although 

we have not done so here.

The WMI scores are intuitive. While there is a degeneracy to zero for single segments in the 

GT or MS as shown in Cases 7–9, we have not encountered this case in our luggage data.

Now we consider the FDR method comprising residuals and slope. The residuals (CVM, 

RL1, KL) report the total error. They do not distinguish between Cases 7–9. They give a 

perfect score of zero for perfect recovery of the feature (volume in these cases), even if the 

segmentation boundaries are wrong, as illustrated by Case 6. From the point of view of 

feature recovery, the error of zero is acceptable. The slope, shown by K in the table, tells us 

the kind of error, i.e., merging or splitting in Cases 8 and 9. Case 8 shows 

undersegmentation; the MS labels have larger magnitudes than the GT, which occurs if the 

algorithm merges objects more than it splits them. Conversely, Case 9 has oversegmentation; 

the MS labels have smaller magnitudes than their corresponding GT labels, which occurs 

due to splitting. A slope of one tells us that the errors are random (for non-zero residuals). In 

these examples, no weighting was applied. Weighting can be applied, for example, to 

increase the residual penalty for type II errors.

The FDR method is a framework within which we can measure not just point-wise features 

or features within a fixed neighborhood, but also label-wise features. Therefore, we must use 

residuals that allow different numbers of labels in each image. RL1 gives us a result that is 

linear with the error, which makes it easy to understand. The CVM errors are monotonic, but 

nonlinear because CVM accumulates squared errors. The KL divergence is infinite in Cases 

7 and 8. The absence of any one label due to missed objects or merging results in a division 

by zero and causes the divergence to be infinite. Therefore we can not use the KL divergence 

on our luggage data. We have not used another common divergence, the Kolmogorov-

Smirnoff divergence (KS2) because it gives undue weight to just one object, which is not 

desirable in our application, where there are multiple errors and where the range of error 

magnitude is unpredictable.

In summary, we find that WMI and FDR methods provide acceptable and complementary 

results for the synthetic problems. We use RL1 because it is linear and permits different 

numbers of labels in the GT and MS. WMI and FDR are flexible because we can use them 

on features rather than voxels, and can use weighting as will be demonstrated with bag data.

5. Bag data

In this section we present the results of applying our methods to the ALERT luggage images 

and their segmentations. We first discuss WMI results, then FDR results, and then the human 

expert validation. In the tables and figures, we name the segmentation algorithms A1–A5 to 

anonymize the research groups. The bags are named B1–B5.

5.1. WMI results

WMI scores for volume and mass are shown in Tables 2 and 3 respectively. The tables show 

that the best performer for volume and mass recovery is algorithm A2. Comparing the mass 
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and volume WMI tables, we see that mass and volume give numerically different results. 

This happens because the GT or MS labels have a mixture of CT densities. For example, in 

shoes, the upper is responsible for most of the volume, while the sole is responsible for most 

of the mass. The segmentation algorithms recovered the sole, not the upper. In general, the 

mass scores are higher than the volume scores.

For comparison, the  scores for volume and mass are given in Tables 4 and 5 respectively. 

The  scores for volume do not yield a clear winner, but the scores for mass are similar to 

the WMI scores in that the mass scores show the best performer to be A2, and the mass 

scores are generally higher than the volume scores.

The WMI scores for uniformity are in Table 6. The best performer for the uniformity feature 

is unclear. Although WMI gave the highest scores to A2 by volume and mass, A2 is not the 

best algorithm to recover the uniformity feature.

Finally we show the cell-wise WMI weights in Table 7. Some WMI scores increase and 

some decrease compared to unweighted scores, but are not much different from unweighted 

scores. The results are discussed in more detail in Section 6. This weighting does not have a 

counterpart in the FDR method.

5.2. FDR results

An example FRS plot is shown in Fig. 5 for one algorithm. The FRS slopes for volume, 

mass and uniformity features, for all algorithms are given in Table 8, and the RL1-residuals 

are given in Table 9 for the combined set of bags. The residual errors per bag for the 

different features are given in Tables 10 through 12.

Mass and volume features increase monotonically with the number of voxels in a segment, 

so a slope K > 1 indicates systematic undersegmentation and K < 1 indicates systematic 

oversegmentation, including missing parts of segments. For a non-monotonic feature such as 

uniformity, FRS slope values do not indicate splitting or merging of the object, but rather a 

systematic over- or under-estimation of the feature. Over or under-segmentation should not 

be simplistically defined by counting the number of segments. For example, if multiple 

machine segments exist for a single GT label, there is oversegmentation. However, if most of 

the feature is recovered in one machine segment, there is less oversegmentation than if the 

feature is distributed equally among the multiple machine segments.

Among the algorithms, A2 exhibits best mass and volume recovery. Its FRS slopes are 

closest to one (Table 8), and the residuals are smallest (Table 9). For all algorithms, the mass 

slopes are closer to one than the volume slopes, and the mass residuals are smaller than the 

volume residuals. As in the WMI scores, the FRS plots show that it is easier for a 

segmentation algorithm to recover mass than volume because of the heterogeneity of the 

material composition of objects and clutter.

Although A2 has the best volume and mass retrieval, it does not show best recovery of 

uniformity. As shown in Table 8, the uniformity slope for A2 is small (0.51) compared to 
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other algorithms. There is also no clear best performer. The FDR results are in line with the 

WMI scores.

An instance of poor uniformity recovery was a water bottle touching another liquid-filled 

container. The MS label for the water bottle included the other liquid, and lost some of the 

bottle itself, either labeling it as air or as the other liquid as shown in Fig. 6. Also included 

into the bottle label were voxels metal from a nearby touching object (not shown). The 

volume and mass were well-recovered because of the exchange of material between the two 

labels, but the CT number differences of the mixed materials created a high variance in the 

machine segment. Feature recovery over the feature range is shown in Fig. 7. The sliding 

average scatter plots show that feature recovery improves as object mass increases for A2. 

Although A2 has the best mass scores, it is less reliable for low-mass objects than some of 

the other algorithms. At higher masses, it is more reliable than the other algorithms. In 

another example, A5 shows that no apparent preference for any range of mass. An example 

plot of outliers is shown in Fig. 8 for the mass feature, for the A1 algorithm.

5.3. Validation by human expert observer

In order to validate the methods beyond the synthetic problems, a human observer evaluated 

two MS algorithms, A1 and A2, against GT. The difficulty of the task for the observer arises 

from the multiple splits and merges and the large number of slices. The comparison was 

simplified by sampling every fifteenth slice. The observer was presented with corresponding 

slices of A1, A2, GT and CT images. The MS slices were randomly ordered for blind 

review. For each pair of slices, the observer selects the MS that he considers a closer match 

to the GT slice. The results are in Table 13.

In each bag, the observer preferred A2 over A1, which is in agreement with WMI and FDR 

results. The expert explained some of his decisions. He observed that slices from A1 had 

more type II error than those from A2. This observation relates to the lower WMI scores 

(Tables 2 and 3) and smaller slope of A1 (Table 8) compared with A2. The expert selected 

A1 in some slices where A2 labels appeared jagged. The jagged labels belonged to large 

liquid-filled containers. These selections agree with the uniformity scores.

There is also a correspondence between expert’s preferred percentage and the WMI and RL1 
results per bag. We do not expect to see perfect correspondence because the expert 

performed a simplifed evaluation. The slice sampling method favors larger less dense objects 

over smaller denser ones, the human is imprecise and is influenced by visual appeal, there 

was no weighting per slice to increase the impact of fuller slices over emptier ones, and no 

quantification of preference for a given pair of slices.

In addition, we applied WMI slicewise on the same slices evaluated by the human. For all 

slices, the higher-scoring algorithm was compared with the human preference using 

McNemar [41] and KS2 tests. The McNemar test yielded a p-value of 0.08 which does not 

reject the null hypothesis that the human and WMI prefer the same algorithm. The KS2 test-

statistic was 0.04, which also does not reject the null hypothesis at a confidence level of 

0.05.
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In summary, the WMI and FDR results on bag data indicate that these are appropriate 

evaluation measures. The two methods complement each other. The results showed that the 

two methods also picked out the same best performer. They can incorporate pointwise or 

regional weighting, and can operate on features that are more relevant than segment volume.

5.4. Summary

The FDR and WMI both measure feature recovery, unlike existing evaluation methods that 

compute edge distances or voxel misclassification. Both methods are sensitive to spatial 

correspondence of labels, unlike histogram comparison methods that measure features. 

Further, both methods are useful for multiple label segmentation problems. And both allow 

us to assign priorities to segments. They also gave consistent results in selecting the same 

best algorithm. However, FDR and WMI have different perspectives. WMI is more sensitive 

to spatial correspondence than FDR. FDR is more flexible in that data from multiple images 

can be pooled and trends can be extracted, and a wider variety of features can be used. A 

human expert validated our methods by visual assessment.

6. Discussion

As discussed in Section 1, many GT-based methods in the evaluation literature use region-

based errors when multiple regions of interest are present in the image. This can be thought 

of as using an indicator function on each voxel for each label. But each voxel and its 

neighborhood contain additional information we can use instead of just the indicator. In our 

case, we have used mass and uniformity in addition to volume. In the mass scores, voxels 

with higher CT number are more important than those with lower CT number. The use of 

uniformity prioritizes more homogenous objects over less homogenous ones. Mass and 

uniformity are examples of features that may be useful for a specific application. An EDS 

may utilize these or other features depending on the ATR algorithm.

The WMI,  score and FDR results for mass are more consistent with each other (same 

best performer) than the corresponding volume scores. These discrepancies between volume 

and mass illustrate the challenges of segmentation of CT images of luggage. The results 

show that mass is easier to recover than volume, i.e., a meaningful feature within a region is 

easier to extract than the region itself.

The FDR method is more general and informative than histogram-based methods. A 

previously published evaluation method for populations of similar objects used histograms 

[12]. However, in general, the objects in a segmentation problem are not similar, and there 

are no object-type populations. We generate a bipartite matching and can evaluate any 

objects. Due the bipartite matching, we can extract information about systematic errors, 

expected performance as a function of feature value, and outliers. Matching allows object 

prioritization and non-uniform costs. The residuals include pairwise errors, missed and 

spurious segments (although we do not penalize the latter here).

The FRS and WMI showed that A2 traded-off region uniformity for better overall 

segmentation. Note that if the CT number distribution of adjoining objects is the same, the 

mass or volume FRS plots may not indicate errors (provided the same volumes are displaced 
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from one object to another). If the textures are similar as well, the FRS plot for uniformity 

will not indicate errors either. This is acceptable from the feature recovery point of view. 

Another inference we can draw from the uniformity results is that the improvement of the 

other algorithms relative to A2 shows that they find it easier to segment uniform objects, 

while A2 is less dependent on object uniformity. We have confirmed this inference by 

assigning constant weights to the rows of the confusion matrix that represent uniform 

objects. The WMI only improves slightly for A2, but considerably more for the other 

algorithms. For brevity, we did not show these results.

Our sliding-average plots show trends in performance as a function of feature value for some 

algorithms. We show the mass feature, because that has the best WMI and FDR scores. The 

accuracy of segmentation of an object depends not only on its own features, but those of the 

surrounding objects. As a result, algorithms may not all show trends with feature value, but 

if trends are present, they help in the interpretation of segmentation results.

In the cell-wise weighted confusion matrix, we have weighted each cell by a factor 

representing the similarity of a regional feature. Our factor is the ratio of the smaller mean to 

the greater mean. For a cell representing some GT and MS labels, if the labels are dissimilar 

in the regional feature, we assign a smaller weight to the cell, which is to say that this cell 

does not help us get information about one distribution from the other distribution. This 

decreases the total WMI. Consider a cell on the diagonal of the confusion matrix. The 

diagonal represents the matched objects. If the matched objects are dissimilar, then the ratio 

is small, and the cell loses importance. Here it is easy to see the interpretation that the object 

represented by the cell in the MS image does not tell us much about the GT image. 

Considering an off-diagonal cell, it similarly loses importance when the means are 

dissimilar. At first glance, it seems counter-intuitive that a cell that represents two 

unmatched objects, should have decreased weight when the objects are dissimilar. But WMI 

does not measure the ordering of the information. This cell contains the quantity of an 

intersection that really does exist. So if we decrease (increase) the weighting of that 

intersection, we decrease (increase) the amount of information one label set tells us about 

the other label set. In addition, we increase or decrease the entropies of the GT and MS 

images when we weight cells, depending on what the original image contained. The cell-

wise weighting therefore is difficult to control and does not give monotonic results.

Our next goal is to image a larger number of bags with threat simulants and compare our 

evaluation scores with the probability of detection and probability of false alarm from 

simulated EDS certification tests.

7. Conclusion

We have developed two flexible parameter-independent methods to evaluate segmentation 

algorithms. The methods were applied on a test set of luggage images. Our contributions are 

as follows.

1. We have used a well-accepted measure from information theory to measure 

feature overlap.
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2. We have developed a new method based on feature recovery that has good 

agreement with mutual information, but that also identifies systematic errors and 

allows pointwise or regional features to be used.

3. We have used weighting functions to prioritize objects based on desired features.

4. We developed a semi-automatic method to extract GT from three-dimensional 

CT images.

We used human evaluation of segmentation accuracy and synthetic problems to validate our 

methods. Our evaluation methods indicated one algorithm, A2, as the best one, and found 

characteristics of the algorithm: accuracy increased with object mass, and that A2 was less 

reliant on object uniformity than some of the other algorithms. Given the challenges and 

requirements for segmentation in luggage scanning, we found our methods to be more 

suitable to evaluate segmentation algorithms than methods from existing literature.
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Fig. 1. 
A volume rendering of the volumetric CT image of one suitcase. The suitcase is on the 

patient pallet of a medical CT scanner.
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Fig. 2. 
Flowchart showing the operations performed to determine GT labels from the volumetric CT 

image. Manual operations are shown in darker boxes. A and B are segments generated by 

the two different paths, C is the accumulated set of labels, and Λ is a numeric value assigned 

to a label.
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Fig. 3. 
Confusion matrix showing inner matrix used in the calculation of entropies, and showing the 

outer matrix used in r in Eq. (6).

Karimi et al. Page 23

J Xray Sci Technol. Author manuscript; available in PMC 2017 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Confusion matrices for the synthetic problems. Cases 1–5 are shown in (a). Case 1: x = 499, 

y = 1, Case 2: x = 475, y = 25, Case 3: x = 450, y = 50, Case 4: x = 400, y = 100, Case 5: x = 

250, y = 250. Case 6: one pixel from each GT label is misclassified by MS as belonging to 

the other label (b), Case 7: One GT label is not detected (c), Case 8: Both GT labels are 

merged by MS (d), Case 9: Single GT label is split by MS (e).
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Fig. 5. 
The mass scatter plot from algorithm A1. There were 81 GT labels. The fitted line is forced 

to pass through zero. (Colours are visible in the online version of the article; http://

dx.doi.org/10.3233/XST-140418)
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Fig. 6. 
Poor uniformity recovery by A2 of a large uniform object. Two CT slices are shown in the 

left column and label images on the right. Objects circled in the right column are liquid-

filled containers. There is misclassification between those two object labels, shown by 

arrows, as well as one of the objects and air.
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Fig. 7. 
The sliding average (Eq. (16)) for the mass feature shown for two algorithms show different 

characteristics. A2 improves with mass, but A5 does not.
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Fig. 8. 
Example FRS plot for mass showing encircled outliers (Eq. (18)). (Colours are visible in the 

online version of the article; http://dx.doi.org/10.3233/XST-140418)
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Table 1

Performance values for various test cases considering two GT object labels (and air). The slope of the line 

fitted to the FRS data is denoted K. CVM, RL1 and KL are the different residual errors. Performance values for 

perfect MS (no error) are given in the second column as a reference

Ideal Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

OCE 0 0.25 0.29 0.33 0.39 0.51 0.5 0 0.5 0.5

1 0.999 0.975 0.95 0.9 0.75 0.998 0.67 0.5 0.67

WMI 1 0.99 0.86 0.76 0.62 0.35 0.98 0 0 0

CVM 0 5×10−4 0.0125 0.025 0.05 0.125 0 0.25 0.25 0.5

RL1 0 10−3 0.025 0.05 0.1 0.25 0 0.5 0.5 0.5

KL 0 ≈0 0.0013 0.005 0.02 0.144 0 ∞ ∞ 0.693

K 1 1 1 1 1 1 1 1 2 0.5
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Table 2

WMI scores for volume. The best performance in most bags is from A2

A1 A2 A3 A4 A5

B1 0.22 0.63 0.54 0.48 0.50

B2 0.45 0.62 0.58 0.48 0.41

B3 0.59 0.69 0.65 0.56 0.38

B4 0.33 0.59 0.65 0.53 0.50

B5 0.60 0.78 0.74 0.68
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Table 3

WMI scores for mass. The best performance in most bags is from A2

A1 A2 A3 A4 A5

B1 0.27 0.76 0.65 0.58 0.64

B2 0.57 0.74 0.71 0.56 0.58

B3 0.66 0.74 0.69 0.50 0.49

B4 0.40 0.69 0.74 0.63 0.64

B5 0.66 0.84 0.77 0.63
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Table 4

 scores by volume. It is not clear which is the best performing algorithm

A1 A2 A3 A4 A5

B1 0.32 0.67 0.56 0.60 0.55

B2 0.53 0.60 0.57 0.61 0.44

B3 0.49 0.62 0.59 0.57 0.47

B4 0.42 0.52 0.65 0.65 0.59

B5 0.67 0.78 0.76 0.79
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Table 5

 scores by mass. The best performance in most bags is by A2

A1 A2 A3 A4 A5

B1 0.37 0.73 0.61 0.68 0.60

B2 0.60 0.68 0.62 0.66 0.56

B3 0.54 0.65 0.61 0.54 0.57

B4 0.46 0.61 0.70 0.70 0.70

B5 0.73 0.83 0.73 0.73
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Table 6

WMI score for uniformity. It is not clear which algorithm performs best for this feature

A1 A2 A3 A4 A5

B1 0.28 0.77 0.69 0.68 0.66

B2 0.66 0.76 0.75 0.68 0.54

B3 0.68 0.67 0.70 0.67 0.50

B4 0.43 0.71 0.78 0.73 0.64

B5 0.78 0.83 0.87 0.90
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Table 7

WMI for cell-wise weighting of volume

A1 A2 A3 A4 A5

B1 0.20 0.61 0.51 0.46 0.47

B2 0.43 0.59 0.57 0.46 0.37

B3 0.60 0.69 0.65 0.55 0.36

B4 0.29 0.57 0.64 0.51 0.48

B5 0.59 0.78 0.75 0.67

J Xray Sci Technol. Author manuscript; available in PMC 2017 May 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Karimi et al. Page 36

Table 8

Slopes (K) for FRS fit lines for volume, mass and uniformity features

A1 A2 A3 A4 A5

Volume 0.59 0.85 0.56 0.73 0.61

Mass 0.70 1.0 0.58 0.67 0.89

Uniformity 1.26 0.51 0.91 1.06 1.5
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Table 9

RL1 residuals for all bags combined. The smallest residuals are from A2

A1 A2 A3 A4 A5

Volume 0.49 0.37 0.48 0.44 0.54

Mass 0.41 0.28 0.45 0.44 0.41

Uniformity 0.60 0.33 0.54 0.51 0.62
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Table 10

RL1 residual error by volume. In most bags, the smallest residual is from A2

A1 A2 A3 A4 A5

B1 0.76 0.46 0.61 0.56 0.51

B2 0.45 0.51 0.58 0.51 0.59

B3 0.37 0.27 0.43 0.48 0.60

B4 0.66 0.44 0.50 0.49 0.45

B5 0.37 0.22 0.36 0.30
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Table 11

RL1 residual error by mass. In most bags, the smallest residual is from A2

A1 A2 A3 A4 A5

B1 0.71 0.35 0.55 0.48 0.41

B2 0.38 0.41 0.53 0.46 0.44

B3 0.32 0.23 0.39 0.53 0.48

B4 0.63 0.35 0.43 0.43 0.31

B5 0.31 0.15 0.40 0.38
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Table 12

RL1 residual error by uniformity. The smallest residuals are from A2, despite the small slope shown in Table 6

A1 A2 A3 A4 A5

B1 1.18 0.39 0.71 0.55 0.40

B2 1.00 0.35 1.01 0.97 0.90

B3 0.92 0.24 0.64 0.51 0.42

B4 0.41 0.33 1.03 0.78 0.62

B5 0.42 0.35 0.30 0.35
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Table 13

The human observer evaluation of two MS algorithms. The middle column shows the preferred algorithm and 

the percentage of slices in which it was preferred. The third column shows the number of slices that were 

ranked better in A1, in A2 and equal in both

Bag % A2 by expert A1/A2/equal % A2 by MI

B1 96 0/27/1 100

B2 82 5/32/2 85

B3 73 6/22/2 91

B4 76 6/25/2 86

B5 72 8/26/2 92
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