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Aims: Myocardial ischemia can result in marked mitochondrial damage leading to

cardiac dysfunction, as such identifying novel mechanisms to limit mitochondrial

injury is important. This study investigated the hypothesis that inhibiting soluble

epoxide hydrolase (sEH), responsible for converting epoxyeicosatrienoic acids to

dihydroxyeicosatrienoic acids protects mitochondrial from injury caused by myocardial

infarction.

Methods: sEH null and WT littermate mice were subjected to surgical occlusion of

the left anterior descending (LAD) artery or sham operation. A parallel group of WT

mice received an sEH inhibitor, trans-4-[4-(3-adamantan-1-y1-ureido)-cyclohexyloxy]-

benzoic acid (tAUCB; 10 mg/L) or vehicle in the drinking water 4 days prior and 7

days post-MI. Cardiac function was assessed by echocardiography prior- and 7-days

post-surgery. Heart tissues were dissected into infarct, peri-, and non-infarct regions to

assess ultrastructure by electron microscopy. Complexes I, II, IV, citrate synthase, PI3K

activities, and mitochondrial respiration were assessed in non-infarct regions. Isolated

working hearts were used to measure the rates of glucose and palmitate oxidation.

Results: Echocardiography revealed that tAUCB treatment or sEH deficiency

significantly improved systolic and diastolic function post-MI compared to controls.

Reduced infarct expansion and less adverse cardiac remodeling were observed in

tAUCB-treated and sEH null groups. EM data demonstrated mitochondrial ultrastructure

damage occurred in infarct and peri-infarct regions but not in non-infarct regions.

Inhibition of sEH resulted in significant improvements in mitochondrial respiration, ATP

content, mitochondrial enzymatic activities and restored insulin sensitivity and PI3K

activity.
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Conclusion: Inhibition or genetic deletion of sEH protects against long-term ischemia

by preserving cardiac function and maintaining mitochondrial efficiency.

Keywords: acute myocardial infarction, mitochondrial efficiency, soluble epoxide hydrolase, arachidonic acid

INTRODUCTION

Arachidonic acid (AA) is a polyunsaturated fatty acid found
in the phospholipid domain of cell membranes. Activation of
cytoplasmic phospholipase A2 and other enzymes trigger
the release of AA, which is further metabolized into a
vast array of lipid mediators. The predominant enzyme
systems that metabolize AA are cyclooxygenase, lipoxygenase,
and cytochrome P450 (CYP) monooxygenases generating
prostanoids, leukotrienes, epoxidized, and hydrolylated
metabolites, respectively (Wang and Dubois, 2012).
CYP epoxygenases such as CYP2J and CYP2C isozymes
metabolize AA into biologically active lipid mediators, called
epoxyeicosatrienoic acids (5,6-EET, 8,9-EET, 11,12-EET, 14,15-
EET), which have important roles in the cardiovascular system

(Spector and Kim, 2015). While removal of EETs may occur by
conjugation, chain elongation, β-oxidation, and esterification
into phospholipid membranes, the predominant pathway is
metabolism of EETs into the less active vicinal diol compounds
by soluble epoxide hydrolase (sEH) (Spector and Kim, 2015). An
approach to increase cellular EET levels and overcome their rapid
metabolism is to inhibit sEH activity (Morisseau and Hammock,
2013). Inhibition of sEH has been associated with decreased
atherosclerotic plaque lesions in mice aortae (Ulu et al., 2008),
decreased blood pressure in hypertensive mice (Neckář et al.,
2012) and protection against ischemic injury (Seubert et al., 2006;
Li et al., 2009; Batchu et al., 2012a). Other effects of inhibiting
sEH include vasodilation, pro-angiogenisis, and cell migratory
effects (Imig and Hammock, 2009; Oni-Orisan et al., 2014).

In the heart, mitochondria provide the primary source of
energy to fuel the contractile machinery. The heart’s high-energy
demand during normal function is met by a continuous supply
of ATP mainly produced through oxidative phosphorylation
in mitochondria. Mitochondria are strategic regulators of cell
life and death given the fact that they play a central role in

energy production, calcium homeostasis, and stress adaptation
(Jendrach et al., 2008). These dynamic organelles undergo
continuous fusion and fission processes in response to cellular
energy demands and stress levels. As cardiomyocytes are

terminally differentiated post-mitotic cells, maintenance of a
healthy pool of mitochondria depends upon a delicate balance
between newly generated organelles and efficient degradation of
irreversibly damaged organelles (Hom and Sheu, 2009). During
ischemic stress, several signaling pathways affect mitochondrial
function and structure, which can impact ionic gradients and
initiate cell death pathways. These changes lead to uncoupling
of electron flow, opening of the mPTP and loss of cytochrome c,
leading to mitochondrial dysfunction and eventually irreversible
cell death.

We have previously demonstrated that EETs enhance
cardiomyocyte cell survival via a protective cascade targeting

the mitochondria (Katragadda et al., 2009; Batchu et al.,
2012a; Samokhvalov et al., 2013, 2014). Emerging evidence
suggests the cardioprotective effect of EETs is due to
inhibition of mitochondrial damage. For instance, EETs
limit mitochondrial damage and fragmentation following
IR injury in CYP2J2 overexpressing mice compared to wild
type littermates (Katragadda et al., 2009). In addition, EETs
minimize doxorubicin-induced mitochondrial dysfunction, and
damage preventing cardiotoxicity (Zhang et al., 2009). sEH
inhibition has been shown to maintain mitochondrial membrane
potential (19m) following cellular stress limiting mitochondrial
dysfunction (Batchu et al., 2012a). The present study investigates
the effect of sEH inhibition in maintenance of mitochondrial
efficiency following myocardial infarction.

METHODS

Animals
A colony of mice on a C57/BL6 background with targeted
disruption of the sEH gene (EPHX) and wild-type (WT)
littermates are maintained at the University of Alberta (Seubert
et al., 2006). All studies were carried out using 2–3 month old
mice weighing 25–30 g. To pharmacologically inhibit sEH,10
mg/L tAUCB was administered to WT mice in drinking water
4 days prior to surgery and continued for 7 days after surgery
(Hwang et al., 2007). Vehicle (DMSO; 1 µl/ml) was added to
the drinking water of the sEH null and WT littermates. Mice
were euthanized with an intra-peritoneal injection of sodium
pentobarbital (100 mg/kg) and checked to ensure the absence of
movement, flexor, and pedal reflexes prior to tissue collection.
Experiments were conducted according to strict guidelines of
the Canadian Council on Animal Care, Use of Laboratory
Animals published by the US National Institute of Health (NIH
publication, 8th edition, 2011) and were approved the University
of Alberta Health Sciences Animal Welfare Committee.

Myocardial Infarction (MI)
MI was induced by permanent occlusion of the proximal
left anterior descending (LAD) coronary artery as described
(Kandalam et al., 2010). Mice were anesthetized with ketamine
(100 mg/kg) and xylazine (10 mg/kg), intubated, and underwent
left thoracotomy in which LV was exposed by opening the
pericardium and the LAD was encircled and ligated. The
mortality rate following surgery was <2% in all groups. In
sham-operated mice, the LAD was encircled but not ligated. On
day 7 post-MI, mice were euthanized and hearts were collected
from sham-operated and post-MI mice, and LV was dissected
into infarct, peri-, and non-infarct regions using a dissecting
microscope. We first identified the suture node 2–3 mm under
apex of the left atrium. A pale (gray) area from the node
toward the apex of the heart could be visualized; this region
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was identified as infarction. Tissue with good blood supply and
normal wall thickness were identified non-infarct area. A 2 mm
narrow line along the each side of the infarct region was set as
peri-infarct region. The different regions were separately flash-
frozen using liquid nitrogen and stored at −80◦C for further
analysis.

Infarct Size Analysis
Hearts were sliced from apex to the point of ligation in 0.5-
mm slices. Slices were then incubated in 1% triphenyltetrazolium
chloride at 37◦C for 10 min. In viable tissues, TTC is reduced
by dehydrogenases to 1,2,5-triphenylformazan, which has a brick
red color. In necrotic tissues, TTC will remain white due to the
absence of enzymes. The percentage of infarct was determined
from cross-sections of the whole left ventricle, which was set as
100%. Images were analyzed using ImageJ software (Kandalam
et al., 2010).

sEH Activity
Non-infarct regions of LV from post-MI and sham hearts were
flash frozen in liquid nitrogen immediately after harvesting.
Frozen tissues were crushed using mortar and pestle. Heart
powders were homogenized in ice-cold homogenization buffer
(250 mM sucrose, 10 mM Tris-HCl, and phosphatase protease
inhibitor). sEH activity was assessed using a soluble epoxide
hydrolase assay kit assay (Cat # 600090, Cayman Chemical).

Echocardiography Measurements
Non-invasive functional assessment was performed by
transthoracic echocardiography using a Vevo 770 high-
resolution imaging system with a 30 MHz transducer
(RMV-707B; VisualsSonics). Isoflurane (0.8% by anesthetic
machine) was used to anesthetize the mice during the recordings.
To assess changes in cardiac function, echocardiography was
carried 1 day prior to MI (baseline) and 7 days post-MI. Left
ventricular end-systolic diameter (LVESD) and end-diastolic
diameter (LVEDD) were obtained from M-mode images,
while left atrial size was obtained by M-mode imaging in
the parasternal long axis view (Wang et al., 2013). Systolic
function was assessed by calculating ejection fraction (%EF)
and fractional shortening (%FS) using the following equations
%EF = [(LVEDV − LVESV)/LVEDV] × 100 and %FS=
[(LVEDD − LVESD)/LVEDD] × 100. Tei index was calculated
as (isovolumic contraction time (IVCT) + isovolumic relaxation
time (IVRT))/ejection time (ET). Diastolic function was
represented as early transmitral LV filling wave (E-wave) and
late LV filling wave (A-wave), which were measured using
pulsed-wave Doppler tissue imaging as described in (Basu et al.,
2009; Kandalam et al., 2010). VisualSonics software was used for
the qualitative and quantitative measurements.

Mitochondrial Ultrastructure
Mitochondrial ultrastructure was assessed in several pieces
obtained from different regions of the left ventricle that were
pre-fixed in 2.5% glutaraldehyde in 0.1M sodium cacodylate
buffer, post-fixed in 2% osmium tetroxide (OsO4) in 0.1M
sodium cacodylate buffer, dehydrated in an ethyl alcohol series,

embedded with epoxy resin, and thermally polymerized as
previously described (Katragadda et al., 2009). Ultra thin-sections
(60 nm) were cut by an ultramicrotome (Leica UC7, Leica
Microsystems Inc., ON, Canada) and then stained with 4%
uranyl acetate and Reinold’s lead citrate. The contrasted sections
were imaged under a Hitachi H-7650 transmission electron
microscope at 80 kV equipped with a 16 megapixel EMCCD
camera (XR111, Advanced Microscopy Technique, MA, USA)
was used for viewing the sections (Cho et al., 2007; Katragadda
et al., 2009).

Mitochondrial Function
Non-infarct regions were used for assaying mitochondrial
enzymatic function (complexes I–IV and Citrate synthase),
using established spectrophotometric techniques (Samokhvalov
et al., 2013). Heart powders were homogenized in ice-cold
homogenization buffer (0.121 g of Tris, 0.15 g of KCl, and 0.038 g
of EGTA in 50 ml of distilled water, pH 7.4, 0.854 g of sucrose
/10 ml of the buffer was added at the day of the experiment),
centrifuged at 600 g for 10 min at 4◦C and supernatant was
collected. Protein was then assayed using a Bradford reagent.

ATP content was assessed in non-infarct regions using a
colorimetrically based ATP assay Kit (ab83355, Abcam Inc,
Toronto, ON, Canada). Heart powders were homogenized and
centrifuged at 15000× g for 2 min and the resultant supernatant
was assessed for ATP content. Standard curve for ATP and
reaction mixture were prepared according the kit manual in a
96-well-plate and optical density (OD) was measured at 570 nm.

Mitochondrial Respiration
Mitochondria were freshly isolated from hearts according to
established protocols (Shrestha et al., 2014). Briefly, heart
homogenate was first centrifuged at 700 × g for 10 min
followed by centrifuging the supernatant at 10,000 × g for
10 min, then the pellet was resuspended and washed using
isolation buffer at 10,000 × g for 10 min. Mitochondrial
oxygen consumption was measured in isolated mitochondria (50
ug of mitochondrial protein) added to a chamber connected
to OXYGRAPH PLUS system (Hansatech Instruments Ltd,
Norfolk, England). Respiration rates were measured at 30◦C in
2 ml of respiration buffer. Basal respiration was recorded after
the addition of 5 mM malate and 10 mM glutamate as substrates
for basal oxidative respiration. ADP-stimulated respiration was
initiated by addition of 0.5 mM ADP then recorded. The
efficiency of coupled oxidative phosphorylation was calculated
as the ratio between basal and ADP-stimulated respiration rates
(Kuznetsov et al., 2008).

Immunoblot Analysis
Non-infarct regions of the LV were flash frozen using liquid
nitrogen and crushed with a mortar and pestle on dry ice to
be kept at −80◦C. The heart powder was then homogenized in
ice-cold homogenization buffer. Protein was resolved on SDS-
polyacrylamide gels, transferred to nitrocellulose membranes
and immunoblotted as previously described (Samokhvalov et al.,
2013). Immunoblots were prepared using cytosolic (100 µg
protein) or mitochondrial (25 µg protein) fractions and probed
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with antibodies to sEH (sc22344, Santa Cruz Biotechnology),
SDH-A (ab5839s), CS (ab129095) (Abcam, Burlingame, CA,
USA), COX IV (cs11967), and GAPDH (cs51745) (Cell signaling
Technology, Inc., New England Biolabs, Ltd., Whitby, ON,
Canada). Relative band intensities were assessed by densitometry
using Image J (NIH, USA). Protein expression in vehicle treated
controls were taken as 100% and compared with treated group.

Measurement of Glucose Oxidation and
Fatty Acid Oxidation
Hearts from both sham-operated and post-MI mice were isolated
and perfused in the working mode, as described (Rouslin, 1983;
Larsen et al., 2012). Isolated working hearts were perfused at a left
atrial preload of 11.5 mmHg and an aortic afterload of 50 mmHg
with perfusate contained 5 mM [U-14C] glucose, 1.2 mM [9,10-
3H]palmitate, and 3% albumin. The palmitate was prebound
to 3% fatty acid free bovine serum albumin. First, hearts were
subjected to an aerobic perfusion without insulin for first 30 min,
then 100 µU/ml insulin was added to some hearts to investigate
the response to insulin. In some perfusions, hearts were subjected
to aerobic perfusion in the absence of insulin for the entire 60-
min period. Rates of glucose oxidation and palmitate oxidation
were determined by quantitative collection of 14CO2 and

3H2O
from [U-14C] glucose and [9,10-3H] palmitate, respectively. At
the end of the perfusion, hearts were frozen by liquid N2 and
stored at −80◦C until used for subsequent biochemical analyses
(Barr and Lopaschuk, 1997; Belke et al., 1999). PI3-Kinase activity
was assessed in lysates isolated from non-infarct regions of LV
following LAD surgery using an ELISA based (5µg protein) assay
(Cat # K-1000s, Echelon Biosciences, Inc., UT, USA).

Statistical Analysis
Values expressed as mean ± standard error of mean (SEM).
Statistical significance was determined by one-way ANOVA with
Bonferroni post-hoc test was performed to assess differences
between groups. Values were considered significant if p < 0.05.

RESULTS

sEH Inhibition Improves Cardiac Function
Following Myocardial Infarction
Baseline heart function inWT, tAUCB treated, and sEH null mice
was similar among all groups (Figure 1A; Table 1). However,
WTmice had significantly suppressed cardiac function following
myocardial infarction compared to parallel tAUCB-treated and
sEH null mice post-MI. At 7 days post-MI, WT mice showed
LV dilation and systolic dysfunction as determined by increased
LVESD and LV systolic volume, decreased EF, and FS. Inhibition
of sEH either pharmacologically (tAUCB treated) or genetically
(sEH null) attenuated the post-MI systolic dysfunction as shown
by the significantly greater EF and FS. The post-MI increase
in LVESD and LV systolic volume (LV Vol; s) was markedly
diminished in sEH null and tAUCB-treated mice. Left atrial
size (LA) was also increase in WT-MI mice accompanied with
a decrease in mitral A-wave velocity, whereas sEH null and
tAUCB-treated groups showed a significant attenuation in these

parameters compared to WT-MI. We assessed the Doppler-
derived myocardial performance index (TEI index), defined
as the sum of isovolumic contraction time and isovolumic
relaxation time divided by the ejection time index, and observed
a marked increase in WT post-MI groups while inhibition
of sEH prevented this increase. The attenuation of cardiac
dysfunction by sEH inhibition was not accompanied by a
significant reduction in infarct size expansion following tAUCB
treatment, however infarct size was reduced in sEH null mice
(Figure 1B).

sEH protein expression was not altered following tAUCB
treatment in either sham or post-MI hearts, while no expression
was detected in sEH null hearts (Figure 1C). Baseline catalytic
activity was inhibited by tAUCB and absent in sEH null hearts.
MI injury triggered an increase in sEH catalytic activity in WT
hearts, which was inhibited by tAUCB and deletion of sEH
(Figures 1D,E). The background hydrolysis of the substrate was
expected as the assay was designed for recombinant and affinity
purified sEH. The substrate will yield a fluorescent product when
it reacts with glutathione, protein sulfhydryls, glutathione S-
transferase, esterases, and other hydrolytic enzymes but not other
known mammalian epoxide hydrolases.

sEH Inhibition Protects the Mitochondria
From Ischemic Damage
To visualize the effect of ischemia on mitochondrial
ultrastructure we assessed baseline and post-MI hearts using
electron microscopy. Healthy and intact mitochondria were
observed in the sham groups with no differences between WT,
tAUCB, or sEH null mice. Seven days post-MI, we dissected the
left ventricle into infarct, peri-, and non-infarct regions. EM
images demonstrate that the mitochondrial ultrastructure of
the infarct region in the sEH null group was significantly more
preserved than the infarct regions of the WT and tAUCB treated
groups. In the peri-infarct region, the mitochondrial content
was more preserved than the infarct region in all the groups,
moreover, mitochondrial damage was attenuated in tAUCB and
sEH null mice compared to the WT group. The mitochondrial
ultrastructure was not impacted in the non-infarct region of the
three groups (Figure 2).

sEH Inhibition Leads to Preservation of
Mitochondrial Efficiency in Non-Infarct
Region
In order to maintain cardiac contractility and function, the heart
needs a healthy pool of mitochondria to supply it with the energy
required for contraction. We first quantified the abundance
of key mitochondrial proteins in the non-infarct region where
mitochondrial ultrastructure was preserved. Consistent with EM
images, there was no significant difference in the protein content
between any of the groups in either sham or post-MI for citrate
synthase, succinate dehydrogenase or cytochrome C oxidase
expression (Figure 3). These observations suggest the pool of
mitochondrial protein found within the non-infarcted region
remains the same in tAUCB and sEH null mice hearts relative
to controls.
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FIGURE 1 | Effect of sEH suppression on preserving ventricular dimensions. Cardiac function of WT, tAUCB treated, and sEH null mice were assessed 1 day

before LAD ligation (Baseline) and 7 days after LAD ligation (Post-MI). (A) Representative mitral Doppler spectrum showing E wave (early ventricular filling wave); A

wave (a late filling wave caused by atrial contraction); IVCT, isovolumic contraction time; IVRT, isovolumic relaxation time; and ET, ejection time. (B) Representative

M-mode images revealed a decrease in left ventricular dilation and dysfunction upon sEH inhibition. (C) Quantification of infarct size was assessed from images of

transverse heart sections stained with TTC. (D) Non-infarct regions found in the left ventricle of hearts from sham and post-MI mice were assessed for sEH protein

expression and (E) catalytic activity. Values represent mean ± SEM, n = 6–9, p < 0.05, *significantly different from its baseline, #significantly different from WT

post-MI.

Enzymatic activities of the mitochondrial respiratory chain
were assessed in non-infarcted regions of the heart where no
damage in the mitochondrial ultrastructure was observed. No
significant differences were observed in the enzymatic activities
between sham WT, tAUCB, or sEH null groups (Figure 4).
However, there was a significant drop in citrate synthase (CS)
activity in WT post-MI groups. This decrease was significantly
attenuated in tAUCB treated and sEH null groups (Figure 4A).
Similarly complexes I and II of the electron transport chain (ETC)

showed a significant drop in their enzymatic functionality in
WT post-MI groups, however, this was significantly attenuated
in the tAUCB and sEH null mice (Figures 4B,C). Complex IV
was preserved from ischemic dysfunction in bothWT and treated
groups post-MI (Figure 4D).

Considering sEH inhibition attenuated the loss of catalytic
activity of key enzymes involved in ATP production, we
next measured respiration in isolated mitochondria. To ensure
respiration rates were not attributed to low substrate availability,
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TABLE 1 | Pre- and post-MI echocardiographic measurements of cardiac function in WT, tAUCB-treated, and sEH null mice.

WT baseline WT post-MI tAUCB baseline tAUCB post-MI sEH null baseline sEH null post-MI

Heart rate (beats/min) 476.9±17.4 430.3±13.0 460.3± 19.0 426.8± 13.1 517.9± 19.8 493.1±19.6

LVESD (mm) 2.31±0.15 4.03±0.3* 2.51± 0.22 3.37± 0.26 2.12± 0.15 2.87±0.33

LVEDD (mm) 3.73±0.12 4.81±0.18* 3.66± 0.34 4.49± 0.14 3.59± 0.11 4.03±0.16

LV Vol; d 56.9±3.3 116.1±7.4* 70.5± 5.6 87.3± 4.8# 54.7± 4.0 72.2±7.6#

LV Vol; s 17.5±2.5 83.7±8.9* 26.9± 3.2 39.2± 3.1 15.6± 2.4 37.8±8.5#

%EF 70.6±2.6 28.2±5.3* 62.9± 2.4 55.4± 1.8# 72.3± 3.2 49.4±6.9#

%FS 39.7±2 13.5±2.7* 33.9± 1.8 28.7± 1.2# 41.3± 2.9 26.6±4.3#

LV Mass 72.9±3.6 77.4±10.2 83.3± 6.3 80.0± 7.2 69.3± 3.9 86.0±9.3

LA (mm) 1.6±0.1 2.7±0.2* 1.9± 0.2 1.9± 0.1# 2.1± 0.1 2.0±0.2

Mitral E Vel (mm/s) 727.7±35.4 638.6±51.2 744.3± 30.3 628.8± 47.2 811.5± 25.4 677.7±26.5

Mitral A Vel (mm/s) 445.3±26.5 216.5±53.1* 444.8± 39.8 480.7± 58.9# 485.7± 18.5 352.4±27.2

IVRT (ms) 14.5±1.8 18.5±1.5 14.3± 2.2 15.6± 1.1 13.4± 0.5 14.7±1.04

IVCT (ms) 10.7±1 12.9±2.2 8.6± 1.2 8.6± 1.0 7.1± 0.7 4.9±0.8

ET (ms) 53.7±1.9 49.8±0.8 49.8± 1.4 52.7± 2.6 39.6± 3.3 44.6±1.6

Tei index 0.47±0.05 0.67±0.06* 0.47± 0.06 0.41± 0.02 0.48± 0.03 0.42±0.03

Values represent mean ± SEM, n = 9, p < 0.05, *significantly different from its baseline, #significantly different from WT post-MI.

FIGURE 2 | Effect of sEH suppression on mitochondrial integrity. Representative electron micrograph images of infarct, peri- and non-infarct regions found in

the left ventricle of hearts. Arrows indicate individual mitochondrion (Magnification = 6000x).
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FIGURE 3 | Mitochondrial protein expression in the non-infarct region of the left ventricle. Representative western blots (A) and quantification of (B) citrate

synthase, (C) succinate dehydogenase (SDH-A), and (D) COX-IV protein expression observed in non-infarct regions of LV in sham operated and post-MI hearts.

Values represent mean ± SEM, n = 4.

malate, and glutamate were used to support basal respiration.
WT post-MI groups showed a significant decrease in ADP-
simulated respiration that was attenuated by inhibiting sEH
with tAUCB or deletion in sEH null mice, which is reflected
in the preserved respiratory control ratio (RCR). Enhancement
in RCR was seen in the post-MI tAUCB and sEH null
groups compared to WT mice (Figure 4E). Consistent with
better mitochondrial respiration following inhibition or loss of
sEH, ATP content in the non-infarct region of the LV was
maintained in the tAUCB and the sEH null groups post-MI
(Figure 4F).

Inhibition of sEH and Cardiac Energy
Metabolism
Ex vivo working hearts were used to investigate the effect of sEH
inhibition on energy metabolism following MI. In the absence
of insulin, the rates of glucose oxidation were similar between
the experimental groups (Figure 5A). In response to insulin, all
sham hearts showed a significant increase in glucose oxidation
(fold increase WT 1.49, tAUCB 2.06, sEH null 2.21). However,

only hearts from tAUCB treated or sEH null mice demonstrated
a significant response to insulin following MI (Figure 5A) (fold
increase WT 2.02, tAUCB 2.94, sEH null 2.11). Fatty acids are
the primary energy substrate in the heart and fatty acid β-
oxidation is closely and inversely coupled with glucose oxidation
via the Randle cycle. While the rate of palmitate oxidation
was unaltered in the absence of insulin, the rate significantly
decreased in all sham hearts after adding insulin (Figure 5B)
(fold decrease WT 2.4, tAUCB 4.11, sEH null 2.55). Damage
from MI correlated with decreased basal palmitate oxidation
in WT hearts compared to sham-operated mice but was not
altered in hearts from tAUCB treated or sEHnull mice.Moreover,
palmitate oxidation was not altered after adding insulin in WT
hearts post-MI (Figure 5B) (fold decrease WT 1.38, tAUCB 2.94,
sEH null 2.6). Collectively, these data suggest that sEH inhibition
preserved the cardiac response to insulin (i.e., insulin sensitivity)
following MI. PI3K activity was significantly elevated in hearts
from both tAUCB treated and sEH null mice (Figure 5C). A
similar trend in increased Akt∼P was observed in hearts but did
not reach statistical significance (data not shown).
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FIGURE 4 | sEH suppression preserves mitochondrial function following ischemic injury. Activities of key mitochondrial enzymes were assessed

spectrophotometrically in non-infarct regions of LV in sham operated and post-MI hearts. Activities of (A) citrate synthase, (B) succinate dehydrogenase, (C) complex

I, and (D) cytochrome C oxidase were determined. (E) Respiration in isolated mitochondria was measured using Clark-electrode based chamber connected to

oxygraph and rates are expressed as Respiratory Control Ratio (RCR). (F) ATP content was measured in the non-infarct region of the heart by a colorometric-based

assay. Values represent mean ± SEM, n = 4, p < 0.05, *significantly different from respective control sham, #significantly different from WT post-MI.

DISCUSSION

This study demonstrates that both pharmacological and

genetic approaches to inactivate sEH preserves mitochondrial
and cardiac function following ischemic injury. Moreover,
inhibition of sEH maintained cardiac insulin sensitivity
post-MI. Restoration of cardiac insulin sensitivity associated

with inactivation of sEH suggests that the injured region of

myocardium is undergoing robust structural and functional
recovery. The ischemic insult did not affect mitochondrial
structure and protein content in non-infarct regions, but
did dramatically reduce mitochondrial function, which was
prevented by inhibition of sEH. Accumulation of aberrant
mitochondria triggers further dissemination of injury on
intracellular structures and eventually, leads to cardiomyocyte
death. Our results demonstrate a key role of protecting
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FIGURE 5 | The effect of sEH suppression on cardiac metabolism. Rates of (A) glucose oxidation and (B) palmitate oxidation in the absence (basal) or presence

of 100 µU/mL insulin from sham operated and post-MI hearts. Values represent mean ± SEM, n = 6, p < 0.05, *significantly different from respective basal oxidation,

(C) PI3K activity in non-infarct regions of LV from sham operated and post-MI hearts. Values represent mean ± SEM, n = 5, p < 0.05, *significantly different from

respective WT, #significantly different from sham WT.

mitochondrial function in mediating protective effects associated
with inactivation of sEH.

Myocardial infarction occurs when blood supply to the
myocardium is interrupted as a result of coronary blockage
or injury resulting in a state of energy starvation of the
affected myocardial tissue. There are numerous detrimental
consequences such as the development of mitochondrial crisis
associated with defective cardiac metabolism eventually leading
to heart failure (Lesnefsky et al., 2001). A large body of
evidence has demonstrated a positive correlation between
cardiac dysfunction in a failing heart attributable to decreased
mitochondrial respiration rates. In this study we used the LAD
occlusion model of MI (Virag and Lust, 2011). As expected,
ligated WT mice showed a decrease in LV diastolic and systolic
function and a marked reduction in cardiac contractility, which
was preserved in tAUCB treated and sEH null mice. It has
been well-documented that sEH inhibition increases the levels
of endogenous EETs by suppressing their enzymatic degradation
through sEH (Liu et al., 2009; Duflot et al., 2014). The ratio
of EETs to DHETs in mice is elevated in the plasma of tAUCB
treated (Liu et al., 2009) and sEH null mice (Seubert et al., 2006;
Neckář et al., 2012). Previously published studies demonstrate
genetic deletion of the sEH gene or direct pharmacological
inhibition of sEH activity provides cardioprotection (Seubert
et al., 2006; Xu et al., 2006; Monti et al., 2008; Li et al.,
2009; Batchu et al., 2012a; Merabet et al., 2012; Shrestha et al.,
2014). In a 3-week pressure overload murine model, Xu et al.
demonstrated beneficial effects of the sEH inhibitors AEPU
and AUDA in limiting cardiac hypertrophy (Xu et al., 2006).
Similarly, inhibition of sEH has been shown to improve LV
function and reduce remodeling in a murine model of chronic
heart failure (Merabet et al., 2012). In the present study, coronary
artery ligation produced significant infarcts in LV, which was
attenuated by inhibiting sEH resulting improved LV function.

Our data indicated that sEH suppression preserves
mitochondrial efficiency in the non-infarct region of the

LV, maintaining a healthy pool of cardiac mitochondria that
correlates with better contractility and functionality. Increased
efficiency will supply the heart with sufficient amounts energy in
the form of high-energy phosphates. Because as ATP production
is primarily carried out by oxidative phosphorylation, damage
to the ETC will lead to cardiac dysfunction. The failing heart
becomes unable to produce sufficient amount of ATP to meet
its contractile energy requirements (Neubauer, 2007). Our data
show a decrease in ETC enzymatic function, RCR, and ATP
content in WT post-MI hearts demonstrating mitochondrial
dysfunction. The decreased mitochondrial function occurred
in the non-infarct region as TEM images showed preserved
mitochondrial ultrastructure. This suggests that the decline
in mitochondrial function occurred prior to any remodeling
or significant protein damage in WT mice. Interestingly,
mitochondrial protein levels and ultrastructure in the non-
infarct region were similar in all groups, but inhibition of sEH
prevented the loss of mitochondrial function. Given citrate
synthase and complex I activities serve as biomarkers for
mitochondrial content our data suggests there is a preservation
of the mitochondrial pool (Larsen et al., 2012). Ischemic injury
in myocardium is known to decrease the activity of complex I
of the ETC due to damage to an essential subunit in complex
I (Rouslin, 1983). Complex I defect leads to electron leak and
generation of ROS, which will eventually cause further damage
to distal ETC complexes such as Complex III and IV (Lesnefsky
et al., 2001).

In our model of a permanent coronary artery ligation
we observed a marked activation of sEH catalytic activity,
which resulted in increased conversion of EETs to the less
active DHETs (Monti et al., 2008; Li et al., 2009; Liu
et al., 2009; Chaudhary et al., 2010). Both our approaches,
pharmacologically and genetic interruption of sEH, resulted
in significant attenuation of enzymatic activity, supporting the
notion that inhibition of sEH triggers a protective mechanism(s)
preserving mitochondrial function within the heart. We have
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previously shown the beneficial effects of EETs and sEH
inhibition involved improved mitochondrial function, which
prevented the loss of mitochondrial membrane potential (19m)
and promoted cell survival (Katragadda et al., 2009; Batchu et al.,
2011, 2012a; El-Sikhry et al., 2011). In a starvation model of cell
injury EETs preserve ETC enzyme activities and mitochondrial
protein content in HL-1 cells and neonatal cardiomyocytes
(Samokhvalov et al., 2013). EETs can preserve mitochondria via
activation of autophagy, which may shift death pathways toward
survival, resulting in a healthier pool of mitochondria either
through removal of damaged mitochondria or improvement
of ETC (Samokhvalov et al., 2013). Importantly, we assessed
mitochondrial function in non-infarct regions of the heart, and
demonstrated no ultrastructure damage upon EM analysis. The
observed enhanced ETC enzyme activities, oxygen consumption
and ATP content would suggest inhibition of sEH preserved
mitochondrial efficiency.

Preservation of post-MI insulin sensitivity following
inhibition of sEH further supports the hypothesis of better
mitochondrial efficiency and cardiac function. The normal
heart can easily switch substrate utilization to meet energy
requirements according to changes in hormonal levels
or substrate availability (Lopaschuk et al., 2010). Insulin
sensitivity represents the responsiveness of insulin receptors and
downstream signaling in insulin-responsive tissues (Luria et al.,
2011). Early stages of heart failure have been associated with
significant reductions in insulin sensitivity and consequently,
compromised glucose homeostasis (Ashrafian et al., 2007). Luria
et al. demonstrated the role of sEH suppression in improving
systemic insulin sensitivity and glucose homeostasis, where
insulin sensitivity was preserved in both sEH null and tAUCB
treated mice on a high fat diet (Luria et al., 2011; Iyer et al.,
2012). They showed that sEH suppression stimulates insulin
signaling in adipose tissue and liver due to activation of IRS-1
and PI3K (Luria et al., 2011). In the current study, we provide
evidence that the cardiac response to insulin was blunted 7
days post-MI, which was preserved following sEH inhibition
coincided with enhanced PI3K activity. Restoration in insulin
sensitivity reflects preservation of mitochondrial function, which
is supported by studies demonstrating the association between
cardiac insulin resistance and decreased mitochondrial function
(Boudina et al., 2009; König et al., 2012; Zhang et al., 2013).
Cardiac dysfunction in both mouse models and human hearts
of individuals with type 2 diabetes caused by systemic insulin
resistance have significant mitochondrial defects including
decreased mitochondrial respiration and ATP production
(Boudina et al., 2009; Mansor et al., 2013). Similarly, deletion
of the insulin receptor in mice to develop insulin resistance
decreases cardiac contractility, which is associated with a
reduction in ATP production and mitochondrial respiration
(Boudina et al., 2009). A transverse aortic constriction model
of heart failure produces cardiac insulin resistance leading to
systolic dysfunction and exacerbation of contractile dysfunction
(Zhang et al., 2013). Therefore, restoring the insulin sensitivity by
sEH suppression can be associated with the better mitochondrial
efficacy demonstrated in our results by the enhanced ATP
production and RCR in a myocardial ischemia model.

The PI3K-Akt signaling pathway has a role in regulating
insulin signaling, whereby phosphorylation of PI3K and Akt
activate downstream mediators of the insulin cascade, including
GLUT4 translocation, enhancing glucose metabolism (Okada
et al., 1994; Tanti et al., 1996). Preserved insulin sensitivity,
observed in sEH null and tAUCB-treated mice on a high fat diet,
was associated with activation of IRS-1-PI3K-Akt axis in the liver
and adipose tissue (Luria et al., 2011; Iyer et al., 2012). It has been
well-established in previous studies that EET-mediated signaling
involves activation of PI3K-Akt pathways limiting ischemia-
reperfusion injury (Condorelli et al., 2002; Wang et al., 2005;
Seubert et al., 2006; Batchu et al., 2012b). In vitro activation
of the PI3K-Akt pathway was observed in EET-treated BAECs
(Wang et al., 2005). Isolated murine hearts exposed to IR also
demonstrated EET-mediated activation of PI3K. These results
were consistent in sEH null mice (Seubert et al., 2006), as
well as, mice hearts perfused with EETs (Batchu et al., 2012b)
or sEHi (BI00611953) (Batchu et al., 2012a). Inhibition of
PI3K or Akt results in shutting down the insulin cascade and
is considered a primary cause in the development of insulin
resistance (Okada et al., 1994; Tanti et al., 1996). Thus, activation
of cardiac metabolism from one side and suppression of loss of
mitochondrial function post-MI from another collectively result
in promoting repair of myocardial structures and function. The
enhanced PI3K activity observed in the current study indicates
this as a potential mechanism by which sEH inhibition exerts its
action.

In summary, here we demonstrate that pharmacological
inhibition or genetic deletion of sEH mediates cardioprotective
events following myocardial infarction through maintenance of
mitochondrial efficiency. Our results show attenuation of sEH
prevents cardiac dysfunction following MI by preserving the
mitochondrial pool in the surviving (non-infarct) myocardium.
Furthermore, inhibiting sEH preserved insulin sensitivity in
post-MI hearts reflecting more optimal functioning cardiac
metabolism thereby indicating activation of physiological
recovery from ischemic insult.
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