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ABSTRACT OF THE DISSERTATION 

Global and Local Regulation of Gene Expression in the Human Brain 

by 

Christopher Hartl 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2019 

Professor Daniel H. Geschwind, Chair 

 Neuropsychiatric disorders are behavioral conditions marked by intellectual, social, or 

emotional deficits that can be linked to diseases of the nervous system. Autism spectrum disorder 

(ASD), schizophrenia (SCZ), bipolar disorder (BP), major depressive disorder (MDD), and 

attention deficit and hyperactivity disorder (ADHD) are common, heritable diseases each with a 

prevalence exceeding 1% of the population, none of which can be characterized by discernable 

anatomical or neurological pathologies. Genetic association studies have identified mutations in 

hundreds of genes that contribute to risk for at least one of these disorders, and have shown that a 

substantial fraction of the genetic liability is shared between many of these neuropsychiatric 

diseases. It has long been hoped that with enough genetic evidence we will identify the 

biological pathways, developmental time points, and brain regions that, when disrupted, give rise 

to neuropsychiatric disorders. However, the cellular and functional complexity of the human 
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brain, as well as the genetic complexity of neuropsychiatric disease, make it difficult to search 

for such convergence. 

 In this thesis, I investigate global and local transcriptional regulation within and across 12 

regions of the human brain in order to investigate the regional specificity of neuropsychiatric 

disorders. I develop novel bioinformatics methods – ranging from data processing to network 

construction – to identify whether the transcriptional regulation of a set of genes is shared or 

specific. I hypothesize that local, region-specific transcriptional regulation corresponds directly 

to cell types and processes that are specific to, or far more prevalent in, a given region; that 

cross-regional transcriptional regulation corresponds to cell types that show little heterogeneity 

across brain regions; and that genetic disruption of region-specific transcriptional programs 

results in regional susceptibility. I use a systems-biology approach to summarize transcriptional 

regulation into reproducibly co-expressed gene sets (“co-expression modules”), which can be 

analyzed statistically to identify common functions, pathways, and cell types. I then integrate 

data from genetic association studies to ascertain gene sets conferring outsized risk for 

neuropsychiatric disorders, thereby implicating the corresponding pathways for further 

investigation in disease etiology. Finally, I use the network structure itself to investigate the 

genetic architecture of ASD and SCZ in terms of omnigenics and network polygenics. 

 Chapter 1 presents the biological background for the studies and summarizes some of the 

major studies of neuropsychiatric disorders along with their principal methods and conclusions. 

In chapter 2, utilizing my multi-regional co-expression approach, I identify 12 brain-wide, 114 

region-specific, and 50 cross-regional co-expression modules. Nearly 40% of expressed genes 

fall into brain-wide modules and correspond to major cell classes and conserved biological 
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processes, while region-specific modules comprise 25% of expressed genes and correspond to 

region-specific cell types. The detailed study in chapter 3 demonstrates that neuropsychiatric risk 

concentrates in both brain wide and multi-regional modules, implicating major core cell types in 

disease etiology but not region-specific susceptibility. Chapter 4 presents a new and more 

general framework for defining genetic networks. Using this framework, I show that the network 

pattern of ASD-associated rare loss-of-function mutations, as well as the large number of 

significant targets for trans master regulators in BP and SCZ, support a classical polygenic 

architecture with thousands of directly causal genes. These results suggest that a nontrivial 

component of risk for neuropsychiatric disease comes from the global polygenic disruption of 

neuronal function and neuronal maturation. 
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Chapter	1 Systems	biology	approaches	to	neuropsychiatric	disease	
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1.1 Systems	biology	approaches	to	neuropsychiatric	disease	
	

There are no known gross anatomical or neurological deficits that are hallmarks of common 

neuropsychiatric disorders (Bray2018). This contrasts with certain neurodegenerative diseases 

such as Alzheimer’s disease (AD), characterized by the formation of tau tangles and amyloid 

plaques – or Parkinson’s disease (PD), characterized by the aggregation of proteins into Lewy 

bodies. This means that, for neuropsychiatric disorders, there are no known specific mechanisms 

to investigate, and no disease-associated quantitative traits to measure. 

 Systems biology has the potential both to identify mechanisms with an important role in 

neuropsychiatric disease and to define molecular traits that correlate with disease risk and 

severity (Gandal2016). Since molecular interactions drive cellular behavior, which in turn 

determines brain tissue function, which ultimately gives rise to behavior and psychology, we 

take the most comminuted possible view: we model the brain as an enormous and dynamic 

collection of molecules, and hypothesize that gross differences in behavior correspond to 

molecular differences somewhere in the brain (Hawrylycz2016). This hypothesis has, over the 

past two decades, motivated multiple large-scale studies of spatio-temporal gene, protein, and 

epigenetic expression in the brain (Geschwind2000, Gong2003, Hawrylycz2012, 

Hernandez2012, Ramasamy2014, Zeisel2018). These studies provide overwhelming evidence in 

favor of the hypothesis, having identified molecular proxies for brain development 

(Parikshak2013), cell types, cellular processes (Oldham2008), and neuropsychiatric disease 

status (Parikshak2016, Gandal2018a, Radulescu2018). Modern quantitative genetic approaches – 

in particular TWAS (Gamazon2015) and heritability partitioning (Yang2011, Bulik-

Sullivan2015) – provide confirmatory evidence by demonstrating that risk for certain 

neuropsychiatric diseases concentrates within a limited set of cells – e.g., in DNA regions that 
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are accessible in neuronal nuclei (Skene2018, Fullard2018, delaTorre2018, Polioudakis2018, 

Sullivan2019). 

 In spite of these successes, for neuropsychiatric disorders, disease etiologies remain 

opaque and endophenotypes elusive. One possibility is that some of these the deficits manifest in 

cell behavior not present in fresh-frozen post-mortem brain tissue at detectible levels (at current 

sample sizes). Another possibility – one which is rejected by the work in this thesis – is that the 

historical focus of expression studies on cortical regions may have missed disease signatures 

present in other regions. One final possibility is that functional perturbation in these diseases acts 

much like genetic risk: multiple dysregulated causal pathways exist even in normal individuals, 

but behavioral patterns only start to appear with a sufficient amount of dysregulation. 

Regardless, what we have learned from systems biology so far is the low-hanging fruit: the most-

tightly co-regulated pathways, and those most severely altered in disease, that they can be 

identified in only dozens to hundreds of samples. As sample sizes grow, so too will out insight 

into the systems biology of neuropsychiatric disease. 

  

1.1a	Systems	biology	has	implicated	neuron-related	pathways	across	neuropsychiatric	disease	
	
	 Since the inception of high-throughput RNA screening in 1995 (Schena1995) the number 

of expression profiles of human brain tissues or cells has grown exponentially: over 140,000 

profiles are publicly available today and comparative disease studies now involve hundreds of 

individuals (Collado-Torres2019, Gandal2018a). Simultaneously, cohort sizes for both 

population-based (GWAS) studies and family-based studies have achieved substantial sample 

sizes (Sullivan2019). These data have supported multiple systems-biologic analyses aimed at 

identifying molecular pathways, cell types, and time-points involved in neuropsychiatric disease. 
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These studies have definitively linked both the pathology (e.g., observed differences in gene 

expression and histone modifications) and genetic risk (e.g., accumulation of risk-conferring 

mutations) of major neuropsychiatric disorders to genes expressed in cortical regions, to genes 

expressed in neurons, and to genes expressed in fetal and early postnatal time-points 

(Sullivan2019). 

 Contrastive studies such as differential expression analysis aim directly to identify 

molecular pathologies that differentiate brains from positively-diagnosed individuals from brains 

of normal individuals. The largest studies to date combine data from 8 prior studies with 

additional novel brain samples. Gandal et al. (shared pathology, Gandal2018a) looked across 

microarray and RNA-seq data in 407 brains representing 6 neuropsychiatric diseases and 293 

controls, and identified a consistent pathology across ASD, BP, and SCZ: down-regulation of a 

large set of neuronal genes, and concomitant up-regulation of astrocyte genes. These results were 

recently replicated in an independent collection of brains wherein a small synapse-related 

module shows down-regulation across ASD, SCZ, and BP, while an adherens-junction related 

module shows up-regulation across these disorders (Guan2019). Gandal et al. (transcriptome 

dysregulation, Gandal2018b) examined more than 2,000 brains representing ASD, BP, and SCZ; 

identifying thousands of molecular differences at both the gene and isoform level, providing a 

more nuanced view of neuronal and glial dysregulation: modules enriched for trans-synaptic 

signaling and ribosomal turnover appear up-regulated across all disorders, while axonal, ion 

channel, and mitochondrial modules are downregulated. A recent single-nucleus sequencing 

study found a more complicated signature1: each neuronal class shows more up-regulation than 

down-regulation in ASD brains in terms both of numbers of genes and median log-fold-change 

																																																								
1	Methods for within-cell-type single-nucleus differential expression have not yet been extensively evaluated, and 
the use of unsupervised methods for cell clustering may introduce inadvertent biases.  
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(with the exception of NRGN+ neurons; Velmeshev2019) suggesting that mRNA transport and 

maintenance in the cytoplasm may play an important role in defining tissue-level pathology. Yet 

in both cases, genes that compose the synapse or that are responsible for synaptic signaling were 

identified as differentially expressed in mature ASD brains. 

 Comparative in vitro studies have repeatedly established differences between normal and 

disease-model cultures in neurprogenitor cell (NPC) differentiation, neuronal migration, and 

neuronal maturation. Because it is impossible to obtain samples from developing ASD brains, 

comparative studies of developmental trajectories have all been in vitro. While these associations 

were initially observed in mouse models (Fukuda2005), they are recapitulated in recent studies 

of iPSC-derived cultures and neurospheres (Schafer2019, Lewis2019, DeRosa2018, 

Adhya2018). The observations for SCZ are different: noting a decrease in self-proliferation of 

NPCs, and defects in mature neurons, but no observation of deficits in maturation 

(Moslem2018). This may suggest that pathology may arise earlier in ASD than in SCZ, and even 

that early-developmental time-points may play a larger role in ASD than in SCZ. Gandal et al. 

(transcriptome dysregulation, Gandal2018b) examined more than 2,000 brains representing 

ASD, BP, and SCZ; identifying thousands of molecular differences at both the gene and isoform 

level 

 Integrative systems biology studies seek to identify and characterize functional pathways 

or networks in normal brains, and then use known genetic associations to identify those that 

carry more disease risk than would be expected by chance. This approach has been used to link 

ASD and SCZ risk to genomic regions that are accessible in mature neurons (Lake2017) and/or 

cortical plate (delaTorre2016), as well as to acetylated (active) histones within the cortex in fetal, 

infant, and adult brain (Li2018). Differential gene expression (e.g., between brain regions) can 



	 6	

also be used to identify likely important genes, regions, or cell types, and this approach has 

implicated neurons and adult cortical regions (where neurons are most abundant) across all 

neuropsychiatric disorders (Finucane2018), as well as both excitatory and inhibitory neurons in 

fetal brain for ASD and SCZ, and outer radial glia carrying outsized risk for SCZ and BP 

(Polioudakis2018). Finally, co-expression networks and pathways can be used to define where 

(e.g., what regions, cell types, or cell components) and when (e.g., early gestation, development, 

adult brain) risk genes act. These approaches have implicated genes involved in fetal and early-

postnatal development in autism (Parikshak2013), synaptic genes and neuronal differentiation in 

schizophrenia (Schijven2018), and whole-brain (high-fidelity) neuronal genes across all 

neuropsychiatric diseases (Graham2018).  

 In spite of the beauty of the methodologies that predominantly converge onto cortical 

tissue, neuronal cells, and synaptic genes, it is difficult to resist an ironic interpretation. It does, 

after all, seem a great deal of work to confirm that common psychological disorders have a 

neuronal basis – a hypothesis for which there is evidence dating back to the 19th century 

(Weinstein1954). Instead, I think this is a consequence of methods outpacing data, particularly 

data about gene ontology. The ontologies for which we have power to detect enrichment are very 

broad (e.g. “synapse”), many ontologies are incomplete, and many more have yet to be 

catalogued. Later in this thesis I will identify co-expression modules associated with activity-

dependent transcription and activity-dependent bulk endocytosis – a specific means of 

neurotransmitter-reuptake in highly-activated neurons. Notably, I identified this module prior to 

the time that gene sets corresponding to either process were published. Thus, the field of 

functional and integrative genomics has already reached a point where the information about 

certain gene relationships contained in expression data is not well represented in ontological 
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databases, such as Gene Ontology (Ashburner2000), especially with regards to fine grained 

aspects of neural function. As sample sizes increase, so too will the power to make fine-grained 

distinctions between gene sets, increasing this semantic gap – but at the same time empowering 

systems biology analyses to identify conclusively neurological pathways that drive and/or 

characterize disease etiology.  

	
1.1b	Brain	co-expression	network	analysis:	an	overview	and	15-year	summary	
	
 Co-expression network analysis seeks to infer biological relationships between genes on 

the basis of their co-expression in relevant cells or tissues. These relationships can be grouped 

into functional units – termed modules –which in turn can be statistically analyzed to determine 

their likely biological role in the system, potential for disease relevance, or shared transcriptional 

regulators (vanDam2017). From a purely statistical viewpoint, co-expression network analysis is 

a form of unsupervised learning that aims to identify gene clusters (i.e., modules) and extract 

meaningful features (e.g., module membership scores: “kME”). The dozens of algorithms to do 

this have been extensively reviewed or compared elsewhere (Allen2012, Karmideen2012, 

Jay2012, Ballousz2015, Mahfouz2016, Saelens2018, Jha2019), but for well-controlled data 

where the biological system is the major driver of measured expression, even fundamentally 

different approaches yield functionally equivalent results. Indeed, later in this thesis I will 

develop two methods that eschew the network concept altogether, yet provide substantively 

equivalent modules to the most widely-used method, weighted gene co-expression network 

analysis (WGCNA; Zhang2005). Therefore for this section, I treat any unsupervised learning 

method applied to genes using gene expression – from hierarchical clustering to latent Gaussian 

processes – as an instance of co-expression network analysis. 



	 8	

 Table 1 condenses the past 15 years of publications on co-expression and brain co-

expression into short summaries of highly-cited papers. This collection shows steady progress in 

four major areas: i) methodology, ii) defining molecular processes that appear altered between 

different populations of brains, iii) identifying brain-specific, brain-region-specific, and cell-type 

specific genes, and iv) linking genetic risk to tissues and cell types on the basis of expression. 

Over this period, sample sizes have increased by roughly a factor of 10: Oldham2008 analyzed 

tissues in N=24 (CBL) to N=67 (CTX) brains; while Ramasamy2014 and Mostafavi2018 profile 

N=134 and N=418 brains respectively. Single-cell and single-nucleus studies are just now 

reaching the sample sizes of early systems-biology studies of the brain: Velmeshev2019 (not in 

table 1 as it is too recent) contains profiling of N=15 ASD brains and N=16 normal brains.  

 Combined meta-analyses and mega-analyses play a significant role in re-evaluating and 

extending prior studies: Gandal2018 utilizes microarray and RNA-seq data from nearly all 

previously published comparative expression studies between normal and neuropsychiatric 

brains, refining the co-expression relationships identified in Garbett2008, Maycox2009, 

Voineagu2011, Parikshak2016, and other publications not included in Table 1. Notably the 

largest directly-measured driver of expression variance in this study is diagnosis (though 

unmeasured biological variance – e.g., cell type heterogeneity – likely explains more). This study 

identifies robust co-expression modules with differential expression across all disorders (CD1, 

CD5, CD10, CD13 – neuron, CD4 – astrocyte) differential expression specific to (or much 

stronger in) ASD (CD11 – microglia) and depression (CD2 – receptor and hormone activity), or 

to alcoholism and SCZ (CD11 – endothelial cells), and establishes that the degree of similarity of 

(differential) expression patterns between disorders mirrors the similarity of genetic risk profiles. 

Because the pairwise differential expression correlation so strongly relates to correlation of risk 
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profiles, this study provides the first clear evidence of molecular phenotypes that are co-heritable 

with neuropsychiatric disease, although additional work is needed to convert the per-gene log-

fold-change (log-FC) estimates into a phenotype that can be calculated in a single, 

undifferentiated and potentially unphenotyped cohort.  

 Kelley2018 (not in Table 1) is a meta-analysis of expression data from Ramasamy2014, 

Hawrylycz2016, and seven other studies not summarized by Table 1 (N=7221 samples from 

n=840 brains), with the aim of generating canonical cell type and neuronal subtype markers both 

within particular brain regions and across all brain regions, in order to reflect cell type diversity 

at the regional level. The genes identified by the simple approach of this study were entirely 

consistent with marker genes defined in single-cell sequencing studies, despite not using any 

single-cell data. A separate meta-analysis of five single-cell datasets identified novel genes that 

had not previously been associated with neurological cell types (McKenzie2018), and each of 

these genes are highly-ranked in the Kelly2018 resource for the appropriate cell type, which 

demonstrates that the bulk expression data from hundreds of brains can define marker genes at 

least as well as single-cell sequencing from tens of brains. These markers were then used to 

estimate cell type abundance within several CNS datasets, and establish that much of the age-

related change in observed gene expression derives from overall cell type composition; also, 

when controlling for cell type abundance in AD, a large number of neuron-specific genes are up-

regulated, suggesting that there are response pathways in neurons that are up-regulated in AD 

brains that have been missed, or identified as down-regulated, since neurons as a class are less 

abundant, and their markers thus under-expressed, in affected brains. It should be stressed that 

the cell type identity of a gene is not necessarily static, and may change as a result of disease, 



	 10	

which implies that there remains an under-appreciated role for disease-only co-expression 

network analysis. 

 Finally, advances in quantitative genetics – in particular partitioned heritability tools such 

as GCTA (Yang2011) and LD Score Regression (Bulik-Sullivan2015) or meta-analysis tools 

such as MAGMA (deLeeuw2015) or TWAS (Gamazon2015) – have prompted a wave of 

integrative analyses aimed at attributing genetic risk to tissues, cell-types, pathways, and to 

single genes. These approaches will be discussed in greater depth in the next section. One 

notable observation from Fromer2016, Parikshak2016, and Gandal2018 is that a large fraction of 

the co-expression signatures that show differences between cases and control also account for a 

disproportionate amount of genetic risk. It is important to stress that the expression differences 

that result from a disease need not be the same as the dysregulation that leads to the disease. The 

fact that genetic risk aggregates disproportionately in these gene sets suggests that they may have 

role both in the development of the disease as well as in its presentation. These modules are 

therefore the strongest candidates to investigate: should they give rise to measurable and 

heritable molecular signatures, they would form the basis for neuropsychiatric endophenotypes. 

The fundamental challenge remaining in the systems biology approach to neuropsychiatric 

disease is to translate observed molecular differences into clear, measurable, disease co-heritable 

endophenotypes. The recent publications cited in this section suggest strongly that this goal is 

within reach, and that the remaining work is largely technical: to distill disease-related and cell-

related molecular signatures into a single, easily-calculable measure that i) distinguishes normal 

brains from diseased brains, ii) tracks with disease severity, and iii) is heritable within control 

samples alone. Recent work in our group has made progress on component (ii) by identifying 

multi-omic signatures that appear to correlate with ASD symptom severity. There is some 
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evidence that (iii) is achievable in that module eigengenes are known to be heritable (Leduc2012, 

Scott-Boyer2013), and Gandal2018b identifies a number of genes whose expression appears to 

correlate with polygenic risk for ASD or SCZ. Simultaneously, the field continues to progress 

with increasing sample sizes and new sources of data such as single-cell sequencing, enabling 

the refinement of broadly neuronal signatures into specific disrupted processes such as calcium 

gradient maintenance or bulk endocytosis. 
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Table	1	Selection	and	summary	of	highly-cited	brain	systems	biology	papers	over	the	past	15	years	

Reference Year Title Cit/y Summary 

Caceres2003 2003 Elevated gene expression 
levels distinguish human 
from non-human primate 
brains 

31 Neuronal, cell-growth-related, and chaperone 
genes are up-regulated in humans compared 
to NHPs 

Lee2004 2004 Coexpression analysis of 
human genes across 
many microarray data 
sets 

50 Reproducible co-expression across many 
tissues occurs within core pathways: 
transcription, translation, cell division, 
metabolism, cell adhesion, and immunity 

Subramanian2005 2005 Gene set enrichment 
analysis: a knowledge-
based approach for 
interpreting genome-
wide expression profiles 

1214 Definition of efficient and rigorous statistical 
methodology for gene set enrichment 

Zhang2005 2005 A general framework for 
weighted gene co-
expression network 
analysis 

173 Methodology of co-expression network 
construction, hub genes, and soft 
memberships 

Oldham2006 2006 Conservation and 
evolution of gene 
coexpression networks in 
human and chimpanzee 
brains 

38 Cross-tissue co-expression (brain patterning) 
differs between human and chimp. Cortical 
and striatal co-expression modules, reflecting 
energy metabolism, mitochnondrial respirtory 
chain, and synaptic genes, are more diverged 
between human and chimp than are cerebellar 
and white-matter modules 

Carlson2006 2006 Gene connectivity, 
function, and sequence 
conservation: predictions 
from modular yeast co-
expression networks 

24 Highly-connected genes across three yeast co-
expression networks are more likely to be 
evolutionarily conserved, and more likely to 
be essential 

Lein2007 2007 Genome-wide atlas of 
gene expression in the 
adult mouse brain 

265 Characterizes regional mRNA expression 
patterning, identifies cell-upregulated genes 
for major cell classes, and dendrite-
transported mRNA species. Establishes coarse 
correlation between gross anatomy (brain 
regions) and molecular anatomy (expression 
measured within region) 

Bansal2007 2007 How to infer gene 
networks from 
expression profiles 

74 Review and comparison of methods for co-
expression network inference and analysis. 
Notably finds that agreement between 
methods (consensus) for a co-expression edge 
does not increase the likelihood of the edge 
being "true." 

Oldham2008 2007 Functional organization 
of the transcriptome in 
human brain 

48 Establishes cellular heterogeneity as driver of 
co-expression modules; shows modules are 
re-producible across array studies; identifies 
shared modules across CBL, CDT, CTX; 
links modules to cell-types, neurogenesis, and 
sex 

Miller2008 2008 A systems level analysis 
of transcriptional 

28 Construction of unsupervised and supervised 
(pre-selected via trait correlation) modules in 
AD hippocampus and normal aging cortex; 
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changes in Alzheimer's 
disease and normal aging 

identifying commonalities, and also 
implicating mitochondrial and 
oligodendrocyte dysfunction in AD 

Garbett2008 2008 Immune transcriptome 
alterations in the 
temporal cortex of 
subjects with autism 

26 Small-cohort comparative study of expression 
in ASD vs normal brains, implicating 
inflammatory and autoimmune involvement 
in characterising ASD brains. Differentially 
expressed genes contain strong markers of 
astrocytes and microglia. 

Johnson2009 2009 Functional and 
evolutionary insights into 
human brain 
development through 
global transcriptome 
analysis 

44 Expression in mid-fetal (18W, 19W, 21W, 
23W) brains across 5 regions. Identification 
of genes representing early brain patterning; 
observation that sequences under accelerated 
evolution in the human lineage fall 
disproportionately near to these genes. 

Dobrin2009 2009 Multi-tissue 
coexpression networks 
reveal unexpected 
subnetworks associated 
with disease 

13 Joint network of cross-tissue and within tissue 
expression correlation (adipose, 
hypothalamus; nodes are tissue-gene pairs) in 
a mouse obesity model identifies gene 
clusters associated with feeding behaviors, 
circadian rhythm, leukotrine metabolism, heat 
shock, and ion transport as associated with 
body weight. 

Maycox2009 2009 Analysis of gene 
expression in two large 
schizophrenia cohorts 
identifies multiple 
changes associated with 
nerve terminal function 

13 Analysis of cortical differential expression in 
BA10 of two cohorts of SCZ and control. 
Consistent differential-expression (i.e. 
replicated in the other cohort) observed in 
synaptic vesicle function and signal 
transduction. 

Miller2010 2010 Divergence of human 
and mouse brain 
transcriptome highlights 
Alzheimer disease 
pathways 

34 Consensus networks of 18 human brain-tissue 
expression datasets (regardless of region or 
disease status) compared to 17 mouse datasets 
(regardless of region or strain). Gross 
expression patterning mouse co-expression is 
conserved in humans, human-specific co-
expression identified. One human-specific 
module overlaps AD-progression genes, 
PSEN1 and MOG show human-specific 
properties. 

Torkamani2010 2010 Coexpression network 
analysis of neural tissue 
reveals perturbations in 
developmental processes 
in schizophrenia 

13 Differential expression and differential co-
expression analysis (using module overlap) in 
SCZ and control brain. All SCZ modules 
significantly overlap CTL modules suggesting 
no dysregulation at the level of major 
modules. 5 modules (OxPhos, neurogenesis, 
neuron development, chromatin, and synaptic 
transmission) enrich for SCZ differential 
expression. Several modules which in 
controls decrease with age fail to do so in 
SCZ brains. 

Voineagu2011 2011 Transcriptomic analysis 
of autistic brain reveals 
convergent molecular 
pathology 

139 Profiling of 29 ASD/29 CTL brains across; 2 
CTX regions, 1 CBL. Identifies synaptic and 
immune modules differentially expressed 
between ASD and CTL; and identifies 
cortical patterning modules differential in 
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BA9 vs BA41 in CTL but not in ASD, 
implicating impaired cortical patterning. 

Davies2012 2012 Functional annotation of 
the human brain 
methylome identifies 
tissue-specific epigenetic 
variation across brain 
and blood 

67 Methylation profiling of 6 brain regions and 
blood. The most extreme tissue methylation 
differences are mirrored by expression 
differences; brain/blood differences 
concentrate in nervous system development 
pathways. Cortical differences enrich for 
neurogenesis, neuronal function, and 
forebrain development. Co-methylation 
summarizes tissue-specific methylation 
patterns. 

Ponomarev2012 2012 Gene coexpression 
networks in human brain 
identify epigenetic 
modifications in alcohol 
dependence 

35 Profiling of 17 alcoholic and 15 control 
brains: AMY and CTX; H3K4me measured in 
CTX for 4 cases 4 controls. Co-expression 
networks and meta-networks corresponding to 
major cell classes and organelles (ribosome, 
mitochondria, nucleus). GC-rich modules 
(splicing) appear up-regulated in chronic 
alcoholism, and GC-poor modules (zinc 
finger, ubiquitination) down-regulated. 

Konopka2012 2012 Human-specific 
transcriptional networks 
in the brain 

25 Digital gene expression (3' profiling) of CDT, 
HIP, and CTX (frontal pole) in human, 
chimp, and macaque; meta-analyzed with 
prior array-based studies. Hundreds of genes 
show increased expression in humans within 
each region, with those upregulated in CTX 
enriched for neuron-related ontologies. 
Identifies primate-preserved co-expression 
modules (general CNS development) and 
human-specific co-expression modules, 
including a CLOCK and a FOXP2 module, 
implicating human-specific components of 
circadian rhythm and language pathways. 

Parikshak2013 2013 Integrative functional 
genomic analyses 
implicate specific 
molecular pathways and 
circuits in autism 

82 Co-expression networks built from RNA-seq 
expression across brain development (8 PCW 
to 12 Mo post-birth) to identify 
developmental trajectories. 17 modules 
identified, of which 5, M2, M3, M13, M16, 
M17, enrich for ASD candidate genes or de 
novo PTVs. M2/M3 contain early-expressed 
genes related to chromatin modification and 
transcriptional regulation; M3 is particularly 
enriched in VZ and SVZ; M13/16/17 are late-
expressed and implicate neuronal maturation 
and synapse production. 

Willsey2013 2013 Coexpression networks 
implicate human midfetal 
deep cortical projection 
neurons in the 
pathogenesis of autism 

74 Combined analysis of 1,043+56 ASD families 
(559+56 quartets, 444 trios) to identify 
dnLOF genes. Uses developmental expression 
to build bipartite networks using 9 confident 
dnLOF "seed" genes. Of 52 modules, 4 
enriched for likely ASD genes, related to deep 
layer glutamatergic projection neurons and 
the inner cortical plate. 
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Miller2014 2014 Transcriptional 
landscape of the prenatal 
human brain 

98 Atlas of microarray-profiled and ISH gene 
expression across 300 regions from 4 fetal 
brains (2 15-16 PCW, 2 21PCS). Regions 
follow clear spatial expression patterns. 
WGCNA used to build brain-wide and 
germinal layer networks, identifying spatial 
and temporal patterning modules, as well as 
modules corresponding to fetal cell types; 
some of which overlap differentially-
expressed genes in adult NPD brains. 

Ramasamy2014 2014 Genetic variability in the 
regulation of gene 
expression in ten regions 
of the human brain 

63 eQTL study of 134 brains within 10 brain 
regions, identifying tens of thousands of 
region-specific and cross-regional eQTLs; 
identified cases where the target gene of a cis-
QTL appears to swithc between regions; and 
identified established neurodegerative GWAS 
hits that are QTLs for one specific gene in 
their region.   

Goyal2014 2014 Aerobic glycolysis in the 
human brain is 
associated with 
development and 
neotenous gene 
expression 

32 Resting FMRI data meta-analyzed and 
condensed into regional Aerobic Glycolisis 
score. BrainSpan developmental expression 
data to identify signatures of brain 
development ("neoteny scores"). Neoteny 
then computed within regions of the adult 
human brain atlas, and find strong correlation 
with AG scores; implying a continuous 
process of synapse growth and formation in 
the adult brain, predominantly in cortex. 

Camp2015 2015 Human cerebral 
organoids recapitulate 
gene expression 
programs of fetal 
neocortex development 

61 Single-cell sequencing in fetal neocortex  and 
in iPSC-derived neurospheres. Cross-cellular 
expression patterns are largely similar, with 
most differences attributable to compounds 
present in the culture serum. Lineage 
trajectories are highly similar between NC 
and organoid. 

Madabushi2015 2015 Activity-induced DNA 
breaks govern the 
expression of neuronal 
early-response genes 

59 Initial observation that double-strand breaks 
induce expression of early-response genes 
was confirmed with Crispr-Cas9. Inihibition 
of DSB results in persistent early-response 
expression and no up-regulation; and Top2B 
knockdown precludes early-response gene 
expression, which is rescuable via targeted 
DSBs to the promoters. 

Mo2015 2015 Epigenomic signatures of 
neuronal diversity in the 
mammalian brain 

56 Single-cell methylation and RNA expression 
profiling in tagged nuclei (PV, Exc, VIP, 
mouse);  identifying cell-specific patterns of 
non-CG hypomethylation that correspond to 
cell-specific expression; with stronger 
correlation than CG methylation or chromatin 
accessibility. ATAC-seq suggests TF-TF 
network rewiritng within neuronal subtypes 

Prudencio2015 2015 Distinct brain 
transcriptome profiles in 
C9orf72-associated and 
sporadic ALS 

37 Comparative RNA-Seq in cerebellum and 
cortex of C9orf72-expansion ALS (N=8), 
sporadic ALS (n=10) and control (N=8); 
identifying hundreds of differentially-
expressed and differentially-spliced genes 
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between groups. Differential modules 
implicate rRNA processing, neurons, and 
protein transport; and alternative 
polyadenylation is a major source of 
differential alternative splicing. 

Fromer2016 2016 Gene expression 
elucidates functional 
impact of polygenic risk 
for schizophrenia 

90 Comparative RNA-seq in DLPFC from 
N=258 SCZ subjects and N=279 controls 
used to identify differential expression, 
expression QTLs, and co-expression 
networks. One control module, M2c, shows 
enrichment for differentially-expressed genes 
and prior SCZ genetic associations; and 
appears to lose network connectivity in SCZ 
samples. This module relates to neuronal 
post-synaptic densities and activity-related 
cytoskeleton. 

Lake2016 2016 Neuronal subtypes and 
diversity revealed by 
single-nucleus RNA 
sequencing of the human 
brain 

83 Droplet-based RNA-seq of single NeuN+ 
nuclei, identifying 16 clusters which differ in 
the expression levels of canonical neuronal 
and cortical layer markers; among hundreds 
of newly-implicated marker genes. 

Parikshak2016 2016 Genome-wide changes in 
lncRNA, splicing, and 
regional gene expression 
patterns in autism 

51 Comparative RNA-seq in cerebellum and 
cortex of ASD, Dup15q, and normal post-
mortem brains, identifying differential 
expression and splicing. Co-expression 
networks implicate neuronal, astrocyte, and 
microglial patterns as differentially expressed, 
and within neurons implicating 
development/differentiation and synaptic 
transmission pathways. 

Hawrylycz2016 2016 Canonical genetic 
signatures of the adult 
human brain 

46 RNA-sequencing from 132 brain structures in 
6 individuals; identifies ~8500 genes with 
consistent inter-region differences 
("differential stability"); further grouped by 
WGCNA into 32 cross-regional co-expression 
modules, containing a broad distribution of 
cell type markers. Preservation analysis with 
mouse shows that many neuronal patterning 
modules are preserved, while glial patterning 
modules are not. 

Bakken2016 2016 A comprehensive 
transcriptional map of 
primate brain 
development 

40 Transcriptional atlas of Rhesus brain across 
developmental and aging timepoints, with 
corresponding MRI and ISH data. Shows that 
developmental processes (synaptogenesis, 
myelination) are slow-activating but sharply 
deactivating, and vary in onset and length 
across regions, and that cortical layer 
patterning shifts over time points. WGCNA 
groups expression patterns into modules that 
are expressed early, but persist well into 
adulthood 

Cembrowski2016 2016 Spatial gene-expression 
gradients underlie 
prominent heterogeneity 
of CA1 pyramidal 
neurons 

32 RNA-sequencing of CA1 hippocamal 
neurons, identifying spatial heterogeneity of 
transcription (primarily dorsal-ventral but also 
proximal-distal and superficial-deep); 
implying that spatial or connectivity cues may 
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resolve CA1 neurons into subtypes, or drive 
within-type transcriptional heterogeneity. 
Several canonical binary marker genes 
showed gradients along one or more of these 
axes. 

Gosselin2017 2017 An environment-
dependent transcriptional 
network specifies human 
microglia identity 

91 RNA-sequencing of purified human and 
mouse microglia ex-vivo and in-vitro; 
demonstrating significant transcriptomic 
changes due to in vitro culture conditions, 
impacting >50% of AD-associated genes. 
These differences appear to be due to the loss 
of brain-microenvironment signals, including 
TGF-beta. A wide range of culture conditions 
nevertheless failed to recapitulate ex-vivo 
transcriptional signatures. 

Luo2017 2017 Single-cell methylomes 
identify neuronal 
subtypes and regulatory 
elements in mammalian 
cortex 

47 Single-cell methylation profiling of NeuN+ 
neurons using hypomethylation at marker 
genes to annotate 21 layer-, type-, and 
subtype- human neuronal clusters. Neuronal 
methylation is broadly conserved between 
human and mouse neurons, despite a slightly 
larger number of human clusters; with 
interneurons showing higher cross-species 
methylation conservation than excitatory 
neurons. 

Mancuso2017 2017 Integrating gene 
expression with summary 
association statistics to 
identify genes associated 
with 30 complex traits 

33 TWAS study across 30 traits using GTEx 
gene expression data for weights (all tissues 
separately, multiple testing). Identifies 113 
genes in a GWAS peak, and 24 genes not in a 
GWAS peak, that associate with SCZ. 

Su2017 2017 Neuronal activity 
modifies the chromatin 
accessibility landscape in 
the adult brain 

28 ATAC-seq and RNA-seq profiling of mouse 
granule neurons prior to and following 
electrical stimulation; identifying ~200,000 
differences in chromatin accessibility between 
states; and ~1,200 differentially expressed 
genes. The chromatin differences appeared 
coherently to impact enhancer regions of 
differentially-expressed genes, and the newly-
opened regions enriched for c-Fos binding 
motifs; and c-Fos knockdown significantly 
ablated activity-dependent chromatin and 
expression differences. 

Galatro2017 2017 Transcriptomic analysis 
of purified human 
cortical microglia reveals 
age-associated changes 

25 RNA-seq of purified microglia from 39 
normal donors spanning a large adult age 
range, identifying ~500 genes that change in 
microglia with age; with many genes involved 
in actin dynamics being down-regulated, 
while adhesion, axonal guidance, and surface 
receptor genes showing mixed- up and down- 
regulation. 

Nowakowski2017 2017 Spatiotemporal gene 
expression trajectories 
reveal developmental 
hierarchies of the human 
cortex 

23 Single-cell RNA-seq of developing 
telencephalon; identifying cell types along the 
full timecourse from progenitor cells to 
postmitotic neurons. Identifies programs of 
radial glia and neuronal maturation, and 
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emergence of cortical patterning signatures in 
maturing neurons. 

Sousa2017 2017 Molecular and cellular 
reorganization of neural 
circuits in the human 
lineage 

20 Profiling of 11 cortical regions, HIP, AMY, 
STR, MD, and CBC in 6 humans, 5 
chimpanzees, 5 macaques. Identifies 
thousands of human up-regulated genes, both 
across and specific to tissues. Identifies TH+ 
interneurons as present in human and 
macaque yet absent from chimp cortex. 
Differences in cell type proportions, as well 
as within-cell-type differences on 
neurotransmitter gene expression, appear to 
drive species differences. 

Gandal2018 2018 Shared molecular 
neuropathology across 
major psychiatric 
disorders parallels 
polygenic overlap 

158 Meta-analysis of multiple comparative 
microarray and RNA-seq studies of 
neuropsychiatric disease, establishing that the 
degree of shared transcriptional signature 
mirrors the degree of co-heritability (high for 
ASD/SCZ, lower for others). Co-expression 
networks built from these data reflect 
differences in expression across all major cell 
types, with differences in neuronal modules 
shared across neuropsychiatric disease (but 
not alcoholism), and differenees in a 
microglia module apparently specific to ASD. 

Finucane2018 2018 Heritability enrichment 
of specifically expressed 
genes identifies disease-
relevant tissues and cell 
types 

76 LD-score regression analysis of tissue-
upregulated genes (top 10% one-vs-rest) for 
48 diseases and traits. 34/48 show enrichment 
for at least one tissue-upregulated gene set; 
SCZ and BMI show enrichment for nearly all 
CNS tissues. SCZ and BP show enrichment in 
cortex-upregulated and neuron-upregulated 
genes (compared to the rest of the brain, and 
other cell types, respectively). 

Lake2018 2018 Integrative single-cell 
analysis of 
transcriptional and 
epigenetic states in the 
human adult brain 

75 Single-cell RNA-seq and chromatin 
accessibility mapping from nuclei in visual 
cortex, frontal cortex, and cerebellum; 
identifying the standard array of excitatory 
and inhibitory cell types classified by 
expression of subtype markers (SST, PVALB, 
etc). Known and nominal GWAS associations 
are enriched in open chromatin for excitatory 
neurons (SCZ, ASD, BP), microglia (BD, 
MS, AD), and endothelial cells (MS) 

Barbeira2018 2018 Exploring the phenotypic 
consequences of tissue 
specific gene expression 
variation inferred from 
GWAS summary 
statistics 

59 Application of gene expression mediation 
analysis to 44 tissues and >100 phenotypes, 
with hundreds of genes implicated in SCZ by 
virtue of expression mediation in some tissue 
(possibly not brain). 

Gandal2018b 2018 Transcriptome-wide 
isoform-level 
dysregulation in ASD, 
schizophrenia, and 
bipolar disorder 

41 Comparative RNA-seq in prefrontal cortex 
across ASD, SCZ, BP, and controls; parsing 
differential expression into gene, isoform, and 
lncRNA; showing that isoform-level 
dysregulation encompasses a wider variety of 
cell types and processes than does gene-level 
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dysregulation. Previously-observed 
correlations in differential expression are 
recapitulated at the splicing event level. 
Isoform-level and integrative modules 
identify indepentent RBFOX1 modules which 
enrich for different disease signatures and 
cellular components; and distinct isoform 
switching events between neuropsychiatric 
diseases. 

Mostafavi2018 2018 A molecular network of 
the aging human brain 
provides insights into the 
pathology and cognitive 
decline of Alzheimer's 
disease 

31 RNA-sequencing of post-mortem cortex from 
longitudinal study of aging and cognitive 
decline. Co-expression networks used to 
identify 47 modules, several of which show 
differential expression in AD, and m109 as 
being associated with cognitive decline; 
knockdown of important hub-genes in this 
module reduces extracellular AB42 levels. 

Li2018 2018 Integrative functional 
genomic analysis of 
human brain 
development and 
neuropsychiatric risks 

23 Chromatin profiling, methylation profiling, 
bulk tissue and single-cell RNA-seq across 
the human brain lifespan (8PCW-64PY) and 6 
brain regions. Analysis focuses on spatio-
temporal gene expression differences, 
summarized by 75 co-expression modules, of 
which 10 enrich for brain-related traits or 
disorders, with prenatal-specific open 
chromatin most strongly enriching for 
neuropsychiatric disease (SCZ,BP) 
heritability. Cell type decomposition 
identifies expression trajectories of distinct 
fetal and adult excitatory and inhibitory 
neurons; and shows that oligodendrocyte 
growth and/or development occurs at different 
timepoints in different brain regions. 

Tyssowski2018 2018 Different neuronal 
activity patterns induce 
different gene expression 
programs 

22 Capture RNA-sequencing (257 activity-
related genes) of neuronal cultures, induced 
with brief or sustained activity. Brief and 
sustained activity resulted in different patterns 
of expression of ARGs, with immediate-
response, delayed-response, and sustained-
response genes. Follow-up enhancer RNA-seq 
identifies rapid and delayed enhancers, and 
the induction of these rapid enhancers 
requires the MAPK/ERK pathway. 

	
	
	
	
1.2 Heritability	and	etiology	of	complex	neuropsychiatric	disorders	
	

Neuropsychiatric genetics seeks to identify genetic mutations that confer risk for one or more 

neuropsychiatric disorders. This objective is motivated by a simple observation: two relatives are 
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far more likely to both suffer from neuropsychiatric disease than two non-relatives. This increase 

– the relative risk: 50-100 for ASD, 7-10 for BP and SCZ, and 2-3 for MDD (Schultze2018) 

– provides evidence that natural genetic differences are partly responsible for the epidemiology 

of neuropsychiatric disease.  

There are a number of reviews on the history of genetic studies of neuropsychiatric disease 

from early linkage studies through modern population studies (Sullivan2012, Malhotra2012, 

Huguet2013, Gratten2014, Geschwind2015, Bray2018, Sullivan2019). These provide a historical 

perspective on genetic findings and the role that particular mutation classes (e.g. large structural 

variants or de novo mutations) have played in the genetic understanding of neuropsychiatric 

disorders. The literature relevant to this thesis concerns genetic architecture: identifying 

properties – functional or population-genetic – of genetic mutations that correspond to 

neuropsychiatric risk. The collection of methods for interrogating genetic architecture fall under 

the loose heading of heritability partitioning. Such methods probe mutational classes by 

comparing the fraction of total mutations they represent to the fraction of total heritability that 

they explain – in effect asking whether the mutational class confers an outsized proportion of 

risk liability. These approaches are used in six of the fifteen papers in Table 1 since 2017, and 

are becoming standard in genetic association studies. 

 Chapter 3 of this thesis applies these methods to expression data drawn from the human 

brain in order to evaluate the regional or cell-type specificity of genetic risk. Chapter 4 is 

concerned with incorporating trans-regulation and co-expression networks into models of genetic 

architecture. These chapters presume a background knowledge of these methods and the 

statistical models that underlie them. To that end, the remainder of this chapter provides a brief 
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review of heritability, polygenic risk, heritability partitioning, and the polygenic and omnigenic 

models of genetic architecture. 

	
1.2a	Heritability	and	genetic	complexity	of	common	neuropsychiatric	disease	
	
	 Genetic heritability (H2 or h2) is defined as the proportion of trait variance that can be 

attributed to genetic factors. This single number characterizes the propensity for a disease to run 

in families. The distinction between H2 and h2 is a classical one: H2 (“broad-sense heritability”) 

represents an ideal where the unknown (potentially nonlinear) mapping function from mutations 

to phenotype is known, and h2 (“narrow-sense heritability”) represents the case where mutations 

are treated linearly (“additively”). Importantly, both H2 and h2 can be estimated from examining 

disease occurrence within many families, without any direct knowledge of underlying mutations. 

This family-based approach has provided estimates as high as 90% for ASD, 80% for SCZ, 65% 

for BP, and 30% for MDD (Schultze2018). It should be noted that disease heritability may differ 

between populations due to both genetic and environmental differences: a recent study noted a 

20% difference in Type-2 Diabetes heritability between US and European cohorts (72% 

EUR+AUS, 52% US; Avery2019), demonstrating that the concept of “the” heritability of a 

common disease often belies the underlying environmental and genetic complexity. 

 One of the many goals of medical genetics is to identify the specific variant loci that give 

rise to genetic diseases. Modern genetic studies can measure, directly (sequencing) or indirectly 

(imputation), more than 20 million variant alleles in the human population (Vergara2018). 

Genome-wide association studies (GWAS) perform these measurements in large cohorts of 

affected and normal individuals – modern studies of neuropsychiatric disorders range from 

18,381 (ASD) to over 200,000 (MDD) (Sullivan2019) – to identify genetic variants that are more 

common in the affected population. These studies have found dozens to hundreds of risk-
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conferring variants: from 5 in ASD to 144 in SCZ. Yet, these mutations represent a tiny fraction 

of the total risk, implying that there are thousands of contributing genes and mutations for these 

disorders.  

 Genetic complexity is a feature of polygenic diseases. Figure 1 – a re-creation of figure 1 

from Wray2018 with parameters consistent with ASD and SCZ: h2 = 75% and prevalence 1% 

– illustrates precisely the challenges posed by genetic complexity: i) The impact of the average 

causal mutation is very small, making causal mutations difficult to identify in practice; ii) 

Phenotypically normal individuals carry a wide range of genetic liability – one that overlaps the 

affected population; iii) Affected individuals each carry a unique pattern of mutations, making it 

impossible to study any particular mutation in isolation. One response to these challenges has 

been to search for similarities – such as pathways, protein-protein interactions, or co-regulation 

– between genes harboring genetic mutations that confer disease risk. 

 Genetic architecture describes the kinds of mutations or genes that drive the heritability 

of a disease. For instance, a disease may have a “rare variant” genetic architecture, where risk is 

conferred predominantly by rare variants of large effect size, in contrast to a “common variant” 

architecture, where most risk is conferred by many relatively common variants. For most studied 

traits (Schoech2019), including neuropsychiatric disease (Gaugler2014), rare variants have 

stronger individual effects than common variants – but due to their low frequency, they explain 

less heritability than common variants. Similarly, one can demonstrate that variants that alter 

gene expression levels, termed expression quantitative trait loci (“eQTL”), confer more 

heritability than all other types of variants across a wide variety of diseases and traits 

(Hormozdiari2018, Gamazon2019). These approaches have been adapted to search for functional 

genetic architecture: specific regions of the genome that are relevant to a biological function and 
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carry significant genetic risk for a given disease. For instance, Finucane2018 and Lake2018 from 

Table 1 respectively show that mutations near neuron-expressed genes, and mutations in 

neuronal open-chromatin regions, harbor a disproportionate amount of SCZ heritability.  
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Figure	1.1:	Genetic	complexity	under	a	polygenic	model.	

Simulation of polygenic architecture for a high-heritability trait, illustrating the complexity of genetic heterogeneity. 
Each box represents 100 causal loci in a genome and each square represents a genotype (blue for 1 risk allele, red 
for 2). Numbers at the top count the total number of risk alleles, and in parenthesis, the total number of risk alleles in 
the bottom row. Notably, non-diseased individuals carry many risk alleles. While the number of risk alleles is lower, 
on average, for control individuals, the distributions overlap, demonstrating the role that variant effect size and 
environmental effects have in complicating causal genetic factors. 
	
1.2b	Quantitative	genetics:	partitioning	risk	into	regulatory	elements	and	cell	types	
	

Functional genetic architecture can be investigated by the general method of partitioned 

heritability (Yang2011). Figure 1 summarizes the intuition behind heritability (or risk) 

partitioning. In this simulation, I assigned the last row of variants 10-fold higher disease risk than 

each of the first 9 rows, as though they represented variation in a fundamental disease pathway. 

There is a greater (average) difference in disease liability between the case and control 

Case Genomes

Control Genomes

29 (6) 33 (5) 27 (7) 24 (6) 23 (7) 26 (6)

21 (7) 28 (6) 25 (6) 23 (6) 22 (6) 27 (6)

17 (1) 16 (2) 23 (4) 11 (0) 18 (2) 23 (2)

15 (3) 20 (1) 23 (4) 22 (0) 14 (0) 16 (3)

29 (6) 33 (5) 27 (7) 24 (6) 23 (7) 26 (6)

21 (7) 28 (6) 25 (6) 23 (6) 22 (6) 27 (6)

17 (1) 16 (2) 23 (4) 11 (0) 18 (2) 23 (2)

15 (3) 20 (1) 23 (4) 22 (0) 14 (0) 16 (3)
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population in this row than for all other rows. The approach for partitioned heritability follows 

the same intuition: calculate the average liability difference between cases and controls for a 

given set of variants, and compare it to the variants not in the set. Because Chapter 4 utilizes and 

extends these models to investigate the genetic architecture of neuropsychiatric disease, the 

remainder of this chapter focuses on the prerequisite technical background.  

The statistical model for disease genetics is the liability-scale linear model: 

𝑦 " = 𝛼 + 𝑋𝛽 + 	𝜀 

Where y(l) is the disease liability2 (a vector over all observed individuals), α is the average 

population liability, β are the per-variant risk coefficients (a vector over all observed mutations), 

and X is the genomic matrix, with each row containing the observed genotypes (0, 1, or 2) for 

each mutation in a single individual – normalized to 0 mean and unit variance. To map a 

previous concept into this model: a trait is complex (or polygenic) if a large number (more than 

0.1%) of the entries of β are non-zero.  

 The full vector of variant effects, β, is only estimable when there are more observed 

individuals than there are variants.3 Because of this, genetic associations use the “marginal” 

model, focusing only on a single variant: 

𝑦 " = 𝛼 + 𝛽*𝑥* + 	𝜀 

This treats each column of X (each variant) independently. Fitting this model to data produces a 

value, zj, called the “marginal test statistic” for each variant. For sufficiently large (effective) 

sample sizes (n below), this statistic relates to the correlation: 

																																																								
2	The liability is in general never observed; but instead a yes/no disease outcome with P[yes] increasing 
monotonically with y(l). The derivations for y(l) apply to binary outcome, but are more involved and will contain 
multiplicative terms dependent on the form of P. 
3	It is true that constrained likelihood and Bayesian estimation result in tractable models – but for efficient 
estimation the effective sample size should still exceed the number of non-zero entries of β.		
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𝑧*	~	𝑁 cor 𝑦 " , 𝑥* 𝑛, 1  

Variants highly correlated to disease liability take on large values, while those showing no 

correlation to liability have small values. These z-statistics are the primary output of a GWAS 

study, and are commonly made publicly available as downloadable summary statistics files. 

Absolute Z-scores above a certain value (typically about 5.5; Johnson2010) pass the statistical 

threshold of association, thereby becoming known risk loci for the disease. 

 The goal of a functional genetic architecture screen is to identify patterns within these Z-

scores by aggregating them into genetic pathways. The simplest of these approaches is gene set 

enrichment analysis (GSEA), which I apply in chapter 3. GSEA tests whether the average Z-

score is higher in one pathway versus the background. Though conceptually simple, 

implementations such as MAGMA (deLeeuw2015), MAGENTA (Segre2010), and GSA-SNP2 

(Yoon2018) use variations on this general idea to improve sensitivity and specificity. An 

implementation of GSEA defines three items: (i) How to aggregate contiguous variants within a 

single interval to a single score (variant aggregation), (ii) How to aggregate multiple intervals 

within a set to a single score (interval aggregation), and (iii) How to determine significance 

(significance). Chaining these steps together provides enrichment statistics and p-values for a 

hypothesized genetic pathway. Table 2 provides these implementation details for the above 

algorithms. 

 LD score regression is an alternative approach where the correlation between genotypes 

(known as linkage disequilibrium: “LD”) is leveraged to partition risk across genomic intervals. 

Because the Z-scores from the GWAS marginal consider the impact of a single variant alone, 

two variants with a high correlation will necessarily have similar Z-scores. In cases where 

genomic risk is widespread – e.g., polygenic diseases variants with high total correlation will 
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tend to have extreme Z-scores. In fact, there is a linear relationship between the sum of a 

variant’s r2 values to all other variants (termed the “LD score”), and the slope of that line is the 

average risk. By computing the LD score with respect to a set of variants – rather than all 

variants – the average risk within that set can be computed, and contrasted to other sets. Letting 

C1, C2, … denote the variant sets, then: 

𝐸 𝑧*6 = 	𝑁 𝜏8ℓ 𝑗, 𝐶 + 𝑀
8

 

ℓ 𝑗, 𝐶 = 	 cor(𝑥*, 𝑥>)6
>∈8

 

where M is an arbitrary constant and N is the number of samples. In this approach, every variant 

is associated with two values: its squared Z-score zj
2 and its LD-score ℓ(j,C). The slope between 

these two values is directly proportional to the average disease risk conferred by a variant within 

the set C. In this way, risk can be partitioned and evaluated across different variant sets. 

 

Algorithm Naïve MAGENTA MAGMA GSA-SNP2 

Variant aggregation mean(Z2) min(p) – lm(N,d) Fisher’s method* min(p) – C(N) 

Interval aggregation 𝜇BCD − 𝜇F""
𝜎F""

𝑛BCD # intervals in top 5% 

of all intervals 

None 𝜇BCD − 𝜇F""
𝜎F""∗

𝑛BCD 

Significance Standard normal Matched permutation Linear Mixed Model Standard normal 

Table	2	Implementations	of	gene	set	enrichment	analysis	(GSEA).		

The Naïve approach to variant aggregation takes the mean of chi-square statistics over an interval, which 
can be deflated if the interval is large. MAGENTA and GSA-SNP2 instead take the log-minimum p-value; and 
adjust this value by the expected log-p value for intervals of size d containing N variants. MAGENTA uses a linear 
model, while GSA-SNP2 uses a cubic spline. MAGMA on the other hand uses Fisher’s method, adapted to 
correlated test statistics. Both the Naïve method and GSA-SNP2 contrast the mean score of the interval set to the 
mean score of all intervals, and convert this to a Z-score (GSA-SNP2 uses a slightly inflated value for σall, and 
ignores adjacent genes). MAGMA uses the number of intervals whose score was in the top 5% of all interval scores. 
For the Naïve approach and GSA-SNP2, pathway significance is determined by converting the pathway Z-score 
directly to a p-value using the standard normal survival function. MAGENTA draws 10,000 gene sets of identical 
size and similar inter-gene distance, and re-computes the interval aggregation scores. MAGMA regresses pathway 
indicator variables against per-interval scores from Fisher’s method [(*) Brown’s extension to dependent tests] as a 
response variable, using the correlations from Fisher’s method as the assumed residual covariance in a mixed model. 
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All three non-naïve methods hide additional complexity with regards to variant or interval filtering thresholds 
applied prior to model fitting. 
	
1.3c	Gene	networks	and	genetic	architecture:	the	omnigenetic	model	versus	systems	biology		
	
	 Functional genetic architecture studies have identified broad cell types and gene 

ontologies related to various diseases, but have yet to identify highly-specific causal pathways 

consisting of at most dozens of genes. On the one hand, this may be a result of insufficient 

ontological knowledge, low sample sizes for many traits, and even lower sample sizes for tissue 

and single-cell expression data. On the other hand, it may be a property of the genetic 

architecture itself, where despite the proximate cause coming from one or two small functional 

pathways, the ultimate cause arises from hundreds to thousands of genetic perturbations that lead 

to aberrant operation of the proximate pathways. In such a case, we would expect to observe 

heritability to cluster not into the proximate causal pathways, but instead into the tissues and cell 

types where the proximate pathways operate. 

 The omnigenic model (Boyle2017) is a formalization of this idea, in which the genes 

within the proximate causal pathways are termed “core genes,” while the genes that contribute 

indirectly are termed “peripheral genes.” Importantly, the distinction between core and periphery 

is imagined to be a property of a cellular gene network that reflects co-regulation and protein-

protein interactions within the relevant cell types. Mutations within the core of the gene network 

– implicitly defined as a set of communities containing a small proportion of the total genes 

– can achieve very high effect sizes for the trait; while mutations outside of the core cannot. 

 By relating effect size to the property of a variant – the network distance of the gene it 

impacts – the omnigenic model describes the network genetic architecture of a trait. Formally, a 

model of genetic architecture specifies a distribution for β. For example, to test the relationship 

between variant frequency (p) and risk effect (𝛽), a common model is 
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𝛽|𝑝	~	𝑁(0, 𝜎L6(2𝑝 1 − 𝑝 )N) 

Where γ < 0 corresponds to an architecture where high-risk variants are more likely to have 

lower frequencies. In chapter 4, I define a model for network genetic architecture analogously by 

replacing frequency with network distance, dG, which measures how far each gene is from the 

core set of genes: 

𝛽|𝑑P	~	𝑁(0, 𝜎L6 1 +	𝑑P N) 

Where the value of 𝑑P  for a variant corresponds to the distance for the gene in which it is 

located. γ < 0 corresponds to architecture where high-risk variants are more likely to occur near 

to or within the network core. This includes the omnigenic model, where γ is assumed to be 

negative and large in magnitude. A limitation of the omnigenic model is that neither the graph G 

nor the core genes used to calculate dG, are specified. As such, one can only test a specific choice 

of dG. Nonetheless, chapter 4 derives a prediction from this model – that most genes identified 

from de novo screens should be near to core genes – and seeks to assess this prediction across a 

wide range of reasonable choices of gene networks and core gene sets.  

	
1.3	Conclusions	
	
	 Gene co-expression networks provide an organizing framework for summarizing 

transcriptomic signatures of species, function, and disease; as well as for defining gene sets that 

contribute to genetic disease liability. The 15-year arc of literature has conclusively 

demonstrated that this approach identifies functional groups of genes that reflect an underlying 

biological phenomenon such as cell type, some of which show an overabundance of 

neuropsychiatric disease risk.  

However, regional comparisons of co-expression have received comparatively little 

attention, leaving many fundamental questions unanswered. For instance, can regional cell 
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subtypes such as Purkinje, neurons, spiny neurons, or hormone-secreting neurons be identified 

by virtue of co-expression? Are neuronal co-expression patterns largely the same across regions 

of the brain? These questions motivate the broader goal of classifying co-expression signatures 

as shared across all regions of the brain, specific to a major region (such as cortex, or striatum), 

or specific to a sub-region (such as occipital cortex, or the putamen). There are also the matters 

of what these shared and specific co-expression patterns represent biologically and what their 

potential role might be in neuropsychiatric disease. The remainder of this thesis addresses this 

broader goal, and presents the construction and analysis of the first human brain co-expression 

atlas. 

 Chapter 2 presents my construction of the co-expression atlas, validation in external 

datasets, investigation of regional-specificity, and annotation of brain-wide and region-specific 

modules (including region-specific neuronal-subtype modules). In this chapter, I also use the co-

expression network atlas to identify cell-type specific long non-coding RNA, and cell-type 

specific gene isoforms, identifying several genes that produce different main isoforms for 

different cell types. 

 In chapter 3, I identify several modules, including three brain-wide and two regional 

modules, which enrich for genetic risk and exhibit differential expression or co-expression in 

ASD brains. I link these modules to adult neurogenesis and neuronal maturation, as well as to 

activity-dependent neuronal processes such as bulk endocytosis. I also evaluate the regional 

specificity of nearly all previously-published co-expression or PPI modules that have been linked 

to neuropsychiatric disease, finding that these studies are largely identifying the same brain-wide 

neuronal co-expression signature. 
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 Chapter 4 concerns network genetic architecture. In this chapter, I introduce the network-

distance genetic architecture model to derive a simple prediction from the model from section 

1.3c, and I evaluate this prediction across co-expression in adult brain, developing brain, fetal 

brain, and whole blood as well as in two other kinds of gene networks. I generalize network 

genetic architecture to treat the network itself as a parameter, and establish that co-expression 

networks better capture more genetic heritability than gene modules alone. I derive a statistical 

test to identify trans-QTLs with a consistent effect on disease risk – i.e. alleles that up-regulate 

risk genes, and down-regulate protective genes. Applying this to a collection of 8 GWAS studies, 

I identify numerous such instances, representing thousands of downstream protein-coding genes, 

and conclude that these observations are inconsistent with a core-gene only (“omnigenic”) 

network architecture. 
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Chapter	2 The	human	brain	co-expression	network	atlas	
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2.1	Abstract	
	
 Gene networks have proven their utility for elucidating transcriptome structure in the 

brain, yielding numerous biological insights. Most previous analyses have focused on a 

particular brain region, and the applicability of the gene relationships identified to other brain 

regions is rarely explored. By leveraging RNA-sequencing in 864 samples representing 12 brain 

regions in a cohort of 131 phenotypically normal individuals, I create a structured atlas of 

regional co-expression, and partition the brain transcriptome into 12 brain-wide, 114 region-

specific, and 50 cross-regional co-expression modules. Nearly 40% of expressed genes fall into 

brain-wide modules, corresponding to major cell classes and conserved biological processes. 

Region-specific modules comprise 25% of expressed genes and correspond to region-specific 

cell types and processes, such as oxytocin signaling in the hypothalamus, or addiction pathways 

in the nucleus accumbens. I further leverage these modules to capture cell type specific lncRNA 

and gene isoforms, which contribute substantially to regional synaptic diversity, but remain 

difficult to ascertain in single-cell sequencing studies.  
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2.2	Introduction	
	
	 The human brain is a highly-structured, complex organ, comprising hundreds of regional 

structures (Hawrylycz2015) and hundreds of billions of cells (Azevedo2009). These are 

themselves heterogeneous, with neurons alone demonstrating hundreds of spatially-heterogenous 

subtypes (Zeisel2018, Lake2017), leading to unique regional patterns of functional connectivity 

and cellular composition across regions. Yet the general structure, connectivity, and cellular 

distribution of the brain remains generally consistent across individuals. Cellular identity and 

regional activity is organized around functional groups of genes or pathways. Be they members 

of a protein complex, components of a signaling cascade, or a collection of critical genes 

converging on a biological process, genes within these groups must be co-regulated so as to be 

expressed at the appropriate levels to permit the group or pathway to function consistently 

(Felix2015).  

 To inform our understanding of molecular mechanisms in human brain, and their 

potential relevance to disease, I create an unbiased atlas of co-expression networks across 12 

human brain regions (GTEx Consortium 2017). I demonstrate that the co-expression 

relationships defined in these networks are robustly identified using alternative network methods 

and orthogonal brain data sets. Combined with previous networks built from fetal brain across 

developmental time-points (Kang2011), these networks comprise a new resource for 

understanding the core transcriptional pathways, their time-points, and their spatial extents, 

underlying the patterning of the human brain. I use this resource to address several core 

biological questions. I show that brain co-expression in the brain is hierarchically organized into 

brain-wide, cross-region and region-specific signals, which reflect shared and area specific 

signals. Brain wide/cross-regional networks correspond to a major component of gene expression 
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that tags global signatures of cell types and biological processes. By combining differential 

expression and co-expression, I show that region-specific modules capture regionally-

upregulated genes, and reflect regionally distinct cellular subtypes. 

2.3	Results	
	
2.3a	Estimating	and	validating	co-expression	from	brain	RNA-seq	data	
	
	 	Summaries of gene co-expression, such as co-expression networks (Zhang2005) or 

factor analysis (Schreiber2008), seek to identify transcriptional patterns (e.g. modules or gene 

weights) that summarize functional relationships between genes. As in any system, measurement 

noise degrades the power to identify gene relationships resulting in false-negatives, while 

confounders can give rise to spurious relationships leading to false-positives (Freytag2015). 

Recent advances in the processing of RNA-seq data have addressed removing sources of 

unwanted variation (Leek2012, Stegle2012, Gerstner2016) and hidden confounders from 

analysis (Mostafavi2013). The standard approach for brain RNA-seq co-expression has been to 

correct for known technical confounders, but not for latent factors. Therefore, prior to the main 

analysis of co-expression, I sought to identify which of the two approaches performed best. In 

order to perform this analysis, I needed to develop two methods: i) a method to perform model 

selection across multiple technical confounders and tissues, ii) a method to assess the 

improvement of signal-to-noise.  

The GTEx dataset is annotated with comprehensive individual-level and sample-level 

information. Allowing for the possibility of tissue-by-covariate and covariate-by-covariate 

effects, there are more potential confounders than there are observed samples. Therefore, I 

needed to develop an approach to automatically select relevant technical variables that capture a 

high proportion of total variance. I combined multivariate adaptive regression splines (MARS; 
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Friedman1991, Milborrow2011) with variance partitioning (Hoffman2016) to identify and 

visualize technical covariates and interactions (up to degree 3) that explain a high proportion of 

total gene expression. 

The primary objective of covariate correction is to improve the ratio of biological signal 

to technical and measurement noise by removing variance due to non-biological factors such as 

library complexity, sequencing batch, or cDNA conversion efficiency. This primary objective 

motivates a number of surrogate objectives for model selection, such as the number of detected 

eQTLs (Saha2017), differentially-expressed genes (Gerstner2016), or gene annotation prediction 

(Long2016), which have been used to compare methods and select method parameters. In 

addition, a little-used statistic, the integrative correlation coefficient (ICC), provides direct 

estimates of reproducibility (Cope2014), and I reasoned that the ICC of the data with itself would 

provide a coarse proxy for the signal-to-noise ratio. 

Figures 2.1 and 2.2 highlight the key findings of this analysis. Firstly, although the model 

selection procedure identified relevant covariate-by-covariate interactions that explain roughly 

5% of expression variance, tissue-by-covariate effects are smaller, so technical factors tend to 

impact expression in the same way across all regions. This is likely because regions were evenly 

matched across library preparation and sequencing batches. Secondly, replicate correlations 

between GTEx RNA-seq and microarray data from the same samples– a direct measurement of 

the signal-to-noise ratio – are positively related to ICC estimates, confirming that this statistic is 

a valid measure of reproducibility within the GTEx brain data. Thirdly, covariate correction 

improves the ICC estimate for most genes, and especially for those with reasonable (> 0.5) initial 

reproducibility, consistent with intuition. Fourthly, that covariate correction using MARS model 

selection results in larger improvements to ICC than the HCP factor model, an observation that 
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holds across a wide range of HCP parameters. I confirmed an attenuation of biological signal in 

latent factor models by showing that in every tissue, the average AUC for the ontology 

prediction task was higher following covariate correction than following HCP correction. To 

explain these observations, I hypothesized that factor models were removing a significant 

amount of biological variation in addition to the technical noise. To test this, I examined how the 

post-correction principal components loaded onto canonical cell type markers. I observed that 

following covariate correction, the largest component of expression variance showed very strong 

loading onto canonical neuronal markers, consistent with a biological explanation. This stands in 

strong contrast to the explicit assumption in latent factor models that the first few significant 

factors – those that explain the largest proportion of variance – are largely non-biological. 

Indeed, I found that when HCP was used for correction, this pattern of cellular heterogeneity was 

severely attenuated. 

These results demonstrate that in well-balanced and well-annotated brain data, the co-

expression signal-to-noise ratio is best optimized by correcting for technical covariates alone, 

and not by including additional latent factors. They have since been confirmed for other tissue 

types within the same study (Somekh2019), suggesting that these results hold not only for the 

brain but for any heterogeneous tissue. It should be not that, for cases when co-expression is 

itself a source of noise, such as for eQTL studies, these methods do provide a marked 

improvement. 

While it is not directly related to the main argument of the thesis, I feel it important to 

report the direct estimates of signal-to-noise ratio from samples across the whole brain (median 

1:2) and cortical regions (median 1:4) that arise from the GTEx replicate samples. These findings 

are confirmed in Fromer2016 which assessed a mean correlation of r=0.451 between PCR and 
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RNA-seq in cortex (SNR=1:4, fig. S3 in Fromer2016). Notably, the largest fold change observed 

between diseased and normal cortex in a large multi-disease study was 2 (Gandal2018a), which 

is small in comparison to the median amount of noise in cortical gene expression measurements. 

At this noise level and with GTEx sample sizes, one has 80% power to detect genes with a true 

expression correlation of ≥0.75. The imprecision of RNA measurement likely explains its 

limitation as a diagnostic tool for complex disease, the challenge in identifying clear disease-

specific expression endo-phenotypes, and the difficulty of reproducing specific gene-gene 

correlations. It also partly explains why observed case/control differences in chromatin and 

histone states only weakly (if at all) translate to measurable differences in expression. This 

probably remains the largest challenge: without more precise methods of measuring RNA 

expression, significantly larger sample sizes will be needed to thorougly identify eQTLs and 

functional signatures. It is a largely unappreciated feature of multivariate analysis that principal 

factors – and thus gross correlational structure – can be identified from small sample sizes. It is 

for this reason that network analysis and factor analysis of co-expression produces gene sets and 

gene scores that are fairly consistent across brain datasets in the face of low signal-to-noise of 

their individual components. 
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Figure	2.1	Technical	covariate	effects	and	comparison	of	correction	methods	

 (a) Violin plot of % variance explained, per gene, of technical covariates and tissues, for the top factors identified, 
plus age, race, and sex as comparisons. Differences in mean expression across tissue drive the variance. No 
significant tissue x covariate interactions are identified. (b) Scaled differences in GO category prediction within 
each of the tissues; values > 0 imply that networks built from LM-corrected data are more accurate in the prediction 
task than networks built from HCP-corrected data. (c) Boxplot of top post-correction principal component loadings 
onto cell-type marker genes. Linear model correction maintains neuron/glia differences as the primary driver of 
expression, while HCP appears to lose this signal.  
   

	

Figure	2.2	Signal-to-noise	ratios	for	correction	methods	based	on	bootstrapped	ICC	

 (a) Relationship between cross-platform correlation and average ICC. Each point is a gene, measured on the same 
samples across two platforms. X-axis: the average of the two BICC values within each platform; Y-axis: the cross-
platform correlation for the gene, with higher within-platform BICC implying stronger cross-platform correlations; 
thus lower noise. (b) Bootstrapped ICC values or raw and LM corrected data. Higher density above the red y=x line 
implies improved signal-to-noise ratios after correction. (c) Comparison in hypothalamus between the relative ICC 
improvement for regression (x-axis) and HCP (y-axis). Values below the y=x line implies a stronger improvement in 
signal-to-noise ratio using regression to correct for covariates. 
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2.3b	Identifying	and	verifying	specific	and	shared	network	modules	

 

I next asked how to structure a network analysis to incorporate multiple regions of the 

human brain. I recognized that the tissue hierarchy formed from average gene expression profiles 

corresponded exactly to the regional map, grouping individual regions into their higher-order 

structures. I therefore reasoned that this hierarchical structure could be used as a backbone for 

defining consensus gene relationships. For each tissue, I generated a bootstrapped-resampling 

version of weighted gene co-expression network analysis WGCNA (robust WGCNA; 

Langfelder2008), which reduces the impact of sample outliers. I then merged the resulting co-

expression networks, forming consensus networks for each split of the tissue hierarchy, and 

arranged these regional co-expression networks into 20 hierarchical expression categories: 12 

brain region specific categories (corresponding to each sampled region), 7 multi-regional 

categories (corresponding to multiple, structurally-linked regions), and a brain-wide category. 

Analyses of the networks within these categories identified 311 total modules, 199 from the base 

regions, and 112 from the hierarchical consensus regions. Of the 199 tissue-level modules, 173 

(87%) replicate with strong support in at least one other expression dataset in matched tissue.  

I asked how to group modules together that represent the same transcriptional program 

across multiple regions. For each pair of modules, I computed two similarity scores: the Jaccard 

similarity – the fraction of genes common to both modules – and the eigengene similarity – the 

correlation of module eigengenes – and formed a weighted average. Using this metric, I grouped 

the 311 modules hierarchically into module sets. The modules in a module set are by 

construction highly similar in terms of gene overlap and expression, and likely represent the 

same underlying co-expression relationship.  
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Figures 2.3 and 2.4 summarize this approach and demonstrate that the resulting module 

sets are coherent: module sets that contain a whole-brain module also contain modules from the 

other major brain structures, and show evidence for the co-expression relationships in the 

remaining regions. Similarly, module sets that contain a cerebellum consensus module also 

contain modules from the cerebellar body and cerebellar vermis, and tend to show weak to no 

evidence outside of the cerebellum. While the approach is not perfect – for instance Cerebellum-

M1 shows strong evidence in regions outside the cerebellum – the majority of region-specific 

module sets only show evidence within that region. 
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Figure	2.3	Overview	of	the	brain	expression	atlas	

To identify cross-regional and region-specific co-expression patterns in the human brain, 12 co-expression networks 
are built from base tissues. These are merged hierarchically according to regional expression similarity, resulting in 
co-expression networks at every level of the hierarchy. These can be investigated for the biological systems they 
represent through enrichment analysis, and used as a basis of comparison for regional, evolutionary, and disease 
comparisons. 
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Figure	2.4	Module	set	definitions,	replication	in	other	datasets,	and	regional	specificity	

(a) Definition of regional and multi-regional module sets by position in the expression hierarchy. (b) Module-level 
preservation in other datasets, with the bulk of modules showing very strong reservation (Z>5) for both AUPR or 
the classical Z-summary. Modules not showing preservation tend to be from regions with limited microarray data 
(e.g. substantia nigra). (c) Module set evidence across all regions of the brain for brain-wide and cerebellar modules 
(Strong: Z>8, evidence; Z>5, weak evidence Z>3, no evidence Z<3). In module set: A module was identified that 
was identified as part of the module set using jaccard and kME similarity. 
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2.3c	Methodology	has	little	impact	on	identified	region-level	and	whole-brain	modules	
	
	 More than a dozen algorithms have been developed for co-expression network construction 

and gene clustering over the past decade. Network-based methods  – such as CAST (Ben-

Dor1999), WGCNA (Zhang2005), ARACNe (Margolin2006), ARACNe-AP (Lachmann2016), 

GLASSO (Simon2013), MEGENA (Song2015), QCut (Ruan2010), RMT-threshold (Luo2007), 

or Bayesian Networks (Myers2009) – differ in their correlation measures and the topological 

constraints they place on the graph; while direct clustering methods –such as QUBIC (Li2009), 

convex biclustering (Chi2016), EPGMM (McNicholas2010), or simple k-means clustering – differ 

predominantly in their distance metric and cost function. The choice of algorithm may have a large 

potential impact on the ultimate results, and thus it is important to determine how much 

methodological choices effect the final results. 

I therefore sought to establish that these various choices have little meaningful impact on 

the modules identified by my analysis at either the regional or whole-brain scale. To span the 

space of network and non-network models, I re-computed gene networks using algorithms that 

use a different metric of gene correspondence, ARACNe (mutual information) and GLASSO 

(partial correlation). I also implemented a Bayesian von-Mises-Fisher mixture model as a non-

network probabilistic approach for gene clustering (methods). High overlaps between the 

modules resulting from these methods would indicate that our results are largely independent of 

methodology – reflecting a strong underlying signal discoverable by multiple approaches. 

Figure 2.5 shows that this is indeed the case, with each WGCNA module corresponding 

to one or more modules from other methods – but in no case identifying a gene cluster which 

was not identified by at least one other method. The largest differences are in module size, with 

WGCNA tending to have the largest modules with other methods identifying only the most 
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confidently-clustered genes. The average co-clustering accuracy – the proportion of gene pairs 

placed in the same clusters across methods – exceeds 60%; and it can be observed from the 

overlaps that most modules identified by the other methods are wholly or nearly-wholly 

contained in a WGCNA module. 

I next applied a down-sampling approach to estimate overall power for module and hub 

detection (methods), in order to estimate that WGCNA has power to comprehensively place all 

module hub genes into a cluster (i.e., not background “grey” genes). Further, module co-

members can be identified with a lower, but reasonable precision (60%) recall (45%) and 

accuracy (55%), which increases to >90% for modules that are well-separated. 
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Figure	2.5	Comparison	of	co-expression	network	inference	methods	at	the	regional	level	

(a) Topological overlap dissimilarity dendrogram, with genes represented as colored vertical bars, colors 
corresponding to assigned network modules for WGCNA, ARACNe, GLASSO, and vMF-mix. (b) Pairwise co-
clustering coefficients; X-axis represents which module is taken as ‘reference’ module for the co-clustring. Notably 
WGCNA shows >50% clustering coefficient with all methods. (c-e) Pairwise module overlaps, colored by the 
jaccard metric, and outlined by significance, demonstrating that a large number of modules overlap directly as one-
to-one, or one-to-many fashion; and few modules are non-overlapping. 
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Figure	2.6	Power	to	detect	modules	as	a	function	of	separability	and	sample	size	

Top: Module accuracy, as measured by the faction of times a gene is co-clustered with its hub gene, as a function of 
sample size. Relationship is monotonic increasing, though the saturation point differs from module to module; this is  
a function of how separable the module is from the other modules. Bottom: Plot of cluster precision and recall as a 
function both of sample size and module separability.  Separability is inversely proportional to the eigengene 
correlation between two modules, and low overall separability is indicative that the module correlates partly with at 
least one other module, leading to partly stochastic assignment of genes to modules. For instance, highly-distinct cell 
types such as microglia or distinct processes such as ribosomal turnover, correspond to well-separated modules (M2, 
M10; see figure 2.7), while the subtly-different neuronal subtypes generate modules with mutually-overlapping 
relationships (M3, M4, M5). 
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I then sought to investigate the robustness of brain-wide networks to methodology, to 

establish that the whole-brain networks would be identified by an orthogonal whole-brain 

approach. To do this, I leveraged the fact that all the samples from the various regions were 

drawn from the same set of brains, and performed a simple analysis of feature extraction through 

tensor decomposition, followed by dimensionality reduction on the genes via t-SNE (methods). 

This resulted in data with clear regions of high-density, but not clearly-defined clusters. As such, 

I identified these high-density regions as gene modules by applying DBSCAN. This resulted a 

set of clusters that strongly overlapped with my original whole-brain clusters (figure 2.7) despite 

the approaches sharing no common methodology.  
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Figure	2.7	Comparison	of	brain-wide	WGCNA	modules	to	tensor-decomposition-based	modules	

Plot of the tSNE embedding built from tensor decomposition. Each point represents a gene, and is colored by the 
DBSCAN-assigned module (a) or the WGCNA whole-brain module (b), demonstrating that several modules (M2, 
M6, M7, M8, M10, M11) have direct overlaps, while neuronal modules M3, M4, and M5 correspond to several 
DBSCAN modules each. The obviously missing cluster (yellow) corresponds to NCBL-M1 which has no presence 
in cerebellar tissue, illustrating one potential drawback of tensor decomposition (strong multi-regional signals can 
still appear to brain-wide). 
 
 
 
 
 
 

While the above methods can readily define co-expression modules at the single-region 

level or the whole-brain level, the hierarchical approach I initially took is the only method that 

conveniently and efficiently produces consensuses for the intermediate levels. While alternatives 

could be evaluated for this approach – for instance using a hierarchical Bayesian model to 

estimate covariance matrices or von-Mises-Fisher parameters – I reasoned that validation at the 

root and leaves of the region tree implies validation for all subtrees. I thus concluded that, at the 

current sample sizes, the modules identified by various methods did not vary to a practical degre. 

More speculatively, it seems that without the (biologically unwarranted) assumption of 

sparsity, the set of brain-expressed genes will not fall into discrete clusters. Instead, the tensor-

NCBL-M1

t-SNE 1

t-S
N

E
 2

(a) (b)
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decomposition results make a fairly good case that genes can be placed relative to one another in 

a latent, regulatory space. Different biological pathways or functional classes should be 

distributed on different – but not exclusive – volumes of that space. Pleiotropic genes should 

inhabit regions of functional overlap, while unifunctional genes should not. If this hypothesis 

holds, then there is far more information in a co-expression network than in the modules. The 

last chapter of this thesis begins to explore this topic in just such a direction. 

The tensor-decomposition approach merits additional analysis in the near future. The 

GTEx dataset is one of the few with expression measured in multiple regions of the same brain, 

and so can be arranged into a 3d-tensor. Decomposition then enables genes, regions, and 

individuals to be linked. The regional pattern can be examined for specificity, the gene loadings 

for ontology, and the individual loadings for a genotype or phenotype relationship (e.g. QTL or 

diagnosis). Because many new datasets use single-cell or single-nucleus sequencing from 

multiple individuals – which can then (by averaging within cell types) be arranged into 

individual×gene×type – this approach may have a wide application. 
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2.3d	Hierarchical	networks	elucidate	sources	of	regional	and	global	brain	co-expression	
	

Cell type composition is a major driver of measured RNA expression in tissue 

(McKenzie2018, Kelley2018). I therefore hypothesized that whole-brain co-expression modules 

represent major cell classes (neurons, astrocytes, microglia, oligodendrocytes), and that multi-

regional or regional modules represent specific cell subtypes. Using markers for primary brain 

cell types (Lein2006, Zhang2014) and cell subtypes (Heintz2004), I found that that modules at 

all levels are consistent with this hypothesis. Figure 2.8 presents the results of cell type 

enrichment and decomposition for whole brain and regional modules. Canonical markers for 

major cell types fall in a near one-to-one correspondence with whole brain modules: neuronal 

markers in M4, oligodendrocyte markers in M7, astrocyte markers in M6, microglial markers in 

M10, and endothelial markers in M11. Pathway analysis and analysis of cell states revealed 

additional roles of modules: M2 corresponds to components of the ribosome and translational 

machinery, M8 contains markers of reactive gliosis in astrocytes and microglia activation, and 

M1 enriches for markers of neural progenitor cells and neuronal maturation.   

Because neurons span highly diverse cell populations in the brain, I then asked whether 

known region-specific cell types such as medium spiny neurons in the striatum or Purkinje cells 

in the cerebellum correspond to region-specific co-expression modules. Using published single-

cell sequencing from human cortex (Lake2016), cerebellum (Lake2018), and mouse striatum 

(Zeisel2018), I identified three region-specific modules – BROD-M8, CEREB-M2, and STR-M1 

– corresponding to interneurons, Purkinje neurons, and medium spiny neurons respectively. 

Figure 2.8 describes this relationship by showing the genes more central in the module (high 
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kME) have high relative expression in these cell types; and this relationship decays exponentially 

with module membership. 

Brain-expressed genes, as a class, are known to be highly intolerant to loss-of-function 

mutations (LoFs). I question whether this intolerance was a broad feature across brain cell types, 

or whether this intolerance was a property of genes upregulated in a particular cell type. To 

address this, I evaluated whether genes with strong LoF intolerance scores (Petrovski2013, 

Lek2016), fall disproportionately into cell-type specific modules. Figure 2.9 shows that the 

neural progenitor module BW-M1, neuronal module BW-M4, and two un-annotated modules 

BW-M3 and BW-M5 all enrich significantly for LoF-intolerant genes, as well as the neuronal 

subtype modules BROD-M8, CEREB-M2, and STR-M1. Noting that, by construction, these 

modules cannot extensively share genes, I reasoned that this may indicate that LoF-intolerance 

may itself be indicative of neuronal modules. To test this, I used a set of ranked computationally-

derived neuronal markers (Kelley2018) to extend cell-type annotations to high-confidence non-

classical marker genes. Consistent with the correspondence between neuronal genes and LoF 

intolerance, both BW-M3 and BW-M5 significantly enrich for the top 300 to 500 neuronal 

markers, suggesting that they capture neuronal genes with a lesser degree of upregulation, lower 

overall expression (and thus noise), or processes that are not always co-expressed in all neurons. 

The ontologies for these modules reflect this possibility, as both module sets enrich for the 

Huntington’s, Alzheimer’s, and Parkinson’s disease pathways, and for respiratory functions 

(BW-M5 enriches for mitochondrial respiratory chain I and BW-M3 for ATP metabolism, figure 

2.9).  
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Figure	2.8:	Cell-type	heterogeneity	relates	to	co-expression	modules,	gene	intolerance,	and	evolution.		

(a) top: Absolute value of the eigengene of module NCBL.M1 plotted across regions, showing higher variance in 
regions adjacent to or accessible through ventricles. left: Expression of NCBL.M1 eigengene and mean expression 
of choroid-plexus marker genes in regions with and without an NCBL-M1 module. right: Marginal probability of a 
gene being a choroid plexus marker, as a function of NCBL-M1 soft membership. (b) WGCNA dendrogram at the 
whole-brain level, colored by module (top), and canonical marker genes for major cell types in human and mouse. 
(c) Relative expression of neuronal marker genes for modules BW-M4, BROD-M8, CEREB-M2, and STR-M1 
within interneurons from cortical SC-sequencing, Purkinje neurons from cerebellar SC-seq, and medium spiny 
neurons from striatal SC-seq, as a function of module kME. (d) GSEA enrichment plots for LoF-intolerant genes 
(pLI > 0.9) for all whole-brain modules. (e) Factorization-based decomposition of bulk expression (methods). 
Correlations for BW, CTX, and PFC modules come from decomposing DLPFC bulk expression; AMY from 
decomposing AMY bulk expression, and BROD from decomposing of B24 bulk expression. (f) lncRNA relative 
expression in single-cell data, grouped by the imputed module in riboZero data from BA9. (g) Cell type expression 
and significant module overlaps for human differentially-expressed modules from Sousa et al. (Sousa2017). Cell 
type assignments are as given in that publication. 
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Figure	2.9	Glial	activation	and	high-fidelity	neuronal	markers,	related	to	figure	2.3.4	

(a)	Extended	glial	cell	type	enrichment	for	brain-wide	modules;	establishing	BW-M8	as	representing	microglial	
activation,	reactive	gliosis,	markers	for	both	A1	(neurotoxic,	microglia-induced)	and	A2	(neuroprotective,	damage-
indussed)	astrocytes	(Liddelow	et	al.	2017).	(b)	Plots	of	the	marginal	proportion	of	loss-of-function	intolerant	
genes	as	a	function	of	soft	module	membership	for	modules	BW-M1	(most	enriched)	and	BW-M2	(most	depleted).	
(c)	Gene	ontology	enrichments	for	module	BW-M5.		
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Recent comparative expression studies have identified thousands of genes up-regulated in 

humans compared to non-human primates, and have implicated spatial differences in neuronal 

subtypes and neurotransmitter receptors in driving this divergence (Konopka2012, Sousa2017). 

Sousa et al. (Sousa2017) examine differential expression between human and non-human 

primates within 16 brain regions. They build modules across all species and regions together, 

identifying 27 modules showing differences between species (but not region), 37 modules 

showing differences between both species and region, and an additional 12 showing region-

specific differences between species. Of these 76 modules, 10 show human-specific changes 

(that is, human does not match macaque or chimp). This approach, which has been referred to as 

“differential patterning” (Parikshak2016), may fail to capture differences in co-regulation across 

species. In other words, the human-specific modules identified by Sousa et al. should reflect 

brain-wide rather than region-specific changes in cell type composition. To test this hypothesis, I 

examined the overlap of the human-specific Sousa et al. modules with all modules in the human 

brain co-expression atlas, and found that 7/10 of human-specific modules overlap whole-brain 

modules, while only two modules (M160, M220) overlap regional modules alone (figure 2.8g). 

This result suggests that Sousa et al., by virtue of both sample size and approach, may be 

underpowered to identify inter-species differences in regional co-expression. 
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2.3e	Cell-type-specific	lncRNA	and	isoforms	in	the	human	brain	
	
 Long non-coding RNA (lncRNA) are a diverse set of RNA species that modulate gene 

expression or protein function (Wei2018) across many CNS cell types (Chen2019), and several 

studies suggest that lncRNA dysregulation is a component of neuropsychiatric disease 

(Corgill2018, Parikshak2016, Ang2019, Zuo2016). Many brain-expressed lncRNA have roles in 

neurodevelopment (Clark2018), and the enhancer with the most accelerated substitution rate in 

the human genome, HAR1, modulates the expression of a neuronally-expressed lncRNAs now 

termed HAR1A and HAR1B (Pollard2006). Since lncRNA as a class tend to be expressed at a 

lower level than protein-coding RNA (Djebali2012), they tend to be difficult to profile and 

annotate through single-cell sequencing. Having identified co-expression networks 

corresponding to the major CNS cell types, I reasoned that they could be used to annotate human 

brain-expressed lncRNA in an untargeted, transcriptome-wide manner, in order to associate 

lncRNA with neurological cell types and processes.  

Only 52 known lncRNA species were profiled in the initial GTEx data set, likely because 

GTEx used poly-A selection. Therefore, I expand the set of profiled lncRNA by projecting the 

whole-brain modules into non-polyA-selected data from 44 neuro-typical post-mortem brains 

(Parikshak2016) in which the whole-brain and cortical modules were preserved (preservation Z = 

3 to 30). Using gradient boosted trees (Chen2016) to learn expression signatures of our module 

assignments in the new dataset and then classify lncRNA into the appropriate modules 

(methods), I identified 286 lncRNA belonging to major cell types and processes, the majority of 

which associate with neuronal module BW-M4 (66) or NPC module BW-M1 (109).  

Remarkably, slightly more than 20% (61/286) of these cell-type specific lncRNAs were 

previously shown to be dysregulated in neuropsychiatric disease (Gandal2018b). I cross-
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referenced the inferred modules with published single-cell hippocampal and cortical RNA-seq 

(Habib2017), and validated that single-cell-expressed lncRNA belonging to the assigned cell-

type modules are up-regulated within those cell types (figure 2.8f). 

A previous study of ASD differential expression highlighted the differential expression of 

lncRNA as an integral component of the ASD transcriptomic signature (Parikshak2016). Since 

lncRNA do not encode proteins, I reasoned that the lncRNA signature might reflect different cell 

types from the protein coding signature. Therefore, I removed a set of protein coding genes 

– matched on length, mean-expression, and GC-content to the lncRNA – from the training set, 

and imputed modules for both lncRNA and matched protein-coding genes. I found that there 

were significant case-control differences in both expression and connectivity for modules M1, 

M6, and M8 (p < 10-15, KS-test). These differences – which imply dysregulation in neurogenesis, 

astrocytes, and reactive glia – are mirrored in the matched protein-coding genes, confirming that 

the lncRNA signature is aligned with the overall ASD signature (figure 2.10). 
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Figure	2.10	-	lncRNA	co-expression	differences	in	brain-wide	modules	between	cases	and	controls	

(a) Boxplot of scaled gene expression in cases and controls across 5 major whole-brain modules, showing 
significant difference in mean expression or modules M1, M6, and M8. (b) As in (a), but gene mean topological 
overlap – a readout of co-expression – is plotted, recapitulating the trends from (a), suggesting that the expression 
and co-expression of lncRNA are disrupted in ASD; but not any differently from matched protein-coding genes.  
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 Since single cell data does not yet provide similar isoform level coverage to bulk data, 

there are few known cell-type-specific isoforms. Given the successful annotation of lncRNAs 

using co-expression, I therefore sought to integrate isoform-level expression within cell type 

modules, both to understand cell-type specific splicing and to identify those specific isoforms 

likely involved in ontological pathways (figure 2.11). I hypothesized that isoforms whose 

expression showed high correlation with a module eigengene (isoform kME) are likely an 

integral component of that co-expression network. By thresholding on a kME > 0.55, I identified 

3,764 isoforms showing specificity to major cell types (methods). To validate these findings, I 

obtained RNA-sequencing data from sorted cells (Zhang2015), quantified expression at the 

isoform-level, and ranked isoforms expression within cell types (methods). Consistent with my 

hypothesis, I observed a very strong correlation between isoform kME (to a cell-type module) 

and the rank of that gene’s expression in the sorted cell data (Spearman’s rho = 0.286 oligo 0.258 

astro, p < 10-15 for both). 

 Genes that show differential splicing between cell types are of particular interest, as they 

reveal protein domains with cell-specific roles, and potentially cell-specific protein binding 

partners. I reasoned that isoform-switch genes could be identified by finding genes with at least 

one daughter isoform assigned to a different module from her parent gene. Figure 2.9e shows 

that these occurrences are rare, with fewer than 1% of multi-isoform cell-type-related genes 

showing isoform switching between cell types. Using the same sorted-cell data from the previous 

section, I validated these cell-type isoform-switch genes. Figure 2.9f shows two examples of 

genes – ANK2 and SCP2 – with astrocyte/neuron switching, and demonstrates that the cell type 

with strong module kME is the cell type in which the isoform is up-regulated (figure 2.10). 
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 Noticing that ANK2 and SCP2 have both been previously implicated in ASD, I reasoned 

that, though isoform switching genes appear to be rare, the improper regulation of neuron/glia 

isoform switching may contribute to ASD. By cross-referencing the 11 neuron/glia isoform-

switch genes (one gene is counted twice, as it has a daughter isoform in astrocytes and 

oligodendrocytes), I identified 4 genes with a AutDB (Basu2009) score of 4 or higher: ERGIC3 

(4), PDE4DIP (4), SCP2 (9), ANK2 (9). While this is a small number of genes, the overlap is 

significant (p < 0.01, Fisher Exact Test). Notably, ANK2 and SCP3 show differential splicing of 

at least one event in ASD vs CTL brains (FDR < 0.05, linear mixed-effects model), but ERGIC3 

and PDE4DIP do not. Gandal2018b identifies isoform switching in ANK2 as differentiating 

between SCZ and ASD, and that this collection of isoform-switch genes between disorders is 

significantly enriched for syndromic ASD genes. However, the differentially spliced events in 

ANK2 (both ASD/CTL and ASD/SCZ) do not match the primary difference between neuron and 

astrocyte transcripts: the inclusion of the 2,085 amino acid “giant exon.” These observations 

suggest that while there may be a role for the disruption cell-type specific alternative splicing 

within ASD, it is likely more complicated than the up-regulation of certain glial isoforms within 

neurons. 

 Because regional co-expression networks correspond to regional cell types, I reasoned 

that the above approach could be used to build putative cell-specific isoform maps for D1/D2 

medium spiny neurons, Purkinje cells, basket cells, and inhibitory neurons, all of which show 

regional specificity in the data. Repeating the above analysis, I identified between 300 and 500 

putative cell-type-specific isoforms, finding that very few (< 5%) of the resulting isoforms show 

high kME to the broad neuronal module BW-M4, consistent with the interpretation that these 

marker isoforms are cell-type specific (figure 2.9c). All isoforms enrich for synapse-related 
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functions, with additional regional variability: MSN isoforms enrich for the oxytocin signaling 

pathway, consistent with their role as downstream targets of oxytocin in the nucleus accumbens, 

whereas Purkinje isoforms enrich for AMPA receptor regulators, and inhibitory neuron isoforms 

enrich for the NMDA receptor activity (figure 2.9d). These results demonstrate how the atlas 

networks can be used to identify cell-type-specific splicing differences from bulk expression 

data, and highlight the synapse as a nexus of gene regulatory complexity and isoform 

heterogeneity. Further, they provide additional evidence for the importance of isoform-level 

analysis compared with gene expression alone in defining cell-type specific transcriptomes. 
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Figure	2.11:	Cell-type-specific	isoforms	reflect	receptor	heterogeneity	 

(a) Overview of isoform assignment on the basis of kME to cell-type modules. (b) Isoform relative expression (log-
FC of TPM) in oligodendrocytes plotted against isoform kME to BW.M7 showing significant positive relationship 
(p<10-6, linear regression). (c) Venn diagram of isoforms assigned to neuronal subtypes (d) GO enrichment of 
parent genes of subtype-specific isoforms. Top module-specific terms are shown, followed by terms which are 
significant across multiple subtypes (min p-value shown). (e) Assignment of daughter isoforms of genes with 
membership to a whole-brain cell type module, showing that most daughter isoforms are either assigned to the 
parent gene module, or to the grey (unclustered) module. (f) IGV visualization of the event differentiating the 
astrocyte and neuron isoforms of ANK2, the inclusion of the giant exon, in sorted cell data. (g) Expression of ANK2 
and SCP2 transcripts in sorted-cell data, showing isoform switching between neuron and astrocyte. (h) Western blot 
of ANK2 across iPSC differentiation into neurons, and within astrocytes, demonstrating the presence of a long 
isoform specific to neurons. 
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Figure	2.12	pLI	enrichments	for	brain-wide	and	neuronal	subtype	modules	

	
(a) pLI rates as a function of gene kME, showing that genes with a high kME to BW-M1 have a far higher than 
background pLI rate (0.4 vs 0.23); while those with a high kME to BW-M2 have a far lower than background pLI 
rate. (b) As (a), but for the neuronal subtype modules BROD-M8 (interneuron), CEREB-M2 (Purkinje), and STR-
M1 (medium spiny). (c) Enrichment statistics for loss-of-function genes calculated by Fisher’s exact test, o/e ratio 
(inversely related to pLI) is cut into 8 bins. Low o/e implies intolerance. 
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Figure	2.13	Isoform	switch	gene	validation	in	single-cell	data,	related	to	2.12	 

(a) Replicate of figure 2.11(b) for astrocytes, showing a strong positive relationship between astrocyte module 
membership, and relative expression in astrocytes. (b-e) Relationship between module kME and cell type relative 
expression for transcripts across 4 neuron/astrocyte isoform switch genes, demonstrating concordance between high 
kME, and high relative expression. 
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2.3f	Region-specific	upregulation:	increased	protein	turnover	in	subcortical	brain	regions	
	

I next sought to incorporate regional differential expression with co-expression to provide 

a more refined view of modules across brain regions. While differential expression has been used 

to identify differences between brain regions (Negi2017), this approach is too broad: nearly 

every gene expressed in brain shows differences in expression across brain regions (n = 

15616/15894, FDR < 10-3, likelihood ratio test). I reasoned that genes with “extreme” expression 

profiles (i.e., significantly up-regulated or down-regulated in a region-specific or multi-region-

specific manner) are more likely to have a specific role; and that those differing substantially in 

their expression levels within brain-wide cell-type modules may reflect regional differences in 

cell function. I developed a Regional Contrast Test (RCT, 2.14a), which assigns Z-score per 

group per gene, whereby Z-scores > 4 represent over-expression within that group, and those 

with Z-scores < -4 represent under-expression (methods). This approach identifies e.g. genes 

where the minimum expression across all cerebellar regions is still larger than the maximum 

expression across cortical regions. To account for the presence of multiple regions, I performed 

this analysis with several different backgrounds: the whole brain, non-cerebellar tissue, 

telencephalophalic regions, and cortical vs subcortical regions.  

Figure 2.14 presents a summary of these results. I first examined the set of genes up-

regulated in subcortical regions (striatum, hippocampus, and amygdala) versus cortex, and 

observe that these differences enriched for non-neuronal cell type modules (p < 1e-10 for BW-

M11, BW-M6, BW-M8, BW-M10, and BW-M7), consistent with a higher glia/neuron ratio in 

the striatum. Expanding this approach to non-cerebellar regions and finally the whole brain 

region, I observed that the region-specific upregulated genes within each comparison largely 

reflect neuronal heterogeneity: striatum-upregulated genes reflect MSN markers, cholinergic and 
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noradrenergic neurons are over-represented in hypothalamus-upregulated genes, while genes 

expressed at the highest level in cortex (versus the striatum, amygdala, or hippocampus) reflect 

pyramidal and GABAergic neurons.  

When comparing cortical and subcortical expression, I observed module BW-M4 

(neuronal) to enrich for the genes up-regulated in the cortex. Perplexingly, I also observed a 

significant (p = 4.89e-3) enrichment in BW-M2, a module dominated by small- and large- 

ribosomal subunit RNA for sub-cortical upregulated genes. This suggests that subcortical regions 

may show higher translational demand, more ribosomes, or faster ribosome turnover than 

cortical regions. Recent work has demonstrated that protein turnover – particularly the large and 

small ribosomal subunits – drastically increases in cultures with high glial proportion 

(Dorrbaum2018), providing an explanation for increased abundances of these ribosomal mRNA 

in regions of high glial proportion in the brain.  
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Figure	2.14	Region-specific	gene	up-regulation	reflects	region-specific	cell	types	and	ribosomal	turnover.		

(a) Overview of the regional contrast test: top Example of heterogeneous data where mean expression within each 
region differs from the global mean. left With only 50 samples, all regions are significantly differentially expressed 
in a global manner. middle Visualization of the PFC statistic for PFC and CDT: The PFC mean (set to 0) overlaps 
only a small amount of the confidence region for another region, while confidence regions straddle the CDT mean. 
right The RCT statistic identifies the two most extreme tissues as differentially up- and down-expressed compared 
to all other regions. (b) Count of genes which are significantly up-regulated within brain regions, across four 
backgrounds. (c) For the gene sets identified in (b), enrichment p-values for markers of neuronal cell subtypes. (d) 
Plot of scaled expression (per gene across tissues) for all genes in BW-M2, showing CTX-specific down-regulation 
of ribosomal subunits. (e) PPI-coexpression network for genes in BW-M2, showing a sizeable fraction of the 
module core, a substantial fraction RPL and nearly all RPS mRNA are up-regulated in sub-cortical regions. 
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2.4	Discussion	
	

Gene co-expression networks have provided a powerful organizing framework for 

transcriptomic studies of the nervous system. Here, I have described the construction of a robust, 

hierarchical, co-expression resource aimed at establishing common and region-specific aspects 

of gene co-expression within the brain and within a single hierarchical framework. I identified 11 

major whole-brain signatures represented in co-expression modules, corresponding to common 

cellular components such as major neuron and glial types. I also captured region-specific 

signatures dominated by regional cell subtypes. By using a consistent framework that allows for 

module relationships to be grouped by spatial scale, I demonstrated that the spatial extent of co-

expression networks relates to the spatial extent of underlying cell types, that cell-type-specific 

lncRNA and isoforms are identifiable from these networks, and that isoform-level analysis is 

likely essential to interpret certain disease associations. 

The relationship between bulk tissue co-expression modules and cell-type-expressed 

genes has been well-established for markers of major cell classes (Oldham2008, Kelley2018), 

but the quantitative link between module membership and cell-type relative expression appears 

to be novel. This link establishes bulk tissue co-expression networks as a valid method for 

marker discovery and ranking, both for gene and isoform expression. Since there are no 

published single-cell datasets from human striatal tissue, the kME values for striatal modules M1 

and M2 may represent the most salient information regarding both genes and isoforms with high 

relative expression in human spiny neurons. As sample sizes grow, we expect to identify new 

subdivisions of co-expression modules, corresponding to ever finer distinctions between 

underlying cell types. 
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I showed, through analyzing lncRNA from a separate collection of brains – sequenced in 

a different location and with different technology – that the modules in the atlas can be imputed 

in a separate and smaller bulk dataset, yet retain the same cell-type signals. This approach is 

potentially very powerful: it allows every gene in a new expression dataset to be identified as 

region-specific or cell-type specific, without requiring large sample sizes for co-expression 

analysis or samples from multiple regions.  

I used a similar approach to create isoform networks, utilizing module distance to assign 

isoforms into modules, which in many cases are cell-type specific. This is important, as single 

cell sequencing approaches do not yet capture full length transcripts and thus will at best 

incompletely represent isoform expression profiles. I identified a first generation set of 1,987 

cell-type specific isoforms for major cell classes in the brain – including 549 neuron, 543 

astrocyte, 696 oligodendrocyte. Remarkably, several of these isoforms, including 4 ASD risk 

genes, manifest isoform switching between neurons and glia. One of these, ANK2, has been 

recently described and validated as having different isoforms in neurons and glia, which manifest 

distinct protein-protein interactions (PPI; Gandal2018a). As long-read sequencing matures and is 

applied at larger scale, more complete cell-type specific isoform networks can be constructed 

using this approach. These data indicate that this will be of substantial value in understanding 

disease-relevant variation. 
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2.5	Methods	
	
Expression quantification, QC, and covariate correction 

 

Reads were aligned using STAR (Dobin2013) in standard two-pass fashion. Gencode v25 

transcripts (hg19/b37) were used as the reference transcriptome and genome for alignment. 

Transcripts were quantified using RSEM to produce gene and isoform level TPMs. The analyzed 

TPMs are log-transformed log(0.005 + x) resulting in approximate normality. 

Sample and individual-specific covariates were downloaded from the GTEx (GTEx 

Consortium 2017) website, and supplemented with technical alignment information from the 

STAR alignment and PicardTools QC of the resulting .bams.  

Individuals were excluded if they were positive for any of the following phenotypes: 

'MHALS', 'MHALZDMT', 'MHDMNTIA', 'MHENCEPHA', 'MHFLU', 'MHJAKOB', 

'MHMS',  'MHPRKNSN', 'MHREYES', 'MHSCHZ', 'MHSEPSIS', 'MHDPRSSN', 'MHLUPUS', 

'MHCVD', 'MHHIVCT', 'MHCANCERC', 'MHPNMIAB', 'MHPNMNIA', 'MHABNWBC', 

'MHFVRU', 'MHPSBLDCLT', 'MHOPPINF'. The individual-specific covariates 'GENDER', 

'AGE', 'RACE', 'ETHNCTY', 'TRISCH', 'TRISCHD', 'DTHCODD', 'SMRIN', 'SMNABTCH', 

'SMGEBTCH', 'SMTSISCH', 'SMTSPAX' were extracted. The `DTHCODD` variable was 

binned into the following categories: ‘UNKNOWN’, ‘0to2h’, ‘2hto10h’, ‘10hto3d’, ‘3dto3w’, 

‘3wplus’. 

STAR alignment metrics and PicardTools QC metrics were subset to non-excluded 

samples, outliers were flagged and removed via a chi-squared test (p < 10-5). The PicardTools 

metrics were log-scaled, and the top 5 principal components extracted using the PCA class from 
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scikit-learn (Pedregosa2011) (“seq-PC”). The STAR alignment covariates were subset to those 

with “splice” in the feature name, and the top 3 principal components similarly extracted 

(“STAR-PC”).  

Given the gene expression and covariate matrices, features that explain a significant 

proportion of expression variance in a non-trivial subset of genes were extracted using a forward-

backward regression approach (see supplemental methods). This approach identified the features 

"seq_pc1", "seq_pc2", "seq_pc3", "SMRIN", "SMEXNCRT", "Number_of_splices_GT/AG", 

“TRISCHD” and “DTHCODD” as significant features, with no significant interactions between 

these features or between any of these covariates and tissue type. 

Because there were no significant cross-terms between tissue and covariate, all tissues 

were combined for the removal of covariate effects. A linear model (expr ~ tissue + covariates - 

1) was applied, with a separate intercept (mean) for each tissue. The covariate effects were 

removed, while the estimates of mean expression per tissue were retained.  

 

Forward-backward covariate selection using MARS (earth) 

 

A key step in the treatment of RNA-seq data is identifying what technical or biological 

covariates are strong drivers of measured expression. RNASeqQC produces a large set of 

alignment metrics derived from the aligned RNA-seq bams. I combined these with the splicing 

metrics output by STAR. Separately, each of these data were scaled and the top 5 PCs calculated 

to summarize the bulk of the technical covariate distribution, producing an additional 10 

potential covariates. This final set of technical covariates are combined with the sample-level 
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individual-level information provided by GTEx (ischemic time, age, biological sex, RIN, 

ethnicity, race). 

 

I then used the `earth` package in R to select covariates that explained a large amount of 

expression variance across many genes. We set the parameters so that no non-linear splines were 

used, but that cross terms up to degree 3 were allowed, enabling the model to select tissue-by-

covariate or covariate-by-covariate effects. 

‘earth’ builds a forward model by selecting the covariate (or cross term) which most 

improves the total R^2 across all genes considered; and when a diminishing-returns threshold is 

reached (for us, an improvement of 0.01), prunes the terms using a penalized R^2 heuristic. 

I ran earth 100 times on a random sample of 1,000 genes; each run producing an estimate 

of variance explained for all covariates (covariates not included in the model are assumed to 

explain 0% of expression variance). We summarized the impact of each covariate by taking the 

upper 20% of the variance explained (figure S1a). Any covariate whose summary estimate was 

>5% variance explained was included in our final model for covariate correction. For group 

variables (such as tissue); if any subgroup exceeded the variance explained threshold, then the 

entire group variable was selected.  

Notably, no cross-terms exceeded the threshold for variance explained, suggesting that I 

could perform covariate correction simultaneously across all tissues. The lack of region-by-

covariate effects may be due to the fact that the library preparation batches and sequencing 

batches are well-balanced across brain regions.  

 

Tissue hierarchy 
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The median expression of all genes across a given tissue is taken as the exemplar of said 

tissue. These exemplars (12 in all) are hierarchically clustered into the tissue hierarchy observed 

in figure 2.3.1 using Euclidean distance and single-linkage hierarchical clustering. 

 

Module construction 

 

Robust WGCNA:  

Robust rWGCNA (Langfelder2008) was applied to each brain tissue independently. 

Briefly, the power parameter is selected as the smallest power (between 6 and 20) which 

achieves a truncated r^2 of >0.8 and a negative slope. Then, 50 signed co-expression networks 

are generated on 50 independent bootstraps of the samples; each co-expression network uses the 

same estimated power parameter. These 50 topological overlap matrices are then combined 

edge-wise by taking the median of each edge across all bootstraps. 

The topological overlap matrices are then clustered hierarchically using average linkage 

hierarchical clustering (using `1 – TOM` as a dis-similarity measure). The boostraps are used to 

determine cut height as follows: multiple cut-heights are considered (0.9 to 0.999, by 0.005); and 

for each cut the within-module correlation of TOMs is considered. For the top 8 modules by size 

(fewer if fewer modules are produced), the consensus and each bootstrap TOM is subset to the 

genes within each module, and the correlation between bootstrap and consensus is computed. 

The median (within module, across bootstraps) of these consensuses is computed, and the mean 

of these summaries is taken to be a measure of `goodness` for the cut. The cut height which 

maximizes this metric is taken to define the initial modules. 
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These initial modules are then merged via `mergeCloseModules` in WGCNA, which 

hierarchically re-clusters modules based on the module eigengenes, using the correlation-based 

adjacency as a dis-similarity matrix. Modules with a distance of < 0.35 are merged together into 

a combined module. 

Aggregating co-expression:  

At each merge of the hierarchy, a single round of consensus topological overlap is 

performed. Each pair of genes has two descendent edges, and the parent edge is estimated as the 

80th percentile between the two (i.e. for x < y; p = 0.2 x + 0.8 y)). This process proceeds up the 

tissue hierarchy until a single network TOM remains. 

Consensus labeling:  

After construction of co-expression networks from all tissues and splits, modules have 

been defined for a total of 21 groups (BRNACC-BRNSNA, BROD, CTX, CBL, BGA, STR, NS-

SCTX, SCTX, NCBL, WHOLE-BRAIN), yielding over 300 overlapping modules. The 

overlapping nature of these modules motivates labeling each module in terms of a hierarchy 

group, allowing one to identify (say) BRNHYP-M2 and BRNCTX-M7 with the module group 

WHOLE-BRAIN-M3. 

To perform this labeling, similarity matrices are computed. First, the module eigengenes 

for all modules (regardless of origin) are computed within every tissue, and the correlation 

matrix (using `bicor’) is computed for each module for each tissue. This produces an (all 

modules) x (all modules) matrix for each tissue. The consensus eigengene similarity (“E”) 

between two modules is chosen as the component-wise maximum of all of these matrices. The 

second similarity matrix is the standard Jaccard similarity (“J”) between module gene lists. These 
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similarities are combined into a dis-similarity matrix D = 1 - (E + 3*J)/4, which is used to 

hierarchically cluster (average linkage) these modules.  

Module groups are defined by cutting the dendrogram at a height of 0.35. This process 

results in a set of module clusters, each of which has a “level” in the brain tissue hierarchy (for 

instance, a cluster of BRNCTXBA9-M4, BRNCTXB24-M2, CTX-M7 would have the level 

“CTX” as the top-level of the tree represented is CTX). The “representative” of the module 

group is taken to be the module at the highest (most rootward) level of the tree – and if there are 

two, the larger of the two. A second round of clustering is performed by removing all modules in 

the group (except for its representative) from the dissimilarity matrix, and re-clustering only the 

group representatives. This process repeats until there are no additional merges. Finally, each 

module is labeled with its group representative; for instance “BRNCTXBA9-M4” would receive 

the label “CTX-M7”, because it shares its highest similarity with the consensus cortex module 

M7. 

In addition, I re-named and abbreviated modules: “BW” for brain-wide, “NCBL” for 

non-cerebellar, “NS.SCTX” for non-striatal subcortex, “CEREB” for Cerebellum; and the GTEx 

tissue names were abbreviated to clear region codes: ACC, AMY, B24, BA9, CBH, CBL, CDT, 

HIP, HYP, PFC, PUT, SNA.  

 

Preservation 

 

I consider two module preservation statistics: the classical Z-summary (Langfelder2011) 

and a leave-one-gene-out neighbor statistic. For the classical Z-summary; module statistics such 

as the mean gene-gene correlation in the module, the correlation-of-correlations across datasets, 
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the variance explained by the first module PC, and other metrics are computed for each module 

(in both the original and comparison dataset); and compared to 100 random (via permutation) 

modules of identical size. Each observed statistic is converted to a Z-score, and these are 

averaged to generate a final summary, for which large Z-scores are indicative of replication of 

the underlying biological signal. 

The neighbor statistic (“Z-AUPR”) is strongly influenced by the single-cell statistic 

MetaNeighbor (Crow2018). Briefly, a k-nearest-neighbor network is built in the comparison 

dataset (we use k=15), and we impose the module labels from the reference dataset. For each 

gene, we compute the proportion of its neighbors (again, in the comparison dataset) whose labels 

match its own. Note that if this proportion is > 0.5, then this gene would be assigned the same 

label in the comparison dataset as the reference dataset under a neighbor-voting scheme. Using 

these scores, we can compute an AUPR for each module. We repeat this approach for 100 

permuted modules (and, unlike the WGCNA permutation, we split genes into connectivity 

deciles, and permute only within decile), and use this baseline to convert observed AUPR to Z-

scores. As with the classical Z-summary, high Z-AUPR is indicative of replication of underlying 

biological signal. 

 

Module comparisons 

 

I considered three alternatives to WGCNA for network building and module 

identification: ARACNe, GLASSO, and von-Mises-Fisher clustering. 

ARACNe was run with default settings (10 permutations, FDR of 0.05); and genes 

filtered by ARACNe (for having no significant edges) were placed into a background ‘grey’ 
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module. The resulting network was imported into iGraph (Csardi2006) and modules identified 

by Louvain clustering. 

As sparse inverse-covariance estimation is computationally intensive, I took an 

approximate approach. First, we partitioned the genes into initial groups of approximate size 

1000 using k-medioids clustering. GLASSO was applied independently to each group to estimate 

a blockwise precision matrix. Within each block, the penalty parameter was selected using 

StARS (Liu2010), targeting an edge instability of between 0.05 and 0.1. Genes with no partial 

correlation to any others were grouped into a background ‘grey’ module. The remaining network 

was imported into iGraph and modules identified by Louvain clustering. 

vMF mixture modeling, unlike the other approaches, does not build a network, but seeks 

to identify gene clusters directly. Gene expression vectors were pre-processed by transforming 

their values into ranks (across samples) and normalizing them to unit norm. In this way, an inner 

product between two gene vectors is effectively their Spearman correlation. The resulting data is 

modeled as a collection of draws from an n-dimensional mixture of k von-Mises-Fisher 

distributions (where n is the number of samples). The model was fit using the R package movMF 

(Hornik2014) for k varying from 8 to 50. The final choice of k came from the model that 

maximized likelihood – 2 * ndim * k; and module assignments were determined from the most 

likely mixture probability (or ‘grey’ if that probability was less than 0.8). 

 

Whole-brain module comparisons 

 

Beyond comparing modules within each tissue, I sought to compare the hierarchical 

WGCNA modules with an orthogonal approach for building consensus modules. As consensus 
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modules built from methods already similar to WGCNA would certainly produce similar 

consensus modules, we considered an alternate approach: tensor decomposition. 

First, I built a fully imputed (gene x brain x region) tensor by using probabilistic PCA to 

impute missing samples within every (brain x region) submatrix for each gene. I then applied 

CANDECOMP to this tensor to produce 150 feature triplets: {(gene x 1), (brain x 1), (region x 

1)}. We treated the gene-level features as a (gene x 150) feature matrix, and ran t-SNE to embed 

the genes in a 2-dimensional space. 

While this embedding did not show distinct visual clusters, it clearly showed regions of 

high and low density, likely corresponding to modules. Given this intuition, I applied the 

DBSCAN clustering algorithm, producing a set of 30 whole-brain modules.  

I found that the ribosomal, glial, and choroid-plexus modules were in one-to-one 

correspondence with TD-DBSCAN modules, and that the neuronal WGCNA modules 

correspond to multiple TD-DBSCAN modules, with statistically significant overlaps. Visually, 

the WGCNA modules are localized in the embedded tensor-decomposed space, strongly 

suggesting that the modules are not driven by the specifics of WGCNA, nor are they induced by 

the structure of hierarchical merging; but rather that these genes are grouped together by 

disparate approaches because of an underlying biological signal. 

 

Learning curves 

 

To examine how module identification and specificity changes as a function of the 

number of samples, I combined samples from similar tissues to increase the maximum N: we 
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combined the cerebellar samples into one larger group (N=122), and we also grouped the cortical 

samples (PFC, B24, BA9) together with hippocampal samples into a second group (N=304). 

“Reference” modules for these groups were determined by applying rWGCNA to the full 

dataset. We down-sampled the group to a smaller set of samples of size n = 25, 50, …, N and 

performed rWGCNA on the smaller set. I repeated this process 10 times, generating 10 networks 

and module assignments for each sub-sampling of the full dataset. 

Because two clusterings should be considered identical up to renaming the labels in one 

or the other datasets, we use module co-clustering as a measure for accuracy, precision, and 

recall. Within the reference (whole group) dataset, we extract the top ‘hub’ gene from each of the 

modules, and the list of genes co-clustered with that hub gene (i.e. the other members of its 

module). For a given reference module, within a sub-sampled dataset, one has 

 

Recall = (# ref hub co-clustered genes also co-clustered in subsample)/(# ref hub co-clustered 

genes) 

Precision = (# ref hub co-clustered genes also co-clustered in subsample)/(# subsample co-

clustered genes) 

 

In effect, these are precision/recall statistics for the hub gene co-clustering indicators. If 

two reference modules fail to separate in a sub-sample (a typical failure mode), the result is 

slightly higher recall, but far worse precision. 

 

Single-cell data 
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Quantified single-cell data was downloaded from http://mousebrain.org (mouse; 

Zeisel2018) and subset to only cells from the CNS (without spinal chord); and GEO GSE97942 

(Lake2018) was downloaded for human. These data were log-transformed log(1 + x) for counts 

and log(0.005 + x) for TPM; and the cell type labels from the respective publications were used 

for all subtype analyses. Absolute expression values were taken as the mean expression of a 

cluster; and relative expression was obtained via `Relative = absolute – background` where the 

background expression is the average expression of a gene over all cells. To incorporate gene 

variance information into relative expression, the relative expression rank is defined as the lower 

end of a small confidence-interval for the difference in means: 

 

rank = (𝜇F − 𝜇T) − 	0.5 ∗
𝑣F
𝑛F
+
𝑣T
𝑛T

 

kME enrichments are based on the correlation between module kME and the relative expression 

rank within a given cell type. 

 

Cell-type enrichment and single-cell data 

 

For kME-based enrichments (such as those in figure 2), the shaded region of the figure 

represents the standard error around the estimated functional relationship between kME and 

relative expression rank. In all cases it is visually apparent that these lines deviate from 0 by a 

factor far exceeding 2.5 times their standard error (p ~ 0.006). 
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For gene-set based enrichments such those presented in the text, and those in figure 3, 

cell type markers were obtained from several sources (Zhang2014, Zhang2016, Miller2010, 

Mancarci2017, Romanov2016, Tasic2016, Heintz2004, Kelley2018) representing various studies 

performed both in mouse and in human. The statistical test is a logistic regression using the 

model 

 

is.cell.marker ~ 1 + is.in.module + gene.length + gene.gc 

 

adjusting for gene length and GC. I test that the coefficient for module presence is significantly 

different and greater than zero, implying an enrichment (as opposed to depletion) of cell-type 

related genes. This test is performed independently on cell type markers from the various studies, 

and FDR adjusted across all tests. 

 

Defining mouse orthologs to human genes 

 

The ensembl API was used, through biomaRt, to query human genes with associated 

mouse orthologs and the type of orthology; and visa versa. These queries enabled defining genes 

as one-to-one orthologs, one-to-many orthologs, many-to-many orthologs, or non-orthologous. 

The ensembl API was also used to obtain human-mouse dN and dS values; and the ratio dN/dS 

calculated, with 0/0 treated as 0.  

 

Module Imputation 
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For the lncRNA analysis, I imputed whole-brain modules into an independent RNA-seq 

dataset (Parikshak2016) by i) splitting the data into BA9 and BA41-42-22 regions, ii) 

Calculating module kMEs within each region, and iii) Averaging across the two regions. This 

generates a set of 11 features (average within-region kME to each module) for each gene. The 

overlapping genes between the GTEx modules and control brain expression were used as labels 

to fit a boosted trees classifier (using the R package xgboost with 2000 trees and a learning rate 

of 0.025). Non-overlapping genes (which contain most lncRNA and a set of held-out, matched 

protein-coding genes) are assigned to modules via the prediction of the fitted classifier. Using 

cross-validation we estimate that the sensitivity and specificity of this approach are 0.63 and 0.53 

for BW-M6, with all misclassifications resulting from assigning a ‘grey’ gene as in the module, 

or a BW-M6 gene as ‘grey’.  

 

Human-specific modules 

 

To define modules exhibiting human-specific differential expression, I obtained the 

modules and human-specific differentially-expressed gene list from Sousa2017. I subset only to 

modules flagged as showing inter-species heterogeneity, and computed enrichment p-values and 

FDR values by Fisher’s exact test, using the intersection of all GTEx-ascertained genes and 

Sousa2017-ascertained genes. This resulted in a set of 25 modules with enrichment FDR<0.1 for 

human-specific differentially expressed genes. 

 Using the same statistical approach and background gene set, I then tested for significant 

overlaps between the 311 GTEx modules and the 25 human-specific modules, identifying 10 

with an enrichment FDR < 0.1. These overlaps are plotted in figure 2.3.2. Not every module in 
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brain-wide module sets necessarily overlapped at FDR<0.1; so the figure reflects the proportion 

of modules within brain-wide module sets that show such an overlap. Furthermore, because 

hypothalamus and substantia nigra were not profiled in Sousa2017, these regions (and the 

NS.SCTX region) were excluded from this fraction calculation (but not from the initial overlap 

tests and FDR correction). 

 Sousa2017 also lists cell types in which these modules are expressed. These are 

summarized in figure 2.8(g). Expression is listed for cell types Ex1-Ex8 and In1-In8; for space 

this is collapsed to the fraction of Ex and In in which the module is expressed, so a gene 

expressed in In4 and In2 would receive a value of 0.25 for the “In” group. 

 

GO enrichment 

 

Gene ontology enrichment is performed competitively, with covariate correction, using 

logistic regression. Briefly, each GO category is treated as a binary variable (1 for genes in the 

category, 0 for genes not in the category – only genes ascertained in our gene expression matrix 

are part for the regression). Modules are also treated as binary. I include as covariates the 

average gene expression across all tissues in the brain, the gene GC content, and the log gene 

length. The GO enrichment model is then 

 

GO ~ module.1 + … + module.k + mean.expr + GC + log.gene.length 

 

and is fit using logistic regression. If convergence fails, an L2-regularized logistic regression is 

instead applied (using `brglm`). The enrichment p-values are taken to be the statistics that reject 
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(βi ≤ 0) for all βi corresponding to a module indicator. The enrichment p-values are adjusted to 

FDR values across all ontology categories. 

 

Meta-GSEA 

 

To aggregate enrichment results (such as GO) from the module level to the module set 

level, the GO p-values are treated as independent p-values, and Fisher’s method is applied: For a 

given ontology category, a χ2 value is calculated as -2 * log(p1*p2*…*pk), where the product is 

taken across modules in the set. In the case of independence, this statistic has 2*k degrees of 

freedom; allowing a p-value to be calculated. Because the modules in a set overlap by 

construction, the resulting statistics are not calibrated probabilities, and are referred to as 

“scores” or “rankings,” and should not be interpreted as reflecting significance. In nearly all 

cases, the highly-ranked consensus ontology had been significant in one or more of the modules 

within the set. 

Meta-GSEA was applied the genes within the regional BW-M4 modules (e.g. PFC-BW-

M4) with MAGMA Z-scores > 3.0 (SCZ) or 2.5 (ASD). This generated an indicator variable 

which was then used to perform gene ontology, using the BW-M4 genes as a background; 

generating p-values for each ontology. Meta-GSEA was applied to these p-values, generating a 

score for each ontology. 

 

pLI enrichment 
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Gene pLI scores were downloaded from the ExAC consortium release [cite], and a gene 

was considered likely to be LoF-intolerant if its pLI score was 0.9 or higher. Enrichment for 

"hard" module membership (i.e. comparing two gene lists) is performed via Fisher's exact test on 

the contingency table between module membership and LoF-tolerance/intolerance. "Soft" 

module enrichment (i.e. based on kME) is computed via a Brownian Bridge statistic.  

The genes were ranked by their module membership (kME); and the proportion of all 

genes which are likely LoF-intolerant (the pLI rate, r=P/M) is computed. At a given quantile q of 

genes, I tabulate how many of the first q * M genes are LoF-intolerant; and denote this 

cumulative sum by Cs(q). The expected number of LoF-intolerant genes is Ne(q) = q * P = q * r 

* M. For large M, this cumulative sum converges to a scaled Brownian motion with drift r; and 

has variance V(q) = q * (1 - q) * M * r * (1 - r). Z-scores for this cumulative sum at each q are 

given by Z(q) = (Cs(q) - Ne(q))/√V(q). An excess of LoF-intolerant genes occurs 

when min_q Φ(Z(q)) < 0.05. For clearer visualization, we plot (Cs(q) - Ne(q)) and 2.17 * √V(q) 

as functions of q. 

I also used a generalized additive models (“GAM”) and a generalized linear models 

(“GLM”) to verify findings of constraint. In these cases I applied the (logistic) model 

 

is.constrained ~ rank(kME)+ gene.length + gene.GC 

 

and found that, for the whole-brain modules, these enrichments were so strong that the three 

methods were in 100% concordance. The results of the linear models did not change 

substantively when using competitive as opposed to marginal enrichments.  
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For method validation (binary enrichment in pLI and o/e bins), the odds ratio and p-values were 

computed using a Fisher Exact Test between module membership, and bin membership. 

 

PPI enrichment 

 

We use InWeb PPI database (Li2016; brain tissue) for a source of defined PPI, with a confidence 

threshold of 0.2 used as a cutoff for a particular interaction. PPI prediction is treated as edge-

related data, where the response variable is binary (presence/absence of PPI), and the predictors 

the following collection of data relevant to that edge: the (PPI) connectivity of its first vertex, the 

(PPI) connectivity of its second vertex, the product of kMEs of its vertices (for each module), the 

product of the GCs of its vertices, and the product of the reproducibilities of its vertices. Or: 

 

Eij ~ Ci + Cj + kME_M1i * kME_M2j + … + kME_Mki * kME_Mkj + GCi*GCj  

 

This equation encodes the model that gene pairs which are mutually close to a given module are 

more likely to physically interact. The logistic model is fit using `statsmodels` in python, and the 

hypotheses βi ≤ 0 is assessed for each βi corresponding to a module. By testing the PFC 

modules, I found perfect concordance for PPI enrichment (<0.05) between this method and 

DAPPLE (Rossin2011). 

 

Regional contrast test 

 

The Regional Contrast Test is a multivariate test of significance for 
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H0: βi ≤ max(β1, …, βi-1, βi+1, …, βn) 

Ha: βi > max(β1, …, βi-1, βi+1, …, βn) 

 

This statistic corresponds to a multidimensional integral, with infinite limits on all 

coefficients other than βi, and taking max(β1, …, βi-1, βi+1, …, βn) < βi < ∞. Because of the large 

numbers of degrees of freedom in this regression, I treat the variance-covariance matrix (Σβ(ML)) 

of the β vector as giving the true sampling covariance of these parameters, and perform Monte-

Carlo integration by drawing 50,000,000 samples from the multivariate normal distribution N(β, 

Σβ(ML)) using the R package fastmvn.  

The above statistic works for testing each tissue against all others. A grouped version of 

the test is a simple extension, which considers several β in tandem. For simplicity we assume the 

indexes for the group are the first k coefficients, then the comparison becomes: 

 

H0: min(β1, …, βk) ≤ max(βk+1, …, βn) 

Ha: min(β1, …, βk) > max(βk+1, …, βn) 

 

This only changes the integration limits to (for j ≤ k) to max(βk+1, …, βn) < βj < ∞; and I use the 

same Monte-Carlo approach as before. 

Post-hoc tests for module enrichment use Fisher’s exact test on the contingency table 

 

 Significant 

(RCT) 

Not significant 

(RCT) 
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In module A B 

Not in module C D 

 

Isoform specificity from sorted cell data 

 

RNA-sequencing data was obtained from GSE73721 (SRA project SRP064454) and 

quantified at the isoform level with Kallisto (mouse gencode release M16). These data included 

sorted populations of astrocytes, oligodendrocytes, endothelial cells, a single neuronal 

population, and a whole-tissue background. Relative isoform expression were obtained as 

described in “Single-cell data,” with the background set to be the average expression across the 

whole-tissue background samples. 

 

Isoform switching and validation 

 

Isoform-level TPM values (produced by RSEM) were corrected using a linear model with 

the same covariates used for correcting gene expression TPMs. Subsequently, each isoform 

expression (within tissue) was correlated to brain-wide module eigengenes computed within the 

tissue, and the mean correlation across tissues taken as an estimate of module membership for 

the isoform.  

 

To determine an appropriate kME threshold, I evaluated the impact of thresholding on 

cell type enrichments. Each threshold produces a set of isoforms within a module; and each 

isoform can be annotated with the cell type marker status of its parent gene. Fisher’s Exact Test 
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produces an odds ratio and p-value for cell-type enrichment at each threshold. I found that a 

threshold of 0.45 produced a 15-fold enrichment for both astrocyte and oligodendrocyte markers 

when looking at kME to their respective modules (M6 and M7); but that when increasing this 

threshold the odds ratio for oligodendrocytes did not substantially change, while the astrocyte 

odds ratio increased. Based on this I defined the threshold for isoform module membership at 

0.45 kME. In the case where an isoform has >0.45 kME to multiple modules, module with 

highest kME is selected. 

An “isoform switch” is defined as two sister isoforms having membership to different 

modules.  

 

Western Blot Analysis 

 

Human iPS cells were differentiated into cortical glutamatergic-pattern neurons (GPiN) 

according to Nehme2018, and samples extracted at days 0, 16, 21, and 31. Human astrocytes 

were used as an outgroup. Western blot was run as per Wu et al., 2015, using the G-11 antibody 

sc-365757 from Santa Cruz Biotechnology. 
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Chapter	3 Linking	neuropsychiatric	disease	to	regional	brain	processes	
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3.1	Abstract	
 

Genomic and transcriptional disruptions in neuropsychiatric disease have been shown to 

impact neuronal pathways and cortical co-expression. Whether these pathways reflect 

neurobiology common to the whole brain, or instead reveal a region-specific pathology, is 

unknown. Using the human brain co-expression atlas developed in chapter 2, I identify 

enrichment of neuropsychiatric disease risk variants in brain wide and multi-regional modules, 

consistent with their impact on major core cell types – primarily neurons. Nearly all previously-

published disease modules overlap whole-brain modules, implicating nonspecific pathology. I 

also identify regional modules that are both intolerant to loss of function mutations and enrich 

for neuronal-activity-dependent processes that are disrupted in neuropsychiatric disease. 

	
	
3.2	Introduction	
	
 High-throughput genomics has engendered rapid progress in understanding the genetic 

signature of and genomic basis for neuropsychiatric disorders such as autism (ASD), 

schizophrenia (SCZ), bipolar disorder (BP), and major depression (MDD). These prevalent 

genetic diseases are now known to be highly polygenic and to exhibit a high degree of genetic 

overlap (Anttilla2018): both genetic risk factors and transcriptional signatures converge onto a 

selection of neuronal and neurodevelopmental pathways (Gandal2018a). Many of these points of 

convergence have been defined by co-expression networks built from cortical gene expression, 

and may reflect either regional vulnerability, or brain-wide disruption.  

 Using the structured brain co-expression atlas built in chapter 2, I interrogate previous 

neuropsychiatric disease associations for regional specificity, and investigate the atlas itself to 

identify signatures in the normal brain that may be disrupted in neuropsychiatric disease. Finally, 
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using the deep annotation of the co-expression atlas, I identify potential biological processes that 

may contribute to the etiology of neuropsychiatric disease. 

	
3.3a	Qualifying	regional	specificity	of	previously-identified	neuropsychiatric	disorder	co-
expression	networks	
	
 The previous chapter of this thesis developed an atlas of co-expression in the human 

brain, organizing co-expression relationships into those shared across or specific to regions of the 

brain. The obvious structural differences between humans and non-human primates led to a 

historical focus on neocortical regions for the study of human neurological disease – both 

neuropsychiatric and neurodegenerative. I therefore reasoned that the co-expression atlas could 

be used to provide regional localization of previously identified disease-associated co-expression 

signatures.  

I therefore re-evaluated gene modules identified in post mortem tissue from 11 

publications – normal brain (Konopka2012,  Hawrylycz2015) , ASD (Parikshak2016), SCZ 

(Fromer2016, Radulescu2018), cross-psychiatric (Gandal2018a),  Alzheimer’s disease 

(Wang2016), epilepsy (Johnson2016), and developing brain (Parikshak2013, Hormozdiari2015, 

Mahfouz2015) – with the objective of identifying: i) whether or not those previously discovered 

modules, typically based on analysis of only one or two brain regions were related to any the 

modules we identified from the normal individuals in GTEx, and ii) whether those previously 

discovered modules are indeed region-specific. 

Johnson2016 profiled expression in resected hippocampi from 122 epileptic patients, and 

used WGCNA to identify 24 co-expression modules. Using GSA-SNP, they identified of 

modules M1 and M3 as enriched for genetic association to cognitive ability; and using Fisher’s 

exact test, they identified module M3 as enriched for de novo mutations in intellectual disability 



	 93	

(ID) probands, and for a combined ID+ASD+SCZ cohort. This small module (150 genes) 

strongly overlaps (OR=6, p < 10-5) HIP-BW-M4 and no others, strongly suggesting that this is 

part of the brain-wide neuronal signature. Similarly, Fromer2016 generated co-expression 

networks separately in SCZ (n=278) and normal (n=254) prefrontal cortex; identifying a single 

module, M2c, showing enrichment for differentially-expressed genes, GWAS signal, and genes 

within SCZ-associated rare structural variants. This large 1,411-gene module is preserved in our 

data; and within pre-frontal cortex most significantly overlaps PFC-BW-M4 (OR=4.2, p<10-4) 

followed by PFC-CTX-M3 (OR=2.9, p<10-3). Though these overlaps comprise a small (159 

BW-M4 + 87 CTX-M3) proportion of the module, the implication is that a substantial proportion 

of the genes in FromerM2c reflect brain-wide relationships. This is underscored by the fact that 

CTX-M3 itself is not confidently region specific, but shows moderate to strong evidence of 

preservation across the brain.  

Figure 3.1 shows the overlaps between published disease-relevant modules and the atlas 

BA9 modules. Of the 59 published modules, there are only 2 instances of an overlap with a 

region-specific module that did not also show a significant overlap with a whole-brain module: 

Parikshak2016-M4 and Harlywycz2016-M19, both of which show overlap with BA9-M8. 

However, as the module preservation statistics show strong evidence for this module across all 

non-cerebellar tissues, it is likely that it reflects a brain-wide process. BA9-M8 enriches for 

markers of noradrenergic and cholinergic neurons, both of which are found in all non-cerebellar 

brain regions (figure 3.2). This gene set likely represents a population of neuronal subtypes 

which are variable enough in BA9-M8 to have a co-expression signature, but which otherwise 

contribute to the brain-wide neuronal module BW-M4. Figure 3.1 also shows a common set of 

brain-wide modules involved in overlaps across every study: BW-M1, BW-M4, BW-M6, and 
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BW-M10, corresponding to the major cell types in the brain. While region-specific effects may 

play a role in neuropsychiatric disease, these findings show that no clear region-specific 

signature has yet been identified, but instead that a consistent, brain-wide signature of neuronal 

dysfunction and glial dysregulation underlies previous findings. Furthermore: while the 

pathways involved in genetic risk are broad, the impact of neuronal dysfunction may be more 

acute in certain regions, such as the cortex where neurons are more prevalent. Indeed Parikshak 

et al. (Parishak2016) observe the same dysregulated genes in cortex and cerebellum, but that the 

cortex is more severely dysregulated. In this way, we might expect to identify other instances of 

regional pathology that do not involve region-specific molecules or pathways. 
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Figure	3.1	Whole-brain	co-expression	drives	most	neuropsychiatric	disease	modules	

(a-c) Module overlaps, labeled by odds ratio and colored by p-value, between disease-implicated modules from 
other studies, and the brain-wide and regional (cortical) modules in GTEx. All heatmaps share the same color key. 
The vast majority of overlaps are with neuronal modules (BW-M3, BW-M4, BW-M5, BW-M9, CTX-M1, BA9-
M8). (d) Summary of overlaps by region, demonstrating a large amount of overlap with brain-wide module sets.  
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Figure	3.2	BA9-M8	and	CTX-M1	show	whole-brain	preservation,	related	to	3.1	

(a) Cell-type enrichment for module BA9-M8 showing enrichment for neuronal subtypes that are present throughout 
the brain. Lein, Cahoy represent published neuronal gene markers (Lein2007, Cahoy2008); somatic represents genes 
expressed on somatic neuronal components, and Spinal and Forebrain represent markers of neurons from these brain 
regions. (b) Zoom-in on overlaps for cross-disorder and developing brain modules colored by p-value and labeled by 
odds ratio. Significance at 0.005, 0.001, and 0.0001 given as *, **, *** respectively. (c, d) Region-specificity 
metrics for BA9 (c) and CTX (d) specific modules, demonstrating that BA9-M8 and CTX-M1 show strong evidence 
in the telencephalon and striatum.  
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3.3b	Convergence	of	molecular	signatures	of	neuropsychiatric	disease	onto	brain-wide	neuronal	
modules	
	

I next investigated whether genetic perturbations in neuropsychiatric disease converge 

onto region-specific or cross-regional modules. Utilizing databases of de-novo variants 

implicated in ASD and SCZ (Tychele2016), GWAS summary statistics (PGC2013, PGC2014, 

PGC2017, Grove2019) and RNA-sequencing in post-mortem ASD and normal brains 

(Parikshak2016), I identified two whole-brain modules, BW-M4 (neuron) and BW-M1 (neural 

progenitor), that simultaneously enrich for ASD-linked rare variants, enrich for SCZ GWAS 

signal, and that manifest disrupted expression in ASD post mortem brain. I also observed two 

regional modules, CTX-M3 (activity-dependent regulation and endocytosis) and CEREB-M1 

(mRNA binding) that show ASD rare-variant and SCZ GWAS enrichment. While the co-

expression relationships for CTX-M3 and CEREB-M1 are distinct, the genes do overlap more 

often than expected by chance (Jaccard=383/1938, OR=9.5, p<10-20 Fisher’s Exact), and both 

show significant preservation in control brain, but not in ASD post mortem brain, suggesting that 

they are disrupted in ASD. 
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Figure	3.3	Gene-level	module	enrichments	for	de	novo	PTVs,	GWAS	summary	statistics,	and	differential	expression	

(a) FDR values (Fisher exact test) for enrichment of de-novo loss-of-function variants within modules, summarized 
to module sets. Bar height gives geometric mean of FDR, and whiskers the range of (significant) FDR values for 
modules within the module set. Bold modules also show enrichment from GWAS summary statistics. Module sets 
are ordered by Jaccard similarity between their index modules. Green region: These modules enrich for neuronal 
markers. Blue region: These modules enrich for fetal neuron, mitotic progenitor, or outer radial glia markers. (b) 
FDR values (MAGMA) for GWAS summary statistics within modules. Method of ordering identical to (a). (c) 
Module eigengene expression for BW-M1 and BW-M4 in ASD cases and control brains across three regions and 
associated p-values from a T-statistic (linear model including covariates as in Parikshak2016). (d-f) Volcano plots 
and sign-test P-values for genes in NPC, astrocyte, and neuronal modules. (g) Module preservation statistics 
separately in ASD and control brains, suggesting differential preservation for modules CTX-M3 and CEREB-M1. 
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 BW-M4 represents a non-specific neuronal gene set, identified independently throughout 

the telencephalon and subcortical regions, all sharing GO terms related to membrane 

organization or ion transport. Examination of significant genes within BW-M4 (defined as a Z-

score from MAGMA > 3.0, methods) demonstrates enriched terms for both the Psychiatric 

Genomics Consortium (PGC2014) and ClozUK (Pardinas2018) SCZ GWAS studies are related 

to the synapse and synaptic transmission. This suggests a convergence of risk genes onto 

synaptic signaling pathways, consistent with a recent comprehensive pathway analysis 

(Schijven2018). Using meta-GSEA (methods) to rank ontologies across GWAS studies and 

brain regions, both ASD and SCZ appear to share highly ranked terms related to synapse 

assembly and plasticity. Interestingly, the term synaptic transmission shows very strong evidence 

only from SCZ association statistics, whereas the strongest terms with evidence in ASD alone 

are learning and social behavior. (figure 3.4)  

BW-M1 contains genes and pathways corresponding to neurogenesis, differentiation, and 

migration (figure 3.5a), as well as components for RNA splicing, structural components of cell 

division, and stem cell population maintenance (figure 3.5b). Genes within BW-M1 are strongly 

loss-of-function intolerant, and the module enriches strongly for PPI interactions. The genes in 

this module, which are up-regulated in ASD cortex, enrich for the TGF-beta signaling pathway 

(FDR=0.0047, STRiNG; Szklarczyk2016), which is known to regulate neurogenesis 

(Battista2006), and consist mainly of the BMP/SMAD pathway (BMPR1A, BMP2K, SMAD4, 

SMAD5, SMAD9) which is critical for orchestrating proliferation/differentiation balance 

(Jovanovic2018). NPC proliferation/differentiation balance is another major theme of the 

module, as it contains key REST co-repressors CTDSPL and RCOR1, the down-regulation of 
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which promote proliferation over differentiation (Monaghan2017), as well as the differentiation 

repressors ADH5, TLR3, SOX5, SOX6, and PROS1 (Wu2014, Okun2010, Lathia2008, Martinez-

Morales2010, Lee2014, Zelentsova2016) and the differentiation/proliferation regulator SPRED1 

(Phoenix2010). The de novo LoF and GWAS enrichments suggest that NPC proliferation and 

differentiation – both in the prenatal and adult brain – are disrupted in ASD and SCZ. De la 

Torre Ubieta et al. recently observed that fetal-specific open chromatin regions in the cortical 

plate enrich for SCZ heritability, and reflect regulatory elements for genes involved in 

neurogenesis (De la Torre-Ubieta2016). Analysis of module trajectories in the developing brain 

(Sunkin2012) shows very strong prenatal upregulation, with continuing post-natal activity into 

early adulthood. Disruption of this module may be responsible for the observed ASD expression 

signature – downregulation of neuronal modules and upregulation of astrocyte modules – 

implicating brain-wide changes in neuronal proliferation/differentiation balance beginning in 

early development and persisting into adolescence. 
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Figure	3.4	Meta	GSEA	of	nominally	significant	genes		

Meta GSEA of nominally significant genes (z > 3 SCZ, z > 2.5 ASD; MAGMA) in BW-M4 across three studies: 
iPsych (ASD), PGC (SCZ), and ClozUK (SCZ). (a) Significantly enriched GO terms within these significant BW-
M4 gene sets. Length of the bar reflects significance value, the color the odds ratio of enrichment (scale shared with 
(b)), and outline color the particular study: PGC (green), ClozUK (red), and iPsych (blue). (b) Combined enrichment 
scores and odds ratios across ontology terms for SCZ and ASD. The P-values rely on an assumption of 
independence which is violated, and should be interpreted as a ranking or score as opposed to the result of a 
statistical test. 
 

3.3c	Neuropsychiatric	disease	risk	enriches	in	cortical	and	cerebellar	modules	which	are	
differentially	co-expressed	in	ASD	brains	
 

The two regional modules that show convergent evidence of disruption in 

neuropsychiatric disorders, CTX-M3 and CEREB-M1, show an enrichment for de novo LoF 

variants linked to ASD, an enrichment for SCZ GWAS summary statistics, and are disrupted in 

ASD (figure 3.3). Although, they have distinct components, both CTX-M3 and CEREB-M1 

show significant overlap in their genes, and modest evidence of preservation outside of their 

respective regions, with preservation AUPR scores < 0.5. Both modules enrich for PPI (CEREB-
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M1 p<7e-15, CTX-M3 p<0.0023), as well as LoF-intolerant genes, providing validation that they 

contain coherent and essential biological pathways.  

To validate the cortical-specificity of CTX-M3, I used normalized RNA expression 

values from the Allen Human Brain Atlas (Shen2012) to contrast the expression trajectories of 

hub genes in cortical versus non-cortical regions. I observed that the relative levels of these 

genes across all cortical regions (frontal, parietal, occipital, and temporal lobes plus cingulate 

gyrus) are tightly coupled in contrast to their highly variable expression across non-cortical 

regions (hippocampus, hypothalamus, striatum, and cerebellum), evidence of a preserved co-

expression signature across the cortex (figure 3.5).  

Notably, CTX-M3 contains both the syndromic ASD gene, FMR1, as well as its direct 

interactor, the protein NUFIP1, which (like FMR1) has been implicated in the regulation of 

activity-dependent translation and local synaptic translation (Bardoni2003) and additionally in 

ribophagy (Wyant2018). It also contains the intellectual disability (ID) gene ATRX, which forms 

a complex with the protein product of DAXX to regulate H3.3 loading onto and maintenance 

within heterochromatin. H3.3 is itself associated with activity-dependent transcription in neurons 

(Maze2015), suggesting that dysfunction or dysregulation of ATRX could alter the availability of 

this activity-related histone.  

To further whether this module’s disruption was related to changes in activity dependent 

processes in ASD, I examined genes previously identified as up-regulated following activity 

induction of rat hippocampal neurons (Schanzenbacher2018), and found that 10% of these genes 

fall into CTX-M3 (p = 0.0472, Fisher Exact). The observed enrichment is driven largely by 

components of protein phosphatase 1, which has both nuclear and synaptic roles in synaptic 

plasticity and long-term memory (Hu2007, Koshibu2009). However, several components of the 
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mitochondrial ribosome (MRPL27, MRPL45, MRPS26) are observed concomitant with activity-

dependent upregulation, and CTX-M3 is highly enriched for the mitochondrial ribosome, 

containing 21 genes within this functional pathway (p < 1.7e-10, Fisher Exact). These 

observations indicate that activity-dependent up-regulated genes form one component of this 

ASD- and SCZ-associated module, CTX-M3. Other components of this module include poly-A 

binding, alternative polyadenylation and alternative splicing (NGDN, MBNL1, MBNL2, CSTF3, 

SPSF3, CPSF6), multiple endocytosis regulating genes (RALA, VAMP4, VAMP7, TSG101, 

VPS25, RAB18, RAB3GAP2, CHMP2B, and sorting nexins SNX2, SNX3, SNX13, SNX14), 

consistent with their role in supporting neuronal activity-dependent processes that are disrupted 

in ASD (Tsai2012, Quesnel-Vallieres2016, Chen2017, Ip2018, Sears2018, Stilling2018). 
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Figure	3.5	Ontologies,	PPI	networks,	and	expression	profiles	of	ASD-associated	modules.	

(a) Enrichment p-values (Fisher exact test) for neuron-related ontologies in whole-brain modules. (b) 
Combined (geometric mean) enrichment p-values of ontologies for all modules in module set BW-M1 that 
showed enrichment for ASD-implicated de novo loss of function mutations. (c) Coexpression-PPI network 
of BW-M1, highlighting denovo loss of function mutations (large nodes) and ontologies (colors). (d) 
Expression of BW-M1 across developmental timepoints, sub-clustered into four modules using WGCNA. 
(e) Assignment of network nodes in (c) to the subclusters in (d) via label propagation. (f) Coexpression-PPI 
network for CTX-M3, colored by enriched gene ontology sets. (g) Expression profile of CTX-M3 hub 
genes across brain regions, demonstrating tight co-regulation in cortical regions (solid lines) by virtue of 
small variance, and variable expression across non-cortical regions (dashed lines). (h) Enrichment p-values 
(Fisher exact test) of the CTX-M3 module for gene ontologies, including bulk endocytosis genes. 
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3.4	Discussion	
	

The findings that ASD-linked dnLoF mutations as well as SCZ GWAS signal enrich in 

brain-wide neuronal and neurogenesis modules underscore previous findings linking both 

common and de novo variation to synaptic genes (Pers2016, Alonso-Gonzales2018), neuronal 

genes (Skene2018), developmentally-expressed genes (Wang2019), and neurogenesis pathways 

(Yuen2016). One prevailing synthesis is that the transcriptomic signatures in ASD reflect 

progressive response to a primary insult to neuronal maturation, synapse formation, and early 

childhood synapse stabilization and pruning (Parikshak2016), which should give wide to brain-

wide disruptions. Even though cortical regions contain a much higher proportion of neurons than 

other brain regions, the pattern of risk variant enrichment is not cortex-specific, and enrichments 

in the regional BW-M1 and BW-M4 modules are significant across the brain, implying 

widespread effects of these genetic risk variants on brain function.  

The only region-specific modules with convergent evidence across disease and modality 

were CTX-M3 and CEREB-M1, which appear to reflect activity-dependent transcriptional 

profiles. Indeed, VAMP4 – present in CTX-M3 – is an essential molecule for activity-dependent 

bulk endocytosis (ADBE) (Nicholson-Fish2015), and several module proteins (including RAB 

GTPases RAB7a and RAB18) overlap with the ADBE proteome (Kokotos2018). A parsimonious 

explanation is that this module concerns the maintenance of organelles and proteins required for 

long-term neuronal activity, (i.e., mitostasis and ADBE proteostasis), through activity-dependent 

mRNA transcription and neuropil targeting (Caleb2014). This represents an axis of 

neuropsychiatric genetic architecture that pertains to neurotransmitter release and reuptake. 

Notably, genetic insults to ADBE should have different impacts on excitatory and interneurons 

because GABAergic synaptic terminals are more prone to ADBE-reuptake than non-GABAergic 
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terminals (Wenzel2012). Thus, impairments to CTX-M3, including bulk endocytosis, at 

inhibitory synapses may play a role in the excitatory/inhibitory imbalance that is observed in 

neuropsychiatric disease (Selten2018). 

	
3.5	Methods	
	
Module Overlaps 
 
 Network modules from previous publications were obtained from main tables or 

supplementary information, converted to ENSEMBL gene IDs using the ‘biomaRt’ R API to the 

grch37 ensembl server. 

 To address ascertainment bias, enrichment was calculated using only genes overlapping 

between any two studies. This overlap set is used to compute the contingency table for two 

modules (in neither, in both, in only this study module, in only the comparison study module), 

and Fisher’s exact test is used to obtain a p-value and odds ratio. 

 Enrichment tests for ADBE, neuronal migration, neuronal differentiation, and 

neurogenesis were performed in the same way. However, for ADBE and neurogenesis, the 

original publications did not publish the full set of ascertained genes, so the background was the 

entirety of our data. However, as these are all neurological gene lists, it is not likely that the 

ascertained set of genes were substantially different from the set of brain-expressed genes 

ascertained here. 

	
De-novo variant enrichment 

Denovo-DB (Tychele2016) was used to extract lists of genes harboring de novo variation 

linked to ASD and Schizophrenia. The v1.5 of the database was obtained on 02-17-2018, and we 

filter for “PrimaryPhenotype=autism” (or, separately, “PrimaryPhenotype=schizophrenia”) and 
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“FunctionClass” as one of “frameshift”, “frameshift-near-splice”, “splice-acceptor”, “splice-

donor”, “start-lost”, “stop-gained”, “stop-gained-near-splice”, or “stop-lost.” 

Module enrichments are calculated via Fisher’s Exact Test, using the contingency table 

formed by cross-tabulating module presence/absence with presence/absence on the denovo-db 

gene list. 

As the denovo-db is a broad collection of de novo mutations in affected individuals and 

does not curate these variant lists on the basis of total evidence, we consider two additional data 

sources for alternative enrichment scores. First, there is the curated list of SFARI genes of rank 

S, 1, 2, or 3; and perform enrichment on the resulting list. Second, recent work from our lab 

(Ruzzo2019) computed transmission and de-novo association Bayes Factors for 18,472 genes. 

As an additional confirmation, the log Bayes Factor was regressed against module 

presence/absence and the coefficient tested against 0, with a positive alternative. 

 

GWAS variant enrichment 

 

Enrichment for GWAS signal was performed through the use of MAGMA 

(deLeeuw2015) gene set analysis. Briefly, variants were mapped to genes on the basis of 

genomic distance, while taking chromatin contact maps from adult brain Hi-C (Won2016) into 

account. MAGMA was used to generate gene scores and LD-based covariance. Subsequently, 

MAGMA’s gene set analysis was used to compare the distribution of gene scores between 

modules and the background set of ‘grey’ genes. 

5 GWAS studies were considered in this analysis:  The iPsych (Anttila2018) and PGC 

(PGC2013) cross-disorder GWAS studies (accounting for ASD, SCZ, and cross-disorder), the 
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IGAP (Lambert2013) consortium’s Alzheimer’s disease study, the KKNMS (Andlauer2016) 

multiple sclerosis GWAS, and educational attainment from the SSGAC (Okbay2016). 

 

Differential preservation analysis 

 

Modules defined in the GTEx tissue samples were assessed for their preservation in ASD 

case samples and (separately) in normal samples according to WGCNA’s module preservation 

statistics (Langfelder2011). These produced a pair of preservation Z-scores per module. 

Differential preservation of a module is a case where the control Z-score is preserved (>3) while 

the ASD Z-score is not preserved (<3).  
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Chapter	4 Network	genetic	architecture	and	the	omnigenic	disease	
model	
	
4.1	Abstract	
	
	 Genes do not operate in isolation but function through complex interaction networks. The 

impact of a mutation may therefore depend on its genomic context, a property termed “epistasis.” 

With the exception of twins, the genomic context of a mutation is different in each individual. 

This means that, in population studies such as GWAS, the effect size of a mutation reflects both 

a baseline (additive) effect, as well as the average epistatic effect. These two components cannot 

be separated, meaning that epistatic effects are necessarily absorbed into estimates of additive 

effects (Sackton2016). By capturing epistatic interactions (and therefore average epistatic 

effects), biological networks shape the additive effect size distribution.  

In this chapter, I incorporate network structure into a model of genetic architecture, 

termed “network genetic architecture.” I demonstrate the utility of this framework by 

distinguishing the hypotheses of omnigenic and polygenic architecture in terms of a key model 

parameter, γ2, and also establish that co-expression networks significantly enrich for the 

heritability of schizophrenia (SCZ) and autism spectrum disorder (ASD). 

4.2	Introduction	
	
 Complex genetic traits, characterized by causal mutations affecting several hundreds to 

thousands of genes, defy reductionist understanding in terms of a single gene or even a single 

pathway. Systems biology, by abstracting biological function to the coordinated action of many 

genes and other molecules, has proved to be a powerful organizing framework, leading to deeper 
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understanding of disease in terms of disrupted molecular relationships (Konopka2009, 

Willsey2018).  

Gene networks in particular have demonstrated immense utility in identifying gene-gene 

relationships that contribute to disease etiology or manifestation. Recent work has shown that 

gene networks relate to genetic architecture, as many network modules enrich for rare and 

common disease-associated variants (Parikshak2015). Yet a complete and coherent interpretation 

of this relationship requires incorporating network architecture into models of heritability 

(Kim2019). 

Two recent syntheses of the past decade of genetic discoveries in human traits – the 

omnigenic model of Boyle and Pritchard (Boyle2017), and an associated rebuttal by Wray and 

Visscher (Wray2018) – appeal to gene networks to structure functional genetic effects. In the 

case of the omnigenic model, gene networks are used to distinguish important “core” genes from 

effector “peripheral genes”, while in the case of the polygenic model, gene networks capture the 

underlying complexity. 

In this chapter, I present a model of network genetic architecture out of which omnigenic 

and polygenic architectures arise as special cases. From the omnigenic special case, I derive 

expectations for the network distribution of high-penetrant de novo variants, and show that a 

wide range of co-expression networks and gene regulatory networks are not consistent with this 

expectation, and therefore do not reflect an omnigenic structure. I generalize this model to 

arbitrary graphs defined on genes or variants, and provide a method for estimating heritability 

explained and genomic enrichment. Using this method, I demonstrate that co-expression network 

structures corresponding to receptor signaling, synaptic vesicle function, and pyramidal neurons, 

capture significantly more heritability for both ASD and SCZ than is expected by chance. 



	 111	

Finally, I derive a statistical test for network perturbation: whether a trans-QTL impacts a 

network so that genetic liability for a disease is increased. Using this model, I demonstrate that 

tens of modules – and potentially hundreds of genes – directly contribute to the etiology of 

neuropsychiatric and neurodegenerative disease, which is consistent with a genetic network 

architecture closer to the polygenic spectrum than the omnigenic spectrum. 

	
4.3	Results	
	
4.3a	Likely	high-penetrance	ASD	mutations	do	not	exhibit	omnigenic	network	enrichments	
	

To evaluate the omnigenicity of neuropsychiatric disease, I reasoned that high-effect-size 

mutations should occur almost entirely within core genes. To assess this hypothesis, I simulated 

variants from a genetic architecture where the effect size is a function both of frequency and the 

network distance: 

𝛽X|𝑑X 𝐺 , 𝑝X~𝑁(0, 𝜎L6 2𝑝X 1 − 𝑝X
NZ 1 + 𝛿𝑑X 𝐺

N\) 

I take the core distance, 𝑑X, to be normalized to [0, 1]. I can then group variants into deciles, with 

D1 reflecting those variants with 𝑑X<0.1. Across a wide range of values for 𝑑X, 𝛾^, and 𝛿, I 

observed that whenever variants in D1 explain >40% of heritability, there is a strong, decreasing 

trend between effect size and core distance, such that the vast majority of high-effect variants fall 

within D1. 

 To quantify this observation, I defined a simple statistic, 𝜙, which measures the fraction 

of the 1% highest-effect mutations that fall into D1. For omnigenic values of  𝛾6 (≤-5), this value 

ranges from 45% to 100% implying that, for this model of network architecture, half to nearly all 

of high-effect mutations should occur within or very close to core genes. To validate the 

reasonableness of the simulation, I computed the effect size ratio of the 1% highest-effect variant 
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to the effect size of a typical GWAS variant (80% power to detect in a balanced sample size of 

10,000), and found that this ratio ranged from 5x-80x, consistent with estimates of the relative 

risk ratio between de novo loss-of-function (dnLoF) variants and case-control-associated 

damaging variants of 3x-25x (Nguyen2017, Ballouz2017).  

 I reasoned that genes associated with a disease by an excess occurrence of dnLoF 

mutations are likely to be within the 1% highest effect sizes of all causal variants. As such, the 

proportion of dnLoF-implicated genes falling into D1, termed 𝜙`abcd, is an estimate for 𝜙. 

Because 𝜙 is robustly large across a wide range of omnigenic architectures, a low value for 

𝜙`abcd implies that the disease is not omnigenic with respect to the distance d(G). I emphasize 

that 𝜙`abcd is specific to a network G and a distance function on that network d.  

 A set of 10,000 genes admits nearly 50 million unweighted networks, and as many 

distance functions, making network architecture – including omnigenics – non-falsifiable in 

practice. Yet specific instances of network architecture (e.g. co-expression graphs with module 

hubs as core genes, for which 𝛾6<0) almost surely exist. A high value of 𝜙`abcd for a network G 

would demonstrate one such instance, and further provide strong evidence that	𝛾6 is extreme (≤ -

5) with respect to d(G). Biologically, this would indicate that the genes with the lowest value of 

d(G) are core genes: mutations in these genes have very large effect sizes, and thus the genes 

themselves play an important role in disease processes. 
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Figure	4.1	Simulation	from	omnigenic	settings	of	network	architecture	

(a) left. Cumulative distributions of h2 explained and total variant proportion by network distance for a network 
architecture with 𝛿=1.8, γ2=-10, γ1=-0.4. right. Distribution of variant network distances by its effect size – higher 
effect variants falling closer to or within the core. (b) left. Distribution of ф across 10 simulations of the architecture 
in (a), across a range of thresholds including the final threshold 0.01. right. Relationship between the effect size 
quantile and the normalized effect size (effect size ratio versus a well-powered 5%-frequency GWAS SNP). (c) As 
(a), but for 𝛿=2, γ2=-5, γ1=-0.4. (d) As (b), but for the architecture reflected in (c). 
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 Recent work in our lab identified 69 ASD-associated (FDR<0.1) genes by integrating de 

novo and inherited LoF mutations (Ruzzo2019), and a previous integrative publication identified 

64 ASD-associated genes on this basis (Nguyen2017). Using the Bayes factors from these 

studies, I computed 𝜙`abcd values for ASD across a large variety of gene networks: co-

expression networks in DLPFC, whole cortex, developing cortex, fetal cortex, with whole blood 

as an outgroup, brain PPI networks, and transcription factor binding networks in whole cortex 

and NeuN+ cells. I found little difference when taking d to be shortest path distance, mean path 

distance, or negative module kME as distances; or when using a 10-nearest-neighbor network in 

place of the fully-connected weighted co-expression network. The core genes, to which distances 

are measured, are taken to be (i) the top 5% (minimum 5) module hub genes (ii) the top 

community exemplars (TF binding network); (iv) the syndromic ASD genes FMRP, ANK2, 

SYNGAP1, CHD8, SHANK2, SHANK3, and SCN2A (all networks); or the top 10 or 20 genes 

identified from the above studies (all networks). 

 Across all of these networks, the largest observed value of 𝜙`abcd = 54% from the 

whole-blood co-expression network; fetal, developing, and adult cortex co-expression, as well as 

transcription-factor-binding networks,  all showed 𝜙`abcd values between 10% and 48%. I take 

this to reflect on the architecture of ASD with respect to these robust, relatively definitive, co-

expression networks, suggesting that RNA co-expression does not reflect an omnigenic model.  

Within these networks it is likely characterized by a moderate value of 	𝛾6. However, it could 
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also be that either the FDR values for the two association studies are in fact higher than 10%, or 

that the dnLoF-implicated genes do not reflect the top 1% (or even 5%) of variants by effect size. 

Though there may be networks other than co-expression for which	𝛾6takes on omnigenic values, 

the absence of large 𝜙`abcd values for TF bindng networks and PPI networks also do not reflect 

an omnigenic architecture.  

 

	

Figure	4.2	-	Characterizing	core-periphery	structure	of	high-impact	neuropsychiatric	disease	genes	across	multiple	networks.	

(a) Example simulation of network genetic architecture, where the variant effect size decays rapidly with distance to core. Left: 
Cumulative proportion of genes (blue) and heritability (pink) along the distance distribution. Dotted line shows the cumulative 
heritability when true distance is replaced by a corrupted (30% error) distance. Right: The relationship between core distance and 
effect size results in high-effect variants only appearing very close to core genes for both ground truth (black) distance as well as 
30% corrupted (brown) distance (b) High-impact genes are defined by the effect-size percentile on the x-axis, and the % of genes 
falling into the core-distance decile is plotted on the y-axis. This plot encompasses 20 simulations. Dotted boxes represent the 
expected values for Φ when the distance is error-free, while solid boxes represents the case where distance is 30% corrupted by 
error. (c) Validation of the effect size distribution: the effect size of each quantile is normalized to the effect size for which a 
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balanced GWAS of 10,000 samples has 80% power; the highest-impact variants are only 20-50x stronger than empowered 
variants. (d) All values of Φ across distance metrics, core set size, module definitions, and brain co-expression networks, 
demonstrating that no value of Φ exceeds 50%. (e) top 10 Φ values (per core set) for the GTEx whole-blood co-expression 
network. 
 
 
 

 The expectation that 𝜙`abcd is large assumes that the core genes that define d(G) are 

known exactly, with no missing core genes or extraneous peripheral genes. The extent of 

interpretation of the previous results depends on how sensitive 𝜙`abcd is to false-positives or 

false-negatives within the hypothesized gene set. To quantify the sensitivity of 𝜙`abcd to the 

distance function d I repeated the original simulations in two new scenarios: (i) using dtrue to 

define the genetic architecture, and a separate but correlated dmeas to calculate 𝜙 and (ii) using a 

co-expression network to define dtrue to a set of 50 core genes, and introducing false-positives 

and false-negatives into this gene set when computing dmeas.  

Surprisingly, the larger 	𝛾6 is in magnitude, the more robust	𝜙 is to errors – a result of the 

fact that for large enough values of 	𝛾6, most high-impact variants fall within the lowest 1% of 

distance, so these variants remain in D1 even in the face of high error. 𝜙 is also quite robust to 

core-gene false-positives, because this introduces excess low-effect variants which do not enter 

into the calculation of 𝜙. The robustness of 𝜙 with respect to false-negatives is a function of how 

clustered the core genes are within the network. With 10 clusters – representing 10 distinct 

biological processes – the expectation of 𝜙 > 50% can still withstand up to a 20% core set false-

negative rate, while with 5 clusters this increases to 35%. 

For an omnigenic architecture where core genes are clustered, 𝜙 is robust both to 

measurement errors in the distance, and false-positives in the core gene set. This implies that our 

conclusions about co-expression and regulatory networks can be made fairly strong: for ASD, 	𝛾6 

is unlikely to fall within the omnigenic range for these networks.  
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Figure	4.3	Tolerance	of	phi	to	distance	error	in	omnigenic	architectures	

(a,b) Cumulative distributions of heritability explained and total variants, when dtrue is used (solid) versus dmeas 
(dashed), and accompanying distance-effect distribution (black: dtrue, brown: dmeas) for a 30% error rate in the 
distance, with network parameters of 	𝛾6=-10 (a) and -15 (b). (c,d) Distributions of 𝜙 for the parameter settings in 
(a),(b) over 20 simulations, with solid boxes denoting the measured value of 𝜙 under noise, and dotted boxes 
showing the true value of 𝜙.	
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4.3b	Co-expression	explains	a	significant	fraction	of	genetic	effects	in	neuropsychiatric	disease	
	
	 The intuition behind network genetic architecture is that genes with a similar relationship 

in the network should give rise to similar kinds of genetic effects. The model in the previous 

section, however, reduces the full network structure to the path distance alone. This motivates a 

full random effect model 

𝛽	~	𝑁(0, 2𝜎L6ΔhΚ 𝐺 ) 

 

Where Δhis the diagonal frequency variance matrix (2p(1-p))γ, and Κ 𝐺  is a graph kernel on the 

network G. This model links the network structure to effect covariance, allowing risk-conferring 

mutations in related genes to co-occur far more frequently than in the previous model. 

 The more than 3,000,000 protein-altering genic variants (Hoehe2017), and the fact that 𝛽 

is not directly observed, makes the full model intractable in practice. While it may be possible to 

borrow ideas from Gaussian processes (Titsias2009) to perform approximate inference, a more 

accessible solution is to use a continuous version of LD score regression (Gazal2017): 

𝐸 𝑧*6 = 	𝑁 𝜏8ℓ 𝑗, 𝐶 + 𝑀
8

 

ℓ 𝑗, 𝐶 = 	 𝑎8(𝑘)cor(𝑥*, 𝑥>)6
>∈8

 

with 𝑎8  the Cth eigenvector of K(G). Because when K(G) is a valid kernel, K(G)-1 is also a valid 

kernel, then in practice the top 5 and bottom 5 (nonzero) eigenvectors by magnitude are used. 

 To test whether the co-expression networks capture the covariance of genetic effects, I 

applied this model to neuropsychiatric disease GWAS, using adult cortex, developing cortex, 

fetal cortex, and adult whole-blood co-expression networks, taking Κ 𝐺  to be the squared 
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topological overlap. For ASD and SCZ, I find very strong enrichments for network effects within 

cortical co-expression networks. Table 4.3.1 shows a comparison between the network 

enrichment statistics for SCZ built from the whole network, and those from expression data and 

co-expression modules. 

 
 

LDSR feature OR (p-value) Cortex OR (p-value) Blood 

Brain-upregulated genes  1.5 (10-8) N/A 

CTX-upregulated genes 1.4 (10-4) N/A 

Co-expression modules 1.5 (10-5) [BW-M4] NS (min p: 0.08) 

Module kME 1.4 (10-9) [BW-M4] 

1.4 (10-8) [BW-M3] 

NS (min p: 0.006) 

Network features 5 (10-5) [a3]  

1.5 (10-14) [a10] 

NS (min p: 0.04) 

Table	1	Network	genetic	architecture	enrichments	for	SCZ	(ClozUK)	in	adult	co-expression	networks.	Brain-upregulated	genes	are	
the	1000	most	highly-expressed	genes	in	the	GTEx	brain	samples	compared	to	blood,	skin,	adipose,	liver,	and	testes.	CTX-
upregualted	genes	are	the	1000	most	highly-expressed	genes	in	the	GTEx	cortical	samples	as	compared	to	all	other	brain	
regions.	Co-expression	modules	and	module	kME	refer	to	the	the	whole-brain	co-expression	modules	described	in	Chapter	2.	The	
network	features	are	the	top	(and	bottom)	principal	components	of	the	whole-brain	consensus	TOM.	In	cases	where	multiple	
modules	or	features	are	tested,	terms	in	brackets	specify	the	feature	or	module	that	is	significant.	 

 

 Because association studies in ASD have lower sample sizes than SCZ, BP, and MDD, 

there is far less power to probe genetic architecture, and neither co-expression modules 

(Gandal2018a, Gandal2018b) nor brain-upregulated genes (Finucane2018) were shown to 

significantly enrich for excess LD scores. This is the case for network features as well, with two 

features that show enrichment for SCZ heritability (a10, a3) showing only nominal significance 

for ASD heritability (p < 10-1). The genes with the highest loadings on these features (top 5%) 
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enrich for the ontologies receptor signaling, vesicle transport, and pyramidal neuron (a10), as well 

as synaptic plasticity, synaptic vesicle maturation, and neuron (a3), consistent with the findings 

presented in Chapter 3 (figure 4.4). 

 As enrichment ratios for continuous variables are not immediately commensurate with 

binary variables, I analyzed the 25 quantile bins for both a10 and a3. In each case, the highest 

quantile bins showed significant enrichments (p < 10-3 for bins 23, 24, and 25), and their 

enrichment values (1.8-2.3) were individually stronger than enrichment values for single 

modules. Because these features go beyond module co-membership and represent higher-order 

structures within the gene network, these suggest that restricting analysis to modules alone 

ignores relationships that are important to disease etiology. As such, methods to incorporate and 

interrogate networks should provide deeper insights into disease systems biology. 
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Figure	4.4	Network	architecture	enrichments	for	SCZ	and	ASD	in	brain	and	blood 

(a) LD-score regression enrichment p-values for network features (“PC”s) with standard LD-score regression 
functional background annotations (all others, see Finucane2015 for details on this background), for the consensus 
whole-brain TOM built in chapter 2, showing 3 significant network features (PC10, PC6, PC7). (b) LDSC p-values 
for network features derived from the DLPFC TOM from chapter 2, showing two significant network features 
(PC10, PC2). (c) LDSC p-values for network features derived from a whole-blood TOM; showing no significant 
network features.  
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Figure	4.5	Network	feature	enrichment	for	SCZ	in	developing	brain	

Left: Using the topological overlap from developing brain (Parikshak2016), feature a9 (PC9) is significantly enriched 
for SCZ heritability, above most of the background annotations. Right: Breaking a9 into binned components shows 
that the enrichment comes only from genes with the most negative loadings (as opposed to genes at both extremes): 
bins 0-9 are all significantly enriched for SCZ heritability, with bins 0,1 significant even after multiple testing 
correction. Enrichment for all 10 bins is between 1.6 and 2, while enrichment for conserved sites is 1.9, for TSS is 3, 
and for active chromatin peaks is 6.1. 
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4.3c	Neuropsychiatric	peripheral	master	regulators	support	a	polygenic	architecture	
	
	 In addition to defining a genetic architecture, the omnigenic model makes a distinction 

between direct and indirect effects. This is a separate mechanistic idea, much conflated with but 

separate from the genetic architecture aspect of omnigenics. Under the full omnigenic model, not 

only do large-effect mutations arise almost entirely in core genes, but these mutations are the 

only mutations to have a direct effect on the trait. Mechanistically, risk variants in peripheral 

genes act by altering the bioavailability of core genes. However, the majority of GWAS variants 

do not fall into core genes (Boyle2017), when the trivial expectation is that variants discovered 

by GWAS should be those with the strongest effects at their frequency, and that therefore they 

should be more likely to occur in core genes. 

 The peripheral master regulator (PMR) model is a transcriptional liability model, where 

risk liability acts through shifts in gene expression levels. It is a structured extension to the 

TWAS (Gamazon2015) model. TWAS treats liability as a function of local impacts on gene 

expression: 

𝑦(") = 	𝛼 + 𝛿l(𝑒 − 𝜇) + 	𝜀 

𝑒 = 	𝜇 + 𝐵𝑥 + 	𝜂 

Where e is an expression N-vector across all genes, x are an individual’s frequency-normalized 

genotypes, and B (which is N x M) reflects the impact of each variant on each gene, while 𝛿	

reflects	the	risk	conferred	by	genetic	up-regulation	of	each	gene.	𝜀	and		𝜂	are	independent	

noise	terms.	

	 The	PMR	model	changes	how	the	liability	and	expression	are	modeled,	by	replacing	

e	with	ec,	the	expression	levels	of	core	genes.	Under	this	model:	
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𝑦(") = 	𝛼 + 𝛿�
l(𝑒� − 𝜇) + 	𝜀 

𝑒� = 	𝜇 + Γ�𝐵�(𝑥� + 𝜂�) + Γh𝐵h(𝑥h + 𝜂h) 

Here, 𝑥� reflect variants local to core genes, and 𝐵� their effects; while 𝑥h and 𝐵h are the variants 

and corresponding effects local to peripheral genes. Γ� (Nc x Nc) and Γh (Nc x Np) reflect causal 

co-expression relationships. Γh specifies how perturbations to peripheral genes alter the 

expression of core genes. A peripheral master regulator is a gene pi for which 𝛿�
lΓh�𝐵h�𝑥h� 

strongly deviates from 0.  

Condensing the multiplication shows that the PMR model is a factored local-distal 

transcriptional liability model: 

𝑒� = 	𝜇 + Ξ"c�𝑥"c�
����

+	 Ξ`XB𝑥`XB
����������

+ 𝜂 

This relates to network genetic architecture, as the marginal effects of xdis on y will follow 

𝛽`XB,�~𝑁(0, Ξ`XBl 𝛿�𝛿�lΞ`XB) 

and could be tested using techniques from section 4.2. However, identifying causal co-

expression relationships (Γ) is notoriously difficult. By exploiting the fact that TWAS and PMR 

share the same marginal models for y|e, it is possible to test directly individual rows of Ξ`XB.  

 It can be seen that (Ξ`XB)X* reflects the total change in the expression of gene i with 

respect to a one unit increase of the normalized dosage of variant j: in other words, (Ξ`XB)X* is the 

total trans-QTL effect of variant j on gene i: 𝛽X*
(�����). Further, it can be shown (supplemental 

methods) that the expected TWAS Z-score for gene i is equal to δX( 𝑛𝜁b�
(X)), where 𝑛 is the 

sample size of the GWAS used, and 𝜁b�is a correction for the local LD structure. Therefore, for 

core genes c, the statistic 
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𝜌� = cor� 𝑍�
���� , 𝛽�,*

����� = 	
𝑍�

���� , 𝛽�,*
�����

𝛽�,*
����� 𝑍�

����
 

is an estimator for 
� 

¡¢£¤£
�  ∙ ¢£¤£

. In other words, 𝜌� tests whether a distal variant, for a set of 

hypothesized core genes, up-regulates the risk genes and down-regulates the protective genes. 

 There are two components of the PMR-based hypothesis for omnigenics: (i) PMRs exist, 

and (ii) for an omnigenic trait, all the PMRs converge onto the same core set of genes c. Because 

trans-QTL hotspots are well known, (i) is likely to be true a priori for all sufficiently complex 

traits. On the other hand, for a polygenic trait (ii) is likely to fail, by virtue of the existence of 

PMRs for many disjoint sets of genes. With this in mind, I extracted a subset of the data used in 

chapter 2 of 288 samples from the telencephalon, representing 101 genotyped individuals, and 

computed 𝜌� for 8 publicly-available neuropsychiatric and neurodegenerative TWAS datasets 

(Mancuso2017) across whole-brain, whole-cortex, and DLPFC co-expression modules. 

 Because the mechanistic component of the omnigenic hypothesis specifically refers to 

expression-altering genes as peripheral, I excluded genes that (i) do not generate proteins, (ii) 

encode known transcription factors, (iii) encode DNA binding proteins, or (iv) encode RNA 

binding proteins. This left a total of 18,726 potential core genes, of which 15,435 are expressed 

in the brain. As these genes are also likely candidates for PMRs, I include local variants for these 

genes in the PMR test. For analysis, I group these variants by categories (i-iv).  

 I find several modules which appear to be controlled by peripheral master regulators for 

SCZ, demonstrating that significant PMRs alone implicate many hundreds to thousands of causal 

protein-coding genes in neuropsychiatric and neurodegenerative disease. Figure 4.5 shows an 

example of cross-TWAS PMR: the core set of genes is taken to be the top 100 genes from 

Ruderfer18, while the Z-scores for these genes are taken from the independent PGC GWAS. 
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Variants near the transcription factor IRF6, and variants near the polymerase-associated protein 

RPAP1, show a statistically-significant relationship between trans-QTL effect sizes and core 

gene Z-scores, implicating them as peripheral master regulators. Disruption of IF6 was recently 

shown to contribute to neural tube defects (Kousa2019), and RPAP1 is required to establish and 

maintain cell identity (Lynch2018). Yet, the PGC data shows significant PMR statistics for other 

groups of hypothesized core genes, including the module PFC-M1 (NSUN6, RBM6), and the 

neuronal module BW-M4 (FBXO21, GSX2). GSX2 is known to specify neuronal fate (Pei2011) 

and to play a role in adult neural progenitor activation (Lopez-Juares2013), while NSUN6 is a 

member of a family of RNA methyltransferases that play a role in dendritic transcription of 

mRNA (Majumder2017), and loss of a related family member, NSUN2, leads to intellectual 

disability (Abbasi-Moheb2012). A parsimonious explanation of these data is that several large, 

disjoint co-expression pathways play a role in schizophrenia etiology and that PMRs play a 

significant role in shaping their expression levels. This implies that there are many hundreds to 

thousands of “core” genes, which “in turn may [be] indistinguishable from a model of no core 

genes” (Wray2018).  
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Figure	4.6	PMR	significance	for	empirically-defined	core	genes	in	SCZ	

Association p-values, by regulatory gene type, of the coordinated regulation of a hypothesized core gene set for 
SCZ. TWAS Z-scores built from PGC GWAS of Schizophrenia, and the hypothesized core set is the top 100 genes 
from a separate SCZ TWAS built from Ruderfer 2018 (“Ruderfer18100”). This test identifies IRF6 and RPAP1 as 
potential trans-regulators of Ruderfer18100. Only known eQTLs are tested, and nominally-significant GWAS 
intergenic SNPs, so inflation is to be expected. The NegCtl set are a set of 500 randomly-selected SNPs which were 
permuted within individual to form an empirical null distribution.  
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Figure	4.7	PMR	significance	for	PFC-M1	in	SCZ	

Association p-values, by regulatory gene type, of the coordinated regulation of a hypothesized core gene set for 
SCZ. TWAS Z-scores built from PGC GWAS of Schizophrenia, and the hypothesized core set are those genes 
present in module PFC-M1. This test identifies NSUN6 and RBM6 as potential trans-regulators of PFC-M1. Only 
known eQTLs are tested, and nominally-significant GWAS intergenic SNPs, so inflation is to be expected. The 
NegCtl set are a set of 500 randomly-selected SNPs which were permuted within individual to form an empirical 
null distribution.  
	
 
  



	 129	

	
Figure	4.8	PMR	significance	for	BW-M4	in	SCZ	

Association p-values, by regulatory gene type, of the coordinated regulation of a hypothesized core gene set for 
SCZ. TWAS Z-scores built from PGC GWAS of Schizophrenia, and the hypothesized core set are those genes 
present in module BW-M4. This test identifies FBXO21 and GSX2 as potential trans-regulators of BW-M4. Only 
known eQTLs are tested, and nominally-significant GWAS intergenic SNPs, so inflation is to be expected. The 
NegCtl set are a set of 500 randomly-selected SNPs which were permuted within individual to form an empirical 
null distribution.  
	
  



	 130	

 
 

	
Figure	4.9	PMR	significance	for	BD+SCZ	in	PFC-M1	

Association p-values, by regulatory gene type, of the coordinated regulation of a hypothesized core gene set for 
SCZ. TWAS Z-scores built from GWAS of Schizophrenia and Bipolar Disorder (Ruderfer2018), and the 
hypothesized core set are those genes present in module PFC-M1. This test identifies the lncRNA AL352979.2 as a 
potential regulator of PFC-M1. This lncRNA is nominally significant (p=0.0013) for SCZ in figure 4.6. Only known 
eQTLs are tested, and nominally-significant GWAS intergenic SNPs, so inflation is to be expected. Here, 5000 
negative control SNPs were introduced and used for genomic control (methods).  
  

AL352979.2
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4.4	Discussion	
	

Incorporating gene networks into models of genetic architecture remains a major 

challenge, with application both to predictive disease models and to translational genetics. This 

chapter’s approach to investigating the omnigenic model comes from a unifying view: that there 

is a relationship between mutational effect size and genetic network distance – with omnigenic 

and polygenic architectures representing the strong and weak extremes of that relationship. From 

this point of view, quantifying a trait’s network effect in terms of the decay parameter is of a 

higher concern than labeling it as strictly omnigenic or polygenic, as there are likely traits at both 

ends of the spectrum. For instance, secondary phenotypes of Mendelian disorders (such as age-

at-onset or disease severity) likely show a strong omnigenic-like relationship within the relevant 

network. My results show, at least from a co-expression network perspective, that ASD does not 

have such a strong relationship, as high-impact mutations reside too far from core genes in these 

networks – and from each other – to represent a strong relationship. These results suggest that, if 

neuropsychiatric disorders are omnigenic, then gene expression networks, transcription factor 

binding networks, or PPI networks are not sufficient to explain the relationships that drive the 

disease state. 

Improved models of genetic architecture lead to more precise insights into trait biology. 

By developing a new model of network genetic architecture – one that is fully compatible with 

prior approaches – I was able to partition a significant fraction of SCZ and ASD heritability onto 

gene relationships pertaining to vesicle transport, pyramidal neurons, and receptor signaling, 

highlighting the genetic correlation between these traits. Interestingly, the estimate of effect size 
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for a10 (which loads strongly onto genes related to synaptic plasticity) is about double in ASD 

compared to SCZ. Because the ASD transcriptomic signature is correlated to the SCZ 

transcriptional signature, but shows five-fold larger differences versus controls; and the sibling 

relative risk for ASD is several times higher than it is for SCZ, an intriguing possibility is that 

ASD may result from more extreme genetic insults to the same set of underlying pathways. In 

fact, any two mutually-exclusive traits that show i) high genetic correlation, ii) different 

heritabilities, and iii) network architecture will be such that the more heritable trait looks like a 

more genetically extreme version of the less-heritable trait. Seen in this light, the results of 

(Gandal2018a) are indirect evidence of shared polygenic network architecture in 

neuropsychiatric disease.  

There is much research work to be done within the field of network genetic architecture. 

There are basic questions about which network kernels to choose and the proper way of 

decomposing them into features for LD-score regression; how to build network genetic 

architectures from epigenetic (non-genic) data; and how to combine multiple networks into a 

joint architecture.  

Trans-QTLs account for a substantial proportion of gene expression heritability and, like 

cis-QTLs and splice-QTLs, will mediate disease liability. Yet identification of trans-QTLs, and 

linking trans-acting SNPs to disease, remains largely elusive: GTEx identified only 93 trans-

QTL genes across 42 tissues. The insights of section 4.3c result in a practical model for 

simultaneously identifying trans-QTLs and associating them with disease. One potential 

drawback of this model, which is true for all joint analyses of expression (Brynedal2017), is that 

it implicates no specific downstream gene as causal, but rather an entire set of risk genes. On the 

other hand, it may be that risk trans-QTLs predominantly act on collections of downstream risk 
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genes, a substantial fraction of which are causal, rather than controlling any one specific gene. 

The results of section 4.3c identify several examples risk-conferring trans-QTLs across SCZ, 

MDD, AD, and BP, and provide potential roles for specific lncRNA as expression modulators of 

risk co-expression modules.  

As sample sizes for gene expression and gene association studies increase, the analyses 

pioneered in this section will provide more precise insights into the genetics of neuropsychiatric 

disease. Higher fidelity estimates of variant effect sizes will enable direct estimates of the 

network architecture parameter, and provide stronger signals with which to aggregate heritability 

into genes or network relationships. Larger RNA-seq sample sizes will form a backbone for 

improved network polygenic models, as well as substantially increase power to detect trans-

QTLs and PMRs. Together with new data, these tools will enable future scientists to map the 

genetic complexity of neuropsychiatric disease at a network level. 

	 	



	 134	

	
4.5	Methods	
	
Simulation of network genetic architecture 
 

Simulation: 10,000 causal variants are simulated with frequency parameters estimated 

from human populations (Ionita-Laza2009), and distances drawn from a binned Beta 

distribution: 

 

𝑝X~Beta 0.14, 0.7  

𝑑X~
𝑘`Beta(𝑎`, 𝑏`)

𝑘`
 

𝛽X|𝑑X, 𝑝X~𝑁(0, 𝜎L6 2𝑝X 1 − 𝑝X
NZ 1 + 𝛿𝑑X N\) 

𝜎L6 is arbitrary and set to 1; 𝑘` is arbitrary so long as it is greater than 10, and is set to 𝑘`; 

𝑎`, 𝑏`,	𝛾^,	𝛾6, and 𝛿 are model parameters. Recent results from the UK Biobank (Schoech2019) 

suggest that a value of 𝛾^ = −0.4 is reasonable for a polygenic trait (height=-0.45, education=-

0.32, blood pressure = -0.39) and is fixed to this value. Architectures were simulated on a grid of 

𝑎`, 𝑏`=1,1.5,…6; 𝛿=1,1.2,…,2.6; 𝛾6=-15,-10,-7,-5,-2. Notably for any values of 𝑎`, 𝑏`, 𝛿 and 𝛾6 

can be found such that D1 explains >40% of the heritability. Errors-in-distance: Here the above 

simulation of distance is replaced by a normal copula (where 20% error corresponds to r=0.8 

– this is a purposeful under-estimate, as r2=0.64 so the latent error is more like 36%): 

𝑍	~	𝑁 0, 1 𝑟
𝑟 1 	 

𝑑D«¬C =
𝑘`Φ®¯�� F°,T°

�^ (Φ± �,^ 𝑍^ )
𝑘`

 

𝑑²CFB =
𝑘`Φ®¯�� F°,T°

�^ (Φ± �,^ 𝑍6 )
𝑘`
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When simulated from a network, first a set of K=1, …, 10 hub genes are simulated with the 

constraint that no pair can be directly connected by an edge. These form initial communities of 

size 1. For the remaining 40 core genes, a community is selected at random, a community 

member is selected at random, and a neighbor is selected at random and added to the community 

and to the set of core genes. These form the basis of dtrue, which is taken as the minimal path 

distance to any core gene. For dmeas the communities are distorted by removing M=1,..,10 core 

genes at random; or by adding K=5,10,…,25 non-core genes at random.  

 Normalized effect sizes: Identifying the effect size of an empowered 5% frequency 

GWAS variant happens through three steps: (i) Estimating the liability distribution; (ii) Mapping 

case/control frequency differences to effect sizes (iii) Estimating power. 

 (i) Liability Distribution: A 5000x10,000 genotype matrix X is sampled independently, 

with frequencies given by the previously-simulated vector f, and 5,000 genetic liabilities are 

generated by lg=Xβ. These liabilities are used to estimate parameters for a T-distribution using 

‘fitdist’ from the R package ‘MASS’; the degrees of freedom are reduced by 25% to account 

partially for rare variants not sampled in this population of 5,000; and these parameters used to 

generate 400,000 genetic liability scores. These are converted to total liability scores by adding 

noise l = lg + N(0, σe); with σe chosen so that the heritability is 0.85. 

 (ii) Frequency-ratio-to-effect: The goal is to estimate the ratio paff/punaff for a variant with 

a frequency pi and effect βi. The genetic liabilities lnew = l+xβi with x ~ binomial(2, pi) are 

computed for 400,000 simulated individuals. As 10,000 variants contribute to l, the addition of 

xβi is assumed to have a minimal effect on heritability. Case/control labels are defined by lnew ≥ 

quantile(lnew, 0.95) so that the disease prevalence is 5%, and the empirical frequency 
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mean(xaff)/mean(xunaff) is taken as an estimate of the ratio paff/punaff. Fixing pi=0.05 and varying βi 

produces an empirical and invertible map from variant effect to frequency ratio. 

 (iii) Estimating power: Given an effect size βi, the case and control frequencies for a p = 

0.05 variant are obtained from (ii). 5000 case and 5000 control genotypes are sampled according 

to the corresponding frequencies, and a two-sided T-test performed by ‘t.test’ in R. 1,000 

simulations are performed, and the number of times the T-test p-value achieved a Bonferroni-

corrected p-value of 0.1/10,000 (the number of causal variants) was tabulated. 

 

Network construction and computation of d(G)  

 

 Co-expression network and modules were constructed as in Chapter 2. In addition, an 

sparse ε=2.5%+1-NN graph is calculated as follows: the cosine distance graph is subset to only 

the 2.5% smallest edges, and any singleton genes are connected to their closest neighbor. This 

graph is treated as unweighted, and not necessarily connected. Cross-component distances are 

treated as 1 + the maximum observed within-component distance. This is referred to as “sparse 

distance.”  

Module hub genes are defined as the 2.5% of module genes with largest kWithin values 

(minimum 5). Distances between a gene and a module is computed as (i) 1 – kME; (ii) mean 

cosine distance to a module hub; (iii) minimum cosine distance to a module hub; (iv) mean 

sparse distance to a module hub; (v) minimum sparse distance to a module hub. When using 

arbitrary gene sets as core genes, (ii)-(iv) are be computed with respect to the gene set in place of 

module hubs. 
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Bipartite transcription factor binding graphs were obtained from regulatorycircuits.org, 

and converted to a similarity network as in Marbach2016. Briefly, the probability weights are 

taken as edge weights, and the random-walk kernel K=(I+W)4 with W the symmetrically-

normalized Laplacian D-1/2AD-1/2 of the adjacency matrix; and converted to a dissimilarity via 

𝐷´ = 1 − (´�µ¶� ´ )
(µ�· ´ �µ¶� ´ )

. A natural set of “core” genes on this network are the most highly-

connected genes of K; of which the top 25 are taken. Distances are either the mean or minimum 

path distance under DK.  

InWeb (Li2016) was used for the protein-protein interaction network. The refined brain-

PPI network was obtained from the resource, and a confidence of 0.05 required for an edge to be 

defined; and the interactions were converted into a binary matrix. Distances were defined as 

either the minimum or mean path distance in this network. 

 

LD score regression 

 

 The LD score regression package was obtained from https://github.com/bulik/ldsc in 

5/2019; and run following the best practices for continuous annotations. Network annotations 

were extracted by extracting the top 5 and bottom 5 (nonzero) principal components of the 

topological overlap matrix using ‘eigsh’ in SciPy. Variants were assigned to genes on the basis 

of being within 150kb of the gene body, forming a (nsnp x ngene) binary matrix, onto which the 

gene loadings are projected. I found that the results were qualitatively unchanged using 50kb and 

100kb windows. 

 Because co-expression analysis routinely identifies modules with low separability 

(correlated eigengenes), kME values are pruned prior to being used as scores in LD score 
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regression. The kME-kME correlation r2 matrix is computed, the module with the highest 

average r2 is selected, and all modules with r2 > 0.4 to the selected module are removed. This 

process is repeated until no modules remain. Thus, for DLPFC, the kME values were selected for 

BW-M4, PFC-M2, BW-M6, CTX-M4, and PFC-M4. 

 

Peripheral Master Regulator Test 

 

The Statistic for Peripheral Master Regulators (SPMR) test takes in an expression matrix 

and corresponding genotype dosages, individual IDs (for repeated samples), a TWAS summary 

statistics .dat file, a gene set (i.e. putative core genes) to test, and any expression covariates. 

Following best practices for trans-eQTLs, the covariates from chapter 2 were arranged into a 

(nsample x ncov) and used as prior information to extract 15 HCP factors; which were then used as 

covariates for SPMR. For efficiency, the expression is pre-corrected for covariates, as opposed to 

including the covariates as part of a linear model. Expression values and genotype dosages are 

scaled and centered across samples. To ensure only direct effects are driving the signal, core 

genes are subset to protein-coding genes that are not known transcription factors, (Lambert2018) 

and are not present in GO categories 0003677 (DNA binding) or 0003723 (RNA binding). To 

account for LD, the test gene set is then randomly subset to only genes that do not fall within 

100KB of each other. The TWAS Z-scores are subset to the test gene set, and the 2-norm 

calculated dZ = ||Ztest||. 

For each variant, the scaled effect sizes on core gene expression are computed as the 

correlation between genotype dosage and expression level across samples. This produces a 

vector of values, θ, one for each core gene. The test statistic, ρc, is given by 
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𝜌� =
𝜃l𝑍
𝑑¹

 

Note that the norm of θ has been dropped from the denominator for efficiency, as the statistic is 

tested via bootstrap. 

Because there are multiple samples per brain in the GTEx telencephalon data, an 

individual bootstrap is used to approximate the null distribution of ρc. For 5,000 replicates, the 

individual IDs are sampled, with replacement, from the pool of individual IDs. When an 

individual is included in the bootstrap set, all tissue samples corresponding to that individual are 

added. For each bootstrapped dosage and expression matrix, ρc is calculated, and the resulting 

distribution is summarized by its mean, standard deviation, skew, excess kurtosis, and quantiles 

0.001, 0.1, 0.1, 0.9, 0.99, and 0.999. Approximate Z-scores and p-values are given by (𝜌�
cTB −

𝜇º 
TccD )/𝜎º 

TccD . Normality of the bootstrap is assessed by skew and excess kurtosis. 

The SPMR has a natural null set of genes: protein-coding genes not likely to have any 

impact on expression. I identified a set of such genes by filtering all genes by the list of 

restrictions applied to core genes, plus the restriction that the gene not belong to any GO 

category containing the terms ‘signaling’, ‘cascade’, ‘channel’, ‘transduction’, ‘transport’, or 

‘translation.’ 

To reduce the multiple testing burden, I test only 727,224 variants, of which 717,572 are 

significant cis-QTLs in GTEx for a brain-expressed gene, and the remaining are nominally-

significant GWAS hits (p < 10-6) in either the iPsych ASD GWAS (407 variants), or the PGC 

SCZ+BIP vs control GWAS (18,816 variants), some of which overlap cis-QTLs. In addition, I 

treat variants which are cis-QTLs to a gene that could be considered a core candidate (protein 

coding, does not bind nucleic acids) as background, and do not correct for these tests. 
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I also apply SPMR more widely than testing TWAS Z-scores. For studies that produce 

Bayes factors or p-values for each gene, the log-Bayes factor or inverse normal CDF of the p-

value is taken in place of the TWAS Z-score. Similarly, module QTLs are identified by taking a 

+1 score for a gene in the module, and a -1 score for a gene not in the module.   

Inflation control 

Due to the use of different numbers of samples from the same individual brain, the PMR 

statistic can show inflation, even using an individual bootstrap, as it is sensitive to expression 

outliers. By testing cis-QTLs instead of all SNPs, it is difficult to distinguish between inflation 

due to true signal, and inflation due to ancestry differences or assumption violations. To control 

for inflation, I include a set of 5,000 permuted (within individual) genotypes to assess the 

genomic inflation for each run of the PMR test. A simple variant of Genomic Control is applied: 

the slope of the log10-expected and log10-observed p-values from these 5,000 permuted 

genotypes is obtained by fitting a robust linear model (M-estimation); and (if the slope is > 1) the 

expected p-values and confidence intervals are adjusted via 𝑝F`* = 10¼½¾¿ZÀ(h).  

 

  



	 141	

Chapter	5 Conclusions	and	future	directions	
 
  

This thesis presents both an annotated atlas of human brain co-expression networks as 

well as methodology for incorporating gene networks into models of genetic architecture. In all 

analyses, the network is means of extracting modules, membership probabilities, and SNP-level 

features, but is not itself an object of primary study. There are two primary reasons for this 

strategy. Firstly, the noise inherent in RNA-seq means that any particular edge between a pair of 

genes is highly suspect, while a highly-connected community is far more robust.4 Secondly, the 

mathematical descriptors of networks (e.g., chromatic number, conductance, diameter, genus, 

toughness, thickness) do not readily correspond to biological analogues. Even the very simple 

network property of vertex connectivity does not capture any disease enrichment signal that can 

not also be explained by a baseline model of functional annotation such as coding, intronic, 

promoter, TSS, enhancer, and species conservation (Kim2019) – in contrast with the more 

general features explored in section 4.3, which are significant over and above the same baseline 

model. Thus, in all aspects of the work presented, the use of a co-expression network is sufficient 

but not strictly necessary. 

 Tensor Expression Analysis, presented in section 2.3c, provides an elegant and powerful 

alternative to co-expression network analysis within the setting of multiple tissues or multiple 

cell types. While this approach was evidently first proposed by Hore et al. (Hore2016), it has 

largely been abandoned. Yet its power in identifying global compositional effects that are shared 

across multiple tissues, regions, or cell types renders it a promising tool. By decomposing an 

																																																								
4	This is a simple consequence of the fact that, for a multivariate Gaussian 𝑁 0, Σ , the largest 
eigenvalues and eigenvectors converge far more rapidly than the rest and are the least impacted 
by noise – in other words the signal to noise ratio is much better for the top principal components 
than for any one gene 



	 142	

(individual, tissue, gene) tensor, this approach provides inputs to eQTL screens or heritability 

partitioning (loadings on individuals), tissue or cell-specific expression (loadings on tissues), and 

gene set enrichment analysis (loadings on genes). As multi-regional datasets become more 

common, tensor expression analysis will become more common. However, future work is 

needed to adapt this method to identify region-specific effects: the objective is to explain total 

variance, so region-specific co-expression patterns can be washed out.  

An additional and important extension to this method would be to single-cell sequencing. 

For example, the single-cell sequencing in Velmeshev et al. (Velmeshev2019) can, once cell 

type clusters have been identified, be collapsed to an (individual, region, cell type, gene) tensor, 

to which the decomposition approach could be applied. Future work is needed to establish the 

proper and unbiased method for collapsing from single-cells to cell-type. 

Splicing variation across cell types remains largely uncharacterized. The approach taken 

here relies only on bulk tissue expression, and thus module-specific splicing can be identified 

without reference to any single-cell expression. The reverse may also be true: It should be 

possible to identify cell-specific isoforms without reference to co-expression modules. Future 

work in the area of cell-specific splicing could consider building a “kME-like” statistic on the 

basis of co-expression between isoform and high-relative-expression genes, enabling the 

identification of splicing variation within rare cell types that only weakly contribute to bulk 

expression variance. This same reasoning applies to lncRNA, and was used in Liu et al. 

(Liu2016) to assign functional annotations to the few lncRNA identified in single-cell 

sequencing, though not to expand the initial set of cell-specific lncRNA to the > 9,000 that were 

identified in bulk tissue but not in single cells. Thus, future work could attempt to link lncRNA, 
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isoforms, and even miRNA from bulk tissue to cell types directly, without recourse to network 

construction or module detection. 

The network genetic architecture model introduced in section 4.3b is a starting point for a 

rich research program. One path of future research is to compare different types of networks 

(e.g., co-expression, PPI, pathway, etc.) to see which network has a structure that captures most 

of the heritability, and how much can be explained by combining these networks. Another path 

of computational statistics research is to provide computational estimators for the variance 

parameter. Third, the network under consideration need not be restricted to genes alone, but can 

include functional genetic elements as well, enabling co-regulated epigenetic marks (and thus 

intergenic variants) to be incorporated into network models of genetic architecture.  

Finally, biological validation of network-based genetic findings presents a significant 

challenge. The observation that adult brain co-expression captures a statistically significant 

proportion of schizophrenia heritability needs to be translated into what precise biological impact 

mutational load within the network may have. Because the network structure implicitly 

aggregates genetic risk across thousands of genes, standard gene-knockout or overexpression 

approaches are not likely to be fruitful. One potential way forward is to construct a network 

polygenic risk score and screen populations for extreme individuals in order to extensively 

phenotype cells derived from those individuals as a natural experiment. Similar approaches have 

been suggested for the study of complex disease (Hoekstra2017) – in this context, focusing on a 

network polygenic risk as opposed to total polygenic risk can be thought of (I hypothesize) as 

examining the phenotypic impact of epistasis specifically. 

As a concluding thought: the role of disease association studies has turned an important 

corner. Identifying candidate disease genes is no longer the sole purpose of such studies – these 
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data are now used for the secondary purposes of assaying genetic architecture and partitioning 

heritability among functional annotations. This marks a shift in focus from single-variants and 

single-genes to systems biology. As demonstrated in this thesis, gene networks (including gene 

co-expression networks), by grouping functional regions of the genome into coherent 

downstream units, will help to shape our understanding of human disease. 
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