
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Structure-Informed Neural Network Architecture in Regression Applications

Permalink
https://escholarship.org/uc/item/83m241zj

Author
Zhang, Jiefu

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/83m241zj
https://escholarship.org
http://www.cdlib.org/


Structure-Informed Neural Network Architecture in Regression Applications

by

Jiefu Zhang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Lin Lin, Chair
Professor Jon Wilkening

Professor Per-Olof Persson

Fall 2021



Structure-Informed Neural Network Architecture in Regression Applications

Copyright 2021
by

Jiefu Zhang



1

Abstract

Structure-Informed Neural Network Architecture in Regression Applications

by

Jiefu Zhang

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Lin Lin, Chair

This dissertation concerns the importance of the structure-informed neural network
architecture in several regression applications. The word structure-informed neural
network architecture refers to the neural network architecture that has some built-in
properties motivated by the structure of the problem. For example, if the target
function that the neural network is approximating has the permutation symmetry,
instead of implementing a basic feed-forward neural network to explore the entire
function space, we can build a permutation symmetric neural network architecture to
only explore a much smaller space of permutation invariant functions. For supervised
learning, there are multiple methods to achieve better numerical results when training
a neural network for a regression application problem, including but not limited to:
improved optimization techniques, increased training sample size, and superior neural
network architecture. In this dissertation we investigate and observe the importance
of the superior neural network architecture which incorporates the information hidden
in the application problem, and then showcase a quantum chemistry application
where such superior neural network architecture that incorporates various kinds of
symmetries achieves powerful numerical results. Finally we discuss how one kind of
structure, permutation symmetry, can be built into the neural network.

After the introduction of the fundamentals in chapter 1, in chapter 2 we investigate the
importance of the structure-informed neural network architecture on a toy problem:
use a neural network to approximate the mapping x 7→ ∑n

i=1 x
2
i . We observe that

the role the structure-informed neural network architecture plays in this scenario is
irreplaceable. For instance, it will take significantly more training data samples for a
neural network architecture that does not take the problem structure into consideration



2

to match the performance of a neural network that does. The training tricks and
heuristics, including using various optimizer or applying regularization, cannot easily
close the gap of the performance either. In chapter 3 we look at one particular real
world quantum chemistry application and observe how the superior neural network
architecture leads to the positive numerical results. The application problem is to
use a neural network to predict the electron density in an electronic system, with the
input being atomic configuration (e.g. positions of some water molecules). There are
several symmetries hidden in the problem. For example, interchanging two identical
atoms should not affect the electron density in the system. By building the translation
symmetry, rotation symmetry, and permutation symmetry into the neural network
architecture, we are able to predict the electron density accurately for multiple 1D
and 3D systems. In chapter 4 we focus on a specific type of structure that can be built
into the neural network architecture, which is permutation symmetry. We summarize
the existing approaches of incorporating the permutation invariant and equivariant
symmetry into the neural network architecture and offer proofs of the validity of the
approximation ansatz tailored for permutation symmetry.



i

Contents

Contents i

1 Introduction 1
1.1 Basics of an artificial neural network . . . . . . . . . . . . . . . . . . 2
1.2 Basics of supervised learning . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure-informed neural network . . . . . . . . . . . . . . . . . . . 5
1.4 Permutation symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . . 8

2 A Toy Problem 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Generalization error of two-layer networks . . . . . . . . . . . . . . . 14
2.3 Generalization error for squared norm . . . . . . . . . . . . . . . . . . 18
2.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Deep Density 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Numerical results for 1D systems . . . . . . . . . . . . . . . . . . . . 56
3.6 Numerical results for 3D systems . . . . . . . . . . . . . . . . . . . . 60
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Permutation Symmetry 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Universal approximation for d = 1 . . . . . . . . . . . . . . . . . . . . 71
4.3 Proof 1 for universal approximation for d ≥ 1 . . . . . . . . . . . . . 73



ii

4.4 Proof 2 for universal approximation for d ≥ 1 . . . . . . . . . . . . . 75
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography 79



iii

Acknowledgments

First I would like to express my gratitude to my advisor Lin Lin. Lin’s extensive
help guides me through my PhD years and without his help, none of the work in this
dissertation would have been possible .

I want to extend my sincere thanks to my collaborators for the work covered in this
dissertation: Leonardo Zepeda-Núñez, Yixiao Chen, Linfeng Zhang, Weile Jia, Yuan
Yao, Jiequn Han, Yingzhou Li, and Jianfeng Lu with whom I feel very honored and
fortunate to have the opportunity to work with.

Among those who have offered me great support during my graduate study, I would
like to thank Vicky Lee, Isabel Seneca for all the logistics assistance. I would like
to thank Lin Lin, Per-Olof Persson, and Jon Wilkening, for being the members in
both my qualification exam committee and my dissertation committee. I would like
to thank Martin Head-Gordon for being in my qualification exam committee.

I would like to express my thanks to my parents, my mother Rong Zhou and my
father Lixin Zhang, for their endless love and support. Finally, I would like to express
my appreciation to my wife Qinyi Zhu, who I met during the graduate study and
became the most important person in my life.



1

Chapter 1

Introduction

The artificial neural network has achieved great success in real world applications
including speech recognition [46], computer vision [59], drug discovery [68], genomics
[63], etc. In the past decade, many studies aim at replicating the success of the
neural network in the field of scientific computing because of the advantage the
neural network has for high dimensional problems and the efficiency in computing
first derivatives of the neural network by the process of back propagation. One
such successful application is to use the neural network ansatz to approximate the
solutions to high dimensional partial differential equations [41]. Unlike the popular
classification problems on common data sets such as MNIST, CIFAR10 and ImageNet,
where the output label is categorical, the scientific computing problems usually have
a continuous output label because the goal is to approximate some target continuous
functions with a neural network. The process of fitting a neural network model to a
target function in scientific computing problems can be regarded as a regression ap-
plication, and these regression applications will be our main focus in this dissertation.

While there have been a number of noteworthy architectures arising from classi-
fication applications, including but not limited to Convolutional Neural Network
(CNN) [62] for image classification, and Recurrent Neural Network (RNN) [81] for
speech recognition, the importance of the neural network architecture informed by the
structure of the problem is just starting to be revealed for the regression applications.
This dissertation concerns the structure-informed architecture in several regression
applications which can be found in scientific computing. In this chapter we provide
the preliminary materials to set up the foundation for the remaining discussion in
this dissertation.



CHAPTER 1. INTRODUCTION 2

1.1 Basics of an artificial neural network
An Artificial Neural Network (ANN) [71] can be viewed as a map from inputs to
outputs. We start with the feed-forward neural network, and we use Fig. 1.1 as a
sample feed-forward neural network. Here the leftmost layer corresponds to the input
layer, and in this case the input is 3 dimensional. The rightmost layer corresponds
to the output layer, and in this case the output is 1 dimensional. The two layers in
between are known as the hidden layers, and each circle in the hidden layers represents
a neuron. The evaluation of the neural network output based on a given input can be
carried out by a forward propagation from left to right. The mathematical formula
for computing the numbers in the next layer l + 1 based on the current layer l is

x(l+1) = σ(W (l,l+1)x(l) + b(l+1))

Let m denote the number of neurons in the layer l + 1, and n denote the number
of neurons in the layer l, then x(l+1) is an m-dimensional vector, and x(l) is an
n-dimensional vector. The m × n weight matrix W (l,l+1), and the n-dimensional
bias vector b(l+1) are all parameters that can be considered to be fixed when the
forward propagation occurs. The σ(·) function is known as the activation function.
The role the activation function plays is crucial especially when the target function
that the neural network is approximating is non-linear. Notice that for a particular
entry in the weight matrix, say the entry at row p and column q, the associated one
dimensional scalar equation will be

x(l+1)
p = σ(W (l,l+1)

pq x(l)
q + b(l+1)

p )

This equation evaluates the pth neuron in the layer l+ 1 based on the value of the qth
neuron in the layer l, and thus in a picture like Fig. 1.1, each line segment connecting
two neurons can be regarded as a parameter in the corresponding weight matrix.

The power of the feed-forward neural network lies in two aspects. First, the neural
network is remarkably expressive. The universal approximation theorem [21] states
that a feed-forward neural network with one hidden layer, arbitrary width, and
sigmoid activation function can approximate any well-behaved function. Since then
the universal approximation theorem has been extended to more cases [20, 48, 52, 73]
(fixed width and arbitrary depth, or with other activation functions, etc.), and these
results are the theoretical proofs of the expressiveness of the neural network. Second,
for a neural network, the derivatives of the output with respect to any intermediate
variable are easy to compute due to back propagation [37]. This allows a quick
derivative computation for gradient related optimization algorithms, and leads to a



CHAPTER 1. INTRODUCTION 3

Figure 1.1: An example of a feed-forward neural network

quick update for all parameters in a neural network during the optimization process.
The optimization procedure will be introduced in the next section.

1.2 Basics of supervised learning
In the previous section we have introduced the basic neural network and the related
notations. In this section, we introduce the learning scheme that finds the best
parameters (weight matrices and biases) so that the resulting neural network can
accurately represent the target function we wish to learn.

In this dissertation we focus on the supervised learning where each data point has
both the input label and the output label. The collection of data can be split into
two parts: a training data set and a test data set. The neural network will be trained
using the training data set, and its performance will be evaluated in the end using
the test data set. The performance can be measured using a loss function. As an
example and also the most widely used loss function, the formula of the mean squared
loss is given by

l(x,y) = 1
N

N∑
i=1

(yi − fNN(xi))2

For simplicity we assume our output dimension (dimension of yi) to be 1, and we
have N data points in total. fNN(·) is the current neural network of which we want



CHAPTER 1. INTRODUCTION 4

to evaluate the performance (meaning that all parameters in the neural network are
fixed in the loss evaluation process). The loss, which is the output of the loss function
for a given neural network and a fixed data set, can be regarded as a measure of
the accumulated errors. The optimization goal for the supervised learning training
process is to minimize the loss for the training data set by updating the parameters
in the neural network.

The training of the neural network is done using an optimization scheme. For
simplicity we will only discuss the gradient descent algorithm in this section. For a
given batch of training data, we can use the loss function to measure the performance
of the current neural network. The optimization goal is to minimize the loss function,
which is a measure of the errors. The back propagation allows efficient computation
of the partial derivative of the loss function with respect to each individual neural
network parameter for a given batch of training data with the input output pair
(x,y). Once all derivatives are computed, the parameters can then be updated using
the formula

wnew = wold − ∂l

∂w
(x,y)

Here w stands for a scalar parameter from either the weight matrices or the bias
vectors. We can repeat this parameter update process by iterating through batches
of the training data again and again, and we expect to see a decreasing trend of the
training loss (error on the training data) as the iteration number increases. However,
minimal training loss is not necessarily a good thing because the neural network may
overfit the training data set. The difference between the training loss and the test
loss is called the generalization gap. Despite how small the training loss is, a large
generalization gap implies that the positive performance of the neural network cannot
be generalized, and thus we consider the performance of this neural network to be
negative. In reality, we can use the test loss to determine the sweet spot between
underfitting and overfitting and select the best trained neural network model.

There are many useful tricks and heuristics that can improve the optimization process,
including but not limited to, adaptive optimizer [53], pruning which reduces the
parameters without affecting the performance [11], and regularization [88]. Here we
introduce the regularization in more details to prepare for the discussion in chapter
2. The motivation behind the regularization is the issue that the magnitude of the
parameters in the neural network becomes uncontrollably large after multiple rounds
of gradient update. The large magnitude may lead to many numerical stability issues
and in many real world applications the large magnitude itself is counter-intuitive.
The regularization technique adds a term in the loss function that penalizes the large



CHAPTER 1. INTRODUCTION 5

magnitude of the parameters. For example, the L1 regularization may have the loss
function in the form

l(x,y) = 1
N

N∑
i=1

(yi − fNN(xi))2 + λ
∑

all parameters w

|w|

The regularization constant λ controls how much we wish to penalize the large mag-
nitude of the parameters and is an adjustable hyper-parameter. By minimizing this
modified loss function, the magnitude of the parameters will stay relatively stable.
The regularized neural network usually displays a smaller generalization gap and can
achieve better performance on the test data set.

1.3 Structure-informed neural network
In this dissertation we use the word structure-informed neural network to refer to a
neural network that incorporates the structure of the problem into its architecture. It
has been shown in various literature that the choice of the neural network architecture
to reduce the number of parameters is of paramount importance for the quality
of the approximation [44, 45, 73], and often the most effective way to reduce the
number of parameters without sacrificing the desired model expressiveness is to utilize
the structure of the target function. Below we briefly introduce the two scenarios
covered in this dissertation. We then highlight how the structure-informed neural
network takes advantage of the information given in the problem in these two scenarios.

One of the simplest examples of the structure-informed neural network is the neural
network we build in chapter 2 when approximating the target function x 7→ ∑n

i=1 x
2
i ,

where the input is an n-dimensional vector, and the output is the squared norm of
this input vector. We observe that the target function has the following structure:
The scalar mapping t 7→ t2 is applied to each entry of the input vector, and then the
sum of the outputs from these scalar mappings give the desired squared norm of the
input vector. Using this piece of information, we can design a neural network with
the architecture pictured in Fig. 1.2, where the small feed-forward neural networks (2
hidden layers and 3 neurons in each layer in the figure) attached to each input entry
share identical parameters and are approximating the scalar mapping t 7→ t2. The
structure-informed architecture greatly reduces the burden of the training procedure
because the neural network now only needs to learn the scalar mapping instead of
approximating a function whose domain is Rn. More details can be found in chapter 2.



CHAPTER 1. INTRODUCTION 6

Figure 1.2: Structure-informed neural network for approximating the squared norm
function x 7→ ∑n

i=1 x
2
i . Here the input dimension of vector x is 3.

A more complicated example is the quantum chemistry application discussed in
chapter 3. The task is to learn the electron density based on the atomic configuration
input. For example, if we input the positions of two hydrogen atoms in 3D space
and one location r in 3D space to the neural network, the output will be a scalar
representing the electron density (can be regarded as the probability of finding an
electron) at r for this hydrogen system. If we repeat the evaluation process for all
grid locations, we will obtain a heat map characterizing the electron density in the
3D space. When designing the neural network for this application, we incorporate the
structure of this problem from two directions. First is on the electron density (output)
side. Since the electron density is highly localized in the neighborhood of the atoms
and resembles a normal distribution, we only use the neural network and parameters
to represent the coefficients in front of the exponential function and on the exponents.
Second is on the atomic configuration (input) side. The translation symmetry, rota-
tion symmetry, and permutation symmetry of the atomic configuration can all be
observed in this application, so we build the neural network with a carefully designed
architecture so that the output of the neural network is invariant with respect to these
symmetries. By utilizing the structure of the problem, our resulting neural network
model is able to produce snapshots of electron density for various 3D systems that are
usually very difficult to compute. More mathematical details can be found in chapter 3.

During these years experimenting with various neural networks, my observation is that
there is no free lunch in neural network training. If the structure of the problem is



CHAPTER 1. INTRODUCTION 7

not built into the neural network architecture, the cost in the optimization procedure
may be huge and usually we may not even be able to fix the issue by increasing
the budget. By spending more effort in constructing a structure-informed neural
network architecture, we will have a better parameter landscape for the optimization
procedure to explore, and thus have more hope in finding the optimal neural network.
For example, the successful implementation of neural networks in the past decade [82,
75, 18, 90, 91, 42] tackling molecular dynamics simulation (similar to the application
problem in chapter 3) all have one kind or another of a cleverly designed architecture
that incorporates certain symmetries. The overall goal of this dissertation is to display
the advantage of the structure-informed neural network architecture in regression
applications.

1.4 Permutation symmetry
In this section we introduce one particular type of structure that can be taken ad-
vantage of when building a neural network architecture, the permutation symmetry.
In the past decade there have been multiple success stories of neural networks in
representing high-dimensional permutation invariant/equivariant functions with re-
markable accuracy and efficiency in various applications, see, e.g., [10, 90, 103, 105]
for interatomic potential energy, [79, 80] for 3D classification and segmentation of
point sets, and [34, 106] for solutions of partial differential equations.

We begin by defining the permutation invariant mapping. A function f : (Rd)N → R
is permutation invariant if

f(xσ(1), . . . ,σ(N) ) = f(x1, . . . ,xN), (1.1)

for any permutation σ ∈ S(N), and elements x1, . . . ,xN ∈ Rd. Note that the
permutation is only applied to the outer indices 1, . . . , N , but not the Cartesian
indices 1, . . . , d for each xi. A good example to consider is a system with 10 identical
atoms in a 3D space. Here we consider the input being the collection of atom positions
with N = 10 and d = 3. The system will be the same if we interchange two atom
positions, but will be different if we interchange the xy coordinates of one particular
atom. A closely related concept we will introduce next is the permutation equivariant
mapping, which is of the form Y : (Rd)N → (Rd̃)N that satisfies

Yi(xσ(1), . . . ,xσ(N)) = Yσ(i)(x1, . . . ,xN), i = 1, . . . , N (1.2)



CHAPTER 1. INTRODUCTION 8

for any permutation σ ∈ S(N), and x1, . . . ,xN ∈ Rd. Here each component Yi ∈ Rd̃,
and d̃ can be different from d.

There are multiple ways to build the permutation symmetry into the architecture of
the neural network, which can be seen in the works mentioned at the beginning of
this section, and also the neural network model defined in chapter 3. One of the most
important theoretical results that enables these neural network designs is mentioned
in [98, Theorem 2]. The theorem states that a function f is permutation invariant if
and only if it satisfies the decomposition

f(x) = ϕ(
N∑

j=1
g(xj))

for some functions g : Rd → RM and ϕ : RM → R. Here M is a parameter depending
on the construction. The most straightforward usage of this theorem for building a
permutation invariant neural network architecture is to now build two separate neural
networks to approximate ϕ and g instead of the original single neural network that
approximates f . Although two functions now need to be approximated compared
with one, we no longer have the dependence on N for the target functions that the
neural network models are approximating, and this may greatly reduce the number
of necessary parameters, especially when N is large.

Our main contribution in this dissertation regarding the permutation symmetry is
centered around the theorem mentioned above. The proofs in [98] work for the d = 1
case, but cannot be easily generalized to d > 1 case. In this dissertation we give two
different proofs of the universality of the ansatz proposed in [98], both with explicit
error bounds. The first proof is based on the Ryser formula [84] for permanents, and
the second is based on the partition of the state space. The results justify the usage
of this ansatz for applications where d > 1.

1.5 Organization of the dissertation
In chapter 2 we design a deceivingly simple task: use neural network to approximate
the mapping x 7→ ∑n

i=1 x
2
i through supervised learning. Given the knowledge of the

separable structure of the function, a sparse network architecture can be designed to
represent the function accurately, or even exactly. When such structural information
is not available and we may only use a dense network architecture, the optimization



CHAPTER 1. INTRODUCTION 9

procedure to find the sparse network embedded in the dense network is similar to
finding the needle in a haystack, with a fixed number of samples of the function. We
demonstrate that the cost (measured by sample complexity) of finding the needle
is directly related to the Barron norm of the function. While only a small number
of samples is needed to train a sparse network, the dense network trained with the
same number of samples exhibits large test loss and a large generalization gap. In
order to control the size of the generalization gap, we find that the use of explicit
regularization becomes increasingly more important as d increases. The numerically
observed sample complexity with explicit regularization scales as O(d2.5), which is in
fact better than the theoretically predicted sample complexity that scales as O(d4).
Without explicit regularization (also called implicit regularization), the numerically
observed sample complexity is significantly higher and is close to O(d4.5).

In chapter 3 we look at a successful implementation of a neural network with built-in
symmetries in a quantum chemistry application. We leverage the neural network struc-
ture inspired by Deep Potential to effectively represent the mapping from the atomic
configuration to the electron density in Kohn-Sham density function theory (KS-DFT).
By directly targeting at the self-consistent electron density, we demonstrate that the
adapted network architecture, called the Deep Density, can effectively represent the
self-consistent electron density as the linear combination of contributions from many
local clusters. The network is constructed to satisfy the translation, rotation, and
permutation symmetries, and is designed to be transferable to different system sizes.
We demonstrate that using a relatively small number of training snapshots, with
each snapshot containing a modest amount of data-points, Deep Density achieves
excellent performance for one-dimensional insulating and metallic systems, as well
as systems with mixed insulating and metallic characters. We also demonstrate its
performance for real three-dimensional systems, including small organic molecules, as
well as extended systems such as water (up to 512 molecules) and aluminum (up to
256 atoms).

In chapter 4 we focus on a certain type of symmetry widely observed in quantum
chemistry, which is permutation invariance and equivariance. Besides summarizing
the existing results, we give two different proofs of the universality of the ansatz for
permutation invariant functions, both with explicit error bounds. The first proof is
based on the Ryser formula for permanents, and the second is based on the partition
of the state space.

Please note that Chapter 2 is based on [101], Chapter 3 is based on [100], and Chapter
4 is based on [43].



10

Chapter 2

A Toy Problem

2.1 Introduction
Machine learning and, in particular, deep learning methods have revolutionized nu-
merous fields such as speech recognition [46], computer vision [59], drug discovery [68],
genomics [63], etc. The foundation of deep learning is the universal approximation
theorem [20, 48, 52, 73], which allows neural networks (NN) to approximate a large
class of functions arbitrarily well, given a sufficient large number of degrees of freedom.
In practice, however, the number of degrees of freedom is often limited by the compu-
tational power, thus the choice of the architecture to reduce the number of degrees
of freedom is of paramount importance for the quality of the approximation [44,
45, 73]. Empirically, NN models have been shown to be surprisingly efficient in
finding good local, and sometimes global, optima when using an overparameterized
model, e.g. training a sparse teacher network is less efficient than training a dense,
overparametrized student network [67]. It has been argued that the energy landscape
of an overparameterized model may be benign, and in certain situations all local
minima become indeed global minima [32, 51, 60, 92]. Furthermore, starting from an
overparameterized model, observations such as the lottery ticket hypothesis [30, 31,
66] states that with proper initializations, it is possible to identify the “winning tick-
ets”, i.e. a sparse subnetwork with accuracy comparable to the original dense network.

We point out that many of the aforementioned studies focus on image classification
problems using common data sets such as MNIST, CIFAR10 and ImageNet, with
or without the presence of noise. However, in scientific computing, the setup of
the problem can be very different: usually, we are interested in using NN models
to parameterize a smooth, high-dimensional function accurately, and often without



CHAPTER 2. A TOY PROBLEM 11

artificial noise. Within this context, the results mentioned above naturally raise the
following questions:

(1) How important is it to select the optimal architecture? In other words, does it
matter whether one uses an overparameterized model?

(2) If there is a sparse subnetwork that is as accurate as the overparameterized
network, can the training procedure automatically identify the subnetwork? In
other words, what is the cost of finding the needle (sparse subnetwork) in a
haystack (overparameterized network)?

(3) If (2) is possible, how does the training procedure (such as the use of regular-
ization) play a role?

This chapter presents a case study of these questions in terms of a deceivingly simple
task: given x ∈ [−1, 1]d drawn from a certain probability distribution and a target
accuracy ϵ, learn the square of its 2-norm, i.e. the function

f̃ ∗(x) :=
d∑

i=1
x2

i . (2.1)

More specifically, for a given neural network model f(x, θ), where θ denotes the
parameters in the model, and for a given loss function, such as the quadratic loss
ℓ (y, y′) = 1

2 (y − y′)2, our goal is to find θ such that the population loss

L(θ) = Ex[ℓ(f(x; θ), f̃ ∗(x))] ≤ ϵ.

Note that f̃ ∗(x) ∼ O(d), so we consider the scaled target function 1 in order to
normalize the output

f ∗(x) = 1
d
f̃ ∗(x). (2.2)

However, as in many scientific computing applications, the magnitude of the quantity
of interest indeed grows with respect to the dimension, and our interest here is to
approximate the original function f̃ ∗(x) to ϵ accuracy. Using a quadratic loss the
population loss needed for approximating f ∗ becomes ϵ/d2. In other words, if each
component of x is chosen randomly, then by the law of large number f ∗(x) converges
to a constant E[x2] as d → ∞. So the ϵ/d2 target accuracy means that it is the
deviation from such a mean value that we are interested in.

1Correspondingly f̃∗ will be called the original target function, or the unscaled target function.



CHAPTER 2. A TOY PROBLEM 12

If we are allowed to use the mapping x 7→ x2 as an activation function, we would
apply this function to each component and sum up the results, ensuing that the
representation will be exact. Therefore, we exclude such an activation function, and
only use standard activation functions such as ReLU or sigmoid, which requires only
O(log(1/ϵ)) neurons to reach accuracy ϵ [97].

We can build a network leveraging the separability of Eq. (2.1). In particular, we
can use a small network to approximately represent the scalar mapping x 7→ x2,
and sum up the results from all components. The weights for the neural network of
each component are shared, so the number of parameters is independent of d. The
network will be called the local network (LN) below. However, if we do not have the
a priori structural information that the target function is separable, we need to use a
dense or fully connected neural network, which is referred to as the global network
(GN). Fig. 2.1 sketches the structure of LN and GN. Note that LN can be naturally
embedded into GN as a subnetwork by deleting certain edges. Therefore the optimal
performance of GN should be at least as good as that of LN.

Figure 2.1: The architecture of the local network is on the left, and the architecture
of the global network is on the right. Here d = 3 and the number of channels α = 3.

Throughout this chapter we assume that the number of neurons in the LN is large
enough so that the scalar mapping x 7→ x2 is learned very accurately (with test error
less than e.g. 10−5), and the structure GN is then obtained by connecting all the
remaining edges. In addition to the architectural bias, we are also concerned with
the sample complexity about GN, i.e. the number of independent samples of f(x) as



CHAPTER 2. A TOY PROBLEM 13

the training data to reach a certain target accuracy (i.e. generalization error). Our
results can be summarized as follows.

1. Using the same number of samples, LN can perform significantly better than
GN. This shows that the global energy landscape of GN cannot be very simple,
and the desired LN subnetwork cannot be easily identified.

2. If we embed a converged LN into a GN, add small perturbations to the weights
of GN, and start the training procedure, LN can still outperform GN. This
shows that the local energy landscape of GN may not be simple either.

3. In order to use GN to achieve performance that is comparable to LN, we need a
significantly larger number of samples. The number of samples needed to reach
certain target accuracy increases with respect to the dimension as O(dγ) up to
logarithmic factors. From a priori error analysis, we have γ = 4.

4. The numerical scaling of the sample complexity with respect to d depends on
the regularizations. In particular, when proper regularization (ℓ1, ℓ2, or path
norm regularization [26]) is used, the numerically observes sample complexity
is around O(d2.5), which behaves better than the theoretically predicted worst
case complexity, which scales as O(d4) . On the other hand, when implicit
regularization (i.e. early stopping [96]) is used, we observe n ∼ O(d4.5) , i.e. the
sample complexity using implicit regularization is significantly larger than that
with explicit regularization. The early stopping criteria we use in this chapter
is that: after T (1000 in default) epochs, we find an optimal t∗ ≤ T where the
validation error is minimized. Furthermore, the trained weight matrix obtained
with explicit regularization is approximately a sparse matrix, while the weight
matrix obtained with early stopping is observed to be a dense matrix.

Related works: In order to properly describe the sample complexity to reach certain
target accuracy, we need to have a priori error estimate (a.k.a. worst-case error),
and/or a posteriori error estimate (a.k.a. instance-based error) of the generalization
error. For two-layer neural networks, such estimates have been recently established
[5, 26] for a large class of functions called Barron functions [7, 54]. The estimates
have also been recently extended to deep networks based on the ResNet structure
[45, 25]. We obtain our theoretical estimate of the sample complexity with respect
to d by applying results of [26] to f(x). For a sufficiently wide two-layer neural
network, [4] studied the generalization error together with the gradient descent
dynamics when using a polynomial activation function. The problem of “finding the
needle in a haystack” by comparing the performance of fully-connected networks



CHAPTER 2. A TOY PROBLEM 14

(FCN) and convolutional neural networks (CNN) was also recently considered by
[22] for image recognition problems. It was found that there are rare basins in the
space of fully-connected networks associated with very small generalization errors,
which can be accessed only with prior information from CNN. This corroborates
our finding for learning f(x) here. Note that the separable structure in the target
function can also be viewed from the perspective of permutation symmetry. Therefore
our study also supports the argument for recognizing the importance of preserving
symmetries when designing neural network architectures, which has been observed
by numerous examples in physics based machine learning applications [98, 104]. Our
result also corroborates the recent study [76], which questioned the prediction power
of theoretical generalization error bound rates for overparameterized deep networks
trained without explicit regularization.

Organization
In Section 2.2 we provide the theoretical foundations for the two-layer networks,
including a priori and a posteriori bounds on the generalization gap. In Section 2.3
we use the theory developed in Section 2.2 to find the bounds for the generalization
error for the squared norm. Section 2.4 provides the numerical experiments, followed
by discussion in Section 2.5.

2.2 Generalization error of two-layer networks
In this section, we briefly describe the concept of the Barron norm, and the gener-
alization error for two-layer neural networks. We refer readers to [26, 27] for more
details. Let the domain of interest be Ω = [−1, 1]d. We assume the magnitude of the
target function is already normalized to be O(1), e.g. the scaled function f ∗(x) in
Eq. (2.2). Then for any y′ ∼ O(1), both the magnitude and the Lipschitz constant of
the square loss function ℓ(·, y′) are of O(1).

Barron norm
We say that a function f : Ω → R can be represented by a two-layer NN if

f(x; θ) =
m∑

k=1
akσ

(
w⊤

k x
)
. (2.3)

Here wk ∈ Rd, θ := {(ak,wk)}m
k=0 represents all the parameters in the network, and

σ(·) is an scale-invariant activation function such as ReLU. The scale invariance



CHAPTER 2. A TOY PROBLEM 15

implies
σ(w⊤x) = ∥w∥1 σ(ŵ⊤x), ŵ = w/ ∥w∥1 . (2.4)

Therefore we may, without loss of generality, absorb the magnitude ∥w∥1 into the
scalar a, and assume ∥w∥1 = 1.

The training set is composed of n i.i.d. samples S = {(x(i), y(i))}n
i=1. To distinguish

the indices, we use x(i) to denote the i-th sample of the vector (1 ≤ i ≤ n), and use
x

(i)
j to denote the j-th component of the vector x(i) (1 ≤ j ≤ d).

Our goal is to minimize the population loss

L(θ) = Ex[ℓ(f(x; θ), y)],

through the minimization of the training loss

L̂n(θ) = 1
n

n∑
i=1

ℓ
(
f
(
x(i); θ

)
, y(i)

)
.

For a realization of parameters θ, the generalization gap is defined as
∣∣∣L(θ) − L̂n(θ)

∣∣∣.
A function f represented by a two-layer neural network is a special case of the Barron
function, which admits the following integral representation

f(x) =
∫

Sd
a(w)σ(⟨w,x⟩) dπ(w), (2.5)

where π is a probability distribution over Sd := {w| ∥w∥1 = 1}, and a(·) is a scalar
function. In particular, when we choose π(w) := ∑m

k=1 δ(w − wk) to be a discrete
measure and define ak = a(wk), we recover the standard two-layer network in Eq. (2.3).

Definition 1 (Barron norm and Barron space). Let f be a Barron function. Denote
by Θf all the possible representations of f , i.e.

Θf = {(a, π)|f(x) =
∫

Sd
a(w)σ(⟨w,x⟩) dπ(w)}.

Then the Barron-p norm is defined by

γp(f) := inf
(a,π)∈Θf

(∫
Sd

|a(w)|p dπ(w)
)1/p

. (2.6)

We may then define the Barron space as

Bp(Ω) = {f : γp(f) < ∞} . (2.7)



CHAPTER 2. A TOY PROBLEM 16

Unlike the standard Lp norms, Proposition 2 shows a remarkable result, which is that
all Barron norms are equivalent ([27, Proposition 2.1]).

Proposition 2 (Equivalence of Barron norms). For any function f ∈ B1(Ω),

γ1(f) = γp(f), 1 ≤ p ≤ ∞. (2.8)

To see why this can be the case, let us consider the two-layer NN in Eq. (2.3), and
assume ∥wk∥1 = 1 for all k. By Hölder’s inequality γp(f) ≤ γq(f) when 1 ≤ p < q ≤
∞. In particular, γ1(f) ≤ γ∞(f), and we only need to show γ∞(f) ≤ γ1(f). Since π
should be a discrete measure, let (a, π) be the minimizer for γ1 as in Eq. (2.6). Then
(recall ak := a(wk))

γ1(f) =
m∑

k=1
|ak| .

However, we may define a new distribution

π̃(w) =
m∑

k=1

1
γ1(f) |ak| δ(w − wk),

then ∫
Sd
a(w) dπ(w) =

m∑
k=1

|ak| = γ1(f)
m∑

k=1

1
γ1(f) |ak| = γ1(f)

∫
Sd

dπ̃(w).

In other words, (ã, π̃) ∈ Θf , where ãk = γ1(f) is a constant. By definition of Eq. (2.6),

γ∞(f) ≤ γ1(f)
∫

Sd
dπ̃(w) = γ1(f).

This proves γ∞(f) = γ1(f). The same principle can be generalized to prove Proposi-
tion 2 for general Barron functions [27].

Proposition 2 shows that the definition of the Barron space Bp(Ω) = B1(Ω) is
independent of p. Therefore we may drop the subscript p and write Bp(Ω) as B(Ω).
Similarly we denote by ∥f∥B := γ1(f) as the Barron norm.

Error bound
For a given parameter set θ defining Eq. (2.3), the Barron norm is closely related to
the path norm

∥θ∥P :=
m∑

k=1
|ak| . (2.9)



CHAPTER 2. A TOY PROBLEM 17

According to Eq. (2.6) we immediately have ∥f∥B ≤ ∥θ∥P . The path norm can be
used to obtain the following a posteriori error estimate for the generalization gap for
any choice of θ.

Theorem 3 (A posteriori error estimate [26]). For any choice of parameter θ, for
any δ > 0, and with probability at least 1 − δ over the choice of the training set S,

∣∣∣L(θ) − L̂n(θ)
∣∣∣ ≲

√
ln(d)
n

(∥θ∥P + 1) +
√

ln((∥θ∥P + 1)2/δ)
n

.

For a given two-layer network, the path norm can be computed directly. Hence
in order to reduce the generalization error to ϵ, the number of samples needed is
approximately O(∥θ∥2

P/ϵ
2), which is a practically useful bound. However, in order to

estimate the scaling of n with respect to the dimension d for a particular function, we
need to replace the ∥θ∥P by some measure of the complexity associated with f ∗ itself,
such as the Barron norm. There indeed exists a two-layer network with a bounded
path norm, so that the population loss is small. This is given in Proposition 4 ([26,
Proposition 2.1]).

Proposition 4. For any f ∈ B(Ω), there exists a two layer neural network f(x; θ̃)
of width m with ∥θ̃∥P ≤ 2 ∥f ∗∥B, such that

L(θ̃) ≲ ∥f ∗∥B
m

. (2.10)

Eq. (2.10) characterizes the approximation error due to the use of a neural network of
finite width, which decays as m−1. Proposition 4 states that it is in principle possible
to reduce the population loss while keeping the path norm being bounded. However,
numerical results (both previous works and our own results here) indicate that when
minimizing with respect to the training loss directly (when early stopping is used,
this is also called the implicit regularization), the path norm associated with the
optimizer can be very large. According to Theorem 3, the resulting generalization
error bound can be large as well.

A key result connecting the a priori and a posteriori error analysis is to impose
stronger requirements of the training procedure. Instead of minimizing with respect
to the training loss L̂n(θ) directly, [26] proposes to minimize with respect to the
following regularized loss function

Jλ(θ) := L̂n(θ) + λ∥θ∥P , (2.11)

where λ > 0 is a penalty parameter. The corresponding minimizer is defined as



CHAPTER 2. A TOY PROBLEM 18

θ̂n,λ = arg min
θ

Jλ(θ).

The benefit of minimizing with respect to Eq. (2.11) is that the path norm is penalized
explicitly in the objective function, which allows us to control both the path norm
and the generalization error.

Theorem 5 (A priori error estimate [26]). Assume that the target function f ∗ ∈ B(Ω),
and λ ≥ λn = 4

√
2 ln(2d)/n. Then for any δ > 0 and with probability at least 1 − δ

over the choice of the training set S

L(θ̂n,λ) ≲ ∥f ∗∥2
B

m
+ λ(∥f ∗∥B + 1) + 1√

n

(
∥f ∗∥B +

√
ln(n/δ)

)
. (2.12)

The path norm of the parameter satisfies

∥∥∥θ̂n,λ

∥∥∥
P
≲

∥f ∗∥2
B

λm
+ ∥f ∗∥B +

√
ln(1/δ). (2.13)

For a fixed target function f ∗, the contribution to the error in Eq. (2.12) can be
interpreted as follows: the first term is the approximation error, determined by the
width of the network. The third is determined by the sample complexity which is
proportional to n− 1

2 . The second term is present due to the need of balancing the
loss and the path norm in the objective function (2.11). If λ is too large, then the
regularized loss function is too far away from the training loss, and the error bound
becomes large. On the other hand, Theorem 5 requires λ should be at least ∼ n− 1

2 .
This can also be seen from Eq. (2.13) that if λ is too small, the path norm becomes
unbounded. Therefore to balance the two factors we should choose the regularization
parameter as λ ∼ n− 1

2 .

2.3 Generalization error for squared norm
In this section we apply the generalization error bound in Section 2.2 to study the
scaling of the sample complexity with respect to the dimension d for the function in
Eq. (2.1). The two-layer network in Eq. (2.3) can be viewed as a particular realization
of GN. According to Theorem 3 and Theorem 5, we need to estimate the Barron
norm ∥f ∗∥B.

For a given function, the Barron norm is often difficult to compute due to the
minimization with respect to all possible (a, π). Instead we may compute the spectral



CHAPTER 2. A TOY PROBLEM 19

norm. For a given function f ∈ C(Ω), let F be an extension of f to Rd, denoted by
F |Ω = f . Define the Fourier transform

F̂ (k) = 1
2π

∫
Rd
e−ik·xF (x) dx.

Then spectral norm of f is defined as

∥f∥s = inf
F |Ω=f

∫
Rd

∥k∥2
1|F̂ (k)| dk. (2.14)

Note that the infimum is taken over all possible extensions F . Then the Barron norm
can be bounded by the spectral norm as [27, Theorem 2]

∥f∥B ≤ 2 ∥f∥s + 2∥∇f(0)∥1 + 2|f(0)|. (2.15)

Therefore we may obtain an upper bound of the Barron norm via the spectral norm.

Let us now consider f(x) in (2.2), which satisfies ∥∇f(0)∥1 = |f(0)| = 0. To evaluate
the spectral norm, we consider the one-dimensional version g(x) = x2. Consider any
C2 extension of g to R, denoted by G, which satisfies

∫
R k

2Ĝ(k) dk < ∞. Then by
definition γs(g) ≤

∫
R k

2Ĝ(k) dk < ∞.

Now consider the extension F (x) = 1
d

∑d
i=1 G(xi), and F̂ (k) = 1

d

∑d
i=1 Ĝ(ki)

∏
j ̸=i δ(kj).

Here δ(·) is the Dirac-δ function. Then∫
Rd

∥k∥2
1|F̂ (k)| dk = 1

d

d∑
i=1

∫
R
k2Ĝ(k) dk =

∫
R
k2Ĝ(k) dk,

which gives
∥f∥s ≤

∫
R
k2Ĝ(k) dk. (2.16)

Combined with Eq. (2.15), we find that ∥f∥B ∼ O(1). Thus according to Proposition 4
we expect that the path norm of the regularized solution satisfies ∥θ̂∥P ∼ O(1). Hence
the leading term of the generalization gap is

∥θ∥P

√
ln(d)
n

∼
√

ln(d)
n

. (2.17)

This scaling seems quite favorable, as n only needs to grow as ln(d). However, recall
the discussion in Section 2.1 that the target generalization error should be ϵ/d2, this
means that the required sample complexity (up to logarithmic factors) is

n ∼ O(d4/ϵ2). (2.18)



CHAPTER 2. A TOY PROBLEM 20

According to Theorem 5, the network also needs to be wide enough as m ∼ O(d2/ϵ).
λ ∼ O(n− 1

2 ) = O(ϵ/d2). In particular, the sample complexity increases very rapidly
with respect to the dimension d in order to approximate the unscaled function f̃ ∗(x).

The analysis of the local network (LN) is essentially applying a two-layer network
g(x; θ) to the scalar mapping g(x) = x2. Since g(x) = x2 is a special case of
f ∗(x) = 1

d

∑d
i=1 x

2
i with d = 1, by Eq. (2.18) and setting d = 1, the sample complexity

for the scalar mapping should be n ∼ O(1/ϵ2). Let zi = x2
i − g(xi; θ), and assume

that the error from each component are of mean zero and independent, i.e.

E(zizj) = 0, i ̸= j. (2.19)

Then the generalization error is simply

L(θ̂) =1
2E

(
1
d

d∑
i=1

x2
i − 1

d

d∑
i=1

g(xi; θ)
)2

,

= 1
2d2E

 d∑
i=1

z2
i + 2

∑
i ̸=j

zizj

 ,
≈ 1

2dE
(
z2

i

)
∼ 1
d
.

Therefore the generalization error of LN can be O(d−1) smaller than that of GN.
Note that the condition (2.19) is crucial for the d−1 factor. In fact if the errors from
all components are correlated, there may be no gain at all in terms of the asymptotic
scaling with respect to d!

However, our numerical results in Section 2.4 demonstrate that the performance of
LN can be significant better than GN by a very large margin. Therefore there is still
gap in terms of the theoretical understanding of the performance of LN.

2.4 Numerical results
In this section we describe in detail the numerical experiments along with the analysis
of the empirical results.

Our first goal is to study the dependence of the generalization or test error with
respect to the architectural bias. In section 2.4, we showcase the superior performance
of the local network, which is built using structural information about the underlying



CHAPTER 2. A TOY PROBLEM 21

problem, compared to the the global network, in which no information is used.

Our second goal is to study the impact of the explicit regularization (versus implicit
regularization) when training the global network to approximate the unscaled target
function. In section 2.4, we characterize the scaling of the test loss with respect to
the input dimension, and the scaling of the test loss with respect to the number of
samples with/without the explicit regularization. The explicit regularization improves
both rates according to the numerical experiments.

Data generation and loss function
For all the numerical experiments, the dimension of the input denoted by d, ranges
from 4 to 60 with step size 4. For each d, we generate 106 samples by first sampling
106 × d numbers uniformly from the interval [−1, 1] and then organizing the resulting
data as a matrix of dimensions 106 × d. We then compute y = ∑d

i=1 x
2
i for each row.

With this setup, the domain of the target function is restricted to Ω = [−1, 1]d.

We also generate data for the sum of quartic and the cosine terms, namely y = ∑d
i=1 x

4
i

or y = ∑d
i=1 cosxi. These datasets are used in section 2.4 to showcase the importance

of the architectural bias for target functions other than y = ∑d
i=1 x

2
i .

For the sake of reproducibility, all the experiments described below use the data
generated with a fixed seed. In this section we use n to denote the number of the
training samples and Nsample for the number of total samples (training, validation,
test all combined). For experiments that involve Nsample ≤ 106 samples, we extract
the first Nsample rows from the total 106 rows of data.

To simplify the training procedure, we enforce the permutation symmetry of the
inputs by including the sorting procedure while preprocessing the input data. We
point out that this permutation symmetry can be directly embedded in the network
[99].

On one hand, we have done our analysis in section 2.2 and 2.3 with respect to the
scaled target function f ∗(x) in Eq. (2.2), so the neural networks we build in this
section aim to learn the scaled target function. Thus, the mean squared error loss for
training data when optimizing the networks are defined as

MSE = 1
n

n∑
i=1

(
fNN(x(i), θ) − f ∗(x(i))

)2
(2.20)



CHAPTER 2. A TOY PROBLEM 22

Here n denotes the number of training data, fNN denotes the function represented
by the network, and x(i) represents ith row in the dataset. The test loss can be
calculated in the same way using the test data instead of the training data. On the
other hand, we are interested in the performance of the models in the original scale,
so the reported training/test loss are scaled by d2 to represent the mean squared error
of approximating the original unscaled target function:

MSEoriginial = 1
n

n∑
i=1

(
d · fNN(x(i), θ) − f̃ ∗(x(i))

)2
(2.21)

Architectural bias
In this section we showcase the empirical effects of the architectural bias on the test
or generalization errors. To illustrate this effect, in a slightly more generality, we
consider as target functions: f̃ ∗(x) := ∑d

i=1 x
2
i , ∑d

i=1 x
4
i , and ∑d

i=1 cosxi, respectively.
We use three different network architectures to approximate each target function:
global network, the local network, and the locally connected network (LCN), which
is similar to the local network, but whose weights are not longer shared.

These three architectures are closely related. In the global (or dense) network, each
layer is represented by a weight matrix that is an arbitrary dense matrix (see Figs. 2.1
and 2.2). In the locally connected network we have the same matrix but constrained
to be block diagonal. Finally, in the local network we further constraint the weight
matrix to be both block diagonal and block circulant, thus implying that the block
in the diagonal are the same (usually called weight-sharing in the machine learning
community). This observation allows us to embed a local network into a locally
connected one, and then into a global one. This embedding is performed by simply
copying the corresponding entries of the weights matrices at each layer and filling the
rest with zeros as shown in Fig. 2.2.

Following [48] all three networks can approximate the target function to arbitrary
accuracy with just one hidden layer: the result is straightforward for the global
network by the universal approximation; for the locally connected and local networks,
the result stems from applying the universal approximation to each coordinate, thus
approximating the scalar component function g : R → R (g(x) = x2 in the square
case, x4 in the quartic case and cosx in the cosine case). In practice, however, we find
that with two hidden layers the networks are easier to train, all the hyperparameters
being equal.



CHAPTER 2. A TOY PROBLEM 23

Figure 2.2: The relation of the weight matrices after embedding weight matrices for
all three networks (between the first hidden layer and the second hidden layer with
input dimension d = 4) into the weight matrix for the global network. The arrows
mean that the matrices on the left hand side are subsets of the matrices on the right
hand side. The blocks in the first weight matrix have the same color to illustrate the
weight-sharing. Matrix elements in the white regions are zeros.

Following these considerations, for all the numerical experiments we fix the number
of hidden layers to be two. In addition, we define α as the number of nodes per input
node, which for the local networks coincides with the number of channels. Thus we
have d · α nodes in the hidden layers for the global network.

The networks are implemented2 with Keras [19], using Tensorflow [1] as the back-
end. Within the Keras framework, we use dense layers, locally connected layers and
one-dimensional convolutional layers to implement the global network, the locally
connected network, and the local network, respectively (see Algs. ??, ??, and ??).
We add a lambda layer that divides the output by d at the end of the networks to
learn the scaled function f ∗(x) in Eq. (2.2). For both the locally connected and
convolutional layers, we use stride and window size both equal to one, and α the
number of channels. We point out that α can be considered as the number of nodes in
the hidden layers for the block component that approximates the component function
g as shown in Fig. 2.1. In this way, the function represented by the local network has
the structure 1

d

∑d
i=1 g(xi, θ) enforced by the architecture, where g(·, θ) is the neural

network block that approximates component function g.
2Detailed implementation can be found at https://github.com/jfetsmas/

NormSquareLearning.git

https://github.com/jfetsmas/NormSquareLearning.git
https://github.com/jfetsmas/NormSquareLearning.git


CHAPTER 2. A TOY PROBLEM 24

layerInput = Input(shape=(d,))
layerHidden1 = Dense(DenseNodes, activation=’relu’,

use_bias=True)(layerInput)
layerHidden2 = Dense(DenseNodes, activation=’relu’,

use_bias=True)(layerHidden1)
layerOutput_pre = Dense(1, activation=’linear’,

use_bias=False)(layerHidden2)
layerOutput = Lambda(lambda x: x / d)(layerOutput_pre)
model = Model(inputs=layerInput, outputs=layerOutput)

layerInput = Input(shape=(d,1))
layerHidden1 = LocallyConnected1D(alpha, 1, strides=1,

activation=’relu’, use_bias=True)(layerInput)
layerHidden2 = LocallyConnected1D(alpha, 1, strides=1,

activation=’relu’, use_bias=True)(layerHidden1)
layerOutput = LocallyConnected1D(1, 1, strides=1,

activation=’linear’, use_bias=False)(layerHidden2)
Sum = Lambda(lambda x: K.sum(x, axis=1), name=’sum’)
layerSum_pre = Sum(layerOutput)
layerSum = Lambda(lambda x: x / d)(layerSum_pre)
model = Model(inputs=layerInput, outputs=layerSum)

layerInput = Input(shape=(d,1))
layerHidden1 = Conv1D(alpha, 1, strides=1, activation=’relu’,

use_bias=True)(layerInput)
layerHidden2 = Conv1D(alpha, 1, strides=1, activation=’relu’,

use_bias=True)(layerHidden1)
layerOutput = Conv1D(1, 1, strides=1, activation=’linear’,

use_bias=False)(layerHidden2)
Sum = Lambda(lambda x: K.sum(x, axis=1), name=’sum’)
layerSum_pre = Sum(layerOutput)
layerSum = Lambda(lambda x: x / d)(layerSum_pre)
model = Model(inputs=layerInput, outputs=layerSum)

In the experiments, we set the number of channels α = 50 and we use ReLU as the
nonlinear activation function. The models are permutation invariant due to a sorting



CHAPTER 2. A TOY PROBLEM 25

procedure used to pre-process the data. In all experiments we use the default weight
initializer (glorot uniform initializer) and the Adam optimizer with starting learning
rate = 0.01 and other default parameters [53].

We split the data into training, validation, and test datasets. Among the data for a
single numerical experiment, 64% is training data, 16% is validation data, and 20% is
test data. We use batch size = (number of training and validation samples) / 100
for all experiments in this subsection, and thus each epoch contains 80 iterations.
During the training process, we evaluate the loss on the validation set every epoch
and we keep the model with the lowest validation loss, which is then reported.

(a) target function
y =

∑d
i=1 x2

i

(b) target function
y =

∑d
i=1 x4

i

(c) target function
y =

∑d
i=1 cos xi

Figure 2.3: Comparison of rescaled average mean square error for the three architec-
tures. GN stands for global network, LCN for locally connected network, and LN for
local network.

For each value of the input dimension, we run four experiments with the same config-
uration, but with a different random seed for the optimizer. All experiments in this
subsection use a dataset of size Nsample = 105 (training, validation, and test data all
combined).

Fig. 2.3 depicts the behavior of the test and training losses for the three networks as
the input dimension increases. The losses are computed using the mean squared error
in the original scale as in Eq. (2.21). For all three target functions, the local network
significantly outperforms the global network, especially for large input dimension.
LN and LCN shows comparable performance for the quadratic and quartic functions.
The training error of LCN is larger for the cosine function, but there is no noticeable
generalization gap. We expect that the performance of LCN can be further improved
through further hyperparameter tuning. In all three cases, the global network exhibits



CHAPTER 2. A TOY PROBLEM 26

a large generalization gap, whereas this gap is almost non-existent for the local
network. These results clearly indicates the influence of the architecture in the
accuracy of the approximation and the generalization gap.

Figure 2.4: Evolution of the mean squared error with respect to the number of epochs
for the different networks. Blue lines are the trajectories of the training and validation
loss of the global network; green lines are for the local network; Red lines are the
trajectories after loading the local network weights into the global network at epoch
1000.

As depicted in Fig. 2.2, we know that the local networks are indeed a subset of
the global ones, and given the high-level of accuracy obtained by the local network
we can infer that the global network should have enough representation power to
approximate the target solution accurately. Following this logic, the large gap can be
then attributed to the optimization procedure, which is unable to identify a suitable
approximation to the local network (“needle”) among all overparameterized dense
networks (“haystack”).

A natural question is: can the optimization procedure find a better solution starting
from a good initial guess? To study this, we train a local network until a local
minimum is achieved, and we transfer this minimum to its corresponding global
network, and we use it as an initial guess for the training procedure. In particular,
we fix d = 20, and the number of data at 1000. We train both the local and the
global networks for 1000 epochs, do the weight transfer, and then resume training for
another 1000 epochs. To obtain more stable training curves, we add decay of 0.03 in
the argument of the Adam optimizer. From Fig. 2.4 we can observe that by properly



CHAPTER 2. A TOY PROBLEM 27

initializing the global network, we are able to significantly reduce the test loss, and to
drastically bridge the generalization gap (red lines starting at epoch 1000). Although
the training error of the global network is consistently lower than that of the local
network (solid blue and red lines, compared with solid green line), the generalization
gap (the gap between solid and dashed for the blue and red lines, compared with the
gap for the green lines) of the global network remains noticeably larger compared
with the local network.

The impact of the explicit regularization
In this subsection, we explore the relation between the test loss, the number of
samples and the input dimension. The calculations in section 2.3 suggests that the
leading term of the generalization gap should satisfy Eq. (2.17). For the global
network, the generalization gap is sufficiently large3 that we can regard the test loss
to be approximately equal to the generalization error. Thus, we expect the test
loss of the global network to be bounded by Eq. (2.17) (multiplied by d2 for the
unscaled function). We test the tightness of the bound by conducting the following
two experiments:

1. we fix the sample size and investigate the relation between the test loss and the
input dimension; and

2. we fix the input dimension d and obtain the rate of growth of the test loss with
respect to the sample size.

To summarize our numerical observations, for the first experiment, despite numerical
errors and the fact that we only use the leading term in Theorem 3, we observe that
the rate with respect to the input dimension suggested by Eq. (2.17) regarding the
input dimension is close to optimal when using the explicit regularization. For the
second experiment however, the rates with respect to the number of samples obtained
in numerical experiments are around O(N−0.8

sample) without explicit regularization, and
O(N−1.0

sample) with explicit regularization. Hence the convergence rate with respect to
the number of samples is faster than the theoretical predicted worst case rate as
O(N−0.5

sample).

Loss vs. input dimension without explicit regularization
Here we fix the sample size to 105. For each d ranging from 4 to 60, we repeat the
training procedure four times with the same set of hyperparameters (the default values

3Given that the training loss is usually one or more magnitude smaller than the test loss.



CHAPTER 2. A TOY PROBLEM 28

have been discussed in section 2.4). In Fig. 2.5(a), we display the training loss and
test loss with respect to the input dimension in log-log scale. The losses are computed
using the mean squared error in the original scale as in Eq. (2.21). The slope in
Fig. 2.5(a) indicates that the generalization error of the approximation to the original
target function f̃ ∗(x) as in Eq. (2.1) grows as d3.6, and thus the generalization error
of the approximation to the scaled f ∗(x) as in Eq. (2.2) grows as d1.6. The empiri-
cal rate d1.6 is a lot larger than logarithmic growth predicted in the bound in Eq. (2.17).

In particular, Eq. (2.17) indicates that in order to bound the generalization error,
the path norm needs to be ∼ O(1). However, the boundedness of the path norm
is only proven in the context of explicit regularization. Without such an explicit
regularization term (also called the “implicit regularization”), there is no a priori
guarantee that the path norm can remain bounded as the input dimension increases.

We remark that to compute the path norm for our three-layer network, we need
to modify the formula for two-layer network. Let us denote the weight matrices of
the three layers to be w1,w2,w3. With the width of hidden layer for the global
network being d · α as shown in section 2.4, the size of the weight matrices are
d · α × d, d · α × d · α, 1 × d · α respectively. In the three-layer case, the path norm
can be calculated using the formula:

∥θ∥P := 1
d

d∑
i=1

dα∑
j,k=1

|w1
ij||w2

jk||w3
k| (2.22)

The 1
d

factor is due to the last layer in Alg. ??, which divides the output by d. Using
the updated formula we plot the path norm with respect to the input dimension in
Fig. 2.5(b). From the figure we can observe that the path norm grows as ∼ d1.1, thus
violating the O(1) assumption for Eq. (2.17). Notice that in this scenario, although
Eq. (2.17) does not apply, the bound in Theorem 3 provides a fairly good estimate
of the growth of the generalization error. The leading term in the bound given by
Theorem 3 grows as ∥θ∥P

√
ln(d). With the path norm ∼ d1.1, and

√
ln(d) empirically

behaving like a fractional power of d for small d, the product has a rate similar to
the rate of the test loss observed, which is ∼ d3.6 (after taking into account the d2

scaling factor).

Loss vs. input dimension with explicit regularization
To demonstrate that explicit regularization indeed reduces the path norm, test loss
and generalization error, we implement three types of regularization schemes, and
study the growth of the errors with respect to the input dimension. Let the number of



CHAPTER 2. A TOY PROBLEM 29

(a) the relationship between the generalization
error and the input dimension. Slope of the
best fitted line (red) is 3.638

(b) the relationship between the path norm
and the input dimension. Slope of the best
fitted line (red) is 1.107

Figure 2.5: Experiments without regularization

trainable parameters in the neural network be Npar. Denote the trainable parameters
by {θi}Npar

i=1 and regularization constant by λ. We can summarize the implementation
of the three regularization as

• L1 regularization, minimizing MSE+λ∑Npar
i=1 |θi|

• L2 regularization, minimizing MSE+λ∑Npar
i=1 θ2

i

• path norm regularization, minimizing MSE+λ∥θ∥P , where ∥θ∥P is calculated
by Eq. (2.22)

The MSE is computed as in Eq. (2.20). To implement the three regularization
schemes, we use the kernel regularizer in Keras in tensorflow 1.7.0 for the L1 and
the L2 regularization (the regularization is only on the weight matrices, but not on
the bias), and we use tensorflow 2.0 to implement the path norm regularization. We
choose the regularization constant λ (fixed with respect to d) empirically so that the
global network achieves the best test loss. The regularization constants we select in
Fig. 2.6 are 10−8 for L1 regularization, 10−7 for the L2 regularization, and 10−5 for
the path norm regularization.

In addition to the test/train loss vs. the input dimension for the regularization
experiments, we also display our previous results for GN, LN, and LCN as a reference



CHAPTER 2. A TOY PROBLEM 30

in Fig. 2.6

Recall that the growth rate of the test loss for the global network without regularization
(shown in Fig. 2.5(a)) is around 3.638, all three regularization helps reduce down the
rate in Fig. 2.6. Path norm regularization in Fig. 2.6(c) exhibits the best growth rate,
despite that the test loss for small d is slightly larger. We plot the path norm vs. the
input dimension in Fig. 2.7 and we indeed observe that the path norm is O(1) as
desired. As a matter of fact, the path norm even decreases slightly as d increases, and
this is qualitatively different from the behavior of implicit regularization. In addition,
with the explicit regularization and thus bounded path norm, Eq. (2.17) gives a tight
estimate of the rate of growth.

(a) Loss vs. input dimension
for GN with L1 regularization.
Slope of the best fitted line (yel-
low): 2.527

(b) Loss vs. input dimension
for GN with L2 regularization.
Slope of the best fitted line (yel-
low): 3.051

(c) Loss vs. input dimension
for GN with path norm regu-
larization. Slope of the best
fitted line (yellow): 2.098

Figure 2.6: Experiments with regularization, solid lines are test loss and dashed lines
are training loss.

Since the weight matrices for the LN embedded GN are block diagonal, and hence
are sparse matrices. We will look at the first weight matrices of the models under the
following scenario:

• GN without regularization,

• GN with L1 regularization,

• GN with L2 regularization,

• GN with path norm regularization, and

• GN with optimal LN weights embedded.



CHAPTER 2. A TOY PROBLEM 31

Figure 2.7: the relationship between the path norm and the input dimension for the
path norm regularization experiment with λ = 10−5. Slope of the best fitted line
(red): -0.158. This trend shows that the path norm almost stays constant when input
dimension increases and displays how powerful the explicit regularization is.

In Fig. 2.8, we display the first weight matrices for input dimension d = 32 for the five
trained models. Since the weight matrix is from the input nodes to the first hidden
layer, the dimension is 1600 × 32, where 1600 is obtained from input dimension (32)
multiplied by number of nodes per input node (50). To improve visibility, we display
the maximum absolute value among the 10 adjacent cells so that the first dimension
is reduced by a factor of 10. We can see from the picture that L1 regularization, L2
regularization, and path norm regularization all lead to a much sparser weight matrix
compared with the global network without regularization.

Loss vs. sample size without explicit regularization
For the experiment regarding the rate of growth of the test loss with respect to the
sample size, we fix d = 40 (the choice is arbitrary), and we vary the sample size from
103 to 106. Since the sample size varies, we consider the following two choices of the
batch size:

1. fix the ratio and let batch size be (number of training and validation samples) /
100, this choice ensures same number of iterations per epoch as the sample size
increases.

2. fix the batch size to 80 as sample size varies. The number of iterations increases
as the sample size increases.



CHAPTER 2. A TOY PROBLEM 32

(a) GN w/o reg (b) GN L1 reg (c) GN L2 reg (d) GN path
norm reg

(e) loaded LN

Figure 2.8: The sparsity pattern of the weight matrices between the first and second
layers after training.

The other hyperparameters are the same as the setup in section 2.4. We run 4 training
procedures for each number of samples and we report the resulting test loss (early
stopping still applies) versus the number of samples, which are summarized in Fig. 2.9.
In Fig. 2.9(a), with batch size fixed at 80, the performance changes when the number
of training samples exceed 105. Since we focus on the generalization error in this
chapter (so we need the existence of generalization gap), and also the time cost of
a training procedure drastically increases when the small batch size is applied to
a large sample size (number of iterations per epoch, computed by training sample
size / batch size, is large), we focus on the segment where the number of training
samples is below 105 and the generalization gap is visible. Following Theorem 3,
the generalization error decreases asymptotically as O(N−0.5

sample), but numerically we
observe different exponents in both figures, which is around −0.8. The fixed batch
size experiment in Fig. 2.9(a) returns a similar rate to the fixed ratio experiment
in Fig. 2.9(b), therefore we may keep using the default setup (batch size with fixed
ratio) for the rest of the studies in this subsection.
To confirm that the rate is consistent for other input dimension values, we repeat the
same procedure (with batch size obtained by the fixed ratio) for d = 60. The trend
and rate are reported in Fig. 2.10, and indeed the rate is still around −0.8, different
from the theoretical rate −0.5.



CHAPTER 2. A TOY PROBLEM 33

(a) Loss vs. sample size for GN with fixed
batch size. Slope of the best fitted line for test
loss with an obvious generalization gap (red):
-0.745

(b) Loss vs. sample size for GN with batch
size given by a fixed ratio. Slope of the best
fitted line (red) is -0.820.

Figure 2.9: the relationship between the test loss and the sample size with two choices
of batch size.

Figure 2.10: Loss vs. sample size for GN for d = 60. Slope of the best fitted line (red)
is -0.756



CHAPTER 2. A TOY PROBLEM 34

Loss vs. sample size with explicit regularization
We test the impact of explicit regularization on the rate of growth of the test loss with
respect to the sample size by adding L1 regularization to all the weight matrices. The
setup is the same as the global network with L1 regularization experiment displayed
in Fig. 2.6(a), except that instead of fixing Nsample = 105 and letting d varies, we
fix d = 40, d = 60 and let Nsample vary from 103 to 106. We fix the regularization
constant at 10−8 as in Fig. 2.6(a). The rates of the segment where there is a visible
generalization gap are shown in Fig. 2.11. We observe that as Nsample increases to
certain point (around 104), the fixed regularization constant makes the regularization
term more significant in the loss, resulting in nearly vanishing generalization gap.
Since our focus is on generalization error inspired by the theory in section 2.2 and 2.3,
we report the rate in the segment with visible generalization gap. Notice that the
rate in the L1 regularization is around −1.0, and hence the decay of the test loss with
respect to the number of samples is faster than that without explicit regularization,
which is around −0.8.

(a) Loss vs. sample size for GN with L1 regu-
larization for d = 40. Slope of the best fitted
line for test loss with an obvious generalization
gap (red): -0.943

(b) Loss vs. sample size for GN with L1 regu-
larization for d = 60. Slope of the best fitted
line for test loss with an obvious generalization
gap (red): -0.986

Figure 2.11: the relationship between the test loss and the sample size for the global
network with L1 regularization.

Empirical sample complexity with and without explicit regularization
Eq. (2.18) gives a theoretical prediction of the scaling of growth of number of samples
with respect to the input dimension in order to maintain a predetermined level of test



CHAPTER 2. A TOY PROBLEM 35

loss. We find this relation hard to verify directly because: 1) The input dimension,
and the number of samples are usually chosen among finitely many values, so the grid
may not be fine enough to find the (n, d) combination that gives the predetermined
test loss; 2) The test loss varies even with same hyperparamter setting, so it is rather
difficult to make sure that the test loss stays at a constant value especially given that
the loss of the scaled function can be very small (10−6 ∼ 10−4). However, we can
compute the numerical sample complexity if we assume that the generalization gap
is in the function form dβ1

nβ2 as in Eq.(2.17). Recall that theoretical prediction gives
β1 = 2 because the loss for the original function needs to be scaled by d2 as noted
in Eq.(2.20), and β2 = 0.5. Then the sample complexity with respect to d can be
characterized by a rate γ as n ∼ O(dγ), where γ = β1

β2
= 4.

The rate we obtained for the implicit regularization is β1 = 3.6 as in Fig. 2.5(a), and
β2 = 0.8 as in Fig. 2.9(b), and thus the sample complexity rate is approximately
γ = 4.5, i.e. n ∼ O(d4.5). This is close to the theoretically predicted rate, but this
largely benefited from the observation that β2 = 0.8 > 0.5. The rate we obtained
for the explicit regularization (L1 with regularization constant 10−8 to be precise)
is β1 = 2.5 as in Fig. 2.6(a), and β2 = 1.0 as in Fig. 2.11, and thus the sample
complexity rate is approximately γ = 2.5, i.e. n ∼ O(d2.5), which is significantly
better than the theoretically predicted rate. We do point out that this is a very rough
estimate because of the assumed function form and the fact that the β1 rate in the
L1 regularization in Fig. 2.6(a) is not based on the generalization gap but the test
loss (the generalization gap is very small). Overall, the explicit regularization helps
improve the rate in both the test loss vs. the input dimension, and the test loss vs.
the number of training samples, so the advantage of the explicit regularization is
convincing.

2.5 Conclusion
Despite the fact that an overparameterized neural network architecture can represent
a large class of functions, such representation power can come at the cost of a large
sample complexity. This is particularly relevant in many scientific machine learning
applications, as the required accuracy (in the form of a regression problem) is high,
and the training data can be difficult to obtain. Therefore a number of recent works
have focused on domain-specific neural network architectures aiming at reducing the
number of parameters, “retreating” from the overparameterized regime.

This chapter gives an unambiguous, and minimal working example illustrating why



CHAPTER 2. A TOY PROBLEM 36

this makes sense. Even for the seemingly simple task of computing the sum of squares
of d numbers in a compact domain (i.e. learning the square of a 2-norm), a general
purpose dense neural network struggles to find a highly accurate approximation of
the function even for relatively low d (tens to hundreds). In particular, the sample
complexity of an empirically optimally tuned and explicitly regularized dense network
is O(d2.5). This behaves better than the sample complexity from a priori error bound,
which is O(d4). The origin of such improvement deserves study in the future. The
sample complexity of an empirically optimally tuned and implicitly regularized dense
network is close to O(d4.5), and hence can be prohibitively expensive as d becomes
large.

When we choose a proper architecture, such as the local network or the locally
connected network, the generalization error still grows with respect to d. However,
we find that the generalization gap is nearly invisible with explicit or implicit regu-
larization, and the test loss is orders of magnitude smaller than that of the global
(dense) network. Given that the sample complexity can asymptotically scale as the
square of the test loss (assuming training error is negligible), the practical savings
due to the use of a local network is vital to the success of the neural network.

From a theoretical perspective, we remark that existing error analysis based on
the Rademacher complexity-type cannot yet explain why the prefactor of the local
network should be lower by orders of magnitude compared to the global (dense)
network. Our results illustrate that implicit regularization as early stopping may
not give the optimal generalization error rate in practice, although in theory it can
be shown to achieve the same optimal rates as L2 regularization in reproducing
kernel Hilbert spaces [96, 94]. Given that implicit regularization is still a prevailing
regularization method used in practical applications, better theoretical understanding
of the behavior of early stopping regularization in neural networks, and methods
to improve the performance of such an implicit regularization in practice are also
needed.



37

Chapter 3

Deep Density

3.1 Introduction
Kohn-Sham density function theory (KS-DFT) [56] is the most widely-used electronic
structure theory because the electron density completely determines the ground
state [47] and the thermal [72] properties of a quantum many-body system. The
goal of KS-DFT is to obtain a mapping of the atomic configuration to the electron
density, denoted by ϱ(r, {RI}Na

I=1). Here RI is the position of the I-th nuclei, r is the
electronic position, and Na is the number of atoms. Notwithstanding its enormous
success, KS-DFT still suffers from two significant challenges. The first challenge is
its computational cost; the cost of KS-DFT calculations typically scales cubically
with respect to the system size, and hence the calculations can be expensive for large
systems. Despite the availability and development of linear scaling methods [35, 14],
they are only applicable to treating insulating systems with relatively large energy
gaps. The second, and more fundamental, challenge is its accuracy, which cannot be
systematically improved due to the limitation of the available exchange-correlation
functionals [70].

The recent surge in applications of machine learning methods to scientific comput-
ing problems provides an alternative route for revisiting both problems. If one can find
a more effective mapping for ϱ using, e.g., a neural network, we can bypass the solution
of the Kohn-Sham equations, and directly obtain the self-consistent electron density
for a given atomic configuration. This may drastically reduce the computational
time, particularly for large systems. We may further use such a network to encode
the electron density obtained from theories that are more accurate than standard
KS-DFT, such as the density matrix renormalization group [95] or the coupled-cluster
theory [8]. Based on such considerations, the representation of the electron density



CHAPTER 3. DEEP DENSITY 38

has received much attention in the past few years [15, 39, 83, 13, 29, 2, 16]. These
approaches are typically based on carefully hand-crafted descriptors that encode the
atomic configuration, a projection of ϱ onto a basis, and a machine learning algorithm
mapping the descriptors to the coefficients of the projection. For example, in [15]
the authors adopted a descriptor using a fictitious smooth potential centered at each
nuclei, which is then mapped to a basis for the density (either a Fourier basis or a
Kernel PCA (KPCA) basis [89]) using a ridge-kernel regression algorithm (a more
detailed exposition can be found in [13]). This approach is then extended in [38] to
improve its transferability by using the Gaussian process regression (GPR) framework
introduced in [39]. In a nutshell, in [38] the authors replace the global representation
of the density by a localized basis around each nuclei, and they use a regularized
ridge-regression algorithm. This approach was further improved in [29] by developing
better basis to represent the electron density, which allow them to further increase
the transferability of their approach.

Another approach is to treat the problem as an image processing task. In [83]
authors recast the map from the external potential to the electron density, as an
end-to-end maps between two images, which is learnt using deep convolutional inverse
graphics networks (DCIGNs) [61].

An approach related to the one presented in this chapter can be found in [2] where
authors use a electron-centered approach to compute the electron density. To compute
the value of the electron density at a given point in space, the algorithm computes a
list of the closest atoms, and uses theirs positions and species as features, which are
then fed to either an off-the-shelf multilayered fully-connected network, or a random
forest. This approach is also explored in [16], where the authors build rotationally
invariant tensor and vector fingerprints, which are averaged using Gaussian weights,
and then fed into a multilayered fully-connected network.

The problem of using machine learning methods to represent the electron density is
closely related to the problem of finding the interatomic potential and corresponding
force field for molecular dynamics simulation [10, 9, 82, 75, 18, 90, 91, 42]. In
particular, the recently developed Deep Potential scheme [103, 105] has been successful
in describing with high fidelity various finite-size and extended systems, including
organic molecules, metals, semiconductors, and insulators.

In this chapter, we leverage the construction of the Deep Potential to build a neural
network representation for ϱ. In contrast with aforementioned related approaches, we
learn the descriptor on the fly, and instead of learning the mapping to the coefficients
of a basis, we evaluate the total electron density directly in a point-wise manner. The
total electron density is decomposed into a linear combination of Na components,
with the I-th component describing the contribution to the electron density from the
I-th atom and its neighbors. Each component is constructed to locally satisfy the



CHAPTER 3. DEEP DENSITY 39

necessary translation, rotation, and permutation symmetries. The number of atoms
involved in each component does not scale with respect to the global system size, and
hence the cost for evaluating ϱ scales linearly with respect to the system size.

By targeting the self-consistent electron density, we demonstrate that Deep Density
can take advantage of the screening effect to effectively represent ϱ for both insulating
and metallic systems, and thus can bypass the solution of the nonlinear Kohn-Sham
equations. The resulting algorithm is not tied to a given discretization scheme nor a
particular choice of basis, and it can be transferred to systems of larger sizes. The
algorithm can also be implemented in an embarrassingly parallel fashion: one can
evaluate different points of the density given by different configuration completely
independently. The total cost of evaluating the density scales linearly with the number
of atoms in the system.

We demonstrate that Deep Density can accurately predict the electron density
and exhibits excellent transferability properties for one-dimensional model systems of
insulating, metallic, as well as mixed insulating-metallic characters. We also report
the performance of our model for three-dimensional real systems, including small
molecules (C2H6, C4H10), as well as condensed matter systems, including water (up
to 512 water molecules), and aluminum (up to 256 aluminum atoms).

Organization
The rest of this chapter is organized as follows. In Section 3.2 we provide the
framework of KS-DFT, and the map we seek to approximate. In Section 3.3 we
provide the architecture for the neural network. In particular, we provide a succinct
review of the techniques in [102] and we explain how to implement the physical
ansatz and the symmetry requirements. In Section 3.4 we provide the numerical
examples showcasing the accuracy and transferability of the algorithm. In particular,
we provide the electron density for 1D models (more details in Section 3.5) and
realistic 3D systems (more details in Section 3.6) and we compare them against the
electron density produced by classical KS-DFT computations. We show that it is
possible to train these models to single precision in 1D and within three digits in
3D, and that the accuracy is maintained even for test systems an order of magnitude
larger. In Section 3.7 we provide several comments about the current work and we
point to several future directions of research. Additional details for the numerical
experiments are given in the appendices.



CHAPTER 3. DEEP DENSITY 40

3.2 Preliminaries
For a system with Ne electrons at a given atomic configuration {RI}Na

I=1 in a d-
dimensional space (i.e. r,RI ∈ Rd), KS-DFT solves the following nonlinear eigenvalue
problem (spin omitted for simplicity)

H[ρ; {RI}]ψi = εiψi, i = 1, ..., Ne, (3.1)∫
ψ∗

i (r)ψj(r) dr = δij, ρ(r) =
Ne∑
i=1

|ψi(r)|2 . (3.2)

The Kohn-Sham Hamiltonian is

H[ρ; {RI}] := −1
2∆r + Vion(r; {RI}) + Vhxc[r; ρ]. (3.3)

Here Vion characterizes the interaction between electrons and nuclei, and it does
not depend on the electron density. Vhxc is called the Hartree-exchange-correlation
potential, which includes the mean-field electron-electron interaction, as well as the
contribution from the exchange-correlation energy. The eigenvalues {εi}Ne

i=1 are real
and ordered non-decreasingly, so {ψi}Ne

i=1 correspond to the eigenfunctions with lowest
Ne eigenvalues. Due to the ρ-dependence of Vhxc, the Kohn-Sham equations needs to
be solved self-consistently till convergence. We refer to [70, 65] for more details of
numerical solutions of KS-DFT. For the purpose of this paper, we are interested in
learning the mapping

ϱ : {r} ∪ {RI}Na
I=1 7→ ρ(r), (3.4)

which is also denoted as ϱ(r, {RI}Na
I=1) = ρ(r).

In KS-DFT, we need to distinguish between the external potential Vion(r; {RI}),
and the effective potential

Veff(r) = Vion(r; {RI}) + Vhxc[r; ρ]. (3.5)

We refer to the mapping from Veff to ρ as the linearized Kohn-Sham map. The
evaluation of the Kohn-Sham equations requires (partially) diagonalizing the Hamil-
tonian Heff := −1

2∆r + Veff(r), after proper discretization. Correspondingly we refer
to the mapping from Vion to ρ as the self-consistent Kohn-Sham map, of which the
evaluation requires solving the Kohn-Sham equations self-consistently.

For insulating systems with a positive energy gap (i.e. εNe+1 − εNe > 0), it is
known that the dependence of electron density at position r with respect to the
potential at position r′ decays exponentially with respect to |r − r′|. This is often



CHAPTER 3. DEEP DENSITY 41

referred to as the “nearsightedness” principle of electrons [55, 78]. More specifically,
the Fréchet derivative

χ0(r, r′) = δρ(r)
δVeff(r′) , (3.6)

which is also called the irreducible polarizability operator in physics literature, satisfies
the decay property χ0(r, r′) ∼ e−c|r−r′| for some constant c > 0. The nearsightedness
principle allows the design of linear scaling methods [35, 14], which effectively truncate
the global domain into many small domains to solve KS-DFT.

For metallic systems with a zero or very small energy gap, χ0(r, r′) only decays
algebraically as |r − r′| → ∞. Hence the nearsightedness principle does not hold
anymore, and linear scaling methods become either very expensive (with a large
truncation radius) or inaccurate (with a small truncation radius). On the other hand,
even for metallic systems, the reducible polarizability operator, defined as

χ(r, r′) = δρ(r)
δVion(r′) , (3.7)

can be much more localized compared to χ0. This is known as the screening effect [28,
36].

To illustrate the screening effect, we consider a one-dimensional periodic metallic
system with 8 atoms. The details of the setup will be discussed in Section 3.4 and
Section 3.5. We introduce a localized and exponentially decaying perturbation of the
potential δVion as

δVion(r) = 1√
2πσ2

0

exp
(

− 1
2σ2

0
(r − µ0)2

)
, (3.8)

where we choose σ0 = 3.0, and µ0 = 40 is the center of the supercell. Fig. 3.1(a)
displays the profile of δVion. Fig. 3.1(b) shows that for a metallic system, the
induced electron density obtained from the linearized Kohn-Sham map, which can be
approximately computed as χ0δVion, has a large magnitude, and a delocalized and
oscillatory tail. On the other hand, due to the screening effect, the magnitude of the
induced electron density obtained from the self-consistent Kohn-Sham map, which
can be approximately computed as χδVion, has a much smaller magnitude. Its tail
is much shorter and smoother, and the support of χδVion is localized around that of
δVion. The screening effect indicates that Deep Density should be able to leverage
such an additional level of localization which is not present in standard linear scaling
solvers, and a relatively small truncation radius may be possible even for metallic
systems (see the architecture in Section 3.3).



CHAPTER 3. DEEP DENSITY 42

(a) Perturbation δVion (b) Comparison of χδVion and
χ0δVion

Figure 3.1: Illustration of the screening effect for a one-dimensional model metallic
system.

3.3 Network architecture

Locality
Standard methods for solving KS-DFT can only be used to evaluate the linearized
Kohn-Sham map, which is then used to obtain the self-consistent electron density
via self-consistent field iterations. In contrast, our goal is to directly learn the self-
consistent electron density, or the mapping ϱ(r, {RI}Na

I=1), which already takes into
account the screening effect. This allows us to construct neural networks that can be
decomposed into the linear combination of local components for both insulating and
metallic systems.

As illustrated in Fig. 3.2, we partition the electron density as

ϱ(r, {RI}Na
I=1) =

Na∑
I=1

ϱI(r,RI). (3.9)

Here ϱI characterizes the contribution to the electron density at r from the neighbor-
hood of the I-th atom. The locality is imposed by building an interaction list I̊Rc(I),
defined as the set of indices J such that |RJ − RI | < Rc. Following this notation,
RI denotes the set of atomic positions

RI = {RJ , J ∈ I̊Rc(I)}.

We denote by s(I) the species index (i.e. the atomic number) of the I-th atom. We
may also treat the electron as a special “atom” equipped with index J = 0. For



CHAPTER 3. DEEP DENSITY 43

simplicity we define s(0) = 0,R0 = r, and then define the extended interaction list as
the index set

IRc(I) = {0} ∪ I̊Rc(I). (3.10)
In other words, the electron (formally) belongs to IRc(I) for every atom I.

The density ϱI can be constructed as

ϱI(r,RI) = N lin,I(r,RI)eCs(I)(|r−RI |−Ds(I))2
+EI(r,RI). (3.11)

We assume N lin,I takes the form

N lin,I
s(I) (r,RI) = N I(r,RI) + As(I) |r − RI | +Bs(I). (3.12)

The constants As(I), Bs(I), Cs(I), Ds(I) are trainable parameters and only depend on
the species of the I-th atom.

The ansatz is built such that the electron density decays exponentially with the
distance of the electron to the center of the cluster, i.e., the I-th atom. The rate of
decay is given by Cs(I) (which is constrained to be negative), and Ds(I) accounts for
the possibility that the bulk of the electron density is not centered at the atom I. In
addition, due to possible issues with the pseudopotential in the KS-DFT computation,
the electron density can be very small in the neighborhood of the nuclei. In order to
fit this the nonlinear correction, EI(r,RI) would need to have a large negative value.
Thus, in order to bypass this issue we multiply the exponential with a linear term to
capture this behavior. Moreover, to capture abrupt changes on the density we add
N I , a non-linear correction, to this term.

In a nutshell, the exponential term mimics the behavior of the local density far
from the center of the cluster, whereas N lin,I captures the behavior close to center of
atom I. N I , EI are neural networks to be introduced later. Clearly we may absorb
the constants As(I), Bs(I), Cs(I), Ds(I) into the neural networks as well. In practice, we
found that separating out such terms can reduce the training time and the test error
of the network. In addition, numerically we observed that the derivative associated
to the constant may widely differ from the rest of the neural network, introducing
them explicitly allows us to re-scale the gradient if necessary, thus accelerating the
optimization.

Symmetry
When one considers modeling the physics at different scales, it is often crucial to
preserve symmetry properties. Additionally, from a learning perspective, symmetries
can also significantly improve the efficiency of training in terms of the required number



CHAPTER 3. DEEP DENSITY 44

Figure 3.2: Illustration of the local interaction lists and local electron densities.

of parameters, the number of training steps, and the amount of training data. In this
regard, as a mapping from electronic and atomic positions to the value of the electron
density, ϱ(r, {RI}Na

I=1) should be invariant under permutation of indices of identical
atoms, and under a collective translation or rotation of the electron and atomic
positions. As mentioned in the introduction, the problem can also be considered as
finding a map from atomic positions to a electron density field represented by electron
positions or other basis sets. One disadvantage is that the dimension of the output
may be large: the output consists of values of the density on a list of grid points, or
the coefficients corresponding to a basis set. When the output is a list of grid points,
it can also be difficult to satisfy symmetry requirements. Here we follow the first
approach, and we find it is much easier to define a neural network representation with
a single output. Finally, to combine the locality and the symmetry requirements, we
guarantee that the values of N I and EI in Deep Density are invariant with respect to
the following symmetry operations:

1. Permutation: relabeling of indices of the same atom species in the index set
IRc(I).

2. Translation: uniformly shifting RI and the positions of all particles in IRc(I)
by a vector.

3. Rotation: rotating all particles in IRc(I) around RI .

In order to reduce the number of parameters, all neural networks involved should
share the same set of parameters if the species of the particles involved are the same.

We now illustrate the treatment of N I ; the procedure for EI is analogous. In order
to satisfy permutation symmetry, we adopt a variant of the representation in [98],



CHAPTER 3. DEEP DENSITY 45

which states that any permutation invariant function f : RN → R can be represented
in the form

f(x) = f(x1, . . . , xN) = F
(

N∑
i=1

h(xi)
)
, (3.13)

where h : R → RM maps each coordinate xi into an M -dimensional feature space,
and F : RM → R combines the features to obtain the value f . Both F and h can are
represented by neural networks in what follows.

In this work, we follow the construction in [105], and decompose N I as

N I(r,RI) = Fs(I) ◦ DI(r,RI). (3.14)

Here Fs(I) : RM×M → R is called a fitting network that only depends on the species
index s(I). DI(r,RI) is called a descriptor network, and DI(r,RI) ∈ RM×M is a
matrix of the following form

DI(r,RI) =
 ∑

J∈IRc (I)
hs(I),s(J)(RJ − RI)

⊤ ∑
J∈IRc (I)

hs(I),s(J)(RJ − RI)
 . (3.15)

Here hs(I),s(J) : Rd → Rd̃×M is a feature mapping, which only depends on the species of
the particle I and J (recall that the electron is labeled with J = 0 with species index
0). Then DI ∈ RM×M is a symmetric matrix that naturally satisfies the permutation
and translation symmetries. As will be demonstrated below, it satisfies the rotation
symmetry as well.

Now we demonstrate the construction of the mapping hs(I),s(J). Define RJI =
|RJ − RI |, and we would like to require h to depend smoothly on RJ moves in and
out of the index set IRc(I). In other words, h should continuously vanish as RJI

approaches Rc. We may introduce a cutoff function

ϕ (R) =


1

R+δ
, 0 ≤ R ≤ Rcs

1
R+δ

{
1
2 cos

[
π (R−Rcs)

(Rc−Rcs)

]
+ 1

2

}
, Rcs < R < Rc

0, R ≥ Rc

(3.16)

where 0 < Rcs < Rc. Note that ϕ ∈ C1(R+ ∪ {0}) for any δ > 0.
Then we may define the generalized coordinate as

dI
J =

[
ϕ(RJI)

ϕ(RJI)
RJI

(RJ − RI)

]
∈ Rd+1, J ∈ I̊Rc(I). (3.17)

Here d̃ := d + 1 is the dimension of the generalized coordinate. In principle we
may use a different set of generalized coordinates for electrons. For simplicity, in



CHAPTER 3. DEEP DENSITY 46

this work we apply the same definition as in (3.17) to the electron, with the same
truncation radius Rc. Therefore, effectively, the electron at position r only belongs to
the extended interaction lists of its neighboring atoms.

We require h to depend only on the generalized coordinates as

hs(I),s(J)(RJ − RI) = dI
J

[
gs(I),s(J)

(
(dI

J)1
)]⊤

∈ Rd̃×M . (3.18)

Here gs(I),s(J) : R → RM is a neural network that only depends on the first component
of dI

J (i.e. the radial information RJI), and only depends on the species of the particles
I, J . We call gs(I),s(J) an embedding network. Combining Eq. (3.15) and (3.18), we
have

DI(r,RI) =
∑

J,J ′∈IRc (I)

[
gs(I),s(J)

(
(dI

J)1
)] [

(dI
J)⊤(dI

J ′)
] [
gs(I),s(J ′)

(
(dI

J ′)1
)]⊤

. (3.19)

Both the radial information (dI
J)1 and the inner product (dI

J)⊤(dI
J ′) satisfy the

rotation symmetry. Therefore the descriptor DI is invariant to permutation, rotation,
and translation symmetry operations.

Fig. 3.3 provides a simplified illustration for computing DI , where the matrix gI

encodes
(
gs(I),s(J)

)⊤
for J ∈ IRc(I) and

hI =
∑

J∈IRc (I)
hs(I),s(J)(RJ − RI) =

∑
J∈IRc (I)

dI
J

[
gs(I),s(J)

(
(dI

J)1
)]⊤

= dIgI . (3.20)

We use a ResNet [45] architecture using dense layers to construct Fs(I), while the
feature mapping gs(I),s(J) is a dense feed-forward neural network with a few layers.

To better illustrate the symmetry-preserving procedure adopted by Deep Density,
we mention that a widely adopted idea has been the one pioneered by Behler and
Parrinello [10], which replaces the descriptor DI(r,RI) by a list of so-called radial
and angular symmetry functions. The radial symmetry functions take the form

GI(r)
m =

∑
J

e−ηm(RJI−Rs
m)2
ϕ (RJI) , (3.21)

while the angular symmetry functions take the form

GI(a)
n = 21−δn

∑
JK

(1 + λn cos θIJK)δne−ηn(R2
JI+R2

KI+R2
JK)ϕ (RJI)ϕ (RKI)ϕ (RJK) .

(3.22)

A predetermined list of parameters {ηm, R
s
m} or {δn, λn, ηn} has to be given to kick-

off the training process. These parameters are very different from the parameters



CHAPTER 3. DEEP DENSITY 47

Figure 3.3: Schematic illustration of the computation of DI , where n(I) = 3, and
there is only one atomic species (besides the electron represented in dark red).

in a neural network model. A moment-based first order optimization scheme, like
Adam [53], could easily optimize the latter, but it could be much harder to optimize
simultaneously the former and the latter without human intervention. This inspires us
to adopt both an embedding network and a fitting network to automatically discover
the proper “symmetry functions” on the fly during the training process, making Deep
Density an end-to-end model.

3.4 Numerical examples
In this section we report the performance of Deep Density for one-dimensional model
problems, as well as three dimensional real systems. The details of the setup as well
as the choice of hyperparameters can be found in section 3.5 and 3.6, respectively. In
all calculations the test error is measured in terms of the relative ℓ1/ℓ2 error, defined
as:

errℓ1 :=
∑

i |ϱ(ri, {RI}) − ϱNN(ri, {RI})|∑
i |ϱ(ri, {RI})| , (3.23)

errℓ2 :=

(∑
i [ϱ(ri, {RI}) − ϱNN(ri, {RI})]2

) 1
2

(∑
i [ϱ(ri, {RI})]2

) 1
2

. (3.24)



CHAPTER 3. DEEP DENSITY 48

Here the index i is taken over all the discretization points, ϱ is the electron density
computed using Kohn-Sham solvers, and ϱNN is the approximation given by the
neural network. In particular, the relative ℓ1 error approximates the following quantity∫

|ϱ(r, {RI}) − ϱNN(r, {RI})| dr
Ne

(3.25)

which is the same error metric used by e.g. [38].

One dimensional systems
In this section we study three model systems in 1D with different characters: insulating,
metallic, and mixed metallic-insulating systems. Previous study indicates that when
the system is metallic or has mixed metallic-insulating characters, the self-consistent
field iteration can be very difficult to converge (without a proper preconditioner) due
to the small energy gaps and the associated charge sloshing behavior [64]. The details
of the setup can be found in section 3.5.

We first consider a small supercell consisting of 8 atoms initially separated by 10
a.u. At the beginning of the ab initio molecular dynamics simulation, we perturb
each of the 8 atoms by a uniform random number in [−3, 3] a.u., and then let the
systems evolve for 30000 time steps. In order to reduce the correlation among the
snapshots and the amount of training time, we down-sample the trajectory for the
first 8000 time steps by a factor 80, and we take the resulting first 100 snapshots as
the training snapshots. The same procedure is applied to the validation snapshots for
the next 400 time steps. We then use these 100 training snapshots and 5 validation
snapshots to train the network.

We test the trained model by comparing the predicted density and the density
obtained from the KS-DFT calculation, using a snapshot which is part of the original
training set at time step 2019 (before the down-sampling) in Fig. 3.4, as well as a
snapshot that is far outside the training set at time step 29000 in Fig. 3.5. In both
cases, the error of the electron density is very small, and is 0.01% ∼ 0.43% measured
by the relative ℓ1 norm.

Our architecture constructs a local density ϱI for each atom as in Eq. (3.9). This
enables us to use the trained model to predict the electron density of a larger system.
We test the transferability of our model by loading parameters trained using the
8-atom systems into the model that predicts the electron density for the 32-atom
systems. For the mixed metallic-insulating system, the first 8 atoms are insulator-like
and the latter 24 atoms are metal-like. Our model achieves excellent transferability,
and the error is 0.01% ∼ 0.57%, as shown in Fig. 3.6.



CHAPTER 3. DEEP DENSITY 49

(a) the insulating system,
errℓ1 = 6.27E-04

(b) the metallic system,
errℓ1 = 1.21E-04

(c) the mixed metallic-
insulating system, errℓ1 =
5.42E-04

Figure 3.4: Comparison of the electron density at time step 2019.

(a) the insulator system,
errℓ1 = 8.12E-04

(b) the metallic system,
errℓ1 = 1.15E-04

(c) the mixed metallic-
insulating system, errℓ1 =
4.30E-03

Figure 3.5: Comparison of the electron density at time step 29000.

Three dimensional systems
For three-dimensional molecular and condensed matter systems, we present the
following three test sets:

• organic molecules: a single ethane molecule (C2H6), a single isobutane molecule
and a single n-butane molecule (C4H10).

• water: a set of systems composed of 32, 64, 128, 256, and 512 water molecules
in the liquid phase at T=300K.

• aluminum: a set systems composed of 32, 108, and 256 aluminum atoms formed



CHAPTER 3. DEEP DENSITY 50

(a) the insulator system,
errℓ1 = 6.86E-04;

(b) the metallic system,
errℓ1 = 1.49E-04;

(c) the mixed metallic-
insulating system, errℓ1 =
5.71E-03.

Figure 3.6: Transferability of the one-dimensional model, which is trained using for a
system with 8 atoms and tested on a system with 32 atoms.

initially by 2 × 2 × 2, 3 × 3 × 3, and 4 × 4 × 4 face-center cubic (fcc) unit cells,
and at temperatures 300K, 600K, and 900K, respectively.

For organic molecules, the configurations are collected from the dataset provided
in [17]. We take the first 101 (uncorrelated) snapshots of ethane, n-butane and
isobutane from the dataset. For each molecule, we use 100 snapshots for training and
one for testing.

For water and aluminum, the configurations are obtained using the DeePMD-kit
package [93]. For each case, the atomic configurations are uniformly sampled from
long molecular dynamics trajectories at different temperatures and different system
sizes. For all simulations we perform NpT simulations at the standard pressure p=1
bar with a time step of 1 fs. The potential energy models used in the simulation
are obtained with the DP-GEN scheme [102] using ab initio data. We take one
snapshot in every 1000 time steps from the trajectory to reduce the correlation among
configurations. The data sets are divided as follows: The training set was a randomly
selected subset of 80 snapshots from the 100 snapshots for the smallest system. The
test set was composed of the remaining 20 snapshots for the smallest systems in
addition to the snapshots of the larger ones.

For all systems, we compute the electron density for each snapshot using PWDFT
(which is based on planewaves and is an independent module of the DGDFT pack-
age [50]). We use the Perdew-Burke-Ernzerhof (PBE) exchange-correlation func-
tional [77], and the SG15 Optimized Norm-Conserving Vanderbilt (ONCV) pseu-
dopotentials [40, 87]. Other details of the setup of test systems and the training
hyperparameters are given in section 3.6.



CHAPTER 3. DEEP DENSITY 51

Small Molecules

The kinetic energy cut-off is set to 30 a.u. for both C2H6 and C4H10. The total
number of grid points for each system is 1,906,624. For the embedding networks in
Eq. (3.18), we use a dense linear network with three layers, containing {5, 10, 20}
nodes respectively. For each fitting network we used a ResNet [45] with 3 dense
layers containing 50 nodes per layer, where the skip connections are weighted by a
trainable coefficient. The cutoff is the same for the 3 molecules Rc = 4Å. We trained
the network for a few times with different random seeds and picked the one with the
smallest generalization error.

Fig. 3.7 shows the slice with the largest error for a snapshot in the test set
for both molecules. The relative test errors for the molecules are shown in Table
3.1. The relative ℓ1 error in [38] for ethane and butane are 1.14% and 1.19%,
respectively. Therefore our error is 6.1 and 3.8 times smaller, respectively. Finally
Fig. 3.10 (section 3.6) summarizes the distribution of the prediction error for the
three molecules. We observe that the distribution remains exceptionally close to the
diagonal, thus indicating a very low error.

Molecule \error errℓ2 errℓ1

ethane 0.172% 0.186%
isobutane 0.194% 0.222%

butane 0.289% 0.314%

Table 3.1: Relative error of the testing samples for different molecules.

Another way to assess the accuracy of Deep Density is to evaluate quantities
derived from the electron density, such as the dipole moment D =

∫
ρ(r)r dr, as

well as Q =
∫
ρ(r) |r|2 dr which is related to the quadrupole moment. We report

ℓ2 errors of D and absolute errors of Q for these three molecules using the density
predicted by Deep Density in Table 3.2 and 3.3, respectively. For all three molecules
the dipole moment is very close to zero, and we find that the main error is due to
that the density from Deep Density may not preserve the total charge. Hence we
post-processed it using a multiplicative normalization to make the total charge equals
to the exact value and to reduce the error. For the Q value, the reference values for
ethane, isobutane, and butane ranges from 30 ∼ 60 au, so the relative error ranges
from 0.02% ∼ 0.9%, which is similar to the error measured by the ℓ1 and ℓ2 metric
for the electron density.



CHAPTER 3. DEEP DENSITY 52

Figure 3.7: (left column) Slice of a snapshot of the electron density containing the
largest point-wise error , (center column) slice of the density computed using the
network, (right column) absolute error. Rows starting from the top : results for
ethane, isobutane, and butane.



CHAPTER 3. DEEP DENSITY 53

Molecule \error errtrain errtrain norm errtest errtest norm
ethane 4.70e-3 1.12e-4 4.25e-2 3.20e-3

isobutane 6.88e-2 2.57e-2 8.52e-2 4.63e-2
butane 1.50e-2 8.94e-5 2.29e-2 7.61e-3

Table 3.2: ℓ2 Error of the dipole moment D for a snapshot in the training and test
sets. Results before and after the multiplicative normalization are both included.
Values are given in atomic unit.

Molecule \error errtrain errtrain norm errtest errtest norm
ethane 9.34e-2 8.24e-2 5.27e-2 7.30e-3

isobutane 1.90e-1 5.99e-2 6.06e-1 2.05e-1
butane 5.44e-1 2.58e-1 4.75e-1 3.34e-1

Table 3.3: Absolute Error of the value of Q for a snapshot in the training and test
sets. Values are given in atomic unit.

H2O

For water the kinetic energy cut-off is set to 40 a.u. Both the training and test
systems consist of 32 water molecules. For the embedding networks in Eq. (3.18), we
use a dense linear network with four layers, each one containing {5, 10, 20, 40} nodes
respectively. The ResNet fitting network uses 5 dense layers and 50 nodes per layer,
where the skip connections are weighted by a trainable coefficient. The cutoff radius
is Rc = 3.5Å. We trained the network a few times changing the random seed and we
picked the one with the smallest generalization error. The error for a test snapshot
with 32 atoms is showcased in Fig. 3.8, where we provide the slice containing the
largest point-wise error.

Next we test the transferability of our model using systems with different sizes,
which consists of 64, 128, 256 and 512 water molecules, respectively. The largest
system has a total number of 20, 213, 648 grid points (see Table 3.4 for the number of
grid points of the other systems). The relative ℓ2 and ℓ1 errors are summarized in
Table 3.4, where we can observe that inference error remains almost constant across
different systems, which is around 0.5% for the ℓ2 relative error (and 1.0% for the
ℓ1 relative error). Finally Fig. 3.10 (section 3.6) summarizes the distribution of the
prediction error as we increase the system size. We can observe that the distribution
remains very well concentrated within the diagonal thus indicating a very low error.



CHAPTER 3. DEEP DENSITY 54

Nmol(H2O)\error errℓ2 errℓ1 time [s] Ngrid-points

32 0.606% 1.080% 2.78e-2 1083

64 0.612% 1.021% 5.70e-2 1363

128 0.503% 0.891% 9.84e-2 1683

256 0.520% 0.903% 1.86e-1 2163

512 0.528% 0.921% 3.66e-1 2723

Table 3.4: Error of the testing sample in both ℓ2 and ℓ1 norms, the wall-clock time
of inference for 32 grid points of the electron density, and the total number of grid
points inferred, for systems with different number of water molecules.

Figure 3.8: (left) slice of a snapshot of the electron density with 32 water molecules,
(center) slice of the density computed using the network, (right) slice containing the
largest point-wise absolute error for the snapshot.

Fig. 3.11 (Section 3.6) shows the generalization error measured by the slice with the
largest error for a snapshot in the test set. It demonstrates that the Deep Density
network, learned using a small sized system, has excellent transferability to large
systems. The magnitude of the relative error agrees with that in Table 3.4. In this
case, we observe that the error is mostly concentrated on high-gradient portions of ρ
near the nuclei.

Finally, we present the scaling of the inference time with respect to Nmol, the
number of molecules in the input. We measure the average inference time for a
batch of 32 grid points with respect to systems of different sizes, and the results
are summarized in Table 3.4. We can clearly observe that the time grows linearly
with Nmol, albeit with a relatively large pre-constant. We find that the bottleneck



CHAPTER 3. DEEP DENSITY 55

for inferring the electron density is the computation of the interaction lists for each
configuration and each point of evaluation, which is linear in the number of atoms.
This cost can be amortized by reusing the same interaction list for nearby evaluation
points, which would drastically reduce the pre-constant.

In addition, Table 3.4 shows that the number of grid points for inference grows
linearly with Nmol. Hence when using Deep Density to predict the electron density
for every grid-point, the total complexity scales quadratically with respect to Nmol.
This super-linear complexity is due to that the current implementation (3.9) includes
the electron coordinate in the interaction list of all nuclei. Thus for a given grid
point to be inferred, we sum the contributions over all atoms. Given the fast decay
of the ansatz in (3.11), we can expect that the contribution of most atoms would be
negligible for a large system. Thus we can truncate the sum to include atoms only
within a certain radius, and the overall computational complexity would be reduced
to linear with respect to Nmol.

Aluminum

For the aluminum systems, we follow the same training pipeline as for the water case,
and the kinetic energy cutoff is 20 a.u., and the largest system has total number of
1,906,624 grid points. The feature and fitting networks are chosen in a similar fashion
to the water case. However, we used a larger truncation radius Rc = 6Å, and the
initialization of constants in (3.11) was modified by using a larger truncation radius
in order to start with a more uniform initial density .

The training stage was performed using a system with 32 atoms as explained
in Section 3.6. In Fig. 3.13 (Section 3.6) we demonstrate that the trained model is
able to efficiently recover the peaks concentrated at the center of each nuclei, which
accounts mainly for the electron density associated to semi-core orbitals. Note that
the ONCV pseudopotential treats all the 2s and 2p orbitals as semi-core electrons. As
a result, the electron density in Al has sharp peaks and relatively large magnitudes.
We test the transferability following the same procedure as for the water system. In
Fig. 3.13 we compare the electron density provided by the network and those from
KS-DFT calculations for configurations containing 108 and 256 aluminum atoms. For
both cases we observe a relative ℓ2 error below 2.5% (see Table 3.7). This is larger
compared to that of the water system. From Fig. 3.13 and Table 3.7 we observe that
the errors also grow with respect to the system size. This may be due to the quality
of the training data generated by PWDFT, which only uses the Γ-point sampling of
the Brillouin zone, and the system size is relatively small. To verify this, we train the
network with just 4 snapshots of the 3 × 3 × 3 configuration. The relative test ℓ2 and
ℓ1 error can be improved to 0.5% and 1.2%, respectively, for a 3 × 3 × 3 configuration



CHAPTER 3. DEEP DENSITY 56

as shown in Fig. 3.14. In addition, even though the absolute error of water and Al
systems are comparable to each other, further inspection of Figs. 3.11 and 3.13 reveals
some qualitative difference between the two systems: the errors from the Al systems
appear to be much more spatially delocalized, and hence it is possible that the errors
are mainly contributed by the valence electrons rather than the semi-core electrons.
To verify this, we tested our method with another data set, which uses the same
configurations, but with the density generated by the Vienna ab initio simulation
package (VASP, version 5.4.4) [58], which do not treat electrons at 2s and 2p orbitals
as semi-core electrons. The results are reported in Section 3.6.

3.5 Numerical results for 1D systems
We use a 1D reduced Hartree-Fock model similar to the one presented in [64].
This simplified model depends nonlinearly on the electron density ρ only through
the Hartree interaction, and does not include the exchange-correlation functional.
However, it can still qualitatively reproduce certain phenomena in 3D, such as the
difference between insulating and metallic systems, and the screening effect shown in
Section 3.2. The Hamiltonian in our 1D model is given by (we still use the notations
r and R though this is a one-dimensional system)

H[ρ, {RI}Na
I=1] = −1

2
d2

dr2 + Vhxc[r; ρ] + Vion[r; {RI}Na
I=1], (3.26)

= −1
2
d2

dr2 +
∫
K(r, r′)(ρ(r′) +m(r′; {RI}Na

I=1)) dr′. (3.27)

Here we use a pseudopotential to represent the electron-ion interaction, and the total
pseudo charge density is given by

m(r; {RI}Na
I=1) =

Na∑
I=1

− ZI√
2πσ2

I

exp
(

− 1
2σ2

I

(r − RI)2
)
. (3.28)

Here ZI represents the charge of I-th nucleus, and σI represents the width of the
nuclei potential within the pseudopotential theory. σI is tuned so that I-th nucleus
can qualitative behave as a metal or as an insulator. Since the standard Coulomb
interaction diverges in 1D, we employ the Yukawa kernel

K(r, r′) = 2π
κϵ0

eκ|r−r′|, (3.29)

where the parameters κ = 0.01 and ϵ0 = 10.0 are fixed constants throughout the
experiments. Our units here are arbitrary, but will be referred to as the atomic unit
(a.u.) for simplicity.



CHAPTER 3. DEEP DENSITY 57

The Kohn-Sham equations are solved using the standard self-consistent field
iteration [70] method. In particular, we use Anderson mixing [3] of the potential with
mix dimension 10.

We study three types of systems: the insulating system, the metallic system, and
the mixed metallic-insulating system. Fig. 3.9 displays the occupied eigenvalues and
the first ten unoccupied eigenvalues for all the three systems. In particular, when the
system is metallic or has a mixed metallic-insulating character, the self-consistent
field iteration can be very difficult to converge due to the small energy gaps and
charge sloshing behavior [64].

(a) (b) (c)

Figure 3.9: Eigenvalues for (a) the insulating system, σI = 1.0 for all I; (b) the
metallic system, σ = 6.0 for all I; (c) the mixed metallic-insulating system, σI = 1.0
for 1 ≤ I ≤ 4 and σI = 6.0 for 5 ≤ I ≤ 8.

We consider a periodic system that includes 8 atoms in the unit cell, with 2
electrons per site, i.e. ZI = 2 for I = 1, ..., 8. The atoms are 10 a.u. apart, located at
5, 15, 25, · · · , 75. The size of the supercell in this case is thus 80 a.u. As mentioned
above, by adjusting σI we can obtain different qualitative behaviors. On the one hand,
when σI = 1.0, the model qualitatively behaves as an insulating system with an energy
gap of 0.136. On the other hand, if σI = 6.0, then the model qualitatively behaves as
a metallic system and its energy gap is 5.5 × 10−8 (i.e. the system is gapless). To
test the ability of the proposed architecture to deal with interactions between atoms
of different species, we also introduce a mixed metallic-insulating system, which is
obtained by setting σI = 1.0 for I = 1, 2, 3, 4, and σI = 6.0 for I = 5, 6, 7, 8. The
energy gap in this case equals to 0.018. Fig. 3.9 displays the occupied eigenvalues
and the first ten unoccupied eigenvalues for all the three systems.

For the 1D problem, our implementation is purely based on python and tensorflow.
Furthermore, 1D model does not involve the rotational degrees of freedom. This
allows us to simplify the network structure in Section 3.3 as below.



CHAPTER 3. DEEP DENSITY 58

Nnear 1 2 3 4 5 6 7
Insulator 1.91E-08 4.02E-08 2.26E-08 5.02E-08 1.38E-07 1.39E-07 1.13E-07

Metal 9.11E-10 1.08E-09 1.04E-09 1.10E-09 3.00E-09 7.65E-09 3.53E-09

Table 3.5: Validation error (MSE) for single type system with different values of Nnear

For simplicity of implementation, we introduce a parameter Nnear instead of cutoff
Rc, so the index set INnear(I) is decided by choosing the indices of the nearest Nnear
atoms. The model is constructed using the same ansatz as Eq. (3.11) where N I and
EI are neural networks. However, the construction of the input to these networks,
which are the descriptors DI(r,RI) defined in Section 3.3 as Eq. (3.15), is much
simpler. To define the descriptors, we start with dI

J = [RJI ,
1

RJI
(RJ − RI)] for

J ∈ INnear(I) (distance information and direction information). Since we follow the
form in Eq. (3.17) with RJ − RI reduced to one dimension, each dI

J is in R2. The
electron information dI

0 ∈ R2 is fed to the descriptor directly, whereas the atom
information dI

J , J ̸= 0, is passed to the function gs(I),s(J) before being fed to the
descriptor. For the insulating system and the metallic system, we only have one such
function g, whereas for the mixed metallic-insulating system, we have four gs(I),s(J)
networks because each of s(I), s(J) can be one of the two types. Given that rotation
symmetry in 1D is trivial, the descriptor DI is formed simply by concatenating the
electron information, dI

0, and atom information, gs(I),s(J)(dI
J). The output of g is

of M dimension and there are Nnear number of nearby atoms, so descriptors are
DI ∈ R2+MNnear .

To treat the mixed metal-insulator system with two types of atoms, we implement
a control flow so that at run time, the model knows which gs(I),s(J) to apply based on
species of atom I and J . For simplicity we incorporate the information of the species
as follows. Let range of s(J) be {1, 2}. We encode the two atom types as vectors
v1 = [1, 0]T ,v2 = [0, 1]T . For a fixed center atom I, and adjacent atom J , we pass dI

J

to gs(I),s for both s = 1, 2 and then calculate the output

gs(I),s(J)(dI
J) =

(
vT

s(J)v1
)
gs(I),1(dI

J) +
(
vT

s(J)v2
)
gs(I),2(dI

J).

The training and test data sets are generated through molecular dynamics simula-
tions. We use the Verlet algorithm [33] for the time propagation, where the forces
are computed using the Hellmann-Feynman formula. At each time step we store the
atomic configuration, {RI}8

I=1, and the corresponding self-converged electron density,
ρ, generated from the KS-DFT computation. For all three systems, we use the first
8000 snapshots for training and the next 400 snapshots for validation. In order to



CHAPTER 3. DEEP DENSITY 59

Nsample 100 200 400
Two-atom-type 1.87E-07 6.94E-08 4.40E-08

Table 3.6: Validation error (MSE) for two-atom-type system with increasing training
samples

reduce the correlation of the shots and the amount of training time, we down-sample
the training snapshots by a factor 80, i.e., we take 100 evenly time-spaced snapshots.
The same procedure is applied to the validation snapshots. We then use these 100
training snapshots and 5 validation snapshots to train the network. For the mixed
metallic-insulating system, the number of trainable parameters increases because
of the four gs(I),s(J) networks, so we reduce the down-sampling factor to have more
training snapshots (e.g. down sample the first 8000 snapshots by a factor of 20
to obtain 400 training snapshots). We also find that if we only use 100 training
snapshots, the relative ℓ1 error can increase and be higher than 1%. This indicates
that the mixed insulating-metallic system is indeed more difficult and requires a
larger number of training samples.

The training is performed using standard Adam optimizer [53] and a mean squared
error loss. Given the simplicity and small scale of the problem we visit all the points
at each snapshot, in contrast with the 3D training that will require importance
sampling for efficiency consideration. The network was trained for 400 epochs, the
model with lowest validation loss was saved. For each hyperparameter setting (Fixed
Nlayer, Nnodes, Nnear), we run 5 experiments and report the one with lowest validation
error. The validation errors are measured using mean squared error (MSE), namely

1
Nvalidation

Nvalidation∑
j=1

(ϱ(rj, {RI}) − ϱNN(rj, {RI})2 . (3.30)

In Table 3.5, we observe that the validation loss reaches well below 1E-06. Another
observation is that the network is relatively insensitive to the hyperparameter Nnear
here, even when the system is gapless. Thus we fix Nnear = 2 for the mixed metallic-
insulating system model for simplicity.

In Table 3.6, Nsample is the number of snapshots in training, so the real amount of
training data is the number of snapshots multiplied by the number of grid points for
the 1D electron density. The validation loss reaches below 1E-07 once we increase
the number of snapshots to 200.



CHAPTER 3. DEEP DENSITY 60

3.6 Numerical results for 3D systems

Simulation parameters
The parameters in the ansatz are initialized after a precomputation step that depends
on each setup. This precomputation involves the following steps: selecting one
atom for each species, sampling the density within a small radius of that atom, and
computing the parameters As(I), Bs(I), Cs(I), and Ds(I) that best fits the sampled
density, without the neural networks, using standard quasi-Newton optimization
methods. The purpose of this precomputation step is to help the optimization find
a suitable minimum. The weights in the Neural Network are initialized using a
normalized Gaussian distribution. The objective function is the mean squared loss.

For the training stage we use the Nadam optimizer [53] with an exponential
scheduling, in which for every 20000 iterations we decrease the learning rate by a
factor 0.95, and we initialize the learning rate as 0.003. At each iteration we draw
ns = 64 samples from the snapshots. The training is scheduled as follows: we train
the network for a million iterations using only 5 snapshots, then we train the network
for another million iterations using 20 snapshots and finally we train the network for
two million iteration using 80 snapshots. The remaining 20 snapshots were used for
testing throughout the training.

At each iteration ns samples are extracted from the training data. Each sample
represents a pixel of the images shown in Fig. 3.11. For the water system we have
80 training snapshots and each snapshot contain around 1.24E6 pixels, totalling
roughly 100 million data points. For the aluminum system we have the same amount
of training snapshots but each snapshot contain around 2.564E5 pixels, totalling
roughly 21 million data points. For the small organic molecules we have roughly
125 million data point for each system. Thus we need to visit them judiciously in
order to be efficient. Given that different systems may have very different localization
properties we use a sampling strategy based on the norm of the density at each
pixel. In particular, during the training stage the samples are drawn following the
distribution |ρ(r)|α, where the value of α is tuned for each setup, in order to avoid
visiting small values of the densities too often, thus improving the efficiency of training.
In particular we used 1/2 for the small organic molecules, 6/5 for the water systems,
and 1 for the aluminum systems.

We estimate the test error by comparing the result given by the network against
the test snapshots in the small system, and we estimate the transferability of the
algorithm by comparing the electron density generated by the trained model for the
larger systems versus the one computed using PWDFT.

The computation of the electron density were performed at the NERSC cluster



CHAPTER 3. DEEP DENSITY 61

Cori, which is comprised of 2, 388 dual socket nodes with 32 cores and 256 GB of
RAM, whereas, the training of the models and inference steps were performed in a 16
core machine used with 64 GB of RAM and a Tesla V100 GPU with 16GB memory.

Additional plots of the organic molecules and water systems
In addition to the figures in the main text, we include Fig. 3.10, which depicts the
performance of Deep Density for the different small molecules and different water
systems. Fig. 3.10 represent a scatter plot in logarithmic scale of the value of the
predicted density and the density computed with PWDFT for the same configuration
and sampling points. We can observe that for the former the error are almost
negligible, and the later the errors are higher but are still very small.

Figure 3.10: (left) scatter plot of the predicted and test densities for the different
small organic molecules, (right) scatter plot of the predicted and test densities for
different water systems.

Additional results for aluminum
Our VASP calculation also used the PBE exchange-correlation functional, but with
the projector augmented wave method (PAW) [12] to handle the core electrons. In
particular, the 2s and 2p orbitals are treated as core electrons, and hence there
are only 3 valence electrons per atom. The kinetic energy cutoff for the plane wave



CHAPTER 3. DEEP DENSITY 62

Figure 3.11: (left column) slice of a snapshot of the electron density, (center column)
slice of the density computed using the network, (right column) slice of the absolute
error with the highest point-wise absolute error. rows starting from the top : results
for the system containing 64, 128, 256 and 512 water molecules



CHAPTER 3. DEEP DENSITY 63

expansion is set to 600 eV, and the Brillouin zone is sampled with the Monkhorst-Pack
mesh [74] at the spacing hk = 0.08 Å−1. The order 1 Methfessel-Paxton smearing
method with σ = 2900 K is adopted. The self-consistent field (SCF) iteration stops
when the total energy and band structure energy differences between two consecutive
steps are smaller than 10−6 eV. In this case the density contains only the contribution
of valence electrons.

We used the same training pipeline as before. We perform training using a number
of snapshots for a system containing 2 × 2 × 2 unit cells, and test the network for a
number of systems with 2 × 2 × 2, 3 × 3 × 3 and 4 × 4 × 4 unit cells, respectively. The
scatter plot in Fig. 3.12 suggests that the test error for the aluminum system is indeed
much larger. Fig. 3.15 shows the test error using the density generated with VASP.
The error is largely delocalized, which confirms the previous study with PWDFT
that most error originates from valence electrons. In addition, from Table 3.7, we
observe that the generalization error still grows, albeit slightly slower, with respect
to the system size, thanks to the refined Brillouin zone sampling when generating the
training data set.

Na (Al)n error errℓ2 errℓ1 errℓ2 errℓ1

PWDFT PWDFT VASP VASP
32 0.504% 1.400% 2.614% 2.015%
108 1.512% 3.937% 3.040% 2.529%
256 2.244% 5.801% 4.847% 4.515%

Table 3.7: Error of the testing samples for different number of atoms for Al. The data
are generated using PWDFT (with semicore electrons) and VASP (without semicore
electrons) respectively.



CHAPTER 3. DEEP DENSITY 64

Figure 3.12: (left) scatter plot of the predicted and test densities generated by VASP
for the different aluminum systems, (right) scatter plot of the predicted and test
densities generated by PWDFT for the different aluminum systems. The magnitudes
of the density from PWDFT are higher due to the inclusion of semi-core electrons.



CHAPTER 3. DEEP DENSITY 65

Figure 3.13: (left column) slice of a snapshot of the electron density, (center column)
slice of the density computed using the network, (right column) slice of the absolute
error with the highest point-wise absolute error. Rows starting from the top : results
for the system containing 32, 108, and 256 aluminum atoms following 2 × 2 × 2,
3 × 3 × 3, and 4 × 4 × 4 configurations respectively. The calculations are performed
using PWDFT.



CHAPTER 3. DEEP DENSITY 66

Figure 3.14: (left) slice of the snapshot produced by computing the electron density
of 108 aluminum atoms in a 3 × 3 × 3 configuration, (center) slice of the density
computed using the network which was re-trained using 4 snapshots of the 3 × 3 × 3
configuration, (right) slice of the absolute error with the highest point-wise absolute
error. The calculations are performed using PWDFT.



CHAPTER 3. DEEP DENSITY 67

Figure 3.15: (left column) slice of a snapshot of the electron density from VASP,
(center column) slice of the density computed using the network, (right column) slice
of absolute error containing the largest point-wise error. Rows starting from the top :
results for the system containing 32, 108, and 256 aluminum atoms following 2×2×2,
3 × 3 × 3, and 4 × 4 × 4 configurations respectively.



CHAPTER 3. DEEP DENSITY 68

3.7 Conclusion
Leveraging the success of the recently developed Deep Potential, we propose the Deep
Density method to use machine learning to bypass the solution of the Kohn-Sham
equations, and to obtain the self-consistent electron density in the context of ab initio
molecular dynamics simulation. We demonstrate that the localization principle not
only holds for insulating systems, but at least to some extent is also valid for metallic
systems due to screening effects. Numerical results in one-dimensional systems and
small molecular systems demonstrate that our construction can be very accurate,
using a relatively small number of training samples. Our model can also be used
to predict the electron density in the condensed phase, and can achieve excellent
transferability for systems with up to 512 water molecules.

We envisage to accelerate the current algorithm. The complexity for the point-wise
evaluation of the electron density is linear with respect to the systems size. However, a
simple modification of the proposed approach can lead to a point-wise time evaluation
that is independent of the systems size, thus producing a linear scaling algorithm.
Another line of work is to improve the efficiency of training and prediction. In the
current implementation, the descriptors are computed on CPUs, and this becomes
a bottleneck when the electron density on millions of data points or more need to
be evaluated. We expect that by employing a GPU based implementation and by
computing the electron density at different grid points in an embarrassingly parallel
fashion, the efficiency can be greatly improved. We expect that these improvements
would make Deep Density to be a useful tool for the analysis and prediction of
electronic structures.



69

Chapter 4

Permutation Symmetry

4.1 Introduction
In this chapter we study one type of symmetry that is ubiquitous in scientific
computing applications: Permutation symmetry. The way to build the permutation
symmetry into the architecture of the neural network is partially discussed in [98] by
utilizing the universal approximation representation. Here we explore and extends
further around this universal approximations of symmetric functions. A function
f : (Rd)N → R is (totally) symmetric if

f(xσ(1), . . . ,xσ(N)) = f(x1, . . . ,xN), (4.1.1)

for any permutation σ ∈ S(N), and elements x1, . . . ,xN ∈ Rd. Note that the
permutation is only applied to the outer indices 1, . . . , N (also referred to as the
“particle” indices later), but not the Cartesian indices 1, . . . , d for each xi. In other
words, f is not totally symmetric when viewed as a function on Rd×N . A totally
symmetric function is also called a permutation invariant function. A closely related
concept is the permutation equivariant mapping, which is of the form Y : (Rd)N →
(Rd̃)N that satisfies

Yi(xσ(1), . . . ,xσ(N)) = Yσ(i)(x1, . . . ,xN), i = 1, . . . , N (4.1.2)

for any permutation σ ∈ S(N), and x1, . . . ,xN ∈ Rd. Here each component Yi ∈ Rd̃,
and d̃ can be different from d.

Perhaps the most important example of totally symmetric functions is the wave-
function of identical particles in quantum mechanics. The indistinguishability of
identical particles implies that their wavefunctions should be either totally symmetric
or totally anti-symmetric upon exchanging the variables associated with any two of



CHAPTER 4. PERMUTATION SYMMETRY 70

the particles, corresponding to two categories of particles: bosons and fermions. The
former can share quantum states, giving rise to, e.g., the celebrated Bose-Einstein
condensate; while the latter cannot share quantum states as described by the famous
Pauli exclusion principle. Such exchange/permutation symmetry also arises from
other applications than identical particles in quantum mechanics, mostly in the
form of symmetric functions. For instance, in chemistry and materials science, the
interatomic potential energy should be invariant under the permutation of the atoms
of the same chemical species. Another example is in computer vision, where the
classification of point clouds should not depend on the ordering of points.

The dimension of symmetric functions is usually large in practice because it is
proportional to the number of considered elements. This means that in computation
the notorious difficulty of “curse of dimensionality” is often encountered when dealing
with such functions. Recent years have witnessed compelling success of neural
networks in representing high-dimensional symmetric functions with great accuracy
and efficiency, see, e.g., [10, 90, 103, 105] for interatomic potential energy, [79, 80] for
3D classification and segmentation of point sets, and [34, 106] for solutions of partial
differential equations.

Despite the empirical success of neural networks approximating symmetric func-
tions, theoretical understanding of these approximations is still limited. There are
numerous results (see e.g. [7, 21, 49]) concerning the universal approximation of
general continuous functions on compact domains. Nevertheless, if the target function
is symmetric, it is much less investigated whether one can achieve the universal
approximation with a class of functions with the same symmetry constraints. Explic-
itly guaranteeing the symmetric property of an ansatz is often mandatory. From a
machine learning perspective, symmetries can also significantly reduce the number
of effective degrees of freedom, improve the efficiency of training, and enhance the
generalizability of the model (see e.g. [24]). However, one needs to first make sure
that the function class is still universal and sufficiently expressive.

The universal approximations of symmetric functions were partially studied in [98].
However, as will be illustrated in later sections, the proof of [98] only holds for the
case when d = 1. Moreover, there is no error estimation provided for the proposed
approximation. The more recent work [86] considered the universal approximation
of permutation invariant functions and equivariant mappings for d = 1 as well. The
work [85] gives a generalization bound that is improved by a factor of

√
N ! with the

introduction of the quotient feature space, but the result only applies for d = 1. By
respecting the permutation symmetry, the resulting neural network involves much
fewer parameters than the corresponding dense neural networks. The recent works [23,
6] on polynomial approximation of symmetric functions display a reduction of the
curse of dimensionality when the target function has low-order many-body expansions



CHAPTER 4. PERMUTATION SYMMETRY 71

or sparse polynomial approximates. The work [107] studies learning symmetric
functions from a different perspective by treating symmetric functions (of any size)
as functions over probability measures. But such a setting is not always applicable to
practical problems.

In this chapter we aim to study the universal approximation of general symmetric
functions for any d ≥ 1. We now summarize the main result of this chapter: For
the symmetric function, we give two different proofs of the universality of the ansatz
proposed in [98], both with explicit error bounds. The first proof is based on the Ryser
formula [84] for permanents, and the second is based on the partition of the state
space, as elaborated in Section 4.2 and Section 4.4, respectively. We summarize below
in a theorem the ansatz we proved with the universal approximation for symmetric
functions. The approximation rate only relies on a weak condition that the gradient
is uniformly bounded. We conclude in Section 4.5 with some practical considerations
and future directions for further investigation. The proofs of Theorem 1 are given in
Section 4.4.

Theorem 1 (Approximation to symmetric functions). Let f : ΩN → R be a con-
tinuously differentiable, totally symmetric function, where Ω is a compact subset of
Rd. Let 0 < ϵ < ∥∇f∥2

√
NdN− 1

d , here ∥∇f∥2 = maxX ∥∇f(X)∥2. Then there exist
g : Rd → RM , ϕ : RM → R, such that for any X = (x1, . . . ,xN) ∈ ΩN ,∣∣∣∣∣∣f(X) − ϕ

 N∑
j=1

g(xj)
∣∣∣∣∣∣ ≤ ϵ,

where M , the number of feature variables, satisfies the bound

M ≤ 2N(∥∇f∥2
2Nd)Nd/2/(ϵNdN !). (4.1.3)

We remark that for the bounds in the theorem above, ∥∇f∥2 may also scale with
respect to N . For the examples listed below, we assume the domain for the function
to be a hypercube ΩN = [0, 1]N . In the symmetric case, if f is in the simple form
f(X) = ∑N

i=1 g(xi), ∥∇f∥2 will scale as O(
√
N). The simple example above has

O(
√
N) scaling, but the exact scaling will depend on the choice of function f .

4.2 Universal approximation for d = 1
Let X = (x1, . . . ,xN), with xi ∈ Ω := [0, 1]d. Consider a totally symmetric function
f(X). It is proved in [98] that when d = 1 (therefore Ω = [0, 1]), the following



CHAPTER 4. PERMUTATION SYMMETRY 72

universal approximation representation holds

f(X) = ϕ

 N∑
j=1

g(xj)
 (4.2.1)

for continuous functions g : R → RM , and ϕ : RM → R. For completeness we briefly
recall the proof.

Let X = {(x1, . . . , xN) ∈ ΩN = RN : x1 ≤ x2 ≤ · · · ≤ xN}. Define the mapping
E : X → Z ⊂ RN+1, with each component function defined as

zq = Eq(X) :=
N∑

n=1
(xn)q, q = 0, 1, . . . , N.

The mapping E is a homeomorphism between X and its image in RN+1 [98]. Hence,
if we let g : R → RN+1, x 7→ [1, x, x2, . . . , xN ] and ϕ : RN+1 → R, Z 7→ f(E−1(Z)),
then we have

f(X) = ϕ

 N∑
j=1

g(xj)
 .

Here the number of feature variables is M = N + 1 by construction. The main
difficulty associated with this construction is that the mapping E−1 can be arbitrarily
complex to be approximated in practice. In fact the construction is similar in flavor
to the Kolmogorov-Arnold representation theorem [57], which provides a universal
representation for multivariable continuous functions, but without any a priori
guarantee of the accuracy with respect to the number of parameters.

In order to generalize to the case d > 1, the proof of [98, Theorem 9] in fact sug-
gested an alternative proof for the case d = 1 as follows. Using the Stone-Weierstrass
theorem, a totally symmetric function can be approximated by a polynomial. After
symmetrization, this polynomial becomes a totally symmetric polynomial. By the
fundamental theorem of symmetric polynomials [69], any symmetric polynomial can
be represented by a polynomial of elementary symmetric polynomials. In other words,
for any symmetric polynomial P , we have

P (X) = Q(e1(X), . . . , eN(X)),

where Q is some polynomial, and the elementary polynomials ek are defined as

ek(X) =
∑

1≤j1<j2<···<jk≤N

xj1xj2 · · ·xjk
.



CHAPTER 4. PERMUTATION SYMMETRY 73

Using the Newton-Girard formula, an elementary symmetric polynomial can be
represented with power sums by

ek(X) = 1
k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

E1(X) 1 0 0 · · · 0
E2(X) E1(X) 2 0 · · · 0
E3(X) E2(X) E1(X) 3 · · · 0

... ... ... ... . . . ...
Ek−1(X) Ek−2(X) Ek−3(X) Ek−4(X) · · · k − 1
Ek(X) Ek−1(X) Ek−2(X) Ek−3(X) · · · E1(X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.2.2)

Now let g be the same function defined in the previous proof, and define ϕ in terms
of Q and the determinant computation. We can obtain a polynomial approximation
in the form of

f(x) = P (X) + ϵ = ϕ

 N∑
j=1

g(xj)
+ ϵ.

Here the error ϵ is due to the Stone-Weierstrass approximation. Letting ϵ → 0 we
obtain the desired representation.

However, it is in fact not straightforward to extend the two proofs above to the
case d > 1. For the first proof, we can not define an ordered set X when each xi ∈ Rd

to define the homeomorphism E. For the second proof, in the case d > 1 a monomial
(before symmetrization) takes the form

N∏
i=1

d∏
α=1

xγi,α

i,α , γi,α ∈ N.

Note that f(X) is only symmetric with respect to the particle index i, but not the
component index α. Hence the symmetrized monomial is not a totally symmetric
function with respect to all variables. Therefore the fundamental theorem of symmetric
polynomials does not apply.

4.3 Proof 1 for universal approximation for d ≥ 1
In this section we prove that the representation (4.2.1) indeed holds for any d ≥ 1, and
therefore we complete the proof of [98]. For technical reasons to be illustrated below,
and without loss of generality, we shift the domain Ω and assume xi ∈ Ω := [1, 2]d.
Following the Stone-Weierstrass theorem and after symmetrization, f(X) can be
approximated by a symmetric polynomial. Every symmetric polynomial can be



CHAPTER 4. PERMUTATION SYMMETRY 74

written as the linear combination of symmetrized monomials of the form
∑

σ∈S(N)

N∏
i=1

d∏
α=1

xγi,α

σ(i),α :=
∑

σ∈S(N)

N∏
i=1

fi(xσ(i)) := perm([fi(xj)]).

Here fi(xj) = ∏d
α=1 xγi,α

j,α , [fi(xj)] denotes an N ×N matrix whole entry in the i-th
row and j-column is fi(xj), and perm(A) stands for the permanent of square matrix
A.

Following the Ryser formula [84] for representing a permanent (noting that
permanent is invariant under transposition), we have

perm([fi(xj)]) =(−1)N
∑

S⊆{1,...,N}
(−1)|S|

N∏
i=1

∑
j∈S

fj(xi)

=(−1)N
∑

S⊆{1,...,N}
(−1)|S|e

∑N

i=1 log
(∑

j∈S
fj(xi)

)
.

Here we have used that fj(x) > 0 for all x ∈ Ω. Now we write down the approximation
using a symmetric polynomial, which is a linear combination of L symmetrized
monomials

f(X) − ϵ = P (X) =
L∑

l=1
c(l)perm([f (l)

i (xj)])

=(−1)N
L∑

l=1
c(l) ∑

S⊆{1,...,N}
(−1)|S|e

∑N

i=1 log
(∑

j∈S
f

(l)
j (xi)

)

Define g : Rd → RL2N with each component function

g
(l)
S (x) = log

∑
j∈S

f
(l)
j (x)

 .
Then we define ϕ : RL2N → R given by

ϕ(Y ) = (−1)N
L∑

l=1
c(l) ∑

S⊆{1,...,N}
(−1)|S|eY

(l)
S ,

where Y (l)
S is the S-th component of g(l). We now have an approximation of the target

totally symmetric function in the desired form

f(X) = ϕ

 N∑
j=1

g(xj)
+ ϵ,



CHAPTER 4. PERMUTATION SYMMETRY 75

and we finish the proof. Here the number of feature variables is M = L2N , where L
is the number of symmetrized monomials used in the approximation.

4.4 Proof 2 for universal approximation for d ≥ 1
In this section, we prove Theorem 1 for any d ≥ 1. In particular, our proof is more
explicit and does not rely on the Stone-Weierstrass theorem. The main idea is to
partition the space into a lattice and use piecewise-constant functions to approximate
the target permutation invariant function.

Again without loss of generality we assume xi ∈ [0, 1]d := Ω. We then partition
the domain Ω into a lattice L with grid size δ along each direction. Due to symmetry,
we can assign a lexicographical order ⪯ to all lattice points zi ∈ L. That is, z1 ⪯ z2
if z1,α < z2,α for the first α where z1,i and z2,i differs, α = 1, 2, · · · , d. We define the
tensor product of the N copies of the lattice L as LN , and a wedge of LN is defined
accordingly as ∧N L := {Z = (z1, . . . , zN)|z1 ⪯ z2 · · · ⪯ zN}.

For each Z ∈ ∧N L, a corresponding union of boxes in ΩN can be written as

BZ;δ =
⋃

σ∈S(N)
{X | xi = zσ(i) + δui, ui ∈ [0, 1]d}.

By construction, the piecewise-constant approximation to the target permutation
invariant function is then

f(X) =
∑

Z∈
∧N L

f(Z)1BZ;δ(X) + ϵ.

We assume that the derivative ∇Xf(X) is uniformly bounded for X ∈ ΩN and denote
the bound in 2-norm by ∥∇f∥2. The maximal distance between two points in a
box is bounded by the length of the longest diagonal, which is δ

√
Nd. Hence the

approximation error satisfies |ϵ| ≤ ∥∇f∥2δ
√
Nd, which is obtained by applying the

mean value theorem and the Cauchy-Schwarz inequality. Note that the indicator



CHAPTER 4. PERMUTATION SYMMETRY 76

function 1BZ;δ(X) is permutation invariant and can be rewritten as

1BZ;δ(X) = 1
CZ

∑
σ∈S(N)

1{X|xi=zσ(i)+δui,ui∈[0,1]d,1≤i≤N}(X)

= 1
CZ

∑
σ∈S(N)

N∏
i=1

1{xi=zσ(i)+δui,ui∈[0,1]d}(xi)

= 1
CZ

∑
σ∈S(N)

N∏
i=1

1{xσ(i)=zi+δui,ui∈[0,1]d}(xσ(i)) = 1
CZ

perm([fZ
i (xj)]),

where fZ
i (x) = 1{x|x=zi+δu,u∈[0,1]d}(x). The constant CZ takes care of repetition that

can happen depending on Z. When all elements in Z are distinct, the box X lives in
only corresponds to one permutation, so CZ = 1 in this case. If say z1 = z2 and all
other elements distinct, then the box X lives in has two corresponding permutations
that differ by a swapping of the first two elements. In this case, CZ = 2 will account
for the arising repetition. Next we apply the Ryser formula to the permanent,

1BZ;δ(X) = 1
CZ

perm([fZ
i (xj)]) = (−1)N

CZ

∑
S⊆{1,...,N}

(−1)|S|e

∑N

i=1 log
(∑

j∈S
fZ

j (xi)
)
.

We can now define g : Rd → R|S(N)|×|
∧N L| where each component function is given

by

gZ
S (x) = log

∑
j∈S

fZ
j (x)


and we define ϕ : R|S(N)|×|

∧N L| → R as

ϕ(Y ) =
∑

Z∈
∧N L

(−1)Nf(Z)
CZ

∑
S⊆{1,...,N}

(−1)|S|eY Z
S . (4.4.1)

Since fZ
j ’s are indicator functions we naturally have ∑j∈S f

Z
j (x) ≥ 0. In the case when∑

j∈S f
Z
j (x) = 0, gZ

S (x) = −∞. In this case, egZ
S (x) = 0, and therefore its contribution

to ϕ vanishes as desired. In summary, we arrive at the universal approximation

f(X) = ϕ

 N∑
j=1

g(xj)
+ ϵ. (4.4.2)

Due to the explicit tabulation strategy, the number of terms needed in the
approximation (4.4.2) can be counted as follows. The number of points in ∧N L is



CHAPTER 4. PERMUTATION SYMMETRY 77

O((δ−Nd)/N !), where N ! comes from the lexicographic ordering. Note that formally as
N → ∞, (δ−Nd)/N ! ∼ (δ−d/N)N can vanish for fixed δ. However, this means that the
number of elements has exceeded the number of grid points in L and is unreasonable.
So we should at least have δ ≲ N− 1

d . In order to obtain an ϵ-close approximation
of f(X), we require our error bound ∥∇f∥2δ

√
Nd ∼ ϵ. When ϵ ≤ ∥∇f∥2

√
NdN− 1

d ,
we can choose δ = ϵ

∥∇f∥2
(Nd)− 1

2 so that both δ ≲ N− 1
d and ∥∇f∥2δ

√
Nd ∼ ϵ are

fulfilled, and the number of points in ∧N L becomes (∥∇f∥2
2Nd)Nd/2/(ϵNdN !) because

δ−Nd = (∥∇f∥2
2Nd)Nd/2/ϵNd. For each Z, the number of terms to be summed over

in Eq. (4.4.1) is |S(N)| = 2N . Therefore in order to obtain an ϵ-approximation, the
number of feature variables is given by Eq. (4.1.3). This proves Theorem 1.

This is of course a very pessimistic bound, and we will discuss on the practical
implications for designing neural network architectures in Section 4.5. We remark
that one may expect that following the same tabulation strategy, we may also
provide a quantitative bound for ϕ constructed by the homeomorphism mapping
E−1 as discussed in Section 4.2. However, the difference is that our bound only
relies on the smoothness of the original function f and hence the bound for δ. On
the other hand, the mapping E−1 and hence ϕ can be arbitrarily pathological, and
therefore it is not even clear how to obtain a double-exponential type of bound
as discussed above. We also remark that if the indicator functions 1BZ;δ(X) and
1{x|x=zi+δu,u∈[0,1]d}(x) in the proof are replaced by proper smooth cutoff functions
with respect to corresponding domains, the ansatz in Eq. (4.4.2) can be continuous to
accommodate the applications that require continuity. For example, an interatomic
potential energy should be continuous to guarantee the total energy is conserved
during molecular dynamics simulations.

4.5 Conclusion
In this chapter we study the universal approximation for symmetric functions. Fol-
lowing the line of learning theory, there are many questions open. For instance,
the impact of symmetry on the generalization error remains unclear. This requires
in-depth understanding of the suitable function class for symmetric functions, such
as some adapted Barron space [27]. Note that a recent work [85] investigates the
approximation and generalization bound of permutation invariant deep neural net-
works in the general case d ≥ 1, however with two limitations. The first is a rather
strong assumption that the target function is Lipschitz with respect to the ℓ∞ norm
(but not the usual Euclidean norm). This can be a severe limitation as the dimension
(both N and d) increases. Indeed, under the same Lipschitz assumption of [85], the
number of feature variables M in our Theorem 1 can be improved accordingly to



CHAPTER 4. PERMUTATION SYMMETRY 78

O
(
2N/(ϵNdN !)

)
. The second limitation is that the proposed ansatz in [85] intro-

duces sorting layers to represent the sorting procedure at the first step. The sorting
procedure will bring discontinuity, which leads to serious problems in some scientific
applications, such as interatomic potential energy in molecular dynamics simulations.



79

Bibliography

[1] Martın Abadi et al. “TensorFlow: A System for Large-Scale Machine Learning.”
In: OSDI. Vol. 16. 2016, pp. 265–283.

[2] John M. Alred et al. “Machine learning electron density in sulfur crosslinked
carbon nanotubes”. In: Composites Science and Technology 166 (2018). Carbon
nanotube composites for structural applications, pp. 3–9. issn: 0266-3538. doi:
https://doi.org/10.1016/j.compscitech.2018.03.035. url: http:
//www.sciencedirect.com/science/article/pii/S0266353817330300.

[3] D. G. Anderson. “Iterative Procedures for Nonlinear Integral Equations”. In: J.
ACM 12.4 (Oct. 1965), pp. 547–560. issn: 0004-5411. doi: 10.1145/321296.
321305. url: http://doi.acm.org/10.1145/321296.321305.

[4] Sanjeev Arora et al. “Fine-Grained Analysis of Optimization and General-
ization for Overparameterized Two-Layer Neural Networks”. In: (). eprint:
1901.08584v1.

[5] Francis Bach. “Breaking the curse of dimensionality with convex neural net-
works”. In: J. Mach. Learn. Res. 18.1 (2017), pp. 629–681.

[6] Markus Bachmayr, Geneviève Dusson, and Christoph Ortner. “Polynomial
Approximation of Symmetric Functions”. In: arXiv preprint arXiv:2109.14771
(2021).

[7] Andrew R Barron. “Universal approximation bounds for superpositions of a
sigmoidal function”. In: IEEE Trans. Inform. Theory 39 (1993), pp. 930–945.

[8] Rodney J Bartlett and Monika Musia l. “Coupled-cluster theory in quantum
chemistry”. In: Rev. Mod. Phys. 79.1 (2007), p. 291.

[9] Albert P Bartók et al. “Gaussian approximation potentials: The accuracy of
quantum mechanics, without the electrons”. In: Physical Review Letters 104.13
(2010), p. 136403.

https://doi.org/https://doi.org/10.1016/j.compscitech.2018.03.035
http://www.sciencedirect.com/science/article/pii/S0266353817330300
http://www.sciencedirect.com/science/article/pii/S0266353817330300
https://doi.org/10.1145/321296.321305
https://doi.org/10.1145/321296.321305
http://doi.acm.org/10.1145/321296.321305
1901.08584v1


BIBLIOGRAPHY 80

[10] J. Behler and M. Parrinello. “Generalized neural-network representation of
high-dimensional potential-energy surfaces”. In: Phys. Rev. Lett. 98.14 (2007),
p. 146401.

[11] Davis Blalock et al. What is the State of Neural Network Pruning? 2020. arXiv:
2003.03033 [cs.LG].

[12] P. E. Blöchl. “Projector augmented-wave method”. In: Phys. Rev. B 50 (1994),
p. 17953.

[13] Mihail Bogojeski et al. “Efficient prediction of 3D electron densities using
machine learning”. In: arXiv:1811.06255 (2018).

[14] D. R. Bowler and T. Miyazaki. “O(N) methods in electronic structure calcu-
lations”. In: Rep. Prog. Phys. 75 (2012), p. 036503.

[15] Felix Brockherde et al. “Bypassing the Kohn-Sham equations with machine
learning”. In: Nature Commun. 8.1 (2017), p. 872.

[16] A. Chandrasekaran et al. “Solving the electronic structure problem with
machine learning”. In: npj Computational Materials 5.1 (2019), p. 22. doi:
10.1038/s41524-019-0162-7. url: https://doi.org/10.1038/s41524-
019-0162-7.

[17] L. Cheng et al. Thermalized (350K) QM7b, GDB-13, water, and short alkane
quantum chemistry dataset including MOB-ML features. eng. 2019. doi: 10.
22002/d1.1177. url: https://data.caltech.edu/records/1177.

[18] S. Chmiela et al. “Machine learning of accurate energy-conserving molecular
force fields”. In: Science Advances 3.5 (2017), e1603015.

[19] François Chollet et al. Keras. https://keras.io. 2015.
[20] Nadav Cohen, Or Sharir, and Amnon Shashua. “On the expressive power of

deep learning: A tensor analysis”. In: Conference on Learning Theory. 2016,
pp. 698–728.

[21] George Cybenko. “Approximation by superpositions of a sigmoidal function”.
In: Mathematics of Control, Signals, and Systems 2.4 (1989), pp. 303–314.

[22] Stephane d’Ascoli et al. “Finding the Needle in the Haystack with Convolutions:
on the benefits of architectural bias”. In: (). eprint: 1906.06766v1.

[23] Genevieve Dusson et al. “Atomic cluster expansion: Completeness, efficiency
and stability”. In: arXiv preprint arXiv:1911.03550 (2019).

[24] Weinan E, Jiequn Han, and Linfeng Zhang. “Machine-learning-assisted model-
ing”. In: Physics Today 74.7 (July 2021), pp. 36–41.

https://arxiv.org/abs/2003.03033
https://doi.org/10.1038/s41524-019-0162-7
https://doi.org/10.1038/s41524-019-0162-7
https://doi.org/10.1038/s41524-019-0162-7
https://doi.org/10.22002/d1.1177
https://doi.org/10.22002/d1.1177
https://data.caltech.edu/records/1177
https://keras.io
1906.06766v1


BIBLIOGRAPHY 81

[25] Weinan E, Chao Ma, and Qingcan Wang. “A Priori Estimates of the Population
Risk for Residual Networks”. In: arXiv:1903.02154 (2019).

[26] Weinan E, Chao Ma, and Lei Wu. “A Priori Estimates for Two-layer Neural
Networks”. In: arXiv: 1810.06397 (2018), pp. 1–14.

[27] Weinan E, Chao Ma, and Lei Wu. “Barron Spaces and the Compositional
Function Spaces for Neural Network Models”. In: arXiv:1906.08039 (2019).

[28] Adolfo G Eguiluz. “Self-consistent static-density-response function of a metal
surface in density-functional theory”. In: Phys. Rev. B 31.6 (1985), p. 3303.

[29] Alberto Fabrizio et al. “Electron density learning of non-covalent systems”. In:
Chem Sci. (2019).

[30] Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis: Find-
ing Sparse, Trainable Neural Networks”. In: International Conference on
Learning Representations (ICLR) (2019). arXiv preprint arXiv:1803.03635.

[31] Jonathan Frankle et al. “The Lottery Ticket Hypothesis at Scale”. In: arXiv
preprint arXiv:1903.01611 (2019).

[32] C. Daniel Freeman and Joan Bruna. “Topology and geometry of half-rectified
network optimization”. In: ICLR. arXiv preprint arXiv:1611.01540. 2017.

[33] D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms
to Applications. Academic Press, 2002.

[34] Maximilien Germain et al. “DeepSets and their derivative networks for solving
symmetric PDEs”. In: arXiv preprint arXiv:2103.00838 (2021).

[35] S. Goedecker. “Linear scaling electronic structure methods”. In: Rev. Mod.
Phys. 71 (1999), pp. 1085–1123.

[36] X. Gonze and C. Lee. “Dynamical matrices, Born effective charges, dielectric
permittivity tensors, and interatomic force constants from density-functional
perturbation theory”. In: Phys. Rev. B 55 (1997), p. 10355.

[37] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
Press, 2016.

[38] A. Grisafi et al. “Transferable Machine-Learning Model of the Electron Den-
sity”. In: ACS Central Science 5.1 (2018), pp. 57–64.

[39] Andrea Grisafi et al. “Symmetry-adapted machine learning for tensorial proper-
ties of atomistic systems”. In: Physical Review Letters 120.3 (2018), p. 036002.

[40] D. R. Hamann. “Optimized norm-conserving Vanderbilt pseudopotentials”.
In: Phys. Rev. B 88 (2013), p. 085117.



BIBLIOGRAPHY 82

[41] J. Han, A. Jentzen, and W. E. “Solving high-dimensional partial differential
equations using deep learning”. In: Proceedings of the National Academy of
Sciences 115.34 (2018), pp. 8505–8510.

[42] J. Han et al. “Deep Potential: a general representation of a many-body potential
energy surface”. In: Comms. Comp. Phys. 23.3 (2018), pp. 629–639.

[43] Jiequn Han et al. “Universal approximation of symmetric and anti-symmetric
functions”. In: arXiv preprint arXiv:1912.01765 (2019).

[44] Kaiming He and Jian Sun. “Convolutional neural networks at constrained time
cost”. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2015), pp. 5353–5360.

[45] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016),
pp. 770–778.

[46] G. Hinton et al. “Deep Neural Networks for Acoustic Modeling in Speech
Recognition: The Shared Views of Four Research Groups”. In: IEEE Signal
Processing Magazine 29.6 (2012), pp. 82–97. issn: 1053-5888. doi: 10.1109/
MSP.2012.2205597.

[47] Pierre Hohenberg and Walter Kohn. “Inhomogeneous electron gas”. In: Physical
review 136.3B (1964), B864.

[48] Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”.
In: Neural Networks 4.2 (1991), pp. 251–257. issn: 0893-6080. doi: 10.1016/
0893-6080(91)90009-T.

[49] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedfor-
ward networks are universal approximators”. In: Neural Networks 2.5 (1989),
pp. 359–366.

[50] W. Hu, L. Lin, and C. Yang. “DGDFT: A massively parallel method for large
scale density functional theory calculations”. In: J. Chem. Phys. 143 (2015),
p. 124110.

[51] Kenji Kawaguchi. “Deep learning without poor local minima”. In: arXiv
preprint arXiv:1605.07110. 2016.

[52] V. Khrulkov, A. Novikov, and I. Oseledets. “Expressive power of recurrent
neural networks”. In: arXiv:1711.00811 (2017).

[53] D. Kingma and J Ba. “Adam: a method for stochastic optimization”. In: Pro-
ceedings of the International Conference on Learning Representations (ICLR).
May 2015.

https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T


BIBLIOGRAPHY 83

[54] Jason M. Klusowski and Andrew R. Barron. “Risk Bounds for High-dimensional
Ridge Function Combinations Including Neural Networks”. In: (). eprint:
1607.01434v4.

[55] W. Kohn. “Density Functional and Density Matrix Method Scaling Linearly
with the Number of Atoms”. In: Phys. Rev. Lett. 76 (1996), pp. 3168–3171.

[56] Walter Kohn and Lu Jeu Sham. “Self-consistent equations including exchange
and correlation effects”. In: Physical review 140.4A (1965), A1133.

[57] A. N. Kolmogorov. “On the representation of continuous functions of many
variables by superposition of continuous functions of one variable and addition”.
In: Doklady Akademii Nauk. Vol. 114. 5. 1957, pp. 953–956.

[58] G. Kresse and J. Furthmüller. “Efficient iterative schemes for ab initio total-
energy calculations using a plane-wave basis set”. In: Phys. Rev. B 54 (1996),
pp. 11169–11186.

[59] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet Classifi-
cation with Deep Convolutional Neural Networks”. In: Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume
1. NIPS’12. Lake Tahoe, Nevada: Curran Associates Inc., 2012, pp. 1097–1105.

[60] Rohith Kuditipudi et al. “Explaining Landscape Connectivity of Low-cost
Solutions for Multilayer Net”. In: NeurIPS. arXiv preprint arXiv:161. 2019.

[61] Tejas D Kulkarni et al. “Deep Convolutional Inverse Graphics Network”. In:
Advances in Neural Information Processing Systems 28. Ed. by C. Cortes et al.
Curran Associates, Inc., 2015, pp. 2539–2547. url: http://papers.nips.cc/
paper/5851-deep-convolutional-inverse-graphics-network.pdf.

[62] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature
521.7553 (2015), p. 436.

[63] Michael K. K. Leung et al. “Deep learning of the tissue-regulated splic-
ing code”. In: Bioinformatics 30.12 (2014), pp. i121–i129. doi: 10.1093/
bioinformatics/btu277.

[64] L. Lin and C. Yang. “Elliptic preconditioner for accelerating self consistent
field iteration in Kohn-Sham density functional theory”. In: SIAM J. Sci.
Comp. 35 (2013), S277–S298.

[65] Lin Lin, Jianfeng Lu, and Lexing Ying. “Numerical methods for Kohn–Sham
density functional theory”. In: Acta Numer. 28 (2019), pp. 405–539.

[66] Zhuang Liu et al. “Rethinking the Value of Network Pruning”. In: ICLR. arXiv
preprint arXiv:1810.05270. 2019.

1607.01434v4
http://papers.nips.cc/paper/5851-deep-convolutional-inverse-graphics-network.pdf
http://papers.nips.cc/paper/5851-deep-convolutional-inverse-graphics-network.pdf
https://doi.org/10.1093/bioinformatics/btu277
https://doi.org/10.1093/bioinformatics/btu277


BIBLIOGRAPHY 84

[67] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. “On the Computational
Efficiency of Training Neural Networks”. In: Advances in Neural Information
Processing Systems (2014). arXiv preprint arXiv:1410.1141.

[68] Junshui Ma et al. “Deep Neural Nets as a Method for Quantitative Structure-
Activity Relationships”. In: Journal of Chemical Information and Modeling
55.2 (2015), pp. 263–274. doi: 10.1021/ci500747n.

[69] Ian Grant Macdonald. Symmetric functions and Hall polynomials. Oxford
Univ. Pr, 1998.

[70] R. Martin. Electronic Structure: Basic Theory and Practical Methods. Cam-
bridge Univ. Pr., 2008.

[71] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas im-
manent in nervous activity”. In: The bulletin of mathematical biophysics 5.4
(1943), pp. 115–133.

[72] N.D. Mermin. “Thermal properties of the inhomogeneous electron gas”. In:
Phys. Rev. 137 (1965), A1441.

[73] Hrushikesh Mhaskar, Qianli Liao, and Tomaso Poggio. “Learning Functions:
When Is Deep Better Than Shallow”. In: arXiv preprint arXiv:1603.00988
(2016).

[74] H. J. Monkhorst and J. D. Pack. “Special points for Brillouin-zone integrations”.
In: Phys. Rev. B 13.12 (1976), p. 5188.

[75] G. Montavon et al. “Machine learning of molecular electronic properties in
chemical compound space”. In: New Journal of Physics 15.9 (2013), p. 095003.

[76] Vaishnavh Nagarajan and J Zico Kolter. “Uniform convergence may be unable
to explain generalization in deep learning”. In: Advances in Neural Information
Processing Systems. 2019, pp. 11611–11622.

[77] J. P. Perdew, K. Burke, and M. Ernzerhof. “Generalized gradient approximation
made simple”. In: Phys. Rev. Lett. 77 (1996), pp. 3865–3868.

[78] E. Prodan and W. Kohn. “Nearsightedness of electronic matter”. In: Proc.
Natl. Acad. Sci. 102 (2005), pp. 11635–11638.

[79] Charles R Qi et al. “Pointnet: Deep learning on point sets for 3D classification
and segmentation”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017, pp. 652–660.

[80] Charles Ruizhongtai Qi et al. “Pointnet++: Deep hierarchical feature learning
on point sets in a metric space”. In: Advances in Neural Information Processing
Systems. 2017, pp. 5099–5108.

https://doi.org/10.1021/ci500747n


BIBLIOGRAPHY 85

[81] David E. Rumelhart and James L. McClelland. “Learning Internal Representa-
tions by Error Propagation”. In: Parallel Distributed Processing: Explorations
in the Microstructure of Cognition: Foundations. 1987, pp. 318–362.

[82] M. Rupp et al. “Fast and accurate modeling of molecular atomization energies
with machine learning”. In: Phys. Rev. Lett. 108.5 (2012), p. 058301.

[83] Kevin Ryczko, David A Strubbe, and Isaac Tamblyn. “Deep learning and
density-functional theory”. In: Physical Review A 100.2 (2019), p. 022512.

[84] Herbert John Ryser. Combinatorial Mathematics. Vol. 14. The Carus Mathe-
matical Monographs. Mathematical Association of America, 1963.

[85] Akiyoshi Sannai and Masaaki Imaizumi. “Improved Generalization Bound of
Permutation Invariant Deep Neural Networks”. In: arXiv preprint arXiv:1910.06552
(2019).

[86] Akiyoshi Sannai, Yuuki Takai, and Matthieu Cordonnier. “Universal approxi-
mations of permutation invariant/equivariant functions by deep neural net-
works”. In: arXiv preprint arXiv:1903.01939 (2019).

[87] M. Schlipf and F. Gygi. “Optimization algorithm for the generation of ONCV
pseudopotentials”. In: Comput. Phys. Commun. 196 (2015), pp. 36–44.

[88] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In:
Neural Networks 61 (2015), pp. 85–117. issn: 0893-6080. doi: 10.1016/j.
neunet.2014.09.003.

[89] B. Scholkopf et al. “Input space versus feature space in kernel-based methods”.
In: IEEE Transactions on Neural Networks 10.5 (1999), pp. 1000–1017.

[90] K. Schütt et al. “SchNet: A continuous-filter convolutional neural network
for modeling quantum interactions”. In: Advances in Neural Information
Processing Systems. 2017, pp. 992–1002.

[91] J. S. Smith, O. Isayev, and A. E. Roitberg. “ANI-1: an extensible neural
network potential with DFT accuracy at force field computational cost”. In:
Chemical Science 8.4 (2017), pp. 3192–3203.

[92] L. Venturi, A. S. Bandeira, and Joan Bruna. “Spurious valleys in two-layer
neural network optimization landscapes”. In: arXiv preprint arXiv:1802.06384.
2018.

[93] H Wang et al. “DeePMD-kit: A deep learning package for many-body poten-
tial energy representation and molecular dynamics”. In: Computer Physics
Communications 228 (2018), pp. 178–184. issn: 0010-4655.

https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003


BIBLIOGRAPHY 86

[94] Yuting Wei, Fanny Yang, and Martin J. Wainwright. “Early stopping for kernel
boosting algorithms: A general analysis with localized complexities”. In: NIPS.
arXiv preprint arXiv:1707.01543. 2017.

[95] S. R. White. “Density matrix formulation for quantum renormalization groups”.
In: Phys. Rev. Lett. 69.19 (1992), p. 2863.

[96] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. “On Early Stopping in
Gradient Descent Learning”. In: Constructive Approximation 26 (Aug. 2007),
pp. 289–315. doi: 10.1007/s00365-006-0663-2.

[97] Dmitry Yarotsky. “Error bounds for approximations with deep ReLU networks”.
In: Neural Networks 94 (2017), pp. 103–114.

[98] Manzil Zaheer et al. “Deep sets”. In: Advances in Neural Information Processing
Systems. 2017, pp. 3391–3401.

[99] Manzil Zaheer et al. “Deep sets”. In: Advances in neural information processing
systems. 2017, pp. 3391–3401.

[100] Leonardo Zepeda-Núñez et al. “Deep Density: Circumventing the Kohn-Sham
equations via symmetry preserving neural networks”. In: Journal of Computa-
tional Physics 443 (June 2021), p. 110523. doi: 10.1016/j.jcp.2021.110523.

[101] Jiefu Zhang et al. “Learning the Mapping

x 7→
d∑

i=1
x2

i

: the Cost of Finding the Needle in a Haystack”. In: Communications on
Applied Mathematics and Computation 3 (Aug. 2020). doi: 10.1007/s42967-
020-00078-2.

[102] L. Zhang et al. “Active learning of uniformly accurate interatomic potentials
for materials simulation”. In: Phys. Rev. Materials 3.2 (2019), p. 023804.

[103] L. Zhang et al. “Deep potential molecular dynamics: a scalable model with the
accuracy of quantum mechanics”. In: Phys. Rev. Lett. 120 (2018), p. 143001.

[104] Linfeng Zhang et al. “DeePCG: constructing coarse-grained models via deep
neural networks”. In: arXiv preprint arXiv:1802.08549 (2018).

[105] Linfeng Zhang et al. “End-to-end Symmetry Preserving Inter-atomic Potential
Energy Model for Finite and Extended Systems”. In: Advances in Neural
Information Processing Systems 31. 2018, pp. 4436–4446.

https://doi.org/10.1007/s00365-006-0663-2
https://doi.org/10.1016/j.jcp.2021.110523
https://doi.org/10.1007/s42967-020-00078-2
https://doi.org/10.1007/s42967-020-00078-2


BIBLIOGRAPHY 87

[106] Xu-Hui Zhou, Jiequn Han, and Heng Xiao. “Frame-independent vector-cloud
neural network for nonlocal constitutive modeling on arbitrary grids”. In: Com-
puter Methods in Applied Mechanics and Engineering 388 (2022), p. 114211.

[107] Aaron Zweig and Joan Bruna. “A Functional Perspective on Learning Symmet-
ric Functions with Neural Networks”. In: Proceedings of the 38th International
Conference on Machine Learning. Vol. 139. PMLR, 18–24 Jul 2021, pp. 13023–
13032.


	Contents
	Introduction
	Basics of an artificial neural network
	Basics of supervised learning
	Structure-informed neural network
	Permutation symmetry
	Organization of the dissertation

	A Toy Problem
	Introduction
	Generalization error of two-layer networks
	Generalization error for squared norm
	Numerical results
	Conclusion

	Deep Density
	Introduction
	Preliminaries
	Network architecture
	Numerical examples
	Numerical results for 1D systems
	Numerical results for 3D systems
	Conclusion

	Permutation Symmetry
	Introduction
	Universal approximation for d=1
	Proof 1 for universal approximation for d1
	Proof 2 for universal approximation for d1
	Conclusion

	Bibliography



