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Multimodality Image Registration in the Head-and-Neck using a 
Deep Learning Derived Synthetic CT as a Bridge

Elizabeth M. McKenzie, M.S., Anand Santhanam, Ph.D., Dan Ruan, Ph.D., Daniel O’Connor, 
Ph.D., Minsong Cao, Ph.D., Ke Sheng, Ph.D.
Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los 
Angeles, Los Angeles, CA 90024 USA

Abstract

Purpose: To develop and demonstrate the efficacy of a novel head-and-neck multimodality 

image registration technique using deep-learning based cross-modality synthesis.

Methods and Materials: 25 head-and-neck patients received MR and CT (CTaligned) scans on 

the same day with the same immobilization. 5-fold cross validation was used with all of the MR-

CT pairs to train a neural network to generate synthetic CTs from MR images. 24 of the 25 

patients also had a separate CT without immobilization (CTnon-aligned) and were used for testing. 

CTnon-aligned’s were deformed to the synthetic CT, and compared to CTnon-aligned registered to 

MR. The same registrations were performed from MR to CTnon-aligned and from synthetic CT to 

CTnon-aligned. All registrations used B-splines for modeling the deformation, and mutual 

information for the objective. Results were evaluated using the 95% Hausdorff distance among 

spinal cord contours, landmark error, inverse consistency, and Jacobian determinant of the 

estimated deformation fields.

Results: When large initial rigid misalignment is present, registering CT to MRI-derived 

synthetic CT aligns the cord better than a direct registration. The average landmark error decreased 

from 9.8±3.1mm in MR→CTnon-aligned to 6.0±2.1mm in CTsynth→CTnon-aligned deformable 

registrations. In the CT to MR direction, the landmark error decreased from 10.0±4.3mm in 

CTnon-aligned→MR deformable registrations to 6.6±2.0 mm in CTnon-aligned→ CTsynth deformable 

registrations. The Jacobian determinant had an average value of 0.98. The proposed method also 

demonstrated improved inverse consistency over the direct method.

Conclusions: We showed that using a deep learning derived synthetic CT in lieu of an MR for 

MR→CT and CT→MR deformable registration offers superior results to direct multimodal 

registration.
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Introduction

Image registration is often used in medicine for diagnostic and therapeutic purposes1. The 

registration can take place between a single image modality, or different modalities 

(multimodal registration), which aggregates complementary data from different sources into 

a spatially unified context2. A common multimodal registration problem is magnetic 

resonance (MR) and computed tomography (CT) registration2. MR imaging has superior 

soft tissue contrast while computed tomography (CT) has better bone contrast and spatial 

integrity3. Specifically, CT is the foundation of modern radiotherapy by providing 

anatomical information as well as the electron density for treatment planning and dose 

calculation4. In image guided radiation therapy, CT or cone beam CT is instrumental to 

guide patient set-up. Because of their complementary strengths, MR-CT registration is often 

needed for accurate tumor and organ-at-risk (OAR) delineation, targeting and sparing5–9.

Relevant to the current study, head-and-neck radiotherapy benefits from the superior soft 

tissue contrast provided by the MR images. Studies have demonstrated that MR images in 

addition to CT improve delineation of head-and-neck target volumes, and reduce 

interobserver variation10–14. Consensus guidelines recommend that MRI be used for primary 

tumors of the nasopharynx, oral cavity, and oropharynx to contour head-and-neck normal 

tissues15. However, these guidelines also acknowledge the challenges associated with MR-

CT registration. While MR-CT registration is a common practice in head-and-neck 

radiotherapy, the process and results are not satisfactory due to the different imaging 

mechanisms and contrast, as well as the unavoidable patient non-rigid motion between 

scans, such as neck flexion2. Deformable registration using commercial algorithms can 

produce difficult-to-validate distortion and is regarded as unreliable in clinical practice. 

Instead, rigid registration is performed as a trade-off to avoid the uncertain deformation16. 

Subsequently, delineation based on rigid MR-CT registration is limited to a small volume of 

interest, without using other information about OARs and lymph nodes from the MR images 

due to the increasing misalignment with the distance from the volume of interest.

Efforts have been made to address some of the technical issues in multi-modality image 

registration17,18. For example, instead of directly matching the image voxel values, mutual 

information is used to determine the image similarity based on joint entropy17. However, 

mutual information based on an image histogram cannot resolve tissue types with similar 

image intensities, such as the bones and air cavities in MR and various soft tissues in CT2. 

The problem is further complicated by the common presence of MR shading and 

susceptibility artifacts19. Some have endeavored to overcome this difference by translating 

one image into the other, or a third domain. For example, Heinrich et al. used a new image 

descriptor describing similarities between adjacent patches as features for registration2. 

Researchers have previously used an atlas-based synthetic CT to replace the MR in MR-CT 

registration in the brain20,21; however, the brain experiences considerably less deformation 

than the head and neck, and thus a domain-translating deformable registration has yet to be 

proven in this challenging location. Recently, Cao et al. proposed using a patchwise random 

forest to translate MR and CT into the others’ domains for improved pelvic registration22. 

We propose to build on these existing domain-translating registration techniques by 

incorporating recent advances in deep learning imaging synthesis.
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Specifically, Generative Adversarial Networks (GAN)23 are capable of converting images of 

one modality into another24–26. For example Wolterink et al. used the CycleGAN 

implementation27 to convert brain MR images into synthetic CT images26. In the current 

study, GANs’ capability to create synthetic images with the geometry of one image modality 

and the contrast of the other is used to improve multimodality registration in the head-and-

neck. A GAN trained to generate head and neck images learns to estimate realistic anatomy 

in its image synthesis, and can leverage image features to determine low-confidence regions 

such as bone air interfaces, which are otherwise invisible in standard T1 weighted MR 

images. The head and neck is a particularly challenging site in this regard, as there are many 

bone and air regions in close proximity that can move several centimeters with neck flexion. 

Deep learning patient-specific image synthesis takes the field beyond atlas-based approaches 

which try to fit a patient to a standard anatomical layout. By extending modality-translating 

registration techniques with patient specific deep learning image synthesis, we provide a 

valuable new technique and prove its performance in the challenging head and neck region.

Methods and Materials

Data

In order to train a network capable of generating synthetic CT’s and subsequently test 

registration accuracy, 25 head-and-neck patients were selected, each with a paired MR and 

CT volume acquired on the same day with the same immobilization mask and headrest. The 

original dataset before processing had 126 to 336 512×512 axial slices with voxel sizes of 

1×1×3(or 1.5) mm3, and 288 334×300 axial slices with 1.5×1.5×1.5mm3 voxel sizes for CT 

and MR images, respectively. The MR images were acquired on an MR guided radiotherapy 

system with a 0.35T B0 using a balanced steady state free-precession sequence. Due to the 

same rigorous immobilization being used for CT and MR acquisition, deformation between 

the two image sets was small, providing a unique opportunity for comparison and validation. 

In this study, we will refer to this MR-aligned CT as CTaligned. A five-fold cross validation 

technique was employed for machine learning purposes. 20 patients were used for training 

the synthetic CT generating network, and 5 were left out to test replacing an MR image with 

a synthetic CT during MR-CT registration. This split was rotated through the data, allowing 

us to include all patients in our analysis.

In addition to the paired images, each test patient also had a diagnostic CT from another 

time point ranging from 4 days prior to almost 3 years after. One patient did not have a 

usable separate CT volume, leaving us with 24 patients total for registration testing. The 

goal was to have patient positions substantially different from the paired images to challenge 

the registration. For the remainder of this paper, we will refer to these images as 

CTnon-aligned.

Data Processing

All CTaligned datasets were first automatically rigidly registered in Elastix28,29 to their 

corresponding MR image using mutual information as the similarity metric. To better show 

the posture during network training, volumes were resliced into 2D sagittal slices. All 

images were resampled to slices of size 256×256, and each voxel was 1.76×1.76×1.5 mm3. 
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The images were quantized to 256 greyscale values. For CT, this was accomplished by 

renormalizing and quantizing the image into 256 levels between intensity values −600 and 

1400, and between 0 and 600 for MR. In all, this gave 8,350 CT and 8,350 MR sagittal 

slices to be used for training and testing.

Deep Learning Networks

In a conventional GAN, two networks are used; a generator network attempts to generate 

realistic images, while a discriminator network attempts to distinguish between real images 

and those created by the generator. When successful training is complete, the generator is 

able to create an image that appears to come from the domain of the training set. This study 

used an adversarial network utilizing cycle-consistency (CycleGAN)27 with two GAN’s: one 

attempted to generate a realistic synthetic CT (CTsynth) slice given a real MR slice, and the 

other attempted to generate a realistic synthetic MR slice given a real CT slice. The 

generators were then switched and applied to the synthetic outputs, so that the synthetic MR 

was translated back into a CT slice, and vice versa. Ideally, the original CT or MR slice 

should be recovered, and hence this network architecture has cycle consistency. The loss 

function for CycleGAN therefore has an adversarial loss term for generating realistic CT 

images, an adversarial loss term for generating realistic MR images, and a cycle consistency 

loss term to prevent the network from assigning any random realistic-looking image from 

the other domain.

Overall, the full loss function can be written as:

L GCT MR, GMR CT , DCT , DMR = LGAN GCT MR, DMR, CT , MR
+ LGAN GMR CT , DCT , MR, CT + λLcyc GCT MR, GMR CT ′ , (1)

where λ (set to 10 in this work) is a relative weighting coefficient, and G and D are the 

generator and discriminator networks with subscripts describing the direction of image 

translation and discrimination domain, respectively. The adversarial loss is given by:

LGAN GCT MR, DMR, ICT , IMR = EMR pdata MR logDMR IMR
+ ECT pdata CT log 1 − DMR GCT MR(ICT

(2)

where the discriminator gives an output between 0 (image determined to be fake) and 1 

(image determined to be real). In the minmax optimization problem, the generator attempts 

to create a realistic image by minimizing the second term towards a large negative value 

while the discriminator is trained to maximize the objective by correctly differentiating real 

images from fake. A similar loss is used for LGAN GMR CT , DCT , MR, CT . The cycle 

consistency loss using L1 norm is then given as:

Lcyc GCT MR, GMR CT ′ = ECT pdata CT
GMR CT ′ GCT MR′ ICT − ICT 1

+ EMR pdata MR GCT MR′ GMR CT ′ IMR − IMR 1
(3).
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The generator networks follow the Resnet architecture described in Johnson et al30. The 

discriminator uses a patch-based network described in31. Because it is patch-based, this 

allows greater flexibility for different sized images, as well as forces the discriminator to 

focus on smaller-scale details. The network hyperparameters used in our study are the same 

as those in the pytorch-CycleGAN-and-pix2pix repository (https://github.com/junyanz/

pytorch-CycleGAN-and-pix2pix).

Registration

We first used the trained CycleGAN to generate a synthetic CT given a head and neck MR 

image. We then registered CTnon-aligned to the synthetic MR-derived CTsynth, which reduced 

the multimodal registration problem to a mono-modal one. Conversely, we registered the 

MR to CTnon-aligned by first registering the CTsynth to CTnon-aligned, then applying the 

resulting deformation vector field (DVF) to the original MR. For comparison, direct 

registrations between MR and CT were also performed. CTnon-aligned was additionally 

registered to CTaligned to characterize the behavior of a typical mono-modality (CT vs CT) 

registration. This paper will denote deformable registration with an arrow (→) pointing from 

source to target. Figure 1 gives an overview of the registrations performed in this study.

The multi-resolution registration using B-splines and mutual information was performed 

using Elastix28,29 with six Gaussian blurring levels, repeated. These levels allow for a 

hierarchical approach to the registration, starting at a coarse resolution with large-scale 

deformations, and gradually progressing towards a finer resolution for fine-detailed 

deformations. The B-spline grid spacings for each resolution level were 128, 64, 32, 8, and 4 

mm, sequentially. The Gaussian sigmas were 8, 4, 2, 1, 0.5, and 0.5 voxels isotropically. The 

registration was optimized using gradient descent32. The gradient descent gain factor, ak, 

was set to: ak = a
50 + k + 1 0.6 , where k is the iteration number, and a is set for each 

resolution level to be: 50000, 10000, 2000, 500, 100, 100. Large values of a in the coarse 

resolutions allow the registration to capture large deformations, which were necessary when 

registering to CTnon-aligned. The maximum number of iterations at each resolution level was: 

500, 500, 500, 500, 100, and 100.

Analysis

To evaluate the registration, the following tests were performed. The spinal cord was 

manually contoured on the original MR, CTaligned, and CTnon-aligned image volumes for all 

patients. The cord is an appealing anatomical landmark structure, as it is present throughout 

the head-and-neck region, reflective of the neck flex, and conspicuous in both modalities. 

The resulting cord contours from the deformable registration were compared to their 

respective target volumes’ contours using 95% Hausdorff Distance33, measured in mm.

The Euclidean distance between a set of 11 landmarks (Dens of C2, center of the vertebral 

bodies of C2–C7, center of left and right eyes, the mental protuberance of the mandible, and 

the tip of the nose) was evaluated between deformed and target images. We performed a 2-

way repeated measures anova with a post hoc Tukey’s multiple comparison to test the null 

hypothesis that all registrations had the same mean error, and identify the significantly 
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different registrations if the null hypothesis was rejected. The two factors in the anova 

analysis were registration direction and landmark.

Additionally, the quality of the registration itself was evaluated by calculating the Jacobian 

determinant from each resulting transformation. This was calculated using the Insight 

Toolkit’s implementation, and is given as the scalar determinant of the derivative of the 

deformation vector field at each point det dT
dx , wℎere T  is tℎe transform . A reasonable 

registration in the head and neck anatomical region should have most voxels experiencing 

small shrinking and expansion with the average Jacobian determinant close to 1.

The quality of the registration is also reflected in its inverse consistency, which was 

evaluated by comparing the composition of transformation pairs in the opposite direction on 

a standard CT image to reduce input from the background, then calculating the mean square 

error (MSE) between that image and the initial image. The MSE was calculated using the 

Insight Toolkit’s implementation, and is the sum of squared differences between intensity 

values between the images. A lower MSE indicates better inverse consistency. We elected to 

use this method since we did not expect true inverse consistency in the DVF due to the 

occasional appearance and disappearance of tissue with different patient positioning (e.g. 

arms up versus arms down). This is a known challenge in head and neck image registration. 

However, we can compare directional bias between direct and our proposed registration 

techniques. Therefore we emphasize that while a 0 MSE would indicate a perfect recovery 

of the original image, our inverse consistency study was a relative comparison.

Results

Synthetic CT

Figure 2I is a typical synthetic CT achieved in this work. The CTsynth image preserves bulk 

anatomy, distinguishes bones and sinuses, but is missing certain anatomical details of a real 

CT (e.g. accurate description of individual vertebrae).

Registration Accuracy: Qualitative Evaluation

Figure 2 A–E illustrate an example of a CTnon-aligned (green) registered to an MRI (red) 

using a synthetic CT. The 3D surface rendering in Figure 2C shows a large initial 

discrepancy in the head pose. Figure 2D shows how the CTnon-aligned pose was deformed 

(purple) to match the MRI when the CT is directly registered to the MRI (red). Fig 2E shows 

how closely the registered CTnon-aligned’s pose (blue) matches the target MRI (red) when 

using a synthetic CT bridge. The head tilt matches better when using a synthetic CT, as can 

be seen by the improved match in the nose.

Figures 2 J–N show the interior anatomy of registration results in sagittal slices. Looking at 

the gridlines, Figure 2K shows that the CTnon-aligned matches the MR’s pose when CTsynth is 

used as the target. CTnon-aligned registered to MR matched the pose but produced slight 

unrealistic tissue deformation, as in the stretched sinuses indicated by the red arrow in 

Figure 2J. Comparing Figure 2N and Figure 2M, the CTsynth registered to CTnon-aligned 

shows even better improvement over direct registration. This is evident in the MR to 
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CTnon-aligned registration’s relatively greater stretching in the skull and brain anatomy 

indicated by the red arrow in Figure 2M, and also the better positioning of the orbit. While 

the registrations including CTsynth matched overall pose, there is a residual discrepancy due 

to different mouth opening with or without a bite block. Also, the registration accuracy is 

similar for CTsynth registered to CTnon-aligned and CTnon-aligned registered to CTsynth, while 

there is a noticeable decline in quality for MR registered to CTnon-aligned relative to 

CTnon-aligned registered to MR, showing improved inverse consistency using a synthetic CT 

bridge.

Registration Accuracy: Spinal Cord Contour Comparisons

The spinal cord contour comparison results are shown in Figure 3. In Figure 3A–B, the 

initial 95% Hausdorff distance of the MR and CTnon-aligned rigid alignment is on the 

horizontal axis, and the vertical axis shows their 95% Hausdorff distance33 after registration, 

to reflect the quality of registration and its dependency on the original level of rigid 

misalignment. The fitted lines are a result of Deming linear regression, where a lower slope 

means the registration is more robust to initial misalignment. The dotted reference line 

indicates equal rigid and deformable cord error. For small initial misalignment in the bottom 

left, the deformable results using CTsynth and MR are similar to the rigid results. With larger 

initial misalignments, there is an increasing divergence in the results with and without 

CTsynth. In the presence of large initial misalignment, compared with the direct registration, 

our proposed method results in a larger improvement. Using a Deming linear regression and 

comparing estimated slopes, we found that the error using our method is lower than that of 

the direct registration in both the MR to CT direction (p=0.0002) and the CT to MR 

direction (p=0.08). Unsurprisingly, replacing the MRI with the aligned CT results in the 

lowest contour misalignment but the difference with our proposed method is not statistically 

significant (p=0.34 and p=0.65, respectively).

The slopes of the fitted lines and their 95% confidence intervals are plotted in Figure 3C. 

The direct registrations show a clear increase in sensitivity to initial misalignment. The wide 

confidence intervals on the non-aligned CT registered to the synthetic CT reveal the larger 

spread when using our method in the CT to MR direction. In fact, all of the CT to MR 

direction registrations show increased sensitivity relative to their opposite-direction pairs. 

The registrations between MR and the aligned CT represent the residual sensitivity to initial 

misalignment inherent to our registration algorithm, as the MR and aligned CT should 

already have overlapping cord contours.

Registration Accuracy: Landmark Analysis

Figure 4 summarizes the landmark analysis. The plot is ordered from the lowest average 

landmark error to the highest. The vertebrae landmarks tended to be lower than those on the 

head. This is caused by the distances of landmarks to the head rotating motion axis, as a 

small head tilt could lead to large distances in the eyes, nose, and mandible. The 

registrations between the aligned CT and MR are consistent across all landmarks, as these 

images were already closely aligned. Interestingly, when the MR was replaced with the 

aligned CT in the non-aligned CT registrations, the landmark error also stays relatively 
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consistent. This aligned CT and MR registration error defines the performance upper bound 

of the proposed method if we were able to generate perfect synthetic CTs.

The direct registration shows the second largest variation in performance after the rigid 

alignment with respect to landmark type. Figure 5 shows the landmark error by registration 

type and the statistically significant groupings from the anova post-hoc Tukey test. There are 

four groups in order of increasing average error,

Group 1: deformable registrations between the CTaligned and MR, and the CTaligned 

and CTnon-aligned;

Group 2: the registrations of our proposed method between CTnon-aligned and the 

Synthetic CT;

Group 3: the direct CTnon-aligned and MR registrations;

Group 4: the rigid alignment between CTnon-aligned and CTaligned.

The outliers in the different registration groups were either nose or mandible landmarks. 

Figure 5B tabulates the average and standard deviation of the landmarks per registration 

type. There is an average reduction of 3.8mm in average landmark error (from 9.8mm to 

6.0mm) by replacing the MR in the MR registered to CTnon-aligned registration with a 

synthetic CT.

If the synthetic CT were replaced with a CTaligned, the error decreases further by 2.2mm 

(from 6.0mm to 3.8mm). The trend is similar in the CT to MR direction. The average 

landmark error is reduced by 3.4 mm (from 10.0mm to 6.6mm) when replacing MR with a 

synthetic CT in the CTnon-aligned registered to MR registration. The error is further reduced 

by 2.7mm (from 6.6mm to 3.9mm) with registration to a CTaligned. The error reduction from 

direct registration to synthetic CT bridged registration is not only significant (2way ANOVA 

with Tukey’s multiple comparisons test, p<0.001) but also greater than half the potential 

improvement with registration to CTaligned, which is typically unavailable.

Registration Accuracy: Jacobian Determinant

The Jacobian determinant was calculated for each transformation. The mean across each 

resulting 3D matrix was found. Figure 6 shows the descriptive statistics averaged across all 

24 test patients, for each registration investigated. All of the registrations have mean 

Jacobian determinants around 1.0. This shows that the majority of the deformed images did 

not experience large expansion or shrinking, consistent with the head-and-neck anatomy.

Inverse Consistency

There is an improved inverse consistency when using the synthetic CT bridge in both the CT 

to MR direction (MSE of 193.9 to 165.1, p=0.04) and the MR to CT direction (MSE of 197 

to 168, p=0.04). Statistical comparisons were made using a paired T-test.
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Discussion

Multi-modal deformable registration is an important technique yet a challenging problem 

due to its ill-conditioned nature. It is made more difficult by different material-to-imaging-

value mapping and large deformations. Both compounding problems are seen in head-and-

neck MR- and CT-scanned cancer patients and have hampered the utility of multimodal 

imaging for their radiotherapy. In the current study, we showed that the difficulty can be 

effectively mitigated using deep-learning generated synthetic images, with which the 

multimodel registration problem is reduced to a monomodal one. For large deformation, this 

novel registration pipeline is able to significantly improve the deformable registration results 

versus direct registration. The anatomy is more accurately morphed to the target images as 

shown in the quantitative results of spinal cord contours and the landmark tests. An 

additional benefit of this method is that the pipeline can be fully automated.

Current clinical practice often uses rigid registration to align CT and MR images in the 

head-and-neck, which is clearly suboptimal given the discrepancy in patient posture as 

shown in Figure 2. We show a method that offers significant improvement over the current 

standard of care. In addition, we show that our method is more robust than traditional, direct 

deformable image registration (DIR) methods. A significant challenge in this work was 

ensuring accurate deformation even in the presence of large head motion. Through careful 

parameter tuning, a balance was able to be struck which was both accurate and robust. It was 

noted during this tuning process that the direct multimodal registration results were more 

sensitive to choice of parameters and initial conditions relative to our CTsynth method. 

Future work will endeavor to discover better ways to automatically choose these parameters 

for both head-and-neck, as well as other anatomical sites.

It was also observed that some of the artifacts in the MR would disappear during the process 

of generating synthetic CT’s. Artifact reduction in MR using deep learning has been 

previously studied34,35 therefore, while not the focus of this study, we are unsurprised at this 

result. It is well known that the variability in MRI intensity values can make image 

registration more challenging, and numerical techniques exist to mitigate these issues36. A 

possible added benefit of our technique may be an implicit correction in MRI intensity 

variations during the process of generating a synthetic CT, thus further aiding the 

registration. Our study was not designed to pursue this question, but would be an interesting 

future pursuit.

This study’s analysis process closely follows the recommendations for DIR quality 

assurance put forward by the AAPM Task Group 1321. They recommend evaluating 

registrations with landmark error, contour error, the Jacobian determinant, and inverse 

consistency. Our proposed method demonstrates superior landmark error and cord contour 

conformation, while also showing reasonable Jacobian determinant values and improved 

inverse consistency. These results make us confident that a CTsynth based deformable 

registration in the head-and-neck is a valuable tool, even in the setting of large neck flexion. 

We saw average landmark improvements of 3–4mm for our method, which is more than half 

of the 6mm improvement seen in registrations between the MR and aligned CT. The aligned 

CT acts as a surrogate for a more realistic synthetic CT since its anatomy closely matches 
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the MR’s. The improvements are on the same order of margins (~3mm) used in head-and-

neck radiotherapy, thus they are considered clinically relevant. Note that the utilized 

registration algorithm does not explicitly penalize a registration for violating inverse 

consistency, thus the non-zero MSE. The result indicates that the registration is biased with 

the choice of the target image, which is also seen in the directionality-dependent differences 

in registration. In fact, most registration algorithms used are asymmetric17 and this is an 

ongoing avenue of research.

There are a few limitations in the current study. First, although the data is unique to offer 

rigidly aligned CT/MR for validation, the patient number is relatively small, which has 

limited the power of statistical analysis. It may also have limited the quality of generated 

synthetic images. We performed five-fold cross validation to allow all cases to contribute to 

the performance analysis. Second, the MR images are from a low field scanner for MR-

guided radiation therapy that provides inferior quality to the diagnostic images for head-and-

neck registration. It is possible that the quality of the synthetic images can be improved 

based on diagnostic and multiparametric MR images. Improvements to the CTsynth 

generation could lead to further accuracy, as seen in the CTaligned registrations. Additionally, 

it is important to note that the MR and CT images were acquired with different resolutions, 

although they were resampled to be the same. Changing this additional variable could lead 

to different registration accuracies.

In our work, we used PET attenuation correction CT’s as the source of our large 

misalignement CT’s. In this way, the positioning would be very different from the 

immbolized planning CT. Previous work37 examined the difficulty of registering a PET 

attenuation correction CT with a treatment planning CT. They found large variability in 

alignment of the spinal cord (5.3mm) and mandible (5.4mm) post DIR, which were still 

superior to rigid registration (10.6mm and 5.5mm, for spinal cord and mandible, 

respectively). Our direct registration from the PET CT (CTnon-aligned) to the planning CT 

(CTaligned) resulted in an average landmark error of 4.5mm for the mandible and 4.7mm for 

the spinal cord, while the CTsynth bridge method had a 7.4 mm mandible error and 6.6mm 

error for the cord. These values are consistent with what was shown in the referenced study. 

While we only have one landmark and one contour in common with this study, it shows that 

even in the setting of CT-CT registration, large deformations in the head-and-neck can be 

difficult to register. In synergy with using a CTsynth bridge, improvements in mono-modality 

registration would also lead to better multimodal registration in the head-and-neck. 

Currently, research using neural networks offers some exciting new avenues in this regard, 

including completely learning-based unsupervised DVF generation38–41. However, the 

performance of these methods depends on the availability and quality of training sets, which 

are particularly challenging for multimodel registration. The proposed synthetic image 

bridge can work well with new deformable registration techniques optimized for single 

modality registration.

Conclusion

Multi-modality deformable registration is challenging, especially in regions of large 

deformation. CT and MR are important, complementary modalities in the treatment of head-
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and-neck cancer. By first transforming the MR into a CTsynth and running a synthetic mono-

modal registration, we showed that we were able to produce improved registration results in 

the form of lower landmark error and more accurate contour warping. Furthermore, we 

showed that our DIR method improves inverse consistency and has realistic Jacobian 

determinant values. Continued efforts to improve CTsynth generation could advance this 

technique further.
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Figure 1. 
The deformable registrations performed in this study. Registrations were performed in both 

CT-to-MR and MR-to-CT directions to test for inverse consistency, as well as both directly 

(multi-modal) and with a synthetic CT bridge (synthetic mono-modal). The DVF from 

CTsynth→ CTnon-aligned was applied to the MR to generate a deformed MR image. The non-

aligned CT was also registered to the aligned CT (and vice versa) to see an approximate 

best-case synthetic mono-modal registration.
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Figure 2. 
An example patient shows the various registrations studied in this paper. First row: 

registration of non-aligned CT (green) to an MR image (red). Box D shows the directly 

registered non-aligned CT (purple); Box E shows registration of the corersponding synthetic 

CT to the nonaligned CT. Second row: sagittal view. Boxes F-I are the non-deformed 

volumes. The third row shows the results for various registrations. Note that the images used 

in the registration were downsampled to match the 256×256 resolution output from the 

neural network. All slices shown were in the same location. Arrows denote unanatomical 

deformation in direct multimodel registration.
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Figure 3. 
The spinal cord 95% Hausdorff distance for the deformations is plotted in the top two 

figures as a function of the initial rigid alignment Hausdorff distance. Thus, the error in cord 

alignment can be evaluated in terms of how misaligned the images were initially. The 

diagonal line shows where the deformable image registration’s cord error would equal the 

initial rigid alignement’s cord error. The top figure is divided in the CT-to-MR direction on 

the left and the MR-to-CT direction on the right. The bottom figure shows the slopes of the 

best fit lines with their 95% confidence intervals.
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Figure 4. 
The patient-average Euclidean landmark error for the various registrations investigated in 

this study. The bars are ordered by the average error across all landmarks. From this figure, 

we can see that for the large CTnon-aligned registrations our proposed method has an overall 

lower landmark error than the direct registration method. The rigid alignment between 

CTaligned and CTnon-aligned is denoted by CTaligned vs. CTnon-aligned.
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Figure 5. 
Combining all landmarks together to better visualize the post hoc results by registration 

type. The vertical bars to the left of the boxplots indicate registrations which were not 

significantly different. The rigid alignment between CTaligned and CTnon-aligned is denoted by 

CTaligned vs. CTnon-aligned. Below is a table to more easily display the decrease in average 

landmark error with the proposed method. The bottom rows in each section show the 

average error if CTaligned is used as a surrogate for the MR. This represents a “best-case” 

scenario.
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Figure 6. 
Patient-averaged descriptive statistics of Jacobian determinants across different deformable 

registration types. Error bars show the range.
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Figure 7. 
Transformation pairs in the opposite direction (e.g. non-aligned CT→MR and MR → non-

aligned CT) were composed together and a single baseline CT was transformed under this 

composition. Given perfect inverse consistency, the original image should be recovered. The 

mean square error (MSE) was calculated between the original and transformed CT for the 

direct and synthetic CT bridged registrations, and in both directions. The boxplot bars show 

5–95% range. A paired T-test was performed to evaluate significant difference.
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