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1. Introduction

In observing the mechanical behavior of viscoelastic solids it is
common experience that the stress at a particle depends on both the his-
tory of (localized) motion of the solid as well as the tempersture history
at the particle. Although a general theory of thermomechanicsl behavior
of materials has been developed by Coleman, among others, the application
to engineering practice seems remote at the present time. However, if
limitations on the geneiality of the theory are introduced, it is possible
to develop more specialized methods of characterizing thermomechanicsal
behavior leading to computational techniques for boundary value problems.
This report is concerned with such a procedure. A thermomechanical con-
stitutive equation appropriate to viscoelastic solids undergoing small,
quasi-static deformations is utilized, along with field equations for this
class of deformation. The heat conduction equation is assumed to be un-
affected by the deformation and is therefore solved separately, but simul-
taneously, with the mechanical field problem.

The report begins with a discussion of a mechanicel constitutive
equation for solids undergoing small deformstions and subjected to tem-
perature changes. A constitutive functionsl linear in deformation but
nonlinear in temperature is adopted and various rebresentations are dis-
cussed. Specialization appropriate to thermorheologically simple solids
is indicated.

In Section 3 field equations are adjoined to the constitutive equation
and the uncoupled, quasi-static boundary value problem for a cless of
viscoelastic solids is posed. A functional whose stationary value is
equivalent to the indicated boundary value problem is stated in Section L.

In Sections 5 and 6 a computational algorithm based upon the finite




element technique of discretizing the stationary value problem of &
functional is described. As an application of the method a problem
recently studied by Morland and Lockett [ 7] is examined. Agreement with
their results, which depend on a method of more limited scope, is generally

good.

A User's Manual and Program Listing are included as appendices.

2. Constitutive Equations for a Class of Viscoelastic Solids

Consider a body undergoing small deformations from an unstressed
reference state and simultaneously subjected to temperature changes rela-
tive to the same reference state. The theory of simple materials postu-
lates that the stress at a particle of the body is determined by the
histories of deformation and temperature at the particle. 1In the present

context in symbolic form* this is expressed by the equatioh

s=%t
o(x, t) =F  [g(x, s), T(x, s); %, t] (2.1)

S=w0

where g, g are the stress and (small) strain tensors at the place x at
time t; T is the temperature at % and F is the thermomechanical response
functional of the material of the body, i.e., the functional that assigns
to every small strain history and temperature history the value of the
stress tensor at x. Guidéd by experience with many engineering epplica-
tions of viscoelastic solids we introduce the assumption that the thermo-

mechanical response functional is linear in strain and nonlinear in

temperature. With this in mind and with further restriction to homogeneous,

*For the present direct notation will be employed, i.,e., symbols underlined
with a tilde are tensors of order indicated by the context. Further, for
the class of small deformations considered, no distinction between "parti-

cle" and "place" need be made,




non-aging materials we replace (2.1) by the hereditary integral represen-

tation¥*
T=t

o) = [ i)t -0 (e0) - g (2.2)
§=0

T=w00

In (2.2) we have introduced the pseudo-temperature
T

6(t) =U[‘ o(T/)ar’ (2.3)

o

where o is the temperature-dependent thermel coefficient of expansion
tensor and the kernel
s=t 1
c=cC [T(s); t - ] (2.4)
s=0
is a fourth-rank relaxation modulus tensor whose value derends upon the

temperature history of the material. For a prescribed temperature history

the relaxation modulus reduces to
c=0ct; t-1] (2.5)

Thie form resembles the kernel of an aging linear viscoelastic solid and
emphasizes the role of temperature history on viscoelastic material
properties, i.e., temperature has an effect equivalent to "aging'" of the
material whose relaxation modulus is of the form of (2.4). Development
of related computational algorithms is the subject of another report and
will not be discussed further here [2]. Instead we first return to (2.4)
and examine the case where the temperature is constant, but different from

the reference temperature TO.

*
Dependence of field variables on x is understood.




We then adopt the postulate for thermorheologically simple (TS) materials,

i.e.,
S(ts T) = cL&(t); T (2.6)
where the reduced time § is defined by
£(t) =t o(T) (2.7)

and the temperature shift function ¢(T) is assumed to be an intrinsic
material property normslized by the condition m(TO) = 1. Using (2.7) it
is possible to compare the mechanical behavior of a material at different
constant temperatﬁres. To extend the idea of a temperature shift function
to non-isothermal applications a further postulate is required. In the
past, more from lack of contrary evidence than from experimental confir-
mation, it has been assumed that (2.4) could be replaced by

E [t -5 T(s)] = cL&(t) - &(7); 7)) (2.8)
5=0

where the reduced time is now defined by

T

£(v) f ol 7(s)las (2.9)
0

For constant temperature (2.9) clearly reduces to (2.6). Egquation (2.9)
is only one of many postulates that might be used to extend the notion
of a TS material to non-isothermal cases. For example, we might assume
that the reduced time depends on both temperature and temperature rate

histories, i.e.,
T

E*(T) =f ffT(s), ?% 1ds (2.10)
o -




where 3
(1) _ °% » ete.,
T

E =
and the symbol ( ® ) denotes the integral of the composition of the
adjoined tensors. TIn (2.14) since C is of rank four ang £, 9 of rank
two, the symbol in (2.15) denotes the integral of a doubly-contrscted
composition whose value is a second rank stress tensor. In component

form (2.15) is

t
o338 = [ A e(e) - s 2 te (o) - 6 (e

3. Formulation of the Boundary Value Problem

By a thermomechanical boundary value problem for a viscoelastic solid
we understand the following: a mechanically linear, TS material under-
going quasistatic deformation ang subjected to an independently determined

temperature field satisfies the equilibrium equations

T (3.1)
g=9
where £ is a prescribed body force vector,
the strain-displacement equations
T
2 = [vu + (vu)’], (3.2)

where u is the displacement vector,

and constitutive equations

g=C@® (E(l) - 2(1)) (3.3)

o~




in a region of space R occupied by the body. To these equations are

adjoined the following boundary conditions:

5 ) = g-T ons,
(3.4)
2(5, t) = g on §,

In (3.4) n is the outward unit vector normal to the boundary surface of
the body, and z; E are prescribed values of the surface traction vector
and displacement vector on complementary parts of the boundary of the
body, QG and Su’ respectively. The temperature of the body is assumed to
be a prescribed function of position and time.

A direct computational method for attacking the boundary value prob-

lem follows in the next sections.

4, A Variational Theorem

For computational purposes it is expedient to recast the boundary
value problem posed in Section 3 as a stationary value problem for a
functional. Accordingly, we define & thermomechanical state functional

V{u} through the equation

Vi = d[; [

£®£*z-£®2*£-h*f*stv

O

(4.1)

In (4.1) h is the Heaviside step function defined as unity for t > 0 and

zero for t < O; the star symbol (*) denotes the convolution of two

functions in the sense

trg =[5t =) g0 & (h.2)




We assume that the body is undisturbed over the interval - o< 1 < O+;
consequently an explicit statement of initial conditions is not required.
We define an admissible thermomechanical state associated with the
functional V {u} as follows:
(1) the (symmetric) stress tensor is determined by the constitutive
equation (3.3)
(2) the strain-displacement equations (3.2) are satisfied
(3) the displacement vector satisfies (3.l+)2
(4) the pseudo temperature € is a prescribed function of place and
time associated with a solution of the heat conduction boundary
value problem for the body.
We now state the variational theorem: Among all admissible thermomechani-
cal states, that which satisfies the equilibrium equations (3.1), and

stress boundary conditions (3.14)2 is given by
6V = 0 (4.3)

Executing the variation of (k.1), using the Divergence Theorem and (3.3)

leads to

6V=-f[h*[2° o™ -coe™) + g xomav
R

(b.4)
+d[; [h* (T -T) * dulds =0
o

Application of a corollary of Titchmarsh's Theorem [12], (i.e., f *xg =0
implies either £ = 0 or g = O) and using the constitutive equation (3.3) in
the volume integral yields the equilibrium equation (3.1) and stress

boundery condition (3.&)1.




In the sequel, along with (L.4) we will adopt a variational theorem for
obtaining solutions of the heat conduction equation presented by Wilson
and Nickell [13]. The finite element computer algorithm developed
therein, along with the algorithm for the thermomechanical problem to
be developed in Sections 5 and 6 form the basis of the computational

work reported here.

2. Specialization for Axisymmetric Deformation of Isotropic Viscoelastic

Solids--Finite Element Solution

In this section the previous results are specialized for a particu-
lar class of problems for isotropic solids. For axisymmetric solids
subjected to axisymmetric loads (both mechanical and thermal) response
occurs in the r, z plane (r, 6, z-coordinates) only, hence U is zero and
u., u, are functions of r and z only. From (3.2) the non zero strains

are ( in terms of physical components)

aur
-
u
e = XL
% = (5.1)
ou
7z
€22 T 2
u du
1 T

Erz 73 z or

For isotropic thermomechanical response both C and @ appearing in (3.3)

are isotropic functions and the following constitutive equations result:

1 (1) (1)
Grr—§(3K-2G)®e +2G®srr -K®®6

_1 (1) (1)
Opg = 5K -2@) @ + L @e,, ) -K@O (5.2)




1)

Q
it

L (1) (
3(3K-2G)®e tXBdE,, -K®6

ZZ

rz rz

where
£ = €rr + EGG M Ezz
and
T
6 = r al(T’) at’/
TO

10

(5.3)

and the material functions K, G, have the form (2.8). Equeation (L.1) can

now be more conveniently written¥*
V=fFA..®S.*S.-9.*S.—h*f *u]rdrdz
2 1j i J i i v’ o
R

-jp h*T %*u rdrdz
o o
S
T

where

u du du du
s = X T | z rj
i . r’ or’ o > Jz :

A., is a 5 x 5 symmetric array whose non-zero components are

ij

1
Ajy = Agy = Agy = 3(3K + 1G)

1
Bip=hy3=hy= §(3K - 26)

Ah-ll- =A55 = Ahs =G

(h.l)a

(5.4)

(5.5)

#*
Latin indices range from 1 to 5 while Greek indices range over 1, 2.

Summation convention is implied.
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0 . denotes thermal terms whose non-zero comvonents are

i
91=92=93=K®e
Yo T (ur’ uz)
f0(=(fr’ fZ)
and
Ty = (Tr, TZ)

A Ritz-type solution to (4.la) may be obtained by a finite element
method. To this end, the volume and surface integrals are expressed as
a sum of integrals over a set of subregions (finite elements) defining R.
Assumed solutions are taken for each element in such a way that displace-
ment continuity is maintained between contiguous elements., In the present
development triangular elements are used together with a linear expansion
of the displacement field in each element.

Use of standard finite element procedures for spatial discretization
[15] and application of the first variation of V yields a set of 2N
linear integral equations in terms of the 2N nodsl displacements (N equals
the number of nodes). These may be expressed as:

t .
fK(E-a’)iu—“— dt’ = R (&) (5.6)
N ot/ m ’

-~00

where Kmn is an assemblage of element stiffness relaxation functions for
the body; similarly Rm is an assemblage of surface and body loads. The
solution of (5.6) yields the nodal point displacement history. The strain

and stress histories can then be computed from (5.1) and (5.2).
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6. Solution of Simultaneous Integral Equetions

The approximste spatial reduction by a finite element method leads
to a set of simultaneous integral equations. In the absence of variable
temperature history (5.6) reduces to a set of Volterra integral equations
of the second kind which theoretically can be solved by integral transform
methods. However, with variable temperature history these equations are
no longer tractable by transform techniques. Therefore, in order to
solve (5.6) direct numerical methods will be employed. A standard numeri-
cal technique for solving this class of equations is a step-forward inte-
gration procedure. In connection with viscoelastic analyses a finite
difference technique has been used to solve the convolution inter-rela-
tionship between creep and relaxation [3, 5, 10]. Stress analyses have
also been performed utilizing a finite difference numerical step-forward
integration procedure (e.g., see [1, 11, 14]). The numerical integration
procedure consists in expansions into a series of time increments where
integrations are performed over each increment according to some differ-
ence approximation. The great disadvantage of this method (in connection
with computer applications) is that all past solutions are required.

Thus, in the case of (5.6) extensive amounts of information are required
to obtain solutions over extended time periods. Also, considerable com-
puter time is required (it is to be anticipated that a viscoelastic
analysis will require a considerable increase in computer time over that
of a similar elastic analysis).

Recently some modifications to the above procedure have been proposed.
One is based upon the premise of a finite memory in the material, hence,
the solution at any time involves only knowledge of a limited history

of the past deformations [9]. Thus it is necessary to retain only a
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finite number of past solutions to obtain a solution at gny time. This
modification achieves a considerable saving in computstion time. However,
for large numbers of nodes, the finite element reduction to (5.6) results
in computation times which are generally still prohibitive.

A second alternative which is used herein, is to represent the
material property functions assuming that the kernel functions of the
integral equations are degenerate, that is we assume each coefficient in

(5.6) has the property

I

K =€) = ) K () gy(en) (6.1)
i=1

Generalized Maxwell materials have often been used to approximate the

viscoelastic response of real materials. When the stress-strain equations

are expressed in integral form the kernel function then has the series

representation

G(

Oy

I
~E/A.
)-_-X Gy e €/1+GO (6.2)
i=1 ‘

where Gi are constants associated with instantaneous response, Ai are
constants associated with a discrete relaxation spectrum (each Ai can be
called a relaxation time) and I is the number of Maxwell elements used

to approximate the material's relaxation modulus. From (6.2) it follows

that
I
-E/A, E7/A
G(¢ - &7) = }ﬂ G. e e i G (6.3)
o1 0
i=1

The above decomposition has previously been used in connection with

a finite difference integration technique for approximate solution of
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viscoelasticity problems [1, 14]. The method is used herein as a finite
element concept for the approximate solution of viscoelastic problems
which include temperature effects through the thermorheologically simple
postulate. The solution technique is similar to that used in [8, 137.

In order to discuss the solution technique we consider the single integral

equation
t
6(e)u(0) + [ ate - £7) &% ats - x(t) (6.4)
0

Equation (6.4) may be considered as a typical term in (5.6), consequently,
any conclusions obtained from (6.4) are directly applicable to the solu-
tion of (5.6). In (6.4) G(¢) represents a particular relaxstion modulus
function (i.e. shear or bulk), r(t) is a known forcing function and u(t)
is the sought solution. Substituting into (6.4) the material property

representation given by (6.3) we obtain
I

/B e,
Gfg-—dt/ ZGie 1fe 155%,%

i= 0 (6.5)

= r(t) - u(O)(G >L M ]
‘ i=1

As in the spatial reduction by a finite element method, (6.5) may be
discretized by piecewise expgnsions in time of the dependent variable
u{t). A continuous time response may be obtained by assuming a polynomisl
time expansion and matching nodal displacements between each succeeding
time expansion. The simplest expansion is given by the linear Lagrangian

interpolation function

A

t (6.6)

LTy . 1. <
u(t) = &t L - t)un_1 + (t - tn-l)unj’ t15t n




15.

where
w = u(tn)
Atn = tn B tn—l

Consequently the time derivative of u during each time increment is

constant and is expressed by

du _ n " Yn-1 A%
5T ° X =3 tn-l s ts tn (6.8)
n n
*
If we introduce the notation
tj / Atj
~(&.=£7) /A, -£7 /A
- L F J 7 1 PR F i ’
hi(AtJ.) -Atj ! e at =5 e dt
t, d o (6.9)

J=1

then at time t an approximate solution to (6.4) is given by

n 1
— — -(En-E.)/A.
\ J i
% [GO + ZJ Gi e hi(Atj)] Auj
i

j=1 = (6.10)

I
' =& /A,
= r(tn) - <§O + Ej G, e n/ §> u,

i=1

where to = 03 all other tj represent previous or present discrete solution
points and gn is the value of the reduced time at the present real time
t . It is possible to rewrite (6.10) such that each new solution may be
computed directly from the previous solution. To this end we let
SN < CRR Y8
g;(t,) =Gi[e ol T e Y 1hi(Atj)AujJ (6.11)

o L
j=1

¥
It should be noted that h,(0) = 1, hence, instantaneous loading and
unloading may be considered by setting At to zero.
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and note that a recursion formula may be deduced as

A& /A,

n

— 1 o >
gi(tn) = e [gi(tn_l) + Gihi(A‘cn_l)Aun_l], nzl (6.12)

= = = = &
where gi(to) 0, Au.o u,, and Agn gn €01

Equation (6.10) may now be written as
I

L
[GO + Z Gihi(Atn)JAun =r(t) -Gu . - y g;(t)) (6.13)
i=1 i=1

For a single integral equation (6.13) is an efficient solution
algorithm for both short and long duration loads. The solution effort
at each discrete time is proportional to the number of Maxwell elements
used in the material characterization, whereas, in previous developments
(e.g., see [5]) the solution effort was proportional to the number of
previous solution points. In connection with a finite element method of
spatial discretization (6.13) may be applied to each term of (5.6) sepa-
rately and the resulting simultaneous linear algebraic equations may be
solved by standard techniques (e.g., Gauss elimination is used in the
program listed in the appendices),

The discretization errors involved in the above process are relsted
to the order of the time interpolation polynomials. It is possible to
increase the discretization error by using poor approximetions to (6.9).
The evaluation of (6.9) in closed form is in general not possible for non-
uniform temperature states. An approximation may be obtained by some
numerical integration or other approximation which will allow & closed
form evaluation. If it is assumed, as in [6], that & is linear in time

between tj 1 and tj’ which corresponds to the assumption of constant




temperature in the time interval, the integrals (6.9) may be evaluated,
yielding

«Ag./Ai
hi(Atj) =2 (1-e J )/Agj (6.14)

An alternative to (6.1k) is the simple trapezoidal integration pro-
cedure. This method has previcusly been used with a finite difference
approximation to effect solutions of integral equations [1, 14]. In this

procedure each integral is approximated by

! - Agj/ki
hi(Atj) = 5(1 + e ) (6.15)

For isothermal problems (6.14) represents an exact evaluation to (6.9)
while (6.15) is in all cases an approximation (see Fig. 1). By consider-
ing the solution to a single integral equation we can illustrate that for
a given time discretization careful evaluation of (6.9) is much more
crucial in controlling the numerical error than the approximation of

the dependent variable. It should be noted at the outset that our argu-
ment is based upon the fact that material characterization uses relaxation
modulus functions together with a displacement method. Thus, in (6.4) if
we consider a unit step foreing function,u(t) is the creep compliance.
For arbitrary inputs u(t) will have time variations that are related to
the time characteristics of the creep compliance. Consequently the
numerical determination of the creep compliance serves as a check on the
accuracy of (6.13). From the interrelationship between the relaxation
modulus, G(t), and the creep compliance, J(t), it may be shown that the

retardation time, T is always greater than the relaxstion time, A, by the

amount
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JOO
A= — A (6.17)
JO

where GO’ JO are initial values and Gm, J, are final values of the relax-
ation and creep functions, respectively (see Fig. 2). Consequently for
relaxation moduli with low relative equilibrium values the creep Com-
Pliance and consequently u(t) will have significant time effects long
after the relaxation modulus has reached a near equilibrium value.‘ To

illustrate this effect we consider the relaxation modulus

G(t) = 0.75 x 107 + 8.2925 x 107 ¢~t/2 (6.18)

where the known solution is

_ 3
u(t) = J(t) = %- X 10-7[1 - §é%%22 e GBEB]

The retardation time is 6640/3 and the relaxation time is 2. The numeri-
cal solution for J(t) using exact and trapezoidal integrals to represent
hi is shown in Table 1. The necessity of accurate evaluation of (6.9) is
clearly illustrated by the results in Table 1. The trapezoidal integration
scheme depends upon accurate estimates of the relaxation modulus integrals;
these are obviously related to the A and At as seen in Fig. 1, whereas if
(6.14) is used for the relaxetion modulus the solution increment is
primarily related to the retardation times, T and these are always larger
than the Ai. Consequently extensive reduction in computational effort

is possible by using approximations to (6.9) which are accurate for large
increments of time. This is especially important for problems involving
change in temperature since the reduced time increment may be several
orders of magnitude greater than the real time increment. A consequence

of poor approximation to (6.9) is illustrated in the next section.
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7. Numerical Example

As an application of the present development the thermal stress
analysis of a thin-walled infinite cylinder under conditions of plane
strain with a time dependent boundary temperature was investigated. This
problem was considered by Lockett and Morland [7]. Previous closed form
solutions of thermorheologically simple problems by integral transform
methods have been limited to one dimensional slabs and spheres where
symmetry was used to uncouple the single integral law in reduced time
from the remaining field equations in real time. More general axisymmetric
geometries are not amenable to this method of solution. Lockett and
Morland have shown that for thin-walled cylinders, a perturbation scheme
in the thinness parameter permits a similar uncoupling at each stage of
the solution.

The numerical example presented in [7] shows only the first order
solution, which the authors state should be valid for a'sufficiently thin
cylinder. In general this problem admits four characteristic times, that
of the applied boundary temperature, the diffusion time of heat\transfer,
the relaxation time of the viscoelastic material and the time of the
solution (retardation time). Since the primary purpose of the example was
to show the effect of temperature-dependent material properties, the
diffusion time was assumed to be negligible. As illustrated in the last
section the retardation time is even more significant than the relaxation
time for numerical applications.

For a time-dependent inner boundary temperature and a prescribed
zero outer boundary temperature, the first order steady state temperature
solution is linear and assumed to be achieved instantaneously. Using

the notation of [7] with 6, p, and x normalized temperature, time, and
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distance respectively, the applied boundary temperature is taken as

-Qp

0(0, p) =1 -e (7.1)

Consequently, the instantaneous steady state temperature is given by
B ,,29
0(x, p) = (L = x)(1 -e™™) (7.2)

The shift function, based on data for polymethylmethacrylate is taken as

= = )
o(x, p) = 3981.1 e0-2172(1-6)(1.333+6+1.095°) , (7.3)

where the strong dependence on temperature is seen from the following

table
6 ¢ p(x=0)
0.0 1.0 0
0.4 3.22 0.25
0.6 12.2 0.45 (7.4)
0.8 118. 0.8
0.9 572. 1.15
1.0 3981, 2.5

The approximate times at which the temperature is attained at the inner
boundary is indicated in the third columm.

The material moduli are characterized by an elastic bulk modulus and

a standard solid shear relaxation time:

K = 2.50 x 10%°

G(E) = 0.75 X 107 + 829,25 x 107 e—g (7.5)
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In [ 7] the numerical solutions were obtained by using finite difference
methods for both the spatial and time variables. The authors state that
it was necessary to use 40 spatial points and 100 time points to attain
a solution with an overall estimated error of two per cent. A finite
element solution based upon the present development was obtained using
only twelve nodal points (11 elements as shown at the top of Fig. 3) and
L0 time points. The results of both anelyses are reproduced in Figs. 3
and 4. 1In Fig. 3 a plot of the normalized hoop stressis shown for three
times. Both analyses compare very favorably at p = 0.5. This corresponds
to a normalized temperature of about 0.6 and a reduced time increment of
about 25 times the real time increment. Based upon results from the
previous section and the time increment used, we estimated that trapezoidal
integration should be adequate. On the other hand for p = 0.79 and 1.26
the reduced time increments are about 110 and 600 times the real time
increment respectively. For these time increments estimates show that
the trapezoidal integration should lag behind the expected solution. The
estimates are confirmed by the results obtained in [7]. It is physically
impossible to obtain their response as shown near the inner radius (i.e.,
for small x). The stresses at the high temperature will decresse faster
than at lower temperatures; consequently, due to the discretization error
the results of [7] are erroneous. To verify this conclusion the solution
was obtained for tempersture independent properties and compared to the
results of [7]. Here excellent agreement has been obtained as seen in
Fig. 4. The results for the temperature dependent solution are also
replotted in Fig. &,

The above example serves to illustrate further the superiority of

the time discretization presented herein since accurate estimates %to the




response time can be estimated beforehand and used for the selection of

the time solution points.
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APPENDIX A - USER'S MANUAL

IDENTIFICATION
THVISC - THERMOVISCOEIASTIC STRESS ANALYSIS
Programmed - R. L. Taylor and G. L. Goudreau

University of California, Berkeley, June 1968

PURPOSE

The purpose of this computer program is to determine temperatures,
deformations, and stresses in solids of revolution loaded axisymmetrically.
The meridional cross section may have arbitrary shape and include multiple
materials. The effects of arbitrary time dependent temperature, heat
flux, displacement, or stress boundary conditions are included. Elastic
bulk modulus and viscoelastic shear modulus specify the viscoelastic
properties of isotropic linear viscoelastic materials. The effect of
temperature on the shear modulus is determined for thermorheologically
simple materials thru the use of a shift function. Variable time steps
may be used in the step forward integration.
INPUT DATA

The first step in the structural analysis of an axisymmetric visco-
elastic body is to spatially discretize the meridional plane into a mesh
of finite elements. Elements and nodal points are numbered in two numeri-
cal sequences, each starting with one. To minimize the bandwidth, and
thus the computational effort, nodes should be numbered across the narrower
of the rows comprising a mesh.

The next step is the choice of time steps, defining the time dis-
cretization. This must be chosen with regard to the characteristic

times of variable applied load (including temperature), thermal diffusion,




A-L

Subroutine TABLE can be replaced by the user's own program generating
the exact functional form of ¢ if known.
Following cards - one for each temperature (3 F 10.0)
Columna 1-10 Temperature
11-20 Shift function
21-30 Coefficient of linear expansion
D. NODAL POINT CARDS (215, 5 F 10.0, I 5)
Columns 1-5 Nodal point number
10 Number which indicates if displacements or forces are to be
specified
11-20 R -~ ordinate
21-30 Z - ordinate
31-k0 UR
4150 UZ
51-60 T
65 Number which 'indicatesif temperature or heat flux is to
be specified.

If the number in column 10 is

0 UR is the svecified R load per radian, and
UZ is the specified Z load per radian

1 UR is the specified R displacement, and
UZ is the specified 7 load per radian

2 UR is the specified R load per radisn, and
UZ is the specified Z displacement

3 UR is the specified R displacement

UZ is the specified Z displacement
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If the number in column 65 is
O T is the specified heat flux pef radian
1l T is the specified temperature

All loads and fluxes are considered total quantities acting on one
radian of circumference. For insulated nodal points this external heat
flow is zero.

Nodal points must be in numerical sequence. If cards are omitted,
the omitted nodal points are generated at equal intervals along a straight
line between the defined end nodal points. For the generated points, UR,
UZ, and T are set equal to zerc. If the boundary code in column 10 is
the same for the end points of the interval, the value will be assigned
to the generated points. If different, the code is set to zero. Thus,
zero boundary forces or displacements can be generated, but non-zero ones
cannot.

E. EIEMENT CARDS (6I5)
One card for each element‘
Columns 1-5 Element number
6-10 Nodal point I
11-15 Nodal point J
16-20 Nodal point K
21-25 Nodal point L
26-30 Material identification

If the R axis transforms to the Z axis by a counter clockwise rota-
tion, then the sequence (I, J, K, L) must be counterclockwise, Maximum
difference between nod al point numbers must be lgss than 15.

Element cards must be in element number sequence. If element cards

are omitted, the program automatically generates the omitted information
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by incrementing the preceding I, J, K, and L, setting the material
number equal to the previous value. The last element card must always
be supplied.

Triangular elements may be prescribed by repeating the last nodal
number (I, J, K, K).
F, CONVECTION BOUNDARY CONDITION CARDS (2I5, 2F 10.0)

One card must be supplied for each boundary segment for which the

following heat transfer equation applies:

q = hAt

where q is the rate of heat transferred to the element per unit area, h
the heat transfer coefficient of the boundary layer, and At the difference
i n temperature between the external enviromment and the body. Each card
contains the following information:

Columm 1-5 I}_Boundary nodes

6-10 J
11-20 Boundary layer conductance
21-30 Temperature of external environment

G. TIME DEPENDENT BOUNDARY CONDITIONS
After NDT time steps, if less than NTIME, subroutine load is called
and the following cards are read.
First Card (2I5, F10.0)
Column 1-5 Number of nodal point cards to be altered (NNP)
6-10 Number of time intervals for which new data is valid (NDT)
11-20 New time interval
Following NNP cards (if > 0), same as in D. Only cards to be altered

need be included. Boundary codes, forces, displacements, fluxes or

temperatures may be changed.
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If a functional form of a time dependent boundary condition is pre-
ferred, subroutine LOAD can be replaced by the user. Set NDT = 1 on the

control card and LOAD will be called after each time step.




APPENDIX B - PROGRAM LISTING B-1

PROGRAM THVISC (INPUTsOUTPUTsTAPES=INPUTsTAPE6=0UTPUT s TAPE3 s TAPES
1 TAPE9»TAPET)
c##%x MAIN PROGRAM FOR SOLUTION OF THERMOVISCOELASTICITY PROBLEMS BY A
C#%#% FINITE ELEMENT DEVELOPMENT ===== TAYLOR 8/66
COMMON HED(12) sNUMNP s NUMEL sMAXBAN s INCoNTIME sNDT o TINC »
1 TP(300)5BP(300)sR(300)sA(305300) ,
COMMON /ND/CODE{150)sR(150) sZ (150} sUR(150) sUZ{150)5T(150)sKODE(150]
COMMON /ELEM/ NTRANSsNUMCBCsTOsG(8512)sRO(12)sCONDI12) sSPHT(12}s
1 QX(12)5IX(15055)
COMMON/TAPE/DISTIF(317)
DIMENSION D{(1}
EQUIVALENCE (D,B(201))}
10 CALL MESH
INC=0
TIME==TINC
NNN=2
NN=NUMNP *NNN
MB=MAXBAN*NNN
NCOUNT=400+30*NUMNP
CH#%s% FORM VISCOELASTIC STIFFNESS FOR EACH TIME
250 CONTINUE
DO 20 N=1sNUMNP
20 TPIN)=T(N)
DO 900 M=1sNDT
TIME=TIME+TINC
IF {NTRANSsNEo0sOReTINCoEQ.040) GO TO 700
REWIND 7
REWIND 8
IF (INCeGTo+0) GO TO 280
CALL THERM |
WRITE (8) (B{1)sI=1sNCOUNT)
GO TO 700
280 IF (MeGTo1l) GO TO 330
C##%% TEMPERATURE BOUNDARY CONDITIONS
READ (8) (B(I)sI=1sNCOUNT)
DO 300 N=1sNUMNP
BIN}=B(NI+T(N)
IF (KODE(N).EQs0) GO TO 300
CALL MODIFY (NsT(N)sAsBsNUMNPsMAXBAN330)
D{N}=0s0
300 CONTINUE
CH#st% FORM EFFECTIVE CONDUCTIVITY MATRIX FOR STANDARD TIME INCREMENT
DT2=1,0/TINC
DO 320 N=1sNUMNP
D(N)=DT2%D(N)
320 A(1sN)=A(1sN}+D(N}
C###% DECOMPOSE CONDUCTIVITY MATRIX AND WRITE ON TAPE
CALL SYMBC (A»>BsNUMNPsMAXBAN30s1)
IF (NDTeGTol) WRITE (7) (B(1)sI=1sNCOUNT)
GO TO 340
Cx#w% CALCULATE TEMPERATURES AT END OF TIME INCREMENT
330 READ (7) (B(I)sI=1sNCOUNT)
340 CONTINUE
DO 400 I=1s NUMNP
400 B(I)=B(I)+D(I)*#TP(])




500
700

800

900

2000
i

CALL SYMBC (AsBsNUMNP sMAXBANS3092)

DO 500 I=1sNUMNP

TP(I¥=B(1)

CONTINUE

CALL BLOCKS (JSTOP)

IF (JSTOPNE.O) GO TO 10

IF (INCoGTeNTIME) GO TO 10

CALL SYMBC (AsBsNNsMBs3001)

CALL SYMBC (AsBsNNsMBs3052)

WRITE(692000) TIMEo{NsRIN)sZ{N)s B(2¥N=1)s B(2%N)sTP{N)oN=1 ¢ NUMNP)

DO 800 N=1 NN

BPIN)=B(N)

INC=INC+1

DT=TINC

IF (INCeGTol) GO TO 900

DT=090

IF (NDToEQoloANDeNTIMEeGTo1) CALL LOAD

GO TO 250 '

CONTINUE

IF (INCoLESNTIME) CALL LOAD

GO TO 250

FORMAT (18H1SOLUTION AT TIME=F10.3/ 12HONODAL POINT +5Xs5HR-ORD»
5X95HZ=0RDs6X 9 14HR-DISPLACEMENT 56X 9 14HZ~DISPLACEMENT»9X 1 1HTEMPER

2ATURE/

3

(I11290P2F10391P3E20.7))
END




SUBROUTINE MESH
COMMON HED{12) s NUMNP o NUMEL sMAXBAN s INCoNTIMEsNDT e TINC»

1 TRP{300)sBP(300)sB(300)5A(305300)
COMMON/ND/CODE(150)9R (11501 2Z2(150)sUR(150)sUZ(150)sT(150)sKODE(150)
COMMON /ELEM/ NTRANSoNUMCBCsTOoG(8512) sRO(12)sCOND(12) oSPHT(12) >

1 QX(12)IX{150.5)

DATA THVISC /6HTHVISC/sSTOP/6HSTOP /sMBAND/ 15/ 9sMAXNP/ 150/
PHE=060
950 READ (551000) HED
IF (HED{1)oEQeSTOP) STOP
IF (HED(1)oNEeTHVISC)Y GO TO 950
Ce¥#i [NPUT CONTROL INFORMATION AND MATERIAL PROPERTIES
READ (551001) NUMNP s NUMEL s NUMMAT s MUMPC s NUMCBC o NTIMEos TINCsTO

1 oNTRANSNDT
IF (NDT.EQoe0Q) NDT=NTIME
WRITE(692001) HEDs NUMNP s NUMEL s NUMMAT s NUMPC s NUMCBCoNTIMESTINCTO
IF{NUMNP e GT e MAXNP o ORc NUMEL e GTaMAXNPY GO TO 950
DO 50 M=1:NUMMAT

READ (591002) MTYPESNUMTCo RO(MTYPE) s COND(MTYPE) s SPHTIMTYPE) »
1QX(MTYPE)
WRITE(652002) MTYPEsNUMTC o RO(MTYPE) sCOND(MTYPE) s SPHT{MTYPE ) »
1QX(MTYPE)

READ (5:1003) (G(NsMTYPE)sN=158)
WRITE(652003) (G(NsMTYPE)sN=158)
CALL TABLE (NUMTCsMTYPEsTMsPHE s ALPHA)

50 CONTINUE

C#%#% INPUT NODAL INFORMATION

WRITE{6+2010)
NEQ=2%NUMNP
L=0

60 READ (551004) NsCODE(N)sR(M)sZ(N)sUR(N)sUZ(N)oT (N)sKODE (N)
NL=L+1
ZX=N-L
DR=(RIN}~R{L)) /ZX
DZ=(Z(N)~Z{L) ) /2ZX

70 L=L+1
IF(N=-L) 100590580

80 CODE(L)=0.0 :
IF (CODE(L=1)<EQeCODE(N})) CODE(L})=CODE(L~1)
R(L)=R(L-1)+DR
Z(L)=2(L-1)+D2Z
UR(L}=040
UZ(L)=040
T(L)=040
KODE(L)=0e
GO TO 70 ‘

90 WRITE{692004) (KsCODE(K)sR(K) sZ(K)sURIK)sUZ(K) 9T (K)9sKODE(K ) oK=NLsN)
IF {NUMNP=N) 1005110560

100 WRITE(652030) N
GO TO 950

110 CONTINUE

Cx##% INPUT ELEMENT INFORMATION

WRITE(692011) :
N=0




K=0
130 READ (591005) Mol IX(MoI}siI=155)
DO 340 Il=1.4
DO 325 Ll=154
KK=IABS{IX{MsI1)=IX{MsL 1))
IFIKe LEoKK) K=KK
325 CONTINUE
340 CONTINUE
140 N=N+1
IF{MeLEsN) GO TO 170
DO 150 L=1s4
150 IX(NeL)=IX(N=-1sL)+1
IX{NeS)=IX(N=155)
170 WRITE{692005) Ns{IX{NsI)sI=155)
IF(M=N) 18591805140
185 WRITE(6+2031) N
GO TO 950
180 IF(NUMEL.GT.N) GO TO 130
MAXBAN=K+1
IF{MAXBANeLE«MBAND) RETURN
WRITE(692032) MAXBAN
GO 70 950
1000 FORMAT (12A6)
1001 FORMAT (61I592F10609215)
1002 FORMAT (21594F10.0)
1003 FORMAT (8F10.0)
1004 FORMAT (I55F56095F10605115)
1005 FORMAT {613
2001 FORMAT (1H1s12A6/

1 30HO NUMBER OF NODAL POINTS—=—==—= s 13/

2 30HO NUMBER OF ELEMENTS==w—m=—eea s 13/

3 30HO NUMBER OF DIFFe MATERIALS---5 13/

5 30HO NUMBER OF PRESS/SHEAR BC====513/

4 30H0 NUMBER OF CONVECTION BC===m—- 913/

6 30HO NUMBER OF TIME INCREMENTS==-, 13/

7 30HO TIME INCREMENTS—=~c=crocmm—— s Fl2.6/

8 30H0 REFERENCE TEMPERATURE--~====-= » Fl202/)

2002 FORMAT (18HO MATERIAL NUMBER=13930H» NUMBER OF TEMPERATURE CARDS=

113/

2 10HO DENSITY=F1005915Hs CONDUCTIVITY=F10e5916Hs SPECIFIC HEAT=
3 F10:504Hs Q=F10.5/)

2003 FORMAT (14HO Ke=ELASTICs6Xs9HG~ELASTICo4Xs11HG1~VISCOELo911X o
X 4HTAUL»4X911HG2-VISCOELo511Xes4HTAU254Xs11HG3=VISCOFLoo11Xo4HTAU3/
X (8E15051))

2004 FORMAT (I1129F120292F126392E240791F1364516)
2005 FORMAT (11394165113)
2010 FORMAT {(12HINODAL POINTs8Xe4HTYPEs12H R~ORDINATEs12H Z-ORDINATESs
X 24H R LOAD OR DISPLACEMENTs24H Z LOAD OR DISPLACEMENT,
X 13H TEMPERATUREs6H T-=BC//)
2011 FORMAT (50H41 ‘ELEMENT I J K L MATERTIAL )
2030 FORMAT (26HONODAL POINT CARD ERROR N=15)
2031 FORMAT (24HO ELEMENT CARD ERRORs N=15)
2032 FORMAT (27HOBANDWIDTH EXCEEDED»> MBAND=I15)
END




100
1000

1001
2000

2001

SUBROUTINE LOAD

COMMON HED(12) sNUMNP s NUMEL sMAXBANS INCoNTIMEsNDT o TINC
COMMON/ND/CODE(150)9R(150)s2(150)9UR(150)»UZ1150)9T(150)sKODE(150)
READ (551000) NNPsNDTeTINC

IF (NNPoEQeO) RETURN

WRITE (652000)

DO 100 M=1sNNP

READ (591001) NsCODE{(N)osR(N)sZIN)sURIN)SUZ(NSsT(N)sKODEIN)

WRITE (692001) NsCODE(N)osR{N)>Z(N)sURIN)SUZIN)oTIN)sKODEIN)

RETURN

FORMAT (2I55F10.0)

FORMAT (I59F5.095F10.0915)

FORMAT {(12HINODAL POINTs8Xs4HTYPEs12H R-ORDINATEs12H Z-ORDINATES,

X 24H R LOAD OR DISPLACEMENT»24H Z LOAD OR DISPLACEMENT
X 13H TEMPERATUREs6H T-BC//)

FORMAT (1125F126292F126392E240791F1364916)
END ‘




110

C 33 % 3%

150

135

137

SUBROUTINE THERM

COMMON HED{12) s NUMNP s NUMEL sMAXBAN s INCoNTIME oNDT s TINC»
1 TP(300)+BP(300)+B(300)5A(305300)
COMMON/ND/CODE(150)9R(150) sZ{150)sUR(150)oUZ1150)sT{150)sKODE(150)
COMMON /ELEM/ NTRANSoNUMCBCsTOsG{8912)sRO(12)sCOND(12)oSPHT(12)
1 QX(12)9IX(15055)

DIMENSION D(1)sTDOT(1) sLMI3)9E(393)sEE(3s3)9sP(5)9S5{565)sDD(5)
DIMENSION X(1)sY(1)

EQUIVALENCE (MBANDsMAXBAN)s(DsB(201))o(XsR})s(YsZ)
DATA EE/2¢93%1092693%16820/

DO 110 I=1oNUMNP

B{I)=0.0

D(I3=0,0

TPEIy=T(I)

DO 110 J=1oMBAND

AtJel)=0.0

DO 200 N=1sNUMEL

FORM ELEMENT CONDUCTIVITY MATRIX

DO 150 I=145

P{I1=060

DD(I3=0,0

DO 150 J=1s5

5(1J)=0.0

MTYPE=IX{N»5)

I=TX(Ns1)

J=ITXINs2)

K=IX{Ns3)

L=IX{Ns4)

IX{Ng5)=1

X=X XD+ XK+ X (LYY 4,
YY={Y{IY4Y D) eY(KY+Y (L)Y /4,

DO 152 K=1l¢4

I=TX{NsK

J=IAINK+1) :

IF (I-J) 13551529135

Ad=X{J) =X (1)

AK=XX-X{1)

Bd=Y(Jd)-¥Y(1)

BK=YY=Y{1)

C=BJ-BK

DX=AK=AJ

XMUL={X{ D) +X{JI4+XX3/360

XLAM=A J#BK=AK*BJ

COMM=0, 5#XMUL#COND (MTYPE ) / XLAM
QQ=XLAM*XMUL*QX(MTYPE) /&4,
QSTORE=XLAM*XMUL#*SPHT{MTYPE ) *RO(MTYPE) /4,
Ellsl)= CHCH+DXXDX

E{l92)= CH¥BK=DX*AK

E(le3)= DX#AJ-C®BY

E(291)=E{192)

E(202)= BK¥BK+AK*AK

E{293)==BK#BJI-AIH*AK

E(351)=E{13)

E(392)=E(293)




140
145

151
152

143
CH¥E#¥

175

200
CH¥ss

205

210
212

215
220

1007
2006
2007

E(353)= BJ#BJIH+AJH*AJ

LM{1)=K

LM(2)=K+1

IF (K=4) 14501409145

LM{2)=1

LM{3)=5

DO 151 I=193

ITI=LMEI)

PETIIY=P{I1)4+QQ .
DD(I1}=DD{1I)+QSTORE

DC 151 J=1.3

Jd=LM{D)
S{ITadJ1=S{IToJIV+E(] o) #COMM
CONTINUE

IX{Ns5)=MTYPE

DO 143 I=14+4

DO 143 J=1:4
S{led)=S{1oJ)=S{I1¢5)%5(Js5)/5(595})
ADD ELEMENT CONDUCTIVITY TO COMPLETE CONDUCTIVITY
DO 175 L=1s4

I=1X{N2L)

BiIl=B(I)+P(L)
D(IY=D(I)+DD(L)

DO 175 M=1p4

J=IX({NeM)=T+1

IFILULEsO} GO TO 175
AlJoIl=AlJs1)+S{L M)

CONTINUE

CONTINUE

CONVECTION BOUNDARY CONDITIONS
IF (NUMCBC) 22052205205

WRITE (692006}

DO 215% N=1sNUMCBC

READ (551007} ToJdoHo TEMC
WRITE (622007) IsJsHsTEMC
XL=SQRTIIX{N=X{I) ) ##24(V(J)=Y(I))##2)3#(X{I)+X{J)}#0e5
TEMC=0o5#H¥*XL¥TEMC

H=zH%®XL/6.0

B{I!=B{IY+TEMC

B(Jy=B{JI+TEMC
Allsl)=A{1ls1)+2e0%H
Alleo)=A1{19J)+260%H

K=J=1+1

IF (K} 21292125210
AlKeI)=A(KsI)+H

GO TO 215

Kel=J+1

A{KoJ)=A(KsJ)+H

CONT INUE

CONTINUE

RETURN

FORMAT (21552F1060})

FORMAT (40HO 1 J H - TEMPERATURE )
FORMAT (21592E15461)

END




B-8

SUBROUTINE BLOCKS (JSTOP)
COMMON HED{12) s NUMNP s NUMEL o MAXBANSs INCoNTIMEsNDT o TINCo
1 TP(300)+sBP{300)sB(300)sA(30:300)
COMMON/ND/CODE(150)sR{150) 211500 UR(150}39UZ{15019sT{150)KODE(150)
COMMON/TAPE/DISTIFI1317)
JSTORP=0
NNN=2
NNP=NNN*NUMNP
MBA=NNN#MAXBAN
DO 300 1I=1+sNNP
B{I1j=0,0
DO 300 JJ=1:MBA
300 A(JJs11)=0,0
REWIND 3
REWIND 9
IF (INC:.GTo0) WRITE (6:2001)
IND=1
IF{{INC/21%2=-1INCoFQe0) IND=0
DO 500 N=1sNUMEL
IF (INC.EQo.0) GO TO 400
IF (INDoNE.O) READ (3) DISTIF
IF (INDeEQ.DO) READ (93 DISTIF
CALL STRESS {N)
IF (INCoGT«NTIME)Y GO TO 500
400 CALL QUAD (N.ISTOP)
IF (INDoEQo0O) WRITE (3) DISTIF
IF {INDoNEoO?}? WRITE (9) DISTIF
IF{ISTOP.EQ.0) GO TO 500
WRITE(6:2000) N
JESTOP=15T0P
500 CONTINUE
IF (INCoeGToNTIME) RETURN
IF{JSTOP«NE<0O) RETURN
DO 700 N=1gsNUMNP
B{2¥N=1)=B(2¥N-1)4+UR(N)
B(2#¥N 1=B{2¥N )+UZ(N)
C=CODE(N}
IF (ColkEe0e0) GO TO 700
IF {CeEQe100e0ReCofQo3s0) CALL MODIFY (2%N-~1sURI(N)sAeBsNNPsMBAL30)
IF (CoeEQoe2e¢0:0R0CoEQo30) CALL MODIFY (2%N SUZ(N}sAsBoNNPsMBAS30)
700 CONTINUE
RETURN
2000 FORMAT (26HONEGATIVE OR ZERO AREAs N=15)
2001 FORMAT (BHIELEMENT95Xs5HR=0ORD95Xs5HZ~0ORDs7XsBHR-STRESS 77X
X BHT=STRESSs7XeBHZ~-STRESSs6Xs9HRZ~STRESSs11Xs4HSIG1911Xe4HSIG295X%s
X S5HANGLE//)
END




B-9

SUBROUTINE STRESS (NL} ,
COMMON HED(12) s NUMNP s NUMEL sMAXBAN S INCoNTIMEsNDT o TINC»
1 TP(300)sBP(300)9B(300)5A(305300)
COMMON/ND/CODE(150)9R(150)52(150)5UR(150)sUZ(150}sT(150)sKODE(150)
COMMON /ELEM/ NTRANSoNUMCBCsTOsG(8912)9R0O(12)sCONDI12) 9SPHT {12} 5
1 QX(12)91X(150,5)
COMMON/TAPE/ESTIG(10910)sESTIK(10910)sTEMP(10)sDU{10)sUPR(10) o
1 GUN{3911)55T(5510)5ATsRMoZMsTHETA
DIMENSION TAU(7)
MAT=TX(NL»5)
DO 500 I=1s4
[I=2%]
JI=2#THINLo )
DULTITI-11=BPlJJ-1)=UPR(II~1}
DUCTT)=BP({JJ)~UPR(ITI)
UPR(IT-1)=BP(JJ-1)
500 UPRITIY=BP(JJ)
NN=4
IFUIXINL3)eEQeIX{NLs4) ) NN=3
XNN=NN
DUI9)=0,
DU(C10)=0.
UPR({9)=0,
UPR{10)=0.
DO 510 J=1sNN
DO 510 1I=9510
1Jd=2%J+1-10
DULT)=DULII+DUTJ)/XNN
510 UPR{I)=UPRITI)+UPR{IJ)/XNN
DO 200 I=143
200 TAULT)==3,%G{1sMAT)*THETA
TAU(4)=0.0
DO 303 II=1510
DO 301 JJ=1.3
301 TAULJJII=TAULJJ)+{3e*GIL1sMAT)I*STIS5611)+2.0%#G(2sMATI®#ST(IIeI1})
1 #UPRI(II)
303 TAU(4)=TAU(4)+2#GI2sMAT)*ST {41 T)*UPRI(IT)
DO 300 M=1.3
GAM=G{ 2#M+2 sMAT)
IF(GAMsEQeOs) GO TO 300
DO 302 I1=1,10
GUNIMs IT}=GUN{Ms IT}+GUN(Ms11)%DU(IT}
DO 302 JJ=1+94
302 TAUUI) =TAULJII)I+STIIISs T T I ¥GUN(MeI1 %260
300 CONTINUE
Cr###COMPUTE PRINCIPAL STRESSES
CC=0e5#(TAU(L)+TAUI3))
CR=SQRT(0o25%# (TAU(3)=TAU(L1) ) ¥%#24+TAU(4 ) #%2)
TAUL(5)=CC+CR
TAUL6)=CC~CR
TAUL{T7)=0.
IF{TAU(4)oEQe000eANDe TAUL1)=TAUI3) 6EQe0e0) GO TO 305
TAU(T7)=280648#ATANZ2(2.¥TAU{4)sTAU(1)=TAU(3))
305 CONTINUE
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WRITE (692001) NLoRMoZMo (TAU(III91I=157)
RETURN

2001 FORMAT (I892F1003s6E15669F1003/)
END
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SUBROUTINE QUAD (NL-ISTOP)
COMMON HED(12) s NUMNP s NUMEL sMAXBAN s INCo>NTIME sNDT s TINC 5
1 TP(300)sBP(300)9sB(300)15A(305300)
COMMON/ND/CODE(ISO)@R(150)92(150)9UR(150)9UZ(150)9T(150)9KODE(1503
COMMON /ELEM/ NTRANS@NUMCBC@TO»G(BelZ)9RO(12)9C0ND(12)95PHT(12)9
1 @X(12)5IX(15055)
COMMON/TAPE/ESTIG(lOﬂlO)ﬁESTIK(lO»lO)@TEMPélO)@DU(lO)sUPR(IO)ﬁ
1 GUN(3511)sST(5510)sATsRMsZMs THETA
DIMENSION ESTIF(10210)sFORCE(10)sRRI{4)Z2Z(4)
REAL KAoMU
Cr###t QUADRILATERAL STIFFNESS FOR AXISYMMETRIC VISCOELASTIC ELEMENT
Cx¥x% COMPUTE CENTER MODAL POSITION
NN=4&
IFCIX{NLS3) eEQeIXI(NLs4&)) NN=3
XNN=NN
RM=OQ
ZM=0,
TM=0,
DO 760 J=1sNN
I=IX{NLs,J)
RM=RM+R{ 1) /XNN
IM=ZM+Z (1) /XNN
760 TM=TM+TP(I}/XNN
IF (NN2EQe3) NN=j
Ce### COMPUTE ELEMENT DATA
MAT=IX{NL:5)
CH¥##t REDUCED TIME COMPUTATIONS FOR MATERIAL PROPERTIES
CALL TABLE (OsMATsTMoPHEs ALPHA)
TMM=TM
IF (INCeGTo0) TMM=0o5%(TM+AT)
AT=TM
CALL TABLE (O0sMATsTMMsPHEs ALPHA)
RTINC=PHE*TINC
THETA=ALPHA® (TM=-TO}
IF (INCeEQcOoANDoNTRANSeEQaO) THETA=000
KA=G{1sMAT)
MU=G{2sMAT)
DO 330 1i=1,10
330 FORCE(ITI=3%KA*THETA®TEMP(I])
IF (INCoGTe0) GO TO 320
DO 700 N=lg4
I=IX{NLsN)
RR{N)=R(1I)
700 ZZ(N}=2{1)
CALL QSTIF (RReZZsNN»ISTOP)
IF (ISTOPeNEoO) RETURN
DO 810 M=1,3
GUN(Ms11)=G(2%M+1oMAT)
810 MU=MU+G{2%#M+1 ¢MAT)
GO TO 350
Cw¥##d COMPUTE EFFECTIVE LOADS
320 DO 300 M=1,3
GAM=G(2#M+2 sMAT)
IF (GAMeEQe0o0) GO TO 300
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COM1=G{2#M+1sMAT)*DINT(~RTINC/GAM)
GUN(Ms11)=COM1
COM=EXP({~-RTINC/GAM)
MU=MU+COM1
DO 310 II=1510
GUN{MoIT)=COM®GUN{MsI1)
DO 310 JJ=1510
310 FORCE(JJ)=FORCE(JINH+ESTIG(IISIT)#(COMI¥UPR(IT)=GUNI{MsI1)}
300 CONTINUE
350 DO 410 1I=1510
DO 410 JJ=1,10
410 ESTIF(IToJJ)=MURESTIGLIToJJ)+KARESTIK(II o JJ}

C QUADRILATERAL STIFFNESS IS FORMEDs ELIMINATE CENTER NODE
IF (NNeEQel) GO TO 170
NN=9

160 DO 150 II=1,NN
CC=ESTIF(ITIsNN+1)/ESTIF(NN+1oNN+1)
ESTIF(ITsNN+1)=CC
FORCE(II)=FORCE(I1})~CC*FORCE (NN+1)

DO 150 JJ=1sNN

150 ESTIF(I19sJJ)=ESTIF(ITsJJ)~CCHESTIF(NN+10JJ)
FORCE { NN+1)=FORCE {NN+1)/ESTIF(NN+1 sNN+1)
NN =NN=1
IF(NNeGE=8) GO TO 160

170 CONTINUE

Cus#% ADD ELEMENT STIFFNESS TO TOTAL STIFFNESS
DO 200 =194
DO 200 K=12
I1=2%IX(NLoI)4+K~2
KK=23#+K=2
B{II}=B(11)+FORCE(KK)
DO 200 J=1s4
DO 200 L=1s2
JJ=2%IXINLs ) +L-11=1
MM= 2% J4+ =2
IF{JJoLE.0) GO TO 200
ACJIJeT T =ALIIsTII+ESTIF (KK oMM)

200 CONTINUE
RETURN
END
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20
30
40
50

60

1000
2000

SUBROUTINE TABLE (NUMTCoMATsTMesPHE s ALPHA)
DIMENSION E(20:3912)

DATA MAXPHI/20/

IF (NUMTCeEQeO) GO TO 30

DO 10 L=1oNUMTC

READ (551000) (E(LsNoMAT )sN=153)

WRITE(692000) {(E(LsNoMAT ) sN=193)oL=1sNUMTC)

DO 20 I=NUMTC MAXPHI

DO 20 J=1+2

E(I9JsMAT I=E(NUMTCoJsMAT )

RETURN

DO 40 M=2sMAXPHI

IFIE(Ms19sMAT) oGE-.TM) GO TO 50

CONTINUE

RATIO=0.0

IF(E(Mo 1l oMAT) e EQoE(M=1919MAT)) GO TO 60

RATIO = (TM=E(M-191oMAT))/(E(Ms1sMAT)=E(M=1519sMAT})
PHE=E(M=192sMAT)+RATIO*{ E(Mo2sMAT)~E(M=152sMAT) )
ALPHA=E(M=153 sMAT)+RATIO®(E(Ms3sMAT)~E(M=153sMAT))
RETURN

FORMAT (3F10.0)
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FORMAT (14HO TEMPERATURE»>S5Xs15H SHIFT FUNCTION95X»15HCOEFFe OFe E

1XPe/{F15292E2065))
END
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FUNCTION DINT(X)
DINT=160
IF (XeEQeOo0) RETURN
IF (ABS({X)elLEs0Oel) GO TO 100
DINT=={1e0=EXP (X)) /X
RETURN

100 DO 200 1I=1510
XM=12-11

200 DINT=10+X/XM*¥DINT
RETURN
END
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SUBROUTINE QSTIF (RoZNNeISTOPR)
COMMON/TAPE/ESTIG(lO@IO)9ESTIK(10910)eTEMP(lO)oDU(lO)@UPR(IO)e
1 GUN(3911)sST{(5910)2AToRMeZMsTHETA
DIMENSION S(656)95K(696)95G{606) sS5KGI696)sH{393)sPHI(393) 0
1 IPHI(30439C{5e5)eTH(S)sIGITYIoJG(TIoKGITIsRI4YsZ(4)sRC{3)2C(3}
DATA 1G/1919192936495/
DATA JG/2919301lelolel/ .
DATA KG/le20392966553/
DATA IPHI/19359939599950799579159/
DATA C/499=2@9“2092%099°29®499‘2592%099‘299”259#@95ﬁ0992*3093*099
X 2%3,/
Ca#%% SET UP MATRIX
ISTOP=0
DO 750 I=1-10
TEMP(1)=0o
DO 750 J=1510
ESTIGIIsJ)=00
750 ESTIKI(IeJ)=0e
DO 101 11I=1,10
DULILI]I=0e0
UPR{IT)1=0.0
DO 101 JJ=1,.3
101 GUN(JJeI11=0.0
DO 740 I=145
DO 740 J=1.10
7460 S5T(I1:J)=060
AREA=0.0
Cr#z¥® LOCP ON ELEMENTS FOR QUAD
DO 1000 NT=1:NN
I=NT
J=NT+1
IF (JeGTet) J=1
COM2R{IJIH{ZIM=Z{ 1)) 4RME(ZLTII=2{J))I+RITIH{Z2{J)=-2ZM)
IF {COMsGTo00) GO TO 190
15TOP=1
RETURN
190 PHI{1211={(R{J)HIM=RM#Z2 (J}) /COM
PHI(1:2)={RM*Z{1)=R{1)%ZM) /COM
PHRI(1:3)={R{IIHZ(J)=-R{IIFZ{T}}/COM
PHI(291)={Z2(J)=2M)/COM
PHI{2:2)=(ZM=-2{1)1)/COM
PHI(293)={Z(1)~=2(J})/COM
PHI(3e1li={RM-R{(J)Y)/COM
PHI(3:2)}=(R(I}~RM}/COM
PHI(3s231={R(J)=R{I}))/COM
ce#xit INITIALIZE
DO 100 11=1s6
TH(IT1}=0,
DO 100 Jd=1:6
SKG(I11sJJ}=0e0
SG{IToJJ)=0.0
SK{ITeJJ?=0e0
100 StI1:.JU)=00
RC{1)=R(1)
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RC{2)=R{I)
RC(3)=RM
2C{1Yy=2{1})
2CL2)=2(J)
2C(3)=ZM
CALL INTER ({(HsRCo2ZC)
DO 110 IA=1,5
I=1G({IA}
J=JG{IA)
K=KG({IA)
THIKI=THIK)+H{Js 1)
DO 110 JA=145
L=1G({JA)
M=JG({JA)
N=KG{JA)
SGIKoN)=SGIKoN)+HIJoMIHCLI L) /30

110 S{KsNI=S{KsNY+H{JeM)
DO 120 1A=6,7
I=1G({IA)
J=JIG(IA)
K=KG{IA)
DO 120 JA=6:7
L=1G{JA)
M=JG({JA}Y
N=KG{JA)

120 SGU{KsNI=SGIKsNI+HIJeMIRC(T oL )} /30
DO 130 I=153
DO 130 J=1o3
DO 130 K=193
SKG{TeJ)=0SKG{TeJ)4+S5GITsKIEPHI(KsdJ)
SKGiToJ+3)=SKGI Lo 4+3)+5GI T oK +3)#PHI(KoJ)
SKG{I430J+3)=SKGII1+3sJ4+3)+S5G({1+3sK+31#PHI(KeJ)
SK{TeJ)=SK{TeJ)+S5{TaK)EPHI(KsJ)
SK{TaJ+3)=8K1T1eJ+3)+S5(I1oK+3)#PHI(KsJ)

130 SK{I4+3sJ4+3)=SK{I+3J+3)+S5(1+3sK+3)#PHI(KsJ)
DO 140 I=193
I1S=IPHI{ T sNT)
IT=15+1
DO 140 J=193
TEMP(IS)=TEMP{ISI+PHI(Je I )3#TH(J)
TEMPLITI=TEMP{ITI+PHI(JoI ) #TH(J+3)
JS=IPHI{JoNT)
JT=Js+1
DO 140 K=13
ESTIGUIS s JS)I=ESTIGIIS»JS)+PHI(Ke 1) %#SKG{KoJ}
ESTIGUISJTI=ESTIGIISsJTI+PHIIKsI ) ®SKG(KeJ4+3)
ESTIGIJT o IS)=ESTIGLISJT)
ESTIGUIToJT)I=ESTIGUIToJTI+PHI(Ks T ) %SKGIK+3pJ+3)
ESTIK{ISoJS)I=ESTIK({ISoJS)+PHIIKe 1) #SK{KeJ)
ESTIK(ISoJT)=ESTIK({ISoJTI+PHI(KoI ) %®SKIKsJ+3)
ESTIK{JT o ISI=ESTIK(ISsJT

140 ESTIK(ITsJT)=ESTIK{IToJTI+PHIIKs [)#SK(K+3eJ+3)
IF {NNoNEe1l) GO TO 160
DO 150 1I=194
DO 150 J=546
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ESTIG(IoJ)=ESTIG(IoJ+4)
ESTIK(IoJ)=ESTIK{IsJ+4)

ESTIG(JsI1)=ESTIG(IJ)
150 ESTIK(JoI)=ESTIK(IsJ)
ESTIG(5:5)=ESTIG(9+9}
ESTIK(505)sESTIK(999)
ESTIG(596)=ESTIG(9910}
ESTIK(5:6)=ESTIK(9510)
ESTIG(696)=ESTIG{10510}
ESTIK(6:6)=ESTIK{10910)
160 CONTINUE
Ca#s#s INITIALIZE STRAIN DISPLACEMENT MATRIX
AREA=AREA+COM
I=NT
J=NT4+1
IF (JoGToe4) J=1
I1=2#NT=1
JJ=2%NT+1
IF (NTeEQe&) JJ=1

STL1eIl 1=2e#(Z{JY=ZM) /30 +ST(1leIl
ST(2s11 )= (ZM=21J)) /3. +5T{2011 )
STi34I1 )= (ZM=Z1J) /3 +5T{3,11 )
STl&eIl )= (RM=R(J}) /26 +85Tl411 )
ST{5011 = (Z{J)=ZM) /3 +ST{5.11
ST{lelI+1)= (R{J)Y-RM) /36 +ST{LleII411)
ST(2,11+1)= (R{JI=-RM)I /3 +S5T(211+1)
ST{3s1I4+1)=2e%#{RM=R(J} )1 /3¢ +ST(3,11+1)
STiasIl+l)= (Z(J)-2ZM) /24 +ST{&oII+1)
ST{5:11+1)= (RM=R(J)) /3 +5T(5s11+1)
STiloJJ 1=2e®{ZM==2(13)/30 +S5T{leJJd )
ST(2edd )= (Z{1)~ZM)} /3 +STi20Jdd )
STi3edJ )= {(Z(1)-2M) /3o +ST(39Jdd )
STlaedd )= {R{I}-RM)/26 +5T{4sdd )
5Ti5044 1= (ZA4=-Z211))1 73 +S5T(5sJJ )

ST{loJdJ+l)=
ST(2eJJ+1l)=

{RM=R(I))/30
(RM=R{1}}1/3»

ST{3eJJ+11=2,%#(R{I)-RM} /3,

STlhoJJ+l)=
ST(5,JJ+1)=

{(ZM=2(1))/2
{(R{I}-RM} /3.

+ST{ledJ+1)
+5T(2e0J+1)
+S5T{3sJJ+1)
+ST{4oJJ+1)
+S5T(5eJJ+1)

ST(109)={2%{Z2(1)=2(J))~COM/RM) /36 +ST(199)
ST(269)=(2#COM/RM+Z(J)~Z2{1))7/3 +5T(299)

ST(3:9)={2(J)=-Z{1)=COM/RM} /3, +57(399)
ST(4o9)={R{JI-R{I1}) /26 +5T7(4-9)
ST{59)={COM/RM+Z{1)=2(J)}) /30 +5T(599)
ST{1:10)=(R{II-R{J}II/3, +5T(1-10}
ST{2:10)=(R{I}=R{J)) /3, +S5T(2:10)
STU3,10)=2%{R{JI=R{I}) ) /30 +5T(3-10)
STU4010)={Z2{1)=2(J1) /20 +5T{(4-10)
ST(5510)=(R{JI-R(I1) /3 +ST(5510)

1000 CONTINUE
DO 580 I1=1s5
DO 580 JJ=1510
580 ST(I1sJJ)=ST(IIsJJ)/AREA
RETURN
END
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SUBROUTINE INTER (MHeRC0ZC)
DIMENSION SS{10)oW(10})
DIMENSION RR(4)922(4)eH{393)
DIMENSION RC(3)s2C(3)
DATA W/00555555556:0,88888888850,555555556/
DATA SS8/-o7T459667500004+e 77459667/ L 1M/3/
C#u#t COMPUTE INTEGRALS
IH=0
DO 200 II=1e3
DO 200 JJ=I1+3
200 H{IleJJ)=00
RMIN=AMINLI(RC(1)RC{2)sRC(3))
RMAX=AMAX1I(RC(1)sRC{2)RC(3))
DO 100 1I=1,3
IFIRCIITIEQeRMIN}) IL=I1
IF(RCIIT)EQeRMAXY TU=TI
100 CONTINUE
DO 110 1I=1,3
IF(II@NE@IL@AND@II@NE&EU? iM=11
110 CONTINUE
RR{1)y=RC{IL)
RR{2)=RC{IM)
RR({3)=RR({1)
RR{4)=RC{IM)
ZZ{1y=2C(IL)
22(2y=22(1)
IF(ZCIIM)eLE0ZCIIU) o ANDeZC{IMIoLT6cZCILY) GO TO 150
22¢2)=s2C(LIM)
2206 =2CLILY+{RRI2)=RR{1II®{ZCLIUI=-2Z( 1))/ (RCUIU}=RR{1})
GO TO 160
150 22(4)=2CUIM)
22{2)=2CLILY+(RRI2Y-RR{1)I¥(2CIIU)~ZZ2(1))/7(RCIIU}=RR(1))
160 IFIRR(2}:EQ«RR{1)) GO TO 220
230 HH={(RR(2}1=RR(1))1%0s5
DO 210 II=1-L1IM
HR=RR{ 1) +HH®¥(10+SS(T11) )
ZT=22(1)+0e5% {SS{T1)+1e ) #(2Z(2)=221{1))
ZB=ZZ(3)40e5% (SS{IIV+101%(22{4)=22(3))
H{lolisH{10l)+HHEHR®#(ZT-2BY#WIII)
H{1o2)=H{1 o2 ) +HHR{ZT=-ZBY¥W(IT)
H{193)=H{1s3)4+0eS*¥HH*¥ {ZT#ZT=2B#ZB)%¥W{I])
H{202)=H{292)+HH®#{2T=-Z2B)#*W{I 1) /HR
H{293)=H{253)+0eSHHH#{ZTH#ZT=2B#2B)#W{(I1)/HR
210 H(3e3)=H{3 o3 ) +HH®(ZTH#2T*ZT~ZB#ZB#ZBI#WI(II) /(3 +%HR)
220 IH=IH+1
IF{IHeGEs2) GO TO 240
RR{1)=RR(2)
RR(2y=RC{IW)
IFIRR(2)EQeRR{1})} GO TO 240
RR(3)=RR{4&)
RR{4)y=RC{IV)
2Z{1)=221(2)
2Z2(2)y=2C(IW)
2Z(3)y=2Z(4)




240

215

22(4y=2C(1U)
GO TO 230

CONTINUE

DO 215 11=203
1IM1=11-1

DO 215 JJ=1.11IM1
H{TIleJJ)=H(JISII)
RETURN

END
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50

100

SUBROUTINE MODIFY (NoQoAoBoNNsMBoMMAX)
DIMENSION A{MMAXs1)eB(1)
DO 100 J=2¢MB

L=N=J+1

IF (LoLE-O) GO TO 50
B(L)=B{(L)-A(JsL)#Q
AlJolL1=060

L=N+J=1

IF (LoGT.NN) GO TO 100
Bi(L)=B(LI=AlJsN)#Q
A{JoN}=000

B(N)=Q

A{1sN)I=1e0

RETURN

END
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1000

100
150
200
300

2000

400
500

600
700

SUBROUTINE SYMBC (AsBoNNoMBoMMAX oKK)
DIMENSION A(MMAXo1)sB(1)
GO TO (100020001 KK
NNN=NN=1

DO 300 N=1oNNN

DO 200 J=2.MB

IF (A{JeNIeEQoDe0) GO TO 200
C=A(JoNY/Al1oN}
L=N+J=1

IF (LoGTeNN) GO TO 150
DO 100 1=JoMB

K=l=J+1
AlKoL)=AIKoL)=CH¥A(ToN)
AlJoN)=C

CONTINUE

CONTINUE

RETURN

DO 500 N=1oNN

DO 400 J=2+MB

L=N+J=1

IF (LoGToNN) GO TO 500
B{L)=B(L)=A(JoN)#B(N)
BINY=B(N}/AL]lN)

DO 700 1=29NN

N=NN-T1+1

DO 600 J=2,MB

L=N+J=1

IF (LoGToNN) GO TO 700
B(N=BI(N)=-A(JsN)®*BI{L)
CONTINUE

RETURN

END
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