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ABSTRACT OF THE THESIS

A Partitioning Approach for GPU Accelerated Level-Based On-Chip Variation
Static Timing Analysis

by

Michael Longqiang Zhang

Master of Science in Computer Science

University of California, San Diego, 2010

Professor Chung-Kuan Cheng, Chair

Technology and design trends have made timing analysis the bottleneck of elec-

tronic design automation (EDA) tools. Efficient and accurate timing analysis is a chal-

lenge that the EDA industry must overcome in order to move forward. Using LLC-

OCV leverages Physical Location, Path Level, and Cell type information to further in-

crease timing accuracy. This model introduces increased data complexity as a result

of maintaining delays for each unique path-level. We parallelize this computation for

co-processing on a CUDA enabled GPU. We introduce a novel divide-and-conquer par-

titioning approach for computing the per-level delay data used in the level-based aspect

of LLC-OCV. Partitioning the circuit graph halves the inherently serial structure of a

topological traversal of the circuit graph with a costly but more parallel merge step

xii



that combines the solutions of the two partitions. Using a massively parallel GPU-based

approach allows us to absorb the cost of merging by performing it in parallel. Our exper-

imental results on the ISCAS ’85 benchmark demonstrate our parallel algorithm scales

with timing graph size more efficiently than the serial algorithm. Results also show that

our partitioning approach allows us to more fully utilize the massively parallel compu-

tational resources of the GPU. Our experiments on artificial test cases demonstrate that

the parallel algorithms outperform the serial algorithm on large non-linear graph struc-

tures. We also find that LOCV timing analysis is a memory bound computation. We

expect our algorithm to perform better on the newer Fermi architecture because of the

new cached memory architecture.
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Chapter 1

Introduction

Static timing analysis (STA) is a critical phase of the digital circuit design pro-

cess. Technology and design trends have made timing analysis the bottleneck of elec-

tronic design automation (EDA) tools. As the feature size scales downwards of 32nm,

the effect of process variation is magnified, increasing the importance of STA. The scal-

ing of feature sizes also increases the number of gates such that designs can often reach

or exceed the 100-million gate mark. Furthermore, static timing analysis is only one

stage of a much larger flow of design verification, making memory consumption a con-

cern. Efficient and accurate timing analysis is a challenge that the EDA industry must

overcome in order to move forward.

As process geometries shrink, the ability to control manufacturing process vari-

ations on a single die becomes increasingly difficult. The classic Min-Max approach

used in [11], propagates the minimum and maximum delays through the circuit graph.

Using a the simple model used in classical STA results in an overly pessimistic analy-

sis. The simplistic model fails to factor the inherent statistical variation. This motivated

the rise of statistical static timing analysis (SSTA), which has been covered in literature

extensively [2, 20, 17, 9, 7]. SSTA uses a cumulative probability distribution function

(CDF) and probability density function (PDF) to represent arrival times, rather than the

single arrival time used in STA [2, 5]. Although CDFs and PDFs can be represented

using a piece-wise linear approximation with a few sample points, the arrival time prop-

agation is still computationally expensive. In particular, it involves the computation of

the convolution of two CDFs [5].
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The concept of Location-based On-Chip Variation (LOCV) is introduced in [3],

and extended to Location Level and Cell-Based On-Chip Variation (LLC-OCV) in [9].

Recently, it has been shown that intra-die variations are spatially correlated with device

characteristics [18, 13, 2]. LOCV factors in physical location using a variable derating

factor to derive a more accurate timing analysis[3]. LLC-OCV extends this further to

include the effect of Level and Cell type to further increase timing accuracy [9]. The

LLC-OCV model can be used given the necessary intra-die process silicon data and

Monte Carlo simulations. The derating factor is then based upon path location, number

of levels, and types of cells. In comparison with CDF and PDF approaches, this model is

computationally cheaper and easier to implement. As an extension to the STA, LOCV

analysis is familiar territory, making it easy to adopt and integrate into existing EDA

tools.

Another approach to accelerating SSTA is to leverage parallel computation. In

general, the trend has been a movement towards parallelism in order to satisfy the ag-

gressive demand for faster EDA. Multi-threading approaches have been utilized in the

context of SSTA [19]. Though concerns have been expressed that the lifespan of multi-

threading in EDA is limited as a result of the limited number of CPU cores [15]. Others

have sought alternative and more massively-parallel approaches using GPUs. The GPU

has been used to accelerate Monte Carlo based SSTA with 200x or more speeds ups

[7]. The fundamental disadvantage of CPU-based parallelism is its limited scale of par-

allelism. Parallelism is limited by the number of cores in a CPU, which falls in the

single digit range, as well as the overhead of thread management. Massively scaled

parallel computation using CPUs tends to be far too expensive. Despite multi-threading

on CPUs being more robust than GPUs and more suited to task level parallelism, multi-

threading on CPU fails to grow at the rate at which massively parallel threads has grown

on GPUs. Therefore, we chose to pursue GPU-based parallelism.

We implement a GPU parallel algorithm for computing the per-level delay data

used in the level-based aspect of LLC-OCV. We also introduce a divide and conquer ap-

proach that partitions the timing graph into two partitions, and performs the propagation

of delays from both input and output. Our approach reduces the sequential complexity

of the problem. We divide the problem into two sub-problems, whose solution can be
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combined to derive the solution to the original problem. Partitioning the circuit graph

halves the inherently serial structure of a topological traversal of the circuit graph with

a costly but parallel merge step that combines the solutions of the two partitions. Using

a massively parallel GPU-based approach allows us to absorb the cost of merging by

performing it in parallel.

By partitioning the problem, we also reduce memory consumption by reducing

the amount of data propagated through the graph. Since per-level delay data must be

propagated from source to sink, the number of levels that must be processed and stored

at a given node is directly proportional to circuit size. A partition reduces the effective

depth of propagation, reducing the amount of data propagated and stored.

We test serial, parallel, and partitioned parallel algorithms on three CPUs and

two GPUs. Our results show that our parallel algorithm scales more efficiently than

the serial algorithm. Our partitioning approach successfully increases the amount of

parallelism that can be exploited by the GPU, and accelerates computation. Also, we

conclude that the timing analysis problem is a memory bound computation.

This thesis is organized into a total of five chapters. Chapter 1 is the introduction.

Chapter 2 presents background information on timing analysis and parallel computation.

Chapter 3 presents the algorithms for computing the LOCV delay propagation serially,

in parallel on the GPU, and in parallel on the GPU using our partitioning approach.

Chapter 4 presents the experimental design, the experiments, and their results. Finally,

Chapter 5 will wrap up the thesis with the conclusion.



Chapter 2

Background

2.1 Timing Analysis

The verification of a circuit design consists of three major phases: functional

design verification, physical design verification, and timing verification [16]. Functional

design verification ensures that the circuit performs the correct function at a high level.

Physical design verification ensures that the design meets physical constraints such as

wire separation and component dimension constraints. Timing verification, of which

timing analysis is the primary computation, validates the path delays from the input to

the output. When a signal propagates through a circuit, it propagates through various

components and wires to reach any given point. Timing verification ensures that when

a bit changes, the signal generated propagates through the circuit in time for the next

clock cycle.

2.1.1 Static Timing Analysis

Static timing analysis (STA) is a method for verifying the timing of a circuit

without performing circuit simulation. Circuit simulation is intractable for large scale

designs. STA can be performed using either path-based or block-based methods. Both

approaches have been implemented and discussed in literature [16, 13]. The primary

criticism of path-based approaches is the exponential growth in complexity with prob-

lem size as a result of its usage of path enumeration [16]. This has led to the popular-

4



5

ity of block-based approaches[20, 5], which use a non-enumerative approach, reducing

computational complexity at the cost of increased memory. With circuit sizes already

prohibitively large and growing, we choose to use a block-based approach.

Block-based methods use the idea of slack to avoid the enumeration of paths.

Slack is simply the difference between the required time of arrival of the signal and the

arrival time of the signal. In STA, the earliest and the latest arrival times for a signal to

propagate to a given point in the circuit graph are computed. Computation of the earliest

and latest arrival times can be performed by propagating the maximum and minimum

delays in a topological traversal of the circuit graph. Delay measures the time from the

creation of the signal to the arrival of the signal. Each edge in the graph carries a weight,

which represents the time it takes for a signal to propagate across that edge, or wire. At

each node in the circuit graph, only the maximum and minimum delays from all paths

leading to the node are propagated. The maximum and minimum delays of the whole

circuit graph can be found by finding the max and min of the output nodes.

Figure 2.1 demonstrates a simple three node graph with weights for each edge.

The maximum delay for reaching each node is shown inside the node’s circle. The

output node retains the maximum between 0.9 and 1.0. However, classical static timing

Figure 2.1: A simple three node graph demonstrating propagation of delays in static

timing analysis.

analysis is inaccurate and tends to be pessimistic as a result of its overly simplistic

model.
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2.1.2 Intra-Die Variation

Intra-die variation is the variation in the properties of the silicon on which the

circuit is manufactured. It is impossible to manufacture a perfectly uniform piece of

material, and consequently there is process variability. As circuits scale increasingly

smaller, the effect of variation is magnified. At larger sizes, the variation is masked be-

cause a given wire may cross several regions whose properties average out. However,

as feature sizes become smaller, the slightest variation can drastically affect the actual

delay for propagating between two pins. Intra-die variation often exhibits spatial corre-

lations. Devices in the same region are likely to have similar properties. This has been

shown to be true for gate location and length [3, 9]. The simple STA model presented

above fails to capture intra-die variations, resulting in inaccurate timing analysis. Sta-

tistical static timing analysis attempts to remedy this, though at the cost of additional

computational cost.

2.1.3 Statistical Static Timing Analysis

Statistical Static Timing Analysis (SSTA) was designed to address the short-

comings of STA. Whereas STA is deterministic and cannot account for process effects,

SSTA uses a probabilistic model. SSTA models delay as a distribution rather than a

single value. Like STA, it can be done using a path-based or block-based approach. In a

path-based approach, SSTA requires that you specify the paths of interest, as path enu-

meration remains intractable. The block based approach follows the same flow as STA.

The distributions of arrival and required times are propagated in a topological traversal

of the circuit graph. Figure 2.2 shows how SSTA uses distributions rather than sin-

gle values. The major computational challenge of SSTA is in the propagation of delay

distributions [2]. Since SSTA models the correlations between arrival times and gate

delays, the correlations must be taken into account when propagating the distributions.

This is typically done using Monte-Carlo methods, which draw random values from the

distribution, and performs STA over the entire graph repeatedly with random samples

for each run. Monte Carlo SSTA has been successfully parallelized on the GPU in [7].

Analytical theoretical frameworks for performing SSTA have also been proposed [13].
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Figure 2.2: A simple three node graph demonstrating propagation of distributions in

statistical static timing analysis.

Criticisms of SSTA target its complexity, and difficulty in using within optimiza-

tion flows. Another challenge comes from getting the necessary manufacturing process

data from fabrication companies. Ultimately, the improvement in accuracy is not worth

the effort of it. Instead, deterministic STA has been modified to model process effects.

Location-based On-Chip variation (LOCV) is one such method that exploits the location

of a cell to derive a variable derating factor based on the distance covered by a path.

2.1.4 Location Level and Cell Based On-Chip Variation Analysis

LOCV has already been proposed as a standard, and receives wide support from

fabrication companies. LLO-OCV is a methodology that extends LOCV using Gate-

Level and Cell-based perspectives to further enhance the accuracy [9]. [9] shows that

information about the gate-level, the number of gates along a path, can be used to ac-

count for process variation more accurately. Like Location-Based OCV, Level-Based

OCV also generates a variable derating factor which is used to enhance traditional STA.

While Location information is attainable given the placement of the circuit, gate-level

information must be propagated through the graph during the STA flow. In order to ex-

ploit Level-Based information, the max and min delay for all paths of a given gate-level

must be computed. The delay per gate-level is computed by propagation of the max

and min for each gate level to each node in topological order. Figure 2.3 demonstrates
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the information maintained in Level-based OCV. As the number of unique path lengths

Figure 2.3: A simple three node graph demonstrating propagation of delays per path

length in level-based on chip variation analysis.

increases with the depth of the graph, the number of delays that must be computed and

propagated becomes expensive. Our goal is to address this problem by making this

computation more efficient, allowing the LLC-OCV methodology to be used for more

accurate STA. Our approach is to use parallel processing.

2.2 Parallel Processing

2.2.1 Forms of Parallelism

An algorithm may be decomposed into parallel computations at various granu-

larities. Fine grained parallelism assigns each thread to perform a small task, and then

communicate its results to contribute to the greater computation. Coarse grained par-

allelism uses threads that perform a larger amount of work before communicating with

other threads. Fine grained parallelism has a low computation to communication ratio.

Coarse grained parallelism has a high computation to communication ratio.

A given problem may have one or more types of parallelism that can be ex-

ploited. Traditionally, focus has been placed on instruction-level parallelism, which

re-orders a stream of instructions and executes them in a pipeline. However, growth
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with this approach was not sustainable. Task level parallelism is the execution of multi-

ple potentially different programs in parallel on the same data. A major challenge with

task level parallelism is dependencies. Communication and sharing of data is complex,

costly, and difficult to debug. In contrast, data parallelism exploits a computation where

the same instructions are performed on different data, in which case the computations

are independent of each other. Many scientific applications exhibit strong data paral-

lelism.

2.2.2 Parallelization Using CPUs

Parallel processing can be broadly categorized as using either CPUs or GPUs.

With CPUs, coarse grained parallelism is achieved by executing multiple threads on

multiple processor cores. Multiple computers are networked together into clusters which

are coordinated using the MPI protocol. MPI facilitates the distribution of threads across

clusters of computers to perform computation in parallel. More recently, the trend has

shifted from clusters of computers towards increasing the number of cores on a single

chip. Each core is self sufficient in that it maintains its own instruction pointer, regis-

ter state, and provides extensive instruction level parallelism. Multi-core chips rarely

exceed 10 cores per chip . The scaling of the number of cores is not expected to grow

rapidly in the near future. However, the overhead of creating and managing threads in a

multi-core environment is less than using the MPI protocol for a cluster of CPUs.

CPUs provide fine grained parallelism through instruction level parallelism. His-

torically, CPU scaling has focused on out of order execution, pipelining, and a memory

hierarchy that can support this fine-grained parallelism. The CPUs memory hierarchy is

essential for supporting all types of parallelism on the CPU. Up until very recently, the

GPU has lacked a proper memory hierarchy.

The cost of purchasing and setting up a cluster of computers is high. The power

consumption for a cluster is also extremely high. However, shifting to a multi-core CPU

is unsatisfactory because it lacks the scale of parallelism achievable by a cluster. GPUs

are the best choice for a cheap solution to massively data parallel computations. A five-

hundred dollars state of the art Fermi architecture GPU has 480 cores with a clock rate

of 1.4 GHz.
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2.2.3 Parallelization Using GPUs

The usage of GPUs for general purpose computation is motivated by the mas-

sively parallel architecture it developed as a result of being optimized for the intensely

data parallel application of computer graphics. The same operations are performed on

millions of vertices, pixels, and other graphics primitives. As GPUs moved from their

fixed-function pipelines to programmable shader pipelines, adventurous individuals ex-

plored representing their data as textures, and performing computations using custom

shaders. Many scientific applications exhibit high levels of data-parallelism, and Gen-

eral Purpose computation on GPUs grew until Nvidia, a leader in the industry, began

directly supporting it with their CUDA architecture. Along with the CUDA architec-

ture, Nvidia provided a C API for managing memory transfer, and executing programs

in parallel on the GPU. Recently, a standardized API with industry wide support has

gained momentum, and Microsoft has entered the arena with its own DirectCompute as

part of their DirectX 11 release. The programming model used in C for CUDA, Nvidia’s

C API, is similar to that of OpenCL. C for CUDA is used here for its currently superior

documentation and support. GPU for co-processing is a rapidly growing field. C For

Cuda

2.2.4 CUDA Programming Model

Nvidia provides a very simple set of C extensions, called C for CUDA, for pro-

gramming the GPU. The goal of the programming model is to make parallel program-

ming transparently scalable, much like how 3D graphics applications scale to take ad-

vantage of increasingly more powerful GPUs with widely varying numbers of cores.

The goal is to allow code to be written once, and have performance scale with newer

hardware using more cores. Fundamentally, it consists of three core abstractions: a

hierarchy of thread groups, a hierarchy of memory, and barrier synchronization.

C for CUDA provides a C extension which invokes a kernel. A kernel is piece

of C code intended for running on the GPU. When you call a kernel for execution on

the GPU, you specify dimensions for the execution of that kernel in parallel. The GPU

will automatically create a single thread to run a single instance of the kernel. C for
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CUDA uses a hierarchy of threads abstraction, which allows the programmer to specify

the dimensions of a grid and block. As shown in figure 2.4, a kernel call executes a

one or two dimensional grid of thread blocks. A thread block is a one, two, or three

dimensional set of threads. A kernel invocation with grid dimension (3, 2) and block

dimension (5, 3, 1) will spawn a 3x2 grid of thread blocks for a total of 6 blocks. Each

block will create a 5x3x1 block of threads, for a total of 15 threads per block. This kernel

call creates in total 90 threads. Each thread has a unique ID number within its block.

Each block has a unique ID number within the grid. These IDs and the dimensions

of the kernel invocation are automatically available within a kernel thread, allowing a

thread to determine its position in the scheme of things, and ultimately its role in the

parallel computation. The proportions of the thread hierarchy used to generated threads

from a kernel call is called the execution configuration. C for CUDA also provides an

abstraction to the memory system, as shown in figure 2.5. There are five different types

of memory: global, local, texture, constant, shared, and register. The global memory is

the memory shared and accessible to all threads. However, since global memory is off-

chip reading and writing to it is extremely slow. Local memory is also off-chip memory

but is accessible only by a single thread. Local memory is used only when there are

insufficient registers for all threads to share. Texture memory is a cached memory that is

accessible by all threads, and provides special texture-based access. Texture memory is

optimized for 2D spatial locality, so threads in the same warp accessing texture addresses

that are close together will achieve best performance. Constant memory is a cached

memory also accessible by all threads, but provides register access latencies when all

threads in a warp access the same address. Shared memory is an on-chip memory shared

by all threads within the same block. The benefit of shared memory is that its access

time is comparable to register access times, assuming there are no bank conflicts. Shared

memory is divided into banks across the chip potentially allowing all executing threads

to access memory at once. Bank conflicts occur when two threads access memory within

the same memory bank, which forces the memory requests to be serviced sequentially

rather than in parallel. Finally, registers are accessible by only the thread it belongs to.

Finally, C for CUDA provides an abstraction for synchronization. Barrier syn-

chronization allows all threads in a block to synchronize at the barrier. Barrier synchro-



12

nization forces all threads in a block to stall until all threads in the block have reached

the barrier. Then all threads will be able to proceed beyond the barrier. Barrier synchro-

nization is handled by the hardware, and is done with virtually no overhead. However,

there are no guarantees on the synchronization of threads in different blocks. A kernel

call can be seen as a barrier synchronization for blocks. C for CUDA also provides a

way to execute kernel calls asynchronously with memory. A kernel can be executed on

a specified stream, a sequential queue of tasks to be performed by the GPU. Memory

transfers can be executed simultaneously with kernel calls. A memory transfer can be

executed on a separate stream, allowing some of the memory transfer time to be masked

by kernel execution time in a separate stream.

2.2.5 CUDA Architecture

The CUDA architecture consists of a set of Streaming Multiprocessors. An

streaming multiprocessor consists of multiple Scalar Processors cores, each of which

executes a thread. Each multiprocessor also has a multi threaded instruction unit as well

as on-chip shared memory. The multiprocessor creates, manages, synchronizes, and

executes threads concurrently with zero scheduling overhead.

CUDA uses an architecture called single instruction multiple thread (SIMT).

Each thread runs on a single processor core, and has its own instruction address and

register state. Groups of threads are organized into warps. A warp is a group of threads

that are executed simultaneously. Individual threads in a warp all start on the same

instruction, but are otherwise free to branch and execute independently. Since each warp

executes simultaneously on a multiprocessor, and a multiprocessor can only execute one

instruction at a time, each branch must be executed in serial. When a multiprocessor

is given multiple thread blocks to execute, it organizes them into warps, and executes

whichever warps are ready for their next instruction. With large numbers of blocks,

a multiprocessor can mask the memory access latency of a warp by executing another

warp rather than stalling. Since several threads may be assigned to a core at any point in

time, the total registers are divided amongst the threads. A limited number of registers is

what creates the necessity for local memory, allowing what normally would have been

stored in register memory to overflow into device memory. Having each thread own its
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own registers allows for the no overhead warp scheduling. SIMT differs from Single

Instruction Multiple Data architectures (SIMD), in that it provides an abstraction by

specifying only the behavior of branching, rather than enforcing no branching. From

a programmer’s perspective, SIMT can be ignored, though at the cost of substantial

performance degradation.

In particular, the Nvidia G200 architecture used in the Tesla C1060 GPU has 8

cores in each multiprocessor, and a total of 30 multiprocessors. It schedules the exe-

cution of half-warps rather than full warps. We use the Tesla C1060 GPU as well as

the 8600M GT, both of which follow the 8 core architecture and uses half-warps. The

8600M GT only has 4 multiprocessors for a total of 32 cores.

The Nvidia GF100 Fermi architecture is a redesigned CUDA architecture re-

leased in April 2010. Its architecture is discussed here briefly as a prelude to the later

discussion on the new architecture’s effect on applications such as ours. The Fermi ar-

chitecture has 32 cores in a Streaming Multiprocessors, and supports double precision

performance comparable to CPUs. It can simultaneously schedule two independent

warps, and no longer uses half-warps. It also provides a unified address space along

with 64-bit support. Most importantly, it introduces a full memory hierarchy consisting

of a configurable L1 and unified L2 caches. It supports concurrent kernel execution

as well as out-of-order thread block execution, and two overlapped memory transfer

engines.
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Figure 2.4: The thread hierarchy abstraction used in the CUDA programming model

[12].
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Figure 2.5: The memory system used in the CUDA architecture [12].



Chapter 3

Algorithms for Level-Based On-Chip

Variation

3.1 Problem Statement

Given a directed acyclic circuit graph with weighted nodes, compute the mini-

mum and maximum delays for each unique path length from input to output for use in

LOCV STA using a scalable and low cost solution. Delay is defined to be the sum of

the weights of the nodes in a path. Since computing the minimum delay is identical to

computing the maximum delay except for a change from using the maximum to mini-

mum operator, the remainder of this thesis will discuss only determining the maximum

delay. Parallelization of the computation using GPU is used to achieve the scalable and

low-cost objectives of the problem. The problem can also be phrased as an efficient us-

age of the GPU for accelerating the computation of maximum delays through a directed

acyclic circuit graph with weighted edges.

Given a timing graph G, a directed graph whose vertex set V (G) contains all pins.

The weighted edges of the graph represent the wire connections with propagation delays

corresponding to the weight of the edge. Timing analysis is performed from register to

register. We cut the graph along the register components, resulting in a directed acyclic

graph. The input to a register component becomes the output of the timing graph, and

the output of the register component becomes the input of the timing graph. The timing

16
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analysis problem is formulated as the topological propagation of the maximum delay

through the timing graph. Since the concept of a topological traversal is inherently

serial, we define the notion of a topological block.

3.1.1 Topological Block Ordering

A topological traversal is defined as a traversal through a directed graph in which

each node is visited after all of its parents have been visited. We refer to a topological

block as the set of nodes whose order can be freely interchanged in a topological traver-

sal. This definition implies that nodes in a topological block have no interdependencies.

The concept of a topological block enables a data parallel perspective on the timing

analysis algorithm. The algorithm for sorting nodes of a graph into topological blocks is

essentially a breadth first search and is not presented here. In figure 3.1, a simple graph

is shown seperated into topological blocks. Note that the longest path through the circuit

graph is exactly one less than the number of topological blocks. In practice, since the

input nodes of the graph do not need to be visited, the number of topological blocks that

need to be computed is equal to the longest path. The delays for a circuit are recomputed

Figure 3.1: A simple graph separated into topological blocks by the vertical lines.

frequently in optimization programs. Rather than traversing the graph, which may be

originally stored in a graph structure of node objects connected via pointers, we compute

the topological block ordering and store it in a data structure that provides a structured

access pattern. Computing the topological block ordering provides a reusable ordering
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for repeated calculations of the delay. Computing the topological block ordering can be

easily updated for incremental changes.

3.2 The Serial Algorithm

The basic serial algorithm for computing the maximum delays for each unique

path length is simply a topological traversal of the circuit graph where each visit to a

node computes the maximum delay for each unique path length propagated from the

node’s parents.

3.2.1 Data Structures

The serial algorithm does not use any specialized data structures except for one

used to store the maximum delay for each path length. The delay data structure is a two

dimensional array where the first dimension has a size equal to the longest path, and the

second dimension is equal to the number of nodes. If an element of the delay array has

a value of -1, it represents that no delay of that path length has been computed. Figure

3.2 shows the strucutre of this array. In the serial algorithm, a smaller data structure

Figure 3.2: An array structure used to store the delays for each unique path length for

each node in the graph.

involving lists rather than an array could be used to store delays of levels, however



19

the predictability of the access pattern for this structure ultimately provided superior

performance. The array wastes memory because memory is allocated for storing the

delay of all possible path lengths, even though some path lengths do not occur.

3.2.2 Algorithm

The serial algorithm simply computes each topological block in order. Each

node in the topological block is visited. Each parent of each node in the topological

block propagates its delays. The propagated delay for each path length of each parent

node is compared to the delay to the current max delay of the corresponding incremented

path length to determine whether to overwrite the current maximum delay with the new

maximum delay. The pseudo code for this algorithm is presented in figure 3.3.

1: for each block b do

2: for each node n in block b do

3: for each parent p of node n do

4: for each level l < current block b do

5: if delay[p][l] 6=−1 then

6: d← delay[p][l] + delay of edge

7: if d > delay[n][l +1] then

8: delay[n][l +1]← d

9: end if

10: end if

11: end for

12: end for

13: end for

14: end for

Figure 3.3: Pseudocode for the serial LOCV STA algorithm.



20

3.2.3 Approaches to Improving Performance

In order to improve upon the serial algorithm, we considered two major ap-

proaches: minimize the number of delays that need to be incremented and compared,

and the second is to parallelize the algorithm and execute it on a GPU. The primary dif-

ference between classical STA and LOCV STA is the increased number of delays that

must be propagated resulting from maintaining a maximum delay for each unique path

length. The increase in computations also causes an increase in the data parallelism of

the computation. In order to determine how to parallelize the algorithm, it is helpful to

Figure 3.4: This figure shows the serially dependent components of computation as

horizontally adjacent boxes.

view the algorithm in a deconstructed manner showing which computations are sequen-

tially dependent. Figure 3.4 is a diagram showing which parts of the computation can be

done in parallel, and which parts of the computation must be done serially. Horizontally

adjacent boxes are serially dependent, and vertically adjacent boxes can be computed

in parallel. The key units of computation that must be done sequentially are the topo-
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logical blocks, and the maximization stage that compares the updated delays from each

input node to determine the maximum delay that should be retained at each node. For

each topological block, there are two sequentially dependent phases of computation, the

addition of the delays for each level, and the maximization over the input nodes for each

level.

3.3 A GPU Parallel Algorithm

The following sections describe a parallel algorithm implemented on the CUDA

architecture using C for CUDA. The first step in designing an algorithm for the GPU

is to deconstruct the algorithm for execution on the GPU. In order for the algorithm to

run on the GPU, it needs to be structured as a set of independent sub-problems that can

each be broken into potentially dependent sub-sub-problems. The first division forms

a coarse-grained parallel decomposition. The second division is a fine-grained paral-

lel decomposition. At the lowest level, we must decide what function each individual

thread will perform. The deconstruction corresponds directly to the execution configu-

ration of the GPU kernel. Given the execution configuration, the data structures must be

designed for optimizing accesses to memory. The execution configuration dictates the

form of the data structure because the accesses to the data structure need to be structured

and efficient. Finally, the actual kernel program follows naturally from the execution

configuration and data structure design.

Due to the synchronization within a kernel being limited to the block scoped

barrier synchronization, the synchronization of each topological block must be done at

the kernel level. For each topological block, the natural decomposition of the compu-

tation is into two kernels: an add kernel, and a max kernel. These kernels correspond

directly to the add and max phases performed for each topological block described in the

previous section. We simply state without, presenting pseudo code, that the CPU code

simply iterates over each topological block and executes the add and max kernels for

each block after transferring the necessary input connectivity data onto device memory.

For each kernel, we describe, in order, the execution configuration, data structures, and

the kernel code.
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3.3.1 The Add Kernel

Execution Configuration

In order to fully utilize the fine-grained data parallel capabilities of the GPU, we

decided to have each thread on the GPU perform a single addition for propagating the

delay for a single level from a single input node for a single node of a topological block.

We also want to ensure that each thread block will have enough threads. We assign each

thread block to perform the propagation from all input nodes for a given node. Therefore

the 1st dimension of the grid has a size equal to the number of nodes in the topological

block.

In order for the kernel to execute efficiently, memory accesses should be coa-

lesced. Coalesced memory accesses occur when threads of the same warp access mem-

ory within the same block of memory. In order for memory accesses to be coalesced,

the width of the thread blocks needs to be a multiple of the half-warp size and the data

structure needs to have a width with a multiple of 16. As mentioned previously, the

memory alignment of 16 bytes is enforced by the method of allocation provided by C

for CUDA. Therefore, we are only restricted by the requirement of the execution block

width being a multiple of a multiple of half-warp.

Memory coalescing dictates that a warp of threads should access the delays for

the same input node. We conclude that the execution configuration for a thread block

should have the first dimension be the number of levels padded to a multiple of 16,

and a second dimension equal to the number of input nodes. Furthermore, adhering to

constraints on the number of threads in a block, the number of blocks should be scaled

by increasing the dimension of the grid in the 2nd dimension.

Data Structures

Figure 3.5 shows the three dimensional array used to represent the input con-

nectivity of the circuit graph. A three dimensional data structure is allocated in device

memory as a contiguous space padded to maintain memory alignment. The first dimen-

sion has a size of the number of topological blocks. The second dimension has a size

equal to largest number of nodes in a single topological block. The third dimension has
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a size equal to the largest number of input nodes to any node in the graph plus one.

The input connectivity data is structured to facilitate predictable access patterns. Using

the syntax (x, y, z) to signify the element with index x in the 1st dimension, y in the

2nd dimension, and z for the 3rd dimension, we specify that the (x, y, 0) element is the

integer name of the yth node in the xth topological block. The element at (x, y, l) is the

integer name of the node that is the lth input to the yth node of the xth topological block.

A consequence of this representation is that it wastes space because not all topological

blocks have the same number of nodes, nor do all nodes have the same number of inputs.

Elements that are not used have a value of -1. The input connectivity data structure is

Figure 3.5: This figure shows the input connectivity data structure which stores the

node of each topological block and its fanin node addresses.

placed in texture memory on the GPU device. Texture memory has the advantage of

being cached. Since the input data is laid out in a structure corresponding to the execu-

tion configuration, the accesses to input data texture exhibits strong 2D spatial locality.

This improves the access latency and overall performance of the algorithm. Although

this data is never written to, constant memory is not a good choice because constant

memory is limited to 64KB. For larger cases, input data easily exceeds 64KB.

The data representing the maximum delay for a path of each level depth is also

stored in a three dimensional array, as shown in figure 3.6. The first dimension has a size

equal to the number of nodes. The second dimension has a size equal to the number of
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topological blocks. The third dimension has a size equal to the largest number of input

nodes to any node in the graph. The delay data array is designed to optimize the max-

imization kernel in the parallelized kernel, which is discussed below. The input nodes

have a delay of 0 for level 0 by default. All other elements of the delay array are ini-

tialized to a value of -1. Actual delays for wires and components were not used because

Figure 3.6: This figure shows the delay storage data structure which stores the delays

propagated from each fanin for each level of each node.

for most of the test cases, no actual data existed, and accessing the delay information

for the larger industrial test case required writing a parser for a complex data format.

However, we anticipate that using actual delay data will not affect the performance at

all, because delay data would be stored in constant memory, and due to the execution

configuration of our kernels, each warp of threads will always be accessing the same

delay data address.

Since this memory needs to be accessed from global memory, memory coalesc-

ing is crucial for good performance. A requirement for memory coalescing is that the

width of the first dimension of each data structure needs to be a multiple of 16 bytes.

C for CUDA memory allocation calls automatically pad the memory to ensure that it is

aligned.
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The Kernel

Using the execution configuration presented above, a thread can easily determine

which node, which input node, and which path length delay it should propagate by

accessing the input connectivity data structure. Each warp will have coalesced reads

from the delay data structure. Each warp will always read and write to a contiguous

space in memory because each thread in a warp differs only in which path length it is

computing.

The pseudo code for the add kernel is presented in 3.7. A key aspect of GPU

1: nodeID← blockID in the 1st dimension

2: scaleID← blockID in the 2nd dimension

3: labelID← threadID in the 1st dimension + scaleID∗ size of block in 1st dimension

4: f aninID← threadID in the 2nd dimension

5: if labelID < current topological block then

6: nodeAddress← input[nodeID][0]

7: if nodeAddress >= 0 then

8: f aninAddress← input[nodeID][ f aninID+1]

9: if f aninAddress >= 0 then

10: parentDelay← delay[ f aninAddress][labelID][0]

11: if parentDelay >= 0 then

12: delay[nodeAddress][ f aninID][label +1]← parentDelay+ edgedelay

13: end if

14: end if

15: end if

16: end if

Figure 3.7: The pseudocode for the add kernel.

programming is making sure to keep the processor busy. Keeping the processor busy

allows you to mask the potentially slow memory access times. To keep the GPU busy,

the kernel should run with a large number of threads per block, and a large number

of blocks per grid. A large number of threads allows multiple warps to be swapped

between, keeping the multi-processor busy. A large number of thread blocks allows at
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least one, and hopefully more than one thread block to be assigned to a multi-processor.

The cost of blocks that are operating on an element in the input array that does not

specify a node is masked by the GPUs ability to schedule several blocks on the same

multiprocessor.

The dimensions of the data structures, as well as the execution configuration,

cater to the maximum dimensions of certain features such as: maximum number of in-

put nodes (maximum fanin), or all the possible unique path lengths. However, not all

nodes have that many fanins, nor do all nodes have a delay for each path length. The

data structures are filled with negative values to denote the lack of a value. As shown

in the pseudo-code, checks are made to see if these conditions are true. If a thread is

responsible for a value that does not exist, it exits. Warps that complete will not be

scheduled, which does not contribute to branching penalty. Due to our execution con-

figuration, any filler entries in the input connectivity will cause entire warps, or thread

blocks to complete after a few conditionals. Once retired, these warps or blocks do not

negatively impact performance. We make the trade off between a well structured GPU

kernel with structured memory accesses versus efficiency of computation. We choose

to waste some computation in favor or superior memory access latency and bandwidth.

As we will see later, LOCV timing analysis is memory bound.

3.3.2 The Max Kernel

Execution Configuration

We decompose the maximization problem such that each thread performs the

maximization over all fanins for a given level of a specific node. This corresponds to

doing the max over the columns of figure 3.6. Once again, in order to have a large num-

ber of thread blocks without having too few threads per block, we assign each thread

block to perform computations for a specific node. Consequently, the grid’s 1st dimen-

sion has a size equal to the number of nodes. The block’s 1st dimension has a size of the

number of levels, which is upper bounded by the current block number plus one. This

execution configuration ensures that when writing the maximum delay back to global

device memory, the write is coalesced. The writes are coalesced because, as shown in
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figure 3.6, we are the writing to the top row of each node.

The Kernel

The max kernel acts upon the same data structures used in the add kernel. The

pseudo code for the max kernel is presented in figure 3.8. From the figure, we can see

that a thread determines which node it operates upon by checking its blockID in the 1st

dimension. It determines whether or not scaling was used to overcome the maximum

thread limit, by checking the 2nd dimension of the blockID. The level that it is assigned

to maximize is then its thread ID in the 1st dimension plus the width of a thread block

if scaling was used. It declares a register variable to store the maximum delay over

the fanins. Then it acquires the actual node address from the input connectivity array.

For each fanin, it acquires the delay stores in the delay structure and stores it in the

max delay register if it is greater than the current max delay. This process is done

serially rather than with a divide and conquer approach because in the vast majority

of cases, the number of fanins is 2. Furthermore, synchronization needed for a log

order maximization is expensive. We keep the maximum delay in register memory to

minimize accesses to global memory. Once the maximum is computed, it is written back

to global memory.

Asynchronous Kernel Calls and Memory Transfer

Memory transfer times and kernel executions can be expensive in terms of per-

formance. Each kernel execution comes with an overhead. Each memory transfer is

naturally expensive as the data must be transferred across the PCI bus. However, the

cost of memory transfers can be hidden by executing memory transfers asynchronously

with kernel calls. The algorithm uses a separate stream for memory transfer, and the

default stream for kernel calls. The input data structure is transferred onto device mem-

ory in pieces, where each piece represents the input connectivity of a single topological

block. Since each pair of add and max kernels act solely on a single topological block,

those kernel calls are dependent only upon the one piece of memory transfer relating to

that topological block. The kernel calls wait on the appropriate memory transfer. The

memory transfers are executed asynchronously, and queued one after another. This al-



28

1: nodeID← blockID in the 1st dimension

2: scaleID← blockID in the 2nd dimension

3: levelID← threadID in the 1st dimension + scaleID∗ size of block in 1st dimension

4: maxDelay← -1.0

5: nodeAddress← input[nodeID][0]

6: for each fanin f do

7: delay← delay[nodeAddress][ f ][levelID]

8: if delay > maxDelay then

9: maxDelay← delay

10: end if

11: end for

12: if maxDelay≥ 0 then

13: delay[nodeAddress][0][levelID]← maxDelay

14: end if

Figure 3.8: The pseudocode for the max kernel.

lows the memory to transfer at full speed, and the kernels are executed as soon as the

necessary memory is available. Note that kernel calls are by default asynchronous as

well.

3.4 A Partitioned GPU Parallel Algorithm

In order to maximally exploit the parallelism of the GPU, we seek to increase

the amount of parallelism available in the computation. The basic parallel algorithm is

forced to perform each topological block in sequential order. However, a key insight is

that it is possible to partition the graph into two halves. Then propagate delays from

the input to the boundary of the partition, but also propagate delays from the output to

the boundary of the partition. Then, by combinatorially summing the levels and their

delays, we recover the final solution for the maximum delay for each path length from

input to output.

The process of merging is shown in Figure 3.9. The node shown in green is a
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boundary node. It receives delays from nodes in the left partition, and nodes in the right

partition. The figure shows that this particular boundary node has three unique path

lengths, ranging from 2 to 4, from the input nodes. The boundary node also has three

unique path lengths between it and the output nodes. We combinatorially add every

combination of one delay from the left partition to one delay of the right partition. For

example, we take the delay 3.2 for the path of length 3 from the left partition, and add

it to the delay of 0.6 for the path of length 3 from the right partition. We can conclude

that 3.8 is the maximum delay for paths from the input to the output with a length of

3 to reach this specific boundary node, and a length of 3 to reach the output node from

this boundary node. However, we must compare this with the sum of the delays for path

length of 2 from the left partition and path length of 4 from the right partition. This

combination also gives us a total path length of 6. Therefore, we compare these two

sums: 3.2 and 3.8, and retain the maximum. Thus, we conclude that for path lengths

of 6 from the input to the output of the graph passing through this boundary node, the

maximum delay is 3.8. Note that we have only discussed one boundary node, and the

same computation must be performed for all boundary node. Then, to find the overall

maximum delay for a given path length, the delays for each boundary node must be

compared. However, the final maximization over boundary nodes is analogous to the

maximization over output nodes, and can be performed on the CPU for no penalty in

performance. This combinatorial addition and maximization must be performed for each

and every node in the boundary cut. We use a node-cut for partitioning the graph. Both

left and right partition propagations will propagate delays to the nodes on the boundary

cut.

By partitioning the graph in this method, we can now perform the the propa-

gation for each topological block from each partition in parallel. Figure 3.10 shows

the new structure of this computation. Partitions are performed in parallel, though an

additional merge step must be performed. In a large graph, a careful selection of the

partitioning can reduce the number of topological blocks in a partition by half, and re-

placing it with only two sequential steps in the merging operation. Partitioning the graph

reduces the sequential complexity of the algorithm. A natural progression of this idea is

to perform further partitions, and replace them with a merge operation. However, fur-
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Figure 3.9: This figure shows the process of merging delays propagated from the left

and right partitions at a boundary node.

ther partitions would incur significantly greater computational cost. The first partition is

relatively cheap because the timing analysis problem treats all input nodes of a graph as

the same. All output nodes of the graph are also the same. Input and output nodes can

be merged into super input and super output nodes respectively, without loss of informa-

tion. However, further partitions would need to maintain the maximum delay from each

specific input node of the sub-partitions to each specific output nod of the sub-partition.

This leads to a combinatorial increase in delays that must be propagated. Effectively,

this performs an extra LOCV STA pass through the graph for each input node.

The question of how to partition the graph is also a challenge. The objective

of this partition is to find a topologically balanced cut with as few boundary nodes as

possible. A topologically balanced cut optimally reduces the number of serial topolog-

ical blocks by splitting the number of serial topological blocks in half. Minimizing the

number of boundary nodes reduces the cost of merging the final solution. We take a

very simple approach of performing a topological block ordering, and selecting nodes

to add to the left partition in topological order until the partitions are equal in size. A

more complex implementation was not used due to time constraints.
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Figure 3.10: This figure shows the structure of the timing analysis computation using a

partitioned graph.

3.4.1 A Modified Add Kernel

The add kernel must be modified to handle boundary node computations. The

procedure remains mostly the same because a propagation from the output to the bound-

ary can be encoded elegantly into the input connectivity data structure just be taking the

output of a node as its fanin, rather than the input. However, the only area in which

it must differ is in the computation of the boundary nodes. The delays for each level

from both left and right propagations must be stored in a data structure. The original

delay data structure has room for only one propagation. Therefore, we create another

delay data structure dedicated to storing the delays propagated from the right partition

to the boundary nodes. The boundary delay structure is identical to the original delay

structure, except that instead of containing delays for every node in the graph, it only

contains delays for each boundary node. The original delay structure was indexed by
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Figure 3.11: The input connectivity for the partitioned parallel algorithm.

the node address, the boundary delay structure is not. Consequently, a method is needed

to inform a thread which index of the boundary delay to write to. This is achieved by

embedding the index into the input connectivity data structure. Figure 3.11 shows the

modified input connectivity array. An additional element is added, called a boundary

flag. The boundary flag is set to 1 if its entry is a propagation from the right partition to

a boundary node. If this flag is set, the thread will interpret the node address as the index

into the boundary delay data structure. The pseudo code for the modified add kernel is

presented in 3.12. The structure is identical to the original add kernel, with the exception

of an added if statement which checks the bound flag. Depending on the bound flag, the

computations are written to either the delay or bound delay structures.

3.4.2 A Modified Max Kernel

The max kernel is similarly modified for the addition of the boundary nodes.

Using the same modified data structures as the modified add kernel, it determines which

delay data structure to act upon using the boundary flag. The pseudo code for the modi-

fied max kernel is presented in Figure 3.13.
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3.4.3 The Merge Kernel

Execution Configuration

The merge kernel needs to perform the task of combinatorially adding the delays

for each combination of levels for a given boundary node. Once again, to maximize

parallelism, we assign each thread to compute one such addition. We assign each thread

block to each boundary node. Thus, the grid has a 1st dimension with size equal to

the number of boundary nodes. The thread block is a two dimensional arrangement

of threads where the 1st dimension is the number of levels from the left partition, and

the second dimension is the number of levels from the right partition. Therefore, each

thread in the thread block is assigned to a single combination of levels. As a whole, the

thread block covers all combinations of levels.

Data Structures

A couple additional data structures are used for merging. The first is a simple one

dimensional array where the index of the array corresponds to the index of the boundary

delay data. Each element of the array is the node address of the boundary node with the

corresponding index. This is a simple mapping from boundary node index to boundary

node address. The second data structure is used to store the maximum delay for each

level for all boundary nodes. Figure 3.14 shows the final delay data structure with the 1st

dimension having a size equal to the number of boundary nodes. The 2nd dimension has

a size equal to the largest possible level combination resulting from the merge operation.

The Kernel

The merge kernel is design differently than the add and max kernels because

of its combinatorial structure. The combinatorial structure makes coalescing of global

memory accesses difficult. Instead, we opt to use shared memory. Unlike the add and

max kernel, data retrieved from global memory is used by more than one thread in a

thread block. Such an access pattern is good for shared memory. Furthermore, the

access pattern of our execution configuration reduces bank conflicts because threads in
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the same warp access strided sequential memory addresses. Any bank conflicts are a

relatively minor set back compared to the cost of accessing global memory.

Figure 3.15 shows the pseudocode for the merge kernel. Our strategy is to first

load the left and right delays for a boundary node into shared memory. We use only the

first few thread IDs because these threads will be in the same warp. Other threads will

reach the barrier synchronization and wait on the memory transfers to shared memory.

Once all the threads reach the barrier synchronization, the threads proceed to perform

the addition of the delays they are assigned to. An atomic max operation is then used to

store the maximums for each level into shared memory. While the atomic max operation

provided by the CUDA library only works on integers, we are able to circumvent this

restriction by converting a float into an integer. Once the computation is complete, these

integers can be converted back into floats. Once again, waiting on a barrier synchro-

nization, the thread block waits on all threads to complete the addition and atomic max

before writing the maximum delays to the final delay structure in global memory.

3.5 Complexity Analysis

The complexity of the serial algorithm is O(D) where D is the number of delays

that must be computed and propagated. The complexity of the parallel algorithm is O(B)

where B is the number of topological blocks, which is also the longest path through the

graph. The complexity of the partitioned parallel algorithm is O(B1 +B2) where B1 is

the block depth of the first partition, and B2 is the block depth of the second partition.

Ultimately, the partitioned algorithm remains linearly proportional to the topological

depth of the original graph.
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1: nodeID← blockID in the 1st dimension

2: scaleID← blockID in the 2nd dimension

3: labelID← threadID in the 1st dimension + scaleID∗ size of block in 1st dimension

4: f aninID← threadID in the 2nd dimension

5: if labelID < current topological block then

6: nodeAddress← input[nodeID][0]

7: if nodeAddress >= 0 then

8: if input[nodeID][1] == 1 then

9: f aninAddress← input[nodeID][ f aninID+1]

10: if f aninAddress >= 0 then

11: parentDelay← bound[ f aninAddress][labelID][0]

12: if parentDelay >= 0 then

13: bound[nodeAddress][ f aninID][label+1]← parentDelay+edgedelay

14: end if

15: end if

16: else

17: f aninAddress← input[nodeID][ f aninID+1]

18: if f aninAddress >= 0 then

19: parentDelay← delay[ f aninAddress][labelID][0]

20: if parentDelay >= 0 then

21: delay[nodeAddress][ f aninID][label +1]← parentDelay+ edgedelay

22: end if

23: end if

24: end if

25: end if

26: end if

Figure 3.12: The pseudocode for the modified add kernel.



36

1: nodeID← blockID in the 1st dimension

2: scaleID← blockID in the 2nd dimension

3: levelID← threadID in the 1st dimension + scaleID∗ size of block in 1st dimension

4: maxDelay← -1.0

5: nodeAddress← input[nodeID][0]

6: if input[nodeID][1] == 1 then

7: for each fanin f do

8: delay← bound[nodeAddress][ f ][levelID]

9: if delay > maxDelay then

10: maxDelay← delay

11: end if

12: end for

13: if maxDelay≥ 0 then

14: bound[nodeAddress][0][levelID]← maxDelay

15: end if

16: else

17: for each fanin f do

18: delay← delay[nodeAddress][ f ][levelID]

19: if delay > maxDelay then

20: maxDelay← delay

21: end if

22: end for

23: if maxDelay≥ 0 then

24: delay[nodeAddress][0][levelID]← maxDelay

25: end if

26: end if

Figure 3.13: The pseudocode for the modified max kernel.
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Figure 3.14: The final delay data structure which stores the maximum delay for each

unique path length for each boundary node.

1: nodeID← blockID in the 1st dimension

2: le f tLevel← threadID in the 1st dimension

3: rightLevel← threadID in the 1st dimension

4: ID← threadID in the 1st dimension + thread ID in the 2nd dimension * thread block

size in the 1st dimension

5: nodeAddress← map[nodeID]

6: if ID < numbero f levels f romle f t partition then

7: sharedLe f tDelay[ID]← delay[nodeAddress][0][ID]

8: end if

9: if ID < numbero f levels f romright partition then

10: sharedRightDelay[ID]← bound[nodeAddress][0][ID]

11: end if

12: syncthreads

13: delay← sharedLe f tDelay[le f tLevel]+ sharedRightDelay[rightLevel]

14: atomicMax(sharedFinalDelay[le f tLevel + rightLevel],delay)

15: syncthreads

16: if ID < le f tLevel + rightLevel then

17: f inal[node][ID] = sharedFinalDelay[ID]

18: end if

Figure 3.15: The pseudocode for the merge kernel.



Chapter 4

Experimental Design and Results

4.1 Experimental Design

4.1.1 Test Cases

Industrial Test Cases

We used an industrial case that was provided in the LEF/DEF format, a common

format used in the industry. The DEF file contains the graph connectivity data. Using

a DEF parser acquired from the si2.org website, we extracted the circuit graph from the

test case. In order to determine the direction of each edge, a complementary library

describing each cell component and the direction of each pin was also parsed. A final

preprocessing step was needed to convert this circuit graph into something we could use.

We determined all of the flip flop and memory components and removed them from the

circuit graph. All children of these removed nodes became the input of the graph, all

parents of these nodes became the output of the graph.

We also used the ISCAS ’85 benchmark cases. The ISCAS’85 benchmark con-

tains netlists ranging from 5 nodes to 7552 nodes. We chose to not use the smallest case,

starting with the netlist with 17 nodes. The purpose of the test cases is unpublished, and

are designed to be viewed as random logic circuits. The ISCAS ’85 benchmark is a

popular benchmark, that has been studied extensively [8, 10].
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Artificial Test Cases

In order to examine the performance characteristics of our algorithm on varying

graph structures, a variety of artificial test cases were devised. There are four different

artificial test cases named according to their graph structure as they would be drawn on

paper: Line, Triangle, Grid and Mesh. The line and triangle test cases are fundamentally

Figure 4.1: The line and triangle graph structures.

the same kind of graph, a purely sequential graph with a number of topological blocks

equal to the number of nodes. The only difference is in the connectivity. The line node

connects each node to the immediately prior node creating a line, as shown in figure 4.1.

Assuming we number the nodes sequentially from 1 to n nodes, the triangle graph differs

in that it adds an additional edge from each even edge to the immediately preceding even

edge. This creates a structure of a series of linked triangles, as shown in 4.1. The grid

Figure 4.2: The grid and mesh graph structures.

and mesh test cases are also fundamentally similar. As shown in figure 4.2, the grid

graph consists of a square of nxn nodes arranged in a grid. Each node has parents above

and to the left, unless no node exists there, and has children below and to the right. The
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nodes along the top edge of the square are all input nodes. The nodes along the bottom

edge are all output nodes. The mesh builds upon the grid graph structure by including

an additional input and output for each node. The node diagonally above and to the

left of each node is also an input. The node diagonally below and to the right of each

node is an output. This extension to the grid graph structure is analogous to the triangle

extension to the line graph.

4.1.2 Experimental Setup

Experiments were performed on three different machines. The first machine is a

Macbook Pro running Windows Vista on a Core2Duo T7700 with 2.4GHz clock speed

and 4GB of 333MHz RAM. The second machine is a Core i7 920x with 2.66 GHz clock

speed and 6 GB of RAM running at 1066MHz. The third machine is a Core2Quad

running at 2.4 GHz with 4GB of 800MHz RAM. The Core i7 machine is equipped with

a Tesla S1070 which consists of 4 GPU devices. Each GPU device is a Tesla C1060.

The Core2Duo machine is equipped with an 8600M GT. The Core2Quad is used only

for timing the serial algorithm.

The Core 2 Duo T7700 2.4 GHz is used in our experiments for measuring the

speed of the serial algorithm. It comes with a 4MB L2 cache, and a front side bus

(FSB) speed of 800 MHz. The Core i7 920 2.66 GHz is also used in our experiments

for measuring the speed of the serial algorithm. The i7-920 does not use a front side

bus, rather it uses the Intel Quick Path Interconnect technology, which provides superior

bandwidth and latency compared to the older FSB technology.

The Tesla C1060 has 30 multiprocessors, each with 8 cores, for a total of 240

cores. The 8600M GT has 4 multiprocessors for a total of 32 cores. The Tesla C1060

is connected to the CPU through a PCIe card on the motherboard, rather than being a

PCIe card itself. The 8600M GT is directly connected to the motherboard, as it is part

of a laptop machine.

Both the Core i7 and Core2Quad run CentOS, and are 64-bit. The Core2Duo

machine is a 32-bit machine running Windows. Compiilation on the linux machines is

done using g++ and the nvidia compiler, nvcc. Compilation on the windows machine is

done using VS2008 compiler and the nvcc compiler. All experiments are compiled with
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Table 4.1: Runtime in milliseconds for the serial, parallel, and partitioned parallel algo-

rithms on the ISCAS ’85 benchmark.

Runtime (milliseconds)
ISCAS ’85 Serial Parallel Partitioned

Nodes Core2Quad Core i7 Core2Duo 8600M GT C1060 C1060
17 0.01 0.00 0.03 0.72 1.24 1.08

432 0.06 0.04 0.79 3.18 6.25 6.01
499 0.05 0.03 0.64 1.84 3.77 1.95
880 0.12 0.11 1.47 4.26 7.02 5.75

1355 0.20 0.13 3.80 4.13 8.62 7.24
1908 0.36 0.40 12.90 10.33 12.80 10.12
2670 0.35 0.23 4.46 6.26 11.43 9.02
3540 0.58 0.39 10.90 12.88 15.22 13.17
5315 0.75 0.50 11.24 13.89 15.45 12.51
6288 3.27 2.11 122.5 32.49 50.27 46.22
7552 1.34 0.85 37.44 9.46 14.52 10.12

27751 5.97 3.94 21.76 10.80

release build and debug code removed.

4.2 Experiments and Results

4.2.1 Runtime and Speedup of Serial vs Parallel Algorithms

We tested the serial algorithm on the three different CPUs, and partitioned and

basic parallel algorithm on both GPUs for all ISCAS benchmarks. For the largest indus-

trial test case, the GPU lacked sufficient device memory to run the test case. The runtime

performance of the algorithms is shown in table 4.1. Also, the 8600M GT was unable

to run the merge kernel because its architecture version does not support the atomic

max operation. Consequently, only the C1060 has results for the partitioned parallel

algorithm.

Comparing the runtime for the serial algorithm versus the parallel algorithm, we

find that the serial algorithm outperforms the parallel algorithm in every case except

when comparing the Core2Duo’s runtime. However, if we look at the speedup, the ratio

between the serial algorithm’s runtime and the parallel algorithm’s runtime, we find
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that as the graph size grows, the speedup grows linearly. A graph of the speedup as a

function of graph size is shown in figure 4.3. From these results, we can conclude that

the parallel algorithm implementation carries an overhead when compared to the serial

algorithm. However, as the graph size grows, the parallel algorithm scales better than

the serial algorithm. Unfortunately, we were unable to acquire larger test cases.

Figure 4.3: A graph of the speedup of the parallel algorithm run on the C1060 over the

serial algorithm run on the Core i7 as a function of the graph size.

4.2.2 Serial Algorithm on Varying CPUs

When you compare the runtimes in figure 4.1 for the varying types of CPUs,

we find that despite similar clock speeds, the actual performance can vary drastically.

However, by examining the corresponding memory frequency, we find a relationship

between the memory frequency and serial algorithm’s performance. The Core i7 is

coupled with a 1GHz memory, and performs the fastest. The Core2Quad has the second

fastest memory, and its runtime reflects this difference. Finally, the Core2Duo using the

slowest memory and an outdated front side bus architecture demonstrates the slowest

runtimes. From these results, we can conclude that the timing analysis problem is a

memory bound computation. The dependence upon memory bandwidth and latency
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helps to explain why the GPU performs slower than the CPUs using faster memory.

4.2.3 Parallel Algorithms on Varying GPUs

A surprising outcome of our tests is the difference in performance between the

two GPUs. From figure 4.1, we see that the 8600M GT actually outperforms the C1060,

despite having fewer cores and a lower clock rate. We suspect that his may be a re-

sult of the C1060 being connected through another PCI card rather than being directly

connected to the motherboard. The 8600M GT is also only capable of running small

test cases due to its limited device memory. Consequently, all comparisons between the

8600M GT and C1060 in our results reflect test cases in which the C1060 is underuti-

lized. Thus, the C1060 cannot leverage its higher number of cores, while at the same

time incurring the overhead of a slower connection between the CPU and GPU.

4.2.4 Line and Triangle Graphs

We also tested the algorithms on the line and triangle graphs. Figure 4.4 shows

a graph of the runtimes of the various algorithms on the C1060 and Core i7. We find

that the parallel and partitioned parallel algorithms are robust to the changing graph

structure. The serial algorithm’s performance becomes slower moving from the line to

the triangle graph. It is not surprising for the parallel algorithms to be much slower

than the serial algorithm. In both the line and the triangle test case, each topological

block consists of exactly one node. This effectively removes the majority of parallelism

that can be exploited. The runtimes for the parallel algorithms are dominated by the

overhead of using the GPU. However, we do find that the partitioned parallel algorithm

approximately halves the run-time, which confirms that we improve the parallelism that

can be exploited using the partitioning approach. Similar to the ISCAS’85 benchmarks,

we find that the scaling of the parallel algorithms is superior to the scaling of the serial

algorithm as a function of graph size. Figure 4.5 shows the speedup of the C1060 over

the Core i7 for both the line and triangle graphs. For both cases, the speedup increases

as the graph size grows. We also tested the algorithms on the Core2Duo and 8600M GT

machine for much smaller test case sizes. As mentioned previously, the 8600M GT has
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Figure 4.4: A graph of the runtimes of the serial, parallel, and parallel partitioned algo-

rithms on the line and triangle test cases. The tests are run on the C1060 and the Core

i7.

limited device memory. Figure 4.6 shows a graph of the runtimes. The C1060 machine,

the parallel algorithm is robust to the changing graph structure. However, the serial

algorithm’s performance drops drastically when moving to the triangle graph. On this

machine, the parallel algorithms begin to outperform the serial algorithm for test case

sizes greater than 1600.

4.2.5 Mesh and Grid Graphs

The algorithms were tested on the mesh and grid graphs as well. Figure 4.7

shows the runtimes of the serial, parallel, and partitioned parallel algorithms on the

grid and mesh test cases run on the C1060 and Core i7. The mesh and grid test cases

have a significantly larger graph size compared to the line and triangle test cases. Fur-

thermore, the topological block sizes peak at the width of the square graph structure.

Continuing with the pattern from the line and triangle tests, we find that the serial al-

gorithm performs slower on the mesh graph compared to the grid graph. The parallel



45

Figure 4.5: A graph of the speedup of the parallel algorithm run on the C1060 over the

serial algorithm run on the Core i7 as a function of the graph size of line and triangle

test cases.

algorithms remain robust to graph structure changes. Also, the partitioned parallel al-

gorithm continues to show that it improves the amount of exploitable parallelism. We

can also conclude that these test cases still do not fully utilize the parallel processing

power available on the GPU, because the GPU is capable of accelerating the increased

parallelism generated by the partitioning approach. In this case, we find that the parallel

algorithms outperform the serial algorithm for the larger test cases exceeding 100000

nodes. Figure 4.9 shows the speedup of the parallel algorithm on the C1060 over the

serial algorithm on the Core i7. The speedup grows linearly with respect to the graph

size. However, towards the larger end, starts to drop off in growth. This suggests that at

a sufficiently large test case size, the parallelism available on the GPU will be fully uti-

lized, at which point larger test cases will not increase the speedup achieved. We tested

the serial and parallel algorithms on the grid and mesh graphs running on the Core2Duo

and 8600M GT machine. The speedup for these tests is shown in figure ??. The graph

sizes are much smaller than those used in the C1060 tests. However, for this machine,

the parallel algorithm quickly overtakes the serial algorithm. It achieves a speed up of
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Figure 4.6: A graph of the runtimes of the serial, parallel algorithms on the line and

triangle test cases. The tests are run on the 8600M GT and the Core 2 Duo.

over 7x for mesh graphs with 10000 nodes.

4.2.6 Distribution of Nodes in Topological Blocks

Finally, we also took a look at the distribution of the nodes into topological

blocks. When generating the topological block, we placed each node in the earliest

topological block that it could be placed within. Consequently, the distribution of nodes

in a topological block took the shape shown in figure 4.10. Figure 4.10 shows the

distribution of nodes into each topological block for the largest industrial test case. It

is clear that the largest topological blocks, and thus the most parallelism, occurs in the

first few topological blocks. The amount of parallelism drops off quickly as propagation

spreads through the graph. We suspect that this negatively impacts the performance of

our parallel algorithm by saturating earlier topological blocks, and under utilizing the

GPU in later topological blocks.
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Figure 4.7: A graph of the runtimes of the serial, parallel, and parallel partitioned al-

gorithms on the grid and mesh test cases. The tests are run on the C1060 and the Core

i7.
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Figure 4.8: A graph of the speedup of the parallel algorithm run on the C1060 over the

serial algorithm run on the Core i7 as a function of the graph size of grid and mesh test

cases.
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Figure 4.9: A graph of the speedup of the parallel algorithm run on the 8600M GT over

the serial algorithm run on the Core 2 Duo as a function of the graph size of grid and

mesh test cases.

Figure 4.10: A graph of the distribution of nodes in each topological block in the largest

industrial case, which has a graph size of 27751.



Chapter 5

Conclusion

In this thesis, we explored the motivations for efficient and accurate timing anal-

ysis. In order to improve upon the classic STA, we adopt the Level-Based On-Chip

Variation analysis to improve the accuracy of the STA. However, adopting LOCV adds

additional computational complexity. We chose to tackle this problem using GPU ac-

celeration. We implement the basic serial algorithm on the CPU, and examined the

structure of the computation to determine how best to parallelize it. We presented the

design for a GPU parallel algorithm as well as a divide and conquer partitioning based

GPU parallel algorithm.

Experimental results from testing the serial algorithm on multiple CPUs with

varying memory speeds demonstrated that this computation is a memory bound com-

putation. Experimental results from testing the parallel algorithms on the ISCAS ’85

benchmark as well as a large industrial case demonstrate that the GPU parallel algo-

rithm scales with graph size more efficiently than the serial algorithm. Furthermore,

the partitioning of the graph improves the available parallelism of the computation, re-

ducing the runtime in cases where the topology of the graph results in a large number

of topological blocks. We also found that the using a topological blocking in which

each node is assigned to the earliest possible topological block results in a right skewed

distribution of nodes. Finally, we demonstrate that the graph structure is a strong fac-

tor in the computational cost of the serial algorithm. Whereas the parallel algorithms’

performance is not severely impacted by the structure of the graph.

Given that the newer CUDA architecture provide a complete memory hierarchy
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with cached global memory, it would be interesting to see the performance of our algo-

rithms on the latest Fermi architecture from Nvidia. We would expect performance of

the parallel algorithms to improve on the new architecture. Given the importance of ef-

ficient memory access, future work should focus on further optimizing memory access.

Or, another approach may be to devise an algorithm that is not memory bound.

In terms of exploiting the GPU, our test cases were insufficient to fully utilize

the computational power available in the C1060 GPU. We tackled a simplified problem

of only finding the maximum delay through the timing graph. The complete timing

analysis problem finds the minimum as well as the maximum. Finding the minimum as

well as the maximum effectively doubles the amount of data parallelism available. Also,

our experiments revealed that a topological blocking results in a skewed distribution of

nodes. It is possible to delay the computation of a node to later topological blocks in an

effort to balance the load of the GPU. Finally, given that it seems the merging process

can be efficiently computed on the GPU, it is feasible to simply perform the partitioned

delay propagation in serial on a CPU with access to fast memory, and then offload the

merging computation onto the GPU. We conclude that the problem of LOCV timing

analysis exhibits large amounts of parallelism that can be exploited on the massively

parallel GPU. In cases where graph structure inhibits this parallelization, our partition-

ing approach improves parallelization. Memory access efficiency is the key to further

improvements in performance.
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