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Semianalytical Solutions of Radioactive or Reactive
Tracer Transportin Layered Fractured Media

Abstract. In this paper, semianalytical solutions are developed for the problem of
transport of radioactive or reactive tracers (solutes or colloids) through alayered system of
heterogeneous fractured media with misaligned fractures. The tracer transport equationsin
the matrix account for (a) diffusion, (b) surface diffusion (for solutesonly), (c) masstransfer
between the mobile and immobilewater fractions, (d) linear kinetic or equilibrium physical,
chemical, or combined solute sorption or colloid filtration, and (€) radioactive decay or first
order chemical reactions. Any number of radioactive decay daughter products (or products
of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in
the fractures account for the same processes, in addition to advection and hydrodynamic
dispersion. Additionally, the colloid transport equations account for straining and velocity
adjustments related to the colloidal size. The solutions, which are analytical in the Laplace
space, are numerically inverted to provide the solution in time and can accommodate any
number of fractured and/or porous layers. The solutions are verified using analytical
solutions for limiting cases of solute and colloid transport through fractured and porous
media. The effect of important parameters on the transport of 2H, 23"Np and 23°Pu (and
its daughters) is investigated in several test problems involving layered geological systems
of varying complexity. 23°Pu colloid transport problems in multilayered systems indicate
significant colloid accumulations at straining interfaces but much faster transport of the

colloid than the corresponding strongly sorbing solute species.



1. Introduction

The study of radioactiveand/or reactive contaminant transport (of solutes and colloids)
in complex fractured geologic systems has become increasingly important in recent years
because of the need to predict the migration and fate of the contaminants. Currently,
there are some very large contaminated sites (such as Hanford, Washington; Nevada Test
Site (NTS), Nevada; Idaho National Engineering and Environmental Laboratory (INEEL),
Idaho) where severe pollution by radioactive materials extends over large areas within the
subsurface rocks. Experience with numerical model predictions using reactive chemical
codes has indicated that much research is needed in this area, because field observations
have shown that contaminated plumes can move much faster than models have predicted
[McCarthy and Zachara, 1989; Buddemeier and Hunt, 1988, Kersting et al., 1999].

At YuccaMountain (YM), Nevada, the site of the potential repository for high-level
nuclear waste, the potential transport of radioactive contaminants must be predicted for tens
to hundreds of thousands of years. Performing reliable radionuclide transport calculations
for thistemporal and spatial scaleisobviously very difficult, and furthermoreit isimpossible
to verify the results. In addition, the complex geology of the site and the unsaturated nature
of asignificant portion of the flow path add to the difficulty in making such predictions.

The potential siteislocated in southern Nevadaabout 120 km northwest of Las Vegas,
and is characterized by athick unsaturated zone (600—700 m) and the presence of rocks onto
which important radionuclides in the wastes tend to sorb strongly. The YM stratigraphy
consists of layers of welded and nonwelded tuffs (with vastly different hydraulic, transport,
and geochemical properties), with the former generally being extensively fractured and the
latter behaving similarly to a porous medium [Montazer and Wilson, 1984; Liu et al., 1998;
Bandurraga and Bodvarsson, 1999].

The extremely varied geological and hydrologica characteristics of the different tuff



layers at Y ucca Mountain make the modeling of flow and transport a formidable task. A
singlerepresentation for all of the hydrogeol ogic unitsisinappropriate, and several different
approaches and algorithms must be employed for reliable modeling results. Analytical and
semianalytical models of transport that can account for the site heterogeneity areimportant
because they alow the validation of complex multidimensional numerical models, are
computationally efficient, and can provide bounding estimates of the possible solutions
of the expected transport at the site.

Previousanalytical solutions of solute and colloid transport infractured mediainvolved
exclusively single semi-infinite domains (layers). Tanget al. [1981] devel oped aquasi two-
dimensional solution for the transport of solutes in a single saturated fracture (i.e., with a
semi-infinite matrix) that assumed a constant concentration boundary and accounted for (a)
advectionand dispersionin thefractures, (b) diffusioninthe matrix, thefractures, and across
their interface, (c) sorption onto the matrix and the fractures, and (d) radioactive decay. The
analytical solution of Sudicky and Frind [1982] accounted for the same processesin solute
transport in asystem of parallel fractures (i.e., with afinite matrix block size). The solution
of Robinson et al. [1998] is an extension of the Sudicky and Frind [1982] solution and
accounts for the effect of fracture skin on transport in a system of parallel fractures. By
neglecting hydrodynamic dispersion in the fractures and assuming an instantaneous (delta
Dirac-type) deposition of a parent radionuclide at the boundary, Sudicky and Frind [1984]
obtained analytical solutionsto the problem of transport of atwo-member radioactivechain
inasingle fracture.

Abdel-Salam and Chrysikopoulos [1994] developed a set of analytical solutions to
the problem of nonradioactive colloid transport in a single saturated fracture for different
boundary conditions. These solutions account for (a) advection and dispersion in the
fractures, (b) diffusionin the matrix, the fractures, and across their interface, and (c) kinetic

irreversiblefiltration in the fractures and the matrix.



In this paper, semianalytical solutions are developed for the problem of transport of
radi oactiveorreactivetracers(sol utesorcoll oids)throughal ayeredsy stemof heterogeneous
fractured media with misaligned fractures (such as the unsaturated zone at YM). The
solutions alow any number and combination of fractured and/or porous layers that can
vary in hydraulic and transport properties, fracture frequency, water saturation, fracture
flow, and fracture-matrix interaction. The tracer transport equations in the matrix account
for (@) diffusion (molecular or colloidal), (b) surface diffusion (for solutes only), (c) mass
transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium
physical,chemical orcombinedsolutesorptionorcolloidfiltration, and (e)radioactivedecay
or first order chemical reactions. Any number of daughter products of radioactive decay
(or of alinear, first-order reaction chain) can be tracked. The tracer transport equations in
the fractures account for the same processes, in addition to advection and hydrodynamic
dispersion. Additionally, the colloid transport equations account for straining and velocity
adjustments related to the colloidal size. The solutions, which are analytical in the Laplace
space, are numerically inverted to provide the solution in time, and can accommodate

constant or time-variable concentration or flux boundary conditions.

2. Solute Transport Equations
2.1. The PDE of Solute Transport

Thel-DPDEof transport of aradioactiveor reactivesolutethrough avariablysaturated

porous or fractured medium (PM or FM) is described by the equation
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where



dissolved species concentration in the mobile pore water [M L~3];

intrinsic diffusion coefficient for the mobile pore water [ L27T~1];
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~

dissolved species concentration in the immobile pore water [M L—3];

intrinsic diffusion coefficient in the immobile pore water [L2T~1];
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bS]

relative concentration of the physically adsorbed species[(M L=3) /(M L™3)];

<

relative concentration of the chemically sorbed species[(M L=3)/(M L™3)];

reacted species mass per unit volumein the mobile fraction [M L=3];

A

reacted species mass per unit volumein the immobile fraction [M L=3];

>
3

apparent surface diffusion coefficient [M/ L—1T—1];

-

= f,Vo(S—S,), Darcy velocity [LT1];

<

pore flow velocity [LT!];

fo velocity adjustment factor (= 1 for solutes, see discussion in Section 3.1);
S water saturation [ L3 / L3];

S, irreducible water saturation [ L3 /L3];

P PM grain density [M L~3];

o total PM porosity [L3/L3];

A =1n2/T; o, radioactive decay constant [T"~'];

Ty, half-life of radioactive species[17].

The parameters 6, and §,, are defined as

1 for reactive transport 0  for reactive transport
57" = { and o A= {

0 for radionuclide transport 1 for radionuclide transport
The first three terms on the left-hand side of (1) describe diffusion in the mobile pore

water [Skagius and Neretnieks, 1988], through the immobile thin film in the immediate

vicinity of the PM grains [de Marsily, 1986], and surface diffusion [Jahnke and Radke,

1987; Skagius and Neretnieks, 1988; Cook, 1989; Berry and Bond, 1992], respectively.



The fourth term on the left-hand side (1) describes advective transport. The terms on the
right-hand side of equation (1) describe the dissol ved species accumulation and radioactive
decay in the pore water, in the immobile fraction, and on the PM grains due to sorption (for
solutes) or filtration (for colloids). Chemical reactionsin the water phase are al so accounted
for [Cho, 1971]. A detailed discussion of these terms can be found in Moridis [1999], from

where
Dm:¢(S—ST) (TpDQ—f—OéLfoV) and Di:TigZSSTDO (2)

where Dy is the molecular diffusion coefficient of the dissolved speciesin water [L27T 1],
ay, is the longitudinal dispersivity [L], 7, is the tortuosity factor of the pore paths
[dimensionless], and 7; isthe tortuosity factor in the diffusion paths through the immobile
fraction[dimensionless]. If surfacediffusioncannot beneglected [Jensen and Radke, 1988],

D isgiven by [Jahnke, 1986; Jahnke and Radke, 1987]
Dp =75 (1= ¢) pDs, (3)

where 7, is the tortuosity coefficient of the surface path [dimensionless], and Dy is the
surface diffusion coefficient [L27—!]. For homogeneous PM systems there is theoretical
justification [Cook, 1989] for the relationship 7, = §Tp.

The species concentration in the mobile and immobile water fractions are related

through the linear equilibrium relationship [de Marsily, 1986],

where K; is adimensionless mass transfer coefficient. Equation (1) then becomes
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where

DT:¢{DO [Tp (S_ST)+TiSTKi]+(S_ST)aLfUV} (6)

and

h=(S—8)+85, K. (7)

2.2. The Equations of Solute Sor ption and
First-Order Chemical Reaction

Consideringthat sorption occursasthedissolvedspecies diffusesthrough theimmobile
water fraction, and assuming linear equilibrium (LE) sorption, the following relationship
applies:

F,=K.K;C, (8)

where K, isthe distribution coefficient [A/ ~1 L3].
Linear kinetic physical (LKP) and linear irreversible physical (LIP) sorption are
described by the equation [Moridis, 1999]

%%—)\Fp:kp(KdKiC — 6, Fp) 9)

where k,, is the kinetic constant of linear adsorption [7'~!], and

1 for LKP sorption;
Op = { (10)

0  forlinear LIP sorption.

Inthecase of LIP sorption, K ; doesnot represent the distribution coefficient of LE sorption,
but is rather a proportionality factor.
Thefirst-order reversiblechemical sorptionisrepresentedbythelinearkineticchemical

(LKC) model
OF,
ot

+AF.=kI K;C —k_ F,., (11)



where kT [M—1L3T~1] and k_ [T~!] are the forward and backward kinetic constants,
respectively. Note that equation (11) can be used in conjunction with the physical sorption
equations to describe combined sorption [Cameron and Klute, 1977], e.g., physical and
chemical sorption. Combined sorption accounts for the different rates at which a species
is sorbed onto different PM contituents. Thus, sorption onto organic components may be
instantaneous(L E),whilesorptionontomineral surfacesmaybemuchsl owerandkinetically
controlled [Cameron and Klute, 1977].

The equations of a series of N, first-order chemical reaction are given by [Cho, 1971]

OR,
W — ICI Cl 9
% =K2Co —K1Cy
t (12)
OR
atNC =Kn.Cn, —Kn,—1Cn,—1,

where ; (j = 1,...,N,) is the chemical reaction rate constant [7''], and N. is the

number of chemical reactions in the series.

2.3. The Solute Transport ODE in the L aplace Space

2.3.1. Parent or Stable Species. After incorporating the sorption terms, the Laplace
transform (L T) of the solute transport equation (5) yieldsthefollowing Ordinary Differential
Equation (ODE)

d?C _dC

D-— U= _EC=0 13
dx? dx ’ (13)

where C = £{C?}, £{} denotesthe LT of the quantity in the brackets,

E=¢[(s+0ANR+5.hK], (14)



h+ w1 for LE sorption;

h+uvy for LKP or LIP sorption,

h+vy for LKC sorption,

h+ (w+wu)1y for combined LE and LKP/LIP sorption,

h+ (w+wv)y for combined LE and LKC sorption,

\h+ (u+wv)y forcombined LKP/LIP and LKC sorption,

( Dr +o¢1swp Dy for LE sorption;
Dpr+¢1sut Dy for LKP or LIP sorption,
Dr +¢1sv¢ Dy for LKC sorption,
D = (16)

Dy +¢7s (w+u)p Dy for combined LE and LKP/LIP sorption,

Dy + ¢1s(w+wv)p Dy for combined LE and LKC sorption,

\ Dr + ¢ 75 (u+v) Dy for combined LKP/LIP and LKC sorption,

k, K4 K; kf K; (1—¢)
— K, K, _ P , — c ' — , 17
W= R TSIk T stat ke v o )

and s is the Laplace space parameter. The term R isan expanded retardation factor, which
can account for kinetic behavior [Moridis, 1999]. Its development involvesthe LT of the

sorption from equations (8) through (11). It isstraightforward to show that [Moridis, 1998]

)
I

S
Q)

(18)
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where F' = £{F} and

(w for LE sorption;
U for LKP or LIP sorption,
v for LKC sorption,
p= (19)

w + u for combined LE and LKP/LIP sorption,

w+ v for combined LE and LKC sorption,

( u+ v for combined LKP/LIP and LKC sorption.

Equation (13), subject to equations (14) through (19), is the ordinary differential
equation (ODE) of solute transport in its most general form. Implicit in (13) are the
assumptions that () C(z,t = 0) = 0, (b) F(z,t = 0) = 0, (¢) R(z,t = 0) = 0,
and (d) in combined sorption, different sites areinvolvedin each of the constituent types of
sorption.

2.3.2. Daughter Species of Radioactive Decay. If the species is radioactive, the
right-hand side of equation (5) is augmented by the term

M,

—Ap—1 My [gzﬁhC’,,_l + (1 — ¢) pFu—l] s where my = s
Mu—l

M, isthe molecular weight of the v-th daughter (1 < v < Ny, N4 being the total number
of radioactive decay or reaction products), and v — 1 refers to the decaying parent. Then,
omitting for simplicitythe n subscript, theL aplace spacetransport equation forany daughter
product v of the decay chain following a LE isotherm is given by

d?C, _dC,

D,——-U

~-E,C,=-G,C,_1, 20
dx? dz ! (20)

where

GV = qur /\V—l Ru—l (21)



If the daughter sorption iskinetically controlled, the kinetic sorption equations (9) and
(11) need to account for the generation of daughter mass due to the decay of the sorbed

parent, and become

F,
8a—t+)\VFU_)\y—1erqu—1:kocCU _kﬁFV7 (22)

where F,,_; isthe sorbed mass of the parent,

ko = ks =

kr K; for LKC sorption, k- for LKC sorption,

C

{ k, KqK; for LKP/LIP sorption, { ky 6, for LKP/LIP sorption,

and ¢, is the fraction of the mass of the decayed sorbed parent that remains sorbed as a
daughter (0 < ¢, < 1). Theterm ¢, is introduced to account for the different sorption
behavior of parents and daughters, and the fact that daughters can be gected from grain
surfaces due to recoil, e.g., the gjection of 234Th from grain surfaces during the al pha decay

of 233U [Faure 1977]. The LT of (22) returns
ﬁu :pé\’u+mrprau—17 (23)

where p is obtained from equation (19), and

J:‘:‘ kau 5 for () LKP/LIP or (b) combined LE-LKP/LIP sorption

s v p Yp

Dy = (24)
M for (a) LKC sorption or (b) combined LE-LKC sorption
s+ A, + ke

For combined LKC and LKP/LIP sorption, p, is the sum of the two components in (24).

Using (23) and (24), it is easy to show that equation (20) applies, but with
Gll - ¢ my [)\llfl R,_1— (3 + )\1/>pr] . (25)

All other terms in (20) remain unchanged. Equations (20) through (25) are valid in any
layer n. Itisobviousthat for acomplete daughter gjection, [Faure 1977], (, = 0, p, = 0,
and (21) and (25) become identical.

11
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2.3.3. Products of Chemical Reactions. If the speciesis a product of the v-th first-
order chemical reaction in the reaction chain (12), the right-hand side of equation (5) is

augmented by theterm —¢ h IC,,_1 C,,_1. Then, equation (20) applies unchanged, but with

Gy1=¢hK,_1. (26)

3. Colloid Transport Equations
3.1. The PDE of Colloid Transport

The 1-D PDE of transport of a radioactive or reactive true colloid (i.e., a colloid
generated from contaminants when their concentrations exceed their solubility [Saltelli et
al., 1984]) through avariably saturated PFM isdescribed by equation (1) with thefollowing
changes:

(8 Theterm C refers to the colloidal species. The term C; is entirely analogous, and
equation (4) applies.

(b) Colloids do not support surface diffusion, thus Ds; = 0 in equation (3).

(c) Theterm F isreplaced by o, which describes physical-chemical filtration of colloids

(distinctly different from surface filtration and straining). Thus, the sorption term

o

(1 —¢) p2E inequation (1) is replaced by the filtration term p,. o

B where p, isthe

colloid density [M L~3] and o is the filtered concentration of the colloid expressed as
volume of colloids per volume of the porous medium.

(d) The velocity adjustment factor f, = 1 for solutes (see the definition after equation
(1)), but1 < f, < 1.5incolloids. For f, > 1, itindicates that colloidal advection is
larger than the average water velocity [Ibaraki and Sudicky, 1995]. This results from
therelatively large size of the colloids, which leadsto their concentration in the middle
of the pores where the groundwater velocity is larger than the bulk average velocity.

The factor f, tends to increase with decreasing ionic strength, but cannot exceed 1.5



because colloids cannot movefaster than the maximum groundwater velocity [l baraki
and Sudicky, 1995].

(e) The dispersivities oy, and a are generally different from those for solutes [Ibaraki
and Sudicky, 1995] and may be a function of the colloidal particle size.

(f) Theterm Dy in D,,, and D; (equations (1) and (2)) isthe colloidal diffusion coefficient
in water [L27T~!'] and is described by the Stokes-Einstein equation as [Bird et al.,

1960]
ks T

_ Bl 27
3mpd.’ (27)

Dy

where kp isthe Boltzmann constant(1.38 x 10~23 J K ~! inSlunits), 7 isthe absolute
water temperature [ K], 1 isthe dynamic viscosity of water [M L—1T—'], and d,. isthe

colloid diameter [L].

3.2. The Equations of Colloid Filtration

When colloid deposition is a relatively fast process compared to the water velocity,
it is possible to describe colloid filtration as a linear equilibrium process [James and

Chrysikopoulos, 1999]. Filtration is then described by
g = Ka Ki C, (28)

where K, isadistribution coefficient [A/ ~1 L3].
The colloid filtration is generally nonequilibrium and is more accurately described by
alinear kinetic model [Qorapcioglu et al., 1987], which can take the following form:
0o 4 _
EZ/Q(KUKiC—de'):/{ C—k o, (29)
where x [T~!] is a kinetic coefficient, and x* [M~'L3T~!] and v~ [T~!] are the

kinetic forward and reverse colloid deposition rates (clogging and declogging coefficients),

13
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respectively, whicharespecifictoeachcolloid  and PFMtype. Theparameter ¢, isanalogous
to that for sorption in equation (10), and describes the reversibility of filtration.
Theterm x~ is commonly assumed to be zero [Bowen and Epstein, 1979], but thereis

insufficient evidence to support this. The parameter ™ can be given by
kT =k K, K; or kT =ef, UG, (30)

where ¢ is the filter coefficient of the porous medium [L~!], f, isadimensionless velocity
modification factor, U is the Darcy velocity [LT~!], and G is a dimensionless dynamic
blocking function (DBF) which describes the variation of the PFM porosity and specific
surface with o [James and Chrysikopoulos, 1999]. For deep filtration (i.e., in the case of
very dilute colloidal suspensions), there is no interaction among the colloidal particles and
no effect on the medium porosity and permeability (i.e., ¢ is constant), and G = 1.

The first expression in (30) is similar to that for linear kinetic sorption, and is an
approximation that can be used effectively in studies where the water flow velocities vary
within a narrow range. An example of such an application would be the study of colloid
filtration in 1-D systems (columns) under steady-state flow conditions, from which the x
and x~ parameters can be determined. The second expression in (30) is more general,
appliesto domainsin which the flow velocity varieswithin awide range [de Marsily, 1986],
and is conceptually more robust because it considers the effects of flow velocity on colloid
attachment.

For transport through porous mediaor in asingle fracturewith fracture porosity ¢ # 1,

e can be computed from Yaoet al. [1971] or Tienet al. [1979] as

€= 1.5%’5776, (31)

where d,,, isthe particle size of the medium grains or the fracture aperture [L], and 7. from

Yaoet al. [1971] is



kpT \*/? do\ 2 gd?
c=0ac 09 ——— 1.5 ¢ — | 32
! O‘[ o) +1o() renidp] @

inwhich k5 isthe Boltzman constant, d.. isthe colloid diameter [ L], a.. isthesinge collector
efficiency, and all other terms remain as previously defined. Alternatively, n. in Sl units

can be computed from Tienet al. [1979] as

e =(1— )23 Ag NJE NS 14 Al/3 N2/

(33)
+3.375 x 1073 (1 — ¢)%/3 Ag N&2 N4,
where
2(1 - P 4 x10=20 d,
AS: ( 5) 5 Lozig’ NR:—
27w Wt Ompd2U dn (34)

(pe — p) d%g 3muded, U 1
Ny = e/ 7ed Np, = Fcim?z = (1 — ¢)V/3,
“T T 18nuU Pe e w9

3.3. TheColloid Transport ODE in the Laplace Space

The transport of a radioactive or reactive colloid through a variably saturated PFM in the
Laplace space is described by equations (13) through (16) and (18) through (26) with the
following changes:
(a) For colloids Dy = 0 in equation (16).
(b) Equations (15), (16) and (19) reflect now colloid filtration that can be described by a
linear equilibrium, linear kinetic, or linear irreversible relationship, or combinations
thereof.

(c) Thetermsin equation (17) are now given by

kT Pe

— K, K, - —0, and ¢="c.
w U= T v=20 Y 5 (35)

(d) Inequation(22), k, = x* and kg = x~, whiletheterm ¢, isthefraction of the mass of
thefiltered (attached) parentcolloid that remains attached after thedecay (0 < ¢, < 1).

15
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Theterm p,. in (24) isnow given by

)\1/—1 CV

s—l—)\,,+/<;—u (36)

br =

4. Transportin Layered Fractured Media

The development of the equations for transport in aalayered fractured media expands
on the analysis of Tang et al. [1981] and Sudicky and Frind [1982]. A schematic of the
fracture-matrix system is shown in Figure 1, in which each of the N layers has different

properties.

4.1. Transport in the Matrix

4.1.1. The ODE of Parent or Stable Species Transport in the Matrix. Advection
in the matrix is neglected, that is U] = 0. Then the Laplace space ODE of the species
transport in the matrix layer n isgiven by

m A2CT

D
"o dx?

—EpCr =0, (37)

where the m superscript denotes the matrix. The diffusiveflux across the fracture-matrix
interface is given by

ac
Gn = —Tn Xy Dy = (38)

" Oxy, R
and differs from the analogous expression of Tang et al. [1981] in the inclusion of (a) the
activeinterface areareduction factor r,, and of (b) the accessibility factor y,,. Thetermr,,
(1 > r, > 0) isdefined as theratio of the average interface area between mobile water in a
fracture and its surrounding matrix to the average interface area between afracture and the
surrounding matrix. A detailed discussion on the subject can be found in Liu et al. [1998].

It isobviousthat, for afully saturated fracture, r,, = 1.



The accessibility factor x* adjusts the fracture-matrix interface fluxes within alayer;
xnt =1 for solutetransport, and 0 < x/* < 1 for colloid transport. It describes the portion
of the colloidal concentration in amedium allowed to enter an adjacent medium of different
characteristics, and quantifies pore-size exclusion (straining).

4.1.2. The ODE of Daughter Transport in the Matrix. From equation (20), the
L aplace space ODE of transport of the daughter v in the matrix of layer n is given by

9 A

m
m n,v m  Am _ m Am
Dn,l/ dr2 - En,l/ Cn,u — _Gu n,v—1- (39)
n

where the term G} is computed from (21) to (26). The diffusive flux of the daughter v

across the fracture-matrix interface is given by equation (38).

4.2. Transport in the Fractures

4.2.1. Adjustments to Concepts and Equations. In fracture transport, the Darcy

velocity U,, in any layer n is computed from the basic mass balance equation as

_ Qu
Un—Mnbna

where (), isthe water influx rate per unit fracture thickness (in the y direction, not shown
in Figure 1) at the z; = 0 boundary [L?T~!], and 20b,, is the fracture aperture [L]. The
parameter M,, [L/L] isthe fracture density, and is determined from the number of fractures
inanarbitrary length L. (seeFigurel). Theterm L, isrelated tothe matrixblock half-width
X, [L] and b,, (see Figures 2a and 2b) through the relationship

L,
M,=—"" _ 5—=1..N.
2(X, +bn)

There are two different ways to treat the fractures. If the fractures are open, we
have surface-based rather than volume-based sorption in the fractures of any layer n

(n=1,..., N). Thefollowing changes are then made:

17
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(@

(b)

(©)

(d)

Fis now the mass of solute adsorbed per unit length of fracture surface, and has units
[ML~=2]. Similarly, o is the volume of colloids attached per unit length of fracture
surface, and has units of [L~1].

From the mass balance equations, the term (1 — ¢) p in (17) and p. in equation (34)
arereplaced by 1/b,,, where b,, isthe fracturewidth [L] in layer n.

The distribution coefficient of the fracture K is now defined as the mass of solute
adsorbed per unit area of surface divided by the concentration of solute in solution
[Tanget al., 1981], with units[L]. Similarly, the distribution coefficient of the fracture
K isnow defined as the mass of true colloids attached per unit area of surface divided
by the concentration of colloidsin suspension, with units[Z].

The kinetic constants k" of chemica sorption in (11) and x* in (30) have units
[ML=2T; k7 in (11) and x~ in (30) have units [LT~1]. For transport through
a single fracture with fracture porosity ¢ = 1, € in (29) is now dimensionless and is

given by Abdel-Salam and Chrysikopoulos [1995] as

_
=2 (40)

where 7, is the fracture surface colloid deposition coefficient [L]. Abdel-Salam and
Chrysikopoulos [1995] and Chrysikopoulos and Abdel-Salam [1997] reported 7, in
the 1071 — 10~2 mrange.

If the fractures are filled (a rather common occurrence), they are treated as a porous

medium. Then, there is no need for the conceptual or mathematical adjustments in (1)

through (4).

In both open and filled fractures, the right-hand side of equation (5) is augmented by

the term

1/b,, for open fractures
Qn = fg Gn, where fg = { (41)

1 for filled fractures,

and g,, is described by (38).



4.2.2. The ODE of Parent or Stable Species Transport in the Fractures. The

L aplacespaceequation forfracture transport alongthe z-coordinate(Figure 1)then becomes

Cf ., dCf
dz2 " dz,

D} Cf = Q. (42)

where the f superscript denotes the fracture, the n subscripts denotes the layer, and
@n = L{Q,}. Equation (42) iswritten in terms of the local coordinate z,, in each layer n.
4.2.3. The ODE of Daughter Transportin the Fractures. The Laplace space ODE

of transport for the daughter v in the matrix of layer n is given by

b Ty e pyog,-0.-otcl,, o
All thetermsin (43) are as previously defined.
4.3. Initial and Boundary Conditions
The initial and boundary conditions corresponding to the fracture equation are
Cl(zp,t =0) =0,
Cf (21 = 0,) = Ceo(t),
(44)

Cl(2n = Znyt) = CL 1 (2031 =0,8), n=1,....,N—1,

C’}:,(zN — 00,t) =0,
where Z,, denotes the thickness of the n-th segment (layer). The time-dependence of C. ¢
allows investigation of systems with time-variable upper boundaries. Some of the more
common forms of C',((¢) are

r Co constant concentration

Coexp[—(t + tq)] decaying radionuclide concentration

ZC* (t—t:_ ) —U(t—1t})] variable pulse concentration
\ =1

(45)
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where Cy isaconstant, ¢4 isthe release delay (the time between radionuclide generation or
storage, and the beginning of release), U (¢t — t*) denotes the unit step function at time ¢*
(see Figure 3), and N* isthe number of different concentration pulses (see Figure 3). Note
that ¢ = 0 and that, for N* = 1, we obtain the unit pulse of duration ¢7.
Theinitial and boundary conditions corresponding to the matrix equation are
C'(xz,t =0)=0,
C™(x = 0,t) = Cf(2n,1),
ocm
ox
Cn(x — oo,t) =0  for Case 2 (Figure 2b),

(x=X,t) =0 for Casel (Figure 2a),

where X isthe half-width of the matrix block (Figure 2). Case 1 in Figure 2a describes a
finite system with a Neuman boundary. If dry fractures (i.e., fractures in which the water
phase is discontinuous) occur in the rock matrix of Case 1, the half-width X is replaced
by X* = 2X/(nq + 1), where ng is the number of dry fractures evenly spaced aong z in
the matrix block (Figure 2b). Case 2 in Figure 2b describes a semi-infinite system. The

L aplace transforms of equations (44) through (46) aretrivial.

5. The Laplace Space Equations
5.1. General Matrix Solutionsin Each Layer

51.1. Parent or Stable Species. Omitting for simplicity the n subscript, and
expanding on Tang et al. [1981] and Sudicky and Frind [1982], the solutions to (37) are

given by

o =

R { He¢cosh[f) (X — x)] forCasel
(47)

He¢exp(—0x) for Case 2
respectively, where H¢ and H® are parameters to be determined, and

9:0(5):\/%. (48)



From (47) and the Laplace transform of (46),

~

Gz = 0) = Hccosh(eX):éf:HC:% for Case 1 (49)
He=Cf for Case 2
from which
. . coshlé (X = 2)} & tor case1
C"m =C"(z,s) = cosh(f X) (50)
exp(—0 z) Cf for Case 2

Although the hyperbolic cosine solutionsfor X — oo theoretically provides the same
results with the exponential solution, in practice thisis not the case because of difficulties
in the computation of cosh[f (X — x)] for large values of the argument. The eguationsin
(50) are applicableinany layer n (n =1, ..., N).

5.1.2. Daughter or Reaction Products. Following the same approach, it is
straightforward to show that the L aplace space solution of the ODE in (43) for any daughter

or reaction product v is given by

HE¢ cosh[d, (X — Z (HA ) H¢ cosh[f,. (X —z)] forCasel
a;n _ k=v—1
HE exp(—0, Z (HA >H8 exp(—0,. z) for Case 2
L r=v—1 \i=v
(51)
where
m Gy

The coefficients H,, are given by the general expression

H,=)Y T,.Cl, (53)
k=1

where T, . are appropriate coefficients. Expressions for H, and 7, ,. (the derivation of

which is tedious but straightforward) for Cases 1 and 2 are provided in Appendix A.
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Equation (51) showsthat the solution of the matrix transport equation of the daughter

or reaction product v requires knowledge of the fracture solutions of all previous members

of the decay or reaction chain.

5.2. General Fracture Solutionsin Each Layer

5.2.1. Parent or Stable Species. From the Laplace transform of the diffusiveflux in

(42), and omitting for simplicity the subscript 7,
Q=~vriC?,

where
{ rx™ D™ @tanh(§ X) for Casel
’y =

rx™ D™0 for Case 2
Substituting in (42) and collecting terms,

d2Ct dCf

_xOf _
dz2 dz E°C 0,

where E* = Ef + ~ f4. The general solution to (56) is given by
CF = O (2,5) = aexp(n® 2) + Bexp(n” 2),

where o and 3 are parameters to be determined, and

. UxVU?+4Df E*
a 2Df ‘

Ui

Equations (54)—58) apply in any layer n.

(54)

(55)

(56)

(57)

(58)

5.2.2. Daughter or Reaction Products. From equations (41)—(44) and (51)—(53), for

adaughter v

~

QV :quXmDTWV :fq ZVU,KC\’£~
k=1

(59)



Equation (59) is general and applies to both Case 1 and Case 2. Expressions for W, and
Y, (the derivation of which is tedious but straightforward) for Cases 1 and 2 are provided
in Appendix B.

Substituting in (43) and collecting terms,

2CH dci 4 " et S
T U B Ol =GOl + 1) O (60)

DJ

k=1
where E% = EJ + v, f4.
Following the same approach, it is straightforward to show that the Laplace space

solution of any daughter or reaction product v is given by

Cl = o, exp(nt 2) + B, exp(n; 2) + Yy, (61)
where
1 1
Y, = Z A;ﬂ Qe exp(n,f z) + Z Az:/f B exp(n, 2), (62)
r=v—1 r=r—1
and
B:t
:Vl:ﬁ V,RK (63)

Dl mEr-UnE-E;
The computation of the Bin coefficients is tedious but straightforward. Expressions for
Biﬂ andfor v < 5 aregivenin Appendix C. Equations (61) and (62) show that the solution
of the fracture transport equation of the daughter or reaction product v requires knowledge
of al previous«,, and (3, i.e., the solutions of al previous members of the decay or reaction

chain.

6. The Solution Approach
6.1. Determination of the o« and g Parameters

Equation (57) defines atotal of 2V unknowns, i.e., the o and  parameters in each of the

N subdomains. These are obtained from the solution of the following equations.
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6.1.1. Boundary Equations. Theseapply tothe z; = 0 pointinthefirstlayer (n = 1).

From (57) and the Laplace transform of (44), for a known boundary concentration we have

a1 4 61 = Cao, (64)

while for known flux boundary conditions

a1 (U — D{ nt)+ B1(Ur — D{ n~)=U C.o

(65)
where @0 = L{C,o}. For the common boundary conditionsin (45),
en .
— constant concentration
S
Coexp(—Atq) . . . .
A _— decaying radionuclide concentration
C.o= Y aying
N* -
> —“lexp(—st;_,) —exp(—st})]  piecewise constant concentration.
S
\ =1
(66)

For the limiting case of a system consisting of asingle semi-infinitelayer (i.e., N = 1)
with an open fracture and a constant concentration at z; = 0, oy = 0, 51 = Cy/s, and

equation (57) isreduced to the L aplace space solutions obtained by Tanget al. [1981] (Case
2) and Sudicky and Frind [1982] (Case 1).

6.1.2. Concentration Equations. At the layer interfaces we have the equations
1 €PNy Zn1) + Br1€XP(1;,_y Zn—1) — an — B =0, (67)

forn =2,..., N. An additional equation is provided by the requirement that @7{ be finite
for Zny — oo, which dictatesthat o = 0.

6.1.3. Flux Equations. Theremaining N — 1 equations are provided by the equality

of fluxes across the layer boundaries in the fractures, which dictates that

ac’
M1 by |Unor C_y — DI .

n—1 dzn—l

dct
:JWﬁbn{UﬁC%—aDﬁzﬁﬁ , (68)
nd0

n—1



in which the quantity in the brackets is computed at the value of the local =z coordinate

indicated by the bracket subscript. From (57) and (68) we obtain
1 [Mn—l bn1(Un—1— D}, 77?5_1)] exp(iy_1 Zn-1)
B | Muma bua (Unes = DIy )| @00, 1 Zaoa) (69)
— ay [My by (Uy = Di)] = Ba [My ba(Un — D)) = 0,
wheren =1,...,N — 1.
6.1.4. Equations for Daughters. For a daughter product v of radioactive decay or
reaction, the following changes are made to equations (64) through (69):
(@) In theright-hand side of equations (64) and (65), the term (720 is replaced by (j’l,,zo,
where CAL,Zo = L{C, 0}, and C, .o isthe concentration of daughter v at the z; = 0
boundary. For a constant C, .o, CA‘V,ZO can be obtained from equation (66). For a

z1 = 0 boundary with a decaying radionuclide concentration, @mo is computed from

thelaplace transform ofthe mass bal ance equation 86(;,;,20 =ACy0—A—1Cu_1 20

as

C exp(—Atq) @_MO ) (70)

v,z0

Au—l
exp(—At -
s, P L) e

v,20 =
For areaction chain, equation (70) indicates arecursive reaction.
(b) The 0 on the right-hand side of the layer interface equation (67) is replaced by
Yyn(zn =0) =Yy 1(2n_1 = Zn) forn=2,...,N.
(c) Equation (68) applies unchanged. The 0 on the right-hand side of equation (69) is

replaced by the known quantity

le/n
M, b, |U, Y, — DI —}
0

v,n dZn

- n—1 b —1 Unfl Yu,nfl - Df
n |: 1 dzn—l 7,

6.1.5. Parent-Daughter Species. Note that the development of the equations for

parents and daughtersisgeneral and does notrestrict radioactive chainstosol ute or colloidal
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species. Thus, colloidal parents can have solute daughtersif the daughter solubility exceeds
that of the parent (a distinct possibility in the transport of small-diameter colloids). The

reverseis also possible if the parent solubility exceeds that of the daughter.

6.2. The Laplace Space Solutions

The generality and complexity of these equations preclude the devel opment of closed-
form solutions for «;, 6; (i = 1,..., N). Consequently, it is not possible to analytically
invert equations (57) or (61), and to obtain a closed-form equation for concentration in
time. The problem is alleviated by numerically inverting the Laplace space solutions. The

algebraic equations discussed in Section 6.1 may be written in agenera matrix form as:
MX=B, (71)

where M isthe coefficient matrix, X is the vector of the unknowns, and B is the composite

vector of knowns. Solution of (71) returns the vector

X1
I
X
[\]
s
5
Q
@
>
I
A/~
£
~__
Il
\‘P—‘
=
3
r

The solution of the matrix equation (71) necessitates arithmetic values for the s
parameter of the Laplace space. These are provided by the numerical inversion scheme
of DeHoog et al. [1982] that uses complex values for s. A detailed discussion of the
application of this method and its performance can be found in Sudicky [1990] and Moridis
[1998]. The quantities M, X and B assume the complex type of s.

The «; and 3; computed from the matrix equation (71) are then used to obtain all
the (7,{ solutions (¢ = 1,..., N). The corresponding @T solutions are obtained from (7,{

and equations (50) or (51)—«53). Note that the solutions for daughters or reaction products



requiresknowledge of the solutionsof all the previousmembersinthe radioactiveor reactive

chain.

6.4. Numerical Inversionsof the L aplace Space Solutions

The various time-variable concentrations can be determined by numericaly inverting

the Laplace space solutions, i.e.,
Cf(x,t) = L7HCL(x,9)}, C(a,t) = L7HCT(2,5)}, (73)

where £71{} denotes the inverse Laplace transform of the quantity in the brackets. Details
on the inversion will not be discussed here; they can be found in DeHoog et al. [1982] and
in Moridis [1998].

7. Treatment of Special Conditions
7.1. Colloid Transport With Straining

Ifstraining acrossthe interfaces(fracture-fracture or fracture-porousmedium) of layers
is considered, the determination of the o and [ parameters is more complicated and can
involve several stages. The solution processis as follows:

() Thesystem described by equations (64)-(69) issolved, and a,,, 8, (n = 1,...,N) are
computed.
(b) The potential (maximum) flux at the bottom boundary of the first layer (first interface)

iscomputed as

Qz = |UCf — DI =L
1 1 Ldx =7, (74)
= ay(Uy — D n) exp(ni” Z1) + B1(Us — D ny7) exp(ny Z1)
This represents the Laplace-transformed flux if all the colloids can move uninhibited
(i.e., without straining) acrossthe layer interface. Because al the quantitiesin (74) are

known, @ z, 1seasily computed.
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(c) Theactual transformed flux across the straining boundary is now

Q= i (Us = D{ if) exp(nf” Z1) + B} (Uy — Df ny) expli; 1), -
= Xéc @Zl

where the superscript * denotes the actual (as opposed to potential) values, and Xg
is a dimensionless accessibility factor [Moridis et al., 1999]. The term Xg adjusts
the fluxes at the fracture interfaces of layers 1 and 2. It describes the portion of the
colloidal concentration in the fractures that is allowed to enter the fractures (or, in the
case of an unfractured layer, the flowing portion of the matrix) of an adjacent layer
of different characteristics, and quantifies pore size exclusion (straining). For solutes
x4 = 1, whilefor colloids 0 < xJ < 1 because of their relatively large size.
Forthefirst layer(n = 1), equations(64)-(66)areunaffected. Equation (67)is replaced
by the actual flux equation (75). The right hand side (= Xg @ z,) and the coefficients

of a] and 37 in (75) are known quantities.

(d) Theflux equation (69) for n = 2 now becomes

o] [Ml bi(Uy — Df nf)} exp(n;, Z1)
+ 0 [ My by (U = Dl np)] explny 21) (76)

— [Mzbz(Uz—Dgnfj)] — f2 [Mzbz(U2—D§775) =0.

(e) Equations (67) and (69) apply for n > 2. The resulting system of linear equationsin

(71) issolved again to yield o, 35, an, B (n =2,..., N).

(f) The potential (maximum) flux @ z, a the bottom boundary of the next layer n = 2 is

then computed in analogously to that in equation (74). Inthe samelayer, equation (67)
is replaced by the equation of the corrected flux in (75), and the adjusted flux at the
boundary betweenthen = 2 and n = 3 layersisobtained from (76) after the subscript
substitutions 2 — 1 and 3 — 2. The new system of linear equations (71) is solved

againtoyield of, 57, a3, 85, an, Bn (n = 3,..., N).



(9) The process is repeated until al the concentration equations (67) are replaced by the
corrected flux equations (75). The solution of the linear system (71) then returns o},
Br(n=1,...,N). Usingthea} and 3 values (instead of «,, and 3,,) in (57) yields
o/,

Itisobviousthat colloid filtration with pore-size exclusion (straining) requires solution
of the linear system (71) a maximum of N times. Note that there is no need to apply the
process described above at the interfaces where no straining occurs.

Extension to daughter products (colloidal or solute) of the decay of radioactive colloids
is straightforward. Equations (65)-(69), as modified per the discussion in Section 6.1.4,

apply to theinitial (unstrained) system. The quantity

dY,
Y1 — D}, =2
[Ul B vl dzy :|Z

is added to the expression for @ z, Inthe second line of (74), whereas the quantity

dY*
o - ol
’ z

is subtracted from the right-hand side (second line) of (75), where Y* indicates particul ar

solutions based on the corrected fluxes.

7.2. Misaligned Fractures

The analysis presented thus far assumesthat the effect of fracture offset on transport is
negligible. Thismay not bethe casefor large fracture spacing or at short observation times.
The process that accounts for fracture misalignment is described in Figure 4. The
increased travel path of the transporting water caused by the offset fractures is indicated
by the horizontal pathway at the confluence of the n and n + 1 layersin Figure 4a, and its
effect is described by the addition of an “interlayer”, i.e., a pseudo-layer (Figure 4b) with

the following characteristics:
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(@ A thickness Z; = max{X,,, X;,+1} when M,, > M,, 1, 0r Z; = min{X,,, X,, 11}
when M,, < M,,+1.

(b) A relativefrequency M; = M,,.

(c) An open or filled fracture of width b; through which water flows between the n and
n + 1 layers. The properties of the fracture in the interlayer are independent of those
in the layers above and below.

(d) A complex matrix, composed of the matrices of both then and n + 1 layers. In Figure
4b, the matrices of the n and n + 1 layers are positioned on the left and right sides
of the fracture, respectively. The two components of the matrix are assumed to be
semi-infinite, as illustrated by their rotation by 90° (with respect to the original layer
orientation) in Figure 4b. Then, the flux into the composite matrix of the interlayer is

computed from equation (54), but with v = ~;, where

1
Y1 = 2 (Yn + Ynt1) 5 (77)

and v,,, yn+1 ae computed from equation (55).

Thus, considerationof misaligned fracturestransformsasystem of IV layerstoasystem
of N + Nj layers, where N isthe number of interlayers. The solution of the augmented
system does not pose any particular challenges and proceeds in the manner discussed in
Section 6. Note that the approximation discussed involvesthe longest possible travel path
and the largest possible amount of tracer diffusing into the matrix. This is because the
concept of the interlayer assumes semi-infinite pseudomatrices (see Figure 4b) and ignores
cross diffusion between the n and n + 1 layers. In that respect, the transport estimates

considering and ignoring fracture offset provide the limits that bracket the true solution.

7.3. Occasional Unfractured Layers

If the layered system includes unfractured (porous) layers (e.g., Layer 3 in Figure



1), these are treated as a combination of a pseudo-matrix (representing the nonflowing
portion of the layer) and a pseudo-fracture representing the flowing portion of the layer. In
essence, unfractured layers are treated as filled-fracture systems, and all the equations apply
unchanged. The properties of the unfractured medium are assigned to both the pseudo-
matrix and the pseudo-fracture. The relative sizes of b and X can describe the flowing and
non-flowing portions of the porous medium. If water flows uniformly through the porous
medium, X = 0. This approach maintains water mass and flux balance.

It is obvious that, for unfractured media, L, = 2(b,, + X,), i.e,, M,, = 1. Note that
correct water saturations.S must be used (obtained from the solution of the steady-state flow
equation) because the derivation of the transport equations is based on time-invariant flow

conditions and cannot compute changesin S.

7.4. Transportin Layered Unfractured Media

This is a limiting case of the scenario discussed in Section 7.3. Setting X,, = 0
(n = 1,..., N) transforms the problem into that of one-dimensional tracer transport in a
layered porous (unfractured) system. Then, all the semianalytical solutions derived here

apply unchanged.

8. Verification

A FORTRAN program was written to obtain the semianalytical (SA) solutions
developed in Sections 4 through 6 by first solving (71), and then performing the numerical
inversion indicated in (73). This code, named FRACL, accounts for all the processes,
phenomena and conditions discussed in Sections 2 through 7. It can obtain solutions for
a system involving an arbitrary number of layers N of any combination of porous and/or

fractured media, and up to 4 daughters (i.e., 5 radionuclides, including the parent). It is
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very computationally efficient, and required less than 10 seconds for any of the problems
discussed in Sections 8 or 9.

FRACL is verified through comparisons to analytical solutions of radioactive solute
and colloid transport in 1-D porous (unfractured) media and 2-D fractured media. In all
cases, FRACL solutions are first obtained in a system consisting of a single semi-infinite
layer (i.e.,, N = 1). Thedomain isthen subdivided into three layersin the z direction, and
FRACL solutions for this multilayered system (N = 3) are obtained. Coincidence of the
analytical solutions to the FRACL solutionsfor N = 1 and for N = 3 validates FRACL.

8.1. Test FS1: Radioactive Solute Transportin a
System of Parallel Fractures

This problem describes transport with LE sorption in the fracture-matrix system of
Case 1 (Figure 2a). The corresponding analytical solution was developed by Sudicky and
Frind [1982]. The values of the parameters used for the computation of the analytical and
the SA solutions are as in Sudicky and Frind [1982], and are listed in Table1. A constant
concentration condition is applied at z; = 0.

Figure 5 shows the distribution of the relative concentration C'z (defined as Cr =
C/J/C.o)inthefracturesalong the z axisat t = 1,000 days. Theanalytical solution and the

two FRACL solutions (for N = 1 and N = 3) areidentical in the first 5 significant digits.

8.2. Test FS2: Radioactive Solute Transportin a Single Fracture

This problem describes transport with LE sorption in the fracture-matrix of Case 2
(Figure 2b). The corresponding analytical solution was developed by Tang et al. [1981].
The valuesof the parameters used for the computation of the analytical and the SA solutions
arethesameasin Test FS1, and arelisted in Table1. A constant concentration condition is

applied at z; = 0.



Figure 6 shows the distribution of C'r in the fracture along the z axisat t = 10, 000
days . The analytical solution and the two FRACL solutions (for N = 1 and N = 3) are

identical in the first five significant digits.

8.3. TestsFS3 and FS4: Transport of a Two-M ember Radioactive
Solute Chain in a Single Fractureand in Parallel Fractures

To verify the ability of FRACL to predict the transport of the members of radioac-
tive/reactive chains, the transport of a parent and a single daughter is studied in Tests FS3
and F$4 (corresponding to theconditions of Case 1 and 2, respectively). Theparent radionu-
clideisnonsorbing and hasashort half life(t, ,, = 1,000 s). Thedaughter radionuclide has
the properties of the radionuclide discussed in TestsFS1 and FS2 (Table 1). The boundary
conditions and the values of the parameters are the same as in Tests FS1 and FS2. The
observationtime in thistest islong (¢ = 100, 000 days). The very short T} /, of the parent
ensures compl ete decay to the daughter radionuclide at the time of observation.

The SA solutions of TestsFS3 and FS4 for N = 1 and N = 3 are shown in Figure
7. The SA predictions of the C'r distributionsin the fracturesforboth N =1and N = 3
coincide with the analytical solutions of Sudicky and Frind [1982] and Tang et al. [1981].

An analytical solution to the problem of transport of a parent and a single daughter
was developed by Sudicky and Frind [1984], but was based on asimplified PDE of fracture
transport that neglects dispersion and involving a delta-Dirac type of contaminant release.
Because of these differences, it is not possible to compare the SA solution from FRACL to

the Sudicky and Frind [1984] solution.

8.4. TestsFC1 and FC2: Coalloid Transportin a Single Fracture

These tests correspond to nonradioactive colloid transport with kinetic filtration

(deposition) in the fracture-matrix system of Case 2 (Figure 2b). Abdel-Salam and

33



Chrysikopoulos [1994] developed the corresponding analytical solutions for different
boundary conditions and matrix penetration scenarios.

The values of the parameters used for the computation of the analytical and the SA
solutions of TestsFC1 and FC2 arelisted in Table2. In both tests, aconstant flux condition
isapplied a z; = 0. Filtration in the matrix is not considered in Test FC1, while matrix
deposition is controlled by alinear kinetic model in Test FC2.

Figure 8 shows the distribution of the relative concentration C'r in the fractures along
the z axisat t = 5 years. The SA predictions of C'y in the fractures for both N = 1 and
N = 3 coincide with the analytical solutions of Abdel-Salam and Chrysikopoul os [1997].

8.5. TestsPS1 to PS4: Radioactive Solute Transportin
Unfractured PorousMedia

Tests PS1 to PS4 are designed to confirm the ability of the SA solutions to describe
transport in unfractured media without any modification. The solution to this problem is
provided by Bear [1979], and accounts for LE sorption and radioactive decay.

The values of the parameters used for the computation of the analytical and the SA
solutions of TestsPS1to PS4 arelisted in Table3. Inall four tests, aconstant concentration
condition isapplied at z; = 0. The solute is a nondecaying isotope in TestsPS1 and PS2,
and a decaying radionuclide in TestsPS3 and PS4. LE sorption is considered in Tests PS2
and PS3, but isignored in TestsPS1 and P4.

Figure 9 shows the distribution of the relative concentration C'r aong the z axis at
t = 200 days. The SA predictions of C'r distributions for both N = 1 and N = 3 are

identical with the analytical solutions of Bear [1979].

8.6. Test PS5: Trangport of a Three-M ember Radioactive
Solute Chain in Unfractured PorousMedia



Thistest isdesigned to verify the ability of the SA solutionsto describe the transport of
reactive chainsin unfractured mediawithout any modification. Ananalytical solutiontothis
problem was developed by Harada et al. [1980], and accounts for LE sorption, radioactive
decay, and time-variable boundary conditions.

Test PS5 describes the transport of the radioactive chain

234U 230Th 226 Ra

through a sorbing porous medium. The concentration of 234U (i.e., the parent radionuclide)
at the z; = 0 is not constant over time, but subject to radioactive decay. The initial
concentrations of the 23°Th and ??Ra daughter radionuclides at the z; = 0 boundary are
zero, but increase over time because of the decay of their parents.

The values of the parameters used for the computation of the analytical and the SA
solutions of Test PS5 are asin Harada et al. [1980], and are listed in Table4. Figure 10
shows that the analytical solutionsat ¢ = 10,000 years coincide with the SA predictions
(for both N = 1 and N = 3) of the Cr distributions of the three members of the radioactive

chain.

8.7. TestsPC1to PC3: Transport of Non-Radioactive Colloids
in Unfractured PorousMedia

TestsPCL1 to PC3 describe nonradioactive colloid transport in a porous medium under
conditions of “deep filtration” (see Section 3.2). An analytical solution to this problem for
fv = 1 (see Sections 3.1 and 3.2) was devel oped by Dieulin [1982], and accounts for kinetic
irreversiblefiltration (i.e., k= = 0 in equation (29)).

The values of the parameters used for the computation of the analytical and the SA
solutions of TestsPC1 to FC3 arelisted in Table5. The three tests differ only in the value

of thefiltration coefficient e of equation (30). A constant concentration condition is applied

35



36

a z; = 0inadl threetests.
The distributions of the relative concentration C'r in the threetestsat ¢t = 7200 s are
showninFigure 11. In all tests, the SA predictionsfor both N = 1 and N = 3 areidentical

with the corresponding analytical solutions of Dieulin [1982].

9. Analysisand Test Problems

In this section the transport of various radionuclides is studied in layered systems
(involving both fractured and porous layers) of different characteristics and properties. The
Dy and X of the radionuclides discussed here appear in Table 6. For constant boundary

conditionsin any of the problems in this section, Cr = 1 by definition.

9.1. Problem 1: Importance of Fracture Misalignment

This problem studies the importance of fracture misalignment on transport, as quanti-
fied by the concept of interlayers (discussed in Section 7.2). Thefollowing analysisfocuses
on the effects of the presence of such interlayers, in conjunction with other parameters of
the hydrogeologic layers and of the species. The flow velocity in al cases of Problem 1
was U = 0.1 m/day, the system was saturated (S = 1), and the z = 0 boundary was kept
at a constant concentration (C'r = 1).

9.1.1. Case l-a: Effect of fracture offset (interlayers). This case involves the
transport of the nonsorbing solute species 3H in a layered fractured system with fracture
offsets and various interlayer characteristics. Case 1-ainvolvesthree sub-cases. 1-al, 1-
a2 and 1-a3. The geometry of the reference Case 1-al of the layered fractured system is
described in Table 7, while the hydraulic properties of the fractured layers are shown in
Table8 and the sorption propertiesin Table9. Thethree main layers (identified as Layers#
1,3 and 5in Table8) were fractured media (FM), while the interlayers (identified as Layers



# 2 and 4) were considered to be fracture interlayers (Fl, i.e., horizontal open fractures
connecting the vertical fracturesin the layers above and below).

The characteristics of Cases 1-a2 and 1-a3 are explained in Table 10, which showsonly
the differences from the base Case 1-al. Thus, Cases 1-a2 and 1-a3 differ from Case 1-al
in that the interlayers are porous interlayers (P1), i.e., the horizontal features connecting the
fractured layers are either fractures filled with porous media or unfractured porous media.
Flow and transport occurs through a porous medium with different transport behavior than
in the FIs of Case 1-al. The hydraulic properties of the porous media in the Pls in Cases
1-a2 and 1-a3 are the same as those of the porous matrix in the overlaying and underlying
layers. In Cases 1-a2 and 1-a3, the Plshavean X = 0.025 mand X = 0.1 m, respectively.

The results of the three subcases of Case 1-a are shown in Figure 12, which shows
the fracture Cr. The presence of the interlayers in Figure 12 is marked by the vertical
steps in the Cr profiles (caused by the fact that Figure 12 indicates the vertical coordinate
z and not the length of the travel path. For the nonsorbing *H and at early times, the
retardation caused by the presence of the FI is measurable, as compared to the case with
aligned fractures (no interlayer, denoted by NI in Figure 12—included for comparison). This
was expected because of thelonger travel path in the case of FIs, which increase the amount
of 3H diffusing into the porous matrix and result in lower fracture concentrations. At the
same early times, the retardation caused by the Pls can be substantial and increases with
the the half-width b of the PI. These results also conform with expectations because of the
slower flow velocities in the porous media of the Pl (as compared to those in the fractures
of the FIs), which increase the residence time and diffusion into the porous matrix.

Figure 12 also shows that the effect of the interlayers keeps decreasing with time.
This was expected in Case 1-a because the travel path increase caused by the interlayersis
small (asthe layer half-width X isonly 0.25 m) and ®H is nonsorbing (leaving diffusion

into the matrix as the only mechanism removing the radionuclide from the flowing water).
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At ¢t = 10* days, the presence of interlayers of any kind (FI vs. Pl) has no effect on the
concentration profile in the fractures.

9.1.2. Case 1-b: Combined effect of interlayer sand matrix width of thefractured
layers. Thiscase involvesthree subcases: 1-bl, 1-b2 and 1-b3 (see Table 10). Cases 1-b1,
1-b2 and 1-b3 differed from Cases 1-al, 1-a2 and 1-a3 in that X = 2.5 minstead of 0.25
m, thus substantially increasing the travel path and residence time of 3H in the interlayers.
This is expected to increase retardation, especially at early times.

Figure 13 confirmsthis expectation. Att = 102 days, the presence of therelatively fast
flowing Fl is sufficient to reduce C' in the fracture by about four orders of magnitude. The
effect is more pronounced in Case 1-b3 (Pl with b = 0.1 m). The same pattern is observed
att = 103 days, at which time the retardation in Case 1-b3 remains very substantial. This
is caused by the reduction of the advectiveand dispersive components of transport (because
velocity decreases as b increases) in addition to the reduction of the molecular diffusion
component (due to the smaller ¢ and 7 values in the filled fracture, see equation (2)).
Remarkably, stronger retardation is observed in Case 1-b1 (FI) than in case 1-b2 (Pl with
b = 0.025 m). Thisis attributed to the larger solute mass in the PI, which is less affected
by diffusioninto the matrix (about the same in both cases). Asin Case 1-a, the effect of the
fracture offset (presence of interlayers) decreases with time.

The conclusion reached from these results is that the effect of fracture offsets
(interlayers) increases with the matrix block size of the fractured layers. Thisis consistent
with expectations because the travel path increases substantially in fractured system with
large X, with a corresponding increase in residence time and diffusion into the matrix.

9.1.3. Case 1-c. Combined effect of interlayers and aperture b of the fractured
layers. This case involves two subcases: 1-cl and 1-c2 (see Table 10). Cases 1-c1 and
1-c2 differed from Cases 1-al and 1-a3, respectively, inthat b = 5 x 10~* m instead of

5 x 10> m, thus substantially increasing the fracture width and, correspondingly, the mass



of the radionuclide transported in the flowing water per unit time.

Figure 14 shows that the transport is faster in this case (compared to Cases 1-a and
1-b), and that the effect of fracture misalignment is minimal because the mass flow rate in
thiscaseistentimesthat in Cases 1-aand 1-b. Although there may be an interlayer effect at
very early times, the comparatively very largeamount of availableH easily overwhelmsthe
increased retardation capacity of the system (caused by the increased travel path, residence
time, and diffusion into the matrix). The obvious conclusion is that the effect of fracture
misalignment on retardation decreases with the fracture aperture of the fractured layers.

9.14. Case 1-d: Combined effect of interlayers and water saturation S of the
fractured layers. This case involved two subcases. 1-d1 and 1-d2 (see Table 10). Cases
1-d1 differed from Case 1-al in that S™ = 0.8 and S/ = 0.5 instead of S™ = S/ = 1.
Cases 1-d2 differed from Case 1-a3 in that S™ = S = 0.8 instead of S™ = S = 1. The
effect of S isexhibited through its effect on the water velocity: ahigher pore velocity V' is
needed to maintain the same U if S decreases. Thus, faster transport was expected in this
case, with a corresponding decrease in the importance of the increased travel path caused
by the fracture offset.

The results in Figure 15 confirm these expectations. Transport appears faster than
in Cases 1-a and 1-b, while the relative importance of the fracture offset (presence of
interlayers) decreases in systems with the same water mass flow rate but with decreasing
water saturation.

9.1.5. Case 1-e. Combined effect of interlayersand radionuclide properties. The
transport of 23"Np (a moderately sorbing radionuclide) and 23°Pu (a strong sorber) were
studied in the fracture systems discussed in Case 1-a. The properties of 23"Np and 23°Pu
appear in Tables6 and 9. The sorption behavior of these two speciesis expected to increase
the retardation effect of the interlayers.

The results are shown in Figures 16 (for 23"Np) and 17 (for 23°Pu), and confirm
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expectations. Despite the much longer T}/, of 23"Np and 23?Pu, transport is much slower
than that for *H because of two mechanisms at work removing the solutes from the water
in the fractures. diffusion and sorption. The longer travel path in the case of interlayers
(fracture offsets) provides an opportunity for increased diffusion and sorption, as indicated
by the comparison to the fracture C'r profilefor no interlayers. Note that sorption decreases
the concentration in theliquid phase, and although the D, of 3H ishigher, diffusionis higher
because the % gradient is steeper. Retardation increases with the distribution coefficient

K 4 of theradionuclide, from Flsto Pls, and with an increasing b of the PIs.

9.2. Trangport of Straining 23°Pu Colloidsin a Layered
Fractured System With Fracture Misalignment

Problem 2 describes colloid transport through the layered system with the geometry
and characteristics of Case 1-al of Problem 1. Thus, the domain comprisesthree misaligned
layers with the fracture offsets represented by interlayers, for atotal of fivelayers. Colloids
are subject to straining (pore-size exclusion) and filtration (a physical-chemical process of
colloid attachment to active sites on the fractures and matrix).

Three cases (Cases 2-a, 2-b and 2-¢) are studied in Problem 2. The properties and
parameters of the base Case 2-al arelisted in Table11, and the specifics of the various cases
of this problem are listed in Table12. Two colloids are compared in al the studies: a5 nm
colloid and a 500 nm colloid. Flow velocities, water saturations and boundary conditions
were asin Problem 1.

9.2.1. Case2-a: No matrix deposition. In this case, colloids were deposited in the
fractures, but therewas no colloid filtration in the matrix. The FRACL resultsin Cases 2-al
and 2-a2 are shown in Figures 18 and 19, which also include the C'r profile for aligned
fractures (no interface, NI) for reference. The following observations are made:

1. At the straining interface (i.e., at the boundary of afracture with a Pl) C'r exhibits a



local steeppeak,and C'r caneasilyexceedthevalueofl. Thisindicatesaconcentration

that exceeds the source concentration and is an expected consequence of straining.

. Because of their larger size and enhanced pore size exclusion, the fracture C' of larger
colloidsis significantly higher than that for smaller colloidsif no Pls are involved.

. Figures 18 and 19 confirm the expectation that Pls can have a very strong retardation
effect on transport because they are far more effective strainers than Fls (in which
straining may be provided by a narrowing of the fracture). Consequently, the fracture
Cr of larger colloids after a Pl is significantly lower than that of smaller colloids.
This indicates that filled fractures or flow through the matrix between fractures can
drastically reduce colloid concentrations in the fractures.

. A very important observation is that larger colloids exhibit faster transport in the
fracturesthan smaller ones. Thisis because of their size, which affectsthree processes.
Larger colloids move faster (1 < f, < 1.5 because they are channeled toward the
middle of the fractures and pores where the flow velocity is maximum. As can be seen
from equation (27), the coefficient of colloidal diffusion decreasesin larger colloids,
thuslimiting diffusionintothe matrix and leaving larger colloidal loadsin thefractures.
Penetration into the matrix (and, consequently, removal from the fractures) is further
restricted by pore size exclusion.

. The 23°Pu colloid front moves at least one to two orders of magnitude faster than the
front of the solute 23°Pu (a strongly-sorbing species). Thisis true even when colloids
are transported through straining (and strongly retarding) PIs, and appears to confirm
previous laboratory and field studies [McCarthy and Zachara, 1989; Buddemeier and
Hunt, 1988, Kersting et al., 1999]. The obviousimplication isthat, if the geochemical
conditionsfavor the creation and stability of radioactive colloids, these can move much
faster through the geologic system than the corresponding solutes of strongly sorbing

species, because colloid filtration isnot asimportant aretardation mechanism as solute
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sorption.

6. At longer times, the fracture C'r profiles for both the 5 nm colloid and the 500 nm
colloid are about the same if no PIsare involved.

7. The fracture concentrations C'r continue to grow for along time behind the straining
surface, and eventually reach steady-state levels that, for larger colloids, can be
hundreds of times higher than the source concentrations. In this example, the 500
nm colloid before the first PI reaches a C'r of about 300 at t = 10* days; at the same
time and location, the 5 nm colloid reachesa C'r = 20.

Figure 20 provides amore detailed view of the steep C'r peaks behind the PIs (i.e., the
straining interfaces) and their evolution over time. Note that the 500 nm profile reaches a
steady state far earlier than the smaller colloid.

9.2.2. Case 2-b: Collaid filtration in the matrix. The specifics of the various
subcases of Case 2-b are listed in Table12. The only difference in geometry is the wider
matrix block of the fractured system under study. The results at t = 10* days are shown
in Figure 21, which aso includes the solution for aligned fractures (denoted by NI, i.e., no
interlayer).

The general pattern of fracture C'r profile hereis similar to that in Figures 18 and 19,
and is characterized by steep concentration spikesbehind straining Pl interfaces. There are,
however, some significant differences.

One of the most remarkabl e differencesisthat the effect of matrix filtration isfar more
pronounced in the case of the 5 nm colloid than in the larger 500 nm colloid. Thus, the
presence of matrix filtration leads to significantly lower concentrations than the analogous
results without filtration, and is consistent with the diffusion of relatively large amounts of
the smaller colloids into the matrix. This holds true for any of the subcases (2-b1 through
2-b4), aswell asfor thereference case of aligned fractures. 1n subcase 2-b3 (which assumes

transport through a Pl with b = 0.1 m — PlI(b) in Figure 21), the colloids breach the first



PI, but the combined straining-filtration effect at the interface of the fractured layer and
the second Pl is so strong that the 5 nm colloids have not yet entered the fractures in the
underlying layer after t = 10* days.

In subcases 2-b2 (thinner porous flowing section - PI(a) in Figure 21) and 2-b4 (thinner
flowing section and weaker filtration - PI(c) in Figure 21), the colloid manages to breach the
Pls, but the retardation (over the no-filtration cases of Figure 19) isvery significant. Thisis
important, given thefact that these very large retardations are caused by an additional travel
path of only 0.25 min each interlayer. Note that, as expected, the weaker matrix filtration
in subcase 2-b4 leads to higher C'; in the fractures. The fracture C'r profiles for the cases
of NI and FI practically coincide.

An interesting observation is that the C'r profiles for NI and FI of the 500 nm colloid
show little difference from those without matrix filtration in Figure 19. This indicates that
matrix deposition does not significantly affect the transport of this colloid for NI or FI, and
is attributed to the fact that so little of it enters the matrix because of straining. The effect
of straining at the interface with Pls, however, has significant effects on the fracture Cp,
which are now much lower than the corresponding profilesin Figure 19. Asin the case of
the 5 nm colloid, no 500 nm colloids appear in the fractures of the underlying layer when
the Pl hasab = 0.1 m (Case 2-b3 - PI(c) in Figure 21). In Cases 2-b2 and 2-b4, the Cr
concentrations are (a) lower than the corresponding ones in Figure 19 (because of colloid
removal by the porous medium in the Pl), but (b) higher than the ones for the 5 nm colloids
in Figure 21 (because far fewer 500 nm colloids than 5 nm colloids enter the matrix).

9.2.3. Case 2-c: Coalloid filtration in fractured media with wide matrix blocks.
The specifics of the various subcases of Case 2-c are listed in Table 12. The results at
t = 10* days are shown in Figure 22, which also includes the solution for aligned fractures
(denoted by NI).

Figure 22 shows the same general pattern of colloid transport observed in Figures 18



through 21 and a prominent colloid accumulation behind straining Pl interfaces. For no
matrix deposition (denoted by NMD in Figure 22), there is practically no differencein the
fracture C'r profiles between Case 2-c and 2-a (see Figure 20) for both the 5 nm and the
500 nm colloids.

Thus, the effect of a larger matrix block (and, consequently, longer travel path) is
practically negligible at t = 10* days when matrix deposition is not considered. The same
holds true for the profile with NI and matrix deposition (denoted by WMD in Figure 22) for
both colloids, and the profile for FI and the larger colloid (because of the limited diffusion
and the pore size exclusion). The 5 nm fracture C'r profile for matrix filtration does show
a small difference from the one for Fl, which is attributed to the increased filtration and
diffusion into the matrix due to the longer travel path of the colloid in the FI in Case 2-c
(which is 10 times longer than the reference travel path in the Fl in Case 2-a).

The most pronounced effect is noticed in the case of a Pl, which strains colloids and
provides more opportunitiesfor filtration in the matrix of theinterlayer. In both colloids, the
longer travel pathinthe Pl (over thereferencein Case 2-a) resultsin profilesthat indicate the
colloids cannot even breach thefirst Pl after ¢t = 10* years. Thus, the fracture misalignment
and the transport through a longer porous pathway (a consequence of the larger matrix

blocks) prevent the migration of the colloidsin the fracture system.

9.3. Problem 3. Radioactive Solute Transport
in a Complex Multi-L ayered System

The complex geological system in Problem 3iscomprised of 14 layers and interlayers
of fractured and porous media. The geometry and configuration of the system are described
in Table13, and therock propertiesand conditionsarelisted in Table14. Linear equilibrium
sorptionis assumed, and thesorption coefficientsof thevariousradionuclides inthefractures

and in the matrix of the various layers (K j and K*, respectively) are listed in Table 15.



The water velocity U at z = 0 isasin Problem 1.

9.3.1. 3H Transport. Thefracture C'r profiles of the nonsorbing 3H for both constant
concentration (CC) and decaying (radioactively) concentration (DC) at the z = 0 boundary
are shown in Figure 23, which includes observations at the following times: ¢; = 10* days,
to = 5 x 10* days, t3 = 10° days, t4 = 2.5 x 10° daysand t5 = 5 x 10° days.

The various layers can be generally identified by a change in the C'r Slope, while
the interlayers are indicated by vertical sections of the C'r curves (as the abscissais the z
coordinate rather than the travel path). For a CC boundary, the C'r distribution reaches a
steady state for ¢t > t4. As expected, the effect of the DC boundary is a Cr profile that
is progressively lower than the one for a CC boundary, never reaches steady state, and is
outside the Cr range (< 1077) for t > t4. This example demonstrates that a complex
problem of transport in a multilayered system can be easily handled by FRACL, which
yields semianalytical (SA) solutionsinlessthan 10 s.

9.3.2. 9Tc Transport. ?9Tc (in its pertechnate TcO; speciation) is a non-sorbing
radionuclide with alonger half life than 3H (see Table6). Two boundary conditions were
considered in this case: a CC boundary and a piece-wise continuous (step) concentration
(PC) boundary, i.e.,

{1 fort <5 x 10* days

0 fort > 5 x 10* days
The Cg profilesin the fractures of the layered geologic system (at the same times as

in the case of 2H in Section 9.3.1) are shown in Figure 24. The effect of the longer half
lifeis evident in the C'r profile for CC boundary, which indicates that °° Tc advances much
further in the formation than 3H at the same times (the difference is due to radioactive
decay), and does not appear to have reached steady state at t = ¢5. The change in the
boundary concentration over timein the PC boundary case resultsin C'r profiles that show

aprogressivelylarger(withtime) °°Tc-freezoneneartheboundary, whilethe C' further into
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the formation keeps decreasing and deviating from that for constant boundary concentration
(with which it coincides fully or in part for ¢ < t4).

As indicated in the case of 3H, the various layers and interlayers can be generally
identified from changesin the C'r ope. Transport infast flowing fractures(e.g., in the case
of narrow fractures with large matrix blocks under a layer of wider fractures and narrow
matrix blocks) can also be identified by a near-horizontal portion of the C'r profile. This
example (which takes less than 15 sec to run) confirms the ability of FRACL to solve the
problem of transport of a decaying radionuclide in acomplex geological system.

9.3.3. 23"Np Transport. Thefracture C'r profile of the moderately sorbing 23" Np for
aCC boundary isshowninFigure 25. Notethat the observationtimeshereare: t; = 5 x 10*
days, t, = 10° days, t3 = 5x 10° days, t, = 10° days, t5 = 2.5x 10° daysand ¢t = 5 x 10°
days.

The slower transport of 23”Np (compared to that of °Tc) is caused by sorption and,
to afar lesser extent, by increased diffusion into the matrix. Despiteitslonger half-life, the
transport of 237Np appears to be about an order of magnitude slower than that of *°Tc, and
does not appear to have reached steady state at ¢ = ;.

The C'r profiles along the x axis in the matrices of the various layersat t = tg are
shown in Figure 26. The different shape of the curvesis afunction of their location (with
respect to the z = 0 boundary and to the solute front) and of the sorption properties of the

matrix in the various layers.

9.4. Problem 4. Solute Transport of a Three-M ember Radioactive
Decay Chain in a Complex Multi-L ayered System

Problem 4 describes the transport of the radioactive chain
239PU—> 235u_> 231Pa

through the complex multilayered system described in Problem 3 (Tables12 and 13). The



sorption coefficients K 5 and K7* of the 23°Pu parent in the various layers are listed in
Table 15. The sorption coefficients of 23°U and 23! Pain the fractures and in the matrix
were assumed to be 5% and 50% of the 23Pu ones, respectively. C'r profiles of the three
radionuclides were obtained at the following observation times. t; = 10° days, t» = 10°
days, t3 = 107 days, t4 = 108 days, t5 = 10° days, and t = 10'° days. Two boundary
conditions were considered: a CC and a DC boundary.

9.4.1. 239Pu Transport. Figure 27 shows the C'r profiles of 23°Pu in the fractures
for constant boundary concentration and a decaying boundary concentration. Thereis no
or little deviation of the two curves until ¢ = ¢3. The fracture Cr InDC caseat t = t4
is substantially lower than that of the CC case, and the C'; for a DC boundary is less than
10~9 fort > t5 .

Aninteresting observationisthat, for aCC boundary, the 23° Pu front does not advance
deep into the formation despite observation times orders of magnitude larger than those for
the 23"Np transport. This is due to the very strong sorption of 239Pu onto the matrix and
fractures of the layers and, to alesser extent, the shorter half life of 23°Pu (compared to that
of 23"Np. Note that the C' profile appears to have reached steady state at ¢t > ts.

In addition to the transport of the members of the chain, the transport of 239Pu was
studied separately, assuming a CC boundary and a r» < 1 (see Equation (38) and the
corresponding discussion). This describes a situation in which not all the contact area
between fracture and matrix contributesto transport (e.g., because of apartially dry fracture
which constitutes a discontinuity in the water phase). In thiscase, » = S in the fractured
layers and interlayers (FM or Fl), and » = 1 elsewhere.

The effect of » < 1 in Figure 28 appears to have a substantial effect on transport,
and results in a 23°Pu front that reaches much further (i.e., about three time deeper) in the
geologic profile than that for » = 1. Thisis a direct consequence of a reduced area for

239py diffusion from the fractures into the matrix, which leaves alarger amount of 23°Puin
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the fractures where advectionis fast and sorption relatively small (compared to the matrix).
Thus, the transport of strongly sorbing radionuclides in fractured systems may be strongly
influenced (enhanced) by partially dry fractures.

9.4.2. 235U Transport. The fracture Cr, profiles of 23°U for CC and DC boundaries
and for t < t4 are shown in Figure 29. The Cy of the DC solution always exceeding that
from the CC solution, and significantly so (as imposed) in the vicinity of z = 0. A very
significant observation is that, in either case, Cr ~ 1 for t > t4 in the top 120 m of the
domain. Thisis even more the case in Figure 30, which showsthe Cr of 23°U for ¢ > 4
and gives a more detailed picture of the C'r distribution near the value of 1. The resultsin
Figures 29 and 30, in conjunction with the observations from Figure 27, indicate that for
t > t4, practically all of the radionuclide that advances deep into the formation is the 235U
daughter. The transport of 23°U is faster, the front reaches deeper, and C'r ~ 1 because
235U is generally weaker sorbing than 23°Pu and it has an extremely long half life. The
obvious implication is that studies of 23°Pu transport cannot neglect the transport of the
235U daughter, which is the dominant radionuclide at longer times.

Note from Figure 30 that, for t = ¢, and a DC boundary, Cr > 1, i.e, the 235U
concentration in the fractures exceeds theinitial 23 Pu concentration at the = = 0 boundary.
This is possible because the boundary (which introduces a radionuclide mixture composed
of all the members of the decay of the chain as 23 Pu decays) is now contributing a stream
of almost 100% 232U, which is added to the 2*°U produced from the (almost complete)
decay of 239 Pu already in the fractures and matrix of the system.

As expected, the C'r from the CC solution at ¢ = ¢4 is lower than that from the DC
solution (Figure 29). For ¢ > t4, the CC solutions exceed the DC solutions because the
decay of the 235U at the boundary is beginning to have an effect on the fracture distribution
of C'r. Thisisparticularly evident at t = t5. Note that steady state is not reached (in either

the CC or the DC boundary cases) even after t5 = 10'° days because of the extremely long



half-life of 23°U.

9.4.3. 231Pa Transport. Thefracture C'r profiles of 231 Pafor CC and DC boundaries
are shown in Figure 31. The C levels of 23! Pa are quite low because of the very long
half life of its 23°U parent, its own shorter half life, and its stronger tendency to sorb. The
C'r increases with time for both DC and CC boundaries. The CC profile has always lower
concentrations because there are all derived solely from the decay of 23°U (the boundary
doesnotsupplyanyadditional 23!PainaCCregime). Notethatineither case,concentrations
reach a steady state at about ¢ = 4.

These examples demonstrate that the FRACL code (i.e., the FORTRAN implemen-
tation of the semianalytical solutions developed in Sections 2.0 through 7.0) is capable of
handlingthetransport ofallthemembersof decaychains incomplexmultilayeredgeol ogical

systems and under avariety of boundary conditions.

9.5. Problem 5: Transport of a Radioactive Colloid Parent
and a Solute Daughter in a Complex Multi-Layered System

Problem 5 describes the transport of the radioactive chain 23Pu— 235U, in which
239py is a 10 nm true colloid (with the properties of PuO,), and 23°U is a solute. The
radionuclides are transported through the complex layered system of Problems 3 and 4,
and f, = 1 inal thelayers. The colloid filtration is described by the linear kinetic model
of equation (29). The filtration and straining parameters in the matrix and in the fractures
are listed in Table 16, and the sorption coefficients of the 23°U daughter are asin Problem
4. C'r profiles of the three radionuclides are obtained at the following observation times:
t; = 10° days, t, = 10° days, and t3 = 107 days (sufficiently short so that the colloidal
particle diameter remains practically unchanged). A CC boundary condition is assumed.

9.5.1. Transport of the 23°Pu colloid. Figure 32 showsthe C profiles of the 23°Pu

in the fractures at ¢4, t, and t3. The Cr of the solute 23°Pu (Figure 27) at the same times
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are included for reference. The colloid C'r profiles are typical of straining colloids (e.g.,
Figures 18 to 22), and exhibit concentration spikesthat can exceed the input concentrations
immediately behind straining interfaces (porous media layers or filled fractures). A very
important observation is that the colloid front advances about six times deeper into the
formation than the corresponding 23°Pu solute. This is because matrix diffusion is far
less important in the case of the colloid because of its larger size, which resultsin larger
colloid concentrationsin thefractureswheretransport isfast. Additionally, the strong 23°Pu
sorption is amuch more efficient retardation mechanism than the colloid filtration.

9.5.2. Transport of the solute23>U daughter of thecolloid. Thefracture C' profiles
of the solute 235U daughter of 23°Pu colloid is shown in Figure 33, which also includes the
Cr profiles of the 23°U daughter of 23°Pu solute (Figure 29). The faster transport of the
colloid parent is reflected in the solute daughter C'r profiles, which show that the 235U
moves faster and advances deeper in the formation than the daughter of the 23°Pu sol ute.

Theconcentration spikesoftheparent(causedbycolloidaccumulationbehind  straining
interfaces) are evident in the C'r of the 23°U daughter at ¢,, but these are progressively
attenuated (but discernible) as time advances. Note that the 23°U concentration near the
2 = 0 boundary is lower than in the case of 23°U from the a solute 23°Pu parent. Thisis
caused to the limited (compared to sorption) filtration of the 23°Pu colloids in the fractures
and the matrix in the vicinity of the boundary, which in turns limits the amount of parent

availablefor 23°U generation through decay.

10. Summary

In this paper, semianalytical solutions are developed for the problem of transport of
radioactiveorreactivetracers(sol utesorcol |l oi ds)throughal ayeredsy stemof heterogeneous

fracturedmediawith misalignedfractures. Thesolutionsallowanynumberand combination



of fractured and/or porouslayersthat can vary in hydraulic and transport properties, fracture
frequency, water saturation, fracture flow, and fracture-matrix interaction.

The tracer transport equations in the matrix account for (a) diffusion, (b) solute
surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d)
linear kinetic or equilibrium physical, chemical or combined solute sorption or colloid
filtration, and (e) radioactive decay or first order chemical reactions. Any number of
radioactive decay daughter products (or products of alinear, first-order reaction chain) can
be tracked. The tracer transport equations in the fractures account for the same processes,
as well as for advection and hydrodynamic dispersion. Additionally, the colloid transport
equations account for straining and velocity adjustments related to colloidal size. A wide
array of boundary conditions (constant or time-variable, concentration or flux) can be
accommodated.

Analytical solutions describing transport in the fracture and the matrix of each layer
are first obtained in the Laplace space. These are impossible to invert analytically, and are
numerically inverted by the method of DeHoog et al. [1982] to yield the solutions in time.

The semianalytical solutions are verified against analytical solutions of limiting cases
of solute and colloid transport in a fractured medium. Additional verification is provided
by comparisons against analytical solutions of transport in porous (unfractured) media.

The semianalytical solutions are then tested in a series of hypothetical problems of
increasing complexity. The effect of important parameters on the transport of 3H, 23"Np
and 239Pu (and its daughters) is investigated in several test problems involving layered
heterogeneous geological systems. Fracture misalignment appears to significantly affect
transport if water flow (and, consequently, transport) between the fractures of the overlaying
and the underlying layers occurs through a porous connecting pathway. Test problems
involving radioactive (23°Pu) colloid transport in multilayered systems indicate significant

colloid accumulations at straining interfaces but much faster transport of the colloid than
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the corresponding strongly sorbing solute species. Solute daughters of colloid parents are
affected by the faster transport of the parents, and exhibit faster transport than the same
daughters from solute parents.

The semianalytical solutions are very computationally efficient, requiring less than 10
seconds of execution time for the examples studied in this paper. The results of the test
problemsindicate that the semianalytical solutions can easily solve the problem of transport
of parent and daughter radioactive species in multilayered heterogeneous systems under a

variety of boundary conditions.
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Appendix A: The m, and 7, Coefficients

For Case 2 (X — o0), the H,, = H of the first five members of a radioactive or

reactivechain (v =1,...,5) are
oy =Cf
HS=Cf — 45,0

HS = 5;{ — Asy (75 + Aoy (Aze — Aszq) 6’{
H§ = Cf — Ags Cf + Agy(Aus — Asz) Cf

- A21 [A32 (A43 - A42) - A31 (A43 - A41)] 6{



HE = é'g — A5y Cf + Auz(Ass — As) 63{

~

— A3o[Ay3(Ass — Asz) — Aga(Ass — Aso)] C{
+ A {A32 [A43(As4 — As3) — Asa(Ass — As2)]

— As1[Asz(Ass — As3) — Aar(Ass — As1)]} a{

in which the m superscript of the A factors (equation (52)) are omitted for smplicity. The
terms7,, . inequation (53)can beeasilyidentified byinspection. Byfollowing theemerging
pattern, the development of the expressionsfor H, for v > 5 istedious but straightforward.

The H,, = H¢ expressions (corresponding to Case 1) are entirely analogous, and are

derived by dividing H¢ by cosh(d, X'). For example, for v = 2,

e — cf  Andf
27 cosh(fy X)  cosh(fy X)°

Appendix B: Thew, and -, .. Coefficients

For Case2 (X — o0),the W, = W¢ of thefirst 5 members of aradioactiveor reactive

chan(v =1,...,5) are

Wi = 0,0

W5 =02 Cf + Agy (61 — 62) CY

W3 = 03 C’?{ + Az (62 — 03) 5; + Ao [A31 601 — Azz 02 + (Az2 — Asy) 03] 6’{

WE =04CJ + Ags (65 — 6,) 6;{ + Aso[Au2 0o — Auz 05 + (Asg — Asz) 04 agf
+ Ao1 {Ag1 Ag1 01 — Asg Ay 0 + Auz(Aszs — A1) 05

— [As9 (A3 — Ago) — Az1(Agz — Agy)] 04} Cf
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Wy = 05 CL + Asa (04 — 05) C + Aus[Ass 03 — Asy 04+ (Asa — As3) 05] Cf
+ Ago{Auz A2 03 — Ayz As3 05 + Asy(Ass — Ag2) 04
— [Aus (Ass — Ass) — Asa(Asy — As2)] 05} CJ
+ A {A31 Agr As1 01 — Azg Agg As2 02 + Auz Asz(Asz2 — Az1) 03
— Asa[Aszz (A4z — Aga) — Az1( Az — A41)] 04
+ [As2[A43(Ass — Ass) — Asa(Ass — Asy)]
— As1[Aus(Ass — Asz) — Aur(Ass — As1)]] 95} i,
in which the m superscript of the A factors (equation (52)) are omitted for simplicity.

We obtain W¢ for Case 1 by replacing 6, by 6, tanh(6, X)) in W¢. Thus, for v = 2

and Case 1,
WQC = 92 tanh(92X) C{ + A21 [91 tanh(@lX) — 02 tanh(OQX)] éif

Theterms~, ,, areeasy to obtain from (59) andthe WS, W¢ expressions by inspection.

Extension for v > 5 followsthe same pattern.

Appendix C: The Bz, Coefficients

The Bfﬁ coefficients of up to the first 5 members of a radioactive or reactive chain

(v=1,...,5,k=1,...,v — 1) aregiven by the following general expressions:
Bj:,l/—l = Y1 f1 = Gle

B;Ifl/_2 = (’yyvy_l fq - Gz)Al:l:—].,V—2 + 7”77/_2 fq
B;_L,u—s = (w1 [*— Gjuc) Aui—1,u—3 + (Yw,p—2 A;_L—z,u—s +Yw-3) f1

Bf,uf4 = (Yv—1 fq—G{j) Aff1,u74+(%,v—2 A1:£:72,1/74+7V7V—3 AZ:/‘:73,1/74+7V7V—4) fe



The coefficients A* needed for the computation of B* are obtained from equation (63). All

other terms are as discussed in Section 5.2. Extension for v > 5 follows the same pattern.
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Tablel. Input parametersin Test FS1

Parameters Values
Water saturation S 1
PM grain density p 2600 kg/m?

Dy 1.6x10~% m?/s
Fracture aperture 2b 1074 m
Fracture S 1
Fracture ¢ 1
Fracture 7 1
Fracture K4 0 m3/kg
Longitudinal dispersivity o, inthe fracture 0.1m
Fracture flow velocity V 0.1 m/day
Matrix block width 2.X 0.5m
Matrix S 1
Matrix ¢ 0.01
Matrix 7 0.1
Matrix K4 0m3/kg
Radionuclide 77/, 12.35 years (tritium)
Zy, Zy, Z3 (for N = 3) 1m,9m, co
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Table2. Input parametersin TestsFC1 and FC2

Parameters Values
Colloid diameter d.. 10~ m
Colloid density p, 103 kg/m?
Temperature 7 293.15°K
Fracture aperture 2b 1.25x10~4 m
St 1
¢’ 1
Tt 1
775 1071%m
Fracture x~ Oyear—!
Fracture flow velocity V' 1 mlyear
Longitudinal dispersivity o, inthe fracture 0.24998645 m
Sm 1
oM 0.3
T 0.8
Matrix x~ Oyear—!
Matrix x* (Test FC1) 0 m3/kg/year

Matrix T (Test FC2)

5x10-5 m3/kglyear

L1, Lo, L3 (forN = 3)

0.5m, 0.5m, oo




Table3. Input parametersin TestsPS1 to PS4

Parameters Values

p 2600 kg/m3
Dy 5 x 10~2 m?/day
S 1

¢ 0.1

T 1

1% 0.1 m/day

K, (TestsPS1 and PS4) 0m3/kg

K, (TestsPS2 and PS3)

4.2735042x10~5 m?/kg

oo (stable isotopes)

T) ;5 (TestsPS3 and PS4)

100 days

Z1, Loy L3 (forN = 3)

10 m, 10 m, co
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Table4. Input parametersin Test PS5

Parameters Values

P 2600 kg/m?

Dy 1000 m?/year

S 1

b 0.3

T 1

Vv 100 m/year
K4 for 234U 1.64819 m?/kg
K, for 239Th 8.24159 m?/kg

K, for ??°Ra

8.22528x 102 m?/kg

Ty o of 231U

2.45x10° years

T, /5 of 2°Th 7.54x 10* years
T,/ of **Ra 1.60x 10 years
1, Lo, L3 (fOf N = 3) 50 m, 150 m, co




Table5. Input parametersin TestsPC1to PC3

Parameters Values
d. 103 m
Pe 10° kg/m?
T 293.15 °K
S 1
o) 0.3
T 1
U(=o¢V) 2 m/day
ar, 0.15m
ein PC1 30m-!
€in PC2 100 m~!
€inPC3 3000 m—!
Zy, Zy, Z3 (for N = 3) 0.1m,0.1m, co

Table6. Radionuclide propertiesused in thetransport ssmulations of Section 9

Radionuclide Dy (m?/s) A= 102 (g
3H 1.60x10~° 1.778x10~°
9T¢ 4.55% 1010 1.031x 1013

ZTNp 7.12x10710 1.026x10~ 14
239y 6.08x10°10 | 9.114x10~ 13
235 6.08x10-10 | 3.1023x10°'7
231pg 6.08x10°10 | 6.7583x10 13




64

Table7. Layer geometry in Case 1-a of Problem 1

Layer # Type Parameter Value
1 FM Z 5m
X 0.25m
b 5x107°m
2 FI b 5x107°m
3 FM Z 10m
X 0.25m
b 5x107°m
4 FI b 5x107°m
5 FM Z ocom
X 0.25 m
b 5x107°m




Table8. Propertiesin Case 1-al of Problem 1

Layer # Parameters Values
1,35 ar, 0.1m
oM 0.01
Tm:T;”:Tim:T? 0.1
¢’ 1
Tf_TI{:Tlf:Tf 1
Km =K/ 1
sm = gf 1
24 ar, 0.1m
o™ 0.01
T =Tt =T1" =10 0.1
¢’ 1
= Tg = zf = Tsf 1
Km =K/ 1
sm =5/ 1

Table9. Transfer coefficientsin Problem S-1

Radionuclide K,
*H K" = 0m?/kg
3H Kj=0m
ZTNp K7 =10"% mi/kg
23"Np Kf=5%x10""m
Z39py K7 =10"' mi/kg
239py K =5%x10""m
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Table10. Parameter variationsin the various cases of Problem 1

Case# Layer # Type Parameter Value
1-a2 24 Pl b 0.025 m
1-a3 24 Pl b 0.10 m
1-b1l 1,3,5 Fi X 2.5m

24 Fi Z 2.5m
1-b2 1,3,5 Fi X 2.5m
24 Pl Z 2.5m
b 0.025 m
1-b3 1,3,5 Fi X 2.5m
24 Pl Z 2.5m
b 0.10m
1-c1 1,3,5 Fi b 5x 1074 m
24 Fi b 5x107*m
1-c2 1,35 F X 5x107%*m
24 Pl b 0.1m
1-d1 All FM, FI Sm 0.8
Ss 0.5
1-d2 All FM, Pl Sm =8I 0.8
24 Pl b 0.1m




Tablell. Propertiesand parametersin Case 2-al

Case Layer # Parameter Value
2-al All Na 10-19 m
(Geometry Fracture s~ 01/s
asin x’ (5 nm colloid) 1
Case 1-al) x! (500 nm colloid) 1
fv (5 nm colloid) 1
fv» (500 nm colloid) 1.1
Ky 0 m3/kg
x™ (5 nm colloid) 0.95
x™ (500 nm colloid) 0.35
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Table12. Propertiesand parametersin the cases of Problem 2

Case Layer # (Type) Parameter Value
2-a2 2,4 (PI) K om
(Geometry x! (5 nm colloid) 0.95
asin x/ (500 nm colloid) 0.35
Case 1-a2)
2-bl All Matrix 10~ m3/kg/s
(Asin Matrix x~ 10-6 Us
Case 2-al)
2-b2, 2-b3 1,3,5 (FM) Matrix s+ 10~7 m?/kgls
(Geometry Matrix x~ 1076 Us
asin Cases 2,4 (P) e/ (5 and 500 nm colloid) 103
1-a2, 1-a3 Colloid xk~ =0.1kT
respectively) x! (5 nm colloid) 0.95
x/ (500 nm colloid) 0.35
2-b4 All Asin 2-b2 but e/ = 102
2-cl, 2-c2 All Properties asin Cases
(Geometry of 1-bl) 2-al, 2-bl respectively
2-c3, 2-c4 All Properties asin Cases

(Geometry of 1-b2)

2-al, 2-b2 respectively




Tablel13. Layer geometry in Problem 3

Layer # Type Z (m) X (m) b (m)
1 FM 10 0.5 10~4
2 PI 5x 1072
3 FM 10 0.25 5x 107°
4 PI 2.5 x 1072
5 FM 10 3 2 x 1074
6 PM 5
7 FM 15 0.1 2 x 10~*
8 PI 10~!
9 FM 10 4 2 x 107°
10 FI 2 x 107°
11 FM 20 1 5x107°
12 PM 5
13 FM 30 6 8 x 107°
14 PM 00
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Table14. Rock propertiesin Problem 3

Layer # o m Sm ¢’ ! St
1 0.15 0.5 0.7 1 1 0.2
2 0.3 0.3 1 0.3 0.3 0.4
3 0.1 0.4 0.6 1 1 0.15
4 0.35 0.3 1 0.35 0.3 0.3
5 0.05 0.5 0.8 1 1 0.1
6 0.35 0.8 0.9 0.35 0.8 0.9
7 0.025 0.2 0.9 1 1 0.1
8 0.2 0.3 0.9 0.2 0.3 04
9 0.01 0.2 0.95 1 1 0.05
10 0.01 0.2 0.95 1 1 0.05
11 0.05 0.15 0.95 1 1 0.05
12 0.1 0.1 0.9 0.2 0.1 0.9
13 0.05 0.1 1 1 1 1
14 0.1 0.1 1 0.1 0.1 1




Tablel15. Transfer coefficientsin Problem 3

71

Layer 3Hor Tc 2"Np 239py

# Kp () | Kj() | Kpe) Kj(1) K7'(*) Kj (1)

1 0 0 6 x 104 3x10°8 6 x 102 3x 106
2 0 0 8 x 1074 8 x 1074 8 x 1072 8 x 1072
3 0 0 7x 1074 3.5 x 1078 7 x 1072 3.5 x 1076
4 0 0 8 x 1074 8 x 1074 8 x 1072 8 x 1072
5 0 0 8 x 104 4 %1078 8 x 1072 4 x 1076
6 0 0 10—4 10— 102 102

7 0 0 1073 5x 1077 1071 5x 1075
8 0 0 8 x 104 8 x 1074 8 x 1072 8 x 1072
9 0 0 5x 1074 2.5 x 1078 5x 1072 2.5 x 1076
10 0 0 5x107% | 25x10°8 5% 1072 | 2.5x10°6
11 0 0 9x 104 4.5 x 1078 9x 1072 4.5 x 1076
12 0 0 1073 1073 1071 1071

13 0 0 6 x 10~ 3x1078 6 x 1072 3x 106
14 0 0 7 x10~% 7 x 107* 7 x 1072 7 x 1072

(*): inm3/kg, (1): inm
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Table16. Colloid filtration and straining parametersin Problem 5

L ayer Matrix st Matrix s~ (*) € (M) Fracture !
No. (m>/kg/s) (Us) or ng (1/m) K™ !
1 107 10~ ng = 10710 0 -
2 1077 106 e=103 = 0.1t 0.97
3 107 1076 ng = 10710 0 1
4 1077 106 e=103 = 0.1+ 0.97
5 107 1076 ng = 10710 0 1
6 10~8 10~6 e =107 = 0.1+ 0.97
7 1077 10=6 ng = 10710 0 1
8 1077 107° e=103 =0.1x" 0.95
9 107 10~ ng = 10710 0 1
10 1077 10~ ng = 10710 0 1
11 107 106 ng = 10710 0 1
12 107 10-6 e =103 =0.1xT 0.95
13 5x 1078 106 ng = 107° 0 1
14 5x 1078 10~6 e=103 = 0.05x7 0.95

(*): Thefracture x™ is computed from equations (30) and (40).




Layars 1,2,4,5:  Fractured media
Layar 3 Unfractured media

M

-—fractures

Mz

Figure 1. A variably-fractured layered geologic system.
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Figure 3. Unit step function and variable pulse concentration at the z = 0 boundary.
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Layer n

Layer n+1

Interlayer

Figure 4. A graphic representation of the concept of interlayer describing the effects of
fracture misalignment. The properties of layers n and n 4+ 1 are denoted by 1 and 2,

respectively.
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Figure5. Comparison of the semianalytical (SA) solutions from FRACL to the analytical

solution of radioactive solute transport in fractured mediain Test FS1.
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Figure 6. Comparison of the SA solutions to the analytical solution of radioactive solute

transport in fractured mediain Test FS2.



“ " Hgm—| Test FS3

(o]
11
T T 1T

61 Test FS4

Fracture Cp
L 5

— Analytical
O SA, 1 layer
7 SA, 3 layers

N
[
T

t = 100,000 days

Distance (m)

Figure 7. Comparison of the SA solutions from FRACL to the analytical solutions of

radioactive solute transport in fractured mediain Tests FS3 and F34.
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Figure8. Comparison of the SA solutionsto the analytical solutions of colloid transport in
fractured mediain TestsFC1 (without colloid filtration in the matrix) and FC2 (with colloid

filtration in the matrix).
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Figure 10. Comparison of the SA solutions from FRACL to the analytical solutions of
solute transport of the radioactive chain 234U — 239Th — 226Rain porous mediain Test

PS5.
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Figure 12. Effect of fracture offset (presence of interlayers) on the transport of 2H through
the layered fractured system of Case 1-a (NI: no interlayer, Fl: fracture interlayer, Pl(a):

porous interlayer with b = 0.025 m, PI(b): porousinterlayer with b = 0.1 m).
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Figure 13. Combined effect of increased X and fracture offset (presence of interlayers) on
the transport of 3H through the layered fractured system of Case 1-b (nomenclature asin
Figure 12).
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Figure14. Combined effect of increased b and fracture offset on thetransport of H through

the layered fractured system of Case 1-c (hnomenclature asin Figure 12).
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Figure 15. Combined effect of water saturation S and fracture offset on the transport of *H

through the layered fractured system of Case 1-d (nomenclature asin Figure 12).
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Figure 17. Effect of fracture offset (presence of interlayers) on the transport of 23°Pu

through the layered fractured system of Case 1-e.
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Figure 18. Fracture Cr of the 5 nm and 500 nm radioactive colloids at ¢t = 102 days and

t = 10® daysin the layered system of Case 2-a (no matrix filtration).
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Figure 19. Fracture Cr of the 5 nm and 500 nm radioactive colloids at ¢t = 10* days and

t = 10° daysin the layered system of Case 2-a (no matrix filtration).
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Figure 20. Detailed view of the C'r evolution behind the sraining interfaces in Case 2-a.
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Figure 21. Fracture Cr of the 5 nm and 500 nm radioactivecolloids at ¢t = 10* daysin the

layered system of Case 2-b (with matrix filtration).
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Figure 22. Fracture C' of the 5 nm and 500 nm radioactivecolloids at t = 10* daysin the

layered system of Case 2-¢ (WMD:with matrix deposition, NMD: no matrix deposition).
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Figure 23. Fracture Cr, profiles of 3H in the complex geological system of Problem 3 (CC:

constant concentration boundary, DC: decaying concentration boundary).
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Figure 24. Fracture Cg profiles of 9Tc in the complex geological system of Problem 3

(PC: pulse concentration boundary).
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Figure 25. Fracture C'r profiles of 23”Np in the complex geological system of Problem 3.
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Figure 27. Fracture Cg, profiles of 239Pu in the complex geological system of Problem 4.
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Figure 28. Effect of » < 1 on the fracture Cr profiles of 23°Pu in the complex geological

system of Problem 4.
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Figure 29. Fracture C'r profiles of 235U in the complex geological system of Problem 4

for ¢ < 10° days.
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Figure 30. Fracture C'r profiles of 235U in the complex geological system of Problem 4
for ¢t > 10° days.
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Figure 31. Fracture Cr, profiles of 231Pain the complex geological system of Problem 4.
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Figure 32. The fracture C'r profiles of the 23°Pu colloid in the complex geological system

of Problem 5.
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Figure 33. Fracture C'r profiles of the solute 23°U daughter of the colloida 23°Pu parent

in the complex geological system of Problem 5.





