
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Hardware/Software Co-Design for Secure High Performance Computing Systems

Permalink
https://escholarship.org/uc/item/83r536h8

Author
Akram, Ayaz

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/83r536h8
https://escholarship.org
http://www.cdlib.org/

Hardware/Software Co-Design for Secure High Performance Computing
Systems

By

Ayaz Akram

Dissertation

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Jason Lowe-Power, Chair

Venkatesh Akella

Sean Peisert

Committee in Charge

2023

-i-

Copyright © 2023 by

Ayaz Akram

All rights reserved.

Contents

List of Figures . vi

List of Tables . x

Abstract . xi

Acknowledgments . xiii

1 Introduction 1

1.1 Secure High Performance Computing . 1

1.2 Trusted Execution Environments and High Performance Computing 2

1.3 Contributions . 4

1.4 Organization . 5

2 Motivation and Background 7

2.1 Security Issues in High Performance Computing Environments 7

2.1.1 HPC vs. Cloud Systems . 8

2.2 Confidential Computing . 9

2.2.1 Beyond TEEs . 11

2.3 Confidential High-Performance Computing via TEEs 11

3 Limitations of Confidential Computing via TEEs for HPC Systems 13

3.1 Introduction . 13

3.2 Computing Landscape . 14

3.2.1 History . 14

3.2.2 Current Computing Landscape . 15

3.3 HPC Focused Trusted Execution Environments 16

3.4 Systematization of TEEs . 18

3.4.1 Page Table Entry Metadata . 18

3.4.2 Encryption . 18

3.4.3 Physical memory isolation via ISA extensions 19

3.4.4 Use of tags/identifier in hardware . 19

3.4.5 Privileged Software/Hardware . 19

-ii-

3.4.6 Classification of TEEs . 20

3.5 Limitations of Existing TEEs . 22

3.5.1 Heavy Application Code Modifications 22

3.5.2 Large Trusted Compute Base (TCB) 23

3.5.3 Focus on Core Level Execution . 24

3.5.4 No Consideration of Side Channels 25

3.5.5 Other Limitations . 25

3.6 Potential Research Directions . 26

3.6.1 Data Centric Enclaves . 27

3.7 Other Topics . 28

3.7.1 Survey of Attacks on TEEs/Enclaves 28

3.7.2 Tools for TEE Platforms . 29

3.7.3 Formal Verification of TEEs . 29

3.8 Conclusion . 30

4 A Study on the Performance of Commercial TEEs 31

4.1 Threat Model . 31

4.2 Selected TEEs for This Study . 32

4.2.1 Intel Software Guard Extensions (SGX) 32

4.2.2 AMD Secure Encrypted Memory (SEV) 33

4.3 Methodology . 33

4.3.1 Traditional HPC Benchmarks/Kernels (NPB) 34

4.3.2 Modern and Emerging HPC Workloads 34

4.3.3 Hardware Platforms Used . 36

4.3.4 Software Tools/Frameworks . 37

4.4 Understanding the Performance of TEEs . 38

4.4.1 Finding 1 . 40

4.4.2 Finding 2 . 45

4.4.3 Finding 3 . 46

4.4.4 Finding 4 . 47

-iii-

4.5 Beyond Single Node . 51

4.5.1 Trusted HPC in the Cloud . 52

4.6 Observations on Security of SGX and SEV 54

4.7 Scientific Computing Focused Trusted Execution Environment 55

5 DESC – Data Enclaves for Scientific Computing 59

5.1 Introduction . 59

5.2 Related Work on Confidential Computing 62

5.3 Threat Model . 64

5.4 DESC Based Computing Systems . 65

5.4.1 Background on today’s computing systems 65

5.4.2 RISC-V Isolation Mechanisms . 66

5.4.3 Security Guarantee of DESC . 66

5.4.4 Design Principles for DESC . 68

5.5 Design of Data Enclaves for Scientific Computing (DESC) 68

5.5.1 High-Level Overview . 69

5.5.2 Case C1: Execution Mode Switch . 73

5.5.3 Case C2: Data Sharing . 75

5.5.4 Case C3: OS-based Resource Management 76

5.5.5 Out of Scope Components of Enclave 80

5.6 DESC Workflow . 80

5.6.1 Enclave Creation . 81

5.6.2 Enclave Running . 82

5.6.3 Creating New Enclave Thread . 83

5.7 Results and Evaluation . 83

5.8 Conclusion . 87

6 Simulation and Architectural Evaluation of TEEs 88

6.1 Keystone in gem5 . 89

6.1.1 Validation . 90

6.2 Case Study: Microarchitecture Impact on Performance of Secure Execution . 92

-iv-

7 Future Work 94

7.1 Improving Existing TEEs . 94

7.1.1 Software Frameworks . 94

7.1.2 Research Avenues for Computer Architecture 96

7.2 Exploration of New Ways to Build TEEs . 97

7.2.1 New Hardware Primitives . 97

7.2.2 Horizontal Privilege Levels . 98

7.2.3 Capability Based Enclaves . 98

7.3 Future Work on DESC . 98

7.3.1 Disaggregated Data Enclaves for Scientific Computing 98

8 Conclusion 102

-v-

List of Figures

2.1 Interaction of multiple actors in an HPC center. 8

2.2 Trusted execution in traditional computing systems. ‘C’ stands for a core.

Zone of trust referst to secure computational and memory resources used by

a secure application that is enabled via the used of a TEE. 12

2.3 Creating a zone of trust for sensitive data in HPC centers. The figure on the

left shows a general TEE and the figure on the right shows how that TEE

can be used to enable a data scientist to compute on sensitive data provided

by a trusted data provider and keep it secure from other entities in the system. 12

3.1 History of the computing landscape. This figure shows the evolution pro-

cess of traditional high-performance computing systems. Computing systems

have evolved from single processes on a single-core system to multi-threaded

applications on heterogeneous multi-core systems. 14

3.2 Modern high performance computing systems. Applications on these systems

scale across local nodes, (integrated or remote) accelerators, and remote nodes. 17

3.3 Classification of TEEs and some examples of each class. [Note: Emb. :

Embedded, Mod.: Modern, Kern. : Kernel, Cont. : Container, Proc. :

Process, VM : Virtual Machine] . 20

3.4 Required trusted system view. All compute elements and the memory em-

ployed by the secure application should exist within a unified trust boundary. 27

4.1 Details of the non-uniform memory architecture for the two AMD systems

evaluated. 37

4.2 Performance impact of SEV for NPB C Class on AMD Naples (24 Threads).

The SEV performance overhead is mainly because of default NUMA memory

allocation, most of which goes away with interleaved NUMA allocation. . . . 39

4.3 Performance impact of SEV for NPB D Class on AMD Naples (24 Threads). 39

4.4 Details of SEV encryption implementation. 41

4.5 Memory allocation over time using default policy. 41

-vi-

4.6 Memory allocation over time using an interleave policy. Under SEV an equal

amount of memory is allocated across all nodes. 43

4.7 Performance impact of SEV for GAPBS and other real world HPC workloads

on AMD Naples (24 Threads). Interleaved NUMA allocation works for graph

and other HPC workloads except BLASTN which shows high overhead mainly

because of virtualized disk I/O operations. 43

4.8 Performance impact of SEV for NPB D Class on AMD Rome (128 Threads) 44

4.9 Performance impact of SEV for GAPBS and other real world HPC workloads

on AMD Rome (128 Threads). NUMA placement still matters on platforms

with more uniform memory architecture. Two examples where main cause of

overhead is virtualization are bfs and sssp. 44

4.10 NPB D Class on AMD EPYC 7402P (24 Threads) 45

4.11 Performance of VM boot (relative to QEMU-8GB) 47

4.12 Performance Impact of SGX and its Relation to EPC (Enclave Page Cache)

Faults. Slowdown and EPC faults show a strong correlation indicating that

the workloads with higher secure to non-secure memory movement rates will

exhibit higher slowdown. 47

4.13 Impact of Multiple Execution Threads. Workloads with high resident memory

like cg do not scale well with the number of execution threads in contrast to

low resident memory workloads like ep. Handling of EPC faults by the SGX

kernel driver becomes the serializing factor in case of high resident memory

workloads. 49

4.14 Bandwidth Test from OSU Microbenchmarks 52

4.15 Latency Test from OSU Microbenchmarks 52

4.16 Slowdown for for NAS Parallel Benchmarks (C Class), 8 processes in total

except bt and sp. 53

5.1 Unique system calls used by all the evaluated benchmarks. Each set refers

to a collection of system calls that are common across the benchmarks. The

total number of unique system calls used by the evaluated workloads is 6%

of the total available Linux system calls for RISC-V. 61

-vii-

5.2 A comparison of TCB size and location of trust among different enclave styles

(Runtime-based, Hypervisor-based, DESC). DESC achieves the lowest size of

the strongly trusted compute base. 63

5.3 Overview of RISC-V based computing system. 66

5.4 High-level overview of Data Enclave for Scientific Computing. Red is un-

trusted, orange is strongly trusted, green is sensitive. Stars (*) show the

parts of the system we have added or extended. We discuss the driver in

Section 5.5.1.2, the Enclave Manager in Section 5.5.1.1, the ePMP in Sec-

tion 5.5.4.1, and encryption engine in Section 5.5.1.3. 69

5.5 Modified Linux physical memory allocation. Starred entities are modified

parts of the Linux kernel and interact with other kernel and data enclave

components. 73

5.7 Single ePMP entry. ePMP stores virtual address of a memory range as well

in addition to the physical address. 78

5.8 Virtual and physical addresses of a VMA range. Since, a VMA region is

given a contiguous chunk of physical memory via the modified Linux memory

allocator, VR and PR bits of the addresses should match. 78

5.9 ePMP based memory access checks to ensure memory protection and address

mapping integrity. 78

5.13 Impact of change in the system call execution time on the overall execution

time. The motivation behind using syscall inspection for HPC-style workloads

is that the time spent in system calls (even if scaled by a large factor) is a

small fraction of the overall execution time. 84

5.14 Comparison of slowdown (does not include enclave creation penalty) for GAPBS

and NPB benchmark suite. Trusted refers to the trusted execution of the

benchmarks (using DESC) and Trusted_Enc refers to the trusted execution

with memory encryption (for data leaving the CPU package) on as well. . . 84

5.15 Slowdown for modern HPC and ML workloads. Regression (linear regression),

CNN (convolution neural net.), and RNN (recurrent neural net.) are based

on Torch. 84

-viii-

5.16 Million (usermode) instructions executed per second of simulation time. This

is the sum of instructions across all cores. Unsec_[cores] refers to unsecure ex-

ecution and Sec_[cores] refers to trusted execution with DESC, where [cores]

is the number of threads of the benchmark and processing cores. 85

6.1 PMP implementation in gem5 . 90

6.2 Comparison of slowdowns (incurred by trusted execution using Keystone)

between gem5 and Lee et al. [1]. This slowdown includes enclave creation

and management time as well. 91

6.3 Time taken by gem5 to simulate rv8 [2] benchmarks on a single cycle (Tim-

ingSimpleCPU) and an in order (MinorCPU) CPU models of gem5 with and

without Keystone. 91

6.4 Microarchitecture impact on performance of secure compute environments.

In the legend entries SC: single cycle, IO: in-order, def: default configuration

from Table 6.1, fu540: fu540-like configuration from Table 6.1, and large:

large configuration from Table 6.1. ‘trust-ov’ stands for overhead of trusted

execution. 93

7.1 An example of a disaggregated memory system (MC: memory controller). . . 100

7.2 Memory allocations of NPB. 100

7.3 High level overview of Disaggregated Data Enclaves for Scientific Computing

(D-DESC) . 101

-ix-

List of Tables

2.1 HPC Use Cases . 7

2.2 Primary security properties of TEEs . 10

3.1 Survey of Attacks on TEEs/Enclaves . 28

3.2 Example of Tools/Frameworks for TEEs . 28

4.1 Feature Comparison . 34

4.2 Details of the workloads evaluated. 35

4.3 System Configurations. See Figure 4.1 for details on the two EPYC systems. 37

5.1 Comparison of enclave types: DESC requires no application changes, has

reduced TCB, and has smaller performance impact. Evaluation details of

DESC are presented in Section 5.7. 63

5.2 Main feature of the configuration tested on gem5 83

6.1 Main feature of the configurations tested on gem5 92

-x-

Abstract

Hardware/Software Co-Design for Secure High Performance Computing

Systems

High-performance computing (HPC) is increasingly becoming more data-centric, involv-

ing large data sets, rather than its historical focus on modeling and simulation. Sometimes,

this data can be sensitive, provided by third parties to HPC centers or individual researchers,

and raises security concerns regarding the confidentiality or integrity of the data. Our work

aims to provide secure systems focused on HPC centers, without any significant performance

reductions. Hardware-based trusted execution environments (TEEs) use hardware-backed

techniques to provide some level of assurance for data and code confidentiality, and in-

tegrity. We first study the applicability of commercial hardware-based trusted execution

environments (TEEs) to enable secure scientific computing. We rigorously analyze the per-

formance impact of general purpose TEEs, AMD SEV, and Intel SGX, for diverse HPC

benchmarks including traditional scientific computing, machine learning, graph analytics,

and emerging scientific computing workloads. We also analyze the impact of the program-

ming model required by these TEEs. The results show that commercial TEEs do not fit the

HPC use case, either because their performance implications are intolerable, they require sig-

nificant application changes (e.g., partitioning, linking applications against specific libraries),

or their threat model does not include all system components that HPC applications might

use. We provide a design point for enclaves that does not require an entire OS inside the

enclave but can rely on a primarily untrusted OS for resource management. We implement a

prototype data enclave, called DESC, with multithreading support on the RISC-V ISA that

separates the management of the system from the protection of the sensitive data. We show

how DESC allows an untrusted OS to maintain page tables, service system calls, and manage

processes without compromising the enclave applications data confidentiality or integrity.

Cycle-level architectural simulation of trusted execution environments (TEEs) can enable

extensive design space exploration of these secure architectures. Existing architectural sim-

ulators that support TEEs are either based on hardware-level implementations or abstract

-xi-

analytic models. To this end, we enable a simulation environment using full-system archi-

tecture simulator, gem5, and a RISC-V based open source TEE, Keystone, and show how

this simulation support opens new avenues for designing and studying these trusted archi-

tectures. Future HPC systems are expected to improve resource utilization by decoupling

compute and memory extensively, leading to disaggregated architectures composed of differ-

ent types of processing elements and remote memory pools. We also explore the expansion

of our baseline TEE design (DESC) to provide scalable mechanisms that would allow a user

to form a secure enclave spanning multiple processing elements.

-xii-

Acknowledgments

I extend my heartfelt gratitude to my advisor, Prof. Jason Lowe-Power, for his invaluable

guidance, unwavering support, and encouragement throughout my research journey. His

mentorship has been an endless source of motivation during my PhD studies. I am deeply

appreciative of the knowledge and wisdom I’ve gained from his expertise, and I will always

hold profound gratitude towards him. I am equally thankful to my collaborators, Prof.

Venkatesh Akella and Prof. Sean Peisert, for their contributions to this work.

I am indebted to the other members of the Qualifying exam committee, Prof. Houman

Homayoun, and Prof. Sam King, for their insightful feedback and guidance, which signifi-

cantly enriched this research.

My deepest appreciation goes to my parents for their unwavering support, sacrifices, and

boundless love that have been instrumental in helping me reach my academic goals. I am

also grateful to my siblings for their continuous encouragement and support.

I extend my thanks to all the members of the Davis Architecture Research Group (DArchR)

at UC Davis. Engaging in discussions with this diverse and talented group has provided me

with invaluable insights, both technical and non-technical, and has broadened my perspective

across various fields. Their support and assistance have been invaluable to me.

-xiii-

Chapter 1

Introduction

1.1 Secure High Performance Computing
High-performance computing (HPC) is moving away from traditional simulation and mod-

eling to large-scale computational problems involving large datasets. Sometimes this data

can be sensitive, provided by third parties to HPC centers or individual researchers, and

raises security concerns. This dissertation addresses the imperative need for secure systems

tailored to the unique demands of HPC centers and their users while striving to minimize

the performance impact.

Security guarantees are mainly encapsulated in the CIA triad (confidentiality, integrity,

and availability). Confidentiality involves the protection of sensitive and private informa-

tion from unauthorized disclosure. Integrity relates to the accuracy and reliability of data

and systems. Data integrity ensures that information remains unaltered and trustworthy

throughout its lifecycle. And availability ensures that compute and memory resources are

always available to the application of interest.

In the world of scientific computing, ensuring security, including integrity and confiden-

tiality, is paramount. Security measures for scientific computing aim to safeguard against

cyber threats, preserving valuable computational research resources. Data integrity poli-

cies and mechanisms seek to guarantee the accuracy of findings by preventing unauthorized

changes, while confidentiality policies and mechanisms seek to protect sensitive information,

respecting ethical boundaries and legal requirements. These properties collectively seek to

safeguard research investments, maintain reputations, facilitate collaboration, and ensure

1

adherence to regulations, contributing to the advancement of knowledge and innovation. By

enabling secure HPC facilities, we can ensure regulatory compliance and ultimately propel

the frontiers of scientific discovery.

Security solutions designed for the cloud computing environment may not apply to high-

performance computing (HPC) due to differences in architectural requirements, performance

priorities, and data handling workflow between the two types of platforms. On one hand,

scientific computing revolves around research-oriented simulations and analyses, often neces-

sitating specialized environments and high-performance computing capabilities. In contrast,

cloud computing presents adaptable and diverse resources applicable to various industries,

underpinned by features like virtualization and a wide array of services. The convergence

of these domains is exemplified by cloud platforms accommodating scientific workloads, pro-

viding researchers with immediate access to potent computational resources. While shared

security concerns like data integrity and unauthorized access are present in both realms, they

manifest uniquely due to differing contexts. Scientific computing underscores research credi-

bility and data safeguarding, whereas cloud computing prioritizes fortifying shared resources,

data confidentiality, and adhering to regulations. Given these contrasting computational

landscapes, solutions tailored for secure cloud computing might not seamlessly translate to

high-performance computing (HPC) environments.

1.2 Trusted Execution Environments and High Perfor-
mance Computing

Hardware-based trusted execution environments (TEEs) use hardware-backed techniques to

provide a certain level of assurance for data and code confidentiality and integrity. In this

thesis, we present a systematization of the existing trusted execution environments in indus-

try and academia. We also highlight the common mechanisms these TEEs employ to provide

different security guarantees and offer a detailed comparative analysis of different TEE pro-

posals. TEEs are anticipated to be a promising solution for the security challenges in the

high-performance computing (HPC) domain. However, we show why the existing TEEs are

unsuitable for high-performance computing systems.

In this thesis, we rigorously analyze the performance impact of commercial general pur-

2

pose TEEs, AMD SEV [3], and Intel SGX [4], for diverse HPC benchmarks including tradi-

tional scientific computing, machine learning, graph analytics, and emerging scientific com-

puting workloads. We also analyze the impact of the programming model required by these

TEEs. The results show that the existing commercial TEEs do not fit the HPC use case, ei-

ther because their performance impact is too high, they require significant application changes

(e.g., partitioning, linking applications against specific libraries), or their threat model does

not include all system components that HPC applications might use.

In this thesis, we present a novel data-centric confidential computing approach that lever-

ages an operating system (OS) for resource management while circumventing the need to in-

tegrate the OS into the trusted computing base (TCB). Existing TEEs either require heavy

application modifications (because they re-implement a limited set of system calls inside the

enclave) or allow unmodified applications but include an entire OS as part of the TCB (e.g.,

VM-based enclaves). Both of these requirements pose challenges particularly in the context

of high-performance computing (HPC) oriented systems.

Our contribution introduces an alternative enclave design paradigm that does not ne-

cessitate an entire OS within the enclave but instead relies on a mostly untrusted OS for

resource management. To demonstrate this, we implement a prototype data enclave, named

data enclave for scientific computing (DESC), with multithreading support on the RISC-V

ISA that separates the management of the system from the protection of the sensitive data.

We show how DESC allows an untrusted OS to maintain page tables, service system calls,

and manage processes without compromising the enclave applications data confidentiality or

integrity. We evaluate DESC using gem5 [5,6] for performance and QEMU [7] for functional

correctness (as executing complete applications in a simulated environment can be imprac-

tical). We show that our design correctly executes a set of scientific computing workloads

(NAS Parallel Benchmarks, graph workloads, and other modern scientific computing and

machine learning workloads) on 1–8 cores. Further, we show there is only minor overhead

(less than 5% geometric mean for all benchmark suites) compared to running outside the en-

clave, even when modeling a 30-cycle memory encryption overhead (less than 20% geometric

mean). Cycle-level simulation of TEEs using architectural simulators is vital for comprehen-

sive a design space exploration of these secure architectures. Current TEE simulators stem

from hardware-level implementations or abstract models. To this end, we enable a simula-

tion environment using the full-system architecture simulator, gem5, and the RISC-V based

open-source TEE, Keystone [1]. This simulation framework provides fresh opportunities for

the design and analysis of trusted architectures. We use the same simulation framework for

evaluation of DESC referred in the previous paragraph.

Lastly, we delve into potential extensions of our proposed trusted execution environment

to diverse heterogeneous environments, such as disaggregated memory systems and acceler-

ators.

In conclusion, the growing utilization of large sensitive datasets within HPC centers un-

derscores the paramount importance of secure data processing. The concept of confidential

computing presents a potential avenue for mitigating security risks associated with sensitive

data in HPC. Nevertheless, current TEEs, despite being pivotal to confidential computing

do not align with the requirements of HPC due to performance issues, programming models,

and thread models. Through the proposition of a data-centric TEE, DESC, and the vision

of extending this paradigm to disaggregated memory systems and accelerator architectures,

this dissertation paves the way for robust data protection in future HPC systems.

1.3 Contributions
Following are the main contributions of this work:

• Striking the Balance Between Security and Performance in High-Performance

Computing: We emphasize the imperative of integrating robust security measures

into high-performance computing systems while preserving optimal performance and

usability.

• Identifying Challenges and Advancements in TEE Applicability: We delin-

eate critical challenges and intricacies pertaining to the effective utilization of Trusted

Execution Environments (TEEs) within the realm of high-performance computing.

• Comprehensive Analysis of TEE-based Confidential Computing Architec-

tures: We rigorously evaluate the suitability of prevalent commercial TEE architec-

tures for the unique demands of high-performance computing environments, shedding

4

light on performance, compatibility, and security considerations.

• Data-Centric Enclave Design (DESC) for Scientific Computing Workloads:

This thesis presents an innovative enclave design paradigm, DESC, that eliminates

the need for a complete OS within the enclave, and still allows an untrusted OS to

manage resources for an unmodified enclave application. Tailored specifically for scien-

tific computing workloads, the design choices underpinning DESC are both pragmatic

and effective within HPC environments, yielding minimal performance overhead due

to limited interaction between the OS and HPC applications. Moreover, DESC does

not require modifications in the applications and allows them to leverage a multitude

of operating system management optimizations – vital attributes for HPC workloads.

• Simulation of Trusted Execution Environments in a Controlled Environ-

ment: We present our approach to simulating trusted execution environments, con-

tributing to the understanding and advancement of secure architectures.

• Envisioning Future Enhancements and Extensions: Our work sets the stage

for future explorations and enhancements, providing a comprehensive list of potential

extensions that can build upon the foundation of our proposed enclave design (DESC).

By addressing these key contributions, our research underscores the significance of secure

data processing in high-performance computing and paves the way for innovative solutions

that bridge the gap between security, performance, and usability.

1.4 Organization
The remainder of this document is structured as follows: Chapter 2 offers a contextual

background on the problem of secure HPC and the historical development of confidential

computing. Chapter 3 presents a systematic analysis of the existing confidential computing

architectures, focusing on their limitations for HPC applications. Chapter 4 thoroughly ex-

amines the performance implications of current commercial TEEs on HPC applications and

identifies the specific requirements for a TEE tailored to scientific computing needs. Chap-

ter 5 outlines the details of our proposed data enclave design called DESC. In Chapter 6, we

explore the support of gem5-based simulations for evaluating secure compute environments,

5

serving as the baseline for assessing the ideas presented in this document. Chapter 7 outlines

the prospects for future research and development. Finally, our conclusions are summarized

in Chapter 8.

6

Chapter 2

Motivation and Background

In this chapter, we delve deeper into the rationale behind the security requirements within

HPC centers and explore the unfolding developments in confidential computing over recent

years.

Table 2.1: HPC Use Cases

Domain Data Provider Data types Applications

Health care Hospital Health records, medical

images, gene sequences

Machine learning

models

Transportation Public transportation

authority

Driving routes Graph analysis

Energy Utility company Home and building en-

ergy usage

Real time demand or

response

2.1 Security Issues in High Performance Computing
Environments

Some computational scientific research requires the use of high-performance computing (HPC)

centers, that can provide large-scale computing and storage resources to users (researchers).

Some scientific computing problems are large-scale and involve large data sets as well. This

data is often provided by a third-party (data provider) and involve sensitivity of some kind.

Figure 2.1 provides a high level overview of how a data provider, an HPC platform provider,

7

Figure 2.1: Interaction of multiple actors in an HPC center.

and an HPC user might interact with each other. Table 2.1 provides a few examples of

scenarios where different data providers might provide some sensitive data to researchers to

perform some type of analysis through their applications.

The use of sensitive data in HPC centers make it imperative to build HPC systems that

can be secure and can be trusted by all the entities involved in a successful scientific workflow.

These entities include, multiple users (who might be sharing all or a part of HPC system

resources), HPC platform provider, and the data provider. HPC platform providers have

tried to tackle this problem already [8, 9]. However, the current solutions have significant

usability challenges. For example, processing sensitive health data requires dramatically dif-

ferent environments compared to those typically used in National Science Foundation (NSF)

or Department of Energy (DOE) Office of Science high-performance computing facilities.

Processing capabilities are limited to only a handful of racks and access requires virtual pri-

vate networks (VPNs) and/or remote desktops. These onerous usability requirements are

particularly cumbersome for the scientific community that is mostly used to working in very

open, collaborative, and distributed environments, potentially with users from all over the

globe.

2.1.1 HPC vs. Cloud Systems
The focus of this thesis is on high-performance computing systems, such as those that might

be used in HPC centers (e.g., DOE National Labs).

HPC systems prioritize performance as their primary goal. This is in contrast to tra-

8

ditional virtualized cloud systems, which tend to emphasize manageability and flexibility

over sheer performance. HPC systems are designed for executing complex computational

tasks that require massive processing power, while virtualized cloud systems are more geared

towards providing scalable and versatile computing environments for a wide range of appli-

cations. Multiple (sometimes heterogeneous) nodes, many cores per node, and integrated

accelerators are some characteristics of the HPC systems. Moreover, applications on these

specialized systems often bypass the OS for performance reasons. They do so to achieve

peak processing power and minimal latency by establishing direct connections with hardware

components, avoiding the overhead introduced by the operating system’s abstraction layers.

Unlike traditional HPC systems, cloud systems often employ multiple privilege layers. These

layers provide enhanced control over access, resource allocation, and scalability, enabling

greater adaptability and fine-grained permissions. With the advancements in cloud com-

puting, the boundaries between scientific computing and cloud computing are increasingly

getting blurred, however, the cloud computing is still not effective for large scale scientific

problems [10, 11].

2.2 Confidential Computing
Confidential computing (which refers to the use of hardware-enforced (cryptographic) pro-

tection of data in use in contrast to the data at rest (storage) or in transit (I/O)) has

recently emerged as a new paradigm of computing [12, 13]. Confidential computing creates

trustworthy systems rather than point-wise solutions against particular attacks. There are

two primary ways to enable confidential computing: privacy-preserving computation tech-

niques (like homomorphic encryption1 and multi-party computation2) and trusted execution

environments (TEEs). A comparative analysis of these techniques suggests that hardware

TEEs generally incur much lower performance costs than other methods like homomorphic

encryption and multi-party computation [17]. TEEs scale well to larger data sizes [13] and

generally provide several additional security properties like attestability and code confiden-
1Homomorphic Encryption: A form of encryption that allows computation on ciphertexts, generating an

encrypted result which, when decrypted, matches the result of the operations as if they had been performed
on the plaintext [14,15].

2Multi-party Computation: A subfield of cryptography with the goal of creating methods for parties to
jointly compute a function over their inputs while keeping those inputs private [14,16].

9

Table 2.2: Primary security properties of TEEs

Property Definition

Data

Confidentiality

unauthorized view of data is not allowed.

Data Integrity unauthorized entities are not allowed to alter the data.

Code Integrity unauthorized entities cannot alter code in the TEE.

Code

Confidentiality

unauthorized entities are not allowed to view the code inside

the TEE.

Authenticated

Launch

enforcement of authorization checks before process launch.

Programmability if this is a TEE with arbitrary code or fixed function (code).

Attestability if a TEE can provide evidence/measurement of its origin &

current state.

Recoverability if a TEE can be recovered from a compromised state.

tiality (as shown in Table 2.2). A TEE is defined as follows by the Confidential Computing

Consortium [13]:

“A Trusted Execution Environment (TEE) is commonly defined as an envi-

ronment that provides a level of assurance of data integrity, data confidentiality,

and code integrity. A hardware-based TEE uses hardware-backed techniques to

provide increased security guarantees for the execution of code and protection of

data within that environment.”

Table 2.2 provides a set of fundamental properties inherent to a TEE. Figure 2.2 demon-

strates how a trusted execution environment establishes a secure zone of trust for sensitive

applications and their associated data. This process is elaborated upon in Section 3.4, that

discusses the various mechanisms employed by current commercially-available TEEs to fa-

cilitate the creation of the secure enclave. In essence, a TEE constructs this realm of trust

by capitalizing on the capabilities of hardware-based security features, secure boot protocols,

attestation protocols, encryption, and other isolation mechanisms. These elements combine

to isolate sensitive applications and data from external attackers and insider threats.

10

2.2.1 Beyond TEEs
Fully homomorphic encryption [15], secure multi-party computation [16], and functional en-

cryption all represent methods for computing over encrypted data by leveraging software

algorithms, rather than hardware properties. Similar protection properties would apply in

these cases, but with two important caveats and one potential benefit: first, these techniques

are computationally expense and are therefore significantly slower than hardware TEEs. This

is true even though performance has improved from being on the order of 1 trillion times

slower than computing in cleartext ten years ago to perhaps only ten to a hundred times

slower than computing in cleartext, depending on the technique used and the operations

needing to be computed under encryption. For example database searches have been shown

to be relatively fast [18–21], but operations requiring both addition and multiplication are

much slower. The second caveat is that programs typically need very significant modification

to use this technique, often causing each application of the technique to require extensive

adaptation of the underlying cryptographic approach. A potential benefit is that leveraging

some of these approaches could allow the threat model to be expanded to include protecting

against malicious users.

That said, TEEs could also be used to protect against malicious users by incorporating a

guard on the output of computation, such as differential privacy [22]. Indeed, a “complete”

architecture that we envision is one in which “sensitive” data cannot be computed upon

unless inside the TEE, and similarly, that sensitive data cannot be output unless via the

TEE, which also enables output to be forced to protected through differential privacy [22] or

some other kind of “guard” or gating policy.

2.3 Confidential High-Performance Computing via TEEs
Current solutions to provide security in HPC centers usually require specialized computing

facilities and access protocols which can be cumbersome for the users/researchers. In con-

trast, TEE based security solutions can be built in normal computing facilities (without any

restrictions on users’ access mechanisms). Figure 2.3 provides a high-level picture of how

TEEs can help to create a zone of trust for sensitive data in HPC centers.

This thesis focuses on building trusted execution environments for HPC systems. There

11

Figure 2.2: Trusted execution in traditional computing systems. ‘C’ stands for a core. Zone
of trust referst to secure computational and memory resources used by a secure application
that is enabled via the used of a TEE.

Figure 2.3: Creating a zone of trust for sensitive data in HPC centers. The figure on the left
shows a general TEE and the figure on the right shows how that TEE can be used to enable
a data scientist to compute on sensitive data provided by a trusted data provider and keep
it secure from other entities in the system.

are a number of trusted execution environments that have been introduced by commercial

processor vendors like Intel’s SGX (Software Guard Extension) [4], ARM’s TrustZone [23],

AMD’s SEV (Secure Encrypted Virtualization) [24], and research platforms like RISC-V’s

Keystone [1] and Sanctum [25]. A brief survey of these TEEs is provided in the Appendix.

they support, the security properties they provide, and the mechanisms they use to pThese

TEEs differ in terms of the programming modelrovide those properties.

We show that the current commerical TEEs do not work well for HPC use case because of

multiple reasons: 1) their threat model is not a good fit for HPC, 2) programming model of

current TEEs does not work well for HPC, and 3) their performance impact can be significant,

specially for HPC scale workloads.

We propose a data-centric enclave design called DESC (discussed in Chapter 5) that

enables secure scientific computing by protecting the data of scientific applications from

other software (including the OS) running on a computing system. DESC allows the secure

execution of unmodified applications while minimizing the TCB size.

12

Chapter 3

Limitations of Confidential
Computing via TEEs for HPC
Systems1

Trusted execution environments (TEEs) are primary enablers of confidential computing. This

chapter presents a systematization of the existing trusted execution environments in industry

and academia. We highlight the common mechanisms these TEEs employ to provide different

security guarantees and offer a detailed comparative analysis of different TEE proposals.

TEEs are anticipated to be a promising solution for addressing certain security challenges in

the high-performance computing (HPC) domain. However, this chapter shows why existing

TEEs are unsuitable for high-performance computing applications. Finally, we present our

call for action to work to evolve the TEE technologies in conjunction with the evolving

high-performance computing landscape.

3.1 Introduction
In this chapter, leveraging a survey of the existing literature, we identify the common mech-

anisms trusted execution environments (TEEs) use to isolate a sensitive application and its

state from the rest of the system. We show how existing mechanisms do not fit well with

the modern high-performance computing systems and what are the most promising di-

rections to pursue to ensure that the high-performance computing systems can maintain
1This work has been published in IEEE SEED 2022 [26]

13

Figure 3.1: History of the computing landscape. This figure shows the evolution process
of traditional high-performance computing systems. Computing systems have evolved from
single processes on a single-core system to multi-threaded applications on heterogeneous
multi-core systems.

isolation of sensitive data [8, 27]. In particular:

• We provide a categorization and systematization of existing trusted execution environ-

ments (TEEs).

• We group TEEs based on the key mechanisms/ideas they rely on to figure out the

underlying principles that confidential computing is based on today.

• We undertake an examination of the historical progression of conventional computing

systems and the implications of this evolution on their security. Using our observa-

tions, we point out many ways in which existing TEE technologies would not fit with

modern high-performance computing systems in that: 1) they require large application

modifications, 2) they have large TCBs, 3) they focus on core-level execution, and 4)

they do not take side-channel attacks into consideration.

• We explore future research directions that can enable TEEs to be used for high-

performance computing systems.

• We also use the insights discussed in this chapter to build an HPC focused TEE, DESC,

discussed in details in Chapter 5.

3.2 Computing Landscape
3.2.1 History
Most protection and isolation mechanisms in computing systems (e.g, virtual memory, pro-

cess isolation) were developed when the computing system model was very different from the

14

landscape of today [28, 29]. It is essential to look at the history of the computing landscape

and its evolution over time. Initially, the computing system model was a single machine

with a single core running one application (shown in the left-most part of Figure 3.1) [30].

The operating system would create an environment where the application perceives itself

as the sole entity operating within the system [31]. This model had a vast TCB (required

trusting all the components in the system). Over time, multiple applications started to share

the hardware (still a single-core system, as shown in the middle part of Figure 3.1). The

OS time multiplexed the applications on the same hardware. The OS started implement-

ing virtual memory abstraction to isolate one application from the others. Eventually, the

computing systems evolved such that the processor became a multi-core processor (shown in

the rightmost part of Figure 3.1) [31]. Applications evolved and started to have more than

one execution thread. In this model, the OS would manage multiple threads of execution

on multiple cores. In summary, the systems became much more complex to manage; how-

ever, they still used the virtual memory based isolation primitives to ensure isolation among

applications on these multi-core systems.

Traditionally, operating systems were responsible for managing most aspects of mem-

ory, IO, and computing. The virtual memory subsystem used for isolation also provided

applications an abstract view of physical memory, allowing them to under-subscribe or over-

subscribe physical memory. The virtual memory subsystem evolved, but the coupling of

isolation provision, and resource management stayed intact [32, 33].

3.2.2 Current Computing Landscape
Next, we discuss the current (and future of) computing landscape. In Section 3.5, we will

discuss how these advancements in the high-performance computing landscape become the

reason for limited applicability of current TEE technologies for HPC. Figure 3.2 shows a

system level view of modern high performance computing systems.

Accelerator Integration: Computing systems have started to integrate different types of

accelerators with general-purpose CPUs. In modern computing systems, devices like GPUs,

FPGAs, and other accelerators have become a part of the virtual memory subsystem and

share virtual address space with applications running on the CPU. The memory allocation

is still managed by the OS on the CPU, as the accelerators do not run an OS.

15

Heterogeneous Memory Systems: Heterogeneous memory systems have become much

more prevalent today and rely on emerging memory technologies and more traditional DRAMs.

For example, Intel’s Sapphire Rapids [34] will include an HBM, a DDR5, and a (byte address-

able) NVM (non-volatile memory). The rationale behind using different memory technologies

is to allow for different memory types to be used for different applications or phases of a sin-

gle application. This trend of heterogeneous memory systems makes it necessary to have the

ability to migrate data from one device (physical address) to the other (physical address).

Remote Memory Systems: With an increasing adaption of systems where the memory

might live remotely (be the non-uniform memory access (NUMA) systems or disaggregated

systems [35]), memory management might not be entirely done by a (local) OS. Memory

management might rely on some remote software/hardware. Network interfaces today have

started to rely on RDMA (remote DMA), which bypasses OS and copies the data into a

process’s virtual address space directly.

Highly Multi-threaded Applications: Especially, in high performance computing systems,

the applications are composed of multiple threads, which might execute on multiple cores.

Traditionally, the threads executed on homogeneous CPU cores, and the OS managed which

threads would execute and where would they execute. In the modern computing systems,

the use of accelerators, scale out architectures, and disaggregation of memory resources lead

to new models of computing. The host OS might not control all the threads of execution for

an application.

Direct Memory Access by Devices: Historically, whenever the devices needed to access

application’s memory, they had to do that via OS as well. All the memory accesses from/to

the device have historically being intercepted by the OS. This is not true anymore for high

performance computing systems. DMA and RDMA allow direct access to memory by the

devices.

3.3 HPC Focused Trusted Execution Environments
Considering the evolving computing landscape and the security concerns for high-performance

computing environments, in this section, we point out important requirements for which we

believe that the secure architectures focused on HPC should fulfill. Following are these

16

Figure 3.2: Modern high performance computing systems. Applications on these systems
scale across local nodes, (integrated or remote) accelerators, and remote nodes.

requirements:

• R1 Requirement 1: HPC-focused TEEs should have a minimum performance impact

on HPC-style workloads (heavily multi-threaded and have large working sets).

• R2 Requirement 2: TEEs should not require application modifications or linking

against special libraries as HPC applications often rely on third party libraries. How-

ever, we note that the applicaiton modifications could benefit security although they

might impose more usability requirements on users.

• R3 Requirement 3: HPC-focused TEEs should exclude most of the OS from the TCB.

Since, modern HPC applications often bypass the OS for performance benefits (by

handing I/O in user-space libraries), reliance on OS security primitives should be min-

imal.

• R4 Requirement 4: HPC-focused TEEs should be capable of expanding across compute

nodes as HPC applications mostly scale across multiple nodes and rely on message

passing run-times like MPI for communication across these nodes. Moreover, HPC

centers (like data centers) are expected to rely on disaggregated architectures (e.g.

pooling of memory resources), to increase the utilization of compute/memory resources

and save the cost. An HPC focused TEE should consider disaggregated resources in

its threat model as well.

• R5 Requirement 5: HPC-focused TEEs should enable enclaves which can scale to

processing elements other than the general purpose CPUs.

17

There exist multiple TEE technologies today. In the next section, we will analyze if these

existing techniques fulfill the previously mentioned requirements of an HPC-focused TEE.

3.4 Systematization of TEEs
In this section, we systematize and classify the existing TEEs into different categories.

Generally, TEEs provide complete control over the trusted computing base (TCB) [12].

The data/code confidentiality and integrity properties of a TEE are usually enabled by iso-

lating an enclave’s memory (via the zone of trust shown in Figure 2.2) from the rest of the

system while an enclave is in use. Before providing a classification of TEEs, we will first

look at some of the common primitives TEEs use to isolate an enclave from the rest of the

system. We also discuss the mechanisms/ways the software or other hardware components

use these primitives.

3.4.1 Page Table Entry Metadata
Page table entry-level metadata refers to any physical page metadata that TEEs might main-

tain to identify an enclave page in the hardware. Multiple TEEs rely on this information

to implement access control mechanisms. For example, SGX [4] maintains EPCM (enclave

page cache map) entries which keep track of the enclaves that own the pages in EPC (enclave

page cache), along-with information on the validity of the EPC page. Only SGX instructions

can update the entries in the EPCM; therefore, the system software can track any unwanted

change in the enclave’s address map. Another example is AMD SEV [3], which uses bit 47

of the physical address in a page table entry to identify whether this page is secure. The

hypervisor or the host OS manages this bit.

3.4.2 Encryption
Encrypting physical memory is a very common primitive used by TEEs (e.g., AEGIS [36],

SGX [4], Graviton [37], HETEE [38], ARM RME [39]) to ensure confidentiality of data be-

longing to an enclave (and can be a strong mitigation against physical attacks). Usually, the

TEEs rely on an encryption key that is generated and stored in an (isolated) trusted pro-

18

cessor (or some hardware component). For example, AMD SEV [3] relies on an ARM-based

processor (AMD Platform Security Processor) for key management. As the cache blocks

move from/to the processor chip to/from the DRAM, the key is used to encrypt/decrypt the

cache blocks transparently.

3.4.3 Physical memory isolation via ISA extensions
RISC-V based TEEs (e.g., Keystone [1], CURE [40], Elasticlave [41], TIMBER-V [42]) rely

on the PMP (physical memory protection) ISA extension. PMP controls U (user) and S (su-

pervisor) modes’ access to certain memory regions. The allowed access (r-w-x) permissions

and the memory region can be configured using PMP address (pmpaddr) and configuration

(pmpcfg) registers. There also exist proposals for providing physical memory protection to

IO devices via IOPMP [43].

3.4.4 Use of tags/identifier in hardware
Some TEEs also use a tag or identifier to distinguish enclave data from other software in the

system (for access control). For example, CURE [40] uses an enclave ID for bus arbitration

to enable enclave to the peripheral binding. For this purpose, CURE [40] hardware relies

on a filter engine on the system bus. Bastion [44] depends on a module ID, which is a new

component in caches and TLB and acts as a tag for the currently executing process. ARM

TrustZone [23] uses a single-bit identifier to distinguish between the secure and non-secure

world (for device communication). SiFive’s WorldGuard [45] can tag bus transactions to

differentiate between software contexts that originated a request, allowing the target to de-

termine if it trusts the requestor. HECTOR-V [46] also relies on identifiers embedded in

interconnects, which helps create a safe IO path. AMD SEV [3] hardware tags all code and

data with its VM ASID (inside the SoC), indicating the VM, which is the data owner.

3.4.5 Privileged Software/Hardware
Trusted execution environments mostly do not trust the host OS and try to bypass the

host OS privileges. They usually do this through additional hardware/software components

19

Trusted Execution

Environments

Isolation

level

High

Nitro [47]

TZone [23]

RME [39]

Low

SGX

Threat model

configurable?

Yes

CURE [40]

No

SGX

SEV

Target

computing

Embed.

[48] [49]

TLite [50]

Mod.

[38]

TDMem

PIE [51]

Enclave

privilege level

Kern.

TZone

SEV

User

SGX [4]

Sanc-

tum [25]

Abst.

level

VM

SEV

TDX [52]

Proc.

SGX

Openness

Open

Keystone

[25]

Close

SGX

SEV

TZone

Figure 3.3: Classification of TEEs and some examples of each class. [Note: Emb. : Em-
bedded, Mod.: Modern, Kern. : Kernel, Cont. : Container, Proc. : Process, VM : Virtual
Machine]

to perform privileged operations focused purely on security. For example, CURE [40] uses

a hardware-based security monitor to monitor the system bus’s access. Keystone [1] uses

an M-mode software-based security monitor to manage physical memory isolation primitive

(i.e., PMP). Similarly, ARM RME (realm management extension) [39] relies on a monitor to

enforce its security guarantees.

3.4.6 Classification of TEEs
We present a classification taxonomy of existing trusted execution environments to enable

a better understanding of the vast design space that is covered by TEEs. Figure 3.3 shows

this taxonomy with some examples of TEEs from each class. TEEs can be classified based

on different factors. We use the following factors for this classification:

• Isolation level: This defines at what level the secure and non-secure components are

isolated.

• Threat model configurability: This determines if the threat model of a TEE can be

configured (either at the run time or the implementation time).

• Enclave privilege level: This is the privilege level at which the enclave operates.

• Openness: This determines whether a TEE is open-source or closed-source, with closed-

source models often prevalent in industrial solutions and open-source models more

20

commonly found in academic contexts.

• Abstraction level: This is the level of abstraction at which the TEE provides an interface

to the user.

• Target computing: This is the type of computing which the TEE is mainly designed

for.

A more systematic and detailed comparison of different TEEs is provided in Table V (in

Appendix section). Here, we provide some discussion and observations on different classes of

TEEs that are shown in Figure 3.3 with important examples.

We observe that the current TEEs which provide the highest isolation level usually achieve

it via physical isolation or partitioning at a very coarse granularity. For example, AWS Nitro

enclaves are an example of highly isolated enclaves that provide (constrained) enclave virtual

machines with no storage, network, or interactive access [47]. AWS Nitro enclaves have only

a single point of connection to the outside world via a bi-directional virtual machine socket

(vsock) between the parent instance and an enclave [47]. The major drawback of highly

isolated enclaves is the difficulty to use them. For example, applications will have to rely on

message passing, RPC or micro-services to interact with their secure compartment on the

enclave virtual machine (in case of AWS Nitro). Other examples of highly isolated enclaves,

ARM TrustZone [23] and Realms [39], partition the entire physical address space at a very

coarse granularity (into secure and non-secure worlds).

There are also many examples of configurable TEEs (which can lead to variable TCB

sizes). Configurability is a desirable property in the current heterogeneous world. Applica-

tions executing on a modern (heterogeneous) HPC system might not have the same sensitivity

level (or require the same security guarantees, e.g., integrity is not essential if the application

is not going to reuse previously written data). CURE [40] provides the ability to define

enclave trust boundaries (at different granularity levels). AEGIS [36] provides the ability

to have both a trusted and untrusted OS. ShEF [53], a trusted execution environment for

FPGAs, provides the ability to customize encryption logic parallelism and authentication

block size.

TEEs could opt for a specific security vs. cost tradeoff depending on the computing type

21

they are targeting. We observe that most of the earlier TEEs focused on general-purpose

desktop/cloud or embedded computing (e.g., [3, 23, 48]). However, some recent examples of

academic proposals target parts of modern computing systems. For example, HETEE [38]

targets server rack-scale computing. Graviton [37] and HIX [54] tried to enable isolated

execution on GPUs, ShEF [53] targets FPGAs and TDMem [55] focused on RDMA-based

disaggregated systems.

Privilege-level based classification divides enclaves into kernel-space or user-space en-

claves. Kernel-space enclaves can run trusted kernel-mode software inside the enclave, which

means that these enclaves generally have a large TCB. For example, Keystone [1] requires

having a kernel-space runtime (for user-space application’s resource management) inside the

enclave. SEV [3] allows kernel-space enclaves, where the guest OS is a part of the enclave.

SGX [4], on the other hand, is a user-space enclave and has smaller TCB (compared to SEV).

However, user-space enclaves have to pass the (trusted) user-space and (untrusted) kernel-

space boundary to perform system-level services, which can also have security concerns.

3.5 Limitations of Existing TEEs
Next, we discuss some limitations of existing trusted execution environments and show how

they hinder the adoption of secure execution environments for modern computing systems.

Confidential computing environments rely on hardware primitives to protect or isolate

an enclave’s memory from the rest of the system. These primitives can sometimes impose

restrictions on the system’s resource management, decreasing the usability and efficiency of

the system. We now present the following observations on the kind of limitations confidential

computing can impose on modern HPC environments.

3.5.1 Heavy Application Code Modifications
Currently, we lack the necessary primitives that allow fine separation of management and pro-

tection within a computing system. Consequently, in the context of confidential computing

threat models, the entire operating system is generally considered untrusted.

This limitation significantly impacts the programming model of most TEEs, leading to

reduced support for traditional C libraries. For instance, simpler libraries like muslc are

favored over more complex alternatives such as glibc. Consequently, userspace applications,

22

particularly large ones found in high-performance computing systems, necessitate extensive

modifications and experience functional limitations.

3.5.2 Large Trusted Compute Base (TCB)
Given the limited trust placed in the operating system within the confidential computing

threat models, entrusting resource management to the OS can introduce vulnerabilities. For

example, managing an enclave’s address space allows a malicious OS to launch page fault-

based attacks on enclaves leaking the access patterns of the sensitive application. These

attacks are possible because OS can modify access permission of enclave’s pages, which

would lead to page faults, and thus OS can determine the enclave access pattern. Such

attacks, called controlled channel attacks [56] are deterministic (and noise-free) and can have

large leakage bandwidth compared to other noisy side channels. The proposed solutions

to the controlled channel attacks require the enclave to control its page tables and enforce

secure-paging policies within an enclave. Examples of such proposals include Autarky [57],

Keystone [1], and CURE [40]. The drawback of these approaches is that they lead to a larger

TCB and more complexity in the enclave.

The scheduling and synchronization of threads by an untrusted OS can lead to multiple

security issues.2 For example, an untrusted OS can influence a machine learning model

leading to poisoning attacks by controlling the order in which the threads of the training

algorithm are executed [58]. To solve this problem, some TEEs have implemented limited

thread handling inside the enclave, which reduces the system’s efficiency overall. For example,

enclaves (like SGX [4]) enforce a static number of threads because they might only allow

statically-defined entry points for executing threads. Many of the TEEs based on SGX have

similar limitations. Enclaves like Keystone [1] do not support multi-threaded execution at

all at the time of writing this thesis. In summary, today’s enclaves generally do not have

good support for multi-threaded execution unless they are willing to have a large TCB.

Interestingly, virtual machine (VM) based enclaves include a guest OS in the TCB and

allow multi-threaded applications to run transparently. Not only do the VM-based enclaves

have a very large TCB, but multi-threaded execution in virtual machines can also have
2Scheduling based denial of service attacks are common, but generally not a part of the threat model of

confidential computing systems.

23

significant performance implications. For example, when threads yield during synchronization

operations, they can cause costly KVM exits [59, 60].

3.5.3 Focus on Core Level Execution
A significant limitation of most of today’s TEEs is that they focus on a core-level view of

memory permissions. This behavior limits the applicability of the TEEs to heterogeneous

HPC systems.

The absence of an OS or other privileged software on accelerators implies that the memory

management for accelerators would also be performed by the host OS.

The absence of an operating system (OS) or other privileged software on accelerators

means that memory management responsibilities are delegated to the host OS. Furthermore,

accelerators tend to be highly sensitive to address translation latencies, as highlighted in prior

research [61], making access control through additional privileged components a complex

undertaking. Consequently, when the memory-level view of access control is inaccessible, it

becomes challenging for various computing elements to share a trusted memory space. This

challenge also extends to disaggregated or remote memory systems, where the host OS and

other privileged software or components on the host node do not possess complete control

over remote resources. In such scenarios, relying on a core-level execution view to ensure

security becomes increasingly difficult.

Another implication of core-level view of memory permissions is that they require syn-

chronization of memory permissions across the cores, which are used to execute all the threads

of an application. This synchronization, which is today done through inter-processor inter-

rupts, can be costly [62]. Moreover, the synchronization becomes even more costly when the

application scales to accelerators or remote compute nodes.

Devices also suffer because of the core-centric design approach of current TEEs. Today,

most TEEs use untrusted (shared) memory buffers (e.g., bounce buffers in Linux) as tempo-

rary storage for the data moving between the devices and an enclave. The use of temporary

buffers leads to extra copies of the data and has performance implications as well. This

behavior also implies that the DMA functionality does not work securely with current TEEs.

24

3.5.4 No Consideration of Side Channels
TEEs do not consider system components that are not memory or cores. In other words,

current TEEs generally do not focus on things that are not architecturally visible. This makes

cache or system-bus-based side channel attacks possible on TEEs [63–65]. High bandwidth

leakage channels can be possible, especially on modern high-performance computing systems

with high-bandwidth links between physically isolated components.

3.5.5 Other Limitations
This subsection briefly discusses other, less critical, limitations of TEEs that do not fit in

any of the above categories.

3.5.5.1 Memory Isolation Primitives and Fragmentation

Most of the hardware primitives used by TEEs today limit the maximum number of enclaves

possible or cause fragmentation issues. For example, ARM TrustZone [23] uses an address

space controller to create an OS hypervisor mapping. Keystone [1] relies on contiguous phys-

ical memory for an enclave (as PMP defined physical memory range has to be contiguous).

Similarly, CURE requires the physical memory of an enclave to be contiguous. If multiple

enclaves are executing simultaneously, the requirement of contiguous physical memory for

each enclave can cause fragmentation and potentially overuse of resources.

3.5.5.2 Limitations on maximum number of enclaves

The memory isolation primitives used by the existing TEEs can also limit the maximum

number of executing enclaves simultaneously. For example, PMP-based TEEs (like Key-

stone) cannot have more enclaves than the number of PMP entries (latest specifications [66]

allow up to 64 entries). Similarly, AMD SEV has limitations on the number of maximum

enclave VMs. The maximum number possible on the AMD EPYC system was 15 due to a

fixed number of slots for encryption keys (one needed for each enclave VM) in the memory

controller [67]. Sanctuary [68] also has a limitation on the maximum number of enclaves due

to address space controller constraints [69]. CURE [40] can support 13 enclaves concurrently

due to limitations of the hardware arbiter used. The limitation on a maximum number of

25

enclaves can be an important issue for multi-tenant computing systems.

3.5.5.3 Limitations on data movement

Cryptographic isolation primitives inhibit the transparent data movement in heterogeneous

memory systems. For example, to ensure that two same plain text pages at different physical

addresses have different cipher texts (as a protection mechanism against cipher-text block

move attacks), AMD SEV uses a physical address-based tweak algorithm [70,71] which uses

a block’s physical address and an encryption key (xor-encrypt-xor tweak [72]). Since the

host-physical address is used to determine the cipher-text of a page, the hypervisor cannot

move a page between the two physical addresses once it is allocated to the secure VM. The

hypervisor has to lock the physical pages in memory which leads to pre-allocation of all

the required physical memory and can cause under-utilization of resources and unintended

effects on NUMA affine workloads [59]). The transparent movement of physical pages from

one device to the other require the data to transit via the memory controller so that it can

be decrypted and re-encrypted again using the new physical address, which can be costly.

3.5.5.4 Compute on Modern Computing Systems

The state of an enclave or secure process on context switch cannot be protected easily if the

enclave is scaling across multiple computing elements, some of which may lack an operating

system and be physically dispersed.

3.6 Potential Research Directions
In this section, we discuss the promising research directions enabling confidential computing

on high-performance computing systems. These research directions can help in mitigating

the critical limitations of today’s TEEs: heavy application changes, large TCB, core-level

isolation view, and inability to protect against side-channels.

Figure 3.4 shows the trust model we need for modern high-performance computing sys-

tems (like the one shown in Figure 3.2). The local (general purpose) node, accelerator node,

and remote node share part of the trusted memory and should not need to trust any com-

ponent other than the core(s) they are executing on.

26

Figure 3.4: Required trusted system view. All compute elements and the memory employed
by the secure application should exist within a unified trust boundary.

We argue that given the way computing is evolving, we do not necessarily treat secu-

rity and performance as a trade-off, but we can achieve both together. We emphasize that

the system view in Figure 3.4 also fits well with the optimizations which can extract more

performance from a computing system. Therefore, synergistically building secure and per-

formant systems is an appropriate approach. A similar observation by Orenbach et al. [73]

suggests that enclaves have many similarities with accelerators: significant invocation over-

heads, space constrained private memory, and inability to directly invoke OS services such

as network and I/O. The solutions to these problems for accelerators [74, 75] mostly involve

bypassing the OS (for performance reasons), which is an attractive property for enclaves as

well.

We will discuss some of the promising future directions, like new hardware primitives,

horizontal privilege levels, and capability-based enclaves in more detail in Chapter 7. This

section discusses a promising direction that we followed to build the proposed TEE in this

thesis, i.e., data-centric enclaves.

3.6.1 Data Centric Enclaves
Current TEEs, when trying to isolate software from the rest of the system, for example

via TEE-based containers, have usability constraints and eventually try to emulate existing

system components (like POSIX or devices) inside the enclave systems and eventually have

to deal with the same problems they started with [76]. Since today’s threat models mainly

consider untrusted software, the “unit of protection” should be individual data items [76].

Data-centric enclaves can solve this problem, which inherently rely on memory/data level

isolation view rather than core-level isolation view. One example of such architecture is

Border Control [77] which keeps the protection checks of IO-MMU consistent with the TLB

27

Table 3.1: Survey of Attacks on TEEs/Enclaves

Type of attacks Examples

Side channel [63–65]

Controlled channel [56, 78]

Encryption Attacks [70, 71]

IO Based Attacks [72, 79]

Table 3.2: Example of Tools/Frameworks for TEEs

Type of tool Examples

TEE Containers Graphene [80], SCONE [81], SGX-LKL [82]

Simulation FireSim [83], gem5 [84]

Profiling TS-Perf [85], sgx-perf [86] , Tee-perf [87]

checks via a hardware structure. This way, Border Control can maintain the memory level

view of permissions and protect against accelerator-based attacks.

We discuss more details of the data centric TEE, DESC, proposed in this thesis in Chap-

ter 5.

3.7 Other Topics
In this section, we briefly discuss topics that are not in the main scope of this chapter.

3.7.1 Survey of Attacks on TEEs/Enclaves
There is a lot of research on bypassing the security guarantees of TEEs/enclaves. Table 3.1

shows some of the attacks that are possible on TEEs/enclaves.

3.7.1.1 Protection Against Side Channel Attacks

TEEs mostly do not protect against side channel attacks. However, there are a few excep-

tions [25, 40]. Komodo [88] obliviates computing to protect against side channels. Sanc-

tum [25] protects against cache side channels by enforcing distinct cache sets per enclave.

Keystone [1] also provides the ability to include side channels in the threat model.

28

3.7.1.2 Protection Against IO Attacks

Since IO devices are generally not a part of the CPU package and are not trusted, they can

come from a malicious vendor. Such devices can break the confidentiality of the enclave’s data

when it leaves the CPU package. For example, Lee et al. [79] presented an off-chip attack on

enclaves by snooping the memory bus. Some of the TEEs (e.g., CURE [40], HECTOR-V [46])

use enclave to peripheral binding to protect against IO-based attacks.

3.7.2 Tools for TEE Platforms
Table 3.2 provides a brief survey of different kinds of tools/infrastructure that can help

the usage of TEEs or advance research on TEEs. TEE containers help in the execution of

unmodified code on TEEs. These containers often provide an emulated view of specific system

components and might have many of the limitations of the underlying TEE. Application

profiling helps to understand their behavior better and potentially optimize their execution

on given hardware. Standard profiling tools might not be able to interact with the enclave

applications due to the specialized execution mode of enclaves. Though some specialized

profiling tools exist for enclaves, as shown in Table 3.2, there is still room for improvement

in this space. Simulation support for TEEs is essential. TEEs usually rely on a hardware-

software co-design. However, most of the architectural simulators are not full-system and

might not be able to support all components needed to simulate a TEE. On top of that, the

details of the targeted TEE might not be openly available. However, there are options for

the simulation of RISC-V-based TEEs (as shown in Table 3.2).

3.7.3 Formal Verification of TEEs
Formal verification provides means to evaluate if a security mechanism is correct and does

what it claims. There are a few examples of TEEs which have been formally verified. Ko-

modo [88] and Sanctum [25] are a couple of examples of TEEs with a formal proof of their

correctness. RISC-V’s PMP (which is used by many TEEs, e.g., Keystone [1]) has also been

formally verified [89].

29

3.8 Conclusion
In this chapter, we provided a systematization study of existing trusted execution environ-

ments (TEEs) which are one of the main enablers of confidential computing. We discussed

the primary mechanisms or primitives the existing TEEs use. We also provided a list of

the limitations of the existing TEEs, which we believe are the main reasons why the current

TEEs are not suitable for high-performance computing. The existing primitives to build

TEEs require large application modifications, lead to large TCB, focus on core-level execu-

tion, and do not consider side channels a part of their threat model. These limitations make

it very hard to run HPC applications under TEEs, cause significant slowdowns for HPC

workloads, and do not ensure their security due to an insufficient threat model. We believe

the existing TEE technologies are point solutions for different computing targets. And in

the future, we need to either generalize the TEE technologies to be able to use them for any

computing domain or come up with point solutions focused on high-performance computing.

We also provided a list of the directions we believe can enable TEEs to be a good fit for

high-performance computing systems.

30

Chapter 4

A Study on the Performance of
Commercial TEEs for Scientific
Computing 1

CPU vendors have already introduced multiple TEEs which leads to an important question:

Are these commercial TEEs a good fit for HPC workloads in their current form? Along-

side their security features, analyzing these TEEs involves considering two crucial criteria:

performance impact and usability. Therefore, this chapter discusses the performance impact

of executing traditional scientific computing as well as modern HPC workloads in trusted

execution environments in detail. We used x86 based commercial TEEs, Intel SGX [4] and

AMD SEV [24], which focus on general purpose compute devices.

4.1 Threat Model
We assume that HPC system administrators are not trusted and that host operating systems

and hypervisors are not trusted. However, the guest operating system of a virtual machine,

which is owned by the user, is trusted. We assume very simple physical attacks are within

scope, but that physical attacks that are more time consuming, such as opening a rack-

mount HPC system and removing chips soldered on the board, are less important at this

time because there are other means, such as video cameras pointed at the HPC systems,

to monitor and mitigate such attacks. We assume HPC users themselves are trusted to not
1This work has been published in IEEE IPDPS 2021 [59]. More details on this can be seen

in the original paper [59] or the extended version [90].

31

exfiltrate their own data, though we do not trust them to not attack others. Also, we focus on

general-purpose computing hardware—FPGAs, GPUs, dedicated ASICs are not considered

in this paper, mainly because no commercial TEEs yet exist for these hardware accelerators.

We assume that data providers trust the data users or that some other means (e.g.,

differential privacy [22]) will ensure the sensitive data is not improperly exfiltrated by the

scientific application developers and users. Figure 2.2 shows how TEEs fit into this threat

model.

4.2 Selected TEEs for This Study
Trusted execution environments in hardware, at minimum, provide some degree of hardware-

enforced separation from other users and processes, and the ability of end users to verify

through cryptographic attestation that execution is taking place within the TEE. Some

TEEs, including Intel’s Software Guard Extensions (SGX) and AMD’s Secure Encrypted

Virtualization (SEV), also support encrypted memory. Both SGX and SEV protect against

malicious system administrators and host operating systems. TEEs have their roots in ear-

lier cryptographic hardware functions, including Trusted Platform Modules. In this work,

we analyze the performance of AMD SEV [24] and Intel SGX [4]. We exclude the other

major commercially available option ARM TrustZone [23] from this study as existing Trust-

Zone based TEEs mainly target embedded and mobile devices, not general purpose compute

devices [91]. Table 4.1 shows a short feature comparison of both SGX and SEV.

4.2.1 Intel Software Guard Extensions (SGX)
Intel SGX divides the application into two code segments, untrusted and trusted (enclave)

which cannot directly communicate and interact. Only the trusted part is allowed to access

confidential data residing in encrypted form in a memory region called Enclave Page Cache

(EPC). The need to split an application (manually) into trusted and untrusted parts can be

a challenging task for HPC applications as they often rely on many third-party libraries. The

size of the EPC is set to be 128MB, out of which almost 32MB is used to store the metadata

needed to provide security guarantees [92]. In case of SGX, the MEE (memory encryption

engine) which sits besides the memory controller on the CPU package is responsible for

permission checks for EPC accesses, provision of data confidentiality by encrypting the data

32

when it leaves the CPU package to reside EPC and performs integrity tree operations on the

data stored in the EPC.

Both parts of an SGX application communicate through an interface of in/out calls

(ecall/ocall). ecall and ocall perform a secure context switch which includes: enabling/disabling

of tracing mechanisms, permission checks for enclave memory, validation of enclave control

structures and backing up/reloading of registers that represent untrusted execution con-

text [93]. Similarly, enclave code cannot use normal system calls directly, rather the control

needs to be transferred to the non-secure part of the application first using ocall. SGX re-

quires application changes and/or recompilation. However, there are third-party solutions

(e.g. SCONE [81]), which allow running unmodified workloads, but they have their own

limitations (discussed in section 4.4.4). SGX also provides integrity guarantees through the

use of integrity trees consisting of counters to keep track of version of EPC pages to protect

against replay attacks.

4.2.2 AMD Secure Encrypted Memory (SEV)
In case of SEV, the protected memory can be equal to the size of the entire physical memory.

AMD SEV provides transparent encryption of memory used by virtual machines (unique

encryption key associated with each isolated guest). As a result, SEV has a larger trusted

computing base (TCB), compared to SGX, which includes the guest OS, the hypervisor,

and the CPU package. In contrast to SGX, which requires application modifications, SEV

does not require changes in an application’s code. However, the application needs to be run

inside a VM managed by the hypervisor (QEMU). SEV lacks integrity support and does not

provide protection against replay attacks. However, AMD had latern introduced SEV-ES [94]

that adds encryption of guest register state to provide additional protection against VM state

related attacks, and SEV-SNP [94] provides integrity checks. Our evaluation study presented

in this chapter is based on only SEV.

4.3 Methodology
We picked traditional scientific computing workloads as well as modern applications which

fit the criteria of HPC application domain. Table 4.2 provides a summary of the workloads

evaluated in this work.

33

Table 4.1: Feature Comparison

Feature SGX SEV

Integrity Provision Yes No

TCB Size Small Large

Secure Memory Size 128 MB Up to RAM size

Application Changes Required Not Required

4.3.1 Traditional HPC Benchmarks/Kernels (NPB)
We evaluate workloads traditionally used to benchmark HPC systems such as the NAS Par-

allel Benchmark suite (NPB) [95]. The NAS Parallel Benchmark suite, consisting of different

kernels and pseudo applications, has been used to study HPC systems for a long time and

is still being updated. These benchmarks can be used with multiple input data sizes, thus

different class names. In this work, we used NPB Class C for both SEV and SGX and NPB

Class D for SEV only.

4.3.2 Modern and Emerging HPC Workloads
Apart from the traditional scientific computing kernels/workloads, we also focus on workloads

which characterize modern HPC usage. We selected a set of graph workloads (GAPBS) [96]

with an input of a graph of road networks in the US. As a proxy for general machine learn-

ing training we used a decision tree workload (LightGBM) [99] (characterized by irregular

memory accesses) which is trained using Microsoft’s Learning to Rank (MSLR) data set. Fi-

nally, we used modern HPC workloads as well, including Kripke [97] (a particle transport

simulation), LULESH [98] (a hydrodynamics simulation), Mobiliti [100] (a transportation

benchmark), and BLAST [101] (a genomics workload). Kripke [97] is a highly scalable code

which acts as a proxy for 3D Sn (functional discrete-ordinates) particle transport. The Liv-

ermore Unstructured Lagrange Explicit Shock Hydro (LULESH) [98] application solves a

simple yet “full-featured” hydrodynamics simulation problem. Mobiliti [100] is a transporta-

tion system simulator (based on parallel discrete event simulation), designed to work on

high performance computing systems. Basic Local Alignment Search Tool (BLAST) [101]

is a well-known bioinformatics tool, which is used to search sequence similarity of a given

34

Table 4.2: Details of the workloads evaluated.

NAS Parallel Benchmarks NPB [95]

Benchmark Description Working-Set

(C & D)

bt block tri diagonal solver 0.68 & 10.67 GB

cg conjugate gradient 0.36 & 16.31 GB

ep embarrassingly parallel 0.028 & 0.028

GB

is integer sorting 1.03 & 33.1 GB

lu lower-upper gauss-seidel solver 0.59 & 8.89 GB

mg multi-grid method 3.3 & 26.46 GB

sp scalar penta diagonal solver 0.78 & 11.62 GB

ua unstructured adaptive mesh 0.47 & 7.30 GB

GAP Benchmark Suite [96] (road network)

Benchmark Description Working-Set

bc betweenness centrality 1.15 GB

bfs breadth first search 0.97 GB

pr page rank 0.97 GB

sssp single-source shortest paths 1.39 GB

cc connected components 0.96 GB

tc triangle counting 0.57 GB

Other Modern HPC Workloads

Benchmark Description Working-Set

Kripke [97] Hydrodynamics Stencil Calculation 7.4 GB

LULESH [98] Particle Transport Simulation 0.108 GB

LightGBM [99] Microsoft Gradient Boosted Decision

Tree Framework

5.4 GB

Mobiliti [100] Transportation System Simulator 1.06 GB

BLASTN [101] Basic Local Alignment Search Tool 26.20 GB

35

genome sequence compared to an existing database. We specifically use BLASTN in this

work, which is a version of BLAST used to search a nucleotide sequence against a nucleotide

database.

4.3.3 Hardware Platforms Used
Table 4.3 shows the configurations of the hardware platforms used for these experiments. For

all of our evaluations, we evaluate without hyperthreading by limiting the number of threads

to the number of cores on each platform.

We used three server class AMD machines. Figure 4.1 shows the detailed NUMA config-

uration of the AMD EPYC 7401P (Naples architecture, Figure 4.1a) and the AMD EPYC

7702 (Rome architecture, Figure 4.1b). The Naples-based system has 24 CPU cores with 6

cores on each of four dies in a single multi-chip module. Although this system is a single

socket platform, it has four NUMA nodes. A multi-chip module package has characteristics

similar to a multi-socket system in terms of latency and bandwidth between separate dies.

With its four NUMA nodes the Naples-based system has high variation in memory latency

depending on if the data is in the local NUMA node or one of the remote NUMA nodes.

We also evaluated a recent Rome-based system since this design has a more uniform

memory architecture. The Rome-based system has 64 cores with 8 cores on each of 8 dies

in a multi-chip package, and it is a dual socket system for a total of 128 cores. The Rome

system has more chips per package, but has a more uniform memory architecture since each

die is equidistant from the I/O die with the memory controllers. In the Rome-based system

we evaluated, there is only one NUMA node per socket. However, we used a dual socket

system so our evaluations have two NUMA nodes. We also used an EPYC 7402P (Rome

architecture, with one socket) system for validation of some results discussed in section 4.4.

The recently deployed supercomputers Frontier and El Capitan are based on AMD mi-

croarchitecture [102], though these are based on a recent microarchitectures (Frontier is Zen

3 based and El Capitan is Zen 4 based). The specific memory architecture of these de-

vices support multiple sockets and have non-uniformity as the Rome-based system. Google’s

confidential cloud computing initiative also relies on AMD SEV for trusted execution sup-

port [103].

We use a desktop-class processor with 6 cores and a single NUMA node to perform Intel

36

Table 4.3: System Configurations. See Figure 4.1 for details on the two EPYC systems.

Feature AMD SEV 1 AMD SEV 2 AMD SEV 3 Intel SGX

CPU EPYC 7401P EPYC 7702 EPYC 7402P Core i7-8700

Sockets 1 2 1 1

Cores 24 128 24 6

NUMA 4 Nodes 2 Nodes 1 Node 1 Node

RAM 64GB 1TB 64GB 32GB

Pa
ck

ag
e

DRAM

6 core
die

6 core
die

6 core
die

6 core
die

DRAM

DRAM DRAM

(a) AMD EPYC 7401P (Naples)

Pa
ck

ag
e

8 core
die

8 core
die

8 core
die

8 core
die

I/O
die

8 core
die

8 core
die

8 core
die

8 core
die

DRAM DRAM

DRAM DRAM

Pa
ck

ag
e

8 core
die

8 core
die

8 core
die

8 core
die

I/O
die

8 core
die

8 core
die

8 core
die

8 core
die

DRAM DRAM

DRAM DRAM

(b) AMD EPYC 7702 (Rome)

Figure 4.1: Details of the non-uniform memory architecture for the two AMD systems eval-
uated.

SGX experiments, as there did not exist a server-class Intel processor with the support of

SGX at the time of performing SGX experiments in this paper. Recently, Intel SGX is made

available in one of the Intel Xeon parts (Xeon E3). However, the size of secure memory

(doubled to be 256MB in total) is still significantly smaller than the working set of most of

the workloads studied in this paper (only ep has a working set smaller than 256MB) and the

conclusions drawn in this work (discussed in section 4.4) should still hold true.

4.3.4 Software Tools/Frameworks
To execute unmodified applications under SGX, we make use of SCONE [81] framework con-

tainer. Programs are compiled statically and linked against a modified standard C library

in SCONE. SCONE runtime also makes use of threads outside the enclave to perform asyn-

chronous execution of system calls. We evaluated other SGX interfaces and picked SCONE

as it provided the most complete support for unmodified applications. These other SGX pro-

37

gramming interfaces are discussed in section 4.4 (Finding 4.4). Rewriting HPC applications

for SGX’s programming model, by partitioning them into secure and un-secure components,

is arduous but not impossible. However, in this work we focus on the use case of unmodified

HPC applications. Also, the overhead of containerization like SCONE has been shown to be

low. The original work [81] introducing SCONE showed that it has a 0.6–1.22× throughput

compared to native execution for services like Apache, Redis, NGINX, and Memcached [81].

We also tested the performance of NAS parallel benchmarks in the “simulation mode” of

SCONE. This mode uses all of the SCONE interfaces, but does not enable SGX. We found

that the geometric mean of slowdown compared to native execution is 1.19×, which is in-

significant compared to the slowdown of trusted execution (with SGX) in SCONE as shown

in section 4.4 (Finding 4). Finally, we observed the performance of two memory inten-

sive micro-benchmarks, partitioned into secure and un-secure parts directly using Intel SGX

SDK, and found those numbers to be in line with our observations with SCONE as discussed

in section 4.4 (Finding 4).

For SEV, we make use of the AMD provided scripts to set-up the SEV enabled host

machine and the guest virtual machine (VM) managed by QEMU [7]. We also evaluated using

Kata [104] which is a containerized interface to the hardware virtualization support in Linux.

However, we found that Kata’s support for SEV was too preliminary to get consistent results.

Kata or other virtualized container interfaces may provide an even simpler programming

interface to SEV in the future, but they will likely have the same performance characteristics

as QEMU since they both use hardware support for virtualization. When running with

QEMU, we assign all of the host cores to the guest and allocate enough memory on the guest

to fit the entire resident memory of the application. The documentation and scripts required

to set-up and run the experiments discussed in this work are available publicly.2

4.4 Understanding the Performance of TEEs
Next, we will present our findings on the performance impact of TEEs for scientific computing

workloads and the reasons for the observed slowdowns. We make following main findings:

1. Finding 1: When the user configures the NUMA allocation policy correctly, SEV has
2https://github.com/lbnl-cybersecurity/tee-hpc

38

Figure 4.2: Performance impact of SEV for NPB C Class on AMD Naples (24 Threads). The
SEV performance overhead is mainly because of default NUMA memory allocation, most of
which goes away with interleaved NUMA allocation.

Figure 4.3: Performance impact of SEV for NPB D Class on AMD Naples (24 Threads).

small overhead for most workloads.

2. Finding 2: SEV relies on QEMU and hardware virtualization, which causes significant

performance degradation for some irregular workloads, I/O intensive workloads, and

workloads with high thread contention.

3. Finding 3: SEV initialization is slow and depends on the memory footprint of the

application.

4. Finding 4: SGX has high performance overhead mostly due to its limited secure mem-

ory capacity and partially due to parallel scalability limitations and programming chal-

lenges.

The rest of this section provides details of these findings.

39

4.4.1 Finding 1: SEV can be used for secure scientific computing
without significant performance degradation for most work-
loads if it is configured correctly.

SEV requires nested page tables [105] and is only available when running in a VM. Therefore,

we compare three different cases: native (unsecure), QEMU (virtualized, but also no security

gaurantees), and QEMU+SEV which provides security from the hypervisor and other users.3

Figures 4.2 and 4.3 show the performance of the NAS Parallel Benchmarks for the C

and D class inputs relative to the “native” execution without any security guarantees. The

solid bars on these figures show the performance of native execution, “QEMU” which is a

KVM-based hypervisor running a virtual machine with the benchmark, and “QEMU+SEV”

which has the SEV security extensions enabled (all relative to the performance of native

execution). This shows that while the performance overheads of SEV (shown in green solid

bars) are lower than SGX, using the default system configuration of SEV still results in

significant performance degradation compared to the virtualized QEMU execution.

In this section, we will discuss how most of these slowdowns can be eliminated through

careful NUMA data placement. We also present data from two different generations of AMD

platforms to further investigate the overheads of SEV.

Finding 1.1: Enabling SEV causes performance degradation beyond virtualization over-

heads.

Although there is some overhead from virtualization for the NAS Parallel Benchmarks

as shown in the orange bars of Figures 4.2 and 4.3, there is significantly more performance

overhead when enabling SEV (green bars, up to 3× slowdown over the native execution).

Finding 1.2: SEV overhead is because of NUMA placement.

The reason QEMU+SEV suffers more performance overhead than QEMU is that when

an SEV enabled virtual machine (VM) is launched, the memory pages allocated to the guest

RAM are pinned by the hypervisor (QEMU) using mlock syscall. As a result, all data for the

application is allocated on a single NUMA node and multi-threaded processes which expect

performance improvements from running on large NUMA systems suffer from performance
3The initial implementation of SEV has many security vulnerabilities [70–72,106–108]. However, more re-

cent implementations (e.g., Rome) fix many of the published vulnerabilities but still have similar performance
characteristics to the systems we evaluate.

40

plain text
cache block

guest key

encryption engine
memory controller

cipher text
cache block

physical address tweak

In DRAM
In on-chip

caches

Unmodified application
Guest virtual
address space

Guest physical
address space

Host virtual
address space

Host physical
address space

0
x1

2
3
4
0
0
0
0

0
x8

0
0
0
A
B
C
D

0
0
0
0

0
xA

B
C
D

0
0
0
0 0
x8

0
0
0
6
7
8
9
0
0
0
0

0
x6

7
8
9
0
0
0
0

c-bit

Guest
page table

Host
page table

c-bit

guest key

phys addr

encr

Figure 4.4: Details of SEV encryption implementation.

(a) SEV Default Allocation (b) No SEV Default Allocation

Figure 4.5: Memory allocation over time using default policy.

degradation under SEV. QEMU without SEV does not have this restriction.

Why SEV requires locking pages to physical addresses?
Figure 4.4 shows details of how SEV is implemented. This figure shows both the interaction

with the nested page table translation used for hardware virtualization acceleration and

the memory encryption engine. First, this figure shows how the guest virtual address is

translated through a nested page table since it must translate first into the guest physical

address space then into the host physical address space. Importantly, the “c-bit” or encrypted

bit is removed from the guest physical address by hardware and replaced after the host page

table translates the address to the host physical address space. By removing and replacing

the c-bit, the hypervisor is unaware of which pages are encrypted or not.

41

Second, SEV must guarantee that two identical plaintext pages present at different phys-

ical addresses in the memory will have different cipher texts to protect against cipher text

block move attacks. To make this possible, SEV uses a physical-address based tweak algo-

rithm [70,71] as shown in Figure 4.4 with the physical address of the cache block influencing

the cipher text via an xor-encrypt-xor tweak [109]. Since the host-physical address is used to

determine the cipher-text of a page, the hypervisor cannot move a page between two physical

addresses once it is allocated to the secure VM.

This limitation causes two performance issues when using SEV. First, all data pages for

the guest are pinned in physical memory by the hypervisor [110]. In fact, because the default

NUMA policy on Linux is “first-touch”, all memory is allocated on a single NUMA node,

which causes performance degradation for many of the scalable workloads evaluated in this

work. Second, SEV-based guests can under-utilize the memory resources since they do not

use on-demand paging.

Figures 4.5a and 4.5b visualize the memory allocation process when using QEMU and

QEMU+SEV. These figures show the memory allocation over time on different NUMA nodes

on a system with four NUMA nodes when a VM with 16 GB memory is launched to run (for

example) sp benchmark. Figure 4.5a shows that under SEV all data is allocated at the time

of the VM launch on a single NUMA node as opposed to the non-SEV case (Figure 4.5b)

which follows on-demand paging scheme and spreads the data across all four nodes.

For additional evidence, we conducted an initial study on a single-socket AMD Rome

based system (AMD EPYC 7402P, 24 core system, similar to Figure 4.1b but with a single

package and four core dies) using NPB D class workloads. This system has a uniform mem-

ory architecture, and that is why the slowdowns due to NUMA placement issues (observed

previously) do not exist in this case as shown in Figure 4.10.

Thus, we conclude the SEV-specific overhead is due to the NUMA allocation policy.

Finding 1.3: Explicit interleaving of data across NUMA nodes using numactl recovers

most of the performance loss as shown in Figure 4.6.

To mitigate the observed slowdown, we explicitly allocate memory pages across NUMA

nodes rather than using the default NUMA memory allocation policy in the Linux kernel.

We use numactl to allocate memory pages across NUMA nodes when the VM is launched

42

(a) SEV Interleaved Allocation (b) No SEV Interleaved Allocation

Figure 4.6: Memory allocation over time using an interleave policy. Under SEV an equal
amount of memory is allocated across all nodes.

(a) GAPBS (road network) (b) Real world HPC workloads

Figure 4.7: Performance impact of SEV for GAPBS and other real world HPC workloads on
AMD Naples (24 Threads). Interleaved NUMA allocation works for graph and other HPC
workloads except BLASTN which shows high overhead mainly because of virtualized disk
I/O operations.

under SEV. A visualization of the memory allocation using interleaved NUMA allocation

policy is shown in Figure 4.6a. Under SEV, an equal amount of memory (4 GB on each

node) is allocated across all nodes. We observe that the interleaved memory allocation

across all NUMA nodes results in significant performance improvements for SEV. In fact,

the performance differences between QEMU and QEMU+SEV shrink as shown in Figure 4.2

and 4.3 when enabling NUMA interleaving (hatched bars). This is in contrast to prior work

which evaluated server-based applications and found that using a single NUMA node results

in the best performance for virtualized workloads [111]. Importantly, we also observe that

for native execution the interleaved allocation results in better performance compared to the

default allocation for most of the cases (prominent examples are Kripke, Mobiliti, and cc

from GAPBS).

In addition to the HPC kernels in the NAS Parallel Benchmarks, we also studied modern

HPC workloads. Figure 4.7a shows the execution time for native, QEMU and QEMU+SEV

cases for GAPBS workloads when executed using a road network graph. Similar to NPB,

43

Figure 4.8: Performance impact of SEV for NPB D Class on AMD Rome (128 Threads)

(a) GAPBS (road network) (b) Real world HPC workloads

Figure 4.9: Performance impact of SEV for GAPBS and other real world HPC workloads on
AMD Rome (128 Threads). NUMA placement still matters on platforms with more uniform
memory architecture. Two examples where main cause of overhead is virtualization are bfs
and sssp.

NUMA interleaving reduces the difference between QEMU+SEV and SEV. Similar trends

are found for other HPC workloads as shown in Figure 4.7b.

However, there are still some cases where QEMU and QEMU+SEV experience perfor-

mance degradation compared to the native (unsecure) baseline. These differences can be

attributed to virtualization overhead as discussed in Finding 2.

Finding 1.4: NUMA placement still matters on new platforms with more uniform

memory architecture (AMD EPYC 7702 (Rome architecture)) as shown in Figure 4.1.

We also studied the performance of these benchmarks on another modern server class

AMD machine EPYC 7702 (Rome architecture), which contains 2 NUMA nodes instead of

four (see Figure 4.1). Figure 4.8, Figure 4.9a and Figure 4.9b show the relative performance

of native, QEMU, and QEMU+SEV for the Rome system. Similar to the Naples system,

there are significant overheads when using SEV unless the data is explicitly interleaved be-

tween NUMA nodes. Thus, even for systems that have more “uniformity” in their memory

architecture, data placement is important for performance when using SEV.

Finding 1 summary: When enabling SEV, there are additional overheads beyond just

44

Figure 4.10: NPB D Class on AMD EPYC 7402P (24 Threads)

the virtualization platform overheads. These overheads are caused by the memory allocation

restrictions of the SEV technology and persist even on the most recent architectures. How-

ever, we can overcome these SEV-specific overheads by explicitly interleaving data between

NUMA nodes when the virtual machine is initialized.

4.4.2 Finding 2: The remaining SEV performance differences are
due to virtualization overheads.

We find that in some cases there is performance degradation of the QEMU+SEV system

compared to the baseline native execution even after applying our NUMA interleaving config-

uration change. These slowdowns come from the use of hardware virtualization and QEMU.

For example, in Figure 4.9a, sssp with QEMU+SEV shows considerable slowdown compared

to Native-default case irrespective of memory allocation policy (default or interleaved) on

AMD Rome architecture. As visible in the Figure 4.9a, the performance of QEMU+SEV

and QEMU match, indicating that the main cause of this slowdown is virtualization itself,

not the SEV extension.

We observed that, when run with 128 threads (as in Figure 4.9a), sssp shows much higher

number of kvm exits per second caused by the PAUSE instruction in comparison to the case

when it is run with a smaller number of threads (e.g., 32). The PAUSE instruction is used to

implement spinlocks and can cause KVM exits (i.e., a usermode to hypervisor switch) which

has a higher latency than a normal context switch.

In fact, when executed with only 32 threads, the virtualization slowdown of sssp improves

to 1.7× (in contrast to 4× in Figure 4.9a). Similarly, the QEMU overhead for bfs reduces to

1.6× with 32 execution threads in contrast to 2.6× with 128 execution threads (Ding et al.

made similar findings [60]). Thus, when using QEMU or QEMU+SEV it is important to use

45

the appropriate number of execution threads for your workload and workloads with highly

contended locks may result in significant performance degradation.

In Figure 4.7b, BLASTN also shows slowdown by virtualization on AMD Naples archi-

tecture. The nucleotide database which is used by BLASTN is approximately 245GB in size

(much larger than the memory size of 64 GB on our AMD Naples system), which leads to

many disk I/O operations and thus slowdown under virtualization. On the other hand, when

the same workload is executed on AMD Rome system (which has 1 TB of memory), there

is not any noticeable virtualization overhead as shown in Figure 4.9b since the workload can

fit in the available system memory.

There is significant prior work quantifying the impact of virtualization on the performance

of HPC workloads [10, 60, 112–116]. These prior works mostly focus on overheads from

TLB misses and nested page table walks. Similarly, our results show the virtualization

overheads grow as the working set of the applications grow and are worse for workloads with

irregular access patterns (e.g., graph workloads). Prior work has shown you can reduce this

overhead by using huge pages or through changes to the hardware (e.g., Virtualized Direct

Segments [116]). Additionally, the work of Ding et al. [60] presents possible strategies to

mitigate the virtualization slowdown caused by multithreaded application scaling.

4.4.3 Finding 3: SEV initialization is slow and depends on the
memory footprint of the VM (1.1×–1.47× depending on the
size of the VM memory (from 8 GB to 48 GB)).

We find that the time taken to initialize the workload is significant when using QEMU and

increases when using QEMU+SEV. When using QEMU or QEMU+SEV, before running the

workload the virtual machine guest operating system must complete the boot process. For

QEMU this bootup time takes about one minute for our workloads.

However, when enabling QEMU+SEV, this boot time increases due to the hypervisor

having to initialize the memory before handing it over to the guest OS. As shown in Fig-

ure 4.11, SEV can cause a slowdown (relative to QEMU-8 GB) of 1.1×–1.47× depending on

the size of the VM memory (from 8 GB to 48 GB). In addition to the memory initializa-

tion, QEMU+SEV also needs extra time for key management when launching a guest with

QEMU+SEV. However, we believe that the main source of SEV slowdown is the fact that

46

Figure 4.11: Performance of VM boot (relative to QEMU-8GB)

bt cg ep is sp ua bc bf
s cc pr

ss
sp tc

Kr
ip

ke
LU

LE
SH

Lig
ht

GB
M

M
ob

ilit
i

gm
ea

n
0

25
50
75

Sl
ow

do
wn 12

6

NPB (Class C)
GAPBS (road)
Modern-HPC

(a) Relative performance running under SGX compared

to native execution.
bt cg ep is sp ua bc bf
s cc pr

ss
sp tc

Kr
ip

ke
LU

LE
SH

Lig
ht

GB
M

M
ob

ilit
i

gm
ea

n

0

200

EP
C

Fa
ul

ts
 (P

M
I)

33
6

41
2

36
0

NPB (Class C)
GAPBS (road)
Modern-HPC

(b) EPC Fault Rate (Per Million Instructions) when run-

ning under SGX

Figure 4.12: Performance Impact of SGX and its Relation to EPC (Enclave Page Cache)
Faults. Slowdown and EPC faults show a strong correlation indicating that the workloads
with higher secure to non-secure memory movement rates will exhibit higher slowdown.

the entire VM memory has to be allocated at once in case of QEMU+SEV in contrast to on-

demand allocation in case of QEMU (as discussed in section 4.4.1), as evident by the increase

in slowdown as the VM memory size is increased. This can specially become a bottleneck for

the use cases where the user intend to launch their jobs in a new VM each time (e.g., when

using Kata containers [104]).

4.4.4 Finding 4: SGX is inappropriate for unmodified scientific
computing applications.

We find a number of reasons that SGX is not an appropriate technology for securing HPC

workloads. A primary design goal of SGX is to enable a small trusted compute base, and

SGX was not designed to support large scale workloads. We find that running HPC work-

loads under SGX causes a (1×–126×) slowdown (mostly due to its limited secure memory

capacity as shown in Figure 4.12a), workloads exhibit poor thread scalability under SGX (as

shown in Figure 4.13), and it is difficult to adapt HPC code to work under the SGX program-

47

ming model. We observed that even with multiple third party solutions to run unmodified

applications under SGX (e.g. SCONE [81], Graphene [80], Haven [117] and Asylo [118]) it is

fundamentally difficult to use SGX to run HPC applications because these tools mostly use

non-traditional C libraries, and have limited syscall support.

Finding 4.1: Workloads with working sets larger than about 100 MB suffer large perfor-

mance degradation under SGX. Figure 4.12a shows the slowdown of HPC workloads under

SGX compared to an un-secure baseline. For this experiment, we ran NPB with the “class

C” inputs (blue in Figure 4.12a). We were limited to using the class C inputs, as most class D

inputs were too large to run on the desktop systems that support SGX. However, we believe

that running larger inputs under SGX would show at least as much performance overhead

as the smaller inputs. We also show the relative performance of graph workloads and other

modern HPC workloads in Figure 4.12a). We were not able to run BLASTN workload with

SGX due its dependencies (discussed more in Finding 4.4).

Most of the performance degradation shown in Figure 4.12a can be explained by the

overhead of moving data from un-secure memory into secure memory. SGX has a limited

amount of secure memory, about 100 MB. Thus, any workload with a working set larger than

100 MB must use the secure memory as an enclave page cache (EPC). The EPC is managed

by the SGX driver in software and has similar behavior to OS swapping and moving pages

between normal and secure memory is a high latency event.

Figure 4.12b shows the number of EPC faults per million instructions for each of the

workloads. This figure shows that most of the slowdown in Figure 4.12a can be explained

by the EPC fault rate. The workloads with the highest rate of moving data between secure

memory and normal memory (e.g., cg from NPB, Mobiliti, and Kripke) show very high

slowdown. On the other hand, ep from NPB shows little performance overhead with SGX

because it has a very small working set size (about 28 MB) which fits in the EPC and does

not require data movement between secure and normal memory spaces.

Finding 4.2: In some cases, SGX slowdown can be caused by system calls. Applications

under SGX exit the enclave to process a system call. This can become a problem for workloads

with a large number of system calls. In the studied HPC workloads, the only case where we

found system calls to be the dominant source of performance overhead is sssp benchmark

48

2 4 6
Number of Threads

2

4

Sp
ee

d-
up

SGX
Normal

(a) cg

2 4 6
Number of Threads

2

4

6

Sp
ee

d-
up

SGX
Normal

(b) ep

Figure 4.13: Impact of Multiple Execution Threads. Workloads with high resident memory
like cg do not scale well with the number of execution threads in contrast to low resident
memory workloads like ep. Handling of EPC faults by the SGX kernel driver becomes the
serializing factor in case of high resident memory workloads.

from GAPBS. As shown in Figure 4.12b, the slowdown for sssp does not correlate with EPC

fault rate. sssp shows significantly higher number of enclave exits (and system calls) and

is the main contributor to its performance overhead compared to the un-secure execution.

Most of these system calls were write and futex calls, which are needed due to the benchmark

printing progress to the terminal. The futex calls are used for synchronization (of multiple

threads) before printing the status messages using write calls. The effect on slowdown because

of futex system calls can be understood by the difference in the observed slowdown for

six thread execution (126×) and single thread execution (20×), which does not need any

synchronization.

Finding 4.3: Workloads exhibit poor multithreaded scaling under SGX. Another factor

that aggravates the slowdowns under SGX is explained with the help of Figure 4.13, which

shows the workload performance when increasing the number of threads. Figure 4.13a shows

that cg only achieves a speedup of 1.4× with six threads when using SGX compared to about

4× speedup normally. We hypothesize that the handling of EPC faults by the SGX kernel

driver becomes the serializing factor because all logical processors executing an enclave’s code

are required to exit the enclave whenever an EPC page is deallocated [4]. Similar behavior

is exhibited by most of the other workloads with high resident memory size. On the other

hand, workloads with working set sizes that fit in the EPC (e.g., ep) scale under SGX as

they would under normal execution as shown in Figure 4.13b.

49

Finding 4.4: SGX’s programming model is a poor fit for HPC applications. Intel

distributes an official SDK [119] for SGX which requires users to re-write their application

and divide it into two pieces, secure code and non-secure code. Due to the complex nature of

HPC codes, dependencies on external libraries, and frequent use of legacy codes (including a

non-trivial number of them written in Fortran), we investigated several alternative interfaces

to SGX which reduce the burden on the programmer.

There are multiple third party solutions to run unmodified applications under SGX in-

cluding SCONE [81], Graphene [80], Haven [117] and Asylo [118]. We did initial experiments

with both Graphene and SCONE as they were the best supported third party solutions at

the time we ran our experiments. SCONE provides containerized environment and is easier

to set-up and has a better support of running diverse workloads without any modifications,

so we used SCONE for our experiments. Although we only evaluated SCONE, all SGX

programming interfaces have similar limitations due to SGX’s design which limits the TCB.

Graphene [80] is not as convenient to use as SCONE and Google Asylo’s [118] recently added

support to run unmodified applications still lags behind SCONE in terms of the number of

supported use-cases. Open Enclave SDK [120] is another SDK to build enclave applications

and does not support unmodified applications.

We found that even with SCONE, which promises to run unmodified applications with

SGX, it is fundamentally difficult to use SGX to run HPC applications. In order to keep the

library OS simple, SCONE makes use of the musl libc library, instead of more traditional C

library glibc, along-with some containerized services using the Linux Kernel Library (LKL).

The use of musl libc instead of glibc means many applications are not portable to SCONE

(e.g., BLASTN failed to compile inside SCONE and many common frameworks such as

TensorFlow require glibc instead of musl libc). Moreover, SCONE does not support some

system calls like fork, exec and clone mainly due to its user space threading model and

the architectural limitations of SGX [81] which further limits its applicability to scalable

applications.

Finding 4 summary: The current implementation of Intel’s SGX limits the secure

memory size which severely affects the performance of any workload that has a working set

that does not fit in this cache. Additionally, there is currently no stable support to run

50

unmodified workloads under SGX. The limited EPC capacity and application partitioning

are a fundamental design constraints of SGX. Thus, we conclude that SGX is unsuitable for

secure execution of HPC applications.

4.5 Beyond Single Node
Scientific computing workloads often scale across multiple machines (nodes). In this work,

we only focus on a single node to isolate the performance impact of hardware TEEs. To

understand the impact of communicating between TEEs on multiple nodes, we conducted a

preliminary investigation of a multi-node system with support of SEV on CloudLab [121].

Current HPC systems mostly rely on high performance transport protocols like RDMA

for communication among multiple nodes. However, RDMA does not provide any secure

communication support although there is a recent research proposal for secure RDMA [122].

Therefore, we instead evaluated TCP for communication among machines using OSU MPI

microbenchmarks [123]. For point-to-point bandwidth benchmarks, we observed a 2× re-

duction in bandwidth when comparing QEMU to QEMU+SEV, but the latency remains the

same (approximately 1000 µs) for both QEMU and QEMU+SEV (ranging from 1 byte to

2MB packet sizes).

However, in this simple benchmark, the communication between nodes is insecure as there

is no support for encrypted communication between multiple nodes in SEV automatically. A

naive solution to make this communication secure is to use a VPN. We experimented with

OpenVPN and found the slowdown of VPN based secure communication to be large. For

example, for above microbenchmarks, the bandwidth number drops over 10× and latency

increases by almost 20×.

Therefore, we conclude that there is a need to develop more performant architectures

to enable TEEs across multiple nodes in a distributed memory. There are some existing

software based solutions to enable encrypted communication across nodes, but they might

not be sufficient for scientific computing scale workloads. For example, SCONE [81] provides

a network shield which transparently protects the communication among multiple nodes

(each with its SGX hardware). Asylo [118] (open-source framework for developing enclave

applications) allows enclave based applications to be scaled across multiple machines using

51

Figure 4.14: Bandwidth Test from OSU Microbenchmarks

Figure 4.15: Latency Test from OSU Microbenchmarks

gRPCs (google remote procedure calls), while being agnostic to TEE implementation.

4.5.1 Trusted HPC in the Cloud
In this subsection, we will take a look into how to the performance implications of simple

experimental set-up in Google Cloud for running HPC-like workloads securely. Recently,

Google’s confidential cloud computing initiative announced the availability of confidential

virtual machines based on AMD’s SEV (secure encrypted virtualization) for trusted execution

support. When SEV is enabled, all data stored in the main memory for a particular virtual

machine (VM) will be encrypted. This ensures the data cannot be read by other VMs, the

hypervisor, or even individuals with physical access to the main memory hardware.

The HPC workloads are mostly distributed and scale across multiple machines/nodes

(e.g. using OpenMPI). High bandwidth network interconnects are used for communication

among these nodes at HPC centers. Unfortunately, SEV does not have support for secure

multi-node computation yet. If you are executing workloads which scale across multiple VMs

on different nodes, the data can’t be sent encrypted across them with SEV since each VM has

it’s own key (generated at random by the hardware). Moreover, SEV makes use of the data’s

52

Figure 4.16: Slowdown for for NAS Parallel Benchmarks (C Class), 8 processes in total except
bt and sp.

physical address in its encryption function in addition to the key, thus making the transfer of

encrypted data even harder. Today, in Google Cloud infrastructure, if the boundary of one

of Google Cloud’s data-centers is not passed, there is some kind of authentication provided

for the communication between different nodes, however the communication still happens

in the clear. Therefore, in this blog post, we will make use of a VPN connection to enable

secure communication. Although a VPN based secure communication is expected to be slow,

currently it seems to be the only way of securing communication out of the box.

We used MPI workloads in our tests, which are very common in HPC domain. There

are multiple open-source MPI implementations (OpenMPI, MPICH, MVAPIC) available and

potentially can be used inside VMs. We use OpenMPI at this point and build and use it wih

UCX which is a framework (collection of libraries and interfaces) to allow building various

HPC protocols like RMA, fragmentation, MPI tag matching etc. and supports different

transport protocols for communication like RDMA, TCP, shared memory etc. Steps taken

to install OpenMPI, UCX and some MPI workloads are provided in the Appendix section.

Figure 4.14 and 4.15 show the bandwidth and latency numbers for selected micro-benchmarks

from OSU MPI micro-benchmarks suite. Three different configurations shown in the figures

are described below:

• No_Conf: No confidentiality support (SEV is disabled)

• Conf: Confidentiality support (SEV) is enabled, but communication channel is un-

53

encrypted

• VPN_Conf: Confidentiality support (SEV) is enabled, and communication channel

is secure using a VPN connection

Figure 4.16 shows the slowdown (in comparison to un-secure execution) for NAS Parallel

Benchmarks (C Class), which are often used to benchmark HPC systems, under three dif-

ferent configurations defined above. As can be seen in the figure, the slowdown with Conf

configuration suggest no significant performance degradtion. The slowdown with VPN_Conf

for most of the benchmarks is not as bad as in the above microbenchmarks. However, it

should be noted that we were limited by the maximum number of processes which is one

of the reasons the tests do not involve higher level of classes of NAS Parallel Benchmarks

(e.g. D Class) which are more representative of the HPC workloads that scientists will be

interested in.

To summarize the above results, while it is possible today to run HPC workloads securely

in the cloud (like Google cloud), there are limitations:

• Limited number of vCPUs that can be deployed on secure machines. For example,

only 8 total vCPUs (for now) in Google cloud, which severely limits the kind of HPC

workloads which can be executed on these resources.

• While data is stored encrypted, communication is in the clear necessitating application-

specific solutions or VPN.

• Using a VPN for secure communication is undesirable due to the performance over-

heads.

4.6 Observations on Security of SGX and SEV
Although the focus of this paper is the performance analysis of TEEs for secure HPC, we

provide a brief security analysis of TEEs discussed in this paper. SGX provides integrity

guarantees while SEV lacks such support. However, the weaker guarantees of SEV are

considered to be good enough by Google’s confidential cloud computing initiative, and these

guarantees are becoming stronger. AMD has introduced SEV-ES [94] that adds encryption

54

of guest register state to provide additional protection against VM state related attacks,

and SEV-SNP [94] provides integrity checks. These are encouraging developments from the

security perspective, as they address some of the vulnerabilities and limitations of SEV.

It should be noted that SEV-SNP [94] does not provide integrity guarantees using Merkle

tree like data structures (as SGX does). Therefore, it is more scalable and can support

larger secure memory sizes. Additionally, it seems Intel is also moving in the direction

of full memory encryption and virtual machine-based trusted execution environments like

AMD’s SEV with total memory encryption (TME) and multi-key total memory encryption

(MKTME) technologies [124, 125].

Finally, in this paper we have focused on just one aspect of the entire secure application

workflow which may include other steps as well (like a secure connection to the computing

resources) in addition to running it inside an SEV or SGX enclave. However, we believe

that the execution of the workload itself in a secure enclave is the most important factor for

performance analysis.

4.7 Scientific Computing Focused Trusted Execution
Environment

This section discusses our observations which form the basis of an HPC-focused TEE pro-

posed in this document. Multiple features distinguish HPC from general purpose computing

environments and their significance for secure architectures. On one hand these features

impose some restrictions on secure computing architectures, and on the other hand some

of these features can be leveraged to simplify the TEE design. These observations have in-

fluenced the proposal of main requirements that an HPC-focused TEE should meet. These

requirements are presented below:

• R1 Requirement 1: HPC-focused TEE should have minimum performance impact on

HPC style workloads. Scientific computing applications are heavily multi-threaded and

have large working sets. This implies that the HPC centric TEE should be capable of

supporting multiple execution threads and should have minimal performance overhead

irrespective of the amount/size of the data that needs to be protected while in memory

(or scale well with data size). As shown in the previous section, this requirement is not

55

fulfilled by the current TEEs. For example, SGX incurs high performance penalties for

any workload with the working set larger than the enclave page cache size and SEV

incurs performance overheads on irregular workloads because of its dependence on a

virtual machine.

• R2 Requirement 2: HPC-focused TEE should not require application modifications or

linking against special libraries. HPC applications often rely on third party libraries,

and it can be hard for such applications to be modified or re-written to port them

to a different secure execution programming model. The porting effort can involve

linking the applications against specific C libraries or sometimes big modifications in the

applications. SGX requires application to be partitioned and SEV requires application

to be run inside a virtual machine, both of these requirements do not fit well with the

HPC compute model.

• R3 Requirement 3: HPC-focused TEE should try to not include OS in the TCB. HPC

applications rely on limited types of I/O. For example, the main type of I/O is network

I/O which is mostly used to communicate with other nodes and mostly the disk accesses

get reduced to network I/O as file systems are mostly maintained on remote nodes in an

HPC center. Additionally, for performance reasons, the OS is mostly bypassed and I/O

is handled in user-space libraries or run-times. For example, HPC centers rely on one-

sided communication protocols like RDMA [126] on high speed network interconnects

like InfiniBand (which supports 10s of GB/s of bandwidth). RDMA (which bypass

OS mostly) provides performance benefits, but raises new security concerns because of

its one-sided communication nature. At the same time the bypassing of OS provides

an opportunity to exclude OS from the trusted computing base (or have less trust in

the OS). SGX does fulfill this requirement to some extent, but has been shown to be

successfully attacked via an untrusted OS. AMD SEV includes the guest OS in its

TCB.

• R4 Requirement 4: HPC-focused TEEs should be capable of expanding across compute

nodes. HPC applications mostly scale across multiple compute nodes and rely on

message passing run-times like MPI for communication across these nodes. This implies

56

that an HPC-focused TEE should expand its threat model to multiple nodes, and should

be capable of building enclaves which will scale across nodes. Moreover, the support

for some of the other TEE features like secure boot, authenticated launch of enclave,

and attestation should be expanded across multiple nodes. None of the commercial

TEEs support this.

• R5 Requirement 5: HPC-focused TEEs should enable enclaves which can scale to

processing elements other than the general purpose CPUs. HPC systems have also

started to integrate accelerators (like GPUs and FPGAs) to offload certain applications

or parts of applications to those processing elements. This necessitates the inclusion

of these processing elements (and I/O in general) into trusted computing base as well.

There are some academic TEEs for some specific processing elements, but they would

not work for any type of accelerator.

Table V provides a taxonomy of multiple features that existing TEEs provide and the

missing features that ideally an HPC-centric TEE would have. Some of the shown features

are not HPC specific, but are presented for the purpose of completeness. The row showing

the ideal HPC-centric TEE features also point out the particular requirements (mentioned

above) that those features fulfill. Chapter 5 provides details of one of our proposed techniques

to achieve these missing features.

57

Table V. Taxonomy of different TEE features. HPC centric (row in green shade) refers to what is best for HPC.
Brown shaded columns are of special importance from HPC perspective.

TEE Software Attacks1 Hardware Attacks2 Level3 TCB
I/O Han-
dling

No Changes Needed
HPC
Slowdown4

From

apps.

From

OS/

hyper-

visor

From

IO8
On IO8

From

IO8

Physical

Attacks
HW SW

SGX [4] 3 3 3 7 7 3 App.
App.,

CPU

outside

enclave, in

clear

7 7 large5

SEV [24] 3 3 3 7 7 3 VM

guest OS,

App.,

CPU

using

bounce

buffers, in

clear

3 3 minimal6

TrustZone [23] 3 3 3 7 7 7
system

partition

trusted

OS, CPU

I/O part

of TCB
7 7 N/A

AWS-Nitro
[47]

3 7 7 7 7 VM
VM, hy-

pervisor
VM socket 3 7 minimal

KeyStone [127] 3 3 3 7 7 3 App.
RT, SM,

CPU
in clear 3 7 unclear7

HPC centric 3 3 R3 3 R5 3 R4 3 R5 3 App. R1
App.,CPU

R3
secure 3 3 R2 minimal R1

DESC9 3 3 3 3 3 3 App. App.,CPU secure 3 3 small
1Software attacks have software and 2hardware attacks have hardware as the attack surface. 3Level is the granularity/level at which protection is provided.

4No TEE supports multi-node trusted execution and use of software to create secure tunnel between TEEs on multiple nodes cause very high slowdown
5specially for multi-threaded and large memory Apps. 6with careful memory allocation. 7no support for multi-threaded enclave and has large slowdown for IO

Other Notes: These TEEs generally do not consider side channels. Threat of side channels depend on the data sensitivity and leakage rate.

Only SGX provides strong protection against integrity attacks. SEV-SNP provides some guarantees against integrity attacks. 8I/O also includes GPUs, accelerators & FPGAs
9DESC is discussed in Chapter 5. 10DM refers to disaggregated memory manager

58

Chapter 5

DESC – Data Enclaves for Scientific
Computing

5.1 Introduction
Our goal is to enable secure scientific computing by protecting the data of scientific applica-

tions from other software (including the operating system) running on a computing system.

We propose a new protection mechanism that allows the secure execution of unmodified

applications while minimizing the trusted computing base (TCB) size. Our protection mech-

anism, DESC (Data1 Enclaves for Scientific Computing), is data-centric and protects an

application’s sensitive data at all times. Our approach contrasts with other protection ap-

proaches that try to create a new execution environment for the sensitive applications. DESC

separates the resource management from protection by delegating these two functions to two

different entities. The operating system (OS) manages the resources, and a higher privileged

software (Enclave Manager) is responsible for protecting the sensitive application. Relying

on the OS for resource management allows secure applications to utilize traditional kernel

optimizations and management techniques.

DESC guarantees the protection of a sensitive application’s memory at all times, even

when relying on an untrusted OS for resource management. To implement DESC, we ad-

dressed three main challenges. First, DESC needs to ensure security during the execution

mode switch between the OS and the sensitive application. Second, whenever the sensitive
1Data here refers to both data and instructions of a program in memory.

59

application explicitly shares data with the OS (such as during system call execution), DESC

should ensure that only the shared data is exposed to the OS. Finally, DESC needs to ac-

count for OS-based resource management. In this thesis, we describe the mechanisms and

techniques we have deployed to enable DESC in the context of these challenges.

This thesis focuses on the application of DESC to high performance computing (HPC)

systems used for scientific research. We specifically focus on HPC in which the data and

computation have elevated requirements for confidentiality or integrity — for example when

the sensitive data provided by a third party is being computed upon, or when data is being

used for a computation that automatically controls a closed-loop experimental workflow (such

as a self-driving lab [128]), respectively.

HPC systems prioritize performance. Users expect their applications to run “bare metal”

on the host OS, and not in a virtual machine that can result in significant performance

overheads [59, 60, 129]. In contrast, cloud systems are virtualized and users expect appli-

cations to carry virtualization overheads. In addition, HPC centers allow a single tenant

to occupy an entire node, in contrast to the multi-tenancy model that is common in cloud

environments. Previous works [117, 130, 131] on enclave design primarily targeting cloud en-

vironments may not be entirely applicable to the HPC use-case. In contrast, the data enclave

design presented in this thesis is intended for use in HPC and other similar environments

where users expect bare-metal performance but also need to run computations on data with

elevated security requirements.

Our design decisions for DESC are based on the specific requirements and characteristics

of HPC applications. First, HPC applications often rely on third-party libraries and it can

be challenging to modify or rewrite them to fit into a different secure execution programming

model. Therefore, a data enclave approach that allows unmodified applications to run securely

is well-suited for HPC.

HPC applications frequently bypass the operating system (OS) for I/O operations to

enhance performance and minimize system noise. For example, HPC centers rely on one-

sided communication protocols like RDMA [126] for performance benefits. DirectIO and

userspace I/O system are other examples of this behavior. Figure 5.1 shows that for a

variety of benchmarks that can be used as a proxy of modern high-performance computing

60

NPB
GAPB

S

LU
LES

H
Kri

pke

Mob
ilit

i
LG

BM

Re
gre

ssi
on CNN

RNN
0

5

10

15

20

25

Nu
m

be
r o

f U
ni

qu
e

Sy
sc

al
ls Set1 Set2 Set3 Set4 Set5 Set6 Set7

Figure 5.1: Unique system calls used by all the evaluated benchmarks. Each set refers to
a collection of system calls that are common across the benchmarks. The total number of
unique system calls used by the evaluated workloads is 6% of the total available Linux system
calls for RISC-V.

workloads, the number of unique system calls executed by these benchmarks is small, and

these workloads mostly use the same system calls. Because of this limited interaction between

the OS and (sensitive) HPC applications, the cost of supervising this interaction via the

Enclave Manager (a trusted and higher privileged software) becomes tractable. Section 5.5

elaborates on the specific details of this supervision.

The main contributions of this work are:

• We implement a prototype data enclave on the RISC-V ISA that separates the man-

agement of the system from the protection of sensitive data.

• We show how the data enclave allows an untrusted OS to maintain page tables (with

the extended PMP), supervise system calls (with the syscall interceptor), and manage

processes and interrupts (through secure mode switching) without compromising the

enclave applications data confidentiality or integrity.

• We show DESC has low overhead (less than 5% geometric mean) even with optional

memory encryption (less than 20% geometric mean).

• We show DESC can correctly execute multithreaded applications in a secure environ-

ment showing low overhead compared to the untrusted execution.

61

5.2 Related Work on Confidential Computing
Confidential computing has similar security goals as DESC. It enables hardware-based pro-

tection of data in use in contrast to the data at rest (storage) or in transit (I/O)) [12], [13].

Trusted execution environments (TEEs) are the primary enablers of confidential computing.

TEEs provide assurance of data integrity, confidentiality, and code integrity, using hardware-

based techniques for increased security guarantees [13]. While TEEs can help create a zone

of trust for sensitive data in HPC centers, the existing TEE technologies do not fully meet

the goals and constraints of HPC.

Current TEEs have different approaches to protect against a malicious or buggy OS con-

trolled by a system administrator with root privileges. Some TEEs use a supervisor runtime

(e.g., Keystone [1], and Sanctum [25]) inside the enclave, while others rely on special con-

tainers with a library OS or special libc wrappers (e.g., Graphene-SGX [80], SGX-LKL [82],

SCONE [132], Occlum [133], Chiron [134]), resulting in a large TCB or significant modifica-

tions to applications. We call these TEEs runtime-based enclaves. Since these TEEs try

to emulate existing system components (like POSIX or devices) inside the contained systems,

they might have to eventually deal with the same problems they started with vis-a-vis a large

trusted compute base [76]. In some runtime-based TEEs, the runtime itself can be a complete

operating system, such as the trusted OS in ARM Trustzone [23] and ARM Realms [39].This

design choice results in a large TCB.

Some TEEs (e.g., AMD’s SEV [3], SNP [135], AWS Nitro Enclaves [47], and H-SVM [136])

also require the use of virtual machines and make the guest OS part of the TCB, further

increasing the TCB size. We call these TEEs VM-based enclaves. The first two rows

of Table 5.1 provide the implications of the previously mentioned TEE technologies for a

computing system. Users must either accept a large TCB, which increases the attack surface

and compromises the system’s security, or make significant modifications to their applications,

which can be time-consuming and resource-intensive.

Multithreaded Execution – An Example of Limitations of Today’s Confiden-
tial Computing Architectures

The existing TEE architectures incur usability challenges for the enclave applications

because of their requirement of using special runtimes or virtual machines. Multithreaded

62

Table 5.1: Comparison of enclave types: DESC requires no application changes, has reduced
TCB, and has smaller performance impact. Evaluation details of DESC are presented in
Section 5.7.

Enclave

types

Application

changes

Resource

manager

Slowdown for

HPC applica-

tions

TCB

Runtime-

based

High 7 LibOS/runtime

7

High 7 [59, 137] Large 7 [138]

VM-based Low 3 Guest OS 3 High 7 [59] Large 7 [3]

DESC

(ours)

Low 3 Host OS 3 Low 3 Small 3

Strongly trusted
compute base

Untrusted

Tr
u
st

Hypervisor

Guest OS

Application

TCB Size

Hypervisor-based

Host OS

Sec. Mon.

(Modified)
Application

Runtime

TCB Size

Runtime-based

Host OS

Sec. Mon.

Application

TCB Size

Runtime-less

Figure 5.2: A comparison of TCB size and location of trust among different enclave styles
(Runtime-based, Hypervisor-based, DESC). DESC achieves the lowest size of the strongly
trusted compute base.

execution is an example of these limitations.

Today, some TEEs have implemented limited thread handling inside the enclave, which

might reduce the system’s efficiency overall. For example, enclaves (like Intel’s SGX [4]

and its variants) might enforce a static number of threads because they might only allow

statically-defined entry points for executing threads. Enclaves like Keystone [1] do not sup-

port multithreaded execution at all at the time of writing this thesis [139]. VM-based enclaves

include a guest OS in the TCB and allow multithreaded applications to run transparently.

Not only do the VM-based enclaves have a very large TCB, but multithreaded execution

in virtual machines can also have significant performance implications. For example, when

63

threads yield during synchronization operations, they can cause costly KVM exits [59,60]. In

summary, today’s enclaves generally do not have good support for multithreaded execution

unless they are willing to have a large TCB.

Our Approach Towards Confidential Computing
In light of the observations illustrated earlier, we take a different approach from existing

TEEs. We do not rely on any runtime or library OS for workloads and do not require virtual

machines. Instead, we adopt a “trust but verify” approach, allowing the OS to manage

the system and sensitive applications like normal applications while ensuring that a higher

privileged software called the Enclave Manager and hardware primitives prevent the OS from

compromising the security of the sensitive application.

Figure 5.2 shows how DESC leads to a smaller TCB compared to the traditional enclave

styles. Runtime-based and hypervisor-based enclaves require a large runtime or a guest OS

inside the TCB. In comparison, DESC does not require any application resource management

software inside the TCB. Based on a conservative calculation, we observe that DESC has a

TCB size that is approximately 50% less lines of code compared to the TCB size of Keystone

(with Eyrie runtime) [1]. Smaller TCB can open doors for formal verification [140] as done

for other TEEs such as Komodo [88].

5.3 Threat Model
Since we are focused on HPC system platforms, our threat model includes three main entities:

• Platform Provider: The HPC system administrator provides compute platform and

other resources like storage, memory, and network. The platform provider has root

access to each node in the HPC system.

• Data Provider: The data provider is an entity that owns sensitive data. The data

provider provides its data (partially or fully) to a user (or a set of users) of HPC

resources. For example, the data provider could provide access to medical data to a

vetted research scientist for some analysis.

• Enclave User: The enclave user runs an application (enclave) on the provided HPC

platform which may access the sensitive data.

64

The data provider and the enclave user do not assume trust in the platform provider.

This may be due to regulations required of the data that is sensitive (e.g., medical data) [8].

We assume that the data provider trusts the enclave user with all or a subset of the data. For

OS-related threats, we adopt a similar threat model to other trusted execution environments

(TEEs) like SGX. In this model, the OS is untrusted and may be malicious. For multithreaded

applications, our threat model assumes that all threads have the same access permissions to

the enclave memory (i.e., the enclave memory is shared among all threads).

Out of scope threats The following threats and attacks are out of scope of this work.

• Side channel attacks: We assume that the user has sole use of the compute node, as is

common in HPC environments. Thus, we do not consider side-channels [78, 141, 142]

within the node in our threat model.

• Physical attacks: We assume the physical security of the devices is secured by another

means (e.g., cameras). Thus, cold boot attacks [143,144] and physical tampering [145]

are out of the scope of our threat model.

• Denial of service: Our threat model does not include the DOS attacks by the untrusted

OS, for example not scheduling the trusted application to execute, or using other means

to stop the progress of a trusted application. Such attacks are easily detectable and at

worst, halt the forward progress of the program.

• Data Files: We assume that files are encrypted and protected with integrity measures

such as hashing (as provided by the data provider) while they are in transit or at rest

in storage, and that users will verify the contents’ integrity before use.

5.4 DESC Based Computing Systems
5.4.1 Background on today’s computing systems
Figure 5.3 depicts a RISC-V computing system with hardware and software components

shown. The OS has access to all physical memory, but OpenSBI (library to implement

firmware/bootloader) can limit the OS’s access to certain regions. However, given that we

do not trust the OS, without relying on a higher privileged software/hardware, we cannot

ensure that an application can protect its state from the OS.

65

 App App

Open SBI

Operating System

Software
Core Core

MMU MMU

PMP PMP

Physical Memory

Hardware
U Mode

S Mode

M Mode

Figure 5.3: Overview of RISC-V based computing system.

5.4.2 RISC-V Isolation Mechanisms
RISC-V Privileged Modes: RISC-V provides three privilege levels to maintain execution

mode isolation. The least privileged mode of execution is user-mode (U-mode), where nor-

mal user applications operate. The next level is supervisor-mode (S-mode), at which the OS

operates. The most privileged mode is machine-mode (M-mode) at which software like the

bootloader operates (as shown in Figure 5.3). Importantly, M-mode software cannot be mod-

ified by supervisor-mode software (e.g., by the root user or the OS) through the mechanism

describe next.

RISC-V PMP (Physical Memory Protection): RISC-V’s PMP feature controls

access of user and supervisor mode to physical memory regions. The allowed access (r-w-x)

permissions and the memory region can be configured using a set of PMP address (pmpaddr)

and configuration registers (pmpcfg). These registers together constitute a PMP entry and

can only be modified by the M-mode software (OpenSBI in Figure 5.3). Each entry defines a

contiguous physical segment of memory with the same permissions. PMP entries define an

allow list and every U/S-mode access needs to fall in some PMP range, otherwise an access

fault is raised.

Virtual Memory Management: RISC-V provides different schemes for virtual mem-

ory management namely Sv39 (3-level page tables) and Sv48 (4-level page tables) for 64-bit

systems. Virtual memory is managed by the S-mode software (e.g., the OS), not the M-mode

software. When executing in M-mode, RISC-V always assumes the identity virtual-physical

memory translation.

5.4.3 Security Guarantee of DESC
DESC provides the following security guarantee:

66

Enclave data (residing in memory or architectural registers) should be protected at all

times (made inaccessible to other entities including the host OS).

DESC relies on RISC-V’s hardware-based memory protection mechanism (PMP) to en-

force this security invariant. We can utilize Figure 5.3 to explain the core concept of DESC,

keeping in view that the OS is untrusted. The OS operates on all cores and manages the

allocation of cores and memory sharing. The protection and isolation of memory are en-

sured by the Enclave Manager (extension of OpenSBI), a software running in M-mode, which

operates on all cores. During a context switch, the OS manages the memory management

unit (MMU), while the Enclave Manager updates the PMP entries to ensure protection on

each core. Specifically, when an enclave application is active on a core, Enclave Manager

configures the PMP registers to permit access solely to the memory addresses belonging to

that application’s data. Conversely, when the application is not running on a core, DESC

configures the PMP registers to restrict access to those addresses. This prevents any other

process or device from reading or modifying the application’s data while it is inactive or

suspended.

However, there are three specific cases that demand particular attention since we cannot

trust the OS, but enclave applications still depend on it for resource management.

[C1] Execution Mode Switch: Enclave protection mechanisms must ensure that the

enclave application state is not exposed when the core undergoes a mode switch from

the application (U-mode) to the kernel (S-mode) or vice versa. The execution mode

switch can occur due to either synchronous or asynchronous exceptions.

[C2] Data Sharing: When an application chooses to share data with the OS, such as

during a system call, only the data explicitly marked as shared (e.g., as specified by

the Linux kernel standard for system calls) should be exposed.

[C3] OS-based Resource Management: Since we rely on the untrusted OS for resource

management, we must ensure that this resource management does not jeopardize the

integrity or confidentiality of the application’s data. For instance, we must ensure that

the OS cannot modify the page mapping for the enclave application in a manner that

67

can compromise the confidentiality or integrity of the enclave application’s sensitive

data.

Prior research works [146–149] have already demonstrated the possible threats to an

application’s security because of an untrusted OS especially in the absence of any special

care for the above three cases. In the following section, we outline the components of DESC

and how they aid in ensuring security in these three special cases while implementing the

aforementioned security invariant.

5.4.4 Design Principles for DESC
To fulfill the security guarantees mandated by DESC, we have established the following key

design principles:

[P1] Preserve the security of enclave data, whether in memory or registers, at all times.

[P2] Ensure the protection of enclave state during execution mode switches.

[P3] Implement a data sharing model with the OS that exclusively exposes data ex-

plicitly marked as shared.

[P4] Proactively prevent unauthorized alterations to page mappings by the host OS.

In conjunction with these security principles, DESC adheres to the following design prin-

ciples:

[P5] Enable the secure execution of unmodified applications.

[P6] Leverage the host OS for resource management to optimize efficiency.

These principles serve as the foundation for the design and operation of DESC, guaran-

teeing the system’s security, integrity, and usability.

5.5 Design of Data Enclaves for Scientific Computing
(DESC)

DESC separates protection from resource management by delegating these two functions

to two different entities: protection is implemented by the enclave manager software and

68

Normal App Enlcave App

S
ys

ca
lls

 /
E
xc

ep
ti
on

s

Enclave Manager*

Caches/On-chip memory

Sensitive dataMemory

Operating System Driver*

Core

MMU

Core

MMU

Core

MMU

Core

MMU

ePMP* ePMP* ePMP* ePMP*

Root of
trust

Mem. Controller
Encryption*

H
ar

d
w

ar
e

Figure 5.4: High-level overview of Data Enclave for Scientific Computing. Red is untrusted,
orange is strongly trusted, green is sensitive. Stars (*) show the parts of the system we
have added or extended. We discuss the driver in Section 5.5.1.2, the Enclave Manager in
Section 5.5.1.1, the ePMP in Section 5.5.4.1, and encryption engine in Section 5.5.1.3.

hardware extensions, and resource management (e.g., tasks, memory, and I/O management)

is handled by the OS such that the protection guarantees are not compromised. By leveraging

an OS for resource management, we can take advantage of various built-in features, including

page tables, preemption, and more, at no extra cost.

5.5.1 High-Level Overview
Figure 5.4 provides a high-level overview of our design of a data enclave. Green colored

entities indicate that they are sensitive, red entities are not-trusted, and orange entities are

trusted. Starred components (*) indicate extended software/hardware components required

to implement DESC in a RISC-V based computing system.

DESC is made up of three main components:

• The Enclave Manager, an M-mode software, serves as the central component of DESC,

responsible for managing and interacting with other components (e.g., the OS driver,

memory protection hardware), tracking the state of enclave applications, and ensuring

the system’s security guarantees.

• Enclave driver which sets up the enclave and extends the OS so that it can support

executing DESC applications.

69

• Hardware-based memory protection to enforce data confidentiality and integrity guar-

antees on ranges of physical addresses. We extend RISC-V’s PMP registers (referred

as ePMP in this thesis) for this enforcement.

Below, we provide a high-level overview of the above components, and then present details

on how these components ensure enclave application data protection.

5.5.1.1 Enclave Manager

DESC takes inspiration from RISC-V based open-source TEEs, Keystone [1] and Sanc-

tum [25], and uses a thin layer of trusted software (similar to reference monitor in kernel

design) which runs at the highest privilege level (M-mode in RISC-V). We call this soft-

ware Enclave Manager. The Enclave Manager cannot be accessed by a root-user (S-mode

software) and is attested to ensure its integrity (e.g., during secure boot).

The Enclave Manager is responsible for three main tasks: 1) execution mode switch

interception, 2) syscall interception, and 3) ePMP management. ePMP management allows

the Enclave Manager to decide when a core should be allowed or disallowed access to an

enclave application’s memory.

1) Execution mode switch interception: In DESC all context mode switches are intercepted

by the Enclave Manager. This interception allows the Enclave Manager to ensure that the

enclave execution state would not get exposed to the OS. Similarly, the context switch to the

enclave takes place via the Enclave Manager ensuring that correct execution state is restored.

The secure execution mode switch triggers on both synchronous or asynchronous execution

context switches.

2) Syscall interception: The Syscall Interceptor is a shim layer which intercepts system

calls of sensitive applications and determines what data (or part of memory) an application

intends to share with the OS. The Enclave Manager in turn exposes those parts of memory

to the OS via reconfiguration of ePMP entries.

3) ePMP management: Enclave Manager is also responsible for configuring the ePMP

registers to allow or disallow access to a protected memory region depending on if the ex-

ecuting context on the core belongs to an enclave application or some other application or

the OS.

70

5.5.1.2 Enclave Manager Driver

To enable the proper execution of an enclave application, DESC requires minimal modifica-

tions in the underlying operating system (OS). These changes enable the Enclave Manager to

safeguard the security properties of DESC, particularly in specific scenarios denoted as C1 –

C3 previously. However, it is important to note that the OS itself remains outside the TCB.

In the event of a compromise or bypass of our OS modifications, the potential consequence is

termination of the enclave application, without compromising the overall system’s security.

We made the following modifications in the OS through the use of a driver in our data

enclave implementation:

• An OS driver to enable interaction with the Enclave Manager. This driver is responsible

for requesting the Enclave Manager to create, run, or destroy an enclave via an SBI

(supervisor binary interface) call.

• The idea of a secure process, to distinguish an enclave task from other tasks during

task management.

• OS memory allocator modifications to allow physical memory allocation from a secure

memory region for an enclave.

• Enabling control flow transfer to the Enclave Manager on returning from a system

call execution so that the Enclave Manager can perform any sanity checks if needed.

Moreover, the Enclave Manager is responsible for reconfiguring the memory protection

unit to allow an enclave to execute.

Programming/Usage Model: We do not require any modifications in the sensitive appli-

cations. However, we use a runner application to launch an enclave. This runner application

is responsible for interacting with the OS driver using an ABI (application binary interface)

call which in turn interacts with the Enclave Manager using an SBI (supervisor binary in-

terface) call to create and initialize the metadata to run an enclave. Similarly, this runner

application will interact with the Enclave Manager Driver to destroy the enclave metadata

once the enclave application has finished execution.

71

In our programming model, we assume that the entirety of the enclave application and

the data it manipulates are sensitive. However, we can expand DESC to support the anno-

tation of memory allocations as either sensitive or non-sensitive since we monitor all memory

allocation system calls. By only protecting a subset of the application’s memory, we may be

able to reduce the overhead of DESC, although we have not evaluated this idea in this thesis.

5.5.1.3 Implementing Memory Protection via ePMP

Extended PMP (ePMP) is a per-core memory protection unit responsible for physical memory

access controls. The extension to RISC-V’s PMP registers ensures that the OS cannot break

the address mapping integrity while managing application’s page tables. The Enclave Man-

ager is responsible for configuring the ePMP entries on every execution mode switch. The

ePMP hardware primitive maintains access control at the granularity of arbitrary memory

ranges. Range-based memory protection mechanisms (e.g., Mondrian [150] and its variants

like PMP) fit well with HPC-style applications which generally require the same access per-

missions for large chunks of data. Moreover, scientific applications have fewer but larger

memory allocations compared to the other types of workloads as observed by Ji et al. [151].

Therefore, tracking access permissions for each memory allocation separately becomes man-

ageable for HPC applications. Though our implementation of DESC builds on RISC-V’s

PMP, DESC will work with any protection mechanism which provides hardware-enforced

range-based access control.

Challenge of Using ePMP – Contiguous Physical Memory Regions: The memory region

protected by a single ePMP entry must be physically contiguous. Instead of using the default

Linux memory allocator where the corresponding physical memory may not be contiguous,

we rely on the contiguous memory allocator (CMA) [152] to reserve a contiguous chunk of

physical memory. This CMA region acts as a memory pool to handle all physical page requests

for the enclave. We can use any implementation that gives contiguous memory allocations

in both virtual and physical space (e.g., those found in prior works [129,153,154]), and chose

to use the mainline CMA implementation for ease of implementation.

Figure 5.5 provides an overview of how physical memory is allocated for enclave appli-

cations given our modifications in the Linux kernel. Enclave applications rely on demand

allocation like normal applications, where physical pages are allocated only when virtual

72

Enclave App

Linux process and VM system*

Linux physical
memory allocator*

CMA Region

. . . VMANVMA0 Virtual memoryVMA1

Physical memory

Single ePMP entry to protect this

Figure 5.5: Modified Linux physical memory allocation. Starred entities are modified parts
of the Linux kernel and interact with other kernel and data enclave components.

pages are accessed. We modify the Linux process and virtual memory system to track the

status of enclave applications’ VMAs, which are contiguous chunks of virtual memory that

the kernel uses for different memory mappings (e.g., the code segment, stack, etc.) and

tracking access permissions. The rationale for tracking memory allocations at the VMA level

is discussed in Section 5.5.4. Each VMA is mapped to a contiguous physical region within

the larger CMA region, and protected by ePMP entries.

Memory Encryption to Prevent Physical Attacks: Figure 5.4 shows an optional memory

encryption engine in the memory controller as encrypting memory is sometimes required for

compliance reasons. Our threat model does not strictly include physical attacks (e.g., cold

boot attacks). However, our system uses an optional Memory Encryption Engine (MEE) in

the memory controller to thwart some basic level of physical attacks. We assume a case where

a per-enclave key will be generated in association with the Enclave Manager. Then the MEE

will encrypt (or decrypt) every memory access leaving (or entering) the CPU package. We

assume direct mode encryption, which can expose the encryption latency to read accesses and

affect overall performance [155, 156]. In our evaluation, we assume a fixed latency of 30ns

for each encryption operation. Section 5.7 of this thesis presents the slowdown of evaluated

workloads with memory encryption.

Next, we discuss the three special cases that were listed in Section 5.4.

5.5.2 Case C1: Execution Mode Switch
DESC achieves secure execution mode switch by intercepting the control flow on execution

mode switches. The Enclave Manager intercepts all the execution mode switches (from

73

E
x
ce

p
ti

o
n

Runner App. OS Driver Enclave Manager Enclave App.

Figure 5.6: Secure control flow during context switch with DESC for a single thread of
execution. Time moves forward vertically downwards. 1 and 1 show the points where the
Enclave Manager intercepts the execution mode switch and disallow and allow access to the
enclave memory on a particular core. Components on the right side of the red boundary are
trusted, while untrusted components are on its left side.

a user mode to supervisor mode and vice versa) whenever an enclave application starts

executing on a core. To enable this interception, we configure the RISC-V interrupt delegation

registers [157] to not delegate interrupt handling to the operating system when the enclave

application starts executing on a particular core.

Figure 5.6 provides a detailed view of how DESC ensures that the enclave application

memory and its state are kept secure during context switches. As indicated by the trust

boundary marked by a vertical red line in Figure 5.6, every time the execution control flow

moves across the trust boundary, the Enclave Manager intercepts.

On interception at the time of exceptions (user to supervisor control flow), the Enclave

Manager turns off the access to enclave memory region by configuring ePMP registers that

belong to the enclave application memory. At this point, Enclave Manager also stores the

enclave application register state and replaces it with a dummy state (unless application

wants to share any of the registers, more on this in Section 5.5.3). The exception is eventually

handled by the OS once the Enclave Manager passes the control to the OS.

When returning control to the enclave application from the operating system, the OS

makes an SBI call to request that the Enclave Manager restore the application’s context.

If the exception was a system call, the SBI call also passes any return values. The Enclave

Manager then swaps the dummy register state with the actual stored state of the enclave

application, excluding any registers that were originally shared. Finally, the Enclave Manager

makes the enclave application memory accessible to the core executing the application. The

74

Enclave Manager also guarantees that the execution state to which we are returning belongs

to the enclave application. For this purpose, Enclave Manager consults the EPC (exception

program counter) register of the stored execution state. If a malicious OS attempts to insert

an incorrect control flow instead of returning to the enclave application, it would not be able

to access the enclave application’s memory. This is because the Enclave Manager would not

have made it available on the core by reconfiguring the ePMP.

5.5.3 Case C2: Data Sharing
Applications interact with the OS via a system call interface. This interaction often includes

an application sharing one or more parts of its state or memory with the OS. The data

sharing is well-defined in time and space by the Linux system call interface. We rely on

Syscall Interceptor and other parts of the Enclave Manager to ensure that only the

intended data is shared with the OS and the rest of the enclave application state is kept

secure.

Syscall Interceptor, intercepts on system calls and triggers relevant portions of the Enclave

Manager to ensure safety of enclave application’s data. The Syscall Interceptor itself is a

simple look-up table like structure that makes the Enclave Manager aware of the system call

being executed.

Unlike runtime-based enclaves (e.g., Keystone [1], Sanctum [25], and Graphene [80]), the

Enclave Manager does not emulate system calls. Instead, it keeps its focus on ensuring

DESC’s security guarantee during system call execution via the mechanisms discussed in

the previous sub section. Focusing on the security semantics of system calls leads to a

smaller TCB compared to the alternative of emulation (reimplementing the entire system call

functionality inside the TCB). To enable the sharing of data required for correct execution

of the enclave application, DESC creates separate ePMP regions for the shared data (if it is

in memory) or does not hide the state of the shared registers, while ensuring that only the

intended data is shared.

Related work, such as Overshadow [158] and TrustShadow [159], typically uses argument

marshaling to protect against potential security vulnerabilities. This involves copying the

arguments from the application’s address space to the OS visible address space. In contrast,

the approach taken by DESC eliminates the need for extra copies.

75

Data Sharing via Syscall Arguments
To enable similar protection mechanisms for similar system calls, DESC groups them

into classes based on how they specify their arguments. System call arguments directly or

indirectly specify the shared data between the application and the OS.

1) Direct Arguments The first type of system call argument is direct arguments. This

is the simplest case, where the arguments listed in the system call do not have any side

effects, and the Enclave Manager only exposes these arguments, which are typically stored

in the registers.

Examples of system calls that fall under this category include nice and getpid. In these

cases, the arguments passed to the kernel only include basic information necessary for the

system call to execute, such as the process ID for getpid.

2) Indirect Arguments In some cases, system call arguments are pointers to other

structures or memory regions within the application’s address space. For example, during

read system call execution, the application passes a pointer to a buffer and the buffer size

to the OS to write the data read from a file to the application’s buffer. Syscall Interceptor

intercepts the syscall and ensures that the OS will access only the region that the OS is

allowed to access. For this purpose, Enclave Manager creates a separate permission region

for the OS using a new ePMP entry, and once the call is completed, those permissions are

revoked.

5.5.4 Case C3: OS-based Resource Management
The operating system (OS) manages hardware resources such as memory and execution

cores via abstractions, such as virtual memory and processes. Virtual memory provides an

abstraction for the physical memory of a computer, while a process is a unit of work that

the OS schedules for execution on a CPU core. However, since the OS controls the hardware

and the abstractions of the hardware provided to the user, a malicious OS could potentially

exploit this control to access or leak an application’s sensitive data. To prevent such attacks,

DESC relies on Enclave Manager (especially Syscall Interceptor), OS modifications, and

ePMP. Since, applications interact with the OS resource management tasks through system

calls, Enclave Manager tracks the updates to resource management data structures in the

OS. If the OS management deviates from the expected behavior of the application, Enclave

76

Manager detects such discrepancies and prevent the leak of sensitive data contained within

the enclave.

5.5.4.1 Memory Management

DESC ensures confidentiality and integrity guarantee for enclave application’s data in the

context of OS-based memory management with the help of following mechanisms:

1) Tracking Application’s Memory Allocations:
DESC tracks application’s address space changes as a result of system calls like mmap and

brk. This tracking is made possible by the OS changes that communicate any updates to

application’s VMAs to the Enclave Manager via an SBI call. As a result the ePMP entries

responsible for protecting the physical memory of enclave application are updated.

2) Address Mapping Integrity via ePMP:
Since we allow a sensitive application to share the data directly via its address space, we

must ensure that the address space (virtual to physical) mapping is not maliciously modified

(e.g., page mapping vulnerabilities in Xen hypervisor [160]). Thus, we extend PMP registers

to track both the physical and virtual address of each VMA region. These ePMP registers

are inaccessible to the OS and can only be modified by the Enclave Manager ensuring their

integrity.

In DESC, with ePMP registers, on each memory access the address translation produced

by the TLB or the page table walker is checked by the ePMP register to ensure both the

physical address is in the allow list and the virtual address check passes. Thus, it is not

possible for the OS to modify the address translation without being detected. Figure 5.7, 5.8,

and 5.9 provide more details of the ePMP entries and checks needed to validate a memory

access.

Compared to previous works such as InkTag [161], our approach leads to simpler design.

Instead of calculating a hash of the entire page table of a sensitive process every time a

change is made to a page table entry, we effectively have an additional virtual to physical

address translation stored in the ePMP entries that is not accessible to the OS.

5.5.4.2 Process Management

Once an enclave application process is launched, the OS driver labels it as a secure process.

This labeling ensures that the OS can distinguish enclave process from other processes in

77

Figure 5.7: Single ePMP entry. ePMP stores virtual address of a memory range as well in
addition to the physical address.

Figure 5.8: Virtual and physical addresses of a VMA range. Since, a VMA region is given a
contiguous chunk of physical memory via the modified Linux memory allocator, VR and PR
bits of the addresses should match.

Figure 5.9: ePMP based memory access checks to ensure memory protection and address
mapping integrity.

the system, and can keep Enclave Manager updated about the state of the secure process

which is necessary for its correct execution/forward progress. An important aspect of process

management for enclave applications is how DESC handles situations where an application

creates a new thread using the clone system call. Following is a discussion on multithreaded

execution of enclave applications.

Secure Multithreaded Execution: HPC or scientific computing applications are normally

composed of multiple threads, which execute on multiple cores. One of the main benefits of

relying on the OS resource management techniques, is that we can enable complex applica-

tions with much smaller effort compared to other TEEs.

Secure multithreaded execution is a consequence of our design choices, but can have a large

impact as most of the existing TEEs do not have a good support of secure multithreaded

execution. Today, TEEs have limited support for multithreaded execution which might

reduce the system’s efficiency overall.

We leave the thread management job to the OS and ensure that multiple threads of an

78

enclave will be executing on multiple cores. Enclave Manager manages the memory access

permissions on all cores where the enclave threads are executing. DESC ensures when new

threads are created using the clone syscall, they follow the same protocol for enclave memory

and state protection as single threads would do (as explained in the previous subsections).

Detailed workflow of new thread creation is discussed in Section 6.3.

The Enclave manager ensures atomic access to all enclave data structures when a multi-

threaded enclave is executing and also takes care of synchronization of memory permissions

across cores whenever ePMP configuration changes.

Control of synchronization primitives inside the OS leads to different types of attacks [58,

162]. DESC ensure that even when the scheduling and synchronization decisions are kept

with the OS we can keep enclave application secure. futex system call is used by threads

for synchronization access to critical sections. Using the data sharing methodology discussed

earlier, on a futex call, Enclave Manager creates a new ePMP entry to make futex word

readable to the OS. This mitigates any malcious tampering with the futex word.

5.5.4.3 Other Types of Resource Management

Following is a discussion on different types of resource management related system calls which

may not pose a threat to our security guarantee, or are not included in our threat model.

• File Manipulation: File manipulation system calls, such as open, close, seek, and

read have access to the data moving to and from the files used by the application. We

assume the application will encrypt the data before moving it to the files. As future

work, this can also be delegated to the Enclave Manager. However, through our data

sharing mechanism, we ensure that only the relevant part of the enclave application

memory is exposed during the read and write system calls.

• Communication among processes: These system calls (e.g., pipe) also usually rely on

file interface to create communication channels among processes. We rely on similar

assumptions for these system calls as above.

• Information from the OS: These system calls generally do not have input arguments

and rely on OS to provide information from system resources (e.g., time). The only

possible threat with these system calls requires checking the return value. Unless the

79

Runner App Enclave App

Enclave Manager*

Operating System Driver*

Software

11 101

2 27 5

3 5 7 83 5 42 6

4

5

8

Figure 5.10: Software components involved during an enclave creation and execution. x
shows the flow during enclave creation, x shows the flow during enclave execution, and x
shows the flow during new enclave thread creation.

application’s security properties depend on the returned value, a wrong return value

will not expose application’s sensitive data.

• Accessing I/O: I/O access via the file-system interface also assumes that the application

protection mechanisms will be in place for any shared data with the I/O devices. For

device specific communication, ioctl syscall is used to communicate to devices (e.g.,

tty). These calls pass a device file descriptor, device-specific request, and other device

specific arguments (that can be pointers to user-space memory). Device specific argu-

ments make it challenging to enable secure ioctl. Our approach towards protecting

enclave data during ioctl calls is conservative. We create an allow list of the ioctl

requests that the application trusts and only those requests are permitted to proceed.

5.5.5 Out of Scope Components of Enclave
The Enclave Manager is responsible for maintaining the security of the enclave’s memory

and state, both during enclave execution and during transitions between the enclave and

the operating system. In addition to secure interaction between the enclave and the OS, the

Enclave Manager performs basic operations such as initialization and authenticated launch of

the enclave. Established strategies can be utilized for these operations, our focus is primarily

on designing the data enclave, which is independent of these decisions.

5.6 DESC Workflow
Figure 5.10 to 5.12 depict the workflow of data enclaves in various scenarios: 1) enclave

creation, 2) running enclaves, and 3) creation of new execution threads by a running enclave.

80

Caches/On-chip memory

Sensitive dataMemory

Core

MMU

Core

MMU

e*PMP e*PMP

6 9 3 7
4

8

6

Root of
trust

Mem. Controller
Encryption*

Hardware

.

Figure 5.11: Hardware components involved during an enclave creation and execution. x
shows the flow during enclave creation, x shows the flow during enclave execution, and x
shows the flow during new enclave thread creation.

Figure 5.10 represents the software components of data enclaves, while Figure 5.11 illustrates

the computing hardware components. Lastly, Figure 5.12 provides a memory protection view

from each core’s perspective. We discuss the above-mentioned three cases one by one:

5.6.1 Enclave Creation
Runner application requests the data driver to create the enclave 1 , and the driver creates

the contiguous memory region, which will be served as enclave memory 2 . The driver then

forwards the request of enclave creation (which includes the enclave memory information) to

the Enclave Manager 3 . The Enclave Manager initializes the metadata for the enclave and

then configures an ePMP entry for the enclave’s memory region so that the enclave memory

can be made inaccessible to the core on which the Enclave Manager is currently executing

4 (in Figure 5.11). The Enclave Manager then sends IPIs (inter processor interrupts) to

other cores to synchronize them with the same memory permissions 5 . Once the other cores

are interrupted 6 , the Enclave Manager will take control of those cores 7 and configure

the ePMP entries on those cores 8 to have a synchronized memory view across all cores.

At this point, the enclave is created, and the enclave memory (EnM) will be inaccessible

from all cores. The memory view of cores during the enclave creation process is shown in

Figure 5.12, where the EnM is inaccessible on all cores after creation of the enclave as all

cores are executing OS or any other normal application (NA).

81

No enclave . . .
EMM EMM

OS/NAOS/NA

Create enclave . . .
EMM EMM

OS/NAOS/NA

EnM EnM

Run enclave . . .
EMM EMM

EA

EnM EnM

OS/NA

Create enclave thread . . .
EMM EMMEnM EnM

EA EA

8
4

9

7

Core's view of memory
Core 0 Core N

Figure 5.12: Memory accessibility view of processor cores. 1 indicates accessible memory re-
gion and 1 indicates an inaccessible memory region. NA: normal application, EMM: Enclave
Manager memory, EnM: enclave memory, EA: enclave application. For simplicity, multiple
VMAs of enclave application memory are shown as a single region i.e., EnM.

5.6.2 Enclave Running
Running the enclave application requires the runner application to first request the Enclave

Manager (via the OS driver) 1 2 . The Enclave Manager, apart from updating any enclave

metadata to indicate the current status of the enclave, configures the RISC-V interrupt

delegation registers so that the Enclave Manager can intercept the interrupts on the core

where enclave is going to execute 3 . After this configuration, the Enclave Manager sends

the control back to the runner application 4 . Since data enclaves delegate the management

responsibilities to the OS, we need to start the enclave application as a normal Linux process.

Therefore, the runner application uses the exec call to execute the enclave application 4 .

The Enclave Manager 5 will intercept this exec syscall. The Enclave Manager will configure

the ePMP entries 6 to ensure that the enclave memory cannot be accessed once the control

is transferred to the OS 7 . The OS will execute the exec syscall and initialize the process.

Once the OS schedules the secure process (enclave application), the control will be first

intercepted by the Enclave Manager 8 . The Enclave Manager ensures that the ePMP is

reconfigured to allow the core access to enclave memory 9 . Finally, the Enclave Manager

transfers the control to the enclave application 10 .

Third row of Figure 5.12 shows what part of memory is accessible to all cores during the

enclave execution. EnM is accessible only on the core where the enclave is executing (core 0

in the example) and is inaccessible on all other cores which might be executing OS or other

82

Table 5.2: Main feature of the configuration tested on gem5

Feature FU740-like

Core Pipeline 5 stage in-order

Dcache size 32KB

Dcache assoc. 8

L2 cache 2MB

L2 cache assoc. 16

DTLB entries 128

applications.

5.6.3 Creating New Enclave Thread
Once a running enclave wants to create a new thread, the enclave application will execute a

clone syscall 1 . The Enclave Manager will intercept this system call 2 . Enclave manager

will first configure ePMP to disable access to enclave memory 3 and will then give control

to the OS 4 5 . The OS creates the new thread and will (eventually) schedule it to execute

(on Core N in the example shown in Figure 5.11). The control to the new thread of enclave

will take place via enclave manager 6 , which reconfigures the ePMP entries (on Core N

in the example) 7 to enable enclave memory access on the core and the control eventually

goes to the newly created enclave thread. Independently, the main thread (the thread which

created this new thread) will get scheduled by the OS on a different core.

Figure 5.12 shows what parts of memory different cores can access once the new enclave

thread is created (the last row in the figure). The example assumes that the main thread of

the enclave will keep on executing on Core 0 and the new thread will execute on Core N.

5.7 Results and Evaluation
We used NAS Parallel Benchmark suite (NPB) [95] to evaluate DESC that has been tra-

ditionally used to benchmark HPC systems. The NPB benchmark suite contains kernels

and pseudo applications which can be used with different input data sizes. In addition to

the conventional scientific computing kernels/workloads, we also use workloads that repre-

sent contemporary usage in high-performance computing (HPC). We picked a set of graph

workloads, the GAP benchmark suite (GAPBS [96]), with a synthetic graph as an input.

83

(a) NPB (b) GAPBS

Figure 5.13: Impact of change in the system call execution time on the overall execution
time. The motivation behind using syscall inspection for HPC-style workloads is that the
time spent in system calls (even if scaled by a large factor) is a small fraction of the overall
execution time.

bc bfs cc pr sssp tc gmean
0.0

0.5

1.0

Sl
ow

do
wn

Untrusted Trusted Trusted_Enc

(a) GAPBS

bt dc ft is lu mg sp gmean
0.0

0.5

1.0

1.5
Sl

ow
do

wn
Untrusted
Trusted
Trusted_Enc

(b) NPB

Figure 5.14: Comparison of slowdown (does not include enclave creation penalty) for GAPBS
and NPB benchmark suite. Trusted refers to the trusted execution of the benchmarks (using
DESC) and Trusted_Enc refers to the trusted execution with memory encryption (for data
leaving the CPU package) on as well.

lulesh kripke mobiliti lgbm regr. cnn rnn
0.0

0.5

1.0

1.5

Sl
ow

do
wn

Untrusted Trusted Trusted_Encrypted

Figure 5.15: Slowdown for modern HPC and ML workloads. Regression (linear regression),
CNN (convolution neural net.), and RNN (recurrent neural net.) are based on Torch.

84

bc bfs cc pr sssp tc
0

1000

2000

3000

4000

5000
M

IP
S

Unsec_1
Sec_1

Unsec_4
Sec_4

Unsec_8
Sec_8

(a) GAPBS

bt ft lu mg sp gmean
0

2000

4000

6000

8000

M
IP

S

Unsec_1
Sec_1

Unsec_4
Sec_4

Unsec_8
Sec_8

(b) NPB

Figure 5.16: Million (usermode) instructions executed per second of simulation time. This
is the sum of instructions across all cores. Unsec_[cores] refers to unsecure execution and
Sec_[cores] refers to trusted execution with DESC, where [cores] is the number of threads of
the benchmark and processing cores.

We used modern HPC workloads, including Kripke [97] (a particle transport simulation),

LULESH [98] (a hydrodynamics simulation), and Mobiliti [100] (a transportation bench-

mark). Kripke [97] is a highly scalable code which acts as a proxy for 3D Sn (functional

discrete-ordinates) particle transport. Livermore Unstructured Lagrange Explicit Shock Hy-

dro (LULESH) [98] application solves a simple yet “full-featured” hydrodynamics simulation

problem. Mobiliti [100] is a transportation system simulator (based on parallel discrete event

simulation), designed to work on high performance computing systems.

As a proxy for general machine learning training we used a decision tree workload (Light-

GBM) [99] (characterized by irregular memory accesses) which is trained using Microsoft’s

Learning to Rank (MSLR) data set. In addition, we use Torch based machine learning work-

loads training, including linear regression, convolution neural networks, and recurrent neural

networks.

We implemented our Linux kernel changes in Linux kernel v5.7. These changes include

the kernel module to interface with the M-mode Enclave Manager, an updated memory

allocator, and a notion of a secure process in the Linux kernel. We use the security monitor

of Keystone as a baseline to implement our Enclave Manager. This software is compiled as

part of the OpenSBI bootloader.

Evaluation Methodology: For functional evaluation, we successfully ran the selected work-

loads till completion in QEMU [7]. For performance evaluation, we simulated the selected

workloads for a fixed 1 second of simulation time using an HiFive UnMatched Board (RISC-V

FU740) like configuration on gem5 [5,6,163] simulator. The details of the RISC-V FU740 con-

85

figuration are shown in Table 6.1. We used gem5’s MinorCPU to model the in-order pipeline

of FU740. We vary the number of simulated cores from 1 to 8 in gem5. We use user-mode

instructions executed in the fixed simulation time as an indicator of the workload progress

to compare performance across different tested configurations.

The primary motivation behind syscall inspection is that the HPC applications do not

spend much time on syscall execution. Our design of Syscall Interceptor is based on a study

of the system calls which get executed in HPC applications. For this purpose, we collected

traces of system calls and the execution time they take, using strace in Linux on a RISC-V

machine.Figure 5.13 shows the system call execution time in comparison to the execution time

for the rest of the program for NAS Parallel Benchmarks (NPB) and GAPBS (Figure 5.13a

and 5.13b respectively). In the base case, the system call time is almost negligible and is

not visible in the plotted bars.

Figure 5.13a and 5.13b also show the stacked bars with system call execution time scaled

to much larger values. In case of NPB, even if the syscall time is to be increased by 20×, the

overall syscall execution time stays insignificant in comparison to the rest of the execution

time of the program (start to become visible when scaled by a factor of 200×, not shown in

Figure 5.13a). For GAPBS, the behavior is similar except tc, which has a higher number of

system calls primarily because of very aggressive use of print statements.

Figure 5.14 shows the slowdown of trusted execution for GAPBS and NPB workloads

compared to the untrusted baseline. This figure includes three different configurations, 1)

normal/untrusted execution, 2) execution with data enclave, and 3) execution with data

enclave with encryption of data leaving CPU package. Figure 5.14 shows that with DESC,

benchmarks do not show any significant slowdown. With encryption of memory in addition

to execution under DESC, the geometric mean of slowdown is still small. The performance

shown in Figure 5.14 does not include the enclave creation time. However, the fixed penalty

of enclave creation is not significant and can be easily amortized for long-running HPC

workloads. Figure 5.15 show slowdown of trusted/secure execution of other modern HPC

workloads and training of some machine learning models. As shown in the figure, the maxi-

mum slowdown is less than 20% for these workloads. lgbm shows performance improvement

when run only in Trusted mode (with DESC) due it’s high affinity for contiguously allocated

86

physical memory.

One of our goals is to ensure that secure execution of multithreaded workloads scale

similarly as untrusted execution. Therefore, we conduct performance comparisons between

trusted and untrusted execution while running workloads with varying numbers of threads

(on multiple cores). Figure 5.16 shows the performance of secure/trusted execution for multi-

threaded applications. We present the throughput (cumulative user mode million instructions

executed per second) of GAPBS and NPB benchmarks with different core counts (1, 4, and

8) for unsecure and secure execution. Figure 5.16 shows that the workloads’ performance

improves with increasing the core count (and thread count) similarly for both unsecure and

secure execution of the benchmarks.

5.8 Conclusion
In this chapter, we introduced DESC, a novel design for trusted execution environments

(TEEs). Unlike existing TEEs that require extensive application modifications or include

an entire operating system (OS) in the trusted computing base (TCB), DESC leverages an

untrusted OS for resource management while ensuring data confidentiality and integrity. We

implement DESC on the RISC-V ISA.Our evaluation using gem5 and QEMU shows that

DESC performs well across various scientific computing workloads, with minimal overhead

compared to running outside the enclave.

87

Chapter 6

Simulation and Architectural
Evaluation of TEEs1

Software simulators form the first level of “agile hardware design stack” [164], and are useful to

iterate on high-level architectural tradeoffs and hardware/software co-design before focusing

on the hardware implementation of a model (e.g, RTL). Therefore, it is important to build

simulation models to be able to evaluate the hardware/software co-design ideas proposed

in this document. To this end, we established a baseline simulation model to enable future

architectural research on hardware/software co-design for secure compute environments. We

focused on RISC-V based TEEs, Keystone [1], and a widely-used architectural simulator

gem5 [5]. The RISC-V ecosystem has support to perform functional or RTL level simulation

of RISC-V TEEs using QEMU [7] or FireSim [83]. However, the ecosystem lacks a tool or

simulator to perform high-level architectural and micro-architectural studies of RISC-V TEEs

at a cycle-level for the objective of early design space exploration, and researchers have to rely

on analytical modeling or RTL implementations for their studies involving Keystone [165].

Keystone is proposed as a “customizable” TEE for RISC-V, which makes it an appropriate

choice to use to provide simulation support to enable a baseline on top of which new designs

can be implemented. This work is part of upstream gem5 [5].
1This work has been presented at CARRV 2021 [163]

88

6.1 Keystone2 in gem5
In this work, we extended the privileged ISA support to add RISC-V PMP (physical memory

protection) hardware in gem5 which enables running Keystone’s Security Monitor (SM) on

gem5. Figure 6.1 provides an overview of the PMP implementation in gem5. There are three

components which interact with each other: the ISA subsystem, the MMU unit, and the

PMP unit. Any read of the PMP registers returns the registers’ value, and writing to a PMP

register (eventually) triggers a call to update the PMP rules which are maintained in a PMP

table (set of PMP entries). When a memory access is made and the MMU (TLB or page table

walker) has generated the physical address corresponding to a program (virtual) address, a

call is made to PMP unit to detect if a PMP check should be made or not (depending on the

current mode of execution) [157]. If a check is desired, the PMP table is consulted to find

out if there is an entry match/mismatch for both address and the permissions. If no match

is found a fault is raised, otherwise control returns back to MMU with a successful check.

Keystone’s SM is shipped as a part of both BBL and OpenSBI bootloaders. We have

tested both bootloaders with the SM on gem5. We further set-up all Keystone components

for simulation on gem5 and performed different tests to check the validity of runs. The

components include:

• Bootloader (OpenSBI)

• SM (compiled as a part of OpenSBI)

• Linux kernel (compiled with OpenSBI)

• Keystone driver

• Benchmarks/tests with a test runner application

• Buildroot based disk image

Detailed instructions on how to build these components and use them with gem5 are pro-

vided in https://github.com/darchr/Keystone-experiments. This repository also con-
2More details on Keystone are available in the Appendix section 8

89

https://github.com/darchr/Keystone-experiments

ISA Frontend

pmpUpdateCfg() pmpUpdateAddr()

pmpUpdateRule()

Addr. range and R/W/X

SM's Entry

OS Entry

pmpGetAField()

TLBs

shouldCheckpmp()

Addr. match and
permissions valid?

CreateAddrFault()

return NoFault

PageTable Walker

MISCREG_PMPCFG MISCREG_PMPADDR

MMU

PMP Unit

CSRR/W PMPReg return reg value

check reg type

Physical address

yes
no

yes

no

write

read

Figure 6.1: PMP implementation in gem5

tains scripts to launch gem5 based Keystone experiments using gem5art [166] (a tool to run

gem5 tests in a structured and reproducible way).

6.1.1 Validation
In this section, we validate and evaluate Keystone’s implementation in gem5. We relied on

the following actions for the functional validation of this implementation:

• We performed physical memory access checks using Linux Busybox utility to test func-

tionality of PMP, which passed successfully.

• We successfully ran primary Keystone tests, which, in addition to performing some

basic functionality tests, check if an enclave access control is violated or not.

• Finally, we successfully tested the workloads used by Lee et al. [1] and found similar

performance results.

In addition to the functional validation, we also validated the performance of gem5’s Keystone

implementation. To investigate this, we performed some experiments and collected perfor-

mance numbers for Keystone benchmarks on gem5 and compared them with the performance

numbers published in the Keystone paper [1].

Figure 6.2 shows a comparison of the slowdown experienced from enabling trusted execu-

tion on two different gem5 CPU models, and the slowdown numbers taken from the work of

Lee et al. [1] for rv8 benchmark suite [2]. This figure shows that the Keystone simulations on

90

ae
s

bi
gi
nt

dh
ry
st
on

e

m
in
iz

no
rx

pr
im

es

qs
or
t

sh
a5

12

0

1

2

3 4.3 7.5
Sl
ow

do
w
n in-order-gem5 Lee et al.

Figure 6.2: Comparison of slowdowns (incurred by trusted execution using Keystone) between
gem5 and Lee et al. [1]. This slowdown includes enclave creation and management time as
well.

aes bigint dhrystone miniz norx primes qsort sha512
0

2

4

·104

Si
m
ul
at
io
n

T
im

e
(s
ec
)

single-cycle single-cycle-Keystone in-order in-order-Keystone

Figure 6.3: Time taken by gem5 to simulate rv8 [2] benchmarks on a single cycle (TimingSim-
pleCPU) and an in order (MinorCPU) CPU models of gem5 with and without Keystone.

gem5 exhibit similar performance numbers and trends as in the work of Lee et al. [1]. The

slowdown numbers shown in Figure 6.2 include benchmark execution as well as the enclave

creation, destruction and management time. dhrystone which has the smallest execution

time in normal (untrusted) execution shows the biggest overhead for trusted execution, be-

cause the cost of enclave creation, and management becomes more dominant due to its small

execution time. Similar is the case for sha512 and norx, which have slightly higher execution

time compared to dhrystone, but still relatively less in comparison to other workloads.

Figure 6.3 shows the performance of gem5 itself (i.e., the time taken by gem5 to perform

a simulation). Simulating an in order CPU (called MinorCPU in gem5) takes more time in

comparison to a single cycle CPU (called TimingSimpleCPU in gem5). It should be noted

that the difference in simulation time of a trusted and untrusted execution is because of the

difference in amount of instructions/work that is simulated.

Next, we present a possible use-case3 of the simulation support of Keystone in gem5.
3More use-cases can be seen in the original paper [163].

91

Table 6.1: Main feature of the configurations tested on gem5

Feature default fu540-like large

Dcache size 32KB 32KB 512KB

Dcache assoc. 8 8 8

L2 cache N/A 2MB 16MB

L2 cache assoc. N/A 16 32

DTLB entries 64 128 2048

6.2 Case Study: Microarchitecture Impact on Perfor-
mance of Secure Execution

This use-case discusses how changing the microarchitecture can impact performance of the

trusted execution and how would it relate to the performance of the untrusted execution on

the same platform. A secure computer architect can be interested in this kind of analysis

while working on a new system. Cycle-level simulation is a quick way to perform this kind

of design space exploration.

As an experiment, we picked single cycle (TimingSimpleCPU) and in order (MinorCPU)

CPUs of gem5 and configured their memory and cache subsystems in three different ways

(thus leading to six total configurations). The three memory and cache subsystems refer to def

(default gem5 configuration), fu540 (fu540 like configuration), and large (a configuration with

large structures and low latencies). Table 6.1 provides some details of these configurations.

We executed rv8 benchmarks in untrusted and trusted manner for all the six configura-

tions, thus leading to 12 runs for a single benchmark. Figure 6.4 shows the execution time

for all of these runs for each benchmark. We can observe that the overall execution time

goes down as we move towards more aggressive configurations, however the ratio of trusted

to untrusted execution time for each configuration stays similar. In other words, even on

aggressive configuration, trusted execution incurs similar performance penalty (relative to

untrusted execution) as it does on a simple configuration.

92

Figure 6.4: Microarchitecture impact on performance of secure compute environments. In
the legend entries SC: single cycle, IO: in-order, def: default configuration from Table 6.1,
fu540: fu540-like configuration from Table 6.1, and large: large configuration from Table 6.1.
‘trust-ov’ stands for overhead of trusted execution.

93

Chapter 7

Future Work

In this chapter, we discuss future research directions that can be followed to improve the

state of the art of TEEs for HPC. These directions include ideas for existing commercial

TEEs and also for our proposed secure architecture DESC.

7.1 Improving Existing TEEs
Based on our study of existing trusted execution environments presented in Chapter 4, we

present a few research directions/aveneues that can be followed to make the existing com-

mercial technologies more suitable for HPC.

7.1.1 Software Frameworks
First we discuss some research directions for software frameworks:

Intelligent Job Scheduling: Security requirements of HPC workloads can be diverse.

At the same time, the HPC platforms can be heterogeneous possibly composed of nodes

from multiple vendors e.g., Intel and AMD, thus making both SGX and SEV available in

the same environment. Therefore, we propose the idea of an intelligent job scheduler which

can allocate applications to an appropriate node depending on their sensitivity and the ex-

pected slowdown from the secure environment. The sensitivity of the workload can be fed to

the scheduler from the user and the expected slowdown can be calculated using pre-trained

models. As a proof of concept, we train a second-degree regression model to predict the slow-

down of workloads under SGX, using only the features from normal execution of programs.

94

The slowdown under SEV can be assumed to be negligible if interleaved NUMA allocation

is used as we showed in our performance analysis. For SGX, we can achieve a mean square

error of 2.81× 10−11 (an R2 score of 0.99) for a second-degree regression model. The fea-

tures (normalized to per million instructions) used in the model include: resident_memory,

native_time, syscalls, loads, and mem_accesses in the order of the highest to the lowest

observed correlation (with the slowdown). For SGX, the highest correlation with slowdown

is shown by resident_memory feature which is directly related to EPC faults which appears

to be the primary reason for SGX slowdowns (section 4.4.4).

Automatic Application Partioning: Partitioning of applications into secure and non-

secure parts is a difficult task, especially in HPC settings as HPC workloads often rely on

various third-party libraries. Thus, there is a need for support of automated porting of ap-

plications to secure environments and their partitioning into secure and non-secure parts.

For instance, Lind et al. [167] have already proposed Glamdring which is a framework for

automatic application partitioning into secure and non-secure parts. Automatic application

partitioning not only makes it easier to use secure environments, it can also help in mitigating

the performance slowdowns by keeping the secure memory footprint to the minimum.

Dynamic Migration of Application Segments: Another research direction to explore

is building of tools to shift sensitive functions or parts of the application transparently to

enclaves at runtime. Similarly, the outsourcing of unsecure parts of the application to (un-

trusted) accelerators or general cores to improve performance can be done transparently using

tools (if developed).

KVM Exit Clustering for Mitigating Slowdown: For virtual machine based TEEs,

like AMD SEV, by scanning and decoding upcoming instructions the hypervisor can identify

the ones that will cause a KVM exit. Then a cluster of exiting instructions can be formed

which can be executed all at once, ultimately reducing the overall exit rate and the cycles

spend for saving/restoring the VM’s state leading to improved performance.

95

7.1.2 Research Avenues for Computer Architecture
Following are some research possibilities to explore for hardware enhancements to enable

more optimized trusted execution in HPC settings:

Secure Memory Size: The limited secure memory size (as in SGX in the machines we

tested in Chapter 4) is an issue that can have a severe impact on the performance of trusted

execution of HPC workloads. One of the biggest hurdles in increasing the size of the EPC

(secure memory) in SGX is the cost associated with the metadata that is needed to provide

security guarantees of confidentiality and integrity. SGX maintains an integrity tree, com-

posed of large counters, to keep track of the version of EPC pages to protect against replay

attacks. We believe that there is an opportunity to optimize the design of integrity trees

along with the other metadata to enable the bigger size of secure memory. For example,

recent research by Taassori et al. [92] introduced a variable arity integrity tree (VAULT)

that results in a compact design with low depth. Saileshwar et al. [168] proposed a compact

integrity tree that uses morphable counters rather than fixed-size counters to accommodate

more counters in the same memory area.

Currently in Intel SGX, whenever there is an EPC page fault, it is handled by a fault

handler in the SGX kernel driver. This handling is a very expensive process (also requires

the logical control flow to exit the enclave), which leaves room for some kind of hardware-

based acceleration of this fault handling. An example of research efforts to reduce this cost is

the work of Orenbach et al. [169], Eleos, which uses software-based address translation and

management inside the enclave to eliminate the need of flowing out of the enclave in case of

a page fault. Similarly, there lies an opportunity to explore the dynamic remapping of pages

rather than actually copying them from one memory type to another.

Intelligent Page Prefetching and Eviction: By learning the memory access pattern

of applications, the sensitive pages can be prefetched in the secure memory from non-secure

memory regions even before they are actually accessed, thus reducing the number of access

faults. Currently, before control is transferred to the kernel driver to handle EPC fault, lower

12 bits of CR2 register (holding the faulting virtual address) are cleared because of security

96

concerns. Thus the driver is not able to use those bits to help in predicting memory access

patterns. Moreover, Gjerdrum et al. [170] have shown the page fault handler to be over-eager

and unable to utilize EPC exhaustively. There lies an opportunity to enable kernel driver

to use the application’s memory access patterns to prefetch pages anticipated to be used or

perform smart page eviction. Similarly, the pre-fetching and page eviction can be handled

entirely in the hardware making it part of the TCB.

7.2 Exploration of New Ways to Build TEEs
Based on our analysis and study of TEEs presented in Chapter 3, we enlist following directions

to pursue to explore new ways of building TEEs that will be suitable for HPC as well.

7.2.1 New Hardware Primitives
Most of today’s commonly used operating systems (Linux, Windows, macOS) use a mono-

lithic kernel, which provides a fixed abstraction to the user-mode applications and depends

on a generic or a homogeneous view of applications while managing their resources. How-

ever, many other kernel designs have been proposed in the past. For example, exokernel [32]

was based on the idea of application-level resource management. The applications again are

pursuing this direction by trying to relinquish the monolithic nature of the kernel. Today,

the applications are mainly doing this for performance reasons.

For example, in modern computing systems, HPC applications often bypass the OS and

handle I/O in user-space libraries or run-times via a specialized HPC networking stack (e.g.,

RDMA [126] via InfiniBand [171]). The noteworthy point is that these libraries tend to make

certain assumptions about HPC. For example, modern MPI libraries assume that they can

fully utilize CPU cores to spin on network hardware resources to check for progress. Less

dependence/reliance on a (primarily untrusted) OS fits well with the confidential computing

model. Moving the resource management code to user space also means a larger software

TCB for the enclave.

A larger TCB also typically means more exploitable bugs. On the other hand, hardware is

more trustworthy due to two primary properties: immutability and privilege [172]. Therefore,

we emphasize focusing on increasing the hardware TCB components. We believe that there

is an opportunity for computer architects to think of new hardware primitives as the ones

97

we have today do not work well, as discussed in Section 3.5.

7.2.2 Horizontal Privilege Levels
As discussed before, the vertically integrated model of privilege levels does not work for evolv-

ing high-performance computer systems. We emphasize horizontal privilege levels, where

there can be a variable number of vertical layers in each horizontal privilege level (e.g., there

might not be an OS in the privilege hierarchy of an accelerator). Depending on the threat

model, one horizontal layer can have more privilege than the other. An example of a similar

system is ARM TrustZone [23] which divides the system into a secure and a normal world.

However, it does that only for a CPU system and cannot create a secure world for accelerator

or other remote computing elements/memory nodes.

7.2.3 Capability Based Enclaves
The idea of capabilities (first proposed a few decades ago [173]) provides ways to enable com-

partments at different abstraction layers of computing systems. Capability based machines

have also existed for a long time now (e.g., M-Machine [174], Rice research computer [175],

CHERI [176]). Capability based architectures inherently do not have to follow a vertically

integrated privilege hierarchy, rather these architectures rely on capabilities of different com-

ponents in the system to perform access control checks. Therefore, using capabilities to

implement enclaves seems a promising idea for (heterogeneous) high-performance computing

systems.

7.3 Future Work on DESC
In this section, we present the possible future extensions to the proposed TEE in this thesis.

7.3.1 D-DESC – Disaggregated Data Enclaves for Scientific Com-
puting

Today’s HPC systems over-provision resources to make sure that certain applications will

have their requirements satisfied. HPC nodes might use less than 25% of their overall mem-

ory at times [177,178]. Future HPC systems are expected to decouple compute and memory

extensively, thus leading to disaggregated architectures, where multiple processing elements

(of different kinds) can potentially access a large pool of memory resources [179]. These dis-

98

aggregated architectures are expected to improve the resource utilization, but can increase

security concerns (due to lack of system level access controls) especially if different process-

ing elements are used by multiple users at the same time. In addition to access control

concerns, another unresolved problem is of expanding enclaves across these disaggregated

architectures. To this end, we propose to expand our baseline TEE design (DESC) to pro-

vide scalable mechanisms which can allow a user to form a secure enclave spanning across

multiple processing elements.

Though the disaggregation of resources could be across all dimensions, in this work we

focus on disaggregated memory systems due to our focus on data enclaves for scientific com-

puting. An example disaggregated memory system is shown in Figure 7.1. Multiple nodes

are connected to a pool of memory resources through a coherent interconnect fabric (e.g.

CXL [35], Gen-Z [180]). These systems are also referred as Fabric Attached Memory (FAM)

systems. These systems often employ a memory broker/manager node to keep track of mem-

ory resources needed by different nodes. There are two fundamental ways of managing FAM

systems: 1) entire memory pool is exposed to the OS on all nodes (this requires modifications

in the OS) or 2) each node provided with a view of flat memory space that belongs to it and a

translation module/unit performs translation of node address to FAM address (transparently

to the node). The second mechanism of translation seems promising from the perspective of

security as it provides a way to perform access control checks (during memory translation

unit), similar to what happens in traditional MMU systems. However, the translation based

management can be costly as two level address translation (similar to two-dimensional page

table walks in virtualized systems) might need as many as 24 memory accesses for a single

translation [181].

Threat Model:

A single node threat model remains the same as it was discussed in Chapter 5. Multiple

nodes do not trust each other. However, the Enclave Manager running on each node can be

considered as trusted by the enclave user and the data provider. Moreover, we assume that the

Enclave Manager will be performing a secure launch after ensuring the integrity of Enclave

Manager on other nodes if the enclave is to be scaled across those nodes. Protocols like CXL

provide link-level protection mechanisms which we can rely on to consider interconnect fabric

99

Figure 7.1: An example of a disaggregated memory system (MC: memory controller).

Figure 7.2: Memory allocations of NPB.

within trust boundary.

Overview of D-DESC (Disaggregated data enclaves for scientific computing):

We note that HPC workloads are characterized by a few and large memory allocations.

For example, Figure 7.2 shows that the HPC applications like NPB, have a limited num-

ber of large allocations. The maximum number of allocations/objects created by ft.C is

around 225. And the average object size is multiple MBs for all the benchmarks. Similar

behavior has been observed by Ji et al. as well [151]. This observation motivates the use

of range based checks and translation mechanism (our proposal is independent of the actual

translation mechanism used). A high level overview of D-DESC is shown in Figure 7.3. A

disaggregated memory protection unit (D-MPU) is added to the interconnect fabric, which

is managed by the Enclave Managers on all nodes. Figure 7.3b provides details of D-MPU.

Each entry in D-MPU is supposed to provide protection to a single object (memory alloca-

100

(a) D-DESC (b) Memory Protection

Figure 7.3: High level overview of Disaggregated Data Enclaves for Scientific Computing
(D-DESC)

tion) of any enclave. ‘O’ refers to the owner of this object (or in other words the node where

the enclave start to execute). Only M-mode software of ‘O’ node is allowed to change the

range entry in D-MPU. An object might be accessible by multiple nodes, when an enclave

has scaled across multiple nodes. To take care of that, each entry in D-MPU provides a

node map ‘N_M’. ‘RWX’ permissions define what kind of permissions a particular object

has (read/write/execute). It should be pointed out that this D-MPU will be in addition to

the node level memory protection checks performed by MPU inside each node. Since, the

‘O’ node of any memory range will be the only entity allowed to update a memory range or

the relevant entry in D-MPU, we can avoid expensive synchronization across nodes during

context switches. Application ID or enclave ID can also be made a part of the D-MPU entry.

This allows to associate a particular memory object with an enclave irrespective of the nodes

that enclave is executing on.

In summary, D-DESC will be relying on two main principles: 1) tracking protection

metadata per object of any enclave, and 2) tracking the object creation and the nodes which

might be able to access an object through Sycall Inspector (which is a part of Enclave Manager

on every node). Using these principles, we can implement the security properties discussed

above.

101

Chapter 8

Conclusion

In summary, this thesis has explored the evolving landscape of high-performance computing

(HPC) in the context of increasingly data-centric demands and security concerns. The tra-

ditional focus of HPC on modeling and simulation has given way to a new paradigm where

large and sensitive datasets are integral to scientific computing.

Our investigation began by evaluating the applicability of commercial hardware-based

trusted execution environments (TEEs) in the context of secure scientific computing within

HPC centers. The comprehensive performance analysis, encompassing diverse HPC bench-

marks, revealed that while these TEEs offer some assurances for data and code confidentiality

and integrity, they are not an appropriate fit for the unique requirements of HPC. This is

primarily due to either unacceptable performance overheads, substantial application modifi-

cations, or incomplete threat models.

To address these limitations, we introduced a novel enclave design, DESC, which permits

secure data processing while relying on a primarily untrusted operating system for resource

management. This innovative approach maintains data confidentiality and integrity without

necessitating extensive application modifications.

Looking ahead, the future of HPC systems is anticipated to feature disaggregated ar-

chitectures, decoupling compute and memory resources extensively. In response, we also

investigated the extension of our baseline TEE design (DESC) to accommodate secure en-

claves spanning multiple processing elements.

In conclusion, this thesis contributed to the field of secure scientific computing in HPC

102

environments. By addressing the challenges of data confidentiality and integrity while mini-

mizing performance overhead and application modifications, our work paves the way for more

robust and efficient solutions.

103

Appendix: Summary of Comparative Analysis of TEEs
Table V. Taxonomy of different TEE features. Each column shows the status of a

particular TEE property and the mechanism to achieve that property is shown in parentheses.
Blank entries indicate that the information on that property was not available.

TEE
Data
Conf.

Data
In-
tegrity

Code
In-
tegrity

Code
Conf.

Auth.
Launch

Attest. Custom. Isolation

Software
Attacks1

Pro-
tected

Hardware
Attacks2

Pro-
tected

TCB Level3 Changes
(HW,SW)

IO
Handl.4

Use
Cases

Autarky [57] 3 3 3 7 7 3 7 7 7
physical
attacks

CPU,
OS
Driver,
LibOS

process (3, 3) clear
desktop
& cloud

AWS Ni-
tro [47]

3(P,
VM)

3(P,
VM)

3(P,
VM)

3(P,
VM)

3(E) 3(E) 7 3(VM)
other
VMs

7

VM,
OS,
Nitro
HV

VM (7, 3) vsock
cloud
VMs

AEGIS [36]
3(PTR,
E)

3(IT) 3(PTR) 3(H) 3(H) 3 3
processes,
OS

physical
attacks

CPU,
OS

processes (3, 3) clear
desktop
& cloud

Bastion [44] 3(MP) 3 3 3 3(H) 7
3(IA,
MP)

processes,
OS

physical
attacks

CPU,
HV,
gOS

VM (3, 3) cloud

CURE [40] 3(IA) 3(IA) 3(IA) 3(IA) 3 3

system
bus ar-
biter
(IA)

processes,
OS

IO at-
tacks,
physical
attacks

config.

process
(user &
kernel
space)

(3, 3)

3(enclave
to pe-
ripheral
bind-
ing)

variable

Elasticlave [41] 3(MP) 3 3 3 3 3(MP)
processes,
OS

physical
attacks

CPU,
SM, RT

process (7, 3) secure variable

ERTOS [182] 3(MP) 3(MP) 3(MP) 3(MP) 7 3(MP)

ERTOS
mod-
ule of
FreeR-
TOS

tasks (7, 3)
embedded
systems

Graviton [37] 3(E, I) 3(MAC) 3(MAC) 3(E) 3 3 7 3(P, IA)
OS, HV,
processes

GPU,
on-
package
mem-
ory

GPU
kernels

(3, 3)
GPU
comput-
ing

HECTORV [46] 3(MP) 3 3 7 7
3(SP,
IA, MP)

processes
other pe-
ripherals
on SoC

HW process (3, 7)
peripheral
binding

het. sys-
tems

104

HETEE [183] 3(E) 3(E) 3(E) 3(E) 3 3 7 3
processes,
OS

hardware
security
con-
troller,
PCIE
fabric

multi-
node
(com-
puting
ele-
ments)

(7, 7)

rack-
scale
comput-
ing

HIX [54] 3(E) 3 3 3 3 7 3
OS, pro-
cesses

GPU

CPU-
GPU
applica-
tions

PCIE
root com-
plex &
MMU,
GPU
driver

secure

GPU
(hetero-
geneous
comput-
ing)

Iso-X [184] 3(P) 7 3 7 3
HW
only

process

IceClave [185] 3(E) 3(IT) 3(E) 7 3 processes
physical
attacks

embedded
proces-
sor (in
SSD
con-
troller)

offloaded
applica-
tions

in-
storage
com-
puting
(flash
based
SSDs)

Komodo [88] 3 3 3 7 3
OS, pro-
cesses

physical
attacks

KeyStone [1] 3(MP) 3(MP) 3(H) 3(MP) 3(E) 3 3 3(MP)
OS, pro-
cesses

SM,
CPU,
runtime

process
(U+S
mode)

(7, 3) 7 variable

ARM
Realms [39]

3(P) 7 7

3(cache
access
checks)

process
embedded,
mobile

Sanctum [25] 3 3 3 3
processes,
OS

7 process

Sancus [48] 3 7 3 3
HW
only

embedded

SecureBlue++
[186]

3 3 7 3
HW
only

ShEF [53]
3(E,
MAC)

3(E,
MAC)

3(E,
MAC)

3(E,
MAC)

3(E) 3(E) 3 3
CPU OS,
processes

FPGA,
shell
logic

FPGA
bit-
stream

(7, 3)
cloud
FPGAs

SGX [4] 3 3 3 7 7 3 7 7 7

Small
desktop
Apps.

CPU,
SGX
driver

process (3, 3)
outside
enclave,
in clear

desktop

105

SEV [3] 3(E) 7 7 3 3
3(hashing
VM)

7

VM level
(through
page ta-
ble’s C
bit)

processes,
OS

physical
attacks

gOS,
CPU

VM (7, 7) clear cloud

SEV-
ES [187]

3(E) 7 7 3 3 3 VM level
processes,
OS

physical
attacks

gOS,
CPU

VM (7, 7) cloud

SEV-
SNP [135]

3
3(nested
paging)

3(nested
paging)

3 3 3 7 VM level
processes,
OS

physical
attacks

gOS,
CPU

VM (7, 7) cloud

Penglai [188] 3(MP) 3(MT) 3 3 7
OS, pro-
cesses

CPU process

TDX [52] 3 3 3 3 VM level
HV, OS,
processes

VM
cloud
VMs

TDMem [55]
3(MP,
E)

3(MAC)

hashing
of
FPGA
bit-
stream

3(FPGA
based)

3(MP,
address
trans-
lation
tables)

memory
access
attacks
from the
donor
and
donee

kernel
(donee
only),
FPGA
boards

RDMA
disag-
gregated
systems

needs
FPGA,
3(kernel)

cloud
disag-
gregated
systems

TrustZone [23] 3(P) 7 7 3(P) 7 7

3(cache
access
checks)

non-
secure
world

7

CPU,
secure
OS

process (3, 3) clear
embedded,
mobile

TIMBERV [42] 3(MP) 3(MT) 3 3 3(E) 7

tagged
entry
points,
regions
MPU

processes,
OS

7 CPU process (3, 3) clear
embedded
systems

Note: Conf. : Confidentiality, Auth. : Authenticated, E: Encryption, P: Partitioning, VM: virtual machine, HV : hypervisor, IT: integrity tree, H : hashing, MP : memory protection checks,
IA : id assignment, gOS : guest OS, MAC : message authentication code, SP : secure processor, Custom. : Customizability, RoT : root of trust, MT : Memory Tagging

1Software attacks have software and 2hardware attacks have hardware as the attack surface. 3Level is the granularity/level at which protection is provided.
Other Notes: These TEEs generally do not consider side channels. Threat of side channels depend on the data sensitivity and leakage rate.

SGX provides strong protection against integrity attacks. SEV-SNP provides some gaurantees against inegrity attacks. 4I/O includes GPUs, accelerators and FPGAs as well.

106

Appendix: A Survey of Trusted Execution Environments
This appendix briefly describes some details of some of the representative examples of TEEs

from different classes.

Industrial TEEs
Intel’s Trusted Execution Environments
Intel SGX [4] is one of the earliest industrial TEE solutions. SGX creates usermode enclaves

and assumes an untrusted operating system. The programming model of SGX requires a user

application to be divided into two segments, untrusted and trusted (enclave) which cannot

directly communicate and interact. Only the trusted part is allowed to access confidential

data residing in encrypted form in a memory region called Enclave Page Cache (EPC).

The size of the EPC was intially limited to 128MB, which increased to 256MB in later

Intel machines with SGX support. In case of SGX, the MEE (memory encryption engine)

which sits besides the memory controller on the CPU package is responsible for permission

checks for EPC accesses, provision of data confidentiality by encrypting the data when it

leaves the CPU package to reside EPC and performs integrity tree operations on the data

stored in the EPC. Both parts of an SGX application communicate through an interface of

in/out calls (ecall/ocall). ecall and ocall perform a secure context switch which includes:

enabling/disabling of tracing mechanisms, permission checks for enclave memory, validation

of enclave control structures and backing up/reloading of registers that represent untrusted

execution context. Similarly, enclave code cannot use normal system calls directly, rather the

control needs to be transferred to the non-secure part of the application first using ocall. SGX

requires application changes and/or recompilation. SGX also provides integrity guarantees

through the use of integrity trees consisting of counters to keep track of a particular version

of the page.

Intel has recently moved towards the encryption and virtual machine-based trusted exe-

cution environments like AMD’s SEV with total memory encryption (TME) and multi-key

total memory encryption (MKTME) technologies [124, 125].

107

AMD’s Trusted Execution Environments
AMD SEV [3] provides transparent encryption of memory used by virtual machines (unique

encryption key associated with each isolated guest). As a result, SEV has a larger trusted

computing base (TCB), compared to SGX, which includes the guest OS, the hypervisor,

and the CPU package. In contrast to SGX, which requires application modifications, SEV

does not require changes in an application’s code. However, the application needs to be run

inside a VM managed by the hypervisor (QEMU). SEV lacks integrity support and does not

provide protection against replay attacks.

Later, AMD introduced SEV-ES [187] that adds encryption of guest register state to

provide additional protection against VM state related attacks, and SEV-SNP [135] which

provides integrity checks. It should be noted that SEV-SNP [135] does not provide integrity

guarantees using Merkle tree like data structures (as SGX does). Therefore, it is more scalable

and can support larger secure memory sizes.

ARM’s Trusted Execution Environments
ARM TrustZone is the first well-known TEE introduced by ARM. TrustZone enables secure

execution environments by partitioning a computer system between two worlds (secure world,

and normal world). The secure world needs to include a trusted operating system as well.

ARM TrustZone finds most of the applications in embedded systems.

Recently, ARM has introduced ARM Confidential compute architecture [189]. Realm

management extension (RME) is the hardware extension to enable ARM’s confidential com-

puting [190], and builds on ARM TrustZone technology. RME relies on high-privileged

software which is responsible for allocating and managing the resources that a ‘realm’ uses.

However, this higher-privileged software cannot access the contents of the realm or affect

its execution flow. RME enabled systems include memory encryption and can potentially

include integrity as well.

Academic TEEs
Keystone
Keystone [1] is a customizable TEE (can target variable threat models), which tries to de-

couple isolation mechanism from decision of resource management. The design of Keystone

108

is inspired from the use of reference monitors in kernel design. It relies on RISC-V’s primi-

tives like PMP (physical memory protection) and enables enclaves with both user-level and

supervisor-level code. The security functions are managed by a highest privileged mode

software (called Security Monitor).

Sanctum
Sanctum [25] is another example of academic TEE solutions, which only allows enclaves to

run at user-level in contrast to Keystone [1]. Sanctum does not provide protection against

phsyical attacks, but protects against side channels by enforcing distinct cache sets per

enclave. Sanctum also manages its own page tables, like Keystone.

TEEs for Heterogeneous Systems
Graviton
Graviton [37] is one of the first works to enable isolation of GPU kernel from host OS/hypervisor/and

other software. It does so by making hardware changes in the peripheral components of GPUs

(specifically GPU command processor and PCIe control engine). Graviton performs memory

checks in GPU channels to ensure the memory proection and isolation of multiple regions.

Importantly, Graviton’s threat model assumes the on-package memory to be a part of the

TCB. Graviton requires modifications in the CUDA runtime and GPU driver, and makes it

the responsibility of the runtime to authenticate the GPU.

HETEE
HETEE [38] relies on a centralized controller to manage trusted execution on all computing

units including GPUs and accelerators and is mainly focused on server rack scale protection.

Ir primarily relies on PCIe Express fabric (softwaare defined and flexible topology) to dy-

namically allocate computing resources for secure and non-senitive computing tasks across

multiple servers.

109

References

[1] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone: An open
framework for architecting trusted execution environments,” in Proceedings of the Fif-
teenth European Conference on Computer Systems, 2020, pp. 1–16.

[2] “rv8-bench,” https://github.com/michaeljclark/rv8-bench, 2021, [Online; accessed
5-May-2021]. [Online]. Available: https://github.com/michaeljclark/rv8-bench

[3] “Secure Encrypted Virtualization (SEV),” https://github.com/AMDESE/AMDSEV.

[4] V. Costan and S. Devadas, “Intel SGX Explained,” Cryptology ePrint Archive, 2016,
https://eprint.iacr.org/2016/086.

[5] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger, M. Andreozzi,
A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj et al., “The gem5 simulator:
Version 20.0+,” arXiv preprint arXiv:2007.03152, 2020.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5 Simulator,” ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1–7, May 2011.

[7] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in USENIX Annual
Technical Conference, FREENIX Track. Anaheim, CA, Anaheim, CA, 10-15 April
2005, pp. 41–46.

[8] S. Peisert, “Security in high-performance computing environments,” Communications
of the ACM, vol. 60, no. 9, pp. 72–80, 2017.

[9] E. Dart, L. Rotman, B. Tierney, M. Hester, and J. Zurawski, “The science dmz: A
network design pattern for data-intensive science,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, 2013,
pp. 1–10.

[10] A. Gupta et al., “The Who, What, Why, and How of High Performance Computing in
the Cloud,” in IEEE CloudCom, 2013.

[11] E. Roloff, M. Diener, A. Carissimi, and P. O. Navaux, “High performance computing
in the cloud: Deployment, performance and cost efficiency,” in 4th IEEE International
Conference on Cloud Computing Technology and Science Proceedings. IEEE, 2012,
pp. 371–378.

[12] M. Russinovich, M. Costa, C. Fournet, D. Chisnall, A. Delignat-Lavaud, S. Cleb-
sch, K. Vaswani, and V. Bhatia, “Toward confidential cloud computing: Extending
hardware-enforced cryptographic protection to data while in use,” Queue, vol. 19, no. 1,
pp. 49–76, 2021.

[13] C. C. Consortium, “A Technical Analysis of Confidential Computing v1.1,” https:
//confidentialcomputing.io/white-papers-reports/, 2021.

110

https://github.com/michaeljclark/rv8-bench
https://github.com/michaeljclark/rv8-bench
https://github.com/AMDESE/AMDSEV
https://eprint.iacr.org/2016/086
https://confidentialcomputing.io/white-papers-reports/
https://confidentialcomputing.io/white-papers-reports/

[14] ——, “Confidential Computing Consortium Scope,” 2021, retrieved August
5, 2021 from https://github.com/confidential-computing/governance/blob/master/
scoping.md.

[15] C. Gentry, “A Fully Homomorphic Encryption Scheme,” Ph.D. dissertation, Stanford
University, 2009.

[16] A. C. Yao, “How to generate and exchange secrets (extended abstract),” in 27th Annual
Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October
1986. IEEE Computer Society, 1986, pp. 162–167.

[17] C. C. Consortium, “Confidential Computing: Hardware-Based Trusted Execution
for Applications and Data,” https://confidentialcomputing.io/white-papers-reports/,
2021.

[18] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB: Processing
Queries on an Encrypted Database,” Communications of the ACM, vol. 55, no. 9, pp.
103–111, 2012.

[19] R. Poddar, T. Boelter, and R. A. Popa, “Arx: A Strongly Encrypted Database System,”
IACR Cryptology ePrint Archive, vol. 2016, p. 591, 2016.

[20] B. Fuller, M. Varia, A. Yerukhimovich, E. Shen, A. Hamlin, V. Gadepally, R. Shay,
J. D. Mitchell, and R. K. Cunningham, “SoK: Cryptographically Protected Database
Search,” in Proceedings of the 38th IEEE Symposium on Security and Privacy, San
Jose, CA, 2017.

[21] A. J. Titus, A. Flower, P. Hagerty, P. Gamble, C. Lewis, T. Stavish, K. P.
OConnell, G. Shipley, and S. M. Rogers, “SIG-DB: leveraging homomorphic en-
cryption to Securely Interrogate privately held Genomic DataBases,” arXiv preprint
arXiv:1803.09565, 2018.

[22] C. Dwork, “Differential Privacy,” in Proceedings of the 33rd International Colloquium
on Automata, Languages and Programming, part II (ICALP), ser. Lecture Notes in
Computer Science, vol. 4052, July 2006, pp. 1–12.

[23] T. Alves and D. Felton, “TrustZone: Integrated Hardware and Software Security,”
Information Quarterly, pp. 18–24, 2004.

[24] D. Kaplan, J. Powell, and T. Woller, “AMD MEMORY ENCRYPTION,”
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_
Memory_Encryption_Whitepaper_v7-Public.pdf.

[25] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware extensions for
strong software isolation,” in 25th {USENIX} Security Symposium ({USENIX} Secu-
rity 16), 2016, pp. 857–874.

111

https://github.com/confidential-computing/governance/blob/master/scoping.md
https://github.com/confidential-computing/governance/blob/master/scoping.md
https://confidentialcomputing.io/white-papers-reports/
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

[26] A. Akram, V. Akella, S. Peisert, and J. Lowe-Power, “Sok: Limitations of confidential
computing via tees for high-performance compute systems,” in 2022 IEEE International
Symposium on Secure and Private Execution Environment Design (SEED). IEEE,
2022, pp. 121–132.

[27] S. Peisert, “Trustworthy scientific computing,” Communications of the ACM, vol. 64,
no. 5, pp. 18–21, 2021.

[28] T. A. Linden, “Operating system structures to support security and reliable software,”
ACM Computing Surveys (CSUR), vol. 8, no. 4, pp. 409–445, 1976.

[29] P. J. Denning, “Virtual memory,” ACM Computing Surveys (CSUR), vol. 2, no. 3, pp.
153–189, 1970.

[30] R. M. Davis, “Evolution of computers and computing,” Science, vol. 195, no. 4283, pp.
1096–1102, 1977.

[31] P. B. Hansen, “The evolution of operating systems,” in Classic operating systems: from
batch processing to distributed systems. Springer, 2001, pp. 1–34.

[32] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr, “Exokernel: An operating system
architecture for application-level resource management,” ACM SIGOPS Operating Sys-
tems Review, vol. 29, no. 5, pp. 251–266, 1995.

[33] S. Biggs, D. Lee, and G. Heiser, “The jury is in: Monolithic os design is flawed:
Microkernel-based designs improve security,” in Proceedings of the 9th Asia-Pacific
Workshop on Systems, 2018, pp. 1–7.

[34] N. Nassif, A. O. Munch, C. L. Molnar, G. Pasdast, S. V. Lyer, Z. Yang, O. Men-
doza, M. Huddart, S. Venkataraman, S. Kandula et al., “Sapphire rapids: The next-
generation intel xeon scalable processor,” in 2022 IEEE International Solid-State Cir-
cuits Conference (ISSCC), vol. 65. IEEE, 2022, pp. 44–46.

[35] D. D. Sharma, “Compute express link,” CXL Consortium White Paper.[Online]. Avail-
able: https://docs. wixstatic. com/ugd/0c1418 d9878707bbb7427786b70c3c91d5fbd1.
pdf, 2019.

[36] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas, “Aegis: Architecture
for tamper-evident and tamper-resistant processing,” in ACM International Conference
on Supercomputing 25th Anniversary Volume, 2003, pp. 357–368.

[37] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution environments on
gpus,” in 13th {USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 18), 2018, pp. 681–696.

[38] J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, B. Zhao, Z. Wang, Y. Zhang,
J. Ying, L. Zhang, and D. Meng, “Enabling rack-scale confidential computing using
heterogeneous trusted execution environment,” in 2020 IEEE Symposium on Security
and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer Society, may 2020, pp.

112

991–1006. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/SP40000.
2020.00054

[39] “Realm Management Extension,” https://developer.arm.com/documentation/
den0126/latest.

[40] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R. Sadeghi, and
E. Stapf, “{CURE}: A security architecture with {CUstomizable} and resilient en-
claves,” in 30th USENIX Security Symposium (USENIX Security 21), 2021, pp. 1073–
1090.

[41] J. Z. Yu, S. Shinde, T. E. Carlson, and P. Saxena, “Elasticlave: An efficient memory
model for enclaves,” in 31st USENIX Security Symposium (USENIX Security 22), 2022.

[42] S. Weiser, M. Werner, F. Brasser, M. Malenko, S. Mangard, and A.-R. Sadeghi,
“Timber-v: Tag-isolated memory bringing fine-grained enclaves to risc-v.” in NDSS,
2019.

[43] P. S.-C. Ku, “IOPMP Updates Protection Of IOPMP Andes Technology,” 2021, rISC-V
Summit.

[44] D. Champagne and R. B. Lee, “Scalable architectural support for trusted software,”
in HPCA-16 2010 The Sixteenth International Symposium on High-Performance Com-
puter Architecture. IEEE, 2010, pp. 1–12.

[45] B. Wheeler, “Sifive secures risc-v,” Microprocessor report, 2019.

[46] P. Nasahl, R. Schilling, M. Werner, and S. Mangard, “Hector-v: A heterogeneous cpu
architecture for a secure risc-v execution environment,” in Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security, 2021, pp. 187–199.

[47] “AWS Nitro Enclaves,” https://aws.amazon.com/ec2/nitro/nitro-enclaves/.

[48] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens, B. Pre-
neel, I. Verbauwhede, and F. Piessens, “Sancus: Low-cost trustworthy extensible net-
worked devices with a zero-software trusted computing base,” in 22nd USENIX Security
Symposium (USENIX Security 13), 2013, pp. 479–498.

[49] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koeberl, “Tytan:
Tiny trust anchor for tiny devices,” in DAC, 2015, pp. 1–6.

[50] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite: A security ar-
chitecture for tiny embedded devices,” in Proceedings of the Ninth European Conference
on Computer Systems, 2014, pp. 1–14.

[51] M. Schneider, A. Dhar, I. Puddu, K. Kostiainen, and S. Capkun, “Pie: A platform-wide
tee,” 2021.

113

https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00054
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00054
https://developer.arm.com/documentation/den0126/latest
https://developer.arm.com/documentation/den0126/latest
https://aws.amazon.com/ec2/nitro/nitro-enclaves/

[52] Intel Trust Domain Extensions (Intel TDX). [Online]. Avail-
able: https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-trust-domain-extensions.html

[53] M. Zhao, M. Gao, and C. Kozyrakis, “Shef: shielded enclaves for cloud fpgas,” in
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, 2022, pp. 1070–1085.

[54] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Heterogeneous isolated
execution for commodity gpus,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, 2019, pp. 455–468.

[55] T. Heo, S. Kang, S. Lee, S. Hwang, and J. Huh, “Hardware-assisted trusted memory
disaggregation for secure far memory,” arXiv preprint arXiv:2108.11507, 2021.

[56] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing page faults from
telling your secrets,” in Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, 2016, pp. 317–328.

[57] M. Orenbach, A. Baumann, and M. Silberstein, “Autarky: Closing controlled channels
with self-paging enclaves,” in Proceedings of the Fifteenth European Conference on
Computer Systems, 2020.

[58] J. R. Sanchez Vicarte, B. Schreiber, R. Paccagnella, and C. W. Fletcher, “Game of
threads: Enabling asynchronous poisoning attacks,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 35–52.

[59] A. Akram, A. Giannakou, V. Akella, J. Lowe-Power, and S. Peisert, “Performance
analysis of scientific computing workloads on general purpose tees,” in Proceedings of
the 35th IEEE International Parallel & Distributed Processing Symposium (IPDPS),
2021.

[60] X. Ding, P. B. Gibbons, and M. A. Kozuch, “A Hidden Cost of Virtualization when
Scaling Multicore Applications,” in 5th USENIX Workshop on Hot Topics in Cloud
Computing, 2013.

[61] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural support for address transla-
tion on gpus: Designing memory management units for cpu/gpus with unified address
spaces,” ACM SIGARCH Computer Architecture News, vol. 42, no. 1, pp. 743–758,
2014.

[62] J. C. Mogul, A. Baumann, T. Roscoe, and L. Soares, “Mind the gap: Reconnecting
architecture and os research.” in HotOS, 2011.

[63] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida, “Crosstalk: Speculative
data leaks across cores are real,” in 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 2021, pp. 1852–1867.

114

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html

[64] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre: Stealing
intel secrets from sgx enclaves via speculative execution,” in 2019 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2019, pp. 142–157.

[65] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens, M. Silberstein,
T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow: Extracting the keys to the intel
{SGX} kingdom with transient out-of-order execution,” in 27th {USENIX} Security
Symposium ({USENIX} Security 18), 2018, pp. 991–1008.

[66] “RISC-V Instruction Set Manual,” 2022, https://github.com/riscv/riscv-isa-manual.

[67] AMD SEV. [Online]. Available: https://docs.openstack.org/nova/latest/admin/sev.
html

[68] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Sanctuary: Arming
trustzone with user-space enclaves.” in NDSS, 2019.

[69] H. Li, W. Huang, M. Ren, H. Lu, Z. Ning, H. Cui, and F. Zhang, “A novel memory
management for risc-v enclaves,” 2021.

[70] L. Wilke et al., “SEVurity: No Security Without Integrity - Breaking Integrity-Free
Memory Encryption with Minimal Assumptions,” in IEEE S & P, may 2020, pp. 1431–
1444.

[71] Z.-H. Du et al., “Secure Encrypted Virtualization is Unsecure,” arXiv preprint
arXiv:1712.05090, 2017.

[72] M. Li, Y. Zhang, Z. Lin, and Y. Solihin, “Exploiting Unprotected I/O Operations
in AMD’s Secure Encrypted Virtualization,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 1257–1272.

[73] M. Orenbach and M. Silberstein, “Enclaves as accelerators: learning lessons from gpu
computing for designing efficient runtimes for enclaves.”

[74] M. Silberstein, B. Ford, I. Keidar, and E. Witchel, “Gpufs: Integrating a file system
with gpus,” in ASPLOS, 2013.

[75] S. Shahar, S. Bergman, and M. Silberstein, “Activepointers: a case for software address
translation on gpus,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp.
596–608, 2016.

[76] B. Laurie, “How To Ruin A Perfectly Good Container,” https://medium.com/
@benlaurie_18378/how-to-ruin-a-perfectly-good-container-d33250fca595, 2029.

[77] L. E. Olson, J. Power, M. D. Hill, and D. A. Wood, “Border control: Sandboxing
accelerators,” in 2015 48th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 2015, pp. 470–481.

115

https://github.com/riscv/riscv-isa-manual
https://docs.openstack.org/nova/latest/admin/sev.html
https://docs.openstack.org/nova/latest/admin/sev.html
https://medium.com/@benlaurie_18378/how-to-ruin-a-perfectly-good-container-d33250fca595
https://medium.com/@benlaurie_18378/how-to-ruin-a-perfectly-good-container-d33250fca595

[78] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang, and
C. A. Gunter, “Leaky cauldron on the dark land: Understanding memory side-channel
hazards in sgx,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017, pp. 2421–2434.

[79] D. Lee, D. Jung, I. T. Fang, C.-C. Tsai, and R. A. Popa, “An {Off-Chip} attack
on hardware enclaves via the memory bus,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020.

[80] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A Practical Library OS for
Unmodified Applications on SGX,” in 2017 USENIX Annual Technical Conference
(USENIX ATC). usenix.org, 2017.

[81] S. Arnautov et al., “SCONE: Secure Linux Containers with Intel SGX,” in USENIX
OSDI, 2016, pp. 689–703.

[82] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov, and P. Piet-
zuch, “Sgx-lkl: Securing the host os interface for trusted execution,” arXiv preprint
arXiv:1908.11143, 2019.

[83] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee, N. Pemberton,
E. Amaro, C. Schmidt, A. Chopra et al., “Firesim: Fpga-accelerated cycle-exact scale-
out system simulation in the public cloud,” in 2018 ACM/IEEE 45th Annual Interna-
tional Symposium on Computer Architecture (ISCA). IEEE, 2018, pp. 29–42.

[84] A. Akram, V. Akella, S. Peisert, and J. Lowe-Power, “Enabling design space exploration
for risc-v secure compute environments,” 2021.

[85] K. Suzaki, K. Nakajima, T. Oi, and A. Tsukamoto, “Ts-perf: General performance
measurement of trusted execution environment and rich execution environment on intel
sgx, arm trustzone, and risc-v keystone,” IEEE Access, vol. 9, pp. 133 520–133 530,
2021.

[86] N. Weichbrodt, P.-L. Aublin, and R. Kapitza, “sgx-perf: A performance analysis tool
for intel sgx enclaves,” in Proceedings of the 19th International Middleware Conference,
2018, pp. 201–213.

[87] M. Bailleu, D. Dragoti, P. Bhatotia, and C. Fetzer, “Tee-perf: A profiler for trusted
execution environments,” in 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2019, pp. 414–421.

[88] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Komodo: Using verifica-
tion to disentangle secure-enclave hardware from software,” in Proceedings of the 26th
Symposium on Operating Systems Principles, 2017, pp. 287–305.

[89] K. Cheang, C. Rasmussen, D. Lee, D. W. Kohlbrenner, K. Asanovic, and S. A. Seshia,
“Verifying risc-v physical memory protection,” in SECRISC-V, 2020.

116

[90] A. Akram, A. Giannakou, V. Akella, J. Lowe-Power, and S. Peisert, “Performance
analysis of scientific computing workloads on trusted execution environments,” arXiv
preprint arXiv:2010.13216, 2020.

[91] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehensive Survey,”
ACM Computing Surveys, vol. 51, no. 6, Jan. 2019.

[92] M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT: Reducing Paging Over-
heads in SGX with Efficient Integrity Verification Structures,” in Proceedings of the
23rd ACM International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Williamsburg, VA, Mar. 2018, pp. 665–678.

[93] O. Weisse et al., “Regaining Lost Cycles with HotCalls: A Fast Interface for SGX
Secure Enclaves,” in ACM/IEEE ISCA, 2017.

[94] https://developer.amd.com/sev/.

[95] D. H. Bailey et al., “THE NAS PARALLEL BENCHMARKS,” The International
Journal of Supercomputing Applications, vol. 5, no. 3, 1991.

[96] S. Beamer, K. Asanović, and D. Patterson, “The GAP Benchmark Suite,” arXiv
preprint arXiv:1508.03619, 2015.

[97] A. J. Kunen et al., “KRIPKE - A Massively Parallel Transport Mini-App,” LLNL,
Livermore, CA, Tech. Rep., 2015.

[98] “Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory,” Tech.
Rep. LLNL-TR-490254.

[99] G. Ke et al., “LightGBM: A Highly Efficient Gradient Boosting Decision Tree,” in
NIPS, 2017, pp. 3146–3154.

[100] C. Chan et al., “Mobiliti: Scalable Transportation Simulation Using High-Performance
Parallel Computing,” in ITSC, 2018, pp. 634–641.

[101] S. F. Altschul et al., “Basic Local Alignment Search Tool,” Journal of molecular biology,
vol. 215, no. 3, pp. 403–410, 1990.

[102] AMD, “Powering the Exascale Era,” 2020, accessed April 20, 2020 from https://www.
amd.com/en/products/exascale-era.

[103] “Expanding Google Cloud’s Confidential Computing portfo-
lio,” https://cloud.google.com/blog/products/identity-security/
expanding-google-clouds-confidential-computing-portfolio.

[104] “Kata Containers,” Available: https://katacontainers.io/.

[105] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating two-dimensional
page walks for virtualized systems,” in Proceedings of the 13th international conference
on Architectural support for programming languages and operating systems, 2008, pp.
26–35.

117

https://developer.amd.com/sev/
https://www.amd.com/en/products/exascale-era
https://www.amd.com/en/products/exascale-era
https://cloud.google.com/blog/products/identity-security/expanding-google-clouds-confidential-computing-portfolio
https://cloud.google.com/blog/products/identity-security/expanding-google-clouds-confidential-computing-portfolio
https://katacontainers.io/

[106] J. Werner, J. Mason, M. Antonakakis, M. Polychronakis, and F. Monrose, “The SEVer-
ESt Of Them All: Inference Attacks Against Secure Virtual Enclaves,” in Proceedings
of the 2019 ACM Asia Conference on Computer and Communications Security, 2019,
pp. 73–85.

[107] M. Morbitzer et al., “Severed: Subverting AMD’s Virtual Machine Encryption,” in
EuroSec, 2018, pp. 1–6.

[108] F. Hetzelt and R. Buhren, “Security Analysis of Encrypted Virtual Machines,” in Pro-
ceedings of the 13th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, 2017, pp. 129–142.

[109] P. Rogaway, “Efficient Instantiations of Tweakable Blockciphers and Refinements to
Modes OCB and PMAC,” in ASIACRYPT, 2004.

[110] D. Kaplan, “AMD x86 Memory Encryption Technologies,” in Linux Security Summit,
2017.

[111] U. Kamio and Y. Kinoshita, “KVM/QEMU tuning of NUMA and Memory,” in Open
Infrastructure Summit, 2017.

[112] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H. J.
Wasserman, and N. J. Wright, “Performance Analysis of High Performance Computing
Applications on the Amazon Web Services Cloud,” in 2010 IEEE second international
conference on cloud computing technology and science, 2010, pp. 159–168.

[113] A. J. Younge, R. Henschel, J. T. Brown, G. Von Laszewski, J. Qiu, and G. C. Fox,
“Analysis of Virtualization Technologies for High Performance Computing Environ-
ments,” in IEEE 4th International Conference on Cloud Computing, 2011, pp. 9–16.

[114] S.-H. Ha, D. Venzano, P. Brown, and P. Michiardi, “On the Impact of Virtualization on
the I/O Performance of Analytic Workloads,” in 2nd IEEE International Conference
on Cloud Computing Technologies and Applications (CloudTech), 2016, pp. 31–38.

[115] A. Kudryavtsev, V. Koshelev, and A. Avetisyan, “Modern HPC Cluster Virtualiza-
tion Using KVM and Palacios,” in 2012 19th IEEE International Conference on High
Performance Computing, 2012, pp. 1–9.

[116] J. Gandhi et al., “Efficient Memory Virtualization: Reducing Dimensionality of Nested
Page Walks,” in 47th IEEE/ACM MICRO, 2014.

[117] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications from an Untrusted
Cloud with Haven,” ACM Transactions on Computer Systems (TOCS), vol. 33, no. 3,
p. 8, 2015.

[118] “Asylo,” Available: https://asylo.dev/.

[119] “GET STARTED WITH THE SDK,” Available: https://software.intel.com/en-us/
sgx/sdk.

118

https://asylo.dev/
https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/en-us/sgx/sdk

[120] “Open Enclave SDK,” Available: https://openenclave.io/sdk/, accessed: 2019-9-3.

[121] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide, L. Stoller, M. Hibler,
D. Johnson, K. Webb, A. Akella, K. Wang, G. Ricart, L. Landweber, C. Elliott,
M. Zink, E. Cecchet, S. Kar, and P. Mishra, “The design and operation of CloudLab,”
in Proceedings of the USENIX Annual Technical Conference (ATC), Jul. 2019, pp.
1–14. [Online]. Available: https://www.flux.utah.edu/paper/duplyakin-atc19

[122] K. Taranov, B. Rothenberger, A. Perrig, and T. Hoefler, “sRDMA–Efficient NIC-based
Authentication and Encryption for Remote Direct Memory Access,” in 2020 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 20), 2020, pp. 691–704.

[123] “Osu micro-benchmarks,” http://mvapich.cse.ohio-state.edu/benchmarks/.

[124] “Intel Promises Full Memory Encryption in Upcoming CPU,” https://arstechnica.com/
gadgets/2020/02/intel-promises-full-memory-encryption-in-upcoming-cpus/.

[125] “Intel® Architecture Memory Encryption Technologies Specification,” Intel Corpora-
tion, Tech. Rep. Rev. 1.2, April 2019.

[126] J. Liu, J. Wu, and D. K. Panda, “High performance rdma-based mpi implementation
over infiniband,” International Journal of Parallel Programming, vol. 32, no. 3, pp.
167–198, 2004.

[127] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone: An open
framework for architecting trusted execution environments,” in Proceedings of the Fif-
teenth European Conference on Computer Systems, 2020, pp. 1–16.

[128] H. G. Martin, T. Radivojevic, J. Zucker, K. Bouchard, J. Sustarich, S. Peisert,
D. Arnold, N. Hillson, G. Babnigg, J. M. Marti, C. J. Mungall, G. T. Beckham,
L. Waldburger, J. Carothers, S. Sundaram, D. Agarwal, B. A. Simmons, T. Backman,
D. Banerjee, D. Tanjore, L. Ramakrishnan, and A. Singh, “Perspectives for Self-Driving
Labs in Synthetic Biology,” Current Opinion in Biotechnology, vol. 79, p. 102881, 2023.

[129] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient virtual memory
for big memory servers,” ACM SIGARCH Computer Architecture News, vol. 41, no. 3,
pp. 237–248, 2013.

[130] S.-W. Li, J. S. Koh, and J. Nieh, “Protecting cloud virtual machines from hypervi-
sor and host operating system exploits,” in Proceedings of the 28th USENIX Security
Symposium, 2019.

[131] Z. Shen, Z. Sun, G.-E. Sela, E. Bagdasaryan, C. Delimitrou, R. Van Renesse, and
H. Weatherspoon, “X-containers: Breaking down barriers to improve performance and
isolation of cloud-native containers,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, 2019, pp. 121–135.

119

https://openenclave.io/sdk/
https://www.flux.utah.edu/paper/duplyakin-atc19
http://mvapich.cse.ohio-state.edu/benchmarks/
https://arstechnica.com/gadgets/2020/02/intel-promises-full-memory-encryption-in-upcoming-cpus/
https://arstechnica.com/gadgets/2020/02/intel-promises-full-memory-encryption-in-upcoming-cpus/

[132] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’keeffe, M. L. Stillwell et al., “SCONE: Secure Linux Con-
tainers with Intel SGX,” in Proceedings of the 12th USENIX Symposium on Operating
Systems Design and Implementation, Savannah, GA, Nov. 2016, pp. 689–703.

[133] Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and S. Yan, “Occlum:
Secure and efficient multitasking inside a single enclave of intel sgx,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 955–970.

[134] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel, “Chiron: Privacy-
preserving machine learning as a service,” arXiv preprint arXiv:1803.05961, 2018.

[135] “AMD SEV-SNP,” https://developer.amd.com/sev/.

[136] S. Jin, J. Ahn, S. Cha, and J. Huh, “Architectural support for secure virtualization
under a vulnerable hypervisor,” in Proceedings of the 44th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, 2011, pp. 272–283.

[137] S. Mofrad et al., “A Comparison Study of Intel SGX and AMD Memory Encryption
Technology,” in HASP. ACM, Jun. 2018, p. 9.

[138] W. Liu, H. Chen, X. Wang, Z. Li, D. Zhang, W. Wang, and H. Tang, “Understanding
tee containers, easy to use? hard to trust,” arXiv preprint arXiv:2109.01923, 2021.

[139] S. Kaminsky, “Secure multi-threading in keystone enclaves,” 2021.

[140] P. Gaddamadugu, “Formally verifying trusted execution environments with uclid5,”
Ph.D. dissertation, MA thesis. EECS Department, University of California, Berkeley,
2021.

[141] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-channel
attacks are practical,” in 2015 IEEE symposium on security and privacy. IEEE, 2015,
pp. 605–622.

[142] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and J. Torrellas, “Attack
directories, not caches: Side channel attacks in a non-inclusive world,” in 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019, pp. 888–904.

[143] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we remember: cold-boot attacks
on encryption keys,” Communications of the ACM, vol. 52, no. 5, pp. 91–98, 2009.

[144] M. Gruhn and T. Müller, “On the practicability of cold boot attacks,” in 2013 Interna-
tional Conference on Availability, Reliability and Security. IEEE, 2013, pp. 390–397.

[145] S. Skorobogatov, “Tamper resistance and physical attacks,” Summer School on Cryp-
tographic Hardware, Side-Channel and Fault Attacks, 2006.

120

https://developer.amd.com/sev/

[146] D. R. Ports and T. Garfinkel, “Towards application security on untrusted operating
systems.” in HotSec, 2008.

[147] S. Checkoway and H. Shacham, “Iago attacks: Why the system call api is a bad un-
trusted rpc interface,” ACM SIGARCH Computer Architecture News, vol. 41, no. 1,
pp. 253–264, 2013.

[148] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems,” in 2015 IEEE Symposium on Security and Pri-
vacy. IEEE, 2015, pp. 640–656.

[149] R. Cui, L. Zhao, and D. Lie, “Emilia: Catching iago in legacy code.” in NDSS, 2021.

[150] E. Witchel, J. Cates, and K. Asanović, “Mondrian memory protection,” in Proceedings
of the 10th international conference on Architectural support for programming languages
and operating systems, 2002, pp. 304–316.

[151] X. Ji, C. Wang, N. El-Sayed, X. Ma, Y. Kim, S. S. Vazhkudai, W. Xue, and D. Sanchez,
“Understanding object-level memory access patterns across the spectrum,” in Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, 2017, pp. 1–12.

[152] M. Nazarewicz, “Contiguous memory allocator,” in Proc. LinuxCon Eur., 2012.

[153] S. Haria, M. D. Hill, and M. M. Swift, “Devirtualizing memory in heterogeneous sys-
tems,” in Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, 2018, pp. 637–650.

[154] C. Alverti, S. Psomadakis, V. Karakostas, J. Gandhi, K. Nikas, G. Goumas, and
N. Koziris, “Enhancing and exploiting contiguity for fast memory virtualization,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 2020, pp. 515–528.

[155] G. E. Suh, D. Clarke, B. Gasend, M. Van Dijk, and S. Devadas, “Efficient memory
integrity verification and encryption for secure processors,” in Proceedings. 36th Annual
IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36. IEEE,
2003, pp. 339–350.

[156] S. Yuan, A. W. B. Yudha, Y. Solihin, and H. Zhou, “Analyzing secure memory archi-
tecture for gpus,” in 2021 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2021, pp. 59–69.

[157] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovic, “The risc-v
instruction set manual volume 2: Privileged architecture version 1.7,” University of
California at Berkeley Berkeley United States, Tech. Rep., 2015.

[158] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger, D. Boneh,
J. Dwoskin, and D. R. Ports, “Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating systems,” ACM SIGOPS Operating
Systems Review, vol. 42, no. 2, pp. 2–13, 2008.

121

[159] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger, “Trustshadow:
Secure execution of unmodified applications with arm trustzone,” in Proceedings of the
15th Annual International Conference on Mobile Systems, Applications, and Services,
2017, pp. 488–501.

[160] S. Luan, “Exploit two xen hypervisor vulnerabilities,” Alibaba Cloud, 2016.

[161] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel, “Inktag: Secure
applications on an untrusted operating system,” in Proceedings of the eighteenth inter-
national conference on Architectural support for programming languages and operating
systems, 2013, pp. 265–278.

[162] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “Asyncshock: Exploiting
synchronisation bugs in intel sgx enclaves,” in Computer Security–ESORICS 2016: 21st
European Symposium on Research in Computer Security, Heraklion, Greece, September
26-30, 2016, Proceedings, Part I 21. Springer, 2016, pp. 440–457.

[163] A. Akram, V. Akella, S. Peisert, and J. Lowe-Power, “Enabling design space exploration
for risc-v secure compute environments,” in Fifth Workshop on Computer Architecture
Research with RISC-V (CARRV 2021), 2021.

[164] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture,”
Communications of the ACM, vol. 62, no. 2, pp. 48–60, 2019.

[165] J. Tullos, S. Graham, and P. Patel, “Applied analytical model for latency evaluation
of risc-v security monitor,” in 16th International Conference on Cyber Warfare and
Security. Academic Conferences Limited, 2021, p. 354.

[166] B. R. Bruce, A. Akram, H. Nguyen, K. Roarty, M. Samani, M. Friborz, T. Reddy,
M. D. Sinclair, and J. Lowe-Power, “Enabling reproducible and agile full-system sim-
ulation,” in 2021 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE, 2021, pp. 183–193.

[167] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin, F. Kelbert, T. Reiher,
D. Goltzsche, D. Eyers, R. Kapitza et al., “Glamdring: Automatic Application Parti-
tioning for Intel SGX,” in Proceedings of the USENIX Annual Technical Conference,
Santa Clara, CA, Jul. 2017, pp. 285–298.

[168] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, J. A. Joao, and M. K. Qureshi,
“Morphable Counters: Enabling Compact Integrity Trees for Low-Overhead Secure
Memories,” in 51st Annual IEEE/ACM International Symposium on Microarchitecture,
2018.

[169] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos: ExitLess OS Services
for SGX Enclaves,” in Proceedings of the 12th ACM European Conference on Computer
Systems, Belgrade, Serbia, Apr. 2017, pp. 238–253.

[170] A. T. Gjerdrum et al., “Performance of Trusted Computing in Cloud Infrastructures
with Intel SGX,” in CLOSER, 2017.

122

[171] I. T. Association et al., “Infiniband architecture specification release 1.2,” http://www.
infinibandta. org, 2000.

[172] L. Zhao and D. Lie, “Is hardware more secure than software?” IEEE Security &
Privacy, vol. 18, no. 5, pp. 8–17, 2020.

[173] J. B. Dennis and E. C. Van Horn, “Programming semantics for multiprogrammed
computations,” Communications of the ACM, vol. 9, no. 3, pp. 143–155, 1966.

[174] N. P. Carter, S. W. Keckler, and W. J. Dally, “Hardware support for fast capability-
based addressing,” ACM SIGOPS Operating Systems Review, vol. 28, no. 5, pp. 319–
327, 1994.

[175] E. A. Feustel, “The rice research computer: a tagged architecture,” in Proceedings of
the May 16-18, 1972, spring joint computer conference, 1971, pp. 369–377.

[176] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson, B. Davis, B. Laurie,
P. G. Neumann, R. Norton, and M. Roe, “The cheri capability model: Revisiting risc
in an age of risk,” in 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA). IEEE, 2014, pp. 457–468.

[177] I. Peng, R. Pearce, and M. Gokhale, “On the memory underutilization: Exploring
disaggregated memory on hpc systems,” in 2020 IEEE 32nd International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD). IEEE,
2020, pp. 183–190.

[178] J. Shalf, G. Michelogiannakis, B. Austin, T. Groves, M. Ghobadi, L. Dennison, T. Gray,
Y. Shen, M. Y. Teh, M. Glick et al., “Photonic memory disaggregation in datacenters,”
in Photonics in Switching and Computing. Optical Society of America, 2020, pp.
PsW1F–5.

[179] A. Awad, S. Hammond, and C. Hughes, “Hw/sw codesign for disaggregated mem-
ory architectures: Opportunities and challenges,” in ASCR Workshop on Reimagining
Codesign, 2021.

[180] G. Casey, S. Team et al., “Gen-z an overview and use case s,” in Open Fabric Allience,
13th annual workshop, 2017.

[181] V. R. Kommareddy, C. Hughes, S. D. Hammond, and A. Awad, “Deact: Architecture-
aware virtual memory support for fabric attached memory systems,” in 2021 IEEE In-
ternational Symposium on High-Performance Computer Architecture (HPCA). IEEE,
2021, pp. 453–466.

[182] A. Thomas, S. Kaminsky, D. Lee, D. Song, and K. Asanovic, “Ertos: Enclaves in
real-time operating systems.”

[183] J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, L. Zhao, F. Yuan, P. Li, Z. Wang,
B. Zhao et al., “Enabling privacy-preserving, compute-and data-intensive computing
using heterogeneous trusted execution environment,” arXiv preprint arXiv:1904.04782.

123

[184] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh, and R. Riley,
“Iso-x: A flexible architecture for hardware-managed isolated execution,” in 47th IEEE
MICRO, 2014.

[185] L. Kang, Y. Xue, W. Jia, X. Wang, J. Kim, C. Youn, M. J. Kang, H. J. Lim, B. Jacob,
and J. Huang, “Iceclave: A trusted execution environment for in-storage computing,”
in 54th Annual IEEE/ACM MICRO, 2021, pp. 199–211.

[186] R. Boivie and P. Williams, “Secureblue++: Cpu support for secure execution,” IBM,
IBM Research Division, RC25287 (WAT1205-070), pp. 1–9, 2012.

[187] “Protecting Register State with AMD SEV-ES,” https://developer.amd.com/sev/.

[188] E. Feng, X. Lu, D. Du, B. Yang, X. Jiang, Y. Xia, B. Zang, and H. Chen, “Scalable
memory protection in the penglai enclave,” in 15th USENIX OSDI, 2021, pp. 275–294.

[189] “Arm Confidential Compute Architecture,” https://www.arm.com/why-arm/
architecture/security-features/arm-confidential-compute-architecture, 2021.

[190] “Realm Management Extension,” https://developer.arm.com/documentation/
den0126/latest.

124

https://developer.amd.com/sev/
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/why-arm/architecture/security-features/arm-confidential-compute-architecture
https://developer.arm.com/documentation/den0126/latest
https://developer.arm.com/documentation/den0126/latest

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Secure High Performance Computing
	Trusted Execution Environments and High Performance Computing
	Contributions
	Organization

	Motivation and Background
	Security Issues in High Performance Computing Environments
	HPC vs. Cloud Systems

	Confidential Computing
	Beyond TEEs

	Confidential High-Performance Computing via TEEs

	Limitations of Confidential Computing via TEEs for HPC Systems
	Introduction
	Computing Landscape
	History
	Current Computing Landscape

	HPC Focused Trusted Execution Environments
	Systematization of TEEs
	Page Table Entry Metadata
	Encryption
	Physical memory isolation via ISA extensions
	Use of tags/identifier in hardware
	Privileged Software/Hardware
	Classification of TEEs

	Limitations of Existing TEEs
	Heavy Application Code Modifications
	Large Trusted Compute Base (TCB)
	Focus on Core Level Execution
	No Consideration of Side Channels
	Other Limitations

	Potential Research Directions
	Data Centric Enclaves

	Other Topics
	Survey of Attacks on TEEs/Enclaves
	Tools for TEE Platforms
	Formal Verification of TEEs

	Conclusion

	A Study on the Performance of Commercial TEEs
	Threat Model
	Selected TEEs for This Study
	Intel Software Guard Extensions (SGX)
	AMD Secure Encrypted Memory (SEV)

	Methodology
	Traditional HPC Benchmarks/Kernels (NPB)
	Modern and Emerging HPC Workloads
	Hardware Platforms Used
	Software Tools/Frameworks

	Understanding the Performance of TEEs
	Finding 1
	Finding 2
	Finding 3
	Finding 4

	Beyond Single Node
	Trusted HPC in the Cloud

	Observations on Security of SGX and SEV
	Scientific Computing Focused Trusted Execution Environment

	DESC – Data Enclaves for Scientific Computing
	Introduction
	Related Work on Confidential Computing
	Threat Model
	DESC Based Computing Systems
	Background on today's computing systems
	RISC-V Isolation Mechanisms
	Security Guarantee of DESC
	Design Principles for DESC

	Design of Data Enclaves for Scientific Computing (DESC)
	High-Level Overview
	Case C1: Execution Mode Switch
	Case C2: Data Sharing
	Case C3: OS-based Resource Management
	Out of Scope Components of Enclave

	DESC Workflow
	Enclave Creation
	Enclave Running
	Creating New Enclave Thread

	Results and Evaluation
	Conclusion

	Simulation and Architectural Evaluation of TEEs
	Keystone in gem5
	Validation

	Case Study: Microarchitecture Impact on Performance of Secure Execution

	Future Work
	Improving Existing TEEs
	Software Frameworks
	Research Avenues for Computer Architecture

	Exploration of New Ways to Build TEEs
	New Hardware Primitives
	Horizontal Privilege Levels
	Capability Based Enclaves

	Future Work on DESC
	Disaggregated Data Enclaves for Scientific Computing

	Conclusion

