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Abstract
Probability judgments appear to violate basic axioms of prob-
ability theory, which seems to contradict with the recent suc-
cesses of Bayesian models of cognition. To explain these vi-
olations, we propose the Quantum Sequential Sampler model,
which combines quantum probability for explaining conjunc-
tion and disjunction fallacies, and a sequential sampling model
that maps subjective quantum probabilities into responses. Our
model explains probability judgments by a dynamical process,
and achieves state-of-the-art performance in the biggest dataset
for probability judgments to-date. Comparing with existing
Bayesian models, our model predicts both probability judg-
ments and violations of probability identities better.
Keywords: quantum cognition; probabilistic reasoning; prob-
ability judgments; Bayesian cognition; sequential sampling;
Markov process

Introduction
Bayesian probability has had profound impacts in many ar-
eas of cognitive sciences, including perception (Knill &
Richards, 1996; Kersten, Mamassian, & Yuille, 2004), mem-
ory (Hemmer & Steyvers, 2009; Schooler, Shiffrin, & Raai-
jmakers, 2001), intuitive physics (Sanborn, Mansinghka,
& Griffiths, 2013; Xu et al., 2021), and causal reasoning
(Tenenbaum & Griffiths, 2002; Hill, 2011). The optimality
of Bayesian inference has also been supported from an evo-
lutionary standpoint (Valone & Giraldeau, 1993; Luttbeg &
Warner, 1999). On the contrary, there is also abundant empir-
ical evidence showing apparent violations of Bayesian prin-
ciples and Kolmogorov probability axioms in human prob-
ability judgments. The most famous examples are the con-
junction fallacy (Tversky & Kahneman, 1983), disjunction
effect (Tversky & Shafir, 1992), and the disjunction fallacy
(Bar-Hillel & Neter, 1993). Given the successes of Bayesian
models, understanding why they are in conflict with empiri-
cal evidence that probabilistic reasoning sometimes violates
Bayesian principles, is perhaps one of the most important
problems in cognitive sciences.

Many attempts have been made to resolve this conflict, and
these attempts can be mainly divided into two categories (1)
theories and heuristics that try to explain specific fallacies (2)
quantitative models that predict the magnitude of probability
judgments. Although theories that belong to the first category
such as the inductive confirmation theory (Crupi, Fitelson, &
Tentori, 2008; Tentori, Crupi, & Russo, 2013) provide valu-
able insights into particular fallacies, the focus of this paper
will be on computational model in the second category.

A popular type of quantitative models are those that explain
probability judgment fallacies through sampling biases and
errors. These models treat probability judgment as a separate
entity from subjective probability that follows Kolmogorov
axioms, and construct a mapping from subjective probabil-
ity to probability judgment through a noisy sampling process
(Dasgupta, Schulz, Tenenbaum, & Gershman, 2020). Exam-
ples of these models include the probability plus noise model
(Costello & Watts, 2017) and the Bayesian sampler model
(Zhu, Sanborn, & Chater, 2020). Despite being successful
in explaining various violations, these sampling-error mod-
els also arguably have some theoretical limitations. First,
sampling-error models must rely on rounding mechanisms
(Zhu et al., 2020). The reason is that these models gener-
ate predictions from a binomial distribution with small sam-
ple sizes, and thus without assuming people round numbers
in a specific way, the likelihood of some responses given
the model would have been zero. Indeed, there is good ev-
idence that people round numbers in many inferential tasks
(Budescu, Weinberg, & Wallsten, 1988; Wallsten, Budescu,
& Zwick, 1993), but proposed mechanism for rounding are
mostly task dependent (Ebelt, Pothos, Busemeyer, & Huang,
2022). On the other hand, a model that samples probabil-
ity judgments from an approximately continuous distribution
will be more preferable. Secondly, sampling-error models ac-
count for conjunction and disjunction fallacies through addi-
tional assumptions, such as that conjunctions and disjunctions
are more likely to be subject to counting errors (Costello &
Watts, 2017), or computationally more demanding to count
than other probabilities (Zhu et al., 2020). There are alter-
native axiomatic accounts of these two fallacies such as the
quantum probability models (Busemeyer, Pothos, Franco, &
Trueblood, 2011; Busemeyer & Bruza, 2012; Pothos & Buse-
meyer, 2022). However, quantum probability models are also
not the complete story of probability fallacies: because they
are strictly axiomatized, they also tend to be less flexible in
predictions and may fail to account for certain violations of
probability identities (Costello & Watts, 2017).

To resolve these shortcomings, our approach is to com-
bine quantum probability models’ axiomatic explanation of
conjunction and disjunction fallacies with an improved re-
sponse model: instead of using biased frequencies from fixed
sampling with small sample sizes, we employ a sequential
sampling model as the response model. Sequential sampling
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Figure 1: Illustration of the sequential sampling part of Quantum Sequential Sampler model. P(A) stands for subjective
probability of an arbitrary event A, α denotes the drift parameter, and k denotes the additive bias parameter. Each curve
represents the probability mass function over probability judgments developed from different subjective probabilities, under the
same drift parameter α and additive bias parameter k.

models have several advantages over fixed sampling in mod-
eling probability judgments: (1) the resulting response dis-
tribution can be continuous (2) sequential sampling model
puts probability judgment into a dynamical picture. Sequen-
tial sampling models have already had a wide range of appli-
cations in cognitive sciences including decision making un-
der uncertainty (Busemeyer & Townsend, 1993; Ratcliff &
McKoon, 2008), categorization (Nosofsky & Palmeri, 1997),
valued based decision making (Busemeyer & Townsend,
1993; Usher & McClelland, 2001), and memory recognition
(Ratcliff & McKoon, 2008). However, to our knowledge,
this is the first time sequential sampling models are applied
to model direct probability judgments.

In the remainder of the paper, we will first explain the
details of our novel model. We will then compare our
model to the Bayesian Sampler model in predicting proba-
bility judgments and violation of probability identities in our
new dataset1 concerning probability judgments of the 2020
US presidential election. Finally, we will discuss some future
directions inspired by our work.

Quantum Sequential Sampler
The Quantum Sequential Sampler model (QSS) consists of
two parts. The first part is a quantum probability model, and
the second part is a sequential sampling model that maps the
quantum probabilities into probability judgment responses.
The approach of combining quantum probability with a se-
quential sampling model has also been applied to other fields
(Rosendahl, Bizyaeva, & Cohen, 2020). Conceptually, the
quantum probability part represents subjective probabilities
establishes by participant’s prior knowledge about the events,
and the sequential sampling part represents the cognitive pro-
cess of sequentially sampling evidence from mental simula-
tions to estimate the subjective probability of these events.

1Due to space limitations, we only describe this dataset in a rudi-
mentary way here, so as to focus on the modeling details. A detailed
presentation of the dataset will be in a manuscript by the present
authors, which is currently in preparation.

Comparing with models that estimate probability judgments
through sampling with a fixed hypothetical sample size for
computing frequencies, the sequential sampling approach in-
stead assumes that people gather evidence from mental sim-
ulations for a fixed period of time. In the following, we will
explain the mathematical details of our model.

Quantum Probability Part
The quantum probability part is the model for conjunction
fallacies in Busemeyer et al. (2011). The key reason why
quantum theory can produce conjunction fallacies lies in the
quantum interference term:

P(A & then B)−P(B & then A) = Int(AB), (1)

where P(A & then B) is the quantum conjunctive probability
of measuring arbitrary event A first and then arbitrary event
B, and P(B & then A) is the same computed from the re-
verse order. When Int(AB) = 0, we are essentially in the
case of Bayesian probability, because all other probabilities
except for conjunctions and disjunctions are computed in the
same way in quantum probability as that in Bayesian prob-
ability (Busemeyer & Bruza, 2012). That said, the use of
quantum probability for explaining probability fallacies is not
necessarily in conflict with Bayesian approach of cognition
for other tasks.

There are constraints of when conjunction and disjunction
fallacies may occur, and it is important for QSS to satisfy
these constraints to produce fallacies. For arbitrary events
A,B such that P(A) ≥ P(B), the quantum rules (Busemeyer
& Bruza, 2012) suggest that a conjunction fallacy may only
occur when

0 ≤ P(B & then A)≤ P(B)≤ P(A & then B)≤ P(A), (2)

that is only the conjunctive probability P(A & then B) may
produce conjunction fallacy. And in this case, since P(¬A)≤
P(¬B), we could also derive that a disjunction fallacy may
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Figure 2: Mean predictions of the models over all participants compared with the data for each probability event in our novel
dataset for probability judgments concerning 2020 election results, for states Ohio and Michigan. Events A,B denote Biden
will win the states, and events ¬A,¬B denote Trump will win the states. The bars show the distribution of the data with 95%
confidence interval displayed by the error bar. 2

only occur when

P(B)≤ P(B or then A)≤ P(A)≤ (A or then B)≤ 1. (3)

More generally, Inequality 2 and 3 could also be shown
to constrain the magnitude of the interference term Int(AB)
(Busemeyer et al., 2011).

In QSS, we employ what we referred to as the “more likely
first” assumption: for arbitrary events A,B

P(A)≥ P(B) =⇒ P(A∧B) := P(A & then B). (4)

It is not hard to check that the more-likely-first assumption is
indeed consistent with Inequality 2 for the conjunction fallacy
and can be used to derive a disjunction fallacy.

Sequential Sampling Part
A continuous-time Markov process is used as the sequen-
tial sampling part of QSS, because such processes have been
widely supported as plausible mechanisms for how responses
are produced from internal biases (Busemeyer & Townsend,
1993; Ashby & Waldron, 2000). When the Markov pro-
cess is also continuous in space, the process becomes a
drift diffusion process and generates continuous distribution
(Busemeyer & Diederich, 2010).

To introduce our model, we start with the generic solution
to the Kolmogorov forward equation with constant intensity:

φ(t) = eKt
φ(0). (5)

In the above, K is the N ×N intensity matrix that encodes the
state transition rates, φ(0) is the initial distribution across the
N states, and φ(t) is what φ(0) will evolve into after time t.

2All judgments appear to be above 50% in Figure 2 because of
an overestimation bias presented empirically. Similar overestima-
tions were also found for unpacking effects (Sloman, Rottenstre-
ich, Wisniewski, Hadjichristidis, & Fox, 2004) and other uncertainty
measures (Epping & Busemeyer, 2023). We double-check our meth-
ods, and they are correct.

When probability judgment responses are measured as inte-
gers from 0 to 100, N = 101. To obtain φ(t), which encodes
the likelihood distribution over probability judgments at re-
sponse time t, we therefore need to define the intensity matrix
K and the initial distribution φ(0).

With a reflecting boundary condition, the general intensity
matrix K, with the first index in the subscript representing
row number and the second index representing the column
number, can be written as:

Ki,i+1 = β+ for 1 ≤ i ≤ N −1
Ki+1,i = β− for 1 ≤ i ≤ N −1
Ki,i =−(β++β−) for 2 ≤ i ≤ N −1
K1,1 =−β+

KN,N =−β−, (6)

and Ki, j = 0, for any other indexes. For each P(A), that is the
quantum subjective probability of an arbitrary event A, where
A can be any of the isolated conjunct, conjunction, disjunc-
tion, and conditionals, we define

β+[P(A)] = P(A)∗α+ c+
β−[P(A)] = (1−P(A))∗α+ c−, (7)

where α is the free parameter that describes the drift rate,
and c+ and c− are two additive biases defined by a single
parameter k:

c± =

{
1 if ±k ≤ 0
±k+1 if ±k > 0.

(8)

In the above, k defines whether people underestimate or over-
estimate their probability judgments: when k > 0, the Markov
process has a bias to drift towards the boundary of probability
judgment of 100, and thus generates overestimation of judg-
ments; vice versa, when k < 0, the model generates under-
estimation. The reason for focusing on k as opposed to the
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Figure 3: Violin plots showing the distribution of predictions of the models compared to the observed data for the Ohio and
Michigan pair. A,B denote Biden will win the states, and ¬A,¬B denote Trump will win the states.

unit drift rate is that β+,β− must always be positive by def-
inition, and only the difference between β+ and β− matters
for the direction of the drift in a Markov process. Conceptu-
ally, c± describes preexisting judgment biases of the evidence
accumulation process, which are then regulated by a mental
simulation process described by the P(A) part.

For all P(A), we assume that the initial distribution is al-
ways the symmetric Beta distribution Beta(a,a) discretized
into an N×1 vector. The use of Beta distribution is consistent
with previous work (Zhu et al., 2020; Dasgupta et al., 2020)
in modeling probability inferences and judgments. The spe-
cific discretization method we employ is the following: let
ψ(x) be the probability density function of Beta(a,a); then
the initial distribution of the Markov process is defined as:

φ(0)i ∝ ψ(
i−1
100

) for 2 ≤ i ≤ 100

φ(0)1 ∝ ψ(0.005)
φ(0)101 ∝ ψ(0.995), (9)

where the subscript represents the column indexes of φ(0).
φ(0) will then be normalized according to the above defini-
tion.

Figure 1 illustrates the final distributions φ(t) over proba-
bility judgments, for various subjective probabilities. In gen-
eral, the further away the subjective probability is from 0.5,
the faster φ(t) drifts towards the reflecting boundaries and
reaches the stationary distribution. With a positive additive
bias parameter k, the final distributions drift towards the right-
hand-side boundary faster than it drifts towards the left.

Bayesian Sampler
We compared our model with the Bayesian Sampler (BS)
model (Zhu et al., 2020). BS assumes that previous ex-
perience establishes a symmetric Beta prior distribution
Beta(β,β), which is updated with a mental sampling process
that encodes the subjective probability. Formally, for arbi-
trary event A, let N(A) be the sample size of mental sam-
pling for A and P(A) be the subjective probability, and let
S(A) ∼ Bin(N(A),P(A)) and F(A) = N(A)− S(A) count the

number of instances A occurs and does not occur in the men-
tal sampling correspondingly. Zhu et al. (2020) assumed
that participants report the beta posterior means as their re-
sponses:

RBS(A) =
S(A)+β

N(A)+2β
. (10)

RBS(A) will then be a binomial random variable, as S(A) fol-
lows a binomial distribution.

Model Comparison
Dataset
The dataset for model comparison, to be reported fully in
our forthcoming work, involves 1162 participants and 78 re-
sponses per participant, which is the biggest dataset of prob-
ability judgments to-date. The probability judgments con-
cern whether Biden or Trump will win particular states in the
2020 US election, where Biden winning is considered as the
complement of Trump winning, assuming the chance of other
candidates winning close to zero (the study was conducted
after the democratic primary but before the election). The 78
responses include all marginal, conditional, conjunctive, and
disjunctive probability judgments of the election outcomes of
three pairs of states. Conjunctive and disjunctive probabil-
ity judgments were measured with two different orders of the
conjuncts to test for potential order effects. Without going
into details, we note that conjunction and disjunction falla-
cies and violations of probability identities were found for
the majority of participants.

Model Fitting
Quantum Sequential Sampler QSS was fitted by setting
k and α to be the same across all events, which is also the
simplest version of the model. Conceptually, in this version
of the model, the additive biases c± represent general over
and under estimation biases across all events.

For any probability judgment response R(A), the likelihood
of R(A) to be generated by the Quantum Sequential Sampler
(QSS) with response time t is given by:

L(R(A), t|QSS) = φ(t)R(A) = (eK[P(A)]t
φ(0))R(A). (11)
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Figure 4: Predictions of the Z identities in Zhu et al. (2020), for the Ohio and Michigan pair. The bar plot shows the Z identities
computed from the mean data with 95% confidence interval displayed by the error bars, and the shapes show the Z identities
computed from the corresponding models’ predictions.

Since response time is not measured, we make the simplest
assumption that t is the same across all events and thus can
be absorbed into other parameters.

Bayesian Sampler One problem with the version of BS in
Zhu et al. (2020) is that probability judgments follow a bi-
nomial distribution that may not include all integers from 0
to 100. To circumvent this issue, Zhu et al. (2020) assumed
that people rounded responses from their predictions. How-
ever, the rounding bias of reporting 5s and 10s in verbal re-
sponses reported by Zhu et al. (2020) was observed to a lesser
extent when responses are measured in rating scales in our
new dataset. Thus, to fit BS to our new dataset, we need to
modify BS as it is in Zhu et al. (2020) to assume that re-
sponses are directly sampled from the posteriors rather than
being the posterior means. Our modified approach is con-
sistent with many other previous works in Bayesian cogni-
tion (Tenenbaum, Griffiths, & Kemp, 2006; Griffiths, Kemp,
& Tenenbaum, 2008), where the posterior distribution is di-
rectly used for judgments. The likelihood of response R(A)
to be generated by BS for this modified approach is computed
as:

L(
R(A)
100

|BS) =
N(A)

∑
x=0

Bn(x)∗B(
R(A)
100

), (12)

where Bn(x) is the probability mass function of the bino-
mial distribution Bin(N(A),P(A)), and B(x) is the discretized
probability density function of the Beta posterior Beta(β+
x,β+N(A)− x). Note that B(x) is discretized in the same
way as that in Equation 9 for the initial distribution of QSS.
Finally, Zhu et al. (2020) assume that N(A) is the same
for all marginals and conditionals, but could be smaller for
conjunctions and disjunctions, as a way to generate fallacies.
We therefore fit two sample size parameters for the Bayesian
Sampler model, as consistent with the original work.

Fitting Comparison
QSS was compared with BS through the Bayesian Informa-
tion Criterion (BIC), with the results summarized in Table 1.
QSS has a much lower mean BIC than BS, and both mod-
els are much better than the baseline model, that only makes
uniformly random guesses. Between all of the participants,
we found that QSS outcompetes BS for 66% (769) of partic-
ipants, which agrees with the mean BIC result.

We also compared the models using generalization tests. In
particular, we performed the generalization tests in two ways:
(1) fit the models on all other probabilities except for the con-
junctions and test on predicting the conjunctions (2) the same
except now test on predicting the disjunctions. The mean G2

across all participants for both conditions are shown in Table
1. QSS performs the best overall, but BS outperforms QSS
slightly when testing on disjunctions. Between participants,
QSS outcompetes BS for 78% of participants when testing on
conjunctions and 52% when testing on disjunctions.

Figure 5: The proportion of conjunction (CF) and disjunc-
tion fallacies (DF) as a function of the scores of the cognitive
reflection tests (CRT). Participants who make more intuitive
judgments have a lower CRT score, and vice versa for partic-
ipants who make more analytical judgments.

Predictions
Besides comparing the two models through BIC, we also ex-
amined the predictions of the models. The predictions of QSS
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Model mean BIC Conj test Disj test k
QSS 609.42 183.84 209.63 10
BS 662.94 231.81 205.61 9

Uniform 718.41 221.05 221.05 0

Table 1: The BIC and generalization tests results. A model
(Uniform) which uniformly randomly guesses integer from 0
to 100 was also fitted. Mean BIC is the average BIC score
for the model over all the participants, and k is the number
of parameters for the model. Conj test is the mean G2 when
the models were tested on the conjunctions and were fitted
on everything else, and Disj test is the same when the models
were tested on the disjunctions by a generalization test. For
both BIC and G2, the lower the score, the better the model.

were computed as the expected value of probability judgment
given the final distribution φ(t), while the prediction of BS
was the mean of the binomial beta distribution (Zhu et al.,
2020). We also compared the two models’ prediction to that
of a relative frequency model 3 which is expected to follow
the Kolmogorov axioms.

We computed the mean predictions over all participants for
each model and the result for a single pair of states is shown in
Figure 2. QSS predicts the conjunction and disjunction prob-
abilities much better than BS, while BS also shows a better
prediction overall compared to the relative frequency model.

Besides plotting the mean predictions, we also constructed
violin plots for the distributions of model predictions against
the data across all participants in Figure 3. According to the
Figure, QSS also captures the distributional characteristics of
judgments better than BS for our dataset.

Probability Identities
Zhu et al. (2020) listed 18 probability identities that must be
zero according to Kolmogorov axioms, but are often violated
empirically. We compare QSS with BS in predicting these
identity violations for our new dataset. The result is shown
in Figure 4. QSS outperforms BS in predicting most of the
violations of identities. Compared to the dataset in Zhu et al.
(2020), the present dataset shows a much larger magnitude
of violations for most of the identities. This may partially ac-
count for why the Bayesian Sampler predicted the probability
identities worse than it did in Zhu et al. (2020).

Quantum Interference
Finally, although our model is named the Quantum Sequen-
tial Sampler model, the subjective probabilities do not have
to be quantum: when all quantum interference terms are zero,
QSS is Bayesian. We ran a G2 test for each participant and
fitted one version of the model with quantum interference and
the other simpler version using only Bayesian probability to
check whether the additional quantum interference parame-

3Since the likelihood function of the relative frequency model
is binomial, the model was fitted by sum of square error rather than
BIC.

ter is significant. We found 403 participants out of 1162
(35%) show a significant quantum interference effect. De-
spite observing that several participants can be explained by
Bayesian subjective probability, there are still a considerable
amount of participants who show significant quantum effects,
which raises the interesting question: when will participants
be quantum, and when will they be completely Bayesian?
One possibility could be that participants who make more in-
tuitive judgments are more likely to be quantum than partic-
ipants who make more analytical judgments. Intuitive and
analytical participants can be distinguished using a cognitive
reflection test (CRT) (Toplak, West, & Stanovich, 2011). Our
study found that the proportion of conjunction and disjunc-
tion fallacy is correlated with the CRT scores of the partici-
pants: the more intuitive the participants, the more likely they
commit to the fallacies (see Figure 5). Similar correlations
were also observed in previous research (Trueblood, Years-
ley, & Pothos, 2017).

Figure 6: Ranked quantum interference parameters for all of
the participants. The green horizontal line shows the mean
and the standard deviation of the parameters. The parameters
that are statistically significant are colored in red.

General Discussion
We proposed a novel Quantum Sequential Sampler model for
probability judgments. The model takes advantage of both
the axiomatic explanation of conjunction and disjunction fal-
lacies from quantum theory, and the power of the sequential
sampling framework for translating subjective probabilities
into responses. Our model achieves superior performance in
fitting our new dataset over the Bayesian Sampler model (Zhu
et al., 2020).

Our model opens many future inquiries for understanding
probability in cognition. First, the sequential sampling part
of our model allows us to jointly predict response time and
probability judgments. In the present work, since no response
time data was collected in the present dataset, we cannot test
any predictions concerning response times yet. Future work
can check whether the joint predictions of our model on prob-
ability judgments and response times are correct. Second, as
mentioned, future work may also explore the conditions when
participants are more likely to show significant quantum in-
terference effect.
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