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ABSTRACT: It is known that the incidence of epilepsy increases with age, but only a few studies have 

investigated the consequences and mechanisms of seizure and epilepsy in aged animals. Astrocytic changes 

are known to directly influence neuronal excitability and seizure susceptibility. However, information 

regarding alterations to astrocytes after seizures in aged animals is lacking in the literature. In the present 

study, the density and morphology of astrocytes expressing GFAP were investigated in the hippocampus of 

aged rats that experienced status epilepticus induced by pilocarpine. One month after seizures, astrocytes in 

aged rats have increased volume and present activated morphology. Despite these morphological changes, 

the density of astrocytes was not altered in the hippocampus of aged rats after seizures. 
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The prevalence of epilepsy increases after infancy 

and incidence rates are amongst the highest in the elderly 

population [1]. Experimental models of seizures and 

epilepsy in aged animals have yielded variable results 

regarding seizure susceptibility, neuronal damage and 

neurophysiological changes [for review see 2]. For 

example, development of kindling using electrical 

stimulation of the hippocampus [3] or systemic injection 

of pentylenetetrazole (PTZ) [4] is delayed in aged rats 

when compared with adult rats. However, the seizure 

severity and latency is similar between young adults and 

aged rats of a strain of genetically epilepsy-prone rats 

(GEPRs) [5]. On the other hand, aged rats present 

increased seizure susceptibility to status epilepticus 

induced by chemical agents, such as kainic acid (KA) [6-

9] and pilocarpine [10, 11]. The mechanisms that 

underlie the discrepancies in the different aging epilepsy 

models need to be further elucidated in order to better 

understand the neuropathological processes that may be 

unique to the elderly brain. 

A growing body of evidence indicates that astrocytes 

are directly involved with epilepsy development through 

several mechanisms [12, 13]. It was demonstrated in 

acute epilepsy models that direct astrocyte stimulation 

could contribute to neuronal synchronization [14]. It was 

also demonstrated that astrocytes in the epileptic 

hippocampus have altered expression of potassium and 

water channels. Such changes favor an altered water 

influx and impaired potassium buffering, resulting in 

facilitation of seizure initiation and development [15, 

16].  Glial cells can also contribute to epileptogenesis 

through the release of inflammatory proteins, 

predominantly interleukins and chemokines, which can 

facilitate hyperexcitable conditions [17-19]. Altered 
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neurogenesis in epileptic animals that may be pro-

epileptogenic are also associated with astrocytic changes 

in the hippocampus [20-23]. A lack of the proper 

astrocyte association and guidance renders these 

newborn neurons susceptible to aberrant synaptic 

targeting, which may contribute to a hyperexcitable 

condition [24, 25].  

During most, if not all neuropathologies, astrocytes 

exhibit alterations in morphology, number and 

distribution. Such changes can be investigated by 

assaying the accumulation of glial fibrillary acidic 

protein (GFAP), an intermediate filament protein 

expressed by astrocytes [26]. Considering the scarcity of 

data on astrocytes in the aging and epileptic 

hippocampus, the present study investigated astrocytic 

changes one month after pilocarpine-induced seizures in 

aged rats.  

 

 

MATERIAL AND METHODS 

 

All experimental procedures were approved by the 

IACUC of the University of California, Irvine. Animals 

were maintained in a 12 hour light-dark cycle with food 

and water ad libitum.  

 

Seizure induction 

Status epilepticus (SE) was induced as previously 

described [27]. Briefly, aged Sprague-Dawley rats, 22 

months old (680-850 gms), were treated with methyl-

scopolamine (1 mg/kg i.p.; Sigma) 30 min before 

pilocarpine hydrochloride i.p. injection (320 mg/kg; 

Sigma). Age-matched control rats received saline instead 

of pilocarpine. Only animals that experienced stage 5 

seizures were used for analysis (n=4 per group). It is 

pertinent to note that in the epileptic group, 

approximately 50% mortality rate was observed within 2 

hrs of pilocarpine treatment. Ninety minutes after SE 

onset, rats were treated with diazepam (10 mg/kg) to 

mitigate seizures.  

 

Immunohistochemistry 

One month after seizure induction, rats were deeply 

anesthetized with Euthasol (390 mg pentobarbital 

sodium and 50 mg phenytoin sodium i.p.) and 

transcardially perfused with sterile saline followed by 

4% paraformaldehyde in phosphate buffer. The brains 

were removed, postfixed, and sliced in 50 μm coronal 

sections using a vibratome. Tissue was processed for 

immunohistochemistry with mouse anti-GFAP antibody 

(1:500; Sigma), following the protocol previously 

described [26].  

 

Astrocyte quantification 

The density of GFAP positive astrocytes was estimated 

using the optical dissector method [28]. Analysis was 

performed in two different hippocampal regions using a 

microscope (Nikon Eclipse MU) with a motorized stage 

connected to a computer running the Stereo Investigator 

software (MBF Bioscience). The hilus and hippocampal 

area CA1 were delineated in 5 sections per animal, 

ranging from bregma -2.16 mm to -4.56 mm. The 

sections were equally represented within this range to 

ensure equal representation of the counting areas 

between the two groups. A counting frame of 40 x 40 

μm was randomly positioned in a lattice of 150 x 150 

μm. Results were statistically analyzed using a Student’s 

t-test and are presented as density of cells / mm
3 
± SEM. 

 

Morphological analysis of astrocytes 

 

For analysis of astrocyte morphology, Neurolucida 

software was used (MBF Bioscience). Twenty-five 

astrocytes in the hilus were randomly selected and traced 

in their entirety in each experimental group. Cells with 

clear cell bodies and processes were chosen for 

reconstruction. The coordinate files generated by the 

three-dimensional reconstruction were analyzed in the 

Neuroexplorer component of the Neurolucida software, 

generating data of morphological measurements such as 

total cell surface, volume and process length. The 

concentric spheres analysis of Sholl [29] was also 

performed to measure the branching pattern of astrocytes 

with spheres of 15 μm. 

 

RESULTS 

 

Astrocyte distribution one month after SE induction 

In general, immunohistochemistry for GFAP showed 

that the principal cell layers, such as the granule cell 

layer in the dentate gyrus and pyramidal cell layer in 

CA1 present less astrocytes than the other hippocampal 

subregions in both control and seizure aged rats (Figure 

1 A-D). In addition, astrocytes in the border of the hilus 

send radial glial-like processes that project from the hilus 

through the granular cell layer (GCL). However in aged 

rats with seizures, the radial glial-like processes in the 

GCL appear to be thinner and less evident than in age-

matched controls (Figure 1 A, C). The distribution of the 

astrocytes in both groups appeared relatively consistent 

within and between groups, such that individual 

astrocytes appeared to occupy specified domains with 

minimal overlap amongst neighboring astrocytes.  
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Figure 1. Astrocytes expressing GFAP in the hippocampus. Micrographs showing immunohistochemistry for GFAP 

in the hilus and CA1 region of control and aged seizure rats (A-D). The distribution and intensity of staining appears 

very similar between both groups. Less GFAP+ astrocytes are evident in the granule cell layer (GCL) and pyramidal 

cell layer of CA1 (Pyr), relative to other hippocampal subregions, such as the hilus (H), stratum oriens (Or) and stratum 

radiatum (Rad), in both control and seizure groups. In addition, astrocytes at the border of the H project radial glial-like 

processes through the GCL in control rats (arrowheads in A). Note that in aged seizure rats these astrocytic processes in 

the GCL are thinner and not as evident (arrowheads in C). Graphs depict stereological quantification of astrocytes in 

the hippocampus (E-F). Consistent with the qualitative analysis, the density of GFAP+ astrocytes in the hilus (E) and 

CA1 (F) regions was similar between control and aged seizure rats (p>0.05). Scale bar = 100 μm. Graph values: mean 

± SEM. 
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Astrocyte density one month after SE induction 

Stereological comparison of the density of GFAP+ 

astrocytes one month after seizures found no significant 

differences between seizure rats and control rats in either 

of the two hippocampal regions analyzed (dentate gyrus: 

p=0.31, NS; CA1: p=0.66, NS) (Figure 1 E,F).  

Consistent with the qualitative data, the average distance 

between neighboring astrocytes in both groups was 35 

μm. 

Astrocyte morphological analyses 

The reconstruction analysis generated data about the 

morphology of GFAP+ astrocytes (Figure 2 A-D) in the 

hilus. The results showed no significant differences 

between the total length of astrocytic processes between 

groups (p=0.15, NS). However, a significant increase in 

astrocyte cell surface area (Control = 402±26 μm
2
; 

Epileptic = 495±37 μm
2
; p<0.05) and cell volume 

(Control = 83±6 μm
3
: Epileptic = 118±11 μm

3
; p<0.01) 

was observed in the hilus (Figure 2), indicating astrocyte 

hypertrophy in response to pilocarpine-induced seizures. 

There was no statistical difference in the spherical Sholl 

analysis (data not shown), indicating a similar spatial 

distribution of the astrocytic processes in controls and 

seizure animals. 

 

DISCUSSION 

 

Results from the present study show that one month after 

pilocarpine-induced seizures, GFAP+ astrocytes exhibit 

an activated, hypertrophic morphology in aged rats 

which is not accompanied by increased density of 

astrocytic cells. These results provide novel data to the 

literature in aged-epileptic rats and are discussed in the 

context of a role for astrocytes in the pathogenesis of 

epilepsy.  

Astrocytes play an important role in coupling 

neuronal organization to blood flow and are actively 

involved in maintaining, regulating, signaling and 

altering neuronal synaptic junctions [19, 30]. Moreover, 

evidence indicates that astrocytes are involved with 

many neurological dysfunctions, including the 

pathogenesis of epilepsy.  

Overall, the investigation of acute seizures and 

epilepsy in aged animals is scarce in the literature [2]. 

Data are also lacking regarding the study of specific 

astrocytic alterations after seizures in aged animals. 

However, there is scant evidence using animal models of 

aging and epilepsy, which are different from the current 

study, that demonstrate astrocyte activation shortly after 

seizure induction. For example, one week after systemic 

KA injection in C57BL/6 mice, hippocampal GFAP 

levels measured by ELISA were elevated in aged mice. 

This was accompanied by increased GFAP immune-

reactivity and astrocytic hypertrophy [31]. Similarly, one 

month after KA injection directly into the mouse 

hippocampus, the levels of GFAP measured by Western 

blotting and immunohistochemistry were significantly 

increased [32].  It is possible that in the pilocarpine-

model of epilepsy, a transient change in astrocyte 

number occurs prior to the 30 day timepoint in aging 

animals, as has been observed using the pilocarpine 

model in adult mice and rats [33,34].   

Consistent with these findings, it was previously 

reported that aged rats present an increase in the area of 

GFAP+ astrocytes 26 days after neurodegeneration and 

deafferentation induced by subconvulsive dose of 

intracerebroventricular KA administration [35]. In spite 

of the astrocyte activation, emergence of nestin positive 

reactive astrocytes after injury was clearly diminished in 

the aged hippocampus [35]. In addition, there is a 

substantial decline of glial derived growth factors, such 

as IGF-1, VEGF and FGF-2 with aging, possibly a 

consequence of age-related impairment in synthesis by 

astrocytes in the hippocampus [36, 37].  

While pilocarpine, as shown in the current study, 

and KA [32, 35] both appear to induce astrocyte 

activation in aged animals, an absence of astrocytic 

alterations after seizures in aged rats was shown in a 

study using PTZ-kindling in senescence-accelerated 

mice P8 (SAMP8) [38]. Kondziella et al. [38] 

demonstrated that the progression of PTZ-kindling was 

similar regardless of the animals’ age, but astrocytes of 

young animals were affected by PTZ-kindling whereas 

those from aged animals were not. Interestingly, 

glutamatergic neurons were affected by PTZ-kindling 

only in older animals [38]. The authors concluded that 

PTZ-kindling could lead to epileptic seizures without 

interfering greatly with astrocytic metabolism in aged 

animals [38]. Another possibility is that glutamatergic 

neurons might be more susceptible to PTZ-induced 

seizures in aged animals, perhaps linked to the impaired 

cytokine production demonstrated in aged rats [36, 37].  

Considering the different receptor systems associated 

with the development of seizures in the different models 

(e.g. PTZ is GABAergic, kainic acid is glutamatergic 

and pilocarpine is cholinergic), the discrepancies in the 

literature may be related to the models chosen and how 

the affected receptor systems are differentially 

influenced by aging.  

In addition to the synthesis of a milieu of glial 

derived growth factors, radial-glial like astrocytes in the 

hippocampal subgranular layer are a major source of 

newly born neurons in the adult dentate gyrus [39].  In 

normal adult animals, these radial glial-like astrocytes  
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Figure 2. Morphometric analysis of astrocytes in the hilus. An astrocyte from a control 

(A) animal and its three-dimensional reconstruction (C), compared to an astrocyte from an 

aged seizure animal (B) and its three-dimensional reconstruction (D). Note that astrocytic 

processes in the aged seizure animal are hypertrophied when compared with age-matched 

control. The graph (E) confirms the significant hypertrophy in cell surface and volume in 

seizure animals (E). White: control animal; black: aged seizure animal. Values: *p<0.05; 

**p<0.01. Scale bar: 10 µm. 

 

 

 
provide a scaffold for the integration of newborn neurons 

into the existing granule cell layer [40]. This relationship 

is altered following pilocarpine-induced seizures in adult 

rodents where astrocytes modify their morphology and 

orientation such that an “ectopic glial scaffold” provides 

an anatomical substrate for hilar basal dendrites to grow 

into the hilus [21]. In the present study, the radial glial-

like astrocytic processes in the GCL of aged seizure rats 

appear to be thinner and are less evident than in age-

matched controls. Thus, astrocyte activation in the aged 

hippocampus may be related to the impairment of 

neurogenesis in the aged dentate gyrus observed after SE 

(11, 41).  
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In conclusion, the present data show that one month 

after pilocarpine-induced seizures in aged rats, there is 

astrocyte hypertrophy in the hilus but no significant 

alteration in astrocyte density as revealed by 

stereological counting of GFAP+ astrocytes. 
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