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Abstract

Shape-constrained estimation for modern statistical problems

by

Jake Soloff

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Adityanand Guntuboyina, Co-chair

Professor Michael I. Jordan, Co-chair

Shape constraints encode a relatively weak form of prior information specifying the direc-
tion of certain relationships in an unknown signal. Classical examples include estimation
of a convex function or a monotone density. Shape constraints are often strong enough
to dramatically reduce statistical complexity while still yielding flexible, nonparametric
estimators. This thesis brings shape constraints to bear on several recent research areas
in statistics—distribution-free inference, high-dimensional covariance estimation, empirical
Bayes, and multiple hypothesis testing.

Chapter 2 discusses my joint work with Professor Aditya Guntuboyina and Professor Jim
Pitman on distribution-free properties of isotonic regression. In this work, we establish
a distributional result for the components of the isotonic least squares estimator using its
characterization as the derivative of the greatest convex minorant of a random walk. Provided
the walk has exchangeable increments, we prove that the slopes of the greatest convex
minorant are distributed as order statistics of the running averages. This result implies an
exact formula for the squared error risk of least squares in homoscedastic isotonic regression
when the true sequence is constant that holds for every exchangeable error distribution.

Chapter 3 discusses my joint work with Professor Aditya Guntuboyina and Professor Michael
I. Jordan on sign-constrained precision matrix estimation. We investigate the problem of
high-dimensional covariance estimation under the constraint that the partial correlations are
nonnegative. The sign constraints dramatically simplify estimation: the Gaussian maximum
likelihood estimator is well defined with only two observations regardless of the number of
variables. We analyze its performance in the setting where the dimension may be much
larger than the sample size. We establish that the estimator is both high-dimensionally
consistent and minimax optimal in the symmetrized Stein loss. We also prove a negative
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result which shows that the sign-constraints can introduce substantial bias for estimating
the top eigenvalue of the covariance matrix.

Chapter 4 discusses my joint work with Professor Aditya Guntuboyina and Professor Bod-
hisattva Sen on nonparametric empirical Bayes with multivariate, heteroscedastic Gaussian
errors. Multivariate, heteroscedastic errors complicate statistical inference in many large-
scale denoising problems. Empirical Bayes is attractive in such settings, but standard para-
metric approaches rest on assumptions about the form of the prior distribution which can
be hard to justify and which introduce unnecessary tuning parameters. We extend the
nonparametric maximum likelihood estimator (NPMLE) for Gaussian location mixture den-
sities to allow for multivariate, heteroscedastic errors. NPMLEs estimate an arbitrary prior
by solving an infinite-dimensional, convex optimization problem; we show that this convex
optimization problem can be tractably approximated by a finite-dimensional version. We
introduce a dual mixture density whose modes contain the atoms of every NPMLE, and
we leverage the dual both to establish non-uniqueness in multivariate settings as well as to
construct explicit bounds on the support of the NPMLE.

The empirical Bayes posterior means based on an NPMLE have low regret, meaning they
closely target the oracle posterior means one would compute with the true prior in hand. We
prove an oracle inequality implying that the empirical Bayes estimator performs at nearly
the optimal level (up to logarithmic factors) for denoising without prior knowledge. We
provide finite-sample bounds on the average Hellinger accuracy of an NPMLE for estimating
the marginal densities of the observations. We also demonstrate the adaptive and nearly-
optimal properties of NPMLEs for deconvolution. We apply the method to two astronomy
datasets, constructing a fully data-driven color-magnitude diagram of 1.4 million stars in the
Milky Way and investigating the distribution of chemical abundance ratios for 27 thousand
stars in the red clump.

Chapter 5 discusses my joint work with Daniel Xiang and Professor William Fithian on
finite-sample control of the maximum local false discovery rate in multiple hypothesis testing.
Despite the popularity of the false discovery rate (FDR) as an error control metric for large-
scale multiple testing, its close Bayesian counterpart the local false discovery rate (lfdr),
defined as the posterior probability that a particular null hypothesis is false, is a more directly
relevant standard for justifying and interpreting individual rejections. However, the lfdr is
difficult to work with in small samples, as the prior distribution is typically unknown. We
propose a simple multiple testing procedure and prove that it controls the expectation of the
maximum lfdr across all rejections; equivalently, it controls the probability that the rejection
with the largest p-value is a false discovery. Our method operates without knowledge of the
prior, assuming only that the p-value density is uniform under the null and decreasing under
the alternative. We also show that our method asymptotically implements the oracle Bayes
procedure for a weighted classification risk, optimally trading off between false positives and
false negatives. We derive the limiting distribution of the attained maximum lfdr over the
rejections, and the limiting empirical Bayes regret relative to the oracle procedure.
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Chapter 1

Introduction

The study of shape-constrained estimation and inference traces back to the mid-twentieth
century, when researchers introduced isotonic regression (Ayer et al., 1955; van Eeden, 1956)
and monotone density estimation (Grenander, 1956). Both problems constrain an unknown
function—either a regression function or a probability density function—to be monotone. Al-
though the target estimand need not be differentiable, it is helpful to view shape restrictions
such as monotonicity or convexity as constraining the sign of a (first or second) derivative
of an unknown function. By contrast, smoothness assumptions in density estimation and
regression commonly constrain the magnitude of one or more derivatives of a target function.
A resulting attraction of shape constraints is that one can often perform constrained maxi-
mum likelihood estimation with no explicit regularization to yield tuning-free, nonparametric
estimators.

Conversely, quantifying the full benefits of such qualitative restrictions can be a delicate
exercise. In recent decades, a resurgence in theoretical research has greatly expanded our
mathematical toolkit for analyzing shape constraints. Some important developments include
Barber and Samworth (2021), Cai and Low (2015), Cai et al. (2013), Chatterjee (2014),
Dümbgen (2003), Dümbgen et al. (2011), Groeneboom et al. (2001), Guntuboyina and Sen
(2013), Han et al. (2019), Kim and Samworth (2016), Meyer and Woodroofe (2000), Slawski
and Hein (2013), Wei et al. (2019), and Zhang (2002); see also Guntuboyina and Sen (2018)
for a recent survey and Groeneboom and Jongbloed (2014) for a general introduction.

As this now rich statistical literature routinely demonstrates, shape-constrained estima-
tion has the potential to alleviate the challenges of nonparametric estimation while preserving
the flexibility of light assumptions. Realizing this potential in a wide variety of applications,
however, demands innovations on other research fronts. On one important front, design-
ing scalable algorithms for large samples, high-dimensional data, and complex constraints
presents many challenges. Koenker and Mizera (2014) approximate nonparametric maxi-
mum likelihood estimators with finite-dimensional, convex optimization problems, opening
up nonparametric density estimation to a wide range of existing algorithms and off-the-shelf
solvers. In multivariate convex regression, Mazumder et al. (2019) illustrate the flexibility
of the alternating direction method of multipliers (ADMM), which itself is closely related to
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the algorithm of Dykstra (1983) for constrained least squares.
Beyond computation and risk bounds, getting shape constraints to work with other areas

of statistics requires a richer appreciation of the varied roles constraints play in framing and
simplifying problems. In this dissertation, we investigate the role of shape constraints in four
modern research areas, and for the rest of the introduction, we highlight the varied roles of
shape constraints in these and other problems.

Problem specification. Likelihood-based estimation often fails in high-dimensional
spaces, and shape constraints offer one approach to rescue nonparametric estimation from the
limitations of the maximum likelihood criterion over large parameter spaces. A prototypical
example comes from density estimation. Let p1, . . . , pm be an iid sample of continuous
random variables on [0, 1] with density f ∗ and corresponding cdf F ∗. It is well known that
the maximum likelihood estimator (MLE) of F ∗ over the space of all cdfs is the empirical
cdf Fm, defined as Fm(t) := 1

m

∑m
i=1 1{pi ≤ t}. The MLE of the pdf f ∗, on the other

hand, does not exist: essentially, since Fm is discrete, the likelihood of a density f increases
without bound as we move outside of the space of all densities on [0, 1] and towards a discrete
distribution.

Imposing the additional constraint that f ∗ is monotone decreasing enables maximum
likelihood estimation. To see why, first note that a density f is nonincreasing precisely when
the corresponding cdf F is concave. The empirical cdf Fm is not concave, so the constrained
MLE F̂m of the cdf F ∗ over all concave cdfs is a different object than Fm. In fact, the
likelihood under the concave MLE F̂m is lower than the likelihood under the unconstrained
MLE Fm, since the latter maximizes the likelihood over all cdfs. Roughly, in order to make
the gap due to introducing the concavity constraint as small as possible, F̂m should be as
close to Fm as possible. More precisely, it can be shown (Groeneboom & Jongbloed, 2014,
Lemma 2.2) that F̂m is the least concave majorant of Fm, i.e. the (pointwise) smallest
concave function dominating Fm. The least concave majorant F̂m is a linear spline, so it is
‘nearly’ differentiable, i.e. differentiable everywhere except at the knots. Since F̂m is concave
the slope of the line to the left of a given knot is larger than the slope of the line to the
right, and indeed the Grenander (1956) estimator f̂m of a monotone density is given by the
left derivative of the least concave majorant F̂m. The empirical cdf Fm plays the role of a
‘default’ estimator of F ∗ across statistics, e.g. in the nonparametric bootstrap, so its scope
and limitations as a plug-in estimator are well understood. The Grenander estimator f̂m
plays a similar role as a ‘default’ density estimator of a monotone density.

The Grenander estimator f̂m is somewhat special among shape-constrained density esti-
mators, in that it has this exact geometric characterization, especially amenable to precise
asymptotic theory. Moreover, there are many equivalent ways of thinking about the prob-
lem of monotone density estimation that connect it to other types of shape constraints. For
instance, Khintchine’s theorem states that the collection of monotone densities on [0, 1] co-
incides with the collection of densities of uniform scale mixtures, i.e. distributions of the
form Unif(0,Θ) where Θ ∼ G∗ is an arbitrary probability measure on [0, 1]. Hence, the

Grenander estimator f̂m implicitly describes an estimator Ĝm of the mixing measure G∗,
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known as the nonparametric maximum likelihood estimator or NPMLE of G∗. Since F̂m is
a (concave) linear spline, the corresponding density f̂m is a piecewise constant (decreasing)

density with discontinuities at the knots of F̂m; equivalently, the NPMLE Ĝm is a discrete
distribution supported on the knots of F̂m. These statements are equivalent, but the latter is
remarkable for its own reason: Ĝm maximizes the likelihood of the uniform scale mixture over
all probability measures supported on [0, 1]. Hence, whereas the Grenander estimator f̂m is

a constrained MLE over the class of monotone densities, Ĝm is an unconstrained NPMLE
where the likelihood is that of a uniform scale mixture. The key takeaway is that the mixture
structure can facilitate fully nonparametric modeling of unobserved heterogeneity, a point
which surprisingly predates even the Grenander estimator (Robbins, 1950). The idea to
use the NPMLE of a mixing distribution to model a prior distribution is foundational to
nonparametric empirical Bayes, as we shall see in Chapter 4.

More recent results have begun to uncover multivariate settings with flexible ‘default’
estimators. Suppose we aim to estimate the density f ∗ of i.i.d. observations X1, . . . , Xn ∈ Rp

under the constraint that log f ∗ is concave: Cule et al. (2010) showed that the MLE is well-
defined almost surely once n > p. Another remarkable result, due to Slawski and Hein (2015),
establishes a setting where shape constraints lead to a well-defined constrained MLE even in
very high-dimensional settings p� n. Instead of estimating the density of X1, . . . , Xn ∈ Rp,
the goal is to estimate the precision matrix Θ∗ := (Σ∗)−1 under a multivariate Gaussian
likelihood X1, . . . , Xn ∼ N (0,Σ∗). When p > n, the MLE of Θ∗ is not defined, since the
sample covariance matrix S = 1

n

∑n
i=1XiX

T
i is rank-deficient. However, under the additional

sign-constraints Θ∗jk ≤ 0 for j 6= k, Slawski and Hein (2015) showed that the constrained

MLE Θ̂ is almost surely well-defined for any p once n > 1. The sign-constraints on the
off-diagonal entries of Θ∗ provide a model of positive dependence that has been widely used
in economics and actuarial sciences (Karlin & Rinott, 1983). The fact that the constrained

MLE Θ̂ is well-defined is nontrivial, but Lauritzen et al. (2019) give a beautiful proof,
exploiting a connection to single-linkage clustering. We investigate the statistical properties
of this estimator Θ̂ in high-dimensional settings in Chapter 3.

It is worth noting that reasonable shape constraints do not always impose sufficient struc-
ture to produce well-defined solutions. A classical example is the estimation of a unimodal
density, even with univariate data, where the likelihood is unbounded as in the unconstrained
density estimation example. In Chapter 4 we show that certain NPMLEs of multivariate
mixing distributions can have infinitely many solutions.

Finally, we note that shape restrictions have been leveraged to specify a problem structure
beyond producing well-defined constrained MLEs. In causal inference, for example, Angrist
and Imbens (1994) leveraged a monotonicity assumption on compliance to identify the local
average treatment effect under two-sided noncompliance.

Structured decisions. Shape-enforcement is often viewed as a post-processing step to
improve upon a base estimator (Bonakdarpour et al., 2018). Obozinski et al. (2008) followed
this approach to yield logically consistent predictions in protein function annotation. In this
domain, various data sources are combined to produce probabilistic predictions of protein
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function. The attributes that an individual protein may satisfy fit into the gene ontology
(GO), a dictionary of terms together with a topology describing their logical relations. For
instance, ‘nucleic acid binding’ and ‘protein binding’ are two attributes that have ‘binding’
as a parent attribute. Probabilistic predictions are made on a term-by-term basis, e.g. the
probability that a given protein is nucleic acid binding is estimated independently of its other
attributes, so this base set of predictions need not respect the GO structure—e.g. ‘binding’
could be reported as less likely than one of its child attributes. These probabilistic predictions
can be ‘reconciled’ by projecting them onto the set of probabilistic predictions respecting the
GO partial order. When the initial predictions are reconciled using Euclidean projection,
this is known as isotonic regression with respect to a partial order. Obozinski et al. (2008)
find empirically that the isotonized predictions almost always have higher precision than
the base predictions, whereas more heuristic reconciliation methods and Bayesian networks
often perform worse than the base predictions.

In empirical Bayes applications, downstream decisions often satisfy desirable properties
as a byproduct of the mixture constraint. Efron and Hastie (2016, Chapter 6) describe the
example of an insurance company needing to estimate the number of claims a policy holder
will make next year based on the number of claims they made this year. The dataset is
simply a collection of nonnegative counts Y1, . . . , Yn, and from the law of rare events it is
reasonable to model each policy holder’s number of claims Yi as a Poisson random variable
with rate parameter λi, independent across i. The rate parameters λi likely vary across
policy holders i = 1, . . . , n, and we can model this unobserved heterogeneity by placing a
common prior on the rate parameters

λi
iid∼ G∗, for i = 1, . . . , n,

where G∗ is a probability measure supported on the nonnegative reals R+. Marginally, the
counts Yi are iid with Poisson mixture pmf pG∗ , where

pG∗(y) :=

∫
e−λλy/y! dG∗(λ).

Robbins (1956) showed that the Bayes estimator δG∗(y) := E[λi | Yi = y] can be written
directly in terms of the marginal pmf

δG∗(y) =
(y + 1)pG∗(y + 1)

pG∗(y)
.

It is not hard to show that, no matter the choice of prior G∗, the posterior mean δG∗ is non-
decreasing in the number of counts. This is a desirable property for the insurance company:
any non-monotone decision rule penalizes some policy holders for making fewer claims than
others. In practice, however, G∗ is unknown so the Bayes estimator is unavailable. Robbins
(1956) proposed to plug-in the empirical probability mass function (pmf) p̂n(y) = #{i:Yi=y}

n

and take

δ̂(y) =
(y + 1)p̂n(y + 1)

p̂n(y)
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for any y such that p̂n(y) > 0, and define δ̂(y) = 0 otherwise. This estimator remains the
‘default’ choice for empirical Bayes denoising of count data, despite severely violating mono-
tonicity: the largest count ymax = maxi=1:n Yi is assigned a predicted value of δ̂(ymax) = 0.
Brown et al. (2013) patched this deficiency of Robbins’ estimator by isotonizing δ̂, among
other post-processing proposals. By contrast, if we estimate pG∗ by any Poisson mixture pĜn ,
for instance by minimizing D(p̂n, pG) over all probability measures G on R+, for some di-
vergence D, the resulting plug-in procedure is automatically monotone. For instance, if D
is the KL divergence, then Ĝn is the Poisson mixture NPMLE. In this example, utilizing
the shape constraint in an end-to-end fashion spares us from post-processing adjustments to
achieve the desired structure of a decision rule.

Sharper inferences. In other cases, the desired structure of optimal decision rules
delivers a tractable shape constraint. In Chapter 5, we study multiple hypothesis testing
within a Bayes two-groups model

pi | Hi = h
ind∼ fh, with Hi

iid∼ Bern(1− π0), for i = 1, . . . ,m,

where Hi = 0 if the ith hypothesis is null and Hi = 1 otherwise. The p-values pi follow a
density f0 := 1[0,1] under the null and f1 under the alternative, and the null proportion is
π0 ∈ [0, 1]. Let f := π0 + (1 − π0)f1 denote the common mixture density of the p-values,
and let F (t) :=

∫ t
0
f(u) du denote the corresponding cumulative distribution function (cdf).

Sun and Cai (2007) showed that optimally trading off false positives and false negatives is
achieved by rejecting hypothesis with local false discovery rate (lfdr, Efron et al., 2001)

lfdr(t) := P (Hi = 0 | pi = t) =
π0

f(t)

falling below some level q ∈ [0, 1], depending our relative tolerance for Type I and Type II
errors. In other words, the optimal procedures reject the null hypothesis for pi ∈ A∗q, where
the rejection regions A∗q have the form

A∗q := {t : lfdr(t) ≤ q} .

In most cases, we seek to reject all the p-values falling below some threshold, meaning the
rejection region is an interval of the form [0, t]. If we posit that the optimal rejection regions
also have this form A∗q = [0, τ ∗q ], note that τ ∗q is nondecreasing as a function of q, simply
because the rejection regions A∗q are automatically nested as the tolerance q increases. From
this, it follows that lfdr is nondecreasing, or equivalently that the mixture density f is
nonincreasing. The assertion that it is optimal to reject p-values below some threshold is
thus equivalent to the assertion that f is monotone.

In other words, f being monotone nonincreasing means that smaller p-values represent
stronger evidence against the null, and if the optimal decision rule rejects small p values
then f must be monotone. Fundamental methods in multiple hypothesis testing, such as
the Benjamini and Hochberg (1995, BH) procedure, are thresholding procedures, so such
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procedures are best suited to settings where f is monotone. The BH procedure builds a
rejection region of the form

ABH
q :=

{
t : F̂dr(t) ≤ q

}
where F̂dr(t) =

1

Fm(t)
.

This procedure is well-motivated from an empirical Bayes perspective (see, e.g., Efron et al.,
2001) but it does not directly target the optimal rejection regions A∗q. Moreover, enforcing
the shape restriction that the true cdf F is concave yields little benefit, since the concave
MLE F̂m is extremely close to Fm at least for large m (Kiefer & Wolfowitz, 1976).

The real advantage of the monotonicity assumption is that we may leverage the Grenander
estimator f̂m as our ‘default’ estimator of a monotone density to directly target the optimal
rejection region:

Aq :=
{
t : l̂fdr(t) ≤ q

}
where l̂fdr(t) =

1

f̂m(t)
.

The shape constraint thus affords us the opportunity to approach a much more ambitious
inferential target in a fully nonparametric manner. We explore the properties of this testing
procedure in much greater detail in Chapter 5.

We close this section with a cautionary result showing that, in some cases, shape con-
straints can have much worse statistical properties than the base estimators they are designed
to improve upon. In particular, we show in the high-dimensional covariance estimation prob-
lem in Chapter 3 that the constrained MLE of the covariance matrix Σ̂ = Θ̂−1 can be much
worse than the sample covariance matrix S for estimating the top eigenvalue. Note that the
sample covariance S is itself inconsistent in high-dimensional regimes, but the top-eigenvalue
of Σ̂ diverges at an even faster rate. However, we argue that because Θ̂ essentially represents
a projection of S under a Bregman divergence known as Stein’s loss, it is more natural to
study the high-dimensional behavior of Θ̂ under that loss function.
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Chapter 2

Distribution-free isotonic regression

2.1 Introduction

Isotonic regression with homoscedastic errors refers to the problem of estimating a monotone
sequence θ∗1 ≤ · · · ≤ θ∗n based on a noisy observation vector Y , assumed to be an additive
perturbation of θ∗ = (θ∗1, . . . , θ

∗
n)

Y = θ∗ + σZ,

where the components Z1, . . . , Zn of Z are assumed to have zero mean and unit variance.
It is commonly assumed that Z1, . . . , Zn are independent and identically distributed (i.i.d.)
but we work with the more general assumption of exchangeability in this chapter. A natural
estimator for θ∗ in this setting is the isotonic Least Squares Estimator (LSE), defined as

θ̂ := ΠMn(Y ) := argmin
θ∈Mn

‖Y − θ‖2
2,

where ‖ · ‖2 denotes the usual Euclidean norm on Rn andMn := {θ ∈ Rn : θ1 ≤ · · · ≤ θn} is
the monotone cone of length n nondecreasing sequences. As Mn is a closed convex cone, θ̂
as defined above exists uniquely; it can also be computed in O(n) time by the pool adjacent
violators algorithm (Brunk et al., 1972; Grotzinger & Witzgall, 1984).

One approach to evaluating the statistical properties of θ̂ is to measure the risk, or
expected deviation of θ̂ from θ∗. Indeed, the risk provides a convenient summary of the
accuracy of θ̂ and many papers on isotonic regression have focused on obtaining bounds
for the risk of θ̂ (see e.g., Bellec, 2018; Guntuboyina and Sen, 2018; Zhang, 2002). In this
chapter, we primarily consider the normalized mean squared error:

R(θ̂, θ∗) :=
1

n
Eθ∗‖θ̂ − θ∗‖2

2.

A key quantity in understanding R(θ̂, θ∗) is

δn(µ) := EZ∼µ‖ΠMn(Z)‖2
2,
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where µ denotes the law of the noise vector Z. Indeed, it is clear that

n

σ2
R(θ̂, θ∗) = δn(µ) when θ∗1 = · · · = θ∗n.

When θ∗1 ≤ · · · ≤ θ∗n are not all equal, let (A1, . . . , Ak) be the coarsest partition of {1, . . . , n}
such that θ∗ is constant on each Ai. It has been shown (Bellec, 2018; Fang & Guntuboyina,
2017; Oymak & Hassibi, 2016) that

n

σ2
R(θ̂, θ∗)

{
≤ δn1(µA1) + · · ·+ δnk(µAk) for every σ > 0

→ δn1(µA1) + · · ·+ δnk(µAk) as σ ↓ 0
, (2.1)

where µAi denotes the marginal distribution of (Zj)j∈Ai and ni = |Ai| is the length of the ith

block for all i = 1, . . . , k. We emphasize that (2.1) holds for arbitrarily dependent Z1, . . . , Zn
with zero mean and finite variance. It was also shown by Bellec (2018) that δn(µ) also bounds
the risk of the isotonic LSE in misspecified settings where θ∗ does not lie in Mn.

The quantity δn(µ) therefore crucially controls the risk of the isotonic LSE. The goal of
this chapter is to explicitly determine δn(µ) for every n ≥ 1 under the additional assumption
that Z is exchangeable. Specifically, under the assumption of exchangeability, we show in
Corollary 2.6 that, for all n,

δn(µ) = ρn+ (1− ρ)Hn, (2.2)

where Hn := 1 + 1
2

+ · · · + 1
n

is the nth harmonic number, ρ = Cor(Z1, Z2) is the pairwise
correlation, and σ2 = 1. Combined with (2.1), our result provides a sharp, non-asymptotic
bound on the risk of isotonic regression for any exchangeable noise vector. In the special
case when Z1, . . . , Zn are i.i.d. with zero mean and unit variance, ρ = 0 and thus (2.2) gives:

δn(⊗ni=1η) = Hn for every probability measure η. (2.3)

Here η is the common distribution of the independent variables Z1, . . . , Zn.
Previously, the formula (2.3) was known when η is the standard Gaussian probability

measure on Rn. This was observed by Amelunxen et al. (2014) who proved it by observing
first that when µ = ⊗ni=1η and η is the standard Gaussian measure, the formula

E‖ΠK(Z)‖2
2 =

n∑

k=0

k νk(K) (2.4)

holds for every closed convex cone K ⊆ Rn where νk(K) is the kth intrinsic volume of K.
When K = Mn is the monotone cone, the right hand side in equation (2.4) can be shown
to be equal to Hn by using the fact that the generating function s 7→ ∑n

k=0 s
kνk(Mn) can

be computed in closed form. Amelunxen et al. (2014) used the theory of finite reflection
groups (Coxeter & Moser, 2013) to obtain the exact expression for this generating function.
However, the exact expression for

∑n
k=0 s

kνk(Mn) can already be found in the classical
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literature on isotonic regression (see Theorem 2.4.2 in Robertson et al. (1988) or Section 8
of Sparre-Andersen (1954)).

The above proof does not work for non-Gaussian η mainly because the expression (2.4)
does not hold for general η. In fact, the best available result on δn(⊗ni=1η) for non-Gaussian
η is in equation (2.11) of Zhang (2002), who proved the asymptotic result:

δn(⊗ni=1η) = (1 + o(1))(1 + log n) as n→∞.

This bound gives the right behavior as the right hand side of equation (2.3) but only as
n→∞. We improve this result by proving for every n ≥ 1 that δn(⊗ni=1η) is always equal to
the nth harmonic number Hn for every probability measure η having mean 0 and variance 1.

We prove (2.2) by developing a precise characterization of the marginal distribution of
each individual component (ΠMn(Z))k of ΠMn(Z). Specifically, as long as Z is exchangeable,
we show in Theorem 2.2 that (ΠMn(Z))k has the same distribution as Z̄(k), the kth order

statistic of the running averages Z̄j =
Z1+···+Zj

j
. We prove Theorem 2.2 in Section 2.2,

using a characterization of the components of the isotonic LSE as the left-hand slopes of the
greatest convex minorant of the random walk with increments Z1, . . . , Zn. This result and
its continuous-time analogue may be of independent interest outside the study of isotonic
regression, so in Section 2.2 we also address consequences for the greatest convex minorant
of a stochastic process with exchangeable increments. The order statistics of the running
averages {Z̄k}nk=1 can be fairly complicated even when Z is Gaussian; however, Theorem 2.2
easily implies results such as (2.2). In Section 2.3, we detail some risk calculations for isotonic
regression and its variants which all follow from Theorem 2.2.

2.2 Main result

Let Sk =
∑k

i=1 Zi denote the partial sums for k = 1, . . . , n, started at S0 = 0. Identify the
random walk {Sk}nk=0 with its cumulative sum diagram S : [0, n]→ R, where S(k) = Sk for
integers k = 0, . . . , n and linearly interpolated between integers. Let C : [0, n] → R denote
the greatest convex minorant (GCM) of S, i.e. the greatest convex function that lies below
S. See Figure 2.1 for a depiction of the GCM of S. With this notation, we now recall the
graphical representation of the isotonic LSE as given in Theorem 1.2.1 of Robertson et al.
(1988).

Lemma 2.1. For any vector Z, the isotonic LSE ΠMn(Z) is given by the left-hand slopes
of the greatest convex minorant of the cumulative sum diagram. For all k = 1, . . . , n

(ΠMn(Z))k = C(k)− C(k − 1) = ∂−C(k).

For the remainder of this section let

∆k := ∂−C(k) = min
k≤v≤n

max
0≤u<k

Sv − Su
v − u (2.5)
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Figure 2.1: Solid blue curve is the cumulative sum diagram S of increments Z1, . . . , Zn;
dashed black curve is the greatest convex minorant C of S.

denote the left-hand slope of the GCM at k, so ∆ = (∆1, . . . ,∆n) is equal to ΠMn(Z) by
the lemma. In particular, when k = 1 we have ∆1 = min1≤v≤n

Sv
v

. When k = n, we have

∆n = max0≤u<n
Sn−Su
n−u , and if (Zn, . . . , Z1)

d
= (Z1, . . . , Zn) then ∆n

d
= max1≤u≤n

Su
u

. Our next

result generalizes this observation, showing that the kth slope ∆k is equal in distribution to
the kth smallest running average if Z is exchangeable.

Theorem 2.2. Suppose Z = (Z1, . . . , Zn) is exchangeable. Let Z̄k := 1
k

∑k
i=1 Zi denote the

kth running average for k = 1, . . . , n and let Z̄(1) ≤ · · · ≤ Z̄(n) denote their order statistics.
Then

∆k
d
= Z̄(k) (2.6)

marginally for all k = 1, . . . , n.

Proof. As before, let Sk denote the kth partial sum. Let M be the last argmin of the sequence
{Si}ni=0, and let N be the amount of time the walk is nonpositive N :=

∑n
i=1 1(Si ≤ 0). We

will use Corollary 11.14 of Kallenberg (2006), due to Sparre-Andersen, which says M
d
= N

as long as Z is exchangeable.
Note that the slope of the GCM switches from nonpositive to positive at time M , since

the horizontal line with intercept SM minorizes the GCM and touches it at time M . Hence,
no matter the sequence of increments Zi, there is the identity of events

(∆k ≤ 0) = (M ≥ k). (2.7)
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Also, for the time N that the walk is nonpositive, since Si ≤ 0 if and only if Z̄i ≤ 0, there
is the identity of events

(Z̄(k) ≤ 0) = (N ≥ k).

The equality in distribution M
d
= N then implies

P(∆k ≤ 0) = P(Z̄(k) ≤ 0).

If the sequence {Zi} is modified to {Zi − z} for some fixed z, the modified sequence is
exchangeable, and the values of ∆k and Z̄(k) for the modified sequence are just ∆k − z and
Z̄(k) − z. Applying the above identity to the modified sequence gives

P(∆k ≤ z) = P(∆k − z ≤ 0) = P(Z̄(k) − z ≤ 0) = P(Z̄(k) ≤ z).

So ∆k and Z̄(k) have the same cumulative distribution function, hence the same distribution.

The proof of Theorem 2.2 generalizes to the setting where S : [0, 1]→ R is a continuous-
time stochastic process. Knight (1996) showed that the analogous distributional identity

M
d
= N holds when S has exchangeable increments and S(0) = 0. Hence, by a similar

proof, we find that the slope ∆(p) of the greatest convex minorant of S at time p ∈ [0, 1] has
the same distribution as the pth percentile point of the occupation measure for the process
(S(t)

t
, 0 ≤ t ≤ 1). We record this result as the following corollary.

Corollary 2.3. Let S denote a real-valued càdlàg stochastic process on [0, 1] with exchange-
able increments, such that S(0) = 0. Define ∆(t) as the slope of the greatest convex minorant
of S at t, and let F : R→ [0, 1] denote the (random) cdf associated with the occupation mea-

sure of (S(t)
t
, 0 ≤ t ≤ 1),

F (x) = λ({t ∈ [0, 1] : S(t) ≤ tx}), (2.8)

where λ denotes Lebesgue measure. Then

∆(p) = inf
p≤v≤1

sup
0≤u<p

S(v)− S(u)

v − u
d
= F−1(p) (2.9)

marginally for all p ∈ [0, 1].

See Abramson et al. (2011) for a general study of convex minorants of random walks
and processes with exchangeable increments. In the special cases where S is a standard
Brownian motion or Brownian bridge on the unit interval, Carolan and Dykstra (2001) derive
the distribution of the slope ∆(p), jointly with the process S(p) and its convex minorant at
p, for a fixed value p ∈ [0, 1]. Given our corollary, their explicit formula for the slope ∆(p)
provides the distribution of F−1(p), giving new information about the occupation measure

of (S(t)
t
, 0 ≤ t ≤ 1) for Brownian motion and Brownian bridge. The distribution of the pth

percentile point of the occupation measure for (S(t), 0 ≤ t ≤ 1) has been obtained under
the same generality as Corollary 2.3: see the introduction of Dassios (2005) and references
therein.
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2.3 Consequences for isotonic regression

Since the identity of Theorem 2.2 holds marginally, it allows us to simplify expectations of
functions that are additive in the components of ΠMn(Z). By Lemma 2.1, the kth component
(ΠMn(Z))k = ∆k, which by Theorem 2.2 is equal in distribution to Z̄(k). Hence, as long as
Z is exchangeable,

n∑

k=1

Eh((ΠMn(Z))k) =
n∑

k=1

Eh(Z̄(k)) =
n∑

k=1

Eh(Z̄k). (2.10)

Taking h(x) = |x|p, we obtain our first corollary.

Corollary 2.4. Suppose Z = (Z1, . . . , Zn) is exchangeable. For p > 0,

E‖ΠMn(Z)‖pp =
n∑

k=1

E

∣∣∣∣∣
1

k

k∑

i=1

Zi

∣∣∣∣∣

p

, (2.11)

provided E|Z1|p <∞.

Remark 2.5. Viewed through its graphical representation, ∆k = C(k)−C(k−1) is the left-
derivative of the GCM C at k, so when the power p = 1, equation (2.11) yields the discrete
arc-length formula

n∑

k=1

E|C(k)− C(k − 1)| = E‖ΠMn(Z)‖1 =
n∑

k=1

1

k
E|Sk| (2.12)

Closely related to this formula is the identity of Spitzer and Widom (1961), which takes
Z̃1, . . . , Z̃n to be a sequence of i.i.d. random variables in R2 (or the complex plane C) with
finite variance. If S̃k =

∑k
i=1 Z̃i is the partial sum and L̃n is the length of the perimeter of

the convex hull conv(0, S̃1, . . . , S̃n), then

EL̃n = 2
n∑

k=1

1

k
E‖S̃k‖. (2.13)

These formulas connect the geometry of the convex hull of a random walk to the magnitudes
of the running means.

Consider the case when p = 2. Since Z is exchangeable, every pair of components has
the same correlation ρ. If we further assume Z1 has zero mean and unit variance, the right
hand side of equation (2.11) can be computed explicitly

E

(
1

k

k∑

i=1

Zi

)2

= ρ+
1− ρ
k

.

Summing over k yields our next result.
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Corollary 2.6. Suppose Z ∼ µ is an exchangeable random vector with zero mean, unit
variance, and pairwise correlation ρ. Then

δn(µ) = ρn+ (1− ρ)Hn.

This result should be contrasted with other distribution-free identities, namely

E‖Z‖2
2 = n and E‖Z̄n1n‖2

2 = 1,

provided Z has i.i.d. components with zero mean and unit variance. In particular, suppose
we observe Y = θ∗ + σZ where Z has i.i.d. components with zero mean and unit variance,
but it turns out that θ∗ = c1n is constant. If we know θ∗ is constant, we can estimate it
by a constant sequence Ȳ 1n and pay a price of σ2

n
in risk (normalized mean squared error).

If we know nothing about the structure of θ∗ and use θ̂ = Y , the risk σ2 is quite large by
comparison. The monotone sequence estimate resides in the middle, with a much smaller
risk of Hnσ2

n
and knowledge only about the relative order.

Theorem 2.2 characterizes the distribution of a component of the isotonic LSE θ̂ when
the underlying sequence θ∗ is constant. When θ∗ ∈Mn is not constant, Theorem 2.2 can be
applied to characterize the distribution of a component θ̂i in the low noise limit σ ↓ 0. In
this limit, the distribution depends only on flat regions of θ∗:

Corollary 2.7. Suppose Y = θ∗ + σZ, for some θ∗ ∈ Mn, and let θ̂ = ΠMn(Y ) denote the
isotonic LSE. Let (A1, . . . , Ak) be the coarsest partition of {1, . . . , n} such that θ∗ is constant
on each Aj, and suppose Z is exchangeable on each of these blocks. If an index i ∈ {1, . . . , n}
belongs to the jth block, then letting ti = i+ 1−mins∈Aj s and X = (Zs)s∈Aj , we have

θ̂i − θ∗i
σ

d→ X̄(ti) as σ ↓ 0. (2.14)

Proof. As σ ↓ 0, the ratio θ̂−θ∗
σ

tends to the directional derivative DZΠMn(θ∗). Lemma 4.6
in Zarantonello (1971) shows that this derivative exists and equals the projection of Z onto
the tangent cone TMn(θ∗). Hence

θ̂ − θ∗
σ
→ ΠTMn (θ∗)(Z) as σ ↓ 0. (2.15)

From the tangent cone computation in Bellec (2018), we have

(
ΠTMn (θ∗)(Z)

)
i

= (ΠMni (X))ti ,

where ni = |Aji |. Finally, by Theorem 2.2, (ΠMni (X))ti
d
= X̄(ti).

We explained in Section 2.1 how risk calculations when θ∗ = 0 generalize to MSE bounds
that are sharp in the low noise limit for arbitrary θ∗. For example, when θ∗ ∈ Mn has k
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constant pieces, then (2.1), Corollary 2.6 and the fact that Hl ≤ log(el) for every l ≥ 1
imply that

R(θ̂, θ∗) ≤ kσ2

n
log
(en
k

)
(2.16)

whenever Z1, . . . , Zn are i.i.d. with mean zero and unit variance. The bound (2.16) should be
compared with the risk of the structure-respecting estimator that averages over the constant
blocks and achieves a risk of exactly kσ2

n
when the blocks are all of size n

k
. If θ∗ ∈ Rn is

not necessarily inMn, then Corollary 2.6, together with the results of Bellec (2018), implies
that

R(θ̂, θ∗) ≤ inf
θ∈Mn

(
1

n
‖θ − θ∗‖2 + σ2k(θ)

n
log

(
en

k(θ)

))
,

where k(θ) is the number of constant pieces of the vector θ. These formulae (with the
leading constant of 1 in front of the kσ2

n
log en

k
term on the right hand side) were previously

only known when the distribution of Z1, . . . , Zn was standard Gaussian.
Define the Lp-risk of the isotonic LSE

R(p)(θ̂, θ∗) =
1

n
E‖θ̂ − θ∗‖pp

so that R(θ̂, θ∗) = R(2)(θ̂, θ∗). We can similarly employ Theorem 2.2 to explicitly calculate
the Lp-risk of the isotonic LSE θ̂ when θ∗ is constant and Z is Gaussian:

Corollary 2.8. Suppose Z ∼ N (0, In). Then for any p > 0,

E‖ΠMn(Z)‖pp = Hn,p/2E|Z1|p = Hn,p/2

√
2p

π
Γ

(
p+ 1

2

)
,

where Hn,m =
∑n

k=1
1
km

.

Proof. Note E
∣∣∣ 1
k

∑k
i=1 Zi

∣∣∣
p

=
(

2
k

)p/2 Γ( p+1
2 )√
π

and apply the theorem.

Corollary 2.8 should similarly be contrasted with the following identities when Z ∼
N (0, In):

E‖Z‖pp = nE|Z1|p and E‖Z̄1n‖pp = n1−p/2E|Z1|p

respectively. In particular, when p > 2, the bound Hn,p/2 <
∑∞

k=1
1

kp/2
< ∞ holds for all n,

which is to say E‖ΠMn(Z)‖pp is bounded when p > 2 whereas E‖Z‖pp grows without bound
as n grows.

When θ∗ is constant and Z ∼ N (0, In), the Lp risk of isotonic regression is

R(p)(θ̂, θ∗) =
Hn,p/2

n
σpE|Z1|p. (2.17)

When 1 ≤ p ≤ 2, Theorem 2.3 of Zhang (2002) shows an asymptotic result for the Lp risk
on constant θ∗ that agrees with equation (2.17).
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The continuous-time distributional identity in Corollary 2.3 applies to the asymptotic
distribution of the isotonic least squares estimator. A standard model for studying the
asymptotic behavior of isotonic regression is

θ∗k = f ∗
(
k

n

)

where f ∗ : [0, 1]→ R is nondecreasing. We observe Y , a noisy version of θ∗, and calculate θ̂
by projecting Y onto the monotone cone. The function estimate f̂ is defined by f̂

(
k
n

)
= θ̂k

and linearly interpolated between design points. Here, as before, the dependence on n in
θ∗ ∈ Mn is suppressed, but now we are interested in the behavior of isotonic least squares
f̂(p) at a fixed point p ∈ [0, 1] as n→∞.

Define the partial sum process S(n) : [0, 1] → R by S(n)(k/n) = Y1+···+Yk√
n

, linearly inter-
polated between design points. When the function f ∗ ≡ c is constant, the quantity

√
n(f̂(p)− f ∗(p))

is given by the left-derivative of the greatest convex minorant of S(n) at p. By the invariance
principle, this converges in distribution to the left-derivative of the greatest convex minorant
of standard Brownian motion B = (B(t), 0 ≤ t ≤ 1) at t0. This asymptotic result is well
known and a similar result was noted for the Grenander estimator by Carolan and Dykstra
(1999), where Brownian motion is replaced with a Brownian bridge. Corollary 2.3 relates

this asymptotic distribution to the percentile points of the occupation measure for (B(t)
t
, 0 ≤

t ≤ 1).
Finally, Corollary 2.6 on the projection onto Mn extends over to that of the set of

nonnegative monotone sequences Mn
+ = Mn ∩ Rn

+. Theorem 1 of Németh and Németh
(2012) observes that the projection of Z onto Mn

+ is given by ΠMn
+

(Z) = ΠMn(Z)+, the
element-wise positive part of the projection onto Mn. Hence the distributional identity
Theorem 2.2 yields a similar set of identities for nonnegative isotonic regression.

Corollary 2.9. For any exchangeable noise vector Z,

(ΠMn
+

(Z))k
d
= (Z̄(k))+ (2.18)

Provided E|Zi|p <∞,

E‖ΠMn
+

(Z)‖pp =
n∑

k=1

E

(
1

k

k∑

i=1

Zi

)p

+

, (2.19)

Furthermore, if Z is symmetric with unit variance, the generalized statistical dimension of
the monotone cone is

E‖ΠMn
+

(Z)‖2
2 =

ρn+ (1− ρ)Hn

2
, (2.20)

where ρ is the pairwise correlation.
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Proof. Equation (2.19) follows from equation (2.10) by taking h(x) = (x)p+. When Zi
d
= −Zi

is symmetric with unit variance,

E

(
1

k

k∑

i=1

Zi

)2

+

=
1

2
E

(
1

k

k∑

i=1

Zi

)2

=
1

2

(
ρ+

1− ρ
k

)
.

Summing over k yields equation (2.20).

Equation (2.20) is also shown by Amelunxen et al. (2014) in the special case Z ∼ N (0, In)
using the theory of finite reflection groups. The identity (2.19) allows us to show equa-
tion (2.20) for a much wider variety of noise vectors, and as before also allows us to obtain
relations for the expected Lp norms of the projection of the noise vector. All of our exact
formulae follow from the distributional identity in Theorem 2.2, which exploits the geometric
characterization of the isotonic LSE in Lemma 2.1. An interesting open question is whether
similar characterizations— such as for convex regression (Groeneboom et al., 2001)—may
yield exact non-asymptotic risk calculations in other shape-constrained estimation problems.
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Chapter 3

Sign-constrained precision matrix
estimation

3.1 Introduction

Consider the problem of estimating a p×p covariance matrix Σ∗ and its inverse Θ∗ := (Σ∗)−1

from an n × p data matrix X whose rows are independently distributed according to the
multivariate normal distribution N (0,Σ∗) with mean zero and covariance matrix Σ∗. The
maximum likelihood estimator (MLE) of Θ∗ is given by

Θ̃ := argmin
Θ∈Sp×p�0

{〈Θ, S〉 − log det Θ} , (3.1)

where Sp×p�0 denotes the set of all p × p symmetric, positive semi-definite (PSD) matrices,
〈Θ, S〉 := tr(ΘTS) denotes the Frobenius inner product, and S is the sample covariance
matrix, defined as

S := n−1XTX. (3.2)

It is well known that Θ̃ exists if and only if S is nonsingular, in which case Θ̃ = S−1. In
particular, in the high-dimensional setting where p > n, the MLE does not exist, since
the minimum in (3.1) is not finite. Slawski and Hein (2015) observed, however, that if the
optimizer in (3.1) is constrained to lie in the set of p× p positive semidefinite matrices with
nonpositive off-diagonal entries, then, with probability one, the optimum is well-defined and
attained for all n ≥ 2 regardless of the value of p. Specifically, let

Mp×p :=
{

Θ ∈ Sp×p�0 : Θjk ≤ 0 for j 6= k
}
,

and observe that it is the convex cone of symmetric M-matrices, an important class of
matrices appearing in many contexts (see, e.g., Berman & Plemmons, 1994, Chap. 6).
Slawski and Hein (2015) proved that the optimizer

Θ̂ := argmin
Θ∈Mp×p

{〈Θ, S〉 − log det Θ} , (3.3)
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exists uniquely as long as, in the observed sample, no two variables are perfectly positively
correlated (i.e., Sjk <

√
SjjSkk for all j 6= k) and no variable is constant (i.e., Sjj > 0 for all

j). Both conditions hold with probability one under the assumed Gaussian model for n ≥ 2,
and thus, unlike the unconstrained MLE in (3.1), the estimator (3.3) is well-defined even in
the high-dimensional regime.

The constrained MLE Θ̂ presents an elegant, tuning-free method for estimating precision
matrices which works for n ≥ 2 and all values of p under the assumption Θ∗ ∈ Mp×p.
Efficient algorithms for computing Θ̂ are given in Slawski and Hein (2015) and Lauritzen
et al. (2019). Note that the precision matrix having nonpositive off-diagonal entries Θ∗jk is

equivalent to nonnegative partial correlations −Θ∗jk/
√

Θ∗jjΘ
∗
kk (Bølviken, 1982). Examples of

practical covariance estimation problems with nonnegative partial correlations abound (see,
e.g., Agrawal et al., 2019; Lake & Tenenbaum, 2010; Slawski & Hein, 2015). More generally,
Karlin and Rinott (1983) showed that for the normal distribution the condition that the
precision matrix belongs to Mp×p is equivalent to multivariate total positivity of order two
(MTP2). MTP2 is a strong form of positive dependence (Colangelo et al., 2005) that has
been widely used in auction theory (Milgrom & Weber, 1982), actuarial sciences (Denuit
et al., 2006), and educational evaluation and policy analysis (Chade et al., 2014).

There is growing interest in Θ̂ in the graph signal processing literature (Egilmez et al.,
2017; Pavez et al., 2018; Pavez & Ortega, 2016), where M -matrices are known as Generalized
Graph Laplacians (GGL). Indeed, every graph Laplacian is a diagonally dominant M -matrix,
and conversely every M -matrix Θ ∈Mp×p can be viewed as a generalized graph Laplacian, in
the sense that it has a sparse edge-incidence factorization Θ = V V T, where V ∈ Rp×p(p+1)/2

has at most two nonzero entries per column, whereas positive semidefinite matrices that
have other sign patterns typically require dense factorizations (Boman et al., 2005). This
connection to nonnegative weighted graphs has led to a host of other application areas in
image processing and network analysis.

This chapter investigates the statistical properties of Θ̂ as an estimator of the unknown
precision matrix Θ∗ in the high-dimensional regime. Even though Θ̂ exists uniquely for
all n ≥ 2 regardless of the value of p, rigorous results have not yet been proved for the
accuracy of Θ̂ in the high-dimensional regime. In the classical low dimensional asymptotic
regime where p is fixed and n → ∞, Slawski and Hein (2015) apply standard results for

M -estimators to show consistency of Θ̂. More recently, Lauritzen et al. (2019) provide an

elegant perspective on Θ̂ and a bound on the support graph G(Θ̂) = {(j, k) : Θ̂jk < 0}, and
Wang et al. (2019) develop a consistent estimator of G(Θ∗).

The study of consistency and optimality properties of Θ̂ requires fixing an appropriate
loss function. Because Θ̂ is defined via maximum likelihood, it is natural to work with the
Stein loss :

Ls(Θ,Θ∗) :=
1

p
〈Θ,Σ∗〉 − 1

p
log det ΘΣ∗ − 1, (3.4)

which, up to scaling by p, is the Kullback-Leibler divergence between multivariate mean
zero normal distributions with precision matrices Θ and Θ∗ respectively. The Stein loss
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has a long history of application in covariance matrix estimation (Dey & Srinivasan, 1985;
Donoho et al., 2018; James & Stein, 1961; Ledoit & Wolf, 2018; Stein, 1975, 1986). In this
chapter, we work with the symmetrized Stein loss (alternatively known as the divergence
loss), defined as

Lssym(Θ,Θ∗) :=
Ls(Θ,Θ∗) + Ls(Θ∗,Θ)

2
=

1

2p
〈Θ−Θ∗,Σ∗ − Σ〉 , (3.5)

where Σ = Θ−1. Note that Lssym(Θ,Θ∗) is symmetric and 2Lssym(Θ,Θ∗) clearly dominates
both the Stein loss and the reversed Stein loss Ls(Θ∗,Θ) (which is also known as the entropy
loss). Properties of Lssym are further discussed in Section 3.2.

We use the 1/p scaling in the loss function (3.5) because, as explained by Ledoit and Wolf
(2018), this is necessary for consistency in the high-dimensional regime where the number of
variables p may be much larger than the sample size n. Indeed, in the simple case where Θ∗

is known to be diagonal, the natural estimator is the diagonal matrix Θ̂DIAG with diagonal
entries 1/Sjj, j = 1, . . . , p (where S is the sample covariance matrix defined in (3.2)). It is

easy to see that
〈

Θ̂DIAG −Θ∗,Σ∗ − Σ̂DIAG
〉

is of the order p/n which will be far from zero

in the high-dimensional regime where p > n.
We present results on the performance of Θ̂ in the symmetrized Stein loss in Section

3.2. Our main result in Theorem 3.1 implies that Lssym(Θ̂,Θ∗) converges to zero as long

as log p = o(n). This implies high-dimensional consistency of Θ̂. Moreover, the rate of

convergence is
√

log p
n

, which we prove in Theorem 3.2 is optimal in the minimax sense. Thus

Θ̂ is minimax optimal in the high-dimensional regime under the symmetrized Stein loss. Our
results provide rigorous support for the assertion that the nonpositive off-diagonal constraint
provides strong implicit regularization in the high-dimensional regime. In Theorem 3.4, we
also lower bound the loss Lssym(Θ̂,Θ∗) which implies that the

√
n rate is not an artifact of

our analysis even when the true precision matrix Θ∗ is diagonal.

High-dimensional consistency with the rate
√

log p
n

has appeared previously in many

papers on covariance and precision matrix estimation—see for instance Cai et al. (2011),
Ravikumar et al. (2011), Rothman et al. (2008), Sun and Zhang (2013), and Yuan (2010)
and Cai et al. (2016b) for a review of rates in structured covariance estimation. Most of
these results are for estimators that use explicit regularizers, such as the `1 penalty in the
Graphical Lasso (Banerjee et al., 2008; Friedman et al., 2008; Mazumder & Hastie, 2012),
which is crucially exploited by the proof techniques and assumptions employed in these pa-
pers. By contrast, the regularization induced by the assumption Θ∗ ∈ Mp×p is implicit
and we consequently use different arguments relying on careful use of the KKT conditions
underlying the optimization (3.3). Our analysis identifies a bound relating the entries of an
M -matrix to its spectrum, providing new insight into the simplifying structure of the convex
cone Mp×p.

The symmetrized Stein loss has the additional symmetry property of invariance under
inversion: Lssym(Σ̂,Σ∗) = Lssym(Θ̂,Θ∗) where Σ̂ := Θ̂−1. This means that Σ̂ is also a high-
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dimensionally-consistent estimator of Σ∗. The choice of the loss function is quite crucial
here. In Section 3.3, using the Perron-Frobenius theorem and a careful analysis of the entry-
wise positive part S+ of the sample covariance, we prove a negative result which shows that,
for the maximum eigenvalue, Σ̂ can be much worse as an estimator of Σ∗ compared to the
sample covariance matrix S. This result indicates that enforcing the sign-constraints can
exacerbate bias in the estimation of the top eigenvalue.

The chapter is organized as follows: Section 3.2 contains our main results establishing
optimality of Θ̂, Section 3.3 establishes suboptimality under the spectral norm, and Sec-
tion 3.4 has a discussion which touches upon some related issues including misspecification
(where Θ∗ 6∈ Mp×p), estimation of correlation matrices and connections to shape-restricted
regression. Finally Section 3.5 contains proofs of all the results of the chapter.

3.2 Symmetrized Stein loss: consistency and

optimality

This section contains our results on the high-dimensional consistency and optimality of Θ̂
under the symmetrized Stein loss Lssym defined in (3.5). We start by describing some basic
properties of Lssym.

The expected value of the objective in (3.3), 〈Θ,Σ∗〉 − log det Θ, agrees up to factors
depending only on Σ∗ with the Stein loss (3.4), which is also a matrix Bregman divergence
(Dhillon & Tropp, 2008), proportional to the Kullback-Leibler (KL) divergence between cen-
tered multivariate Gaussian distributions: 2

p
D(N (0,Σ)‖N (0,Σ∗)). It is well known that the

KL divergence is not symmetric. When the inputs to the divergence are reversed, the result-
ing Bregman divergence is also known as the entropy loss, Lent(Θ,Θ∗) := Ls(Θ∗,Θ). The
sum of these loss functions dominates each, and conveniently does not directly involve any
determinants. Following Ledoit and Wolf (2018), we define Lssym = Ls+Lent

2
to be the average

of the two loss functions. Commonly known as the symmetrized Stein loss or divergence loss,
Lssym is equal to the Jeffreys (1946) divergence between two centered multivariate Gaus-
sian distributions, divided by p. Definition (3.5) entails a number of useful and important
properties for the symmetrized Stein loss:

(i) (Nonnegativity) Lssym(Θ,Θ∗) ≥ 0, with equality if and only if Θ = Θ∗.

(ii) (Symmetry) Lssym(Θ,Θ∗) = Lssym(Θ∗,Θ).

(iii) (Invariance under inversion) Lssym(Θ,Θ∗) = Lssym(Σ,Σ∗).

(iv) (Invariance under congruent transformations) For all p× p nonsingular matrices P , we
have the scale-invariance property:

Lssym(Θ,Θ∗) = Lssym(PTΘP, PTΘ∗P ) (3.6)
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The symmetrized Stein loss thus induces a natural geometry on the space of PSD matrices—
see Moakher and Batchelor (2006) for a review and comparison to other geometries. We
emphasize that triangle inequality fails to hold for both Lssym and

√
Lssym. As a loss, Lssym

treats the dual problems of estimating the covariance matrix and the precision matrix equally.
It can also be shown that the symmetrized Stein loss is equivalent to the squared Frobenius
norm when the input matrices Θ and Θ∗ have bounded spectra.

In terms of the eigenvalues (λj)
p
j=1 of ΘΣ∗, the symmetrized Stein loss is simply the

goodness-of-fit measure

Lssym(Θ,Θ∗) =
1

p

p∑

j=1

(λj − 1)2

2λj
. (3.7)

This alternative representation provides further insight into the normalization of the loss (3.5)

with a factor of p. The symmetrized Stein loss is the expectation of the function λ 7→ (λ−1)2

2λ

with respect to the empirical spectral distribution of ΘΣ∗. This expectation measures how
far the spectrum of ΘΣ∗ deviates from a point mass at one, which is the spectrum of the
identity Ip. In asymptotic settings where p = p(n) → ∞ as n → ∞, a natural consistency
criterion checks whether this expectation converges to zero.

Our analysis of the symmetrized Stein loss Lssym(Θ̂,Θ∗) involves the maximum population
correlation between any two variables:

max
j 6=k

Σ∗jk√
Σ∗jjΣ

∗
kk

.

We assume that the above quantity is strictly less than 1 which is clearly necessary for Σ∗

to be nonsingular i.e., for Θ∗ to exist. Our bound on Lssym(Θ̂,Θ∗) will involve the quantity:

γ(Σ∗) :=

(
1−max

j 6=k

Σ∗jk√
Σ∗jjΣ

∗
kk

)−1

.

It is natural for γ(Σ∗) to enter the analysis in light of the existence result of Slawski and
Hein (2015) which states that the maximum sample correlation must be less than one in

order for the estimator Θ̂ to be well-defined. Note that γ(Σ∗) is the smallest γ ≥ 1 such that

max
j 6=k

Σ∗jk√
Σ∗jjΣ

∗
kk

≤ 1− γ−1 < 1. (3.8)

Because γ(Σ∗) is defined in terms of population correlations, it is scale-invariant. Note that
Lssym also has this scale invariance property (see (3.6)).

Theorem 3.1. Let S = n−1XTX denote the sample covariance matrix based on data matrix
X ∈ Rn×p with i.i.d. N (0,Σ∗) rows, where Θ∗ = (Σ∗)−1 ∈Mp×p. For all n ≥ c1γ

2(Σ∗) log p,
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the MLE Θ̂ defined in (3.3) satisfies

Lssym(Θ̂,Θ∗) ≤ c2γ(Σ∗)

√
log p

n
, (3.9)

with probability at least 1− c3p
−2. Here c1, c2, c3 are universal positive constants.

Theorem 3.1 states that Θ̂ is high-dimensionally consistent in the symmetrized Stein
loss Lssym as long as log p = o(n). We prove Theorem 3.1 in Section 3.5, deriving a basic
inequality from the first order optimality conditions for (3.3) and showing that concentration
of the intrinsic noise ‖S−Σ∗‖∞ is sufficient to control the basic inequality. Crucially, we use
the fact that every M -matrix Θ ∈Mp×p is up to diagonal scaling equivalent to a diagonally
dominant matrix (see Berman & Plemmons, 1994, Chap. 6, Property M34).

We emphasize that the result holds without additional assumptions on the underlying
precision matrix such as sparsity. Consistency in the symmetrized Stein loss is a strong
guarantee compared to the recent literature on optimal shrinkage of the sample covariance
S under high-dimensional asymptotics (Donoho et al., 2018; Ledoit & Wolf, 2018), where
the symmetrized Stein loss Lssym converges to a nonzero limit under the asymptotic regime
p/n → α > 0 as n → ∞. By contrast, for the constrained MLE the loss Lssym(Θ̂,Θ∗)
converges in probability to zero whenever log p = o(n).

Since the upper bound (3.9) depends only on the true precision matrix Θ∗ through the
population quantity γ(Σ∗), Theorem 3.1 actually bounds the worst case risk obtained from
the divergence loss over all M -matrices Θ∗ with γ(Σ∗) bounded. It is natural to question
whether the

√
n rate is improvable. Our next result shows that, in the high-dimensional

setting where p grows superlinearly in n, the minimax rate over the class of M -matrices with

γ(Σ∗) ≤ γ matches the
√

log p
n

rate from Theorem 3.1.

Theorem 3.2. Let X ∈ Rn×p have i.i.d. N (0,Σ∗) rows, and suppose the number of variables
p satisfies c1n

β ≤ p ≤ exp(c2n). For every γ > 1, we have

inf
Θ̆=Θ̆(X)

sup
Θ∗∈Mp×p

γ(Σ∗)≤γ

ELssym(Θ̆,Θ∗) ≥ cγ

√
log p

n
. (3.10)

Here c1, c2 > 0 and β > 1 are universal constants and cγ > 0 is a constant depending only
on γ.

Paired with Theorem 3.1, this result implies that Θ̂ is minimax optimal in the sym-
metrized Stein loss over M -matrices with correlations bounded away from one. Our proof
adapts the construction of Cai et al. (2016a), Theorem 4.1, which lower bounds the mini-
max risk in the spectral norm over a parameter set of sparse precision matrices of the form
I + εA, where ε depends on problem parameters p and n, and A is an adjacency matrix. A
key aspect of this approach is to allow for different perturbations over the rows and columns
of A, in order to recover the

√
n rate (Kim, 2020).
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The M -matrix constraint provides implicit regularization and is crucial for achieving the

minimax rate
√

log p
n

. If this constraint is dropped, it is impossible for any estimator to

achieve a rate better than
√

p
n

when p > n. This follows from the next result where we

prove a minimax lower bound of
√

p
n

for the Lssym loss function over the entire class Sp×p�0 of
positive semidefinite matrices when p > n. On the other hand, Mp×p is much larger than
diagonal matrices because the minimax rate of estimation over the class Dp×p+ of positive
diagonal matrices in the Lssym loss function is 1/n (this is also proved in the next result). In
summary, the class of M -matrices acts as a strong high-dimensional regularizer while being
considerably larger than the class of all positive diagonal matrices.

Proposition 3.3. Fix p and n > 2. The minimax risk in the symmetrized Stein loss over
diagonal precision matrices satisfies

inf
Θ̂=Θ̂(X)

sup
Θ∗∈Dp×p+

ELssym(Θ̂,Θ∗) � 1

n
. (3.11)

The minimax risk in the symmetrized Stein loss over PSD matrices satisfies

inf
Θ̂=Θ̂(S)

sup
Θ∗∈Sp×p�0

ELssym(Θ̂,Θ∗) & min

{
p

n
,

√
p

n

}
. (3.12)

Theorem 3.2 implies that the
√
n rate of Theorem 3.1 cannot be improved in worst case

over the entire class Mp×p. In the next result, we prove that the
√
n rate for Θ̂ cannot be

improved even when the truth Θ∗ lies in the class Dp×p+ of positive diagonal matrices. In

other words, this shows that Θ̂ does not adapt to the minimax rate over Dp×p+ .

Theorem 3.4. Suppose Θ∗ ∈ Dp×p+ is a positive diagonal matrix and c1p ≥
√
n. Then

Lssym(Θ̂,Θ∗) ≥ c1

2
√
n
, (3.13)

with probability at least 1 − 3p exp (−c2(n ∧ p)), where c1 and c2 are universal positive con-
stants.

3.3 Spectral norm: suboptimality

In this section, we prove a negative result which implies that Θ̂ and Σ̂ can be suboptimal for
estimating spectral quantities of Θ∗ and Σ∗ respectively. Consider the case when Σ∗ = Ip
and consider estimation of the top eigenvalue λmax(Σ∗) = 1. The performance of the sample
covariance matrix S is well understood. Indeed, in the asymptotic setting p/n → α > 0,
Geman (1980) proved that

λmax(S)→ (1 +
√
α)2,
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in probability as n→∞. This implies that S is inconsistent for the estimation of λmax(Σ∗)

when p/n converges to a positive constant. Our next result proves that Σ̂ = Θ̂−1 is also
inconsistent for estimating λmax(Σ∗) and, more interestingly, its performance is substantially
worse compared to S. Specifically, in the same asymptotic setting where p/n → α > 0, we
have

λmax(Σ̂)→∞ (3.14)

in probability as n → ∞. Thus the introduction of the sign constraints make the result-
ing covariance matrix estimator Σ̂ much worse compared to S for estimating the principal
eigenvalue. This should be contrasted with the high-dimensional minimax optimality results
from the previous section in the symmetrized Stein loss.

Theorem 3.5. Suppose Σ∗ = Ip and p ≥ 17. Then

λmax(Σ̂) ≥ 1 + c1
p√
n
, (3.15)

with probability at least 1− 3p exp (−c2(n ∧ p)), for some universal positive constants c1, c2.

Note that when p/n→ α > 0, the right hand side of (3.15) diverges to ∞ which proves
(3.14).

The proof of Theorem 3.5 is crucially based on following dual formulation to the con-
strained MLE (3.3) (see, e.g., Slawski & Hein, 2015):

Σ̂ = argmax
Σ∈Sp×p�0

Σ≥S,DΣ=DS

det Σ, (3.16)

where the second constraint Σ ≥ S is an entry-wise inequality. This fact and the well-
known observation that the inverse of an M -matrix is entry-wise nonnegative (see Berman

& Plemmons, 1994, Chap. 6, Property N38) together imply that Σ̂jk ≥ Sjk ∨ 0 for all j, k.
This allows us to prove Theorem 3.5 by a careful analysis of the entry-wise positive part
matrix S+ of S.

Theorem 3.5 implies minimax suboptimality of Σ̂ in the spectral norm ||| · |||2. To see this,
note that, for every K > 0, the sample covariance S satisfies the worst case risk bound

sup
Σ∗∈Sp×p�0

λmax(Σ∗)≤K

E|||S − Σ∗|||2 ≤ CK

(√
p

n
+
p

n

)
,

where C > 0 is a universal constant (see, e.g., Wainwright, 2019, Example 6.3). By contrast,
Theorem 3.5 implies

sup
Θ∗∈Mp×p

λmax(Σ∗)≤K

E|||Σ̂− Σ∗|||2 ≥ EΣ∗=KIp

[
λmax(Σ̂)−K

]
≥ cK

p√
n
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for n & log p. Hence Σ̂ is minimax suboptimal in the spectral norm for most choices of p
and n.

Theorem 3.5 also implies inconsistency in spectral norm for the precision matrix. Since
λmax(Σ̂) = 1

λmin(Θ̂)
, we have

λmin(Θ̂) ≤ 1

1 + c1α
√
n
,

with probability at least 1 − 3p exp (−c2(α ∧ 1)n), where α = p/n. As n → ∞, the upper

bound approaches zero: the minimum eigenvalue of Θ̂ poorly estimates that of Θ∗. We
record this as a separate corollary.

Corollary 3.6. Suppose Σ∗ = Ip and p = αn ≥ 17. Then

|||Θ̂−Θ∗|||2 ≥ 1− λmin(Θ̂) ≥ 1

1 + 1/(c1α
√
n)
, (3.17)

with probability at least 1− 3αne−c2n(α∧1). Hence, Θ̂ is inconsistent in the spectral norm as
n→∞ and p/n→ α.

3.4 Discussion

In this chapter, we establish the possibility of tuning-free estimation of a large precision
matrix Θ∗ based only on the knowledge that it is an M -matrix i.e., it has nonpositive off-
diagonal entries. Our main contribution is to identify a loss—namely, the symmetrized
Stein loss—in which Θ̂ is both high-dimensionally consistent and minimax optimal. As the
form (3.7) for the symmetrized Stein loss suggests, the quantity Lssym(Θ,Θ∗) is an average

measure of closeness across all of the eigenvalues. The estimator Θ̂ is inadequate, however,
for estimating the extreme eigenvalues when p is large relative to n, and our other main
result establishes that Σ̂ is minimax suboptimal in the spectral norm, even relative to the
usual sample covariance matrix S. For the remainder of this section, we discuss some aspects
that are naturally connected to our main results.

Misspecification. In practice, the assumption that all partial correlations are nonneg-
ative may not hold exactly. Slawski and Hein (2015) empirically evaluate the impact of

misspecification on the estimator Θ̂, defining the attractive part Θ• ∈ Mp×p of the pop-
ulation precision Θ∗ 6∈ Mp×p as the population analogue of the Bregman projection (3.3)
with S replaced by Σ∗. Under the symmetrized Stein loss, a straightforward extension of
Theorem 3.1 shows that Θ̂ targets the attractive part Θ• even under misspecification.

Theorem 3.7. Let S = n−1XTX denote the sample covariance based on X ∈ Rn×p with
i.i.d. N (0,Σ∗) rows. Define the attractive part Θ• ∈Mp×p of the model as

Θ• := argmin
Θ∈Mp×p

{〈Θ,Σ∗〉 − log det Θ} .
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For all n ≥ c1γ
2(Σ•) log p, the MLE Θ̂ defined in (3.3) satisfies

Lssym(Θ̂,Θ•) ≤ c2γ(Σ•)

√
log p

n
,

with probability at least 1− c3p
−2. Here c1, c2, c3 are universal positive constants.

Estimating the correlation matrix. One may also be interested, under the same
nonnegative partial correlations assumption, in estimating the population correlation matrix
Γ∗ := D

−1/2
Σ∗ Σ∗D

−1/2
Σ∗ and its inverse Ω∗ = (Γ∗)−1 = D

1/2
Σ∗ Θ∗D

1/2
Σ∗ (here DΣ∗ denotes the

diagonal matrix whose diagonal is equal to that of Σ∗). It is natural to use Ω̂ := D
1/2
S Θ̂D

1/2
S

to estimate Ω∗. One can check that Ω̂ satisfies

Ω̂ = argmin
Ω∈Mp×p

{〈Ω, R〉 − log det Ω} .

because the optimization problem is equivariant with respect to diagonal scaling (see Lau-
ritzen et al., 2019, Lemma 2.5). The high-dimensional consistency result of Theorem 3.1

also holds for Ω̂ as an estimator of the inverse correlation matrix Ω∗. This follows from an
argument analogous to the proof of Theorem 3.1, with the tail bound for ‖S−Σ∗‖∞ replaced
by the corresponding tail bound on ‖R− Γ∗‖∞ (see, e.g., Sun & Zhang, 2013, Lemma 19).

Non-Gaussian observations. We state Theorems 3.1 and 3.7 under the Gaussian
assumption for simplicity and to remain consistent with other results in this chapter. In
general, the upper bound depends on the tail behavior of ‖S − Σ∗‖∞—see Lemma 3.8. A
similar result holds when the rows of X are i.i.d. with σ-sub-Gaussian components. As
Ravikumar et al. (2011) note, estimators of the form (3.3) are motivated via maximum like-

lihood yet remain sensible for non-Gaussian X. For general X, the estimator Θ̂ is motivated
as a Bregman projection of S with respect to the Stein loss.

Modifying Θ̂. Although we focus on properties of the tuning-free estimator Θ̂, ad-
ditional processing such as thresholding Θ̂ or pre-processing the sample covariance S may
produce an estimator that is high-dimensionally consistent in the spectral norm. The tuning-
free covariance estimate Σ̂ may also prove more useful for spectral analysis when the true
covariance is a dense matrix. For instance, in the equicorrelation model where Σ∗ has unit
diagonal and every off-diagonal entry equal to r ∈ (0, 1), the entry-wise inequalities in (3.16)
may introduce less bias.

Related problems. Karlin and Rinott (1983), who pioneered the connection be-
tween M -matrices and MTP2, also considered repulsive models where the covariance matrix
Σ∗ ∈ Mp×p has nonpositive off-diagonal, in which case all marginal and partial correla-
tions are nonpositive. This also defines an interesting model class which may similarly
simplify estimation in high-dimensional problems. Note, however, that the constraint set
{Θ : Θ−1 ∈ Mp×p} of symmetric inverse-M matrices is nonconvex, presenting potential
difficulties for maximum likelihood estimation.

Connection to shape-restricted regression. As a subset of the p × p symmetric
positive-semidefinite matrices, the M -matricesMp×p form a closed, convex cone determined
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only by sign constraints. The sign constraints on the precision matrix are analogous to
a shape constraint in shape-restricted regression, enabling the use of likelihood techniques
without explicit regularization. In particular, one can define the Bregman projection Θ̂ of S
ontoMp×p (Lauritzen et al., 2019; Slawski & Hein, 2015). This work thus represents a first
foray into the study of shape constraints for high-dimensional precision matrix estimation,
inspired by results on regularization-free prediction in high-dimensional linear models via
nonnegative least squares (Slawski & Hein, 2013).

3.5 Proofs

3.5.1 Proofs of Theorems 3.1 and 3.7

We first introduce two lemmas needed in the proof of Theorem 3.1. Following previous
results on sparse precision matrix estimation (see, e.g., Cai et al., 2011; Ravikumar et al.,
2011; Sun & Zhang, 2013), we rely on concentration of the entry-wise maximum deviation
‖S −Σ∗‖∞ = maxj,k |Sjk −Σ∗jk| in the high-dimensional regime. A key technical tool in our
analysis is the following lemma, which follows from an application of Bernstein’s inequality.

Lemma 3.8. Jankova and Van De Geer, 2015, Lemma 6 Suppose X ∈ Rn×p has i.i.d.
N (0,Σ∗) rows and let S = n−1XTX. For any t > 2,

P

(
‖S − Σ∗‖∞ ≥ 2‖Σ∗‖∞

[√
2t log p

n
+
t log p

n

])
≤ 2

pt−2
.

Proof. Let α = ej and β = ek denote the standard basis vectors. Lemma 6 of Jankova and
Van De Geer (2015) provides

P

(
αT(S − Σ∗)β ≥ 2‖Σ∗‖∞

[√
2x

n
+
x

n

])
≤ 2e−x.

Taking a union bound over j ≤ k and setting x = log pt yields the claim.

The next lemma records a distinctive property of M -matrices, corresponding to the fact
that M -matrices are generalized diagonally dominant (Plemmons, 1977).

Lemma 3.9. Every M-matrix Θ ∈Mp×p satisfies ‖Θ‖1 :=
∑

i,j |Θij| ≤ 2tr(Θ).

Proof. Since Θ is symmetric PSD, there are vectors θ1, . . . , θp such that Θij = 〈θi, θj〉. More-
over, since Θ has nonpositive off-diagonal entries, 〈θi, θj〉 ≤ 0 for i 6= j. Hence

‖Θ‖1 =
∑

i

‖θi‖2
2 −

∑

i 6=j

〈θi, θj〉 = 2
∑

i

‖θi‖2
2 −

∥∥∥∥∥
∑

i

θi

∥∥∥∥∥

2

2

≤ 2
∑

i

‖θi‖2
2 = 2tr(Θ).
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An illustrative example is the one-parameter family of p × p symmetric matrices Ax =
(1 − x)Ip + x1p1

′
p (where 1p =

∑p
j=1 ej is the all ones vector) with unit diagonal and every

off-diagonal equal to x. Its eigenvalues are 1− x (with multiplicity p− 1) and 1 + (p− 1)x.

Thus Ax is PSD if and only if x ∈
[
− 1
p−1

, 1
]
, whereas Ax is an M -matrix if and only if

x ∈
[
− 1
p−1

, 0
]
. Finally, note ‖Ax‖1 = p + p(p − 1)|x| and tr(Ax) = p. This example shows

Lemma 3.9 is tight. For general PSD matrices, the element-wise `1-norm can be as large as
p times the trace, but for M -matrices it can be at most twice as large.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. For any positive diagonal matrix D ∈ Dp×p+ ,

Lssym(Θ̂(S),Θ∗) = Lssym(DΘ̂(S)D,DΘ∗D)

= Lssym(Θ̂(D−1SD−1), D−1Σ∗D−1),

where the first step uses the fact that Lssym is invariant under congruent transformations,
and the second step uses the scale-invariance of the program (3.3). With a sample covari-

ance S based on Gaussian observations, the loss Lssym(Θ̂,Θ∗) has the same distribution for

covariance matrices of the form {D−1Σ∗D−1}D∈Dp×p+
. In particular, taking D = D

1/2
Σ∗ , we

may assume without loss of generality that Σ∗ is normalized; i.e., Σ∗ has unit diagonal or
equivalently Σ∗ equals the population correlation matrix Γ∗.

Let f(Θ) = 〈Θ, S〉− log |Θ|. Since the estimator solves the constrained convex optimiza-

tion problem Θ̂ = arg minΘ∈Mp×p f(Θ), it is characterized by 〈∇f(Θ̂),Θ − Θ̂〉 ≥ 0, for all
Θ ∈Mp×p, where ∇f(Θ) = S −Θ−1. Hence

〈S − Σ̂,Θ∗ − Θ̂〉 ≥ 0.

Rearranging yields the basic inequality

Lssym(Θ̂,Θ∗) ≤ 1

2p

〈
S − Σ∗,Θ∗ − Θ̂

〉
.

Let A := ‖S − Σ∗‖∞. Using Hölder’s inequality, we have:

Lssym(Θ̂,Θ∗) ≤ A

2p

∥∥∥Θ∗ − Θ̂
∥∥∥

1
.

Now applying the triangle inequality and Lemma 3.9 to the element-wise `1-norm,

Lssym(Θ̂,Θ∗) ≤ A

p

(
tr(Θ∗) + tr(Θ̂)

)
.
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Since we have assumed without loss of generality that Σ∗ = Γ∗,

tr(Θ̂Σ∗) = tr(Θ̂) +
∑

j 6=k

Θ̂jkΓ
∗
jk ≥

(
1−max

j 6=k
Γ∗jk

)
tr(Θ̂)

p = tr(Θ∗Σ∗) = tr(Θ∗) +
∑

j 6=k

Θ∗jkΓ
∗
jk ≥

(
1−max

j 6=k
Γ∗jk

)
tr(Θ∗),

where we have again used Lemma 3.9, along with the facts that Θ̂jk and Θ∗jk are nonpositive
for j 6= k and Σ∗ ≥ 0 entry-wise (see Berman & Plemmons, 1994, Chap. 6, Property N38).
Combining the last three displays and using the characterization of γ(Σ∗) in (3.8), we get

Lssym(Θ̂,Θ∗) ≤ γ(Σ∗)A

p

(
p+ tr(Θ̂Σ∗)

)

≤ γ(Σ∗)A
(

3 + 2Lssym(Θ̂,Θ∗)
)
.

On the event E =
{

2γ(Σ∗)A ≤ 1
2

}
, we have Lssym(Θ̂,Θ∗) ≤ 6γ(Σ∗)A. Applying Lemma 3.8

with t = 4, the event E ′ =

{
A ≤ 2

√
8 log p
n

+ 8 log p
n

}
occurs with probability at least 1−2/p2.

To guarantee E ′ ⊂ E, we require

2

√
8 log p

n
+

8 log p

n
≤ 1

4γ(Σ∗)
,

which is equivalent to
log p

n
≤ 2 +

1

4γ(Σ∗)
−
√

4 + γ−1(Σ∗).

Using γ(Σ∗) ≥ 1, it is straightforward to check that the right hand side above is at least
1

72γ2(Σ∗)
. Hence, as long as n ≥ 72γ2(Σ∗) log p,

Lssym(Θ̂,Θ∗) ≤ 6γ(Σ∗)

(
2

√
8 log p

n
+

8 log p

n

)

with probability at least 1−2/p2. Since γ(Σ∗) ≥ 1, the
√

8 log p
n

dominates the 8 log p
n

term. In

particular, we have
√

8 log p
n
≤ 1

3
, so Lssym(Θ̂,Θ∗) ≤ 28γ(Σ∗)

√
2 log p
n

with probability at least

1− 2/p2.

Proof of Theorem 3.7. Since the attractive part Θ• is an M -matrix, from the first order
optimality conditions for Θ̂,

〈S − Σ̂,Θ• − Θ̂〉 ≥ 0.
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Using the first order optimality conditions for Θ• and the fact that Θ̂ ∈Mp×p,

〈Σ∗ − Σ•, Θ̂−Θ•〉 ≥ 0.

Adding these and rearranging yields the basic inequality

Lssym(Θ•, Θ̂) ≤ 1

2p
〈S − Σ∗,Θ• − Θ̂〉.

The rest of the proof proceeds as the proof of Theorem 3.1, substituting Θ∗ with Θ•.

3.5.2 Proof of Theorem 3.2

Proof of Theorem 3.2. As in Cai et al. (2016a, Proof of Theorem 4.1), we consider precision
matrices of the form

Θ =

[
Idp/2e εA
εAT Ibp/2c

]
, (3.18)

where A is a sparse binary matrix with k nonzero entries per row and at most 2k nonzero
entries per column, for some positive integer k and some ε to be chosen later. As long as
ε < 0 and 2k|ε| < 1, the matrix Θ is a diagonally dominant M -matrix. Its inverse is given
by the Neumann series

Σ = Θ−1 =
∞∑

m=0

(−ε)m
[

0 A
AT 0

]m

=
∞∑

m=0

ε2m

[
(AAT)m −εA(ATA)m

−εAT(AAT)m (ATA)m

]

From the last display, it is clear that DΣ ≥ Ip, so maxj 6=k Γjk ≤ maxj 6=k Σjk where Γ is
the correlation matrix corresponding to Σ. Furthermore, by triangle-inequality, the largest
off-diagonal entry of the top left diagonal block is at most

∥∥∥∥∥
∞∑

m=0

ε2m(AAT)m

∥∥∥∥∥
∞,off

≤
∞∑

m=1

ε2m
∥∥(AAT)m

∥∥
∞,off

,

where we use that the first term m = 0 has zero off-diagonal. This yields

∥∥(AAT)m
∥∥
∞,off
≤ |||(AAT)m|||2 ≤ (2k)2m.

By similar bounds on the other blocks of Σ, it can be shown that

max
j 6=k

Γjk ≤ max
j 6=k

Σjk ≤
2k|ε|

1− (2kε)2
.
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A simple sufficient condition to guarantee γ(Σ) ≤ γ is thus 4k|ε| ≤ (1− γ−1) ∧ 1
2
.

By the Gers̆gorin circle theorem, the spectrum of Θ lies in the range [0, 2]. Further
constraining the supremum in (3.10) to λmax(Θ) ≤ 2, by Cai and Zhou (2012, Eq. (54)), we
have:

inf
Θ̆

sup
Θ∈Mp×p

γ(Σ)≤γ

ELssym(Θ̆,Θ) ≥ 1

4
inf
Θ̆

sup
Θ∈Mp×p

γ(Σ)≤γ
λmax(Θ)≤2

E
‖Θ̆−Θ‖2

F

p
,

so it suffices to lower bound the minimax rate in the Frobenius norm.
Now let A denote the set of all dp/2e× bp/2c binary matrices with k nonzero entries per

row and at most 2k nonzero entries per column, and B = {0, 1}dp/2e. Finally, let e denote a
vector of ones of length bp/2c. Given A ∈ A and b ∈ B, the matrix (b⊗ e) ◦A has the same
shape as A, where the jth row is nonzero if and only if bj = 1. Let

F =

{
ΘA,b =

[
Idp/2e ε(b⊗ e) ◦ A

ε(bT ⊗ eT) ◦ AT Ibp/2c

]
: A ∈ A, b ∈ B

}
.

As we have shown, F ⊂ {Θ ∈ Mp×p : γ(Σ) ≤ γ, λmax(Θ) ≤ 2}. By Cai and Zhou, 2012,
Lemma 3

inf
Θ̆

max
Θ∈F

E
‖Θ̆−Θ‖2

F

p
≥ 1

32


 min
A,A′∈A,b,b′∈B

b6=b′

‖ΘA,b −ΘA′,b′‖2
F

H(b, b′)



[

min
1≤j≤dp/2e

‖P̄j,0 ∧ P̄j,1‖
]
,

where H denotes the Hamming distance and ‖P̄j,0 ∧ P̄j,1‖ denotes the total variation affinity
between the measures P̄j,0 and P̄j,1, where P̄j,i is the uniform mixture over N (0,Θ−1

A,b) over
all A ∈ A and all b ∈ B such that bj = i.

For the first term, fix A,A′ and b 6= b′. For j such that bj 6= b′j, if say bj = 0, the jth row
of (b⊗ e) ◦ A is zero and the jth row of (b′ ⊗ e) ◦ A′ has k nonzero entries. Hence

min
A,A′∈A,b,b′∈B

b 6=b′

‖ΘA,b −ΘA′,b′‖2
F

H(b, b′)
≥ min

A,A′∈A,b,b′∈B
b 6=b′

2
∑

j:bj 6=b′j
kε2

H(b, b′)
= 2kε2.

In particular, we have shown

inf
Θ̆

sup
Θ∈Mp×p

γ(Σ)≤γ

ELssym(Θ̆,Θ) ≥ ckε2 min
1≤j≤dp/2e

‖P̄j,0 ∧ P̄j,1‖.

Finally, the same argument of (Cai et al., 2016a, proof of Lemma 4.5) with ε = c′
√

log p
n

can be used to show min1≤j≤dp/2e ‖P̄j,0 ∧ P̄j,1‖ ≥ c′′ > 0, yielding

inf
Θ̆

sup
Θ∈Mp×p

γ(Σ)≤γ

ELssym(Θ̆,Θ) ≥ cc′′kε2 = cγε.
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3.5.3 Proof of Proposition 3.3

Proof of Proposition 3.3. Let Σ̃DIAG = c ·DS. Since S11 = 1
n

∑n
i=1 X

2
i1 for Xi1

iid∼ N (0,Σ∗11),

E
[
Lssym(Θ̃DIAG,Θ∗)

]
=

1

2
E
[

Σ∗11

cS11

+
cS11

Σ∗11

− 2

]
=

1

2

[
1

c

n

n− 2
+ c− 2

]
.

The minimum is achieved at c =
√

n
n−2

, but taking c = 1 suffices to prove the minimax

rate (3.11) is upper bounded by C
n

.

Now consider a prior G on Dp×p+ over which the components Θ∗jj are i.i.d. Lower bound
the minimax risk by the Bayes risk with respect to G:

inf
Σ̂

sup
Σ∗∈Dp×p+

ELssym(Σ̂,Σ∗) ≥ inf
Σ̂

EGLssym(Σ̂,Σ∗)

= inf
Σ̂11

EGLssym(Σ̂11,Σ
∗
11).

If G = [Gamma(a, b)]⊗n, such that Θ∗jj
iid∼ Gamma(a, b) under G, then combining with the

likelihood we have:

S11 | Θ∗11 ∼ Gamma(a, b).

By conjugacy, the posterior is readily seen to be

Θ∗11 | S11 = s ∼ Gamma
(
a+

n

2
, b+

ns

2

)
.

Thus, for n > 2,

EG [Lssym(d,Σ∗11) | S11 = s] =
1

2
EG
[
dΘ∗11 +

Σ∗11

d
− 2 | S11 = s

]

=
d

2

a+ n/2

b+ ns/2
+

1

2d

b+ ns/2

a+ n/2− 1
− 1.

This is minimized at d∗ = b+ns/2√
(a+n/2)(a+n/2−1)

, giving a Bayes risk of

EG [Lssym(d∗,Σ∗11)] =

√
a+ n/2

a+ n/2− 1
− 1.

Letting a ↓ 0, we find

inf
Σ̂

sup
Σ∗∈Dp×p+

ELssym(Σ̂,Σ∗) ≥
√

1 +
2

n− 2
− 1

=
1

n− 2
+ o(n−1),
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as n→∞. This proves the minimax rate (3.11) on Dp×p+ .
To prove the lower bound (3.12) on Sp×p�0 , place an inverse Wishart prior Σ∗ ∼ W−1(Σ0, ν)

on the covariance matrix. By conjugacy,

Σ∗ | S ∼ W−1(Σ∗,Σ0 + nS, ν + n).

As long as ν + n > p+ 1, the posterior loss can be written in closed form as

E
[
Lssym(Θ̂,Θ∗) | S

]
=

1

2p

[
(ν + n)tr(Σ̂(Σ0 + nS)−1) +

tr(Θ̂(Σ0 + nS))

ν + n− p− 1
− 2p

]
,

which is minimized at Θ̂ =
√

(ν + n)(ν + n− p− 1)(Σ0 + nS)−1, yielding a Bayes risk of

E
[
Lssym(Θ̂,Θ∗) | S

]
=

√
ν + n

ν + n− p− 1
− 1,

independent of Σ0. Setting ν = p+ 1,

inf
Θ̂=Θ̂(S)

sup
Θ∗�0

ELssym(Θ̂,Θ∗) ≥
√

1 +
p+ 1

n
− 1,

Finally, use
√

1 + x− 1 ≥ (
√

2− 1) (x ∧√x) for any x ≥ 0.

3.5.4 Proof of Theorem 3.4

Proof of Theorem 3.4. This proof uses Theorem 3.5 which is proved in the next subsection.
Since Σ∗ ∈ Dp×p+ , as in the proof of Theorem 3.1 we have

Lssym(Θ̂(S),Θ∗) = Lssym
(

Θ̂(D
−1/2
Σ∗ SD

−1/2
Σ∗ ), Ip

)
.

In particular, due to scale invariance of both the estimator and the loss, the symmetrized
Stein loss Lssym(Θ̂,Θ∗) has the same distribution for all diagonal matrices Σ∗ ∈ Dp×p+ . We
thus assume with no loss of generality that Σ∗ = Ip.

Let f(t) = t+ t−1 − 2 for t > 0. By (3.7) and nonnegativity of the function f ,

Lssym(Θ̂, Ip) =
1

p

p∑

j=1

f(λj(Θ̂)) ≥ f(λmax(Θ̂))

p
.

For t > 1, f ′(t) > 0, so by Theorem 3.5,

Lssym(Θ̂, Ip) ≥
1

p
f

(
1 + c1

p√
n

)
=

c1√
n

[
1− 1

1 + c1
p√
n

]
,

with probability at least 1−3p exp (−c2(n ∧ p)). If c1p ≥
√
n, this implies Lssym(Θ̂, Ip) ≥ c1

2
√
n
,

completing the proof.
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3.5.5 Proof of Theorem 3.5

The most technically involved part of the proof is a lower bound on the row sums of the
positive part S+ of the sample covariance matrix, which we include as a separate lemma.

Lemma 3.10. Under the conditions of Theorem 3.5,

p∑

j=1

(S+)pj ≥ 1 + c0
p√
n
,

with probability at least 1− 3 exp (−c1(n ∧ p)), for some universal positive constants c0, c1.

We give the proof of Theorem 3.5 assuming the above lemma and then prove the lemma
subsequently.

Proof of Theorem 3.5. Since Σ̂ is an inverse M -matrix, it is entry-wise nonnegative; i.e.,
Σ̂ ≥ 0. Combining this with the first constraint Σ̂ ≥ S in the dual formulation (3.16), we

have that Σ̂ ≥ S+ ≥ 0, where S+ is the entry-wise positive part of the sample covariance
matrix S. The Perron-Frobenius theorem Berman and Plemmons, 1994, Corollary 1.5 gives

λmax(Σ̂) ≥ λmax(S+).

Thus, we want to show that λmax(S+) is more severely biased than λmax(S). To this end,
we apply another standard result from the spectral theory of nonnegative matrices Berman
and Plemmons, 1994, Theorem 2.35:

λmax(S+) ≥ min
k

∑

j

(S+)jk.

By Lemma 3.10,
∑

j(S+)jk ≥ 1 + c0
p√
n

with probability at least 1− 3e−c1(n∧p) for each fixed
k, so by a union bound,

min
k

∑

j

(S+)jk ≥ 1 + c0
p√
n

with probability at least 1− 3pe−c1(n∧p). Combining the last three displays gives the desired
lower bound on λmax(Σ̂).

We now prove the key lemma on the row sums of S+.

Proof of Lemma 3.10. For u > 0, write

P

{
p∑

j=1

(S+)pj ≤ 1 + u

}
≤ P {Spp ≤ 1− u}+ P

{∑

j<p

(Spj)+ ≤ 2u

}
.
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To bound the first term, note that nSpp ∼ χ2
n and the following standard chi-squared lower

tail bound (see e.g., Laurent and Massart (2000, inequality (4.4))):

P
{
χ2
n

n
≤ 1− u

}
≤ exp

(−nu2

4

)
(3.19)

gives

P {Spp ≤ 1− u} ≤ exp

(
−nu

2

4

)
. (3.20)

To bound the second term, notice that conditionally on Xip, i = 1, . . . , n,

Spj, j = 1, . . . , p− 1

∣∣∣∣Xip, i = 1, . . . , n
i.i.d∼ N

(
0,

1

n2

n∑

i=1

X2
ip

)
.

Thus, conditionally on Xip, i = 1, . . . , n, we can write Spj = AZj for j = 1, . . . , p− 1 where

A2 :=
1

n2

n∑

i=1

X2
ip and Z1, . . . , Zp−1

i.i.d∼ N(0, 1).

We can therefore write (using the notation P| for probability conditioned on Xip, i = 1, . . . , n)

P|
{∑

j<p

(Spj)+ ≤ 2u

}
= P|

{∑

j<p

(Zj)+ ≤
2u

A

}

= P|
{

1

p− 1

∑

j<p

((Zj)+ − c) ≤
2u

(p− 1)A
− c
}
,

where c := E(Z1)+ = (2π)−1/2 is a universal constant. We now note that

(z1, . . . , zp−1) 7→ 1

p− 1

∑

j<p

(zj)+

is a Lipschitz function with Lipschitz constant (p− 1)−1/2. Thus by the usual concentration
inequality for Lipschitz functions of Gaussian random vectors (see, e.g., Wainwright, 2019,
Theorem 2.26), we obtain

P|
{

1

p− 1

∑

j<p

((Zj)+ − c) ≤
2u

(p− 1)A
− c
}
≤ exp

(
−(p− 1)

2

(
c− 2u

(p− 1)A

)2
)
,

assuming that c > 2u/(A(p− 1)). In particular, for c > 4u/(A(p− 1)), we get

P|
{

1

p− 1

∑

j<p

((Zj)+ − c) ≤
2u

(p− 1)A
− c
}
≤ exp

(
−(p− 1)c2

8

)
.
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We have thus proved

P|
{∑

j<p

(Spj)+ ≤ 2u

}
≤ exp

(
−(p− 1)c2

8

)
+ I {c ≤ 4u/(A(p− 1))} .

Taking an expectations on both sides of this expression, we obtain

P

{∑

j<p

(Spj)+ ≤ 2u

}
≤ exp

(
−(p− 1)c2

8

)
+ P

{
A ≤ 4u

(p− 1)c

}
.

Note now that n2A2 ∼ χ2
n and thus

P
{
A ≤ 4u

(p− 1)c

}
= P

{
χ2
n

n
− 1 ≤ 16u2n

(p− 1)2c2
− 1

}
.

We now make the choice u = (p−1)c

4
√

2
√
n
, which gives (via (3.19))

P
{
A ≤ 4u

(p− 1)c

}
= P

{
χ2
n

n
− 1 ≤ −1

2

}
≤ exp

(
− n

16

)
.

We have thus proved

P

{∑

j<p

(Spj)+ ≤
(p− 1)c

2
√

2
√
n

}
≤ exp

(
−(p− 1)c2

8

)
+ exp

(
− n

16

)
.

Combining this with (3.20) and using c = (2π)−1/2, we obtain

P

{
p∑

j=1

(S+)pj ≤ 1 +
(p− 1)

8
√
πn

}
≤ exp

(
−(p− 1)2

256π

)
+ exp

(
−p− 1

16π

)
+ exp

(
− n

16

)
.

For p ≥ 17 the first term is of lower order; i.e., exp
(
− (p−1)2

256π

)
≤ exp

(
−p−1

16π

)
.
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Chapter 4

Shrinkage for multivariate,
heteroscedastic data

4.1 Introduction

Consider a d-dimensional (d ≥ 1), heteroscedastic normal observation model

Xi | θ∗i
ind∼ N (θ∗i ,Σi), with θ∗i

iid∼ G∗, for i ∈ {1, . . . , n}, (4.1)

where (Σi)
n
i=1 is a known sequence of d × d positive-definite covariance matrices, and the

underlying mean vectors (θ∗i )
n
i=1 are additionally assumed to be drawn from a common prior

G∗, where G∗ belongs to the collection P(Rd) of all probability measures on Rd. In settings
where G∗ is known, model (4.1) fully specifies a Bayesian model; this chapter studies the
common empirical Bayes setting where G∗ must be estimated. The main goal of the chap-
ter is to nonparametrically estimate G∗ and the sequence (θ∗i )

n
i=1 from the observed data

(Xi,Σi)
n
i=1.

Empirical Bayes methods for the normal sequence model (4.1) have been studied exten-
sively in the univariate, homoscedastic setting where d = 1 and Σi ≡ σ2 (see, e.g., Efron
(2012, 2014), Efron and Morris (1972a, 1972b, 1973a, 1973b), James and Stein (1961), and
Morris (1983) as well as Johnstone (2019) for a manuscript on estimation in Gaussian se-
quence models). Numerous methods extend empirical Bayes to the univariate, heteroscedas-
tic case (see Banerjee et al., 2021; Jiang et al., 2011; Jiang, 2020; Tan, 2016; Weinstein et al.,
2018; Xie et al., 2012, and references therein). Relatively little attention has been given to
the general case of the present chapter.

Model (4.1) naturally arises in the analysis of astronomy data, where often a calibrated
measurement error distribution comes attached to each observation, and typically these
errors are heteroscedastic (Kelly, 2012); also see e.g. Akritas and Bershady (1996), Hogg
et al. (2010), Anderson et al. (2018). The first part of model (4.1) indicates that the target
sequence (θ∗i )

n
i=1 has, due to measurement error, been corrupted by additive, zero-mean
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Gaussian noise, i.e.

Xi = θ∗i + εi, where εi
ind∼ N (0,Σi), for i = 1, . . . , n.

Interestingly, the Σi’s above, which typically differ across i, are known in many applications
where the measurement process is well-characterized. In many situations it is assumed that
θ∗i is itself random and independent of εi for all i. Although each observation has a different
error distribution, the n observations are tied together by the assumption that the θ∗i ’s are
i.i.d. from some distribution G∗, yielding model (4.1). By allowing for arbitrary prior dis-
tributions G∗ ∈ P(Rd), model (4.1) captures a range of important structural assumptions
on the underlying sequence (θ∗i )

n
i=1: for instance, the clustering problem (where the terms of

(θ∗i )
n
i=1 take on at most k∗ distinct values) corresponds to discrete G∗, and sparse modeling

(where most of the (θ∗i )
n
i=1 are zero) corresponds to G∗({0}) ≈ 1. The model also accom-

modates more complex manifold-like structures (see e.g. Figure 4.1) as well as substantially
more heterogeneous sequences (e.g. G∗ heavy tailed).

Our motivating example for model (4.1) involves the construction of a precise stellar color-
magnitude diagram. A color-magnitude diagram (CMD) is a scatter plot of stars, displaying
their absolute magnitude (luminosity) versus color (surface temperature) to provide a cross-
sectional view of stellar evolution. The continued expansion of available stellar measurements
has made purely statistical models such as model (4.1) increasingly attractive for denoising.
One common approach, known as Extreme Deconvolution (XD) (Bovy et al., 2011), assumes

G∗ =
K∑

j=1

α∗jN (µ∗j , V
∗
j ) (4.2)

and estimates the parameters (α∗j , µ
∗
j , V

∗
j )Kj=1 via the Expectation-Maximization (EM) algo-

rithm with split-and-merge operations designed to avoid local optima. For instance, Ander-
son et al. (2018) applied XD to build a low-noise CMD with n ≈ 1.4 million de-reddened
stars from the Gaia TGAS catalogue. The XD assumption (4.2) that the prior G∗ is it-
self a mixture of K-Gaussians has a number of drawbacks. Although the class of Gaussian
location-scale mixtures is flexible for large K, the choice of K requires tuning; violations of
assumption (4.2) for fixed K induce bias in the estimation. To our knowledge, no theoretical
results for the statistical properties of XD are available, making it difficult to quantify the
misspecification error. Moreover, the class of all probability distributions of the form (4.2)
is nonconvex for finite K, so even split-and-merge techniques employed within EM do not
guarantee convergence to the global maximizer of the likelihood.

To avoid these difficulties, we extend the Kiefer and Wolfowitz (1956) nonparametric
maximum likelihood estimator (NPMLE) to incorporate multivariate and heteroscedastic

errors. An NPMLE is any Ĝn ∈ P(Rd) which maximizes the marginal likelihood of the ob-
servations (Xi)

n
i=1. Marginally, the observations are independent, and the ith observation Xi

is distributed according to a Gaussian location mixture with density

fG∗,Σi(x) :=

∫
ϕΣi(x− θ) dG∗(θ), for x ∈ Rd, (4.3)
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where ϕΣi(x) := 1√
det(2πΣi)

exp
(
−1

2
xTΣ−1

i x
)

denotes the density of N (0,Σi). Hence an

NPMLE is any maximizer

Ĝn ∈ argmax
G∈P(Rd)

1

n

n∑

i=1

log fG,Σi(Xi). (4.4)

In contrast to the parametric model used in XD, the nonparametric domain P(Rd) is convex,

so Ĝn solves a convex optimization problem, and tools from convex optimization may be
leveraged to find principled approximations to Ĝn (Kim et al., 2020; Koenker & Mizera,
2014).

Given an estimate Ĝn of the priorG∗, empirical Bayes imitates the optimal Bayes analysis,
known as the oracle (Efron, 2019). If G∗ were known, optimal denoising of θ∗i would be
achieved through the posterior distribution θ∗i | Xi. It is well known, for instance, that the
oracle posterior mean

θ̂∗i := EG∗ [θ∗i | Xi] , where θ∗i ∼ G∗ and Xi | θ∗i ∼ N (θ∗i ,Σi) (4.5)

minimizes the squared error Bayes risk

EG∗‖di(Xi)− θ∗i ‖2
2

over all measurable functions di : Rd → Rd. The NPMLE (4.4) yields a fully data-driven,
empirical Bayes estimate of the oracle posterior mean via

θ̂i := EĜn [θ∗i | Xi] , where θ∗i ∼ Ĝn and Xi | θ∗i ∼ N (θ∗i ,Σi). (4.6)

Figure 4.1 shows the d = 2 dimensional dataset of Anderson et al. (2018), where each
observation has a known error distribution and may be modeled as multivariate normal after
a suitable transformation. The noise in the raw CMD of Figure 4.1 obscures many known
features of stellar evolution, rendering the raw CMD unreliable for downstream parallax
inference. The right panel of Figure 4.1 displays the empirical Bayes posterior means (θ̂i)

n
i=1

based on the NPMLE. The substantial shrinkage of our method reveals many recognizable
features of the CMD, such as the red clump and a narrow red giant branch in the upper-right
region of the plot, as well as the binary sequence tail distinct from the main sequence tail in
the bottom-center region. The NPMLE Ĝn and corresponding posterior means (θ̂i)

n
i=1 offer

a powerful approach to shrinkage estimation under minimal assumptions.
The idea of using the NPMLE to estimate a prior distribution, due to Robbins (1950),

has seen a resurgence in recent years (Deb et al., 2021; Dicker & Zhao, 2016; Efron, 2019;
Feng & Dicker, 2018; Gu & Koenker, 2016; Jiang, 2020; Jiang & Zhang, 2009, 2010; Kim
et al., 2020; Koenker & Gu, 2017; Koenker & Mizera, 2014; Polyanskiy & Wu, 2020; Saha
& Guntuboyina, 2020a). These advancements, taken together, have begun to establish the
NPMLE as a formidable approach to shrinkage estimation both in theory and in practice.
All this prior work has focused on either the univariate setting d = 1 or the homoscedastic
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Figure 4.1: A noisy color-magnitude diagram (CMD) corresponding to the observations Xi

in model (4.1), with corresponding fully-nonparametric denoised estimates θ̂i in the right
panel. To avoid overplotting, we display a subsample of n = 105 stars.

setting Σi ≡ Σ, however. Our work extends the NPMLE to the practically important and
more general setting of multivariate and heteroscedastic errors, uncovering a number of
important differences.

Basic properties of the NPMLE that are well-understood in the univariate, homoscedas-
tic setting (Lindsay, 1995) have not received careful attention in more complex settings. We

verify in Lemma 4.1 that a solution Ĝn exists for every instance of the optimization prob-
lem (4.4), and we record the first-order optimality conditions characterizing the solution set.

Similar to the univariate, homoscedastic setting, there exists a solution Ĝn which is discrete
with at most n atoms, and the sequence of fitted values L̂ ≡ (L̂1, . . . , L̂n) = (fĜn,Σi(Xi))

n
i=1

is unique, i.e. every solution Ĝn has the same sequence of fitted likelihood values L̂.
An important contribution of Lemma 4.1 is our reinterpretation of the characterizing sys-

tem of inequalities in terms of a natural ‘dual’ mixture density ψ̂n. Specifically, ψ̂n is a het-
eroscedastic, n-component mixture density—a convex combination of Gaussian bumps cen-
tered at the datapoints N (Xi,Σi) with weights inversely proportional to L̂i for i = 1, . . . , n—

such that the support of every NPMLE Ĝn is contained in the set of the global maximizers
of ψ̂n. This observation has a number of important consequences that we explore in detail in
Section 4.2; in particular, tools from algebraic statistics for studying the modes of Gaussian
mixtures (Améndola et al., 2020; Ray & Lindsay, 2005) translate directly into results on
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the support set. We leverage this connection to establish that Ĝn is not necessarily unique
when d > 1, even in the homoscedastic case. This finding is distinctive from the univariate,
homoscedastic case where it is known that (4.4) has a unique solution for every problem in-
stance (Lindsay & Roeder, 1993). Our counterexample in Lemma 4.2 appears to be new and
seems to invalidate prior claims of strict concavity of the log-likelihood (Koenker & Gu, 2017;
Marriott, 2002). Whereas the fitted values L̂ are always unique, our counterexample also
demonstrates that the empirical Bayes posterior means (θ̂i)

n
i=1 are not necessarily unique.

In light of the non-uniqueness of Ĝn, a natural question is whether there exist non-discrete
solutions: we rule out this possibility in Corollary 4.3, however, showing every solution is
indeed discrete with a finite number of atoms.

The problem of computing a solution Ĝn is complicated by the presence of multivariate,
heteroscedastic errors. The main difficulty in general is that the NPMLE solves an infinite-
dimensional optimization problem. Since Ĝn may be taken to be discrete with at most n
atoms, a solution can in principle be found with a finite mixture model. In particular,
defining the set of discrete distributions with at most k ≥ 1 atoms,

Pk(Rd) =

{
k∑

j=1

wjδaj :
∑

j

wj = 1, w ≥ 0, aj ∈ Rd, j = 1, . . . , k

}
,

maximum likelihood solutions over Pn(Rd) are also NPMLEs. Hence, the EM algorithm can
be applied to optimize (wj, aj)

n
j=1, as first observed by Laird (1978), though EM over dis-

crete distributions is prohibitively slow for moderately large n and suffers from the same
nonconvexity issue as XD. Many algorithms (Böhning, 1985; Lesperance & Kalbfleisch,
1992; Liu & Zhu, 2007; Wang, 2007) have been proposed for finding approximate solu-
tions to the optimization problem (4.4); Koenker and Mizera (2014) identified a convex,
finite-dimensional, highly scalable approximation. Instead of maximizing the log-likelihood
of the data 1

n

∑n
i=1 log fG,Σi(Xi) over G ∈ Pn(Rd), the idea is to maximize the log-likelihood

over P(A), the collection of all probability measures supported on a finite set A ⊂ Rd.
If A has m > 0 elements, then P(A) is isometric to the m − 1 dimensional simplex
∆m−1 := {w ∈ Rm

+ :
∑

j wj = 1}, and maximizing the likelihood corresponds to optimiz-
ing over the mixing proportions w, which is a convex optimization problem. When d = 1,
it is straightforward to see that Ĝn is supported on the range of the data [X(1), X(n)], so
Koenker and Mizera (2014) proposed taking A to discretize this range. Jiang and Zhang
(2009, Proposition 5) bounded the discretization error in d = 1 dimension, establishing that
optimizing the weights w via EM can lead to a good approximation once m � (log n)

√
n.

Dicker and Zhao (2016) further justified the discretization scheme in d = 1 dimension by

showing the discretized NPMLE is statistically indistinguishable from Ĝn once the analyst
uses at least m = b√nc atoms.

The discretization approach naturally extends to multivariate, heteroscedastic settings,
but to our knowledge, no principled recommendations are available for choosing A ⊂ Rd in
general. Feng and Dicker (2018) recommended taking A to be a grid over a compact region
containing the data. We address the key questions of how to choose this compact region and
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how the discretization error depends on the fineness of the grid. For choosing a compact
region to discretize, a natural desideratum is that the region should contain the support
of Ĝn. To this end, in Corollary 4.3 we present compact support bounds on the NPMLE in
terms of the data (Xi,Σi)

n
i=1. When d = 1 our support bounds reduce to the range of the

data, reaffirming the original suggestion of Koenker and Mizera (2014), and when d > 1 but
the errors are homoscedastic, it suffices to discretize the convex hull of (Xi)

n
i=1. Interestingly,

with multivariate and heteroscedastic errors, the support of the NPMLE can lie outside the
convex hull of (Xi)

n
i=1, so a different region known as the ridgeline manifoldM of (Xi,Σi)

n
i=1

is needed. Fortunately, this regionM⊂ Rd is compact, and the NPMLE over P(M) agrees
with the NPMLE over P(Rd). This justifies the choice of A as a δ > 0 cover of M, and
in Proposition 4.5, we verify that as δ ↓ 0, the log-likelihood of the discretized NPMLE
approaches that of the NPMLE. We prove a quantitative bound on the gap for fixed δ,
providing some guidance on how the discretization error depends on the fineness of the grid.

Our principled and efficient method of computation facilitates simulation studies assess-
ing the performance of the empirical Bayes estimate θ̂i in a setting where we can actually
compare to the oracle Bayes estimate θ̂∗i . Figure 4.2 illustrates the method on simulated
data. The means θ∗i were drawn i.i.d. from a circle of radius two, and the data Xi | θ∗i were

drawn according to (4.1) using a variety of diagonal covariance matrices Σi =

[
σ2

1,i 0
0 σ2

2,i

]
,

taking each σ2
j,i ∈ (1/2, 3/4). Visually, it is clear that the empirical Bayes estimates improve

upon the observations by shrinking towards the underlying circle; the corresponding mean
squared errors were 1

n

∑n
i=1 ‖θ̂i − θ∗i ‖2

2 = 0.87 and 1
n

∑n
i=1 ‖Xi − θ∗i ‖2

2 = 1.46, respectively.
The oracle, which minimizes the mean squared error in expectation, attained an error of
1
n

∑n
i=1 ‖θ̂∗i − θ∗i ‖2

2 = 0.84. While the oracle cannot be computed in practice because G∗ is
unknown, this value sets a benchmark in simulations to which we may compare the perfor-
mance of bona fide estimators. The empirical Bayes estimates not only track well with this
benchmark; the individual estimates also track remarkably well with the oracle. In our sim-
ulation, the regret—defined as the mean squared error between the estimator (θ̂i)

n
i=1 and the

oracle (θ̂∗i )
n
i=1—was 1

n

∑n
i=1 ‖θ̂i− θ̂∗i ‖2

2 = 0.03. Whereas θ̂i is a function of the observed data,

the oracle θ̂∗i makes optimal use of the unknown prior G∗, making the similarity between the
two especially striking.

This striking similarity between θ̂i and θ̂∗i affirms the empirical Bayes adage that “large
data sets of parallel situations carry within them their own Bayesian information” (Efron &
Hastie, 2016). However, the setting of Figure 4.2 is complicated by the fact the situations
are not directly parallel, in that each observation Xi has a distinct error distribution. Even
in heteroscedastic settings, the extent to which we glean prior information for the purpose of
denoising is captured by the empirical Bayes regret 1

n

∑n
i=1 ‖θ̂i− θ̂∗i ‖2

2. Theorem 4.8 develops
a detailed profile of the finite-sample regret properties of the NPMLE for denoising. We
show that under certain tail conditions on G∗ the regret is bounded by a rate that is nearly
parametric in n, i.e. 1

n
up to logarithmic multiplicative factors. The regret still converges at a

slower, nonparametric rate under less structured conditions, where G∗ may have heavy tails.
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Figure 4.2: Toy data of size n = 1, 000 and d = 2. Top: observations Xi (left) were generated

by adding heteroscedastic Gaussian errors to the underlying means θ∗i
iid∼ G∗ (right), generated

IID uniformly from a circle of radius 2. Our discrete estimate Ĝn of the prior is shown in
red over the prior G∗ in black. Bottom: a comparison of oracle Bayes θ̂∗i (left) based on
knowledge of the prior distribution G∗ and empirical Bayes θ̂i (right), a function of the
observed data.

Furthermore, when G∗ possesses finer structure, such as the clustering problem where G∗ is
a discrete measure with k∗ atoms, we prove that the regret is bounded from above by k∗

n
up

to logarithmic multiplicative factors in n. The clustering case is particularly remarkable, as
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the NPMLE is completely tuning-free, with no knowledge of k∗, yet Ĝn performs essentially
as well as any estimator which knows the number of clusters k∗. Thus, Theorem 4.8 demon-
strates that the NPMLE effectively discovers structure when available and also effectively
learns when structure is unavailable. Theorem 4.8 generalizes the regret bounds of Saha and
Guntuboyina (2020a) and Jiang (2020) who analyzed the homoscedastic Σi ≡ Σ setting and
the univariate d = 1 setting, respectively. These papers in turn built upon Jiang and Zhang
(2009) who studied the univariate, homoscedastic setting.

A key ingredient in the analysis of the regret is a more explicit representation of the
estimator (θ̂i)

n
i=1 and oracle (θ̂∗i )

n
i=1. The oracle posterior mean (4.5) has the following alter-

native expression, known as Tweedie’s formula (Banerjee et al., 2021; Dyson, 1926; Efron,
2011; Robbins, 1956):

θ̂∗i = Xi + Σi
∇fG∗,Σi(Xi)

fG∗,Σi(Xi)
. (4.7)

Similarly, our plug-in estimate can be written as

θ̂i = Xi + Σi

∇fĜn,Σi(Xi)

fĜn,Σi(Xi)
. (4.8)

Tweedie’s formula clarifies that under model (4.1) the posterior means only depend on the
prior G∗ via the marginal likelihood fG∗,Σi(Xi) and its gradient. Jiang and Zhang (2009)
first leveraged this observation to relate the empirical Bayes regret to the problem of es-
timating the marginal density. In heteroscedastic problems, there are n different marginal
densities, (fG∗,Σi)

n
i=1, to estimate, and corresponding estimators (fĜn,Σi)

n
i=1. We show in The-

orem 4.6 and Corollary 4.7 that the NPMLE achieves similar adaptive rates in the density
estimation problem under an appropriate average Hellinger distance across all i = 1, . . . , n
estimands (fG∗,Σi)

n
i=1.

Whereas most recent work has focused on properties of Ĝn for density estimation and
denoising, the NPMLE is potentially much more generally applicable as a plug-in estimate
of the prior. To expand our understanding of its applicability, we present the first analysis of
the deconvolution error for the NPMLE. Whereas density estimation captures the problem
of describing the observations (Xi)

n
i=1, deconvolution is the equally natural problem of inter-

preting the infinite-dimensional parameter G∗. We study the accuracy of the NPMLE under
a Wasserstein distance W2(Ĝn, G

∗). The Wasserstein distance is particularly useful for this

problem since Ĝn and G∗ are typically mutually singular; in particular, G∗ may be abso-
lutely continuous whereas Ĝn is always discrete. The Wasserstein distance will be discussed
in detail in Section 4.3. We show in Theorem 4.10 that Ĝn attains the minimax rate of decon-
volution, which happens to be a very slow, logarithmic rate 1

logn
. Inspired by the richness of

the density estimation and denoising results, we hint at some of the adaptation properties of
the NPMLE under the Wasserstein loss; Theorem 4.12 shows that when G∗ = δµ is a point
mass distribution, the Wasserstein rate improves dramatically to n−1/4 up to logarithmic
factors.
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The rest of the chapter is organized as follows: Section 4.2 systematically addresses
basic properties of the NPMLE, including existence, discreteness, and non-uniqueness; Sec-
tion 4.2.2 gives a full account of the approximate computation of NPMLEs. Section 4.3
establishes finite-sample risk bounds on the accuracy of Ĝn as an estimator of G∗ for the
purposes of density estimation, denoising and deconvolution. In Section 4.4, we apply the
method to astronomy data to construct a fully data driven color-magnitude diagram of 1.4
million stars and compare our method to extreme deconvolution where it has previously been
applied (Anderson et al., 2018). We also apply the method to chemical abundance data for
a smaller subset of stars that has previously been analyzed by Ratcliffe et al. (2020). Sec-
tion 4.5 concludes with some discussion of future work. The proofs are in Section 4.6.

4.2 Computational properties

4.2.1 Characterization and basic properties

In this section, we establish some basic properties of solutions to the nonparametric maximum
likelihood problem (4.4), including existence, non-uniqueness, discreteness of solutions Ĝn,
invariance under certain transformations, and bounds on the support. These results provide
a foundation both for computing Ĝn (Section 4.2.2) and for understanding its statistical

properties (Section 4.3). Our first result extends the well-known characterization of Ĝn

for univariate, homoscedastic errors (Lindsay, 1995, Theorems 18-21) to our more general
setting.

Lemma 4.1. Problem (4.4) attains its maximum: there exists a discrete solution Ĝn with
at most n atoms, and the vector L̂ ≡ (L̂1, . . . , L̂n) = (fĜn,Σi(Xi))

n
i=1 of fitted likelihood values

is unique. Moreover, Ĝn ∈ P(Rd) solves (4.4) if and only if

D(Ĝn, ϑ) ≤ 0 for all ϑ ∈ Rd, where D(G, ϑ) :=
1

n

n∑

i=1

ϕΣi(Xi − ϑ)

fG,Σi(Xi)
− 1.

The support of any Ĝn is contained in the zero set Z := {ϑ : D(Ĝn, ϑ) = 0}; the zero set
Z is equal to the set of global maximizers of the n-component, heteroscedastic dual mixture
density

ψ̂n(ϑ) :=
n∑

i=1

(
L̂−1
i∑n

ι=1 L̂
−1
ι

)
ϕΣi(Xi − ϑ).

We prove Lemma 4.1, along with all results in this section, in Section 4.6.1. The first
statement of the lemma guarantees the existence of a discrete solution, which we typically

write as Ĝn =
∑k̂

j=1 ŵjδâj (here ŵj ≥ 0,
∑

j ŵj = 1 and âj ∈ Rd), with k̂ ≤ n providing

an upper bound on the complexity of at least one solution. This implies that Ĝn may be
taken to be the maximum likelihood solution to a k̂-component, heteroscedastic Gaussian
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mixture model where k̂ is selected in a data dependent manner. Since finite mixture models
are nested by the number of components and k̂ ≤ n, we may also say in general that Ĝn

is the maximum likelihood solution to an n-component, heteroscedastic Gaussian mixture
model.

The bound k̂ ≤ n is tight: for each n ≥ 1, there are sequences of observations (Xi)
n
i=1

and covariances (Σi)
n
i=1 such that the smallest number of components k̂ of any solution Ĝn

to (4.4) is precisely n (see, e.g., Lindsay, 1995, p. 116). However, in practice, the number of
components is typically much smaller than n. For instance, in the univariate, homoscedastic
case, Polyanskiy and Wu (2020) established a much stronger bound of k̂ = OP (log n) under
certain conditions on the prior distribution G∗.

The last part of Lemma 4.1 states that the atoms of Ĝn occur at the global maximizers
of the n-component Gaussian mixture ψ̂n, which has component distributions of the form
N (Xi,Σi) for i = 1, . . . , n with weights inversely proportional to fitted likelihoods L̂. Results
on the modes of Gaussian mixtures (e.g. Améndola et al., 2020; Dytso et al., 2019; Ray &
Lindsay, 2005) thus provide information about the support of the NPMLE; in particular,
our next two results exploit this connection to yield novel results on the NPMLE.

In the univariate d = 1 and homoscedastic setting Σi ≡ σ2, it is additionally known
that (4.4) has a unique solution Ĝn for all observations X1, . . . , Xn (Lindsay & Roeder,
1993). This means that, for every dataset X1, . . . , Xn and every variance level σ2 > 0, there

is a unique probability measure Ĝn ∈ P(R) such that L̂i = fĜn,σ2(Xi) for all i, where L̂ is the
unique vector of optimal likelihoods from Lemma 4.1. We observe, however, that uniqueness
of the solution Ĝn may not hold when d > 1, even with isotropic covariances Σi ≡ σ2Id.

Lemma 4.2. Let d = 2, n = 3 and X1 = (0, 1), X2 = (
√

3
2
,−1

2
), X3 = (−

√
3

2
,−1

2
). Then (4.4)

with data (Xi)
3
i=1, covariances Σi ≡ σ2I2 and σ2 = 3/(log 256) has infinitely many solutions

of the form

Ĝn = αδ0 + (1− α)
1

3

3∑

i=1

δXi/2

where α ∈ [0, 1].

Figure 4.3 illustrates the counterexample given in Lemma 4.2. A key observation in the
proof of Lemma 4.2 is that the dual mixture ψ̂n = fH,σ2I2 can be written explicitly as a ho-

moscedastic mixture with uniform mixing distribution H = 1
3

∑3
i=1 δXi over the observations

(Xi)
3
i=1. This set-up closely follows a construction, due to Duistermaat (see Améndola et al.,

2020), exhibiting an isotropic, homoscedastic Gaussian mixture with more modes than com-
ponents. Duistermaat used the same component locations Xi but took σ2 = 0.53 to obtain
an example of a three-component mixture of isotropic, homoscedastic Gaussians such that
the mixture has four modes. By specifically choosing σ2 = 3

log 256
≈ 0.54, the height of the

mixture ψ̂n = fH,σ2I2 is equal at all four modes, i.e. all four modes are global maximizers,
and the modes are located at {X1/2, X2/2, X3/2, 0}. By Lemma 4.1 any NPMLE must be



CHAPTER 4. SHRINKAGE FOR MULTIVARIATE, HETEROSCEDASTIC DATA 47

supported on these modes. Representing the fitted values L̂ = (fĜn,σ2I2
(Xi))

3
i=1 by a prob-

ability measure Ĝn =
∑3

j=1 ŵjδXj/2 + ŵ4δ0 supported on the global modes is equivalent to

finding a set of weights ŵ ∈ R4
+ such that

∑4
j=1 ŵj = 1 and ŵ solves the under-determined

linear system L̂ = Aŵ, where A is a 3× 4 matrix given by

Aij =

{
ϕσ2I2(Xi −Xj/2) j ≤ 3

ϕσ2I2(Xi) j = 4.

Finally, we also note that although the fitted likelihoods fĜn,σ2I2
(Xi) are unique, the posterior

means θ̂i in this example differ for the solutions Ĝn given in Lemma 4.2.

Figure 4.3: Level sets of the dual mixture density ψ̂n = fH,σ2I2 where n = 3 and H =
1
3

∑3
i=1 δXi is uniform over the vertices of the larger equilateral triangle 4X1X2X3. With

σ2 = 3
log 256

, the dual mixture density ψ̂n has four global modes.

Although the NPMLE searches over all probability measures G ∈ P(Rd) supported on Rd,
it is useful algorithmically to reduce the search space to probability measures supported
on a compact subset of Rd. By Lemma 4.1, to restrict the support of the NPMLE it
suffices to bound the maximizers Z of the n-component Gaussian mixture ψ̂n. Ray and
Lindsay (2005, Theorem 1) showed that all critical points of a Gaussian mixture ψ̂n(ϑ) =
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∑n
i=1

(
L̂−1
i∑n

ι=1 L̂
−1
ι

)
ϕΣi(Xi − ϑ) belong to the ridgeline manifold

M :=

{
x∗(α) : α ∈ Rn

+,
n∑

i=1

αi = 1

}
, where

x∗(α) :=

(
n∑

i=1

αiΣ
−1
i

)−1 n∑

i=1

αiΣ
−1
i Xi.

(4.9)

In general, the ridgeline manifoldM is a compact subset of Rd which does not depend on the

weights
(

L̂−1
i∑n

ι=1 L̂
−1
ι

)n
i=1

. In the univariate case d = 1, the rigdeline manifoldM = [X(1), X(n)]

is simply the range of the data, so the univariate NPMLE is constrained to be supported
on this range. In the multivariate setting, we may further simplifyM depending on certain
shape restrictions on the covariance matrices.

Corollary 4.3. Every solution to (4.4) is discrete with a finite number of atoms, supported
on the ridgeline manifold M defined in (4.9). Depending on the values of (Σi) we further
bound the support as follows:

(i) (Homoscedastic) If Σi = Σ for all i, or if Σi = ciΣ are proportional up to a se-
quence (ci) of positive scalars, the ridgeline manifold M is the convex hull of the data
conv({X1, . . . , Xn}).

(ii) (Diagonal Covariances) If Σi is a diagonal matrix for every i, the ridgeline manifoldM
is contained in the axis-aligned minimum bounding box of the data

d∏

j=1

[
min

i∈{1,...,n}
Xij, max

i∈{1,...,n}
Xij

]
,

where Xi = (Xi1, . . . , Xid) for all i.

(iii) (General Covariances) Let k ≥ k > 0 be chosen such that kId � Σi � kId for all i,
where A � B means B −A is a symmetric positive semidefinite matrix. Choose r > 0
and x0 ∈ Rd such that ‖Xi − x0‖2 ≤ r for all i. Then the ridgeline manifold M is
contained in the ball

Bκr(x0) :=
{
y ∈ Rd : ‖y − x0‖2 ≤ κr

}

where κ = k/k.

The first part of Corollary 4.3 in general gives the smallest possible convex body over
which the support of Ĝn can be constrained independently of {Σi}. To see that the first
part is tight, consider a fixed set of observations (Xi)

n
i=1 and isotropic covariance matrices
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Σ = σ2Id; as σ is made arbitrarily small, the support of Ĝn approaches the set of observa-
tions (Xi)

n
i=1 (Lindsay, 1995). Therefore, in general the convex hull is the smallest convex

body containing the support in the homoscedastic setting and more generally the setting of
proportional covariance matrices. By contrast, the convex hull of the data is in general too
small to capture the support of Ĝn in the heteroscedastic setting. Figure 4.4 presents one
example with diagonal covariances where the support of Ĝn is pushed towards the corners
of the minimum axis-aligned bounding box of the data. Thus, the above discussion and
Figure 4.4 indicate that both parts (i) and (ii) of Corollary 4.3 give the tightest possible
convex support bounds in their respective special cases.

Figure 4.4: Left: An example of observations X1 = (0, 1), X2 = (0,−1), X3 = (1, 0), and

X4 = (−1, 0) (blue points) with diagonal covariances Σ1 = Σ2 =

[
5 0
0 .05

]
and Σ3 = Σ4 =

[
.05 0
0 5

]
(dashed ellipses), where the NPMLE is supported on atoms a1, . . . , a4 (red points)

well outside the convex hull of the data, and near the corners of the minimum axis-aligned
bounding box. Right: The mixture ψ̂n(ϑ) = 1

4

∑4
i=1 ϕΣi(Xi−ϑ) only has modes at the atoms

a1, . . . , a4, so no NPMLE is supported within the convex hull of the data.

We close this section with a brief discussion on how the NPMLE behaves under certain
simple transformations of the data (Xi,Σi)

n
i=1. Given a map T : Rd → Rd, let T#G ∈ P(Rd)

denote the pushforward of G ∈ P(Rd) given by T#G(B) = G(T−1(B)), for any Borel set
B ⊆ Rd. In other words, if V ∼ G, then T#G is the distribution of T (V ).

Lemma 4.4. Fix a dataset (Xi,Σi)
n
i=1, a point x0 ∈ Rd and a d × d orthogonal matrix

U0. Consider the transformed dataset (X ′i,Σ
′
i)
n
i=1 where Σ′i = U0ΣiU

T
0 and X ′i = T (Xi) for
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i = 1, . . . , n, with T (x) = U0x+ x0. Then

fT#G,Σ
′
i
(X ′i) = fG,Σi(Xi)

for all i = 1, . . . , n and all G ∈ P(Rd).

Lemma 4.4 is a straightforward consequence of the change of variables formula, but it has
a number of useful corollaries. In particular, if Ĝn ∈ P(Rd) is an NPMLE for the dataset

(Xi,Σi)
n
i=1, then T#Ĝn is an NPMLE for the modified dataset (X ′i,Σ

′
i)
n
i=1, and the fitted

likelihood values are the same, i.e.

fT#Ĝn,Σ
′
i
(X ′i) = fĜn,Σi(Xi),

for all i = 1, . . . , n. Thus, an NPMLE Ĝn =
∑k̂

j=1 ŵjδâj is equivariant under translations

T (y) = y + x0: if every observation is shifted by some fixed x0 ∈ Rd, then the modified

NPMLE T#Ĝn =
∑k̂

j=1 ŵjδâj+x0 simply shifts every atom by x0. Similarly, the NPMLE
is equivariant under orthogonal transformations, which explains why the fitted likelihood
values are all equal in the rotationally symmetric toy datasets presented in Figure 4.3 and
Figure 4.4.

4.2.2 Grid approximation

The NPMLE solves a convex optimization problem (4.4) that is infinite-dimensional in the
sense that the decision variable G ranges over all probability measures on Rd. Many numer-
ical methods for approximately computing the NPMLE have been considered—including
EM (Laird, 1978), vertex direction and exchange methods (Böhning, 1985), semi-infinite
methods (Lesperance & Kalbfleisch, 1992), constrained-Newton methods (Wang, 2007), and
hybrid methods (Böhning, 2003; Liu & Zhu, 2007)—typically described for the special case of
univariate and homoscedastic errors. In this section, we discuss our strategy for computing
the NPMLE as well as the challenges of scaling the computation to large datasets.

We follow the approach of Koenker and Mizera (2014), who approximated the infinite-
dimensional problem by constraining the support of G to a large finite set. For a nonempty,
closed set A ⊆ Rd, define a support-constrained NPMLE as any solution

ĜAn ∈ argmax
G∈P(A)

1

n

n∑

i=1

log fG,Σi(Xi), (4.10)

where P(A) denotes the set of probability measures supported onA. In particular, Ĝn = ĜRd
n

by definition, and by Corollary 4.3 we may write Ĝn = ĜMn for a compact subsetM defined
explicitly in terms of the data.

We now describe our strategy for choosing the discretization set A. Fix δ > 0. Let H
denote a covering of M by closed hypercubes of width δ, i.e.

H =
{
xj + [−δ/2, δ/2]d : j ∈ {1, . . . , J}

}
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for some set of points x1, . . . , xJ ∈ Rd such that M⊆ ⋃J
j=1

(
xj + [−δ/2, δ/2]d

)
. Now define

the discretized support A to be the set of corners of hypercubes in H; specifically, for each
hypercube xj + [−δ/2, δ/2]d in H, the point xj + δ

2
v ∈ A for every v ∈ {−1, 1}d. BecauseM

is compact, A is a finite set which we denote by {aj}mj=1. Constraining the NPMLE to this
finite set of atoms a1, . . . , am yields a finite-dimensional convex optimization problem over
the mixing proportions. That is, the solution to (4.10) can be written as ĜAn =

∑m
j=1 w̃jδaj ,

where

w̃ ∈ argmax
w∈∆m−1

1

n

n∑

i=1

log

(
m∑

j=1

Lijwj

)
, (4.11)

and Lij = ϕΣi(Xi−aj) encodes an n×m kernel matrix. The EM algorithm (Dempster et al.,
1977) can be used to optimize directly over the mixing proportions w̃. While this approach
was advocated by Lashkari and Golland (2008) and Jiang and Zhang (2009), EM can be
prohibitively slow (Koenker & Mizera, 2014; Redner & Walker, 1984). A crucial observation
made by Koenker and Mizera (2014) is that (4.11) is a (finite-dimensional) convex optimiza-
tion problem, enabling the use of a wide array of tools from modern convex optimization;
they proposed solving the dual to (4.11) using an interior point solver, and Koenker and Gu
(2017) provided an R implementation to solve univariate problems. Kim et al. (2020) pro-
posed sequential quadratic programming to solve a variant of the primal problem directly,
demonstrating superior scalability with the sample size n. Our implementation uses the
MOSEK library (MOSEK ApS, 2019) for Python.

To justify the grid approximation, some consideration of the discretization error is war-
ranted. Our next result shows that as δ ↓ 0, the log-likelihood of the discretized NPMLE
approaches that of the (unconstrained) NPMLE; moreover, the bound on the gap depends
on known quantities, so it can be used to guide a suitable choice of δ.

Proposition 4.5. Let M ⊂ Rd denote any compact set such that every solution (4.4) is
supported on M. Suppose the diameter of the set M is at most D, the minimum eigen-

value of each Σi is at least k, and fix δ ∈
(

0,
√

3
4d
kD−1

)
. Let H denote a cover of M by

closed hypercubes of width δ, and let A denote the set of corners of hypercubes in H. Every
approximate NPMLE ĜAn satisfies

sup
G∈P(Rd)

1

n

n∑

i=1

log fG,Σi(Xi)−
1

n

n∑

i=1

log fĜAn ,Σi(Xi) ≤ dk−2

(
2D2 +

1

2

)
δ2. (4.12)

We prove Proposition 4.5 in Section 4.6.1. Proposition 4.5 shows that we can tractably
approximate the NPMLE via a finite-dimensional, convex optimization problem. As we show
in Section 4.3, our theoretical results on the statistical properties of the NPMLE hold for
any approximate solution ĜAn which places nearly as high likelihood on the observations as
the global optimizer, in the sense of (4.12). Hence for δ sufficiently small we can guarantee
that the discretization error is negligible.
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Dicker and Zhao (2016) showed in the univariate, homoscedastic case that a finely dis-
cretized NPMLE is statistically indistinguishable from the NPMLE for the purpose of density
estimation. However, their analysis of the discretization error makes use of the modeling as-
sumptions (4.1) and is statistical in nature, so their theoretical results provide little guidance
on how much error is incurred due to discretization for a fixed dataset. Our result aligns
more closely with and in fact essentially generalizes Jiang and Zhang (2009, Proposition 5),
which bounded the optimality gap for a particular algorithm, discretization scheme and fixed
dataset. The main difference between our result and Jiang and Zhang (2009, Proposition 5)
is that the latter analyzed the EM algorithm for the mixing proportions (4.11), whereas by
using a black-box, second-order optimization method to solve for the mixing proportions w̃,
we can solve for the discretized NPMLE ĜAn much more accurately.

4.3 Statistical properties

The NPMLE Ĝn applies as a plug-in estimator of the prior distribution G∗ for many pur-
poses. The traditional statistical setting is density estimation, where working in a Gaussian
mixture model greatly simplifies the problem of estimating the marginal density of each
observation Xi. In particular, fĜn,Σi is a natural, tuning-free estimate of the true marginal
density fG∗,Σi . Another problem setting—at the heart of empirical Bayes methodology—is

to imitate the Bayesian inference we would conduct if we knew G∗. Denoising, using (θ̂i)
n
i=1

as plug-in estimators of the true posterior means (θ̂∗i )
n
i=1, represents the most basic instanti-

ation. Finally, often we wish to compare Ĝn to the prior G∗ directly. Since we are estimating

the prior given observations from a convolution model Xi
ind∼ fG∗,Σi , deconvolution refers to

the problem of estimating G∗.
In this section, we establish that the NPMLE is well-suited for all three disparate targets

of estimation: the marginal densities (fG∗,Σi)
n
i=1, the oracle posterior means (θ̂∗i )

n
i=1 and the

prior G∗. In this section, we allow for the possibility that Ĝn is an approximate NPMLE,
with the exact conditions being given in each theorem. Throughout this section, we use
the standard notation X .p,q Y to mean X ≤ Cp,qY for some positive constant Cp,q > 0
depending only on problem parameters p, q.

4.3.1 Density estimation: average Hellinger accuracy

As the distribution of Xi varies with i, we consider the density estimation quality of the
NPMLE (4.4) in terms of the average squared Hellinger distance, i.e. for G,H ∈ P(Rd),

h̄2(fG,•, fH,•) :=
1

n

n∑

i=1

h2(fG,Σi , fH,Σi),

where h2(f, g) = 1
2

∫ (√
f −√g

)2
denotes the usual squared Hellinger distance between a

pair of densities f, g. In the homoscedastic case where Σi ≡ Σ, our proposed loss func-
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tion h̄2(fG,•, fH,•) = h2(fG,Σ, fH,Σ) agrees with the usual squared Hellinger distance. Our
first result bounds the average squared Hellinger accuracy h̄2(fĜn,•, fG∗,•) of the NPMLE.
In order to accommodate general heteroscedastic Σi, we state our results in terms of uni-
form upper and lower bounds on the spectra of all of the matrices, i.e. kId � Σi � kId
for all i. To state the result, some additional notation is needed. We fix a positive scalar

M ≥
√

10k log n and a nonempty compact set S ⊂ Rd. Define the rate function controlling
the squared Hellinger distance

ε2
n(M,S,G∗) := Vol(Sk

1/2

)
Md

n
(log n)d/2+1 + inf

q≥(d+1)/(2 logn)

(
2µq
M

)q
log n, (4.13)

where µq denotes the qth-moment of dS(ϑ) := infs∈S ‖ϑ − s‖2 under ϑ ∼ G∗, and Sa :=
{y : dS(y) ≤ a} denotes the a-enlargement of the set S. Note that we have suppressed the
dependence of ε2

n on the upper bound k.
The following result states that ε2

n(M,S,G∗) bounds the rate in average Hellinger ac-

curacy both with high probability and in expectation. The scalar M ≥
√

10k log n and
compact set S 6= ∅ are free parameters. Note that the first term on the right-hand side
of (4.13) is increasing in M and S, whereas the second is decreasing in each. In principle,
then, we may tune the values of M and S to optimize the rate function ε2

n(M,S,G∗). Later in
this section, we discuss a number of special cases where a more explicit rate can be obtained.

Theorem 4.6. Suppose Xi
ind∼ fG∗,Σi where kId � Σi � kId for all i. Any (approximate)

solution Ĝn ∈ P(Rd) of (4.4) satisfying

sup
G∈P(Rd)

1

n

n∑

i=1

log fG,Σi(Xi)−
1

n

n∑

i=1

log fĜn,Σi(Xi) .d,k,k ε
2
n(M,S,G∗) (4.14)

satisfies

P
(
h̄2(fĜn,•, fG∗,•) &d,k,k t

2ε2
n(M,S,G∗)

)
≤ 2n−t

2

, (4.15)

for all t ≥ 1, provided n > max(ek−d/2, (2π)d/2). Moreover,

E
[
h̄2(fĜn,•, fG∗,•)

]
.d,k,k ε

2
n(M,S,G∗). (4.16)

We prove Theorem 4.6 in Section 4.6.2. Our proof extends Theorem 2.1 of Saha and
Guntuboyina (2020a) on the multivariate, homoscedastic case Σi ≡ Id and Theorem 4 of
Jiang (2020) on the univariate, heteroscedastic case d = 1, which in turn build upon Theo-
rem 1 of Zhang (2009) on the univariate, homoscedastic case. The general theory on rates of
convergence for maximum likelihood estimators (van de Geer, 2000; Wong & Shen, 1995) can
in principle be used to bound h̄2(fĜn,•, fG∗,•). Our proof technique deviates from the general
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theory by directly bounding the likelihood fĜn,Σi(x) for x outside some pre-specified domain

(controlled by the choice of set S), and then covering the set of densities {fG,• : G ∈ P(Rd)}
within the domain in the L∞ metric.

Theorem 4.6 provides a sharp bound in many special cases of G∗. For a given G∗ we need

to optimize over the choices of M ≥
√

10k log n and the nonempty compact set S ⊂ Rd to
obtain the smallest value of the rate function ε2

n(M,S,G∗). Our next result performs this
calculation for various assumptions on the prior G∗.

Corollary 4.7. Suppose Xi
ind∼ fG∗,Σi where kId � Σi � kId for all i. Suppose Ĝn ∈ P(Rd)

is any approximate NPMLE such that

sup
G∈P(Rd)

1

n

n∑

i=1

log fG,Σi(Xi)−
1

n

n∑

i=1

log fĜn,Σi(Xi) .d,k,k

(log n)d+1

n
. (4.17)

(i) (Discrete support) If G∗ =
∑k∗

j=1w
∗
j δa∗j , then

Eh̄2(fĜn,•, fG∗,•) .d,k,k

k∗

n
(log n)d+1.

(ii) (Compact support) If G∗ has compact support S∗, then

Eh̄2(fĜn,•, fG∗,•) .d,k,k

Vol
(
S∗ + B

k
1/2(0)

)

n
(log n)d+1,

where Br(x) := {y : ‖x − y‖2 ≤ r} denotes the d-dimensional ball of radius r centered
at x.

(iii) (Simultaneous moment control) Suppose that there is a compact S∗ ⊂ Rd and α ∈ (0, 2],

K ≥ 1 such that µq := Eϑ∼G∗ [dq(ϑ, S)]1/q ≤ Kq1/α for all q ≥ 1 (recall dS(ϑ) :=
infs∈S ‖ϑ− s‖2 as above). Then

Eh̄2(fĜn,•, fG∗,•) .α,K,d,k,k

Vol
(
S∗ + B

k
1/2(0)

)

n
(log n)

2+α
2α

d+1.

(iv) (Finite qth moment) Suppose that there is a compact S∗ ⊂ Rd and µ, q > 0 such that
µq ≤ µ. Then

Eh̄2(fĜn,•, fG∗,•) .µ,q,d,k,k




Vol
(
S∗ + B

k
1/2(0)

)

n




q
q+d

(log n)
q

2q+2d
d+1.
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Given the general result in Theorem 4.6, Corollary 4.7 follows directly from the calcu-
lations of Saha and Guntuboyina (2020a) in Corollary 2.2 and Theorem 2.3. Corollary 4.7
captures an important adaptation property of the NPMLE. The cases (i) − (iv) described
in the result are nested in the sense that (i) implies (ii), (ii) implies (iii), and (iii) implies
(iv); consequently the rates get progressively worse as our assumptions weaken. This means
that the NPMLE, despite searching over all probability measures P(Rd), obtains better rates
when structure is present in the prior G∗.

Most strikingly, when G∗ has discrete support with k∗ support points, the rate in (i)
is k∗

n
up to logarithmic factors without assuming any knowledge of k∗. This rate matches

the minimax rate over all discrete distributions with at most k∗ support points (Saha &
Guntuboyina, 2020a), meaning we could not expect to do much better even if k∗ were
known. In the extreme case where k∗ = 1, the observations actually come from a simple
Gaussian, i.e. fG∗,Σi(x) = ϕΣi(x − a∗1) with common mean a∗1 ∈ Rd, so our result says we
don’t lose much in the rate when we model the density with a mixture even when it turns
out to be a simple Gaussian. Similarly, in (ii), the rate adapts to the size of the support S∗

without prior knowledge of this support or even a bound on its size. Up through simultaneous
moment control (iii), the dimension d only affects the rate as a function of n through the
logarithmic factor. Hence, the NPMLE avoids the usual curse of dimensionality to some
extent, while still achieving consistency in the heavier tailed setting (iv). The logarithmic
factors in our bounds might be reduced slightly but cannot be eliminated as they are present
in the minimax lower bounds (Kim & Guntuboyina, 2020).

4.3.1.1 Implications for the Discretization Rate

Theorem 4.6 establishes that up to a multiplicative constant (depending only on the dimen-
sion d and bounds k, k on the eigenvalues of the covariance matrices) the quantity ε2

n(M,S,G∗)
controls the average Hellinger accuracy E[h̄2(fĜn,•, fG∗,•)] of the NPMLE. This also holds for
approximate solutions to the optimization problem (4.4) that, in accordance with (4.14),
place nearly as much likelihood on the data as does a global maximizer. It is natural to
compare the requirement (4.14) with our computational guarantee on the discretization er-
ror (4.12) from Proposition 4.5. The free parameter which controls the discretization error
is the resolution δ > 0, which represents the width of the hypercubes we use to cover the
ridgeline manifoldM or any of its outer-approximations from Corollary 4.3. Thus, in order
to satisfy the main requirement of Theorem 4.6, we need to take δ such that

ε2
n(M,S,G∗) &d,k,k dk

−2

(
2D2 +

1

2

)
δ2.

Observe from the definition of ε2
n that ε2

n(M,S,G∗) &d,k,k
(logn)d+1

n
for all M ≥

√
10k log n

and all compact S. Absorbing additional terms depending on d,k, and k and assuming for
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simplicity that D > 1
2
, choosing δ such that

D2δ2 .d,k,k

(log n)d+1

n
(4.18)

suffices for the discretized NPMLE to be statistically indistinguishable from a global maxi-
mizer.

The inequality (4.18) gives a preliminary bound on the rate at which the discretization
level δ should decrease with n. Still, recall from Proposition 4.5 that D denotes the diameter
of the ridgeline manifold M, so D does depend on n. To sketch the dependence, let us
consider a representative example where G∗ has sub-Gaussian tails and all of the Σi’s are
diagonal. In this case, by Corollary 4.3 part (ii), the ridgeline manifold M is contained in
the axis-aligned minimum bounding box of the data

d∏

j=1

[
min

i∈{1,...,n}
Xij, max

i∈{1,...,n}
Xij

]
.

Due to the tail condition, the length of each side of this hyper-rectangle grows like
√

log n
with high probability up to multiplicative factors depending on k: hence, the diameter D
also scales like

√
log n with high probability up to multiplicative factors depending on k

and d. We have thus shown that it suffices to discretize at a resolution of δ �
√

(logn)d

n
. The

number of points in our covering A is of order m �
(

n
(logn)d

)d/2
. In the univariate case d = 1,

this slightly improves the finding of Theorem 2 of Dicker and Zhao (2016), who showed that
an m =

√
n-discretization of the range of the data [X(1), X(n)] suffices for the same rate

in Hellinger distance. Their bound on the large-deviation probability is also logarithmic,

i.e. O
(

1
logn

)
whereas our equation (4.15) is polynomial in n. Our analysis also clarifies

that the sense in which we need approximate NPMLE (4.14) is through the likelihood of the
observations, relative to the global optimum, which could be useful for comparing alternative
approaches to approximating the NPMLE.

4.3.2 Denoising: an oracle inequality

In this section we turn to the problem of estimating the oracle posterior means (θ̂∗i )
n
i=1;

see (4.5). We evaluate the performance of (θ̂i)
n
i=1 (see (4.6)) as an estimator for (θ̂∗i )

n
i=1 using

the mean squared error risk measure:

1

n

n∑

i=1

E‖θ̂i − θ̂∗i ‖2
2.

Since θ̂∗i is the optimal estimator of θ∗i given model (4.1), the above mean squared error

quantifies the price of misspecifying G∗ with the data-driven estimator Ĝn. Hence, this loss
is also known as the per-instance empirical Bayes regret.
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Our next result states that the rate function ε2
n(M,S,G∗) governing the Hellinger ac-

curacy (see (4.13)) also upper bounds the regret, up to additional logarithmic factors. We
provide the same special cases of the rate as those stated in Corollary 4.7.

Theorem 4.8. Suppose Xi
ind∼ fG∗,Σi where kId � Σi � kId for all i. Let Ĝn denote any

approximate NPMLE satisfying (4.17). Fix some M ≥
√

10k̄ log n and a nonempty, compact
set S ⊂ Rd. Define ε2

n(M,S,G∗) as in (4.13). For all n ≥ 5k−d/2 ∨ (2π)d/2,

1

n

n∑

i=1

E‖θ̂i − θ̂∗i ‖2
2 .d,k,k ε

2
n(M,S,G∗)(log n)(d/2−1)∨3. (4.19)

In particular, consider the following special cases for G∗:

(i) (Discrete support) If G∗ =
∑k∗

j=1w
∗
j δa∗j , then

1

n

n∑

i=1

E‖θ̂i − θ̂∗i ‖2
2 .d,k,k

k∗

n
(log n)d+((d/2)∨4).

(ii) (Compact support) If G∗ has compact support S∗, then

1

n

n∑

i=1

E‖θ̂i − θ̂∗i ‖2
2 .d,k,k

Vol
(
S∗ + B

k
1/2(0)

)

n
(log n)d+((d/2)∨4).

(iii) (Simultaneous moment control) Suppose that there is a compact S∗ ⊂ Rd and α ∈ (0, 2],

K ≥ 1 such that µq := Eϑ∼G∗ [dq(ϑ, S∗)]1/q ≤ Kq1/α for all q ≥ 1. Then

1

n

n∑

i=1

E‖θ̂i − θ̂∗i ‖2
2 .α,K,d,k,k

Vol
(
S∗ + B

k
1/2(0)

)

n
(log n)

2αd
2+α

+((d/2)∨4).

(iv) (Finite qth moment) Suppose that there exists a compact S∗ ⊂ Rd and µ, q > 0 such
that µq ≤ µ. Then

1

n

n∑

i=1

E‖θ̂i − θ̂∗i ‖2
2 .µ,q,d,k,k




Vol
(
S∗ + B

k
1/2(0)

)

n




q
q+d

(log n)
qd

2q+2d
+((d/2)∨4).

Theorem 4.8 shows that the denoising problem shares the adaptation features as the
density estimation problem. Since we have assumed kId � Σi � kId for all i = 1, . . . , n, the
same set of results also hold for the scaled regret 1

n

∑n
i=1 E(θ̂i − θ̂∗i )TΣ−1

i (θ̂i − θ̂∗i ).
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Remark 4.9. (On the proof of Theorem 4.8 in Section 4.6.3) Our proof extends Theorem 3.1
of Saha and Guntuboyina (2020a) on the multivariate, homoscedastic case Σi ≡ Id and
Theorem 1 of Jiang (2020) on the univariate, heteroscedastic case d = 1, which in turn build
upon Theorem 5 of Jiang and Zhang (2009) on the univariate, homoscedastic case. Jiang
and Zhang (2009) and Jiang (2020) used a related notion of regret

√√√√ 1

n

n∑

i=1

E‖θ̂i − θ∗i ‖2
2 −

√√√√ 1

n

n∑

i=1

E‖θ̂∗i − θ∗i ‖2
2.

Tweedie’s formula relates the oracle (4.7) and empirical Bayes (4.8) posterior means
to the corresponding marginal likelihoods, so the density estimation results of the previous
section turn out to be useful for proving Theorem 4.8 as well. In particular, we consider
Bayes rules for priors in a covering of the Hellinger ball

{
G ∈ P(Rd) : h̄2(fG,•, fG∗,•) .d,k,k t

2ε2
n(M,S,G∗)

}
,

which, by Theorem 4.6, contains Ĝn with high probability. For a fixed prior G, the denomi-
nator in the correction factor of Tweedie’s formula

Xi + Σi
∇fG,Σi(Xi)

fG,Σi(Xi)
,

namely fG,Σi(Xi), can be small. To avoid dividing by near-zero quantities, we regularize the
above Bayes rule by replacing the denominator with max{fG,Σi(Xi), ρ} for a small positive ρ.
To handle heteroscedastic errors, we show that Tweedie’s formula, even its regularized form,
is equivariant under scale transformations.

4.3.3 Deconvolution: estimating the prior

We turn to the fundamental question of how well Ĝn estimates G∗. This is known as the
deconvolution problem and has received much attention in the statistical literature (Meister,
2009). Indeed, the original consistency results (Kiefer & Wolfowitz, 1956; Pfanzagl, 1988) for

the NPMLE focused on weak convergence of Ĝn to G∗ as n→∞. While most prior work on
deconvolution has focused on deconvolution with homoscedastic error distributions, Delaigle
and Meister (2008) allowed for heteroscedastic errors but relied on kernel estimators which
contain additional smoothing parameters. By contrast, the NPMLE provides a tuning-free
estimate of the mixing distribution G∗, yet to our knowledge, non-asymptotic bounds on the
rate of convergence for Ĝn in the deconvolution problem are not known.

In practice, the true prior G∗ may not be discrete even though Ĝn always is, and even
if both distributions are discrete, their supports will typically differ. Our loss function must
allow for comparisons of probability measures with potentially disjoint supports. Nguyen
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(2013) established that a natural loss for this problem is the Wasserstein distance from the
theory of optimal transport

W 2
2 (G,H) := min

(U,V )∈ΠG,H
E‖U − V ‖2

2,

where G,H ∈ P(Rd) are two probability measures and ΠG,H denotes the set of couplings
of G and H, i.e. joint distributions over (U, V ) ∈ R2d such that U ∼ G and V ∼ H.
Indeed, even the likelihood criterion is intimately related to the Wasserstein distance: in
the homoscedastic case Σi ≡ σ2Id, it is known that the NPMLE (4.4) equivalently solves an
entropic-regularized optimal transport problem (Rigollet & Weed, 2018).

Nguyen (2013) connected the deconvolution error W 2
2 (G,H) to the density estimation

error between the mixtures, i.e. h2(fG,Id , fH,Id) in a homoscedastic Gaussian deconvolution
setting. By leveraging similar techniques as well as the support bounds of Corollary 4.3, we
arrive at the following upper bound on the deconvolution error.

Theorem 4.10. Suppose Xi
ind∼ fG∗,Σi where kId � Σi � kId and Σi is a diagonal matrix

for each i. Suppose further that G∗([−L,L]d) = 1 for some L ≥ 0. Let Ĝn denote any
approximate NPMLE supported on the minimum axis-aligned bounding box of the data sat-
isfying (4.17). Then there is a function n(d, k, k, L) such that, for all sample sizes n with
n ≥ n(d, k, k, L),

W 2
2 (G∗, Ĝn) .d,k

1

log n
,

with probability at least 1− 4d
n8 .

Theorem 4.10 (proved in Section 4.6.4) upper bounds the rate of convergence under the
Wasserstein distance by the extremely slow logarithmic rate 1

logn
. It is well known that

the smoothness of the Gaussian errors makes the deconvolution more difficult; in fact, the
logarithmic rate is minimax optimal (Dedecker & Michel, 2013).

Remark 4.11. (On Theorem 4.10) To our knowledge, Theorem 4.10 is novel, and the rate
of convergence for the NPMLE under a Wasserstein distance has not been studied previously.
The structure of the proof follows the proof of Theorem 2 of Nguyen (2013). To deal with

the fact that Ĝn and G∗ are typically singular, we convolve each with a distribution with full
support but low variance. Compared to our results on the density estimation and denoising
problems, Theorem 4.10 makes additional assumptions on the problem structure, specifically
that the covariance matrices are diagonal and that G∗ is compactly supported. Many practical
applications satisfy the diagonal covariances restriction, including both of our applications
in Section 4.4.

A common feature to our results on density estimation and denoising have been that
the NPMLE adapts to the complexity of G∗. It is reasonable to conjecture, then, that
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in the deconvolution problem, Ĝn will also enjoy some adaptation properties under the
Wasserstein distance. We close this section with a sharper result on the Wasserstein rate in
the special case where the observations are drawn from Gaussian distributions with common
mean µ ∈ Rd.

Theorem 4.12. Suppose Xi
ind∼ N (µ,Σi), i.e. Xi

ind∼ fG∗,Σi where G∗ = δµ and kId �
Σi � kId for all i = 1, . . . , n. Let Ĝn denote any approximate NPMLE satisfying (4.17) and
supported on Bκr(X̄) where κ = k/k, r = maxi ‖Xi − X̄‖2, and X̄ = 1

n

∑n
i=1Xi. Then

W2(Ĝn, G
∗) .d,k,k t

3/2 (log n)(d+3)/4

n1/4

with probability at least 1− 3n−t
2

for all t ≥ 1.

If the approximate NPMLE Ĝn of Theorem 4.12 is selected according to the strategy
described in Section 4.2.2, then by Corollary 4.3 part (iii) its support will be contained
within the ball Bκr(X̄). This additional assumption on the support of the approximate

NPMLE is needed to have some control over the moments of Ĝn.
Up to logarithmic factors, the n1/4-rate in Theorem 4.12 agrees with Corollary 4.1 of Ho

and Nguyen (2016) for the MLE of an overfitted mixture. Specifically, their result compared
the MLE of k-component finite Gaussian mixture to a true mixing distribution G∗ with
k∗ < k components. Wu and Yang (2020) and Doss et al. (2020) also derived the n1/4-rate
for a different estimator under a different Wasserstein metric. All of these previous results
were restricted to the homoscedastic setting. In our setting, k∗ = 1 and k = k̂ is the data-
dependent order of the NPMLE. The best known bound on k̂ is logarithmic in n (Polyanskiy
& Wu, 2020), whereas Ho and Nguyen (2016) required k to be fixed as n→∞. When k∗ is
known, a faster n1/2-rate is possible (Heinrich & Kahn, 2018) and is achieved by the MLE
in a well-specified finite mixture model, i.e. setting k = k∗ (Ho & Nguyen, 2016).

While the slower n1/4-rate appears to be the price of flexibility of the NPMLE, Theo-
rem 4.12 establishes that the NPMLE indeed adapts to structure in G∗. Our analysis is
greatly simplified by the assumption G∗ = δµ, since there is only one coupling between Ĝn

and G∗. We leave for future work the important question of the extent to which Ĝn adapts
to more general distributions G∗.

4.4 Applications

4.4.1 Color-magnitude diagram

In this section, we continue our discussion of denoising the color-magnitude diagram (CMD)
from Section 4.1. Our modeling strategy is closely related to the work of Anderson et al.
(2018). To compare our method to extreme deconvolution (Bovy et al., 2011), we use
the same stellar sample, relaxing only their assumption that the prior G∗ is a mixture of
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Gaussians; by contrast, we allow G∗ to be an arbitrary probability measure. Specifically, we
assume that after a suitable transformation of the color and magnitude measurements, the
pair, denoted Xi ∈ R2, come from a two-dimensional Gaussian mixture fG∗,Σi with known
covariance Σi.

Figure 4.5: Initial grid (left) of m = 104 support points and estimated prior Ĝn (right) where
the area of each atom is proportional to its weight.

Figure 4.1 in Section 4.1 shows the plot of the observed data Xi (left) and estimated
posterior means θ̂i (right), the latter constituting the denoised CMD. Contrasting our CMD
with theirs (Anderson et al., 2018, Figure 7), which we do not depict here, it appears that
ours performs more shrinkage overall. Our CMD has rather sharp tails in the bottom of the
plot (i.e. the main sequence) and the top right (i.e. the tip of the red-giant branch) as well
as a definitive cluster in the center-right (i.e. the red clump).

There are also important differences between the NPMLE and extreme deconvolution in
the estimated prior Ĝn. Figure 4.5 shows the initial and final iterates in the computation
of the NPMLE. It is clear that we are using a discrete distribution to model the prior, and
since all of the covariance matrices Σi are diagonal, by Corollary 4.3 we have restricted the
support points to lie in the minimum axis-aligned bounding box of the data. By contrast,
extreme deconvolution models the prior as itself a Gaussian mixture, so the estimated prior
(Anderson et al., 2018, Figure 4) actually is supported on all of R2.
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4.4.2 Chemical abundance ratios

Our second data set is taken from the Apache Point Observatory Galactic Evolution Exper-
iment survey (APOGEE); see Majewski et al. (2017), Abolfathi et al. (2018). We examine
chemical abundance ratios for the red clump (RC) stars given in the DR14 APOGEE red
clump catalog; see Ratcliffe et al. (2020) where this data set has been studied. Following the
pre-processing in Ratcliffe et al. (2020) to remove the outliers with anomalous abundance
measurements, the data set contains n = 27, 238 observations. We pick d = 2 features from
the 19 dimensions, namely, [Si/Fe]-[Mg/Fe].

In Figure 4.6 we plot the observed data (top left) and estimated posterior means using

Gaussian denoising under the estimated prior Ĝn (top right). The initial grid (bottom

left) of m = 104 support points and estimated prior Ĝn (bottom right), where the area
of each atom is proportional to its weight, is also provided. The denoised data reveals a
very interesting structure — it shows that the variables [Si/Fe] and [Mg/Fe] are strongly
correlated, especially, the observations for the upper right cluster of stars could be lying on
one dimensional manifold; something that is not at all visible when plotting the original
data.

4.5 Concluding remarks

In this chapter we study the NPMLE Ĝn as an estimator of a prior distribution G∗ in the
presence of multivariate, heteroscedastic measurement errors. We resolve a number of basic
questions on the existence, uniqueness, discreteness, and support of the NPMLE, where in
several cases the answers differ significantly from the traditional univariate, homoscedas-
tic setting. Our analysis identifies a dual mixture density ψ̂n with Gaussian N (Xi,Σi)
components at each observation, whose modes contain the atoms of the NPMLE. Our char-
acterization implies that the NPMLE is supported on the ridgeline manifold M, which is
a compact subset of Rd defined in terms of the observations (Xi)

n
i=1 and corresponding co-

variance matrices (Σi)
n
i=1. This support reduction allows us to approximate the NPMLE

by a finite-dimensional convex optimization over the mixing proportions, and we develop a
novel approach to bounding the discretization error, justifying the gridding scheme proposed
by Koenker and Mizera (2014). Our real data applications show that this approach is vi-
able for practical astronomy problems. Our theoretical results in Section 4.3 provide strong
justification for using the NPMLE in a variety of contexts—estimating the prior, marginal
densities, and oracle posterior means.

We conclude by outlining some possible future research directions. Computation remains
an important barrier for large-scale applications. Specifically, for problems with a large num-
ber of samples, e.g. n � 106, some additional forms of approximation are warranted, such
as stochastic optimization or binning via coresets (see also Ritchie and Murray (2019) on
approaches for scaling Extreme Deconvolution to large datasets). Further, our result on the
discretization error suggests that discretization becomes infeasible in moderate-dimensions,
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Figure 4.6: Top: Observed data (left) and estimated posterior means (right); Bottom: Initial

grid (left) of m = 104 support points and estimated prior Ĝn (right) where the area of each
atom is proportional to its weight.

where the number of atoms needs to grow roughly like a polynomial in the number of dimen-
sions, e.g. m = O(δ−d). This limitation, which is common to many forms of discretization
across applied mathematics, highlights the need for grid-free methods for computation of
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the NPMLE in high-dimensions. The connection to entropic-regularized optimal transport
established by Rigollet and Weed (2018) represents one possible direction for grid-free meth-
ods.

Next, while our framework allows the priorG∗ to be arbitrary, the underlying assumption—
that the means (θ∗i ) are identically distributed—can sometimes be difficult to justify for het-
eroscedastic observations. The IID assumption reflects the belief that the observation covari-
ance Σi is uninformative for the corresponding mean θ∗i . This assumption led to reasonable
results in our applications but may be problematic in other settings. In the univariate,
heteroscedastic case, Weinstein et al. (2018) proposed grouping observations with similar
variances and applying a spherically symmetric estimator separately within each group.
Their approach is capable of capturing dependence between θi and σ2

i , at the expense of not
sharing information across groups. Furthermore, to our knowledge, the grouping approach
has not been extended to multivariate settings where binning the set of covariance matrices
is more difficult. Thus, in multivariate settings there remains the important problem of how
to model the relationship between θi and Σi.

Finally, there remain a number of open statistical questions for future work. Our analysis
of the denoising problem focuses on estimating the posterior mean based on the unknown
prior G∗, but there are numerous inferential goals one could target with an approximate
prior. The analyst might summarize the empirical posteriors using a different functional,
such as the posterior median or the posterior mean of some transformed parameter. This
question warrants a more general analysis evaluating the quality of the empirical posterior
distributions for the true, unknown posteriors.

4.6 Proofs

4.6.1 Proofs of results in sections 4.2 and 4.2.2

4.6.1.1 Proof of Lemma 4.1

The following uses similar techniques as Section 5.2 of Lindsay (1995), which contains a
subset of our result in the homoscedastic case.

Proof of Lemma 4.1. By convexity, the first-order optimality condition for Ĝn is

D(Ĝn, G) ≤ 0 for all G ∈ P(Rd)

where

D(Ĝn, G) := lim
α↓0

1
n

∑n
i=1[log f(1−α)Ĝn+αG,Σi

(Xi)− log fĜn,Σi(Xi)]

α

=
1

n

n∑

i=1

1

fĜn,Σi(Xi)

(
fG,Σi(Xi)− fĜn,Σi(Xi)

)
=

1

n

n∑

i=1

fG,Σi(Xi)

fĜn,Σi(Xi)
− 1
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When G = δϑ is a point mass we write D(Ĝn, ϑ) instead of D(Ĝn, G). It suffices to check

D(Ĝn, ϑ) ≤ 0 for all ϑ ∈ Rd because D(Ĝn, G) =
∫
D(Ĝn, ϑ) dG[ϑ].

For the first part of the Lemma, define C :=
{

(fG,Σi(Xi))
n
i=1 : G ∈ P(Rd)

}
∪{0}. Observe

that
C = conv (L) , where L :=

{
(ϕΣi(Xi − ϑ))ni=1 : ϑ ∈ Rd

}
∪ {0}.

Since ϑ 7→ (ϕΣi(Xi − ϑ))ni=1 is continuous and lim‖ϑ‖2→∞(ϕΣi(Xi − ϑ))ni=1 = 0, the set
L is closed, and by boundedness of the Gaussian likelihood, L is compact. Hence C ⊂
Rn is convex and compact, and f(L) = 1

n

∑n
i=1 logLi is strictly concave over C. Thus,

f attains its maximum at a unique (nonzero) boundary point L̂ ∈ ∂C. Observe C =
conv

{
(ϕΣi(Xi − ϑ))ni=1 : ϑ ∈ Rd

}
: by Carathéodory’s theorem, any boundary point L̂ ∈ ∂C

can be written as L̂i =
∑k̂

j=1 ŵjϕΣi(Xi − âj) for some k̂ ≤ n.

Suppose B ⊂ supp(Ĝn) is contained in the support of the NPMLE. Given Ĝn(B) > 0,

define a new probability measure ĜB
n via ĜB

n (A) := Ĝn(A∩B)

Ĝn(B)
. Since Ĝn = α0Ĝ

B
n +(1−α0)ĜBc

n

for α0 = Ĝn(B), the mixture

Gα = (1− α)Ĝn + αĜB
n

remains a valid probability measure for α ≥ − α0

1−α0
. Since α = 0 maximizes the log-likelihood

of Gα over a range α ∈ [− α0

1−α0
, 1] including both negative and positive values, the derivative

of the log-likelihood is zero at α = 0, i.e.

0 = D(Ĝn, Ĝ
B
n ) =

∫
D(Ĝn, ϑ) dĜB

n [ϑ],

so ĜB
n (Z) = 1 for all B ⊂ supp(Ĝn) such that Ĝn(B) > 0. This implies Ĝn(B∩Z) = Ĝn(B)

for all measurable B, from which we may conclude Z ⊇ supp(Ĝn). Finally, observe that

D(Ĝn, ϑ) =
1

n

n∑

i=1

L̂−1
i ϕΣi(Xi − ϑ)− 1 =

(
1

n

n∑

i=1

L̂−1
i

)
ψ̂n(ϑ)− 1,

so D(Ĝn, ϑ) ≤ 0 is equivalent to ψ̂n(ϑ) ≤
(

1
n

∑n
i=1 L̂

−1
i

)−1

. This proves the last statement

of the Lemma, that Z is equal to the set of global maximizers of ψ̂n.

4.6.1.2 Proof of Lemma 4.2

Proof of Lemma 4.2. By Lemma 4.4, the fitted values L̂1 = L̂2 = L̂3 are equal. By Lemma 4.1,
the atoms of Ĝn occur at the global modes of ψ̂n = fH,σ2I2 , where H = 1

3

∑3
i=1 δXi . Since

L̂1 = L̂2 = L̂3, the fitted values are also equal to the global maximum of ψ̂n, i.e.

L̂i = max
x

fH,σ2I2(x) =
22/3 log 2

3π
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for each i = 1, 2, 3. Note that L̂i = fδ0,σ2I2(Xi) for all Xi, so Ĝn = δ0 is an NPMLE. Now let

Ĝ′n = 1
3

∑n
i=1 δXi/2. It suffices to check the fitted values of Ĝ′n at the observations. For i = 1,

fĜ′n,σ2I2
(X1) =

1

3

3∑

i=1

ϕσ2I2(X1 −Xi/2)

=
4 log 2

9π
(2−(4/3)(1/4) + 2−(4/3)(7/4) + 2−(4/3)(7/4)) =

22/3 log 2

3π
= L̂1.

Similarly, for i = 2,

fĜ′n,σ2I2
(X2) =

1

3

3∑

i=1

ϕσ2I2(X2 −Xi/2)

=
4 log 2

9π
(2−(4/3)(7/4) + 2−(4/3)(1/4) + 2−(4/3)(7/4)) =

22/3 log 2

3π
= L̂2,

and, for i = 3,

fĜ′n,σ2I2
(X3) =

1

3

3∑

i=1

ϕσ2I2(X3 −Xi/2)

=
4 log 2

9π
(2−(4/3)(7/4) + 2−(4/3)(7/4) + 2−(4/3)(1/4)) =

22/3 log 2

3π
= L̂3.

This verifies that Ĝ′n = 1
3

∑n
i=1 δXi/2 is also an NPMLE, so every convex combination αĜn +

(1− α)Ĝ′n is an NPMLE.

4.6.1.3 Proof of Corollary 4.3

Proof of Corollary 4.3. We have already observed that Z ⊂ M (Ray & Lindsay, 2005).
Observe thatM is compact as it is the continuous image of the simplex, a compact set. Since
any real-analytic function has a finite number of zeros, Z is finite. Hence any NPMLE Ĝn

is discrete with a finite number of atoms.
In the proportional covariances case Σi = ciΣ, we have

x∗(α) =

(
n∑

i=1

αiΣ
−1
i

)−1 n∑

i=1

αiΣ
−1
i Xi

=
n∑

i=1

αi/ci∑n
ι=1 αι/cι

Xi

As α ranges over the simplex, so does
(

αi/ci∑n
ι=1 αι/cι

)n
i=1

. Thus M = conv({X1, . . . , Xn}),
proving (i). If each Σi is diagonal, letting x∗j(α) denote the jth coordinate of x∗(α) ∈ Rd,

x∗j(α) =
n∑

i=1

αi(Σi)jj∑n
i′=1 αi′(Σi′)jj

Xij ∈
[

min
i∈{1,...,n}

Xij, max
i∈{1,...,n}

Xij

]
,
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proving (ii). For (iii), using concavity of the minimum eigenvalue,

‖x∗(α)− x‖2 =

∥∥∥∥∥∥

(
n∑

i=1

αiΣ
−1
i

)−1 n∑

i=1

αiΣ
−1
i (Xi − x)

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥

(
n∑

i=1

αiΣ
−1
i

)−1
∥∥∥∥∥∥

2

∥∥∥∥∥
n∑

i=1

αiΣ
−1
i (Xi − x)

∥∥∥∥∥
2

≤
(

n∑

i=1

αik
−1

)−1 n∑

i=1

αik
−1 ‖Xi − x‖2 ≤ κr

so M⊆ Bκr(x).

4.6.1.4 Proof of Lemma 4.4

Proof of Lemma 4.4. By the change of variables formula,

fT#G,Σ
′
i
(X ′i) =

∫
ϕU0ΣiUT

0
(U0Xi + x0 − θ) dT#G(θ)

=

∫
ϕU0ΣiUT

0
(U0Xi + x0 − T (θ)) dG(θ)

=

∫
ϕΣi(Xi − θ) dG(θ) = fG,Σi(Xi),

completing the proof.

4.6.1.5 Proof of Proposition 4.5

Proof of Proposition 4.5. Write Ĝn =
∑k̂

j=1 ŵjδâj , and for each j ∈ [k̂], let Cj ∈ H such
that âj ∈ Cj. Next, define a positive measure Hj supported on the corners of Cj such that
Hj(Cj) = ŵj and

∫

Cj

u dHj(u) = ŵj âj =

∫

Cj

u dĜj
n(u), (4.20)

where Ĝj
n := ŵjδâj . Now fix u ∈ Cj and i ∈ [n], and let xj = Σ

−1/2
i (Xi − âj) and t =

Σ
−1/2
i (u− âj). By the moment identity (4.20) and by Jiang and Zhang (2009, A.27),
∫

Cj

ϕΣi(Xi − u) dĜj
n(u)−

∫

Cj

ϕΣi(Xi − u) dHj(u)

≤
∫

Cj

〈xj, t〉2ϕΣi(Xi − u) dĜj
n(u) +

∫

Cj

(
e‖t‖

2
2/2 − 1

)
ϕΣi(Xi − u) dHj(u)

≤ k−2D2dδ2

∫

Cj

ϕΣi(Xi − u) dĜj
n(u) +

(
ekdδ

2/2 − 1
)∫

Cj

ϕΣi(Xi − u) dHj(u).
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Let H =
∑k̂

j=1 Hj. Summing the above inequality over j,

fĜn,Σi(Xi)− fH,Σi(Xi) ≤ k−2D2dδ2fĜn,Σi(Xi) +
(
ekdδ

2/2 − 1
)
fH,Σi(Xi).

Since H is supported on A, by optimality of ĜAn ,

n∏

i=1

fĜAn ,Σi(Xi) ≥
n∏

i=1

fH,Σi(Xi).

Combining our findings,

n∏

i=1

fĜAn ,Σi(Xi) ≥ e−nk
−2dδ2/2

(
1− k−2D2dδ2

)n n∏

i=1

fĜn,Σi(Xi).

Using the elementary inequality 1− x ≥ e−2x for x ≤ 3/4, we obtain

n∏

i=1

fĜAn ,Σi(Xi) ≥ exp
(
−nk−2dδ2/2− 2nk−2D2dδ2

) n∏

i=1

fĜn,Σi(Xi).

for δ ≤
√

3
4d
kD−1.

4.6.2 Proof of Theorem 4.6

The following notation will be used throughout this section:

1. Br(x) = {y ∈ Rd : ‖x− y‖2 ≤ r} denotes a closed ball in Rd.

2. For a positive integer m, let [m] = {1, . . . ,m}.

3. Given a pseudo-metric space (M,ρ) and ε > 0, let N(ε,M, ρ) denote the ε-covering
number, i.e. the smallest positive integer N such that there exist x1, . . . , xN ∈M such
that

M ⊂
N⋃

i=1

{y : ρ(y, xi) ≤ ε}.

Any such a set {xi}Ni=1 is known as an ε-net or ε-cover of M under the pseudo-metric
ρ. When M is a subset of Euclidean space we write N(ε,M) instead of N(ε,M, ‖ · ‖2).

4. We use the shorthand fG,• = (fG,Σi)
n
i=1, the matrices Σ1, . . . ,Σn being viewed as fixed.

Let
F =

{
fG,• : G ∈ P(Rd)

}
.

5. For S ⊂ Rd and M > 0, SM denotes the M -enlargement SM = {x ∈ Rd : dS(x) ≤M}.
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6. Define the semi-norm

‖fG,• − fH,•‖∞,SM := max
1≤i≤n

sup
x∈SM

|fG,Σi(x)− fH,Σi(x)|.

Similarly, define

‖fG,• − fH,•‖∇,SM := max
1≤i≤n

sup
x∈SM

|∇fG,Σi(x)−∇fH,Σi(x)|.

Our proof generalizes and builds upon prior techniques for analyzing the Hellinger ac-
curacy of the NPMLE (Jiang, 2020; Saha & Guntuboyina, 2020a; Zhang, 2009). The basic
structure of our argument is to recognize, given the approximation (4.14) in the likelihood,
that we may trivially rewrite the large deviation probability for the NPMLE as a joint
probability

P
(
h̄(fĜn,•, fG∗,•) &d,k,k tεn

)
= P

(
h̄(fĜn,•, fG∗,•) &d,k,k tεn,

n∏

i=1

fĜn,Σi(Xi)

fG∗,Σi(Xi)
≥ exp

(
−cd,k,knε2

n

))
.

If Ĝn were a fixed probability measure G0 such that h̄(fG0,•, fG∗,•) &d,k,k tεn, the right-hand
side of the last display similarly simplifies as

P
(
h̄(fG0,•, fG∗,•) &d,k,k tεn,

n∏

i=1

fG0,Σi(Xi)

fG∗,Σi(Xi)
≥ exp

(
−cd,k,knε2

n

))

= P
( n∏

i=1

fG0,Σi(Xi)

fG∗,Σi(Xi)
≥ exp

(
−cd,k,knε2

n

))
.

Since Ĝn is not fixed, we first approximate it using a covering argument, and then bound
the right-hand side of the previous display using Markov’s inequality.

Proof of Theorem 4.6. Suppose for some γn the NPMLE satisfies

n∏

i=1

fĜn,Σi(Xi)

fG∗,Σi(Xi)
≥ exp

(
(β − α)nγ2

n

)
for some 0 < β < α < 1.

We bound the probability

P
(
h̄(fĜn,•, fG∗,•) ≥ tγn

)

for t > 1.
Take {fHj ,•}Nj=1 ⊂ F to be an η-net of F under ‖ · ‖∞,SM . For each j, let H0,j be a

distribution satisfying

‖fH0,j ,• − fHj ,•‖∞,SM ≤ η and h̄(fH0,j ,•, fG∗,•) ≥ tγn
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and J = {j ∈ [N ] : H0,j exists}. By construction of the η-net, there is j∗ ∈ [N ] such that

‖fHj∗ ,• − fĜn,•‖∞,SM ≤ η.

On the event {h̄(fĜn,•, fG∗,•) ≥ tγn}, the NPMLE Ĝn acts as a witness that j∗ ∈ J , so by
the triangle inequality

‖fH0,j∗ ,• − fĜn,•‖∞,SM ≤ 2η. (4.21)

This gives

fĜn,Σi(x) ≤
{
fH0,j∗ ,Σi(x) + 2η, if x ∈ SM

1√
(2π)d|Σi|

, otherwise.

Defining v(x) = η1x∈SM + η
(

M
dS(x)

)d+1

1x 6∈SM , we have

exp((β − α)nt2γ2
n) ≤ max

j∈J

[
n∏

i=1

fH0,j ,Σi(Xi) + 2v(Xi)

fG∗,Σi(Xi)

]
·


 ∏

i:Xi 6∈SM

1√
(2π)d|Σi| · 2v(Xi)




(4.22)

on the event {h̄(fĜn,•, fG∗,•) ≥ tγn}. Hence

P
(
h̄(fĜn,•, fG∗,•) ≥ tγn

)
(4.23)

≤ P
(

max
j∈J

n∏

i=1

fH0,j ,Σi(Xi) + 2v(Xi)

fG∗,Σi(Xi)
≥ exp(−αnt2γ2

n)

)
(4.24)

+ P
( ∏

i:Xi 6∈SM

1√
(2π)d|Σi| · 2v(Xi)

≥ exp(βnt2γ2
n)

)
(4.25)

By a union bound and Markov’s inequality, the first term (4.24) is bounded by

eαnt
2γ2
n/2
∑

j∈J

E
n∏

i=1

√
fH0,j ,Σi(Xi) + 2v(Xi)

fG∗,Σi(Xi)
(4.26)

Writing out the expectation,

n∏

i=1

E

√
fH0,j ,Σi(Xi) + 2v(Xi)

fG∗,Σi(Xi)
= exp

(
n∑

i=1

logE

√
fH0,j ,Σi(Xi) + 2v(Xi)

fG∗,Σi(Xi)

)

≤ exp

(
n∑

i=1

{∫ √
fH0,j ,Σi + 2v

√
fG∗,Σi − 1

})

≤ exp

(
−nt

2γ2
n

2
+ n

√
2

∫
v

)
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Putting together the pieces, the first term (4.24) is bounded by

P
(

max
j∈J

n∏

i=1

fH0,j ,Σi(Xi) + 2v(Xi)

fG∗,Σi(Xi)
≥ e−αnt

2γ2
n

)

≤ exp

(
− (1− α)

nt2γ2
n

2
+ logN + n

√
2

∫
v

) (4.27)

For the second term (4.25), observe by Markov’s inequality

P
( ∏

i:Xi 6∈SM

1√
(2π)d|Σi| · 2v(Xi)

≥ exp(βnt2γ2
n)

)

≤ exp

(
−βnt

2γ2
n

2 log n

)
E





∏

i:Xi 6∈SM

∣∣∣∣∣
1√

|2πΣi| · 2v(Xi)

∣∣∣∣∣





1/2 logn

= exp

(
−βnt

2γ2
n

2 log n

)
E

{
n∏

i=1

(
dS(Xi)

|2πΣi|1/(2d+2) · (2η)1/(d+1)M

)1dS(Xi)≥M)

}(d+1)/2 logn

To reduce clutter write a = 1

kd/(2d+2)η1/(d+1)M
and λ = d+1

2 logn
. The above expectation is further

upper bounded by

E

{
n∏

i=1

(adS(Xi))
1dS(Xi)≥M

}λ

=
n∏

i=1

E (adS(Xi))
λ1dS(Xi)≥M

≤
n∏

i=1

(
1 + aλE

[
dS(Xi)

λ1dS(Xi)≥M
])

≤ exp

(
aλ

n∑

i=1

E
[
dS(Xi)

λ1dS(Xi)≥M
]
)

≤ exp

(
naλ

{
CdM

d+λ−2k
1−d/2

e−M
2/(8k) +Mλ

(
2µq
M

)q})

The last inequality follows from Lemma 4.13. Note we need

d+ 1

2(1 ∧ q) ≤ log n,

to ensure λ ≤ 1 ∧ q. Taking M ≥
√

8k log n, we have e−M
2/(8k) ≤ 1

n
, so

E

{
n∏

i=1

(adS(Xi))
1dS(Xi)≥M

}λ

≤ exp

(
(aM)λ

[
CdM

d−2k
1−d/2

+ n

(
2µq
M

)q])
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Noting (aM)λ =
(
kd/2η

)−1/(2 logn)

, choose η = n−2

kd/2
, so (aM)λ = e. We directly apply Lemma

A.7 of Saha and Guntuboyina (2020b) for the integral

∫
v ≤ CdηVol(SM).

To bound the metric entropy, i.e. logN where N denotes the size of our η-net {fHj ,•}Nj=1 ⊂ F,
we apply Lemma 4.16

logN = logN
(
η,F, ‖ · ‖∞,SM

)
≤ CdN

(
u, (SM)u

)(
log

cd,k,k
η

)2

,

where the scalar u in the above display corresponds to a used in the lemma. Assuming
4n ≥ (2π)d/2,

u =

√
−2k log

(
((2πk)d/2

η

4

)
≥
√

2k log n

Similarly u ≤
√

6k log n, so

N
(
u, (SM)u

)
≤ N

(√
2k log n, (SM)

√
6k logn

)
≤ Cd,kVol(S2M)(log n)−d/2

Combining our findings,

P
(
h̄(fĜn,•, fG∗,•) ≥ tγn

)

≤ exp

(
− (1− α)

nt2γ2
n

2
+ Cd,k,k(log n)d/2+1Vol(S2M) + Cd

√
k−d/2Vol(SM)

)

+ exp

(
− β

log n

nt2γ2
n

2
+ CdM

d−2k
1−d/2

+ en inf
q≥(d+1)/(2 logn)

(
2µq
M

)q)

for any t > 1. Absorbing the dependence on d, k and k into constants, take ε2
n = ε2

n(M,S,G∗)
such that

max

{
(log n)d/2+1Vol(S2M),

√
Vol(SM),Md−2, en inf

q≥(d+1)/(2 logn)

(
2µq
M

)q}

.d,k,k nε
2
n(M,S,G∗)

If we then take γ2
n =

Cd,k,kε
2
n(M,S,G∗)

4 min(1−α,β)
,

P
(
h̄(fĜn,•, fG∗,•) ≥ tγn

)
≤ 2 exp

(
−(1− α) ∧ β

4 log n
nt2γ2

n

)
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This proves (4.15). To prove (4.16), integrate the tail from (4.15),

E
h̄2(fĜn,•, fG∗,•)

γ2
n

≤ 1 +

∫ ∞

1

P
(
h̄2(Ĝn, G

∗)

γ2
n

≥ s

)
ds

≤ 1 +

∫ ∞

1

4tn−t
2

dt = 1 +
2

n log n
≤ 3

for n > 1, completing the proof.

We now state and prove the lemmas needed in the proof of Theorem 4.6.

Lemma 4.13. Let θ∗ ∼ G∗ and Z ∼ N (0, Id) independently, and Y = θ∗ + Σ1/2Z, where
kId � Σ � kId. Then

E
[
dS(Y )λ1dS(Y )≥M

]
≤ CdM

d+λ−2k
1−d/2

e−M
2/(8k) +Mλ

(
2µq
M

)q
,

for any λ ∈ (0, 1 ∧ q], where µq is the qth-moment of dS(θ∗) under θ∗ ∼ G∗.

Proof. Since distance dS is 1-Lipschitz,

E
[
dS(Y )λ1dS(Y )≥M

]
≤ E

[
(2‖Σ1/2Z‖2)λ12‖Σ1/2Z‖2≥M

]
+ E

[
(2dS(θ∗))λ12dS(θ∗)≥M

]
(4.28)

For the first term on the RHS of (4.28),

E
[
(2‖Σ1/2Z‖2)λ12‖Σ1/2Z‖2≥M

]
≤MλE

[(‖Σ1/2Z‖2

M/2

)λ
1‖Σ1/2Z‖2≥M/2

]

≤ 2Mλ−1E
[
‖Σ1/2Z‖21‖Σ1/2Z‖2≥M/2

]

≤ 2Mλ−1k
1/2E

[
‖Z‖21‖Z‖2≥M/(2k

1/2
)

]

≤ 2CdM
λ−1k

1/2
(
M

k
1/2

)d−1

e−M
2/(8k)

= CdM
d+λ−2k

1−d/2
e−M

2/(8k)

The penultimate inequality uses ‖Σ1/2Z‖2 ≤ k
1/2‖Z‖2, and the last inequality directly uses

Lemma A.6 of Saha and Guntuboyina (2020b).
Since λ < q, applying Hölder to the second term on the RHS of (4.28) yields

E
[
(2dS(θ∗))λ12dS(θ∗)≥M

]
≤Mλ

(
2µq
M

)q
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Lemma 4.14. (Moment matching, part i) Let G,H ∈ P(Rd). Suppose A ⊂ Rd is such that

Ba(x) ⊆ A ⊆ Bca(x)

for some c ≥ 1, and that
∫

A

θk1
1 · · · θkdd dG(θ) =

∫

A

θk1
1 · · · θkdd dH(θ), for k1, . . . , kd ∈ [2m+ 1],

for some m ≥ 1. Then

max
1≤i≤n

|fG,Σi(x)− fH,Σi(x)| ≤ 1

(2πk)d/2

(
ec2a2

2k(m+ 1)

)m+1

+
e−a

2/(2k)

(2πk)d/2
.

Proof. For each i ∈ [n], write

fG,Σi(x)− fH,Σi(x) =

∫

A

ϕΣi(x− θ)(dG(θ)− dH(θ)) +

∫

Ac

ϕΣi(x− θ)(dG(θ)− dH(θ))

On Ac, ‖x− θ‖2 ≥ a, so

ϕΣi(x− θ) ≤
e−a

2/(2k)

(2πk)d/2
.

Write the pdf as ϕΣi(z) = Pi(z) + Ri(z) where Pi is a polynomial of degree 2m and the
remainder Ri satisfies

|Ri(z)| ≤ (2πk)−d/2
(

e‖z‖2
2

2k(m+ 1)

)m+1

By hypothesis,
∫
A
Pi(x− θ)(dG(θ)− dH(θ)), so

∣∣∣∣
∫

A

ϕΣi(x− θ)(dG(θ)− dH(θ))

∣∣∣∣ ≤
∣∣∣∣
∫

A

Ri(x− θ)(dG(θ)− dH(θ))

∣∣∣∣

≤ 1

(2πk)d/2

(
ec2a2

2k(m+ 1)

)m+1

completing the proof.

Lemma 4.15. (Moment matching, part ii) For any G ∈ P(Rd), there is a discrete distribu-
tion H supported on Sa with at most

l := (2b13.5a2/kc+ 2)dN(a, Sa) + 1

atoms such that

‖fG,• − fH,•‖∞,Sa ≤
(

1 +
1√
2π

)
(2πk)−d/2e−a

2/(2k).
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Proof. The idea is to choose H to match moments, and then apply the previous lemma.
The proof is identical to Lemma D.3 of Saha and Guntuboyina (2020b), except that we take
m := b27a2

2k
c.

Lemma 4.16. There exists positive constants Cd and cd,k,k depending on d, k, k alone such

that for every compact set S ⊂ Rd, M > 0 and η ∈ (0, e−1 ∧ 4(2πk)−d/2), we have

logN(η,F, ‖ · ‖∞,S) ≤ CdN(a, Sa)

(
log

cd,k,k
η

)d+1

(4.29)

Proof. The idea here is to take fG,• ∈ F (induced by some G ∈ P(Rd)), approximate G
by a discrete distribution H, and then further approximate that discrete distribution with
another discrete distribution over a fixed set of atoms and weights. So let G ∈ P(Rd), and
apply the previous Lemma to obtain a discrete distribution H supported on Sa with at most
l atoms such that

‖fG,• − fH,•‖∞,Sa ≤
(

1 +
1√
2π

)
(2πk)−d/2e−a

2/(2k).

Let C denote a minimal ζ-net of Sa, and let H ′ approximate each atom of H with its closest
element from C. Writing H =

∑
j wjδaj and H ′ =

∑
wjδbj , we have

‖fH,• − fH′,•‖∞,Sa = max
i∈[n]

sup
x∈Sa
|fH,Σi(x)− fH′,Σi(x)|

≤ max
i∈[n]

sup
x∈Sa

∑

j

wj|ϕΣi(x− aj)− ϕΣi(x− bj)|

≤ ζ max
i∈[n]

sup
z
‖∇ϕΣi(z)‖2 = ζ max

i∈[n]
sup
z
ϕΣi(z)‖Σ−1

i z‖2

≤ ζk−1(2πk)−d/2 max
i∈[n]

sup
t

exp
(
−t2/2k

)
t

≤ ζk−1(2πk)−d/2(k/e)1/2

Let D denote a minimal ξ-net of ∆l−1 in the `1 norm, and approximate the weights w by
their closest element v ∈ D. Writing H ′′ =

∑
j vjδbj ,

‖fH′,• − fH′′,•‖∞,Sa = max
i∈[n]

sup
x∈Sa
|fH′,Σi(x)− fH′′,Σi(x)|

≤ max
i∈[n]

sup
x∈Sa

∑

j

|wj − vj||ϕΣi(x− bj)| ≤ (2πk)−d/2ξ.

Applying triangle inequality to the past three displays,

‖fG,• − fH′′,•‖∞,Sa ≤ (2πk)−d/2
[
2e−a

2/(2k) + ζk−1(k/e)1/2 + ξ
]

(4.30)
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Letting ξ = (2πk)d/2 η
4
, ζ = ξk(k/e)−1/2, and a =

√
2k log ξ−1 yields ‖fG,• − fH′′,•‖∞,Sa ≤ η.

In order to take a as such we need ξ < 1, or equivalently η < 4(2πk)−d/2.
The number of possible H ′′ is

|C| · |D| = N(ξ,∆l−1)

(
N(ζ, Sa)

l

)
≤
[(

1 +
2

ξ

)
eN(ζ, Sa)

l

]l

From the previous Lemma, l ≥ N(a, Sa)/k
d
, so

N(ζ, Sa)

l
≤ k

dN(ζ, Sa)

N(a, Sa)
≤ k

d
(

1 +
a

ζ

)d
= k

d
(

1 + κ
2√
eξ3/2

)d
≤ Cd

k
2d

kd+3d2/4

(
1

η

)3p/2

Thus,

logN(η,F, ‖ · ‖∞,S) ≤ CdN(a, Sa) log

(
1

kd/2

(
k

2d

k3(d/2+1)
∨ 1

)
e

η

)d+1

4.6.3 Proof of Theorem 4.8

Throughout the proof we will group sequences of the form θ1, . . . , θn into n× d matrices θ,
so that, for instance, the regret 1

n

∑n
i=1 E‖θ̂i − θ̂∗i ‖2

2 in the statement of the theorem may be

rewritten as the expected squared Frobenius norm 1
n
E‖θ̂−θ̂∗‖2

F , where ‖θ‖2
F =

∑n
i=1

∑d
j=1 θ

2
ij.

Additionally, we use the same notation introduced at the start of Section 4.6.2.

4.6.3.1 Regularizing the Bayes rule

In evaluating θ̂, an apparent difficulty is that the denominator in Tweedie’s formula can be
arbitrarily small. However, since Ĝn is an approximate NPMLE, we show that the likelihood
is lower bounded at each of the observations. In accordance with (4.17), we write that

1

n

n∑

i=1

log fĜn,Σi(Xi)− sup
G∈P(Rd)

1

n

n∑

i=1

log fG,Σi(Xi) ≥ −q, (4.31)

for some q > 0. Following Jiang and Zhang, 2009, Proof of Proposition 2, for a fixed j ∈ [n]

choose G = n−1δXj + (1− n−1)Ĝn. Then by the previous display,

n∏

i=1

fĜn,Σi(Xi) ≥ e−nq
n∏

i=1

fG,Σi(Xi)

≥ e−nqn−1ϕΣi(0)(1− n−1)n−1
∏

i:i 6=j

fĜn,Σi(Xi).

Cancelling terms for i ∈ [n] \ {j}, we conclude

fĜn,Σj(Xj) ≥ e−nq−logn 1

e
√
|2πΣj|

. (4.32)
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Given this, it is natural to define the regularized empirical Bayes and oracle Bayes rules

θ̂ρ,i = Xi + Σi

∇fĜn,Σi(Xi)

fĜn,Σi(Xi) ∨ (ρ/
√
|Σi|)

(4.33)

θ̂∗ρ,i = Xi + Σi
∇fG∗,Σi(Xi)

fG∗,Σi(Xi) ∨ (ρ/
√
|Σi|)

. (4.34)

By the lower bound (4.32) we know that θ̂ρ = θ̂ when ρ ≤ ρ0 := e−nq−logn 1
e(2π)d/2

. In

particular,

‖θ̂ − θ̂∗‖F = ‖θ̂ρ − θ̂∗‖F ≤ ‖θ̂ρ − θ̂∗ρ‖F + ‖θ̂∗ρ − θ̂∗‖F . (4.35)

The first term ‖θ̂ρ− θ̂∗ρ‖F represents the regret between regularized rules, which prevents the
denominator in Tweedie’s formula from blowing up. The second term represents the cost of
introducing a small amount of regularization in the oracle Bayes rule.

4.6.3.2 Regularization error of oracle Bayes

Let us first consider the second term ‖θ̂∗ρ − θ̂∗‖F on the RHS of the bound (4.35). Fixing

i ∈ [n], let G∗i denote the distribution of ξi = Σ
−1/2
i θ∗i where θ∗i ∼ G∗. Then we may write

Xi = Σ
1/2
i Xi where Xi ∼ fG∗i ,Id . Note how the scale change affects the terms in Tweedie’s

formula:

fG∗,Σi(Xi) = Eϑi∼G∗
[

1√
|2πΣi|

exp

(
−1

2
(Xi − ϑi)′Σ−1

i (Xi − ϑi)
)]

=
1√
|Σi|

Eξi∼G∗i
[
ϕId(Σ

−1/2
i Xi − ξi)

]
=

1√
|Σi|

fG∗i ,Id(Xi)

∇fG∗,Σi(Xi) = Eϑi∼G∗
[

Σ−1
i (ϑi −Xi)

1√
|2πΣi|

exp

(
−1

2
(Xi − ϑi)′Σ−1

i (Xi − ϑi)
)]

=
1√
|Σi|

Σ
−1/2
i ∇fG∗i ,Id(Xi)

(4.36)

In particular, Tweedie’s formula, even in its regularized form, is scale equivariant:

θ̂∗ρ,i = Σ
1/2
i

(
Xi +

∇fG∗i ,Id(Xi)

fG∗i ,Id(Xi) ∨ ρ

)
(4.37)

In this form, Saha and Guntuboyina (2020a, Lemma 4.3) directly applies. Specifically,
defining

∆(G, ρ) :=

∫ (
1− fG,Id

fG,Id ∨ ρ

)2 ‖∇fG,Id‖2
2

fG,Id
,
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for any ρ ≤ ρ0 and for all compact sets S1, . . . , Sn ⊂ Rd,

E‖θ̂∗ρ − θ̂∗‖2
F =

n∑

i=1

E‖θ̂∗ρ,i − θ̂∗i ‖2
2 ≤ k̄

n∑

i=1

∆(G∗i , ρ)

≤ k̄
n∑

i=1

{
CdN

(
4

L(ρ)
, Si

)
Ld(ρ)ρ+ dG∗i (S

c
i )

}
,

(4.38)

where L(ρ) :=
√
− log((2π)dρ2) and N denotes the usual covering number in the Euclidean

norm. Choosing ρ = (2π)−d/2/n and Si = Σ
−1/2
i SM ,

E‖θ̂∗ρ − θ̂∗‖2
F ≤ k̄n

{
CdN

(
4√

log n
,Σ
−1/2
i SM

)
(log n)d/2

n
+ dG∗((SM)c)

}
.

Let x1, . . . , xm denote a t-net of SM . Let y ∈ Si and x = Σ
1/2
i y. There is some j s.t.

‖xj − x‖2 ≤ t. Let yj = Σ
−1/2
i xj. Then

t2 ≥ (xj − x)′(xj − x) = (yj − y)′Σi(yj − y) ≥ k‖yj − y‖2
2

so y1, . . . , ym is a t/k1/2-net of Si. This shows N(t/k1/2, Si) ≤ N(t, SM). By Saha and
Guntuboyina (2020b, Lemma F.6) and Markov’s inequality,

E‖θ̂∗ρ − θ̂∗‖2
F ≤ Cdk̄n

{
k−d/2Vol

(
S1
)
Md (log n)d

n
+ inf

q≥(d+1)/2 logn

(
2µq
M

)q}
. (4.39)

4.6.3.3 Regret of regularized rules

Now we consider the first term ‖θ̂ρ − θ̂∗ρ‖F on the RHS of the bound (4.35). First, we will

introduce some additional notation. For δ > 0 let Aδ =
{
h̄2
(
fĜn,•, fG∗,•

)
≤ δ
}

. Given a

compact set S ⊂ Rd, define another metric

mS(G,G′) := max
i∈[n]

sup
x:dS(x)≤M

∥∥∥∥∥
Σi∇fG,Σi(x)

fG,Σi(x) ∨ (ρ/
√
|Σi|)

− Σi∇fG′,Σi(x)

fG′,Σi(x) ∨ (ρ/
√
|Σi|)

∥∥∥∥∥
2

Let G(1), . . . , G(N) denote a minimal η∗-covering of
{
G : h̄2(fG,•, fG∗,•) ≤ δ

}
in the metric

mS. For j ∈ [N ] similarly define an n × d matrix θ̂
(j)
ρ where the ith row is given by Xi +

Σi

∇f
G(j),Σi

(Xi)

f
G(j),Σi

(Xi)∨(ρ/
√
|Σi|)

. We bound the regret as ‖θ̂ρ − θ̂∗ρ‖F ≤
∑4

t=1 ζt, where

ζ1 := ‖θ̂ρ − θ̂∗ρ‖F1Ac
δ

ζ2 :=

(
‖θ̂ρ − θ̂∗ρ‖F −max

j∈[N ]
‖θ̂(j)

ρ − θ̂∗ρ‖F
)

+

1Aδ

ζ3 := max
j∈[N ]

(
‖θ̂(j)

ρ − θ̂∗ρ‖F − E‖θ̂(j)
ρ − θ̂∗ρ‖F

)
+

ζ4 := max
j∈[N ]

E‖θ̂(j)
ρ − θ̂∗ρ‖F

(4.40)
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We will control the second moment of each ζt. Here’s our rough overview. ζ1 uses Theorem 4.6
to show the NPMLE places small probability on Ac

δ; ζ2 uses the fact that (on Aδ) the cover
{G(j)} must have some element that is close to the NPMLE in mS; ζ3 follows from Gaussian
concentration of measure; and ζ4 bounds each expectation individually and uses closeness in
Hellinger.

Bounding Eζ2
1

By the scaled Tweedie’s formula (4.37)

‖θ̂ρ,i − θ̂∗ρ,i‖2
2 ≤ k̄

∥∥∥∥∥
∇fĜi,Id(Xi)

fĜi,Id(Xi) ∨ ρ
− ∇fG

∗
i ,Id

(Xi)

fG∗i ,Id(Xi) ∨ ρ

∥∥∥∥∥

2

2

Saha and Guntuboyina (2020b, Lemma F.1) provides

Eζ2
1 ≤ 4k̄n log

(
(2π)d

ρ2

)
P(Ac

δ). (4.41)

By Theorem 4.6, there is a constant Cd,k,k̄ > 0 such that δ = Cd,k,k̄ε
2
n(M,S,G∗) satisfies

P(Ac
δ) ≤ 2/n. Hence

Eζ2
1 ≤ 48k̄ log (n) . (4.42)

Bounding Eζ2
2

Observe

ζ2
2 ≤ 1Aδ min

j∈[N ]
‖θ̂ρ − θ̂(j)

ρ ‖2
F

= 1Aδ min
j∈[N ]

n∑

i=1

∥∥∥∥∥
Σi∇fĜn,Σi(Xi)

fĜn,Σi(Xi) ∨ (ρ/
√
|Σi|)

− Σi∇fG(j),Σi(Xi)

fG(j),Σi(Xi) ∨ (ρ/
√
|Σi|)

∥∥∥∥∥

2

2

On Aδ, we may take j such that mS(Ĝn, G
(j)) ≤ η∗. For each i, consider two cases, where

Xi ∈ SM and where Xi 6∈ SM . When Xi ∈ SM bound the above ‖ · ‖2 by the supremum over
all x ∈ SM . When Xi 6∈ SM bound the regularized rules as before. This yields

ζ2
2 ≤ 1Aδ

(
#{i : Xi ∈ SM}(η∗)2 + #{i : Xi 6∈ SM}4k̄ log

(
(2π)d

ρ2

))
(4.43)

so in particular

Eζ2
2 ≤ n(η∗)2 + 4k̄ log

(
(2π)d

ρ2

) n∑

i=1

P (dS(Xi) ≥M) . (4.44)
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To bound the probabilities on the RHS, write Xi = θi + Σ1/2Zi. By Lemma 4.13, taking
λ ↓ 0,

Eζ2
2/n ≤ (η∗)2 + 4k̄ log

(
(2π)d

ρ2

)(
Cd
Md−2

n
k̄1−d/2 + inf

q≥(d+1)/2 logn

(
2µq
M

)q)
. (4.45)

Bounding Eζ2
3

Fix j ∈ [N ]. Let Zi
iid∼ N (0, Id) and ξ∗i ∼ G∗i and ξ

(j)
i ∼ G

(j)
i , where G

(j)
i denotes the scale

change of G(j) by Σ
−1/2
i . In accordance with (4.37), we write

‖θ̂(j)
ρ − θ̂∗ρ‖F

=




n∑

i=1

∥∥∥∥∥∥
Σ

1/2
i


ξ(j)

i + Zi +
∇f

G
(j)
i ,Id

(ξ
(j)
i + Zi)

f
G

(j)
i ,Id

(ξ
(j)
i + Zi) ∨ ρ


− Σ

1/2
i

(
ξ∗i + Zi +

∇fG∗i ,Id(ξ∗i + Zi)

fG∗i ,Id(ξ
∗
i + Zi) ∨ ρ

)∥∥∥∥∥∥

2

2




1/2

Call the RHS above F (Z). Then

|F (Z)− F (Z ′)| =
∣∣∣‖θ̂(j)

ρ (Z)− θ̂∗ρ(Z)‖F − ‖θ̂(j)
ρ (Z ′)− θ̂∗ρ(Z ′)‖F

∣∣∣
≤ ‖θ̂(j)

ρ (Z)− θ̂(j)
ρ (Z ′)‖F + ‖θ̂∗ρ(Z)− θ̂∗ρ(Z ′)‖F

Focusing on the second term on the RHS,

‖θ̂∗ρ(Z)− θ̂∗ρ(Z ′)‖F

≤ k̄1/2

√√√√
n∑

i=1

∥∥∥∥
(
ξ∗i + Zi +

∇fG∗i ,Id(ξ∗i + Zi)

fG∗i ,Id(ξ
∗
i + Zi) ∨ ρ

)
−
(
ξ∗i + Z ′i +

∇fG∗i ,Id(ξ∗i + Z ′i)

fG∗i ,Id(ξ
∗
i + Z ′i) ∨ ρ

)∥∥∥∥
2

2

≤ k̄1/2

√√√√
n∑

i=1

∥∥∥∥
(
Zi +

∇fG∗i−ξ∗i ,Id(Zi)
fG∗i−ξ∗i ,Id(Zi) ∨ ρ

)
−
(
Z ′i +

∇fG∗i−ξ∗i ,Id(Z ′i)
fG∗i−ξ∗i ,Id(Z

′
i) ∨ ρ

)∥∥∥∥
2

2

Saha and Guntuboyina (2020b, Proof of Lemma F.3) then gives

‖θ̂∗ρ(Z)− θ̂∗ρ(Z ′)‖F ≤ k̄1/2L2(ρ)‖Z − Z ′‖F ,

where as before L(ρ) :=
√
− log((2π)dρ2). The same argument applies to ‖θ̂(j)

ρ (Z)−θ̂(j)
ρ (Z ′)‖F .

Hence F is 2k̄L2(ρ)-Lipschitz. By concentration of Lipschitz functions of Gaussians and a
union bound

P
(
ζ2

3 ≥ x
)
≤ N exp

(
− x2

8k̄L4(ρ)

)
.

Integrating the tail gives

Eζ2
3 ≤ 8k̄L4(ρ) log(eN). (4.46)
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Bounding Eζ2
4

Again by the scaled Tweedie’s formula (4.37),

E‖θ̂(j)
ρ − θ̂∗ρ‖F ≤

√
E‖θ̂(j)

ρ − θ̂∗ρ‖2
F ≤

√√√√k̄
n∑

i=1

EXi∼fG∗
i
,Id

∥∥∥∥∥
∇f

G
(j)
i ,Id

(Xi)

f
G

(j)
i ,Id

(Xi) ∨ ρ
− ∇fG

∗
i ,Id

(Xi)

fG∗i ,Id(Xi) ∨ ρ

∥∥∥∥∥

2

2

Saha and Guntuboyina (2020a, Lemma E.1) bounds the above expectation, yielding

(
E‖θ̂(j)

ρ − θ̂∗ρ‖F
)2

≤ Cdk̄

n∑

i=1

max

{(
L2(ρ)

2

)3

,
∣∣∣log h

(
fG∗i ,Id , fG(j)

i ,Id

)∣∣∣
}
h2
(
fG∗i ,Id , fG(j)

i ,Id

)
.

(4.47)

By a change of variables,

h2
(
fG∗i ,Id , fG(j)

i ,Id

)
= h2

(
fG∗,Σi , fG(j),Σi

)
.

Using the shorthand h2
i = h2

(
fG∗,Σi , fG(j),Σi

)
and using ρ = (2π)−d/2/n,

(
E‖θ̂(j)

ρ − θ̂∗ρ‖F
)2

≤ Cdk̄
n∑

i=1

max
{

(log n)3 ,− log hi
}
h2
i

= Cdk̄


 ∑

i:(logn)3≥− log hi

(log n)3 h2
i +

∑

i:(logn)3<− log hi

−(log hi)h
2
i




≤ Cdk̄


n (log n)3 δ +

∑

i:(logn)3<log h−1
i

(log h−1
i )h2

i


 ,

(4.48)

where in the last step we used 1
n

∑n
i=1 h

2
i = h̄2(fG∗,•, fG(j),•) ≤ δ. To bound the second term,

note for n ≥ 6, (log n)3 ≥ 3 log n, implying hi ≤ n−3 for all i such that (log n)3 < log h−1
i .

Since hi log h−1
i ≤ e−1 for all hi ∈ [0, 1],

∑

i:(logn)3<log h−1
i

(log h−1
i )h2

i ≤
∑

i:(logn)3<log h−1
i

1

en3
≤ 1

en2
.

The first term dominates, so

Eζ2
4 ≤ Cdk̄n(log n)3δ. (4.49)
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Bounding the metric entropy logN

We will actually bound the larger covering number logN(η∗,P(Rd),mS) of the space of all
probability measures P(Rd) in the metric mS. For any measure G we let Gi denote the

measure scaled by Σ
−1/2
i as in the scaled Tweedie formula. For G,H ∈ P(Rd),

mS(G,H) := max
i∈[n]

sup
x:dS(x)≤M

∥∥∥∥∥
Σi∇fG,Σi(x)

fG,Σi(x) ∨ (ρ/
√
|Σi|)

− Σi∇fH,Σi(x)

fH,Σi(x) ∨ (ρ/
√
|Σi|)

∥∥∥∥∥
2

≤ max
i∈[n]

sup
x:dS(x)≤M

∥∥∥∥∥
Σi∇fG,Σi(x)

fG,Σi(x) ∨ (ρ/
√
|Σi|)

− Σi∇fG,Σi(x)

fH,Σi(x) ∨ (ρ/
√
|Σi|)

∥∥∥∥∥
2

+ max
i∈[n]

sup
x:dS(x)≤M

∥∥∥∥∥
Σi∇fG,Σi(x)

fH,Σi(x) ∨ (ρ/
√
|Σi|)

− Σi∇fH,Σi(x)

fH,Σi(x) ∨ (ρ/
√
|Σi|)

∥∥∥∥∥
2

≤ max
i∈[n]

sup
x:dS(x)≤M

∥∥∥∥∥
Σi∇fG,Σi(x)

fG,Σi(x) ∨ (ρ/
√
|Σi|)

∥∥∥∥∥
2

×

∣∣∣fG,Σi(x) ∨ (ρ/
√
|Σi|)− fH,Σi(x) ∨ (ρ/

√
|Σi|)

∣∣∣
fH,Σi(x) ∨ (ρ/

√
|Σi|)

+ max
i∈[n]

sup
x:dS(x)≤M

∥∥∥∥∥
Σi(∇fG,Σi(x)−∇fH,Σi(x))

fH,Σi(x) ∨ (ρ/
√
|Σi|)

∥∥∥∥∥
2

For the first term, by Saha and Guntuboyina (2020b, Lemma F.1),
∥∥∥∥∥

Σi∇fG,Σi(x)

fG,Σi(x) ∨ (ρ/
√
|Σi|)

∥∥∥∥∥
2

=

∥∥∥∥∥Σ
1/2
i

∇fG∗i ,Id(Σ
−1/2
i x)

fG∗i ,Id(Σ
−1/2
i y) ∨ ρ

∥∥∥∥∥
2

≤ k̄1/2L(ρ).

Replacing f ∨ (ρ/
√
|Σi|) with ρ/

√
|Σi| in the denominator can only make the denominator

smaller, so

mS(G,H) ≤ k̄1/2ρ−1L(ρ) max
i∈[n]

sup
x:dS(x)≤M

√
|Σi| |fG,Σi(x)− fH,Σi(x)| (4.50)

+ ρ−1 max
i∈[n]

sup
x:dS(x)≤M

√
|Σi| ‖Σi(∇fG,Σi(x)−∇fH,Σi(x))‖2 (4.51)

≤ k̄d/2+1/2ρ−1L(ρ)‖fG,• − fH,•‖∞,SM + k̄d/2+1ρ−1‖fG,• − fH,•‖∇,SM (4.52)

In particular, letting

η∗ =
(
k̄d/2+1/2L(ρ) + k̄d/2+1

) η
ρ

we have

logN(η∗,P(Rd),mS) ≤ logN(η/2,F, ‖ · ‖∞,SM ) + logN(η/2,F, ‖ · ‖∇,SM ).
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We already have a bound on logN(η/2,F, ‖ ·‖∞,SM ) in Lemma 4.16, and we bound the other
term similarly in Lemma 4.17 below. Combining these bounds,

logN(η∗,P(Rd),mS) ≤ CdN(a, SM+a)

(
log

cd,k,k̄
η

)d+1

,

where a =

√
−2k̄ log

(√
k ∧ 1 (2πk)d/2

5
η
)

. Take η = ρ/n = (2π)−d/2/n2.

a =

√
4k̄ log n+ 2k̄ log

(
5√

k ∧ 1kd/2

)
∈
[√

2k̄ log n,

√
6k̄ log n

]
,

provided 1/n ≤ 5√
k∧1kd/2

≤ n. Hence by Saha and Guntuboyina (2020b, Lemma F.6) (see

the argument on page 6) gives

logN ≤ cd,k,k̄(log n)1+d/2Vol(S2M).

Lemma 4.17. For all compact S ⊂ Rd, M > 0 and η > 0 sufficiently small,

logN(η,F, ‖ · ‖∇,SM ) ≤ CdN(a, Sa)

(
log

cd,k,k̄
η

)d+1

where a =

√
2k̄ log

c′
d,k,k

η
.

Proof. Fix G ∈ P(Rd). By Lemma 4.15, there is a discrete measure H supported on Sa with
at most

l :=
(
2b13.5a2/k̄c+ 2

)d
N(a, Sa) + 1

atoms such that

‖fG,• − fH,•‖∇,Sa ≤ a

(
1 +

3√
2π

)
(2πk)−d/2e−a

2/(2k̄)

Now let C denote a minimal α-net of Sa. Write H =
∑

j wjδaj , and define H ′ =
∑

j wjδbj
where bj ∈ C is the closest element to aj. Then

‖∇fH,Σi(x)−∇fH′,Σi(x)‖2 ≤
∑

j

wj ‖∇ϕΣi(x− aj)−∇ϕΣi(x− bj)‖2

≤ k−1/2|Σi|−1/2
∑

j

wj

∥∥∥∇ϕ
(

Σ
−1/2
i (x− aj)

)
−∇ϕ

(
Σ
−1/2
i (x− bj)

)∥∥∥
2

≤ k−d/2−1/2α

(2π)d/2

[
1 +

2

e
+

α√
ke

]
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Now let Dp×p+ denote a minimal β-net of ∆l−1 under ‖ · ‖1. Let H ′′ =
∑

j w
′
jδbj where

‖w′ − w‖1 ≤ β. Then

‖∇fH′,Σi(x)−∇fH′′,Σi(x)‖2 ≤ β sup
u
‖∇ϕΣi(u)‖2 ≤

k−d/2−1/2β

(2π)d/2
√
e
.

By triangle inequality,

‖fG,• − fH′′,•‖∇,SM ≤ (2πk)−d/2
[(

1 +
3√
2π

)
ae−a

2/(2k̄) +
α√
k

[
1 +

2

e
+

α√
ke

]
+

β√
ke

]

Taking a =
√

2k̄ logα−1 ≥ 1 and α = β =
√
k ∧ 1 (2πk)d/2

5
η,

‖fG,• − fH′′,•‖∇,SM ≤
5aα√
k ∧ 1

(2πk)−d/2 = aη

The proof is completed following same steps as the proof of Lemma 5.

4.6.3.4 Putting together the pieces

Combining (4.39), (4.42), (4.45), (4.46), and (4.49) and pulling out any constants depending
on d, k, or k̄,

E‖θ̂ − θ̂∗‖2
F/n ≤ (5/n)

[
E‖θ̂∗ρ − θ̂∗‖2

F +
4∑

t=1

Eζ2
t

]

≤ cd,k,k̄

(
ε2
n(M,S,G∗)(

√
log n)d−2

+
log n

n
+ (η∗)2 + ε2

n(M,S,G∗)

+ log(eN)
(log n)2

n

+ ε2
n(M,S,G∗)(

√
log n)6

)

≤ cd,k,k̄ε
2
n(M,S,G∗)(

√
log n)(d−2)∨6

(4.53)

This completes the proof of Theorem 4.8.

4.6.4 Proofs of Theorems 4.10 and 4.12

Proof of Theorem 4.10. We will relate the Wasserstein distance to the average Hellinger
distance, so we rely on the tools of Nguyen (2013, proof of theorem 2). Fix a symmetric
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density K whose Fourier transform K̃ is bounded with support on [−1, 1]d. For any δ > 0
define the scaled kernel Kδ(x) = 1

δd
K(x/δ). By the triangle inequality,

W2(G∗, Ĝn) ≤ W2(G∗, G∗ ∗Kδ) +W2(G∗ ∗Kδ, Ĝn ∗Kδ) +W2(Ĝn ∗Kδ, Ĝn).

For the first and third terms, bound the minimum over all couplings by the strong coupling:

W 2
2 (G,G ∗Kδ) = min

θ∼G,θ′∼G,ε∼K
E‖θ − (θ′ + δε)‖2

2 ≤ δ2Eε∼K‖ε‖2
2,

where the inequality follows from choosing the coupling where θ = θ′ almost surely. Letting
m2(K) = Eε∼K‖ε‖2

2 denote the second moment of the (unscaled) kernel, we have

W2(G∗, Ĝn) ≤ 2
√
m2(K)δ +W2(G∗ ∗Kδ, Ĝn ∗Kδ). (4.54)

For the second term, Villani (2008, Theorem 6.15) yields

W 2
2 (G∗ ∗Kδ, Ĝn ∗Kδ) ≤ 2

∫
‖x‖2

2 d
∣∣∣G∗ ∗Kδ − Ĝn ∗Kδ

∣∣∣ (x)

By Nguyen (2013, Lemma 6), for any s > 2 such that ms(K) = E‖ε‖s2 <∞,

W 2
2 (G∗ ∗Kδ, Ĝn ∗Kδ) ≤ 4

∥∥∥G∗ ∗Kδ − Ĝn ∗Kδ

∥∥∥
(s−2)/s

L1

R2/s

≤ 4

[
2Vol(B1)s/(d+2s)Rd/(d+2s)

∥∥∥G∗ ∗Kδ − Ĝn ∗Kδ

∥∥∥
2s/(d+2s)

L2

](s−2)/s

R2/s

= 4 · 2(s−2)/sVol(B1)(s−2)/(2s+d)

×Rd(s−2)/(s(d+2s))+2/s
∥∥∥G∗ ∗Kδ − Ĝn ∗Kδ

∥∥∥
2(s−2)/(d+2s)

L2

≤ 8
√

Vol(B1) ·Rd(s−2)/(s(d+2s))+2/s
∥∥∥G∗ ∗Kδ − Ĝn ∗Kδ

∥∥∥
2(s−2)/(d+2s)

L2

where R := Eθ∗∼G∗,ε∼K‖θ∗ + δε‖s2 + Eθ∼Ĝn,ε∼K‖θ + δε‖s2.
For moments in the term R, use E‖θ + δε‖s2 ≤ 2s (E‖θ‖s2 + δsms(K)) , so

R ≤ 2s(ms(G
∗) +ms(Ĝn) + 2δsms(K)).

The quantity ms(K) is regarded as a constant depending only on s > 2 and d. By as-

sumption, the support of Ĝn is contained in the minimum bounding box of the observations,
which is further contained in [−U,U ]d where U = maxi,j |Xij| ≤ L+ maxi,j |Xij − θ∗ij|. Since

Xij − θ∗ij
ind∼ N (0, (Σi)jj), we have by a standard concentration argument that

U ≤ L+ 4

√
k log n
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with probability at least 1− 2d
n8 . Hence, with the same probability

ms(Ĝn) = EĜn‖θ‖
s
2 ≤ ds/2EĜn‖θ‖

s
∞ ≤ ds/2

(
L+ 4

√
k log n

)s
.

This same bound holds for ms(G
∗).

For the ‖ · ‖L2 norm
∥∥∥G∗ ∗Kδ − Ĝn ∗Kδ

∥∥∥
L2

, let g
(i)
δ denote the inverse Fourier transform

of K̃δ/ϕ̃Σi , so that G ∗Kδ = fG,Σi ∗ g(i)
δ . Hence, by Proposition 8.49 of Folland (1999), we

have for each i = 1, . . . , n,
∥∥∥G∗ ∗Kδ − Ĝn ∗Kδ

∥∥∥
L2

≤ 2dTV (fG∗,Σi , fĜn,Σi)‖g
(i)
δ ‖L2 .

Using Plancherel’s theorem and the fact that K̃ is bounded on its support of [−1, 1]d,

‖g(i)
δ ‖2

L2
=

∫

Rd

K̃(δω)2

ϕ̃Σi(ω)2
dω ≤ Cd

∫

[−1/δ,1/δ]d
ϕ̃Σi(ω)−2 dω

= Cd

∫

[−1/δ,1/δ]d
exp(ω′Σiω) dω = Cd

d∏

j=1

∫ 1/δ

−1/δ

exp((Σi)jjω
2
j ) dωj

≤ Cd

d∏

j=1

e2(Σi)jjδ
−2

∫ 1/δ

−1/δ

exp(−(Σi)jjω
2
j ) dωj ≤ Cd

(
π

k

)d/2
e2dkδ−2

.

Averaging over i = 1, . . . , n,

∥∥∥G∗ ∗Kδ − Ĝn ∗Kδ

∥∥∥
L2

≤ Cdk
−d/2e2dkδ−2 · 1

n

n∑

i=1

dTV (fG∗,Σi , fĜn,Σi)

≤ Cdk
−d/2e2dkδ−2

h̄(G∗, Ĝn).

Combining our calculations following (4.54), we have

W2(G∗, Ĝn) ≤ Cd,s inf
δ∈(0,1)

{
δ +

(
2s
(
ds/2

(
L+ 4

√
k log n

)s
+ 2δsms(K)

))3d/(2d+4s)

×
(
k−d/2e2dkδ−2

h̄(G∗, Ĝn)
)(s−2)/(d+2s)

}
.

(4.55)

Assume n is large enough that 4
√
k log n ≥ L and 2sds/2

(
4
√
k log n

)s
≥ 2ms(K), so

W2(G∗, Ĝn) ≤ Cd,s inf
δ∈(0,1)

{
δ +

(
k log n

)3sd/(4(d+2s))
(
k−d/2e2dkδ−2

h̄(G∗, Ĝn)
)(s−2)/(d+2s)

}
.

(4.56)
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Choosing δ−2 = − 1
4kd

log h̄(G∗, Ĝn) (provided δ < 1) and s = d+ 2 yields

W 2
2 (G∗, Ĝn) ≤ Cd

{
kd

− log h̄(G∗, Ĝn)
+
(
k log n

)d/2 (
k−dh̄(G∗, Ĝn)

)1/12
}
. (4.57)

ε2
n(M,S,G∗) defined in (4.13), with S = [−L,L]d and M =

√
10k log n gives

ε2
n =

(
4
√

10
(
L2 ∨ k

))d

n
(log n)d+1.

By Theorem 4.6,

W 2
2 (G∗, Ĝn) ≤ Cd

{
kd

log n− logCd,k,k,Lt
2(log n)d+1

+
(
k log n

)d/2
(
Cd,k,k,Lt

2 (log n)d+1

n

)1/24}
,

with probability at least 1 − 2n−t
2
. Take t2 = 8. For n sufficiently large the first term

dominates, δ < 1, and log n− logCd,k,k,L8(log n)d+1 ≥ (log n)/2.

Proof of Theorem 4.12. Take µ = 0 by location equivariance (see Lemma 4.4). Write Ĝn =∑k̂
j=1 ŵjδâj . Since G∗ = δ0 is a point mass,

W 2
2 (Ĝn, G

∗) = Eϑ∼Ĝn‖ϑ‖
2
2 =

k̂∑

j=1

ŵj‖âj‖2
2.

We relate this to the marginal density fĜn,• via

∫
fĜn,Σi(x)‖x‖2

2 dx =
k̂∑

j=1

ŵj

∫
ϕΣi(x− âj)‖x‖2

2 dx

=
k̂∑

j=1

ŵj

∫
ϕΣi(x)(‖x‖2

2 + ‖âj‖2
2 + 2〈x, âj〉) dx

=

∫
fG∗,Σi(x)‖x‖2

2 dx+W 2
2 (Ĝn, G

∗).

Hence for any i ∈ {1, . . . , n},

W 2
2 (Ĝn, G

∗) =

∫
(fĜn,Σi(x)− fG∗,Σi(x))‖x‖2

2 dx

≤ 2h(fĜn,Σi , fG∗,Σi)

(∫ (
fĜn,Σi(x) + fG∗,Σi(x)

)
‖x‖4

2 dx

)1/2

.
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Averaging over i ∈ {1, . . . , n},

W 2
2 (Ĝn, G

∗) ≤ 2h̄
(
fĜn,•, fG∗,•

)
max
i=1:n

(∫ (
fĜn,Σi(x) + fG∗,Σi(x)

)
‖x‖4

2 dx

)1/2

.

Applying Theorem 4.6 with S = {0} and M =
√

10k log n,

h̄2
(
fĜn,•, fG∗,•

)
.d,k,k t

2 (log n)d+1

n

with probability at least 1− 2n−t
2

for all t ≥ 1.
For the remaining terms,

∫
fG∗,Σi(x)‖x‖4

2 dx = E‖Xi‖4
2 = EZ∼N (0,Id)‖Σ1/2

i Z‖4
2 ≤ k

2EA∼χ2
d
A2 = k

2
d(d+ 2)

and
∫
fĜn,Σi(x)‖x‖4

2 dx =
∑

j

ŵj

∫
ϕΣi(x)‖x+ âj‖4

2 dx

≤ 8
∑

j

ŵj

∫
ϕΣi(x)

(
‖x‖4

2 + ‖âj‖4
2

)
dx

≤ 8k
2
d(d+ 2) + 8

∑

j

ŵj‖âj‖4
2.

By our assumption on the support that each âj ∈ Bκr(X̄), each âj equivalently satisfies

‖âj − X̄‖4
2 ≤ (k/k)4 max

i
‖Xi − X̄‖4

2.

Noting that Xi − X̄ ∼ N
(
0, (1− 2n−1)Σi + n−1Σ̄

)
with Σ̄ = n−1

∑n
j=1 Σj, we bound

∑

j

ŵj‖âj‖4
2 ≤ 8

(
‖X̄‖4

2 + max
j
‖âj − X̄‖4

2

)

≤ 8

(
‖X̄‖4

2 + κ4 max
i∈[n]
‖Xi − X̄‖4

2

)

≤st 8k
2
(
n−2A2

0 + κ4 max
i∈[n]

A2
i

)

≤ 16
k

6

k4 max
i=0:n

A2
i ,

where A0, A1, . . . , An ∼ χ2
d are possibly dependent, and ≤st denotes stochastic inequality.
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For t ≥ 1, we use the following tail bound (see Laurent & Massart, 2000, Lemma 1)

P
(

max
i=0:n

A2
i ≥ 60t2(log n)2

)
≤ n−t

2

,

where we have used the assumption in Theorem 4.6 that n ≥ (2π)d/2 to eliminate the
dependence on d. We have thus shown that

max
i=1:n

(∫ (
fĜn,Σi(x) + fG∗,Σi(x)

)
‖x‖4

2 dx

)1/2

≤
(

9k
2
d(d+ 2) + 400

k
6

k4 t
2(log n)2

)1/2

.
k

3

k2 t(log n)

with probability at least 1− n−t2 . Combining with a union bound over our earlier estimate,

W2(Ĝn, G
∗) .d,k,k t

3/2 (log n)(d+3)/4

n1/4

with probability at least 1− 3n−t
2

for all t ≥ 1.
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Chapter 5

Local false discovery rate control

5.1 Introduction

A common goal in applications of multiple hypothesis testing is to identify a relatively short
list of candidate “discoveries” that are sufficiently promising to undertake some costly further
action. In scientific applications, for example, each discovery may be the focus of a follow-up
experiment, which wastes resources if the apparent discovery was only a mirage. The false
discovery rate (FDR, Benjamini & Hochberg, 1995) has become a cornerstone of modern
large-scale multiple testing because it directly measures the rate of this wastage:

[T]he proportion of errors in the pool of candidates is of great economical signif-
icance since follow-up studies are costly, and thus avoiding multiplicity control is
costly. Indeed, the FDR criterion is economically interpretable; when considering
a potential threshold, the adjusted FDR gives the proportion of the investment
that is about to be wasted on false leads. (Reiner et al., 2003)

An analyst who controls FDR at level q = 5%, then, is willing to waste resources following
up on one false discovery in exchange for every nineteen real discoveries.

Carrying this reasoning further, however, we can apply the same cost-benefit analysis to
each individual rejection, not only to the list of rejections taken as a whole. In economic
terminology, we should consider not only the average utility of our entire rejection set, but
also the marginal utility of each rejection we make, since we always have the option to exclude
any rejection that is not individually promising. For example, in Section 5.4 we reproduce
the simulations of Benjamini and Hochberg (1995) and find in some settings that, even while
the Benjamini–Hochberg (BH) procedure controls FDR at level q = 5%, the last discovery
(i.e. the discovery with the largest p-value) is false more than 30% of the time. In such
settings, unless we are willing to suffer one false discovery for every two true discoveries,
we would be better served by excluding the last rejection from the BH rejection set. More
generally, to decide where to set our rejection threshold, we should ask about the proportion
of false leads among the incremental rejections that we would add or remove by raising or
lowering it.
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The likelihood that an individual discovery is a false lead is called its local false discovery
rate (lfdr, Efron et al., 2001). For i = 1, . . . ,m, let Hi = 0 if the ith hypothesis is null and
Hi = 1 otherwise, and consider the simple Bayesian two-groups model

pi | Hi = h
ind∼ fh, with Hi

iid∼ Bern(1− π0), for i = 1, . . . ,m, (5.1)

where f0 := 1[0,1] and f1 are densities (null and alternative, respectively) supported on the
unit interval [0, 1], and the null proportion is π0 ∈ [0, 1]. Let f := π0 + (1− π0)f1 denote the
common mixture density of the p-values in model (5.1), and let F (t) :=

∫ t
0
f(u) du denote

the corresponding cumulative distribution function (cdf). The lfdr is then defined as the
posterior probability that Hi = 0, conditional on the observed p-value pi:

lfdr(t) := P (Hi = 0 | pi = t) =
π0

f(t)
. (5.2)

If we knew the problem parameters π0 and f1, then the definition (5.2) would neatly solve the
problem posed above: we should reject only those hypotheses whose lfdr is below the break-
even threshold of our cost-benefit tradeoff. Concretely, let λ > 0 define the ratio between the
cost of each false discovery and the benefit of each true discovery. Then the utility of making
R rejections, of which V are false discoveries, is proportional to (R− V )− λV , and a simple
calculation shows that we should reject the ith hypothesis if and only if lfdr(pi) ≤ α := 1

1+λ
.

We will usually work under the additional assumption that f1(t) is nonincreasing in
t, or equivalently that lfdr(t) is nondecreasing, so that smaller p-values represent stronger
evidence against the null. This assumption, common in multiple testing (see, e.g., Genovese
& Wasserman, 2004; Langaas et al., 2005; Strimmer, 2008), lets us restrict our attention
to procedures that reject all p-values below a given threshold: if f1 is nonincreasing then
rejecting when lfdr(pi) ≤ α is equivalent to rejecting when pi is sufficiently small.

In practice, π0 and f1 are typically unknown and must be estimated from the data, and
many estimators have been proposed; see e.g. Aubert et al. (2004), Efron (2004, 2008),
Efron et al. (2001), Liao et al. (2004), Muralidharan (2010), Patra and Sen (2016), Pounds
and Cheng (2004), Pounds and Morris (2003), Robin et al. (2007), Scheid and Spang (2004),
Stephens (2017), and Strimmer (2008). To the best of our knowledge, however, there are no
known finite-sample lfdr control guarantees for multiple testing procedures based on these
methods. By contrast, simple, robust, and well-known methods like the Benjamini–Hochberg
(BH) procedure of Benjamini and Hochberg (1995) enjoy finite-sample FDR control without
requiring the analyst to model the p-value distribution.

In this chapter, we introduce a new error control metric that measures the lfdr of a
multiple testing procedure’s least promising rejection. We represent a generic multiple testing
method as a functionR(p1, . . . , pm) returning an index setR ⊆ {1, . . . ,m}, where hypothesis
i is rejected if and only if i ∈ R. We say the procedure’s max-lfdr is

max-lfdr(R) := E
[
max
i∈R

lfdr(pi)

]
, (5.3)
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defining the maximum as zero if no rejections are made. If f1 is nonincreasing, then the
max-lfdr of R coincides with the probability that the last rejection is a false discovery.

We also introduce a simple multiple testing procedure, which we call the support line
(SL) procedure, that provably controls the max-lfdr under mild assumptions. Define the
p-value order statistics p(1) ≤ · · · ≤ p(m), and let p(0) = 0 by convention. Then our procedure
rejects p-values up to the last (and a.s. unique) minimizer

Rq := argmin
k=0,...,m

p(k) −
qk

m
. (5.4)

That is, we reject Rq := {i : pi ≤ τq}, for the threshold τq = p(Rq). Under the two-groups
model (5.1), with nonincreasing f1, we show in Theorem 5.1 that

max-lfdr(Rq) = π0q.

Our method can be implemented without knowing π0 or f1, apart from the shape constraint,
and bears a close relationship to the BH procedure, which replaces Rq in (5.4) with

RBH
q := max

{
k ∈ {0, . . . ,m} : p(k) ≤

qk

m

}
,

rejecting RBH
q := {i : pi ≤ τBH

q }, for τBH
q = qRBH

q /m ≥ p(RBH
q ). Because Rq ≤ RBH

q , the
BH method makes at least as many rejections as the SL method, and both methods make
at least one rejection if and only if p(k) ≤ qk

m
for some k ≥ 1; however, as we will argue, in

general, the SL method should be run with a strictly larger q than we would use for BH. The
left panel of Figure 5.1 illustrates the relationship between the two methods by reproducing
the familiar plot of the BH procedure as an operation on the order statistics p(1), . . . , p(m).

5.1.1 Multiple testing and the weighted classification loss

To formalize our analysis above, define the per-instance weighted classification loss:

Lλ(H,R) :=
(1 + λ)V −R

m
. (5.5)

This loss can be derived, up to additive and multiplicative constants, by viewing each of the
m hypotheses as a binary classification problem, where we incur a cost c1 for each type I
error or false discovery (i ∈ R, but Hi = 0), and cost c2 from each type II error or false
non-discovery (i /∈ R, but Hi = 1). If the total number of non-nulls is m1 =

∑
iHi, then

there are m1 − (R− V ) false non-discoveries, so the total loss over all m instances is

c1V + c2(m1 − (R− V )) = c2m · Lλ(H,R) + c2m1,

where λ = c1/c2 is the ratio between the two misclassification costs. Lλ as defined in (5.5) is
normalized so that rejecting nothing incurs zero loss, and each true discovery has value 1/m.
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1 · · · k · · ·

p(k)

q

τBH
q

τq

RBH
qRq

qk
m

1 · · · k · · ·

p(k) − qk
m

RBH
qRq

Figure 5.1: Left: The order statistics p(k) of the p-values as a function of the index k, shown
in black. The BH procedure, in red, finds the largest index RBH

q such that p(RBH
q ) falls below

the ray of slope q/m; by contrast, our procedure finds the (last and almost surely unique)
boundary point (Rq, p(Rq)) of the supporting line of slope q/m. Right: The same plot with
the ray through the origin of slope q/m subtracted off. The black dots represent a running
estimate (5.7) of the weighted classification loss (5.5), which our procedure minimizes. BH(q)
finds the largest threshold where the estimated loss is negative.

Under the two-groups model (5.1), Sun and Cai (2007, Theorem 2) show that the corre-
sponding Bayes risk ELλ(H,R) is minimized by the oracle procedure

R∗ := {i : lfdr(pi) ≤ α} , where α =
1

1 + λ
. (5.6)

The ratio λ specifies the “break-even exchange rate” at which we are willing to trade true
discoveries for false leads; e.g., if λ = 19 then we are willing to suffer a single false discovery
for exactly 19 true discoveries, and we should reject a hypothesis only if its lfdr falls below
the break-even tolerance α = 0.05. If f1 is nonincreasing, then the oracle procedure reduces
to thresholding p-values at a fixed threshold

R∗ = {i : pi ≤ τ ∗}, for τ ∗ := max{t ∈ [0, 1] : lfdr(t) ≤ α},

with τ ∗ = 0 if no such threshold exists.
Our method can be directly interpreted as minimizing an empirical proxy of the weighted

classification loss. For a candidate threshold t ∈ [0, 1], the expected number of null p-values
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below the threshold is mπ0t. If π0 is known, we obtain a running estimator of the loss:

L̂λ(t; π0) =
(1 + λ)mπ0t−mFm(t)

m
= (1 + λ) (π0t− αFm(t)) , (5.7)

where Fm(t) represents the empirical cumulative distribution function (ecdf) of the p-values:

Fm(t) =
1

m

m∑

i=1

1{pi ≤ t}.

Because L̂λ(t; π0) is increasing between successive order statistics, it is minimized at one of
the order statistics, or at p(0) = 0:

argmin
k=0,1,...,m

L̂λ(p(k); π0) = argmin
k=0,1,...,m

π0p(k) −
αk

m
.

Comparing the last expression to the definition of our procedure in (5.4), we see that L̂λ(t; π0)
is minimized at t = τq for q = α/π0. By Theorem 5.1, we then have exactly max-lfdr(Rq) = α.

By contrast, τBH
q for q = α/π0 is the largest value of t that gives L̂λ(t; π0) = 0, the same

loss we would achieve by rejecting nothing at all. In other words, the BH procedure at level
α/π0 only aims to break even; to do better, we should run BH at a strictly smaller level
q < α/π0, viewing q as a tuning parameter as in Neuvial and Roquain (2012).

To select q for our SL procedure when π0 is unknown, we can either conservatively bound
π0 ≤ 1 and run the procedure at q = α, or estimate π0 and use q = α/π̂0. To avoid confusion,
we will always use the notation q to represent our method’s tuning parameter, and reserve
α = 1

1+λ
to represent the true target lfdr, defined in terms of the cost ratio λ.

Our procedure can alternatively be derived as a plug-in maximum likelihood estimator
(MLE) of the oracle procedure R∗, where we estimate f(t) using Grenander’s nonparametric
MLE for a nonincreasing density (Grenander, 1956):

f̂m := argmax
g:[0,1]→R+

nonincreasing density

1

m

m∑

i=1

log g(pi). (5.8)

As we will see in Section 5.3.2, τq is also the largest value t ∈ [0, 1] for which f̂m(t) ≥ q−1.
Thus, if we run our procedure at q = α/π0, we have

Rα/π0 =
{
i : f̂m(pi) ≥ (α/π0)−1

}
=

{
i :

π0

f̂m(pi)
≤ α

}
.

As above, if π0 is unknown, we can either estimate it or conservatively bound π0 ≤ 1.
The relationship between our method and the Grenander estimator is convenient for

asymptotic analysis because the latter is very well studied; see the book by Groeneboom
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and Jongbloed (2014) for a thorough treatment. The Grenander estimator has previously
been considered for estimating the lfdr (Strimmer, 2008) as well as for estimating the null
proportion π0 (Langaas et al., 2005). While f̂m may be efficiently computed via the pool ad-
jacent violators algorithm (Robertson et al., 1988), the definition in (5.4) is usually preferred
for computational purposes.

5.1.2 The max-lfdr and the FDR

The max-lfdr in (5.3) and the FDR are two different error criteria that both appeal to the
logic of trading off true and false discoveries. The key difference is that the FDR, defined as

FDR(R) := E
[
V

R
· 1{R > 0}

]
,

measures the likelihood that a randomly selected rejection is null, whereas the max-lfdr
instead measures the likelihood that the least promising rejection is null. In both cases the
event in question is deemed not to have occurred if R = 0, so that under the global null (all
Hi = 0, almost surely), both criteria reduce to the probability of making a single rejection.

Throughout this section, we will restrict our attention to procedures that reject the R hy-
potheses with the smallest p-values. That is, we assume a procedureR rejects H(1), . . . , H(R),
where H(k) represents the hypothesis corresponding to p(k). If f1 is nonincreasing, then the
procedure’s last rejection H(R) is the least promising, and the max-lfdr can be equivalently
characterized as the probability that the last rejection is a false discovery:

max-lfdr(R) = E
[
lfdr

(
p(R)

)
· 1{R > 0}

]
= P

{
H(R) = 0, R > 0

}
. (5.9)

If max-lfdr(R) > α = 1
1+λ

, then we can improve R by excluding its last discovery.1

Let R−1 denote the procedure that makes one fewer rejection than R, meaning it rejects
H(1), . . . , H(R−1) if R > 0, and makes no rejections if R = 0. Then we have

E[Lλ(H,R)− Lλ(H,R−1)] =
1

m
E
[
(1 + λ)1{H(R) = 0, R > 0} − 1{R > 0}

]

=
1 + λ

m
(max-lfdr(R)− αP{R > 0}) ,

which is positive if max-lfdr(R) > α. The converse, that dropping the last rejection does
not improve the risk if max-lfdr(R) ≤ α, is almost true if P{R > 0} ≈ 1. Under the global
null, however, any procedure is improved by making fewer rejections.

This thought experiment — what if we dropped the last rejection? — is at the heart of
our motivation for proposing the max-lfdr as an error criterion. Even when a rejection set’s

1Without the shape constraint on f1, max-lfdr > α still implies that the analyst could improve the
procedure by removing the least promising rejection, which may not be the same as the last rejection.
However, this improvement is only feasible if the analyst can recognize which rejection is least promising.
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average quality is high, the rejections near the threshold may be recognizably bad bets. In
that case, we are better off “trimming the fat” from our rejection set until all of the rejections
that remain are individually worth following up on.

Because max-lfdr(R) ≤ FDR(R), controlling the max-lfdr is more conservative than
controlling FDR at the same level q, in most cases considerably so. From this, it is tempting
to conclude that max-lfdr control is an inherently more conservative goal than FDR control,
but this conclusion would be mistaken. An analyst whose break-even exchange rate is λ = 9
and break-even tolerance is α = 0.1, for example, would never choose a method with a 10%
FDR; the resulting rejection set would be no better on average than rejecting nothing at all,
so there would be no point in collecting the data in the first place. Thus, an analyst who is
satisfied with a 10% FDR must have a larger break-even tolerance, say α = 0.2 or 0.3.

By the same token, it would be unfair to evaluate the risk under Lλ of the BH procedure
at level q = α = 1

1+λ
, since an analyst whose break-even tolerance is α would want to control

FDR at a strictly smaller level q, like α/2 or α/10. However, as we show in Section 5.3.1, the
performance of BH(q) with such a priori choices of q can depend sensitively on the unknown
alternative density f1.

5.1.3 Outline and contributions

In Section 5.2, we state and prove our main result, that max-lfdr(Rq) = π0q under the
Bayesian two-groups model with nonincreasing f1, applying a result of Takács (1967). Even
without monotonicity of f1, we have P{H(Rq) = 0, Rq > 0} = π0q, but monotonicity ensures
that the lfdr is not out of control for rejections in the interior of the rejection region. We
also prove max-lfdr control for an adaptive method that estimates π0 from the data in the
same way as the procedure of Storey (2002).

In Section 5.3, we investigate our method’s asymptotic performance relative to the oracle
procedure R∗. Extending asymptotic results for the Grenander estimator, we show that our
method’s attained lfdr threshold, lfdr(τq), concentrates at a rate m−1/3 around its expec-
tation π0q, giving an explicit formula for its asymptotic distribution. We also show that
our method’s asymptotic regret relative to the oracle shrinks at the rate m−2/3. Section 5.4
illustrates our results with selected simulations, and Section 5.5 concludes.

5.2 Finite-sample max-lfdr control

5.2.1 Main result

Our main result is that our procedure Rq controls the max-lfdr at exactly π0q.

Theorem 5.1. Suppose p1, . . . , pm follow the Bayesian two-groups model (5.1), with f0 =
1[0,1]. For the procedure defined in (5.4), we have

E
[
lfdr

(
p(Rq)

)
· 1{Rq > 0}

]
= P

{
H(Rq) = 0, Rq > 0

}
= π0q. (5.10)
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If f1 is nonincreasing, then we have

max-lfdr(Rq) = π0q.

The familiar optional-stopping arguments from the FDR control literature, introduced
by Storey et al. (2004), do not seem to apply to our procedure, since the minimizer Rq of the
sequence p(k)− qk/m for k = 0, . . . ,m is not a stopping time. We instead prove Theorem 5.1
via a conditioning argument, which crucially relies on the fact that each null p-value has
exactly a q/m chance of being the last rejection p(Rq):

Lemma 5.2. Fix p1, . . . , pm−1 ∈ [0, 1] and let pm ∼ Unif(0, 1). Then P{p(Rq) = pm} = q/m.

Given Lemma 5.2, the proof of Theorem 5.1 is straightforward:

Proof of Theorem 5.1. Because the (Hi, pi) pairs are independent and identically distributed,
we can decompose the probability in (5.10) as

P
{
H(Rq) = 0, Rq > 0

}
=

m∑

i=1

P
{
Hi = 0, p(Rq) = pi

}

= mP
{
Hm = 0, p(Rq) = pm

}

= π0mP
{
p(Rq) = pm | Hm = 0

}

= π0q,

where the last step comes from conditioning on p1, . . . , pm−1 and applying Lemma 5.2. If
f1(t) is nonincreasing, then lfdr(t) is nondecreasing, so that maxi∈Rq lfdr(pi) = lfdr(p(Rq))
almost surely, completing the argument.

We now turn to proving Lemma 5.2. Because pm is uniform, the probability statement is
equivalent to a showing that, for any fixed p1, . . . , pm−1 ∈ [0, 1], the set of “winning values”
pm ∈ [0, 1], for which τq(p1, . . . , pm) = pm, has Lebesgue measure q/m. To prove this fact,
we rely on a useful result of Takács (1967), which we state next:

Lemma 5.3. Takács, 1967, Theorem 1 Let ϕ : R+ → R+ denote a nondecreasing step
function with ϕ(0) = 0. Assume that, for some positive q, we have ϕ(u + q) = ϕ(u) + ϕ(q)
for all u ≥ 0, and define

δ(u) = 1{v − ϕ(v) ≥ u− ϕ(u) for all v ≥ u},

Then we have ∫ q

0

δ(u)du = (q − ϕ(q))+ .

Lemma 5.2 is proved by designing a function ϕ for which the corresponding indica-
tor δ(pm) in Lemma 5.3 checks whether pm is the last rejection when we run our method
on (pi)

m
i=1.
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Proof of Lemma 5.2. Let Fm−1(t) = 1
m−1

∑m−1
i=1 1{pi ≤ t} denote the ecdf of p1, . . . , pm−1,

and define a new function ϕ on [0, q]

ϕ(v) :=

{
qFm−1(v)m−1

m
if v < q

qm−1
m

if v = q.

Next, extend ϕ to a nondecreasing step function on all of R+ by ϕ(kq + v) = kϕ(q) + ϕ(v)
for all positive integers k and v ∈ [0, q].

Now let Fm(t) = 1
m

∑m
i=1 1{pi ≤ t}. If τq = p(Rq) = pm then we have pm − qRq

m
≤

p(0)− q 0
m

= 0, so we may restrict our attention to pm ≤ q. On the range v ∈ [pm, q) we have

mFm(v) = 1 + (m− 1)Fm−1(v), so ϕ(v) = qFm(v)− q

m
.

On the range v ∈ [q, q + pm), we have

mFm(v − q) = (m− 1)Fm−1(v − q), so ϕ(v) = qFm(v − q)− q

m
+ q.

Letting δ(pm) := 1{pm = τq(p1, . . . , pm)},

δ(pm) = 1{v − qFm(v) ≥ pm − qFm(pm) for all v ∈ [0, 1]}
= 1 {v − ϕ(v) ≥ pm − ϕ(pm) for all v ∈ [pm, q + pm)}
= 1 {v − ϕ(v) ≥ pm − ϕ(pm) for all v ≥ pm} ,

where the last step follows from the fact that ϕ(v) > ϕ(v − q) for all v ≥ q + pm. We have
checked the conditions of Lemma 5.3 Takács, 1967, Theorem 1, from which we conclude

P(τq = pm) =

∫ q

0

δ(pm)dpm = (q − ϕ(q))+ =
q

m
.

To convey some intuition for our result, Figure 5.2 depicts an illustrative example, high-
lighting in green the “winning values” of pm such that τ̂q = pm.

Remark 5.4. Because the set of “winning values” in Lemma 5.2 is a subset of [0, q] with
Lebesgue measure q/m, we can trivially extend the result to conclude P{p(Rq) = pm} ≤ q/m,
if pm is drawn from any density f0 with f0(t) ≤ 1 for all t ∈ [0, q]. Likewise, we can extend
Theorem 5.1 to show that max-lfdr(Rq) ≤ π0q with a more general null density f0, as long
as lfdr(t) is nondecreasing and f0(t) ≤ 1 for all t ∈ [0, q].

5.2.2 Estimating π0

Theorem 5.1 parallels the exact FDR guarantee FDR(RBH
q ) = π0q for the BH procedure. If

we bound π0 ≤ 1, we can run our method at level q = α and ensure that we conservatively
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Possible values of(
pm,

rank(pm)
m

)
where

pm is not last rejection

Values where pm
is last rejection

q/m mink<m p(k) − qk
m

mink<m p(k) − q(k+1)
m

Figure 5.2: Intuition for Lemma 5.2. Black points represent the empirical cdf (scaled by m−1
m

)
of p1, . . . , pm−1; red points represent how the empirical cdf gets shifted after adding a point pm
to its left. Adding a point pm can shift the supporting line by at most q

m
, and each possible

shift in [0, q/m] corresponds to precisely one pm where pm becomes the new support point.

control max-lfdr at π0α, but our method will be overly conservative. In this section, we
consider estimating π0 using the Storey (2002) estimator of the null proportion, defined as

π̂ζ0 :=
1 + #{i : pi > ζ}

(1− ζ)m
, (5.11)

modifying an estimator originally proposed by Schweder and Spjøtvoll (1982).
Our next result shows that plugging in π̂ζ0 and running a modification of our procedure

at level q = α/π̂ζ0 controls max-lfdr at level α in finite samples:

Theorem 5.5. Suppose p1, . . . , pm follow the Bayesian two-groups model (5.1), with f0 =
1[0,1] and f1 nonincreasing. Fix ζ ∈ (0, 1), and define a modified version of our SL procedure
that only examines order statistics below ζ:

Rζ
q := argmin

k≥0: p(k)≤ζ
π̂ζ0p(k) −

qk

m
, (5.12)
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and Rζ
q = {i : pi ≤ p(Rζq)}. Then we have

max-lfdr
(
Rζ
q

)
= q · (1− ζ)π0

1− F (ζ)
· (1− F (ζ)m) ≤ q.

The proof of Theorem 5.5 is deferred to the Appendix. The method Rζ
α coincides with

Rα/π̂ζ0
, our original procedure applied at the corrected level q̂ = α/π̂ζ0, whenever τq̂ ≤ ζ.

Since we usually have τq̂ � 0.5 ≤ ζ, the two methods are identical for all practical purposes.
In the next section, we will investigate the asymptotic regret of methods that estimate π0.

In particular, we will show that this estimation error is asymptotically negligible if it shrinks
at a faster rate than m−1/3. We can indeed achieve this with π̂ζ0 if f1 has two continuous
derivatives in a neighborhood of 1, with f ′1(1) = f1(1) = 0. By Taylor’s theorem, we have

1− F (ζ) = (1− ζ)π0 +
(1− π0)f ′′1 (ξ)

6
(1− ζ)3,

for some ξ ∈ [ζ, 1]. Assuming π0 ∈ (0, 1) and taking ζ = 1−m−1/5, we then have

m2/5
(
π̂ζ0 − π0

)
∼ m2/5

(
1 + Binom (m, 1− F (ζ))

(1− ζ)m
− π0

)
d→ N

(
(1− π0)f ′′1 (1)

6
, π0

)
,

(5.13)

with subgaussian errors for finite m, so the results in Section 5.3.3 generally apply. See
Genovese and Wasserman (2004) and Patra and Sen (2016) for a discussion of estimators for
π0.

5.3 Asymptotic regret analysis

In this section, we study our procedure’s empirical Bayes regret under the weighted classi-
fication risk E [Lλ(H,R)], where the expectation is taken over H1, . . . , Hm and p1, . . . , pm
according to (5.1), and Lλ is defined as in (5.5). Throughout this section we will be consid-
ering a sequence of problems with m→∞.

A fundamental result of Sun and Cai (2007) is that the oracle (5.6) minimizes the weighted
classification risk over all procedures, thus representing a benchmark against which we can
compare methods that are feasible without a priori knowledge the lfdr. In the empirical
Bayes literature (see, e.g., Efron, 2019), the price of our ignorance of the model parameters
is measured by the regret, or average excess risk, given by the optimality gap

Regretm(R) := E [Lλ(H,R)− Lλ (H,R∗)] . (5.14)
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Figure 5.3: Left: The fixed-threshold regret ρ(t) (5.15) with Beta alternatives f1(t) = θtθ as
a function of θ ∈ [0, .5]. Right: a normalized version ρ(t)/ρ(0), such that BH at level α/π0

has unit normalized regret, identical to the regret of the procedure that rejects nothing. The
null proportion is π0 = 0.8 and the cost-benefit ratio is λ = 4.

5.3.1 Population regret

Before tackling the more delicate problem of calculating the regret for procedures with
data-dependent p-value rejection thresholds, we first investigate the regret of fixed-threshold
methods. For t ∈ [0, 1], let RFix

t := {i : pi ≤ t}, and note that the oracle method is
R∗ = RFix

τ∗ . We introduce the function ρ(t) to represent the regret of this method, which is
free of m:

ρ(t) := Regretm(RFix
t ) = F (τ ∗)− F (t)− π0

α
(τ ∗ − t). (5.15)

If lfdr(τ ∗) = α, then we also have f(τ ∗) = π0/α, and ρ(t) is simply the error of the first-
order Taylor expansion of F around τ ∗, also known as the Bregman divergence associated
with −F . If f is continuously differentiable between t and τ ∗, then

ρ(t) =
−f ′(ξt)

2
(t− τ ∗)2 , for some ξt between t and τ ∗. (5.16)

Since F is concave, ρ(t) ≥ 0. Finally, we can also rewrite (5.15) as an integral

ρ(t) =

∫ τ∗

τ

(
1− α−1lfdr(t)

)
dF (t). (5.17)
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This form for the regret underscores the relationship between the lfdr and the regret, and
will prove useful for analyzing the regret with data-dependent thresholds.

We can evaluate ρ to investigate the regret of population versions of our procedure and
the BH procedure, i.e. versions of the procedures with rejection thresholds chosen using the
true cdf F in place of the empirical cdf Fm. The population BH threshold at an arbitrary
level q ∈ (0, 1) is found by intersecting F with the ray of slope q−1, i.e.

tBH-POP
q := max {t ∈ [0, 1] : F (t)− t/q = 0} .

By comparison, the population version of our procedure τq is

tq := max
{
t ∈ [0, 1] : f(t) ≤ q−1

}
,

which coincides with the oracle threshold τ ∗ when q = α/π0. Note that tq is equivalent to
the population BH threshold tBH-POP

q′ at the lower level

q′ =
tq

F (tq)
. (5.18)

Thus, there is always some value q′ for which the BH procedure approximately reproduces
the oracle, namely tα/π0/F (tα/π0), but generally we cannot use it unless we know f1 and π0.

To illustrate the population regret in a concrete example, we consider a parametric al-
ternative distribution

f1(t; θ) := θtθ−1 for some θ ∈ (0, 1),

which is a Beta(θ, 1) density. This form is called a Lehmann alternative in the multiple
testing literature (see, e.g., Pounds & Morris, 2003). In this case, the population procedures
at level q ∈ (0, 1) use rejection thresholds

tq =

(
q−1 − π0

(1− π0)θ

)− 1
1−θ

, and tBH-POP
q =

(
q−1 − π0

1− π0

)− 1
1−θ

.

Furthermore, the threshold equivalence (5.18) gives

q′ =
θq

1− (1− θ)π0q
≈ θq,

where the approximation holds for small values of q. Thus, the correspondence between q
and q′ depends on the parameter θ, which controls the signal strength under the alternative.
For small values of θ, the signal is very strong, and the “correct” choice of q′ is much smaller
than the desired max-lfdr level α, but for weaker signals (larger θ), we should choose q′ closer
to α. Without knowing the signal strength in advance, it is difficult to know at what values
of q′ the BH method will perform well.

In Figure 5.3 we plot the population regret for various choices of the level of the procedure,
π0 = 0.8 and λ = 4 and varying the parameter θ. The population version of our procedure
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at level α
π0

with α = 1
1+λ

= 0.2 is the oracle (5.6), so it achieves zero regret, while the
conservative version of our procedure with q = α performs quite well for all values of the
alternative parameter θ. In this example, the asymptotic error incurred from conservatively
bounding π0 by one in the procedure is small compared to the error incurred by using BH(q′)
at an ad hoc value. The BH procedure at levels α

π0
or α incurs substantial asymptotic regret

by comparison. In particular, note that the BH(α/π0) procedure incurs the same asymptotic
regret as the procedure that rejects nothing; i.e. ρ(tBH-POP

α/π0
) = ρ(0). If we run BH at a lower

level like α/2, α/10, or α/100, we can do well for some range of θ values, but struggle at
other parts of the parameter space. No single level for BH dominates in terms of regret, so
for the classification risk it is more appropriate to view the BH level as a tuning parameter
(Neuvial & Roquain, 2012).

5.3.2 Relationship of our method to the Grenander estimator

Since the marginal density f appears in the denominator of the lfdr, bounding π0 ≤ 1 and
plugging in Grenander’s estimator f̂m (defined in (5.8)) gives the conservative estimate

l̂fdr(t) :=
1

f̂m(t)
, t ∈ [0, 1].

Similar to how the BH procedure chooses an interval [0, t] as large as possible subject to a
constraint on an estimate of the FDP, the rejection threshold of the SL procedure can be
equivalently expressed as

τq = argmax
p(0),...,p(m)

{
qk

m
− p(k)

}
= sup

{
t ∈ [0, 1] : l̂fdr(t) ≤ q

}
, (5.19)

taking the convention that sup ∅ ≡ 0. The equivalence in (5.19) is illustrated in Figure 5.4.
Let F̂m denote the least concave majorant of the empirical cdf Fm, plotted as a dotted blue
line in the left panel of Figure 5.4. By definition of l̂fdr(t), the supremum on the right hand
side is equal to the largest t for which d

dt
(qF̂m(t)− t) = qf̂m(t)− 1 ≥ 0, which corresponds to

the maximizer of the function qF̂m(t)− t, illustrated for example in the right panel of Figure
5.4. F̂m ≥ Fm implies

qF̂m(t)− t ≥ qFm(t)− t, t ∈ [0, 1],

with equality at the knots of F̂m, and since the maximizer of the left hand side occurs at a
knot of F̂m, it is also the maximizer of the right hand side, i.e. the argmax of qk

m
− p(k).

We can again compare this result with the BH(q) threshold, given by

τBH
q = max

k=0,...,m

{
p(k) :

qk

m
− p(k) ≥ 0

}
= sup

{
t ∈ [0, 1] : Fm(t) ≥ q−1t

}
,
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τq t

Fm(t)

F̂m(t)q−1

τq t

Fm(t)− t/q

F̂m(t)− t/q

Figure 5.4: Left: empirical cdf Fm and its least concave majorant F̂m. The support line of
slope q−1 touches both curves at the decision threshold τq. Right: the same plot with the
line t/q subtracted off.

which is the largest t for which the ray q−1t lies below the ecdf Fm(t). Our procedure instead
finds the last intersection of the graph of Fm with a support line of slope q−1, since

l̂fdr(t) ≤ q ⇐⇒ f̂m(t) ≥ q−1.

This relationship is illustrated in the left panel of Figure 5.4.

5.3.3 Asymptotic behavior of our procedure

Equation (5.16) suggests that, when f is sufficiently regular near τ ∗, the regret is closely
related to the squared error of the rejection threshold. Our main result in this section
establishes cube-root asymptotics for the behavior of our procedure Rq with q = α/π̂0,
where π̂0 consistently estimates π0; if π0 is known, then the results apply directly with
π̂0 = π0.

We derive limiting distributions for the threshold τq, the lfdr at the threshold, and the
regret ofRq. All three are given in terms of Chernoff’s distribution (Chernoff, 1964), which is
defined as the distribution of the maximizer Z of a standard two-sided Brownian motion W =
(W (t))t∈R with parabolic drift:

Z = argmax
t∈R

W (t)− t2. (5.20)
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The random variable Z has a density with respect to the Lebesgue measure on R that is
symmetric about zero. Dykstra and Carolan (1999) suggest approximating the density and
cdf of Z by those of N (0, (.52)2). This approximation can be somewhat crude but gives a
rough sense for the distribution of Z. Groeneboom and Wellner (2001) provide much more
accurate numerical methods to compute the density, cdf, quantiles and moments of Z.

Theorem 5.6. Suppose p1, . . . , pm follow the Bayesian two-groups model (5.1), with π0 ∈
(0, 1), f0 = 1[0,1], and f1 nonincreasing. For q ∈ (0, π−1

0 ), assume additionally that

(i) there is a unique value tq ∈ (0, 1) for which f(tq) = q−1,

(ii) f is continuously differentiable in a neighborhood of tq with f ′(tq) < 0, and

(iii) q̂ is any random variable with m1/3(q̂ − q) p→ 0 as m→∞.

Then we have, as m→∞,

m1/3(τq̂ − tq) d→
(q

4
· f ′(tq)2

)−1/3

Z, and (5.21)

m1/3 · lfdr(τq̂)− π0q

π0q

d→
(
4q2 · |f ′(tq)|

)1/3
Z. (5.22)

where Z follows Chernoff’s distribution defined in (5.20). Further, suppose that

P{m−1/3(q̂ − q) > ε} = o
(
m−2/3

)
, for all ε > 0. (5.23)

Then we also have m1/3E [τq̂] → tq. In addition,

m2/3Var (τq̂) →
(q

4
· f ′(tq)2

)−2/3

Var(Z), and (5.24)

m2/3Var

(
lfdr(τq̂)− π0q

π0q

)
→
(
4q2 · |f ′(tq)|

)2/3
Var(Z), (5.25)

where Var(Z) ≈ 0.26.

The proof of Theorem 5.6 is deferred to Appendix 5.6.2. It is well-known that the
Grenander estimator f̂m estimates f at a cube root rate pointwise, away from zero, but this
result, due to (Rao, 1969), is too weak to describe the behavior of our procedure. We rely on
a stronger version of this result due to Dümbgen et al. (2016) that approximates the local
behavior of the Grenander estimator near tq.

The distributional result (5.22) complements our result from Theorem 5.1, by showing
that lfdr(τq) = maxi∈Rq lfdr(pi) is not only controlled in expectation, but also concentrates
at rate m−1/3 around its expectation. In particular, because P{Z ≥ 1} ≈ 0.05, we have

lfdr(τq)− π0q

π0q
≤ m−1/3

(
4q2 · |f ′(tq)|

)1/3
,
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with roughly 95% probability in large samples. For example, suppose we use q = 0.2,
so f(tq) = 5, and suppose that f ′(tq) = −50. Then, whereas Theorem 5.1 guarantees
E [lfdr(τq)] ≤ 0.2 exactly, the asymptotic estimate from Theorem 5.6 bounds the 95th per-
centile of lfdr(τq) at 0.24 if m = 1000, or at 0.21 if m = 64, 000.

To understand why the error is of order m−1/3, consider fixed q and recall that the
threshold τq maximizes the stochastic process

U(t) := Fm(t)− Fm(tq)−
t− tq
q

.

Because f(tq) = q−1, we have for t near tq,

F (t)− F (tq) ≈
t− tq
q

+
f ′(tq)

2
(t− tq)2.

Introducing the local parameterization t = tq +m−ah for a > 0 leads to

U(tq +m−ah) ≈ −|f
′(tq)|
2

· h
2

m2a
+ N

(
0,

h

qma+1

)
.

Setting a = 1/3 balances the mean and variance, giving

m2/3U(tq +m−1/3h)
d→ −|f

′(tq)|
2

h2 +N
(

0,
h

q

)
.

Under this local scaling, U(t) converges to a Brownian motion with parabolic drift, and its
maximizer τq converges to Chernoff’s distribution. Theorem 5.6 applies a more careful version

of this argument, replacing Fm(t) with its LCM F̂m(t) and using a result of Dümbgen et al.
(2016) to characterize the process f̂m(t) under the same local scaling. The corresponding
results for lfdr(τq) follow from first-order Taylor expansion of lfdr(t) = π0/f(t) around tq.

By specializing Theorem 5.6 to q = α/π0 and q̂ = α/π̂0, we obtain the limiting regret for
our procedure with a known or accurately estimated null proportion.

Theorem 5.7. Suppose p1, . . . , pm follow the Bayesian two-groups model (5.1), with π0 ∈
(0, 1), f0 = 1[0,1], and f1 nonincreasing. Assume additionally that

(i) there is a unique value τ ∗ ∈ (0, 1) for which lfdr(τ ∗) = π0

f(τ∗)
= α,

(ii) f is continuously differentiable in a neighborhood of τ ∗ with f ′(τ ∗) < 0, and

(iii) π̂0 is any estimator of π0 with P
{
m1/3(π̂0 − π0) > ε

}
= o

(
m−2/3

)
for all ε > 0.

Then we have, as m→∞,

m2/3Regretm(Rα/π̂0) →
(
α2

2π2
0

· |f ′(τ ∗)|
)−1/3

Var(Z), (5.26)

where Z follows Chernoff’s distribution defined in (5.20), and Var(Z) ≈ 0.26.
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Theorems 5.6–5.7 deal with the regret for π0 ∈ (0, 1). Under the global null, represented
in the Bayesian model by π0 = 1, the behavior is different and the regret is simply λEV ,
which is O(m−1), as we see next.

Proposition 5.8. Suppose (pi)
m
i=1 follow a two-groups model (5.1) with f0 = 1[0,1] and π0 =

1, i.e. Hi = 0 for all i and pi
iid∼ Unif(0, 1). Then as m→∞, we have

mRegretm(Rq)→ λ

∞∑

k=1

P {Uk ≤ q} , for Uk ∼ Gamma(k, k),

which is finite for every q ∈ [0, 1).

Proposition 5.8 is closely related to results derived in Finner and Roters (2001).

5.4 Numerical results

This section highlights our main results on simulation experiments. We adapt a simulation
setting of Benjamini and Hochberg (1995) to the two-groups model (5.1). Specifically, define
the alternative density

f1(t) =
1
4

∑4
i=1 φ

(
Φ̄−1 (t)− 5 i

4

)

φ
(
Φ̄−1 (t)

) for 0 ≤ t ≤ 1, (5.27)

where φ and Φ̄ denote the density and survival function of the standard Gaussian distribution.
Concretely, a non-null p-value pi ∼ f1 can be constructed by first taking Yi ∼ N (µi, 1) where
µi is drawn uniformly at random from the set {5 i

4
: i = 1, 2, 3, 4}; then, pi = Φ̄(Yi) is a one

sided p-value for the null-hypothesis that µi = 0. We use a null proportion of π0 = 0.75.
Figure 5.5 shows the mixture density and corresponding lfdr.

We repeatedly sampled from the above two-groups model with m = 64 hypotheses.
Figure 5.5 shows the FDR (left panel) and max-lfdr (right panel) for both our procedure
and the BH procedure, at conservative level q = α and estimated level q̂ = α/π̂ζ0. The
BH procedure, shown in red, achieves FDR exactly π0q, whereas the max-lfdr can be much
larger. By contrast, our procedure, shown in blue, conservatively controls FDR substantially
below the level π0q but has max-lfdr equal to π0q.

Figure 5.6 shows a log-log plot of the regret as a function of the sample size m. The
red curve shows the regret of our uncorrected procedure Rα for α = 0.05, which asymptot-
ically tends to ρ(tα) and hence asymptotically incurs some non-vanishing regret described
in Section 5.3.1. The blue curve shows the regret of the corrected procedure Rα/π0 with
known π0. For larger samples, the simulated regret closely matches the asymptotic predic-
tion from (5.26), shown in black. The green curve (which is nearly indistinguishable from
the blue curve) shows the corrected procedure with an estimated null proportion π̂ζ0 based
on (5.11) with ζ = 1−m−1/5.
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Figure 5.5: Above: Mixture density f (left) and lfdr (right), with alternative density f1

defined in (5.27) and null proportion π0 = 0.75. Note f1 diverges as t ↓ 0. Below: Comparison
of FDR control (left) and max-lfdr control (right) on simulated data. The estimate of the
null proportion is (5.11) with ζ = 0.5.

0.0 0.1 0.2 0.3
Input level q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
D

R
(R

)

FDR control

BH(q/π̂ζ0)

BH(q) procedure

SL(q/π̂ζ0)

SL(q) procedure

0.0 0.1 0.2 0.3
Input level q

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
ax

-l
fd

r(
R

)

max-lfdr control



CHAPTER 5. LOCAL FALSE DISCOVERY RATE CONTROL 109

50 100 500 1000 5000 10000
Sample size m (log scale)

0.0001

0.0005

0.001

0.005

0.01

0.05
R

eg
re

t
(l

og
sc

al
e)

Asymptotic rate of regret (λ = 4)

Rα (bounded π0 ≤ 1)

Rα/π̂ζm0
(estimated π0)

Rα/π0
(known π0)

Asymptote as m→∞

Figure 5.6: A log-log plot of the regret (5.14) as a function of the sample size. The black line
shows the asymptotic prediction (5.26) of Theorem 5.7. For this simulation, the alternative
density f1 is defined in (5.27), cost-benefit ratio λ = 19 and null proportion π0 = 0.75.

5.5 Discussion

In this chapter we introduced a new error criterion, the max-lfdr, which modifies the FDR
by redirecting attention away from the average quality of the rejection set and toward the re-
jections that are close to the rejection boundary. Despite the seeming difficulty of measuring
the quality of a single rejection, we also introduce a simple new multiple testing procedure
that controls the max-lfdr at level π0q in finite samples, where q is a tuning parameter and π0

is the null proportion. We assume only that the data follow a Bayesian two-groups model in
which smaller p-values reflect stronger evidence against the null. We find that our method is
better able than the BH method to adapt to the unknown problem structure, and to perform
well without knowledge of the true underlying distribution.

The BH procedure owes its enduring utility for FDR control in part to its versatility
beyond this basic setting, however. It is known to still control FDR, for instance, when the
null p-values are super-uniform and under certain forms of positive dependence, two of many
possible extensions that we leave open for our procedure.

Another seeming advantage of the FDR criterion is that it requires no Bayesian assump-
tions, whereas the max-lfdr is only defined with reference to a Bayesian model. A possible
avenue for generalizing the max-lfdr to frequentist settings is to work with its characteri-
zation as the probability that the last rejection is a false discovery. Indeed, our proof of
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Theorem 5.1 implies that max-lfdr is controlled even conditional on H1, . . . , Hm. This is
initially puzzling: if each Hi is fixed, then how can we speak of the probability that the last
rejection is a false discovery? The answer is that H(R) is random even if H1, . . . , Hm are
fixed, since its index is random. We leave further development of the frequentist connection
to the max-lfdr to future work.

5.6 Proofs

5.6.1 Proofs of results from Section 5.2

Proof of Theorem 5.5. As in the proof of Theorem 5.1, we have

max-lfdr
(
Rζ
q

)
= P

{
H(Rζq) = 0, Rζ

q > 0
}

= mP
{
Hm = 0, p(Rζq) = pm

}
.

Define the σ-field F = σ (p1, . . . , pm−1, Hm, 1{pm ≤ ζ}). We restrict our attention to the
event A = {Hm = 0, pm ≤ ζ}, since the event {Hm = 0, p(Rζq) = pm} cannot occur except on

A. On A, which is F -measurable, we have pm/ζ | F ∼ U [0, 1].
Let mζ = #{i : pi ≤ ζ}, which is also F -measurable. If j1 ≤ · · · ≤ jmζ = m are

the indices of the p-values that are below ζ, define the modified p-values pζi = pji/ζ, for

i = 1, . . . ,mζ . Because the order statistics of ζpζ1, . . . , ζp
ζ
mζ

are also the first mζ order
statistics of p1, . . . , pm, the quantity Rζ

q defined in (5.12) can be rewritten as

Rζ
q = argmin

k=0,...,mζ
ζpζ(k) −

q

π̂ζ0
· k
m

= argmin
k=0,...,mζ

pζ(k) −
qζk

mζ
, for qζ =

qmζ

ζπ̂ζ0m
.

Applying Lemma 5.2, we have

P
{
Hm = 0, p(Rζq) = pm | F

}
=

qζ

mζ
· 1A =

q

ζπ̂ζ0m
· 1A

Marginalizing over F , and noting that P(A) = π0ζ, we obtain

P
{
Hm = 0, p(Rζq) = pm

}
=

q

m
· E
[
π0

π̂ζ0
| A
]

=
q

m
· (1− ζ)π0

1− F (ζ)
· E
[

(1− F (ζ))m

1 + #{i < m : pi > ζ}

]

=
q

m
· (1− ζ)π0

1− F (ζ)
· (1− F (ζ)m)

≤ q

m
,
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completing the proof. The final inequality is a standard binomial identity:

E
[

βm

1 + Binom(m− 1, β)

]
=

m−1∑

k=0

βm

1 + k

(
m− 1

k

)
βk(1− β)m−1−k

=
m−1∑

k=0

(
m

k + 1

)
βk+1(1− β)m−(k+1)

=
m∑

j=1

(
m

j

)
βj(1− β)m−j

= P{Binom(m,β) ≥ 1}
= 1− (1− β)m.

5.6.2 Proofs of results from Section 5.3

Proof of Theorem 5.6. Our proof will use the switching relation that states, for any t ∈ (0, 1),
we have almost surely

τq̂ ≤ t ⇐⇒ f̂m(t) ≤ q̂−1.

We will work with a local expansion of f̂m(t) around tq using the local parameterization
t = tq +m−1/3h. Using f(tq) = q−1, the switching relation becomes

m−1/3(τq̂ − tq) ≤ h ⇐⇒ f̂m
(
tq +m−1/3h

)
− f(tq) ≤ q̂−1 − q−1.

Now let W denote a standard two-sided Brownian motion, and let Sa,b denote the process
of left derivatives of the least concave majorant of Xa,b(t) = aW (t)− bt2, where a =

√
f(tq)

and b = |f ′(tq)|/2. Under our regularity assumptions, Dümbgen et al. (2016) show

m1/3
(
f̂m
(
tq +m−1/3h

)
− f(tq)

)
⇒ Sa,b(h)

in the Skorokhod topology on D[−K,K] for every finite K > 0. Since m1/3(q̂−1 − q−1)
p→ 0

by assumption, we have

P
{
m1/3 (τq̂ − tq) ≤ h

}
→ P {Sa,b(h) ≤ 0} .

Observe that Sa,b(h) ≤ 0 iff t∗a,b ≤ h, where t∗a,b is the (a.s. unique) maximizer of Xa,b

(note the maximizer t∗a,b is always a knot in the concave majorant since the horizontal line
with intercept Xa,b(t

∗
a,b) is a supporting line intersecting (t∗a,b, Xa,b(t

∗
a,b))). Combining this

observation with the previous display, we have

m1/3 (τq̂ − tq) d→ t∗a,b
d
= (b/a)−2/3 Z =

(q
4
· f ′(tq)2

)−1/3

Z,
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proving (5.21). Next we turn to the lfdr asymptotics. By Taylor’s theorem,

m1/3 (lfdr(τq̂)− π0q) = lfdr′(ω) ·m1/3 (τq̂ − tq)

for some ω between τq̂ and tq. Using

lfdr′(tq) =
−π0f

′(tq)

f(tq)2
= π0q

2 · |f ′(tq)|,

and applying the continuous mapping theorem and Slutsky’s theorem, we obtain

lfdr′(ω) ·m1/3 (τq̂ − tq) d→ lfdr′(tq) ·
(q

4
· f ′(tq)2

)−1/3

Z = π0q ·
(
4q2 · |f ′(tq)|

)1/3
Z,

proving (5.22). Next, under the strengthened assumption (5.23), fix ε > 0 and define the
event

Aε =
{
|q̂ − q| ≤ m−1/3ε, |τq̂ − tq| ≤ m−2/9

}
, (5.28)

and the truncated random variable

Ym = m1/3(τq̂ − tq) · 1Aε ,

We will show that P(Acε) = o
(
m−2/3

)
. As a result, Ym has the same limit in distribution

as m1/3(τq̂ − tq). If we can show that the sequence Y 2
m is uniformly integrable, we will have

convergence of its mean and variance to the mean and variance of its limiting distribution.
Then, because

E
[(
m1/3(τq̂ − tq)− Ym

)2
]
≤ m2/3P(Acε) → 0,

we will have the same limiting mean and variance for m1/3(τq̂ − tq).
To show that P(Acε) = o

(
m−2/3

)
, let q1 = q −m−1/3ε and q2 = q + m−1/3ε and assume

that m is sufficiently large that m−1/3ε ≤ m−2/9/2, and

f ′(t) ≤ f ′(tq)/2, for all t ∈ [tq −m−2/9, tq +m−2/9].

As a result, for all t ≥ tq2 +m−2/9/2, we have

F (t)− F (tq2)− t− tq2
q2

≤ F (tq2 +m−2/9/2)− F (tq2)− m−2/9

2q2

≤ f ′(tq)

16
·m−4/9
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Then, since τq̂ ≤ τq2 a.s. on Aε, we have

P
{
τq̂ > tq +m−2/9, Aε

}
≤ P

{
τq2 > tq2 +m−2/9/2

}

≤ P

{
sup

t≥tq2+m−2/9/2

Fm(t)− Fm(tq2)− t− tq2
q2

≥ 0

}

≤ P

{
sup

t≥tq2+m−2/9/2

Fm(t)− F (t)− (Fm(tq2)− F (tq2)) ≥ |f
′(tq)|
16

·m−4/9

}

≤ P

{
sup
t∈[0,1]

|Fm(t)− F (t)| ≥ |f
′(tq)|
32

·m−4/9

}

≤ CDKW exp

{
−f

′(tq)
2

512
·m1/9

}
,

where CDKW is the constant for the Dvoretzky–Kiefer–Wolfowitz inequality. An analogous
argument yields the same bound for P{τq̂ ≤ tq −m−2/9}.
Proof of Theorem 5.7. Define q = α/π0 and q̂ = α/π̂0, and let ∆ ⊆ {1, . . . ,m} denote the
symmetric difference between the two rejection sets:

∆ =





{Rq̂ + 1, . . . , R∗} if Rq̂ < R∗

{R∗ + 1, . . . , Rq̂} if Rq̂ > R∗

∅ if Rq̂ = R∗
.

Then we have

Lλ(H,Rq̂)− Lλ(H,R∗) =
1

m

(
R∗ −Rq̂ +

sgn(Rq̂ −R∗)
α

∑

i∈∆

(1−Hi)

)
.

Conditional on Fm, we have Hi
ind∼ Bern(1− lfdr(p(i))), giving conditional expectation

Γm := E
[
Lλ(H,Rq̂)− Lλ(H,R∗) | Fm

]

=
1

m

(
R∗ −Rq̂ +

sgn(Rq̂ −R∗)
α

∑

i∈∆

lfdr(p(i))

)

=

∫ τ∗

τq̂

(
1− α−1lfdr(t)

)
dFm(t)

= ρ(τq̂) + α−1

∫ τ∗

τq̂

(α− lfdr(u)) (dFm(u)− dF (u))
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Define the same truncation event Aε as in (5.28).

Aε =
{
|q̂ − q| ≤ m−1/3ε, |τq̂ − τ ∗| ≤ m−2/9

}
.

Then, because |Γm| ≤ α−1 we have
∣∣∣∣Regretm(Rq̂)− E [ρ(τq̂)1Aε ]

∣∣∣∣

≤ α−1E

[∣∣∣∣∣

∫ τ∗

τq̂

(α− lfdr(u)) (dFm(u)− dF (u))

∣∣∣∣∣ 1Aε

]
+ α−1P (Acε) .

(5.29)

We showed in the proof of Theorem 5.6 that P (Acε) = o
(
m−2/3

)
. Furthermore,

m2/3E [ρ(τq̂)1Aε ] = E
[
f ′(ξτq̂)

2
·m2/3(τq̂ − τ ∗)2 · 1Aε

]

→ f ′(τ ∗)

2

(
α

4π0

· f ′(τ ∗)2

)−2/3

Var(Z)

=

(
α2

2π2
0

· |f ′(τ ∗)|
)−1/3

Var(Z),

where we have used the fact that f ′(ξτq̂) is uniformly close to f ′(τ ∗) on Aε.

Proof of Proposition 5.8. Since Hi = 0 for all i

Lλ(H,Rα)− Lλ(H,ROPT
α ) =

λRα

m
.

Recall Rα is the argmax of the random walk k 7→ α k
m
− p(k), which has exchangeable

increments. We will use Corollary 11.14 of Kallenberg (2006), due to Sparre-Andersen, that,
by exchangeability, the number of rejections Rα is equal in distribution to the time the walk
stays positive:

Rα
d
= Pα :=

m∑

k=1

1

{
p(k) ≤ α

k

m

}
.

Under the global null, the regret thus has mean

mE
[
Lλ(H,Rα)− Lλ(H,ROPT

α )
]

= λERα = λ

m∑

k=1

P
{
p(k) ≤ α

k

m

}

→ λ

∞∑

k=1

PUk∼Gamma(k,k) {Uk ≤ α} ,

where the last step follows from the law of rare events.



115

Bibliography

Abolfathi, B. et al. (2018). The fourteenth data release of the Sloan Digital Sky Survey:
First spectroscopic data from the extended Baryon Oscillation Spectroscopic Sur-
vey and from the second phase of the Apache Point Observatory Galactic Evolution
Experiment. The Astrophysical Journal Supplement Series, 235 (2), 42.

Abramson, J., Pitman, J., Ross, N., & Bravo, G. U. (2011). Convex minorants of random
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Dümbgen, L., Samworth, R., & Schuhmacher, D. (2011). Approximation by log-concave
distributions, with applications to regression. The Annals of Statistics, 702–730.
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