
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Private group communication : two perspectives and a unifying solution

Permalink
https://escholarship.org/uc/item/83t4k4nb

Author
Panjwani, Saurabh Kumar

Publication Date
2007

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/83t4k4nb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

PRIVATE GROUP COMMUNICATION:

TWO PERSPECTIVES AND A UNIFYING SOLUTION

A Dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Computer Science

by

Saurabh Kumar Panjwani

Committee in charge:

Professor Daniele Micciancio, Chair
Professor Mihir Bellare
Professor Sam Buss
Professor Alex Snoeren
Professor Alexander Vardy

2007

Copyright

Saurabh Kumar Panjwani, 2007

All rights reserved.

The Dissertation of Saurabh Kumar Panjwani is approved,

and it is acceptable in quality and form for publication on

microfilm:

Chair

University of California, San Diego

2007

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

Acknowledgments . viii

Vita . xi

Abstract . xiii

Chapter 1 Introduction . 1
1.1. Privacy via Group Keys . 2
1.2. A Tale of Two Models . 3
1.3. The Central Question . 5
1.4. Contributions of This Thesis 6
1.5. Thesis Organization . 9

I The Symbolic Model 11

Chapter 2 The Model . 13
2.1. Pseudo-random Generators . 13
2.2. Encryption . 14
2.3. Protocol Messages . 15
2.4. An Entailment Relation . 16

Chapter 3 Defining Group Key Distribution 19
3.1. Protocol Correctness . 20
3.2. Security Definitions . 22

Chapter 4 An Equivalence Theorem . 25
4.1. Single Encryption Protocols 25
4.2. Key Graphs . 26
4.3. Proof of Theorem 4.1.1 . 28
4.4. A Cautionary Note . 30
4.5. Acknowledgement . 33

Chapter 5 Upper Bounds . 34
5.1. Logical Key Hierarchy Protocols 34

5.1.1. Protocol state . 35
5.1.2. Rekey Messages . 37

iv

5.1.3. Efficiency . 40
5.1.4. Security Analysis . 41

5.2. Subset Cover Protocols . 45
5.2.1. The Complete Subtree Protocol 47
5.2.2. The Subset Difference Protocol 48

Chapter 6 A Lower Bound . 51
6.1. Previous Lower Bounds . 52
6.2. Our Result . 53

6.2.1. An Extended Symbolic Model 54
6.2.2. The Result . 55

6.3. A First Step Towards the Proof 57
6.3.1. Proof of Lemma 6.3.9 . 63

6.4. Completing the Proof . 65
6.4.1. Proof of Lemma 6.4.1 . 67

6.5. On Beating thelog2(n) Barrier 68
6.6. Acknowledgement . 70

II The Computational Model 71

Chapter 7 Security Definitions . 74
7.1. Pseudo-random Generators . 75
7.2. Encryption Schemes . 76
7.3. Mapping Symbolic Messages to Bitstrings 77
7.4. Group Key Distribution . 78

Chapter 8 Computational Security against Non-Adaptive Adversaries 84
8.1. A Computational Game . 85
8.2. Syntactic Restrictions . 87
8.3. The Soundness Theorem . 89
8.4. Application to GKD protocols 90

8.4.1. Analysis of Protocols . 93
8.5. Proof of Theorem 8.3.2 . 96

8.5.1. Notations . 97
8.5.2. The Reduction . 97
8.5.3. The Analysis . 99
8.5.4. Proof of Lemma 8.5.2 . 109

8.6. Related Work . 110
8.7. Acknowledgement . 112

v

Chapter 9 Computational Security against Adaptive Adversaries 113
9.1. The Challenge Ahead . 113
9.2. Overview of Our Result . 116
9.3. The Result . 117

9.3.1. Relation with the Selective Decryption Problem 120
9.4. Analysis of Protocols . 122
9.5. Proof of Theorem 9.3.3 . 125

9.5.1. The Intuition . 125
9.5.2. The Reduction . 129
9.5.3. The Analysis . 130
9.5.4. Proof of Lemma 9.5.2 . 135
9.5.5. Proof of Claim 9.5.3 . 142
9.5.6. Proof of Claim 9.5.4 . 143
9.5.7. Proof of the Hybrid Cancellation Lemma II (Lemma 9.5.5) 149
9.5.8. Proof of the Telescoping Sums Lemma (Lemma 9.5.6) . . 164

Bibliography . 169

vi

LIST OF FIGURES

Figure 4.1 An illustration for the proof of Theorem 4.4.1. 32

Figure 5.1 Theplain-LKH+ andimproved-LKH+ protocols. 36

Figure 6.1 A member key graph. 61
Figure 6.2 Illustration for the proof of Lemma 6.3.9. 64

Figure 8.1 ProcedureOP,G
adpt,b used in our computational game. 86

Figure 8.2 The adversary constructed for the proof of Theorem 8.4.2. . . 92
Figure 8.3 The setup phase for each of our adversaries for Theorem 8.3.2. 98
Figure 8.4 The execution phase fortype-1 adversaries. 99
Figure 8.5 Procedurekey eval (1) used bytype-1 andtype-3 adversaries. 100
Figure 8.6 The execution phase fortype-2 adversaries. 101
Figure 8.7 Procedurekey eval (2) used bytype-2 adversaries. 102
Figure 8.8 The execution phase fortype-3 adversaries. 104

Figure 9.1 The first phase of the adversary constructed for the proof of
Theorem 9.3.3. 131

Figure 9.2 The second phase of the adversary constructed for the proof
of Theorem 9.3.3. 132

Figure 9.3 The second phase of the adversary constructed for the proof
of Theorem 9.3.3 (continued). 133

vii

ACKNOWLEDGMENTS

My years at UCSD have been the most fruitful years of my life. Although

I started my research in computer science on a rather negative note, and went into a

long phase of depression in the very first year of graduate school, I was fortunate to

find the right people and the right problems to help me recover from it pretty soon. Just

when I had made up my mind to quit my PhD, I happened to meet my (then “to-be”)

advisor, Daniele Micciancio, and he introduced me to a problem which he felt could be

of interest to me. For some reason, I immediately got hooked on to that problem and

wouldn’t want to leave it till I had found a solution to it that satisfied me (and Daniele).

I did end up finding such a solution and, along the way, I also found an excellent advisor

and plenty more interesting problems to work on.

It is perhaps an under-statement to say that this thesis wouldn’t be what it is

without the supervision I received from Daniele. My very motivation to do research

in cryptography came from the initial interactions I had with him and if ever I felt this

motivation waning later on, it would be his advice that would put me back on track. His

capacity for abstract thinking always inspired me and even though my discussions with

him often left me feeling like a dolt, in the big picture of things, these discsussions layed

the very foundation for doing good research within me. I always knew that Daniele cared

as much for my research problems as I did (sometimes, I felt he cared even more than

me!) and I can say with full confidence that he belongs to that rare league of advisors

who like to get “personally” involved in their students’ work.Thanks much, Daniele.

There’s little in this thesis that I could have done without your guidance.

Besides Daniele, there are a number of people who have contributed towards

the shaping up of this thesis, and to my overall development as a researcher, in many

small, yet important, ways. I am grateful to Mihir Bellare, Sam Buss, Alex Snoeren and

Alexander Vardy for having served on my thesis committee and for giving me valuable

feedback during the candidacy exam as well as the final defense. Mihir and Alex, in

particular, made some important remarks during my candidacy exam, which influenced

the subsequent course of this thesis. I also thank Russell Impagliazzo for encouragement

viii

and mentorship throughout my stay in UCSD and especially, for giving me detailed

feedback on several of my practice talks, prior to the research conferences I attended.

Much of what I learnt in graduate school was derived from interactions with

my peers, including, in particular, my colleagues from the cryptography and theory labs.

I was fortunate to meet some of the sharpest minds in computer science at my university

and to engage in insightful discussions with them on a variety of topics, ranging from

the mating patterns of Californian ravens to the complexity of concurrent black-box

zero-knowledge proof systems. I extend my gratitude to Michel Abdalla, Alexandra

Boldyreva (Sasha), Tadayoshi Kohno (Yoshi), Alejandro Hevia, Ragesh Jaiswal, Eike

Kiltz, Kirill Levchenko, Vadim Lyubashevsky, Jia Mao, Anton Mityagin, Jean Mon-

nerat, Gregory Neven, Adriana Palacio, Barath Raghavan, Thomas Ristenpart, Todor

Ristov, Sarah Shoup, Bogdan Warinschi and Scott Yilek for being the wonderful col-

leagues that they are and for making graduate school the enjoyable experience that it

(normally) isn’t. Special thanks to Jean (for reading and commenting on the introduc-

tion of this thesis), to Bogdan (for discussing with me the details of his work on com-

putational soundness, and also for feedback on some of my own results, in particular,

the results included in Chapter 8 of this thesis), and to Kirill (for his enthusiastic in-

volvement in all my presentations I gave during the theory seminar, and for the “peace”

lunches he organized to increase collaboration between the theory and crypto labs).

Special thanks also to Eike, Anton, and Barath for being such great collaborators in the

research projects we worked on together; I daresay that those projects were the most

fun-packed projects I did during my entire stay at UCSD.

I thank my parents for their love, support and encouragement and for giving

me the freedom to follow the career path of my liking even though it conflicted with

their own ideas and preferences in various ways. I thank my younger brother, Pratyush,

for his affection and adoration, and for fulfilling many of the dreams that I had seen

for myself (but could never pursue sincerely because of my strong inclination towards

academics).

Finally, I would like to thank my friends at Udai, a voluntary student orga-

ix

nization I was a member of, for the engaging discussions on social development I had

with them, and for making graduate school such a “meaningful” experience for me. Al-

though my activities at Udai had very little to do with the research I did in computer

science, they did influence my critical thinking in several ways and improved my capac-

ity to reason rationally and with a human touch. It is through these activities that I have

discovered a new direction in life, which I shall now set about pursuing.

Chapters 4 and 8, in part, are reprints of the material as it appears in 33rd In-

ternation Colloquium on Automata, Languages and Programming (ICALP), July 2006,

Micciancio, Daniele; Panjwani, Saurabh. The dissertation author was the primary in-

vestigator and author of this paper.

Chapter 6, in part, is a reprint of the material to be published in IEEE/ACM

Transactions on Networking, October 2008, Micciancio, Daniele; Panjwani, Saurabh.

The dissertation author is the primary investigator and author of this paper.

x

VITA

2007 Doctor of Philosophy in Computer Science
University of California, San Diego
San Diego, CA, USA

2002 Bachelor of Technology
Indian Institute of Technology (IIT), Bombay,
Mumbai, India

PUBLICATIONS

D. Micciancio and S. Panjwani. Optimal communication complexity of generic multi-
cast key distribution.IEEE/ACM Transactions in Networking, 2008. To appear.

B. Raghavan, S. Panjwani, and A. Mityagin. Analysis of the spv secure routing pro-
tocol: weaknesses and lessons.ACM SIGCOMM Computer Communication Review,
37(2):29–38, 2007.

S. Panjwani. Tackling adaptive corruptions in multicast encryption protocols. In S. Vad-
han, editor,Theory of Cryptography Conference, TCC 2007, volume 4392 ofLecture
Notes in Computer Science, pages 21–40. Springer-Verlag, Berlin, Germany, February
2007.

D. Micciancio and S. Panjwani. Corrupting one vs. corrupting many: The case of broad-
cast and multicast encryption. InAutomata, Languages, and Programming: 33rd Inter-
national Colloquium, ICALP 2006, Proceedings, Part II, volume 4052 ofLecture Notes
in Computer Science. Springer-Verlag, July 2006.

E. Kiltz, A. Mityagin, S. Panjwani, and B. Raghavan. Append-only signatures. In
A. de Santis, editor,Automata, Languages and Programming, 32nd International Collo-
quium, ICALP Proceedings, volume 3580 ofLecture Notes in Computer Science, pages
434–445, Lisboa, Portugal, July 2005. Springer-Verlag, Berlin, Germany.

D. Micciancio and S. Panjwani. Adaptive security of symbolic encryption. In J. Kilian,
editor,Theory of Cryptography Conference, TCC 2005, volume 3378 ofLecture Notes
in Computer Science, pages 169–187, Cambridge, MA, USA, February 2005. Springer-
Verlag, Berlin, Germany.

D. Micciancio and S. Panjwani. Optimal communication complexity of generic multi-
cast key distribution. In C. Cachin and J. Camenisch, editors,Advances in Cryptology
– EUROCRYPT 2004, volume 3027 ofLecture Notes in Computer Science, pages 153–
170, Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag, Berlin, Germany.

xi

FIELDS OF STUDY

Major Field: Computer Science

Studies in Cryptography
Professor Daniele Micciancio

xii

ABSTRACT OF THE DISSERTATION

PRIVATE GROUP COMMUNICATION:

TWO PERSPECTIVES AND A UNIFYING SOLUTION

by

Saurabh Kumar Panjwani

Doctor of Philosophy in Computer Science

University of California, San Diego, 2007

Professor Daniele Micciancio, Chair

Private communication in groups of users is a security problem that is rele-

vant in a host of real-world applications like pay-per-view, secure online conferencing

and the protection of content on digital media. Despite a long history of research on

the topic, there exists a fundamental dichotomy in the literature in the manner in which

the problem is modeled and security analysis of protocols conducted. Most of the ex-

isting protocols for the problem have been analyzed using a simple “symbolic” model

of computation, one in which cryptographic primitives are treated as ideal objects and

adversarial behavior defined using a fixed set of inference rules. Some others have

been approached using a more detailed computational model, wherein security is based

on complexity assumptions (like the existence of one-way functions) and proven using

very careful probabilistic analysis. The two approaches have their individual merits but

are in conflict with each other: while the method of the computational approach is more

realistic, security proofs in the symbolic approach are far easier to produce and to verify.

This thesis reconciles the two approaches and proposes a methodology for

analyzing protocols that is symbolic in nature, and still powerful enough to guarantee

security against arbitrary computationally-bounded entities. We define a large class of

protocols for private group communication, and provide syntactic conditions on pro-

tocols in this class such that any protocol that satisfies these conditions, and meets the

xiii

symbolic definition of security, is guaranteed to be secure in the computational model as

well. Such an implication enables us to conduct security analysis of protocols (falling

within our class) symbolically, and simultaneously reap the benefits of computational

security analysis. As an illustration, we apply our methodology to the security anal-

ysis of four existing protocols for group privacy, two of which were not known to be

computationally secure prior to our work.

An important contribution of this thesis is a new technique to prove secu-

rity of group privacy protocols in the presence of computational adversaries who can

corrupt protocol participants in anadaptivemanner. We show that if one suitably re-

stricts the length of encryption chains (sequences of ciphertexts of the formEK1(K2),

EK2(K3),EK3(K4), . . .) generated in protocol executions, then security of a protocol

against adaptive corruptions follows almost immediately from its security in the sym-

bolic model. Prior to our work, all techniques to proving adaptive security of privacy

protocols involved either restricting the security model severely (for example, by requir-

ing all users to be stateless) or using non-standard, and inefficient, ways to implement

the encryption operation.

xiv

Chapter 1

Introduction

Consider a situation in which a set of usersS wish to communicate as a group

over a public broadcast channel. The number of potential users of the channel is quite

large and users inS would like to ensure that no user outside this set is able to de-

cipher the information being communicated. The setS changes with time: users can

leave and/or join it at different instants and privacy of group information needs to be

maintained even when such changes take place arbitrarily, and in an a-priori-unknown

manner. For example, if Alice is inS at timet1 but not in it at timet2 (for anyt2 6= t1),

then she should be able to recover information sent att1 but should learn nothing about

what is sent att2. If Bob is not in S at timet1 but is so at timet2, the converse should

hold for him. Can we design cryptographic mechanisms that achieve such an objective,

and do so in anefficientandprovably securemanner?

The above problem often arises when dealing with protocols involving multi-

user communication and is relevant in a lot of real-world scenarios. One such scenario is

that of pay-per-view services. Providers of pay-per-view services distribute content to a

dynamic set of clients using a broadcast medium (like a satellite link), and their primary

concern is to ensure that at every point in time, all and only the receivers who subscribe

to their serviceat that instantcan recover the information being broadcast. Another

scenario where the problem is applicable is that of DVD content protection. Content

stored and distributed on DVDs must be encoded in a manner such that only certain

1

2

“compliant” devices are able to decode it. Over time, the decoding rights of some of

the compliant devices may be revoked (perhaps due to their involvement in piracy), and

suitable mechanisms must be designed to preserve privacy even after such revocations

occur. A third application scenario is that of securing multicast communication over the

Internet. Today, quite a few Internet-based applications (like video conferences, online

games) are implemented using IP multicast [17] and privacy is an important security

concern in some of these applications (for example, applications run over enterprise

networks). Since Internet users can join and leave multicast groups at will, privacy in

multicast must be achievable even in the face of arbitrary group membership changes.

1.1 Privacy via Group Keys

In point-to-point communication, privacy can easily be ensured using con-

ventional, symmetric-key cryptographic techniques: If Alice wishes to communicate

privately with Bob, she first shares a cryptographic keyK with him and then “encrypts”

every message that she wishes to send using an encryption functionEK (·). That is, for

any messageM , instead of sendingM to Bob, she sends a transformed version of it,

EK (M), referred to as theencryption ofM underK . The transformed message has

the desirable property that only a user who knowsK (in this case, Bob) is capable of

recoveringM from it.

A similar approach could be used for achieving privacy in multi-user commu-

nication as well: all the communicating users could share a common cryptographic key

and encrypt every message exchanged within the group under that key. If the group is

dynamic, this key must also be updated with time and distributed in a manner such that

at each instant, all and only the current group members are able to recover it. In order to

solve the problem of privacy in groups, it thus suffices to solve the problem of securely

distributing group keys over a broadcast channel.

Assuming the presence of a central trusted authority, one way in which the

key distribution problem can be solved is as follows: have the central authority share

3

a unique long-lived key with every user of the channel, and at each instant, generate a

fresh value for the group key and transmit it encrypted under the long-lived keys of the

current group members. So, ifKi denotes the long-lived key of useri, andS(t) denotes

the group at timet, then at every instantt, the center generates a fresh keyK (t), and

transmits the encrypted messageEKi
(K (t)) for eachi ∈ S(t). K (t) thus becomes the

group key for timet, and can be used to guarantee privacy of all information exchanged

at that instant.

The problem with the above protocol is that it incurs a communication over-

head that is linear in the size of the group: even for a single addition to or deletion from

a group of sizen, the number of messages that need to be transmitted to distribute the

group key securely isO(n). This does not scale well with the size of the group and a

better solution is clearly desirable. Much research has gone into designing group key

distribution protocols with sub-linear communication complexity and currently, the best

known protocol for the problem has communication complexity that is logarithmic in

the number of group members [10].

1.2 A Tale of Two Models

Despite the progress made in the direction of designing efficient protocols for

group key distribution, there exists a fundamental dichotomy in the literature in the way

security analysis of these protocols is conducted. Most of the existing work on group

key distribution adopts a “symbolic” approach to model the problem and to describe

and analyze solutions to it. Under this approach, all information generated and used

by a protocol is modeled using abstract data types and security primitives (like encryp-

tion functions) are treated as symbolic operations performed on such data types. Every

protocol message is thus an expression formed by applying one or more symbolic oper-

ations on basic data elements like keys and constants. It is assumed that all primitives

behave ideally and that adversarial entities know nothing about their underlying imple-

mentation. So, for example, if an adversary acquires the encryption of a messageM

4

under a keyK and does not knowK , one deduces that no information, whatsoever, is

leaked aboutM by such an acquisition.

Such a model leads to simple, tractable proofs of security and typically, one

can prove security of protocols within the model using straightforward inductive argu-

ments. However, the model itself is quite unrealistic in that it makes extreme assump-

tions on the behavior of adversaries and on the security features offered by cryptographic

primitives. In real implementations, primitives cannot be expected to behave ideally nor

can adversaries be guaranteed to abide by the symbolic rules of information recovery.

As such, the conclusions one derives from symbolic security arguments alone are of

limited practical benefit.

The computational model addresses this limitation and provides a more rigor-

ous framework for conducting security analysis of protocols. In this model, adversaries

are modeled as computational entities that are completely unconstrained in the manner

in which they can attack protocols as long as they can do so “efficiently” (for example,

in time that is polynomial in the size of cryptographic keys). Primitives are not assumed

to be ideal objects; rather, their security is defined with respect to computationally-

bounded attacks only. Proving computational security of a protocol involves arguing,

carefully, that an attack on the protocol byanycomputational adversary must imply an

attack on at least one of the primitives used to construct it. A fair number (though still a

minority) of group key distribution protocols in the literature have been analyzed using

such an approach.

Even with its obvious benefits over the symbolic model, the computational

model has its share of shortcomings. Proofs of security in the model are complex, hard

to write down and hard to verify. They contain intricate arguments involving probabil-

ities and complexity assumptions, and these arguments are too prone to human errors.

The situation is particularly grim for multi-user protocols (like the ones we are consider-

ing), for which an arbitrary subset of users can be corrupted during protocol execution,

possibly in an adversarial manner, and changes in the execution flow of the protocol (for

example, membership dynamics in the case of group key distribution) can also be made

5

adversarially. Analyzing protocols in the presence of computational entities who per-

form such manipulations can, expectedly, be quite cumbersome. This probably explains

why most of the existing protocols for group key distribution have not been subjected

to computational analysis at all, and even those that have been so are supported with

security proofs that are either too opaque, or incomplete or, in some situations, even

incorrect. (See [31] for a survey.)

1.3 The Central Question

The existence of two, seemingly-conflicting approaches to addressing the

same problem in the literature is a rather unsettling state of affairs. Ideally, one would

like to be able to prove security of all known protocols for group key distribution in the

computational model or else modify them suitably so they are rendered computationally

secure. In the current situation, it is not even clear if the majority of protocols, that

are known only to be symbolically secure,can be proven secure in the computational

model at all. Analyzing each of these protocols (at least seven are known [31]) against

computational attacks from scratch is a tremendous task for any security analyst.

Is there an easy way out of this situation? Can we somehow guarantee security

of protocols in the computational sense, while still keeping proofs simple and elegant,

as they are in the symbolic model? It would be ideal if we could show that symbolic and

computational notions of security are closely related and that one follows from the other

always (that is, for every protocol). But this would be too much to ask for. Given the

idealistic treatment of security in the symbolic model, it is natural to expect that there

be protocols that are symbolically secure but are still insecure against computational

attackers. (Indeed, we will see some examples of these later on.)

In order to establish connections between symbolic and computational secu-

rity notions, we must thus impose some restrictions on the protocols first. We ask:

Is it possible to find reasonable conditions on group key distribution protocols, such

that for any protocol satisfying these conditions, security in the symbolic model also

6

implies security against computationally-bounded adversaries?

Here, by “reasonable”, we mean that the conditions we obtain be simple (that

is, it should be easy to check if a protocol satisfies them or not) and not overly restrictive

(existing protocols for the problem should either satisfy them or should be modifiable to

do so easily).

1.4 Contributions of This Thesis

In this thesis, we provide an affirmative answer to the question raised above.

We show that for a fairly general class of group key distribution protocols, it is possi-

ble to argue about security in purely symbolic terms and simultaneously obtain strong

guarantees on computational security of the protocol. We focus on protocols that rely

on symmetric-key cryptographic techniques only and in particular, those that make ar-

bitrary black-box usage of symmetric-key encryption schemes and pseudo-random gen-

erators. (Most protocols for the problem in the literature are symmetric-key in nature,

primarily for efficiency reasons, and almost all of these rely on encryption and pseudo-

random generation only.) For this class of protocols, we introduce simple syntactic con-

ditions such that any protocol satisfying the conditions and also satisfying the symbolic

notion of security for group key distribution, is provably secure against computational

adversaries foranycomputationally-secure implementation of the primitives.

The syntactic conditions we introduce are fairly easy to verify and some of

these are, in fact, even necessary to prove security of protocols in the computational

model. The conditions fall into two categories. Those in the first category restrict the

order in which messages are transmitted in protocols and more specifically, the order

in which keys are used in protocol messages. Intuitively, these conditions require that

every key be used in a protocol in two distinct phases: adistributionphase, in which it is

sent encrypted under one or more keys (or possibly transmitted unencrypted), followed

by a deploymentphase, in which it is used to encrypt other keys or plaintexts. Key

distribution is not allowed to succeed key deployment. Most known protocols for group

7

key distribution indeed comply with this requirement, that is, they distribute keys only

prior to their being deployed for any cryptographic purposes.

One disadvantage of the ordering constraint is that it does not permit users’

internal states to be revealed in the midst of a protocol since the state of any user could

contain keys that are used for encryption. As a result, under this constraint, one cannot

prove computational security of protocols against adversaries who corrupt usersduring

protocol execution, possibly in an adaptive manner (that is, based on the protocol his-

tory). Proving computational security of multi-user encryption protocols against adap-

tive adversaries, in general, is known to be an extremely challenging problem in cryp-

tography. Currently, the only known approaches to solving the problem involve using ei-

ther non-standard models (for example, the erasure model [3]) for doing security proofs

or non-standard primitives (for example, “non-committing” encryption schemes [9]) to

implement the encryption operation. The first approach has the drawback that it makes

unrealistic assumptions on the behavior of honest users while the second one suffers

from being too inefficient to implement in practice.

An important contribution of this thesis is a new technique to argue about

adaptive security of encryption protocols (and of group key distribution protocols, in

particular) which neither restricts the security model in any way nor requires the use of

encryption schemes with special properties. We demonstrate that the “amount” of adap-

tive security that can be provably achieved in any encryption protocol is related to the

length of the longest encryption chain of the formEK1(K2),EK2(K3),EK3(K4), . . . , (E

being a symmetric-key encryption operation) created by it and the shorter the encryption

chains generated in any execution, the better is the guarantee on the adaptive security

of the protocol. In particular, we show that if the longest encryption chain created by

a protocol has length at most logarithmic in the number of protocol users, and, if the

protocol is secure in the symbolic model, then security against adaptively-corrupting

computational adversaries follows automatically1. Thus, to prove adaptive security of

any encryption protocol that is known to be symbolically secure, it suffices to check that
1We remark that the above restriction on encryption chains allows to prove security via aquasi-polynomial reduc-

tion, as opposed to a fully polynomial one. See Chapter 9 for details.

8

the protocol does not create messages which could lead to the formation of arbitrarily

long encryption chains.

ANALYSIS OF PROTOCOLS. We apply our results to the security analysis of

two important types of group key distribution protocols—logical key hierarchy (LKH)

protocols[46, 45] andsubset cover protocols[34]. Most known protocols for group

key distribution belong to one of these two types. TheLKH protocols were designed

for the problem of securing multicast communication over the Internet and they have

exponentially better communication efficiency than the trivial protocol we described

earlier on. The subset cover protocols are relatively less efficient but have the advantage

of being stateless: users need to maintain a fixed, small set of keys as their internal state

and their state does not change with time. This property makes subset cover protocols

applicable in several scenarios besides that of multicast communication (for example, in

the scenario of DVD content protection).

We analyze two protocols belonging to each of these classes [46, 45, 10, 34]

(four protocols in all). In the process of analyzing these protocols, we uncover a

weakness in theLKH protocols of [46, 45, 10] and show that both these protocols are

insecure in the computational model, even against non-adaptive adversaries. We then

fix these protocols in a manner such that they become compliant with our syntactic

conditions and then use our results to establish computational security for each of

them. (For the protocol of [10], computational security is proven against non-adaptive

adversaries while for [46, 45], adaptive security is also proven.) For the two subset

cover protocols we study, computational security was already proven in [34] but our

techniques provide a much simpler proof of security for both the protocols.

A L OWER BOUND. Besides conducting security analysis of protocols, we

also investigate the issue of designing group key distribution protocols that are more

efficient than those already known to exist. In this context, our results are negative.

We prove that in any secure (symmetric-key) group key distribution protocol, the min-

9

imum number of messages (each message being the encryption of a key under another

key) required to be transmitted at each instant, on the average, is at least logarithmic

in the number of group members. This lower bound on communication complexity

matches the upper bound of [10]—the most communication-efficient protocol known—

up tosub-constantadditive terms and is, thus, extremely tight. Not only this, we show

that the same bound also applies to protocols that use secret sharing schemes [42] be-

sides encryption and pseudo-random generation. Thus, even the use of secret sharing

cannot help in reducing the communication complexity of known protocols by any rea-

sonable measure.

Our lower bound on group key distribution holds for protocols that are se-

cure againstcollusionsof malicious users; that is, it is proven with respect to a security

definition in which the adversary can corrupt multiple users (possibly adaptively), put

together their long-lived keys and use such information to circumvent the protocol. In-

deed, such a bound cannot be proven for protocols that are secure only against solitary

malicious users (as is illustrated by known protocols that satisfy this weaker definition

and achieve constant communication complexity). Collusion-resistance is considered an

essential security criterion for multi-user protocols and almost all group key distribution

protocols in the literature have been designed with this objective in mind. We prove our

lower bound with respect to the symbolic definition of collusion-resistance but since this

definition is weaker than its computational counterparts, the same bound easily applies

to computationally-secure protocols as well.

1.5 Thesis Organization

The rest of this thesis is divided into two parts. In the first part, we consider

the group key distribution problem purely in symbolic terms. We first define a symbolic

model for arbitrary symmetric-key encryption protocols, develop various definitions of

security for group key distribution within this model, and then analyze theLKH proto-

cols and the subset cover protocols of [46, 45, 10, 34] with respect to these definitions.

10

We also prove our lower bound on communication complexity in this part of the thesis.

The second part of the thesis contains our most important contributions. In

this part, we provide computational definitions of security for group key distribution

protocols and relate these definitions to the symbolic definitions developed earlier on

using two very general technical results. The first result provides the syntactic con-

ditions under which symbolic security implies computational security with respect to

non-adaptive adversaries, while the second one does the same for computational secu-

rity against adaptive adversaries. Once the relations between symbolic and computa-

tional definitions are established, we extend our security results from the first part of the

thesis to the computational setting and prove computational security of all the protocols

studied therein.

Part I

The Symbolic Model

11

12

In this part of the thesis, we develop a symbolic model for studying encryption

protocols and, subsequently, use this model to define security notions for the specific

task of group key distribution. Our model is symbolic in the sense that it treats all

keys and messages generated by a protocol as abstract data types and cryptographic

primitives as abstract functions over such data types. How these data types and functions

are implemented is left unspecified, and even adversarial entities are assumed to know

nothing about their implementation. Such an abstraction leads to simple, tractable proofs

of security and as we illustrate, protocols can be proven secure within the model using

straightforward inductive arguments.

A symbolic model like ours was first proposed in [18] for analyzing security of

encryption protocols against impersonation attacks and is often referred to as theDolev-

Yao security modelafter the authors of [18]. Our model differs from the Dolev-Yao

model in two ways: on the one hand, we generalize the original model to incorporate

the use of pseudo-random generators, which are frequently used in conjunction with

encryption schemes in the design of security protocols; on the other, we consider a

weaker attack model, one in which the adversary only eavesdrops on the communication

of all parties but may not have the power to disrupt or modify any such communication.

The symbolic model provides a convenient framework to analyze security of

protocols but given its idealistic nature, the conclusions one derives from such security

analysis are of limited practical benefit. This is an issue we discuss in detail, and suitably

address, in the next part of the thesis.

Chapter 2

The Model

Let R = {R1,R2, . . . , } be an arbitrary, infinite alphabet. We refer to the

symbols in this alphabet aspurely random keys1 or fresh keys; these can be used directly

for performing cryptographic operations like encryption. Oftentimes, though, protocols

also make use of keys that are not purely random but “pseudo” random in the sense that

no efficient observer can distinguish them from purely random values. Such keys can

be obtained by using apseudo-random generator (PRG), a cryptographic primitive that

takes a purely random key as input and “expands” it into a sequence of pseudo-random

ones.

2.1 Pseudo-random Generators

In symbolic terminology, a pseudo-random generator is a functionG that

maps a keyK to a sequence of̀ seemingly random keys(G0(K), · · · ,G`−1(K)) for

some` > 1. We refer to` as theexpansion factorof G2. The keys that are output

by a pseudo-random generator, when given a random (or pseudo-random) keyK as in-

put, are considered as good as purely random ones; in particular, encryption schemes

remain secure when such keys are deployed in them. Pseudo-random generators have
1In the symbolic model, random keys are just constant expressions without any probability distribution associated

with them. The word “random” refers only to the intended implementation of such expressions.
2The notion of expansion factor is different from that of thestretchof a PRG [7], more commonly used in the

literature; the latter is defined for a setting in which the PRG is modeled as a map over binary strings.

13

14

been extensively used in the design of encryption protocols, in general, (and of group

key distribution protocols, in particular), typically to improve protocol efficiency, and

sometimes even to add new functionality; as such, incorporating them in our model is

paramount.

For the rest of this thesis, we consider a fixed pseudo-random generatorG

with expansion factor equal to2—on input a keyK , such a generator outputs two keys,

which we denote byG0(K) andG1(K). This is without loss of generality because

PRGs with larger expansion factors can be quite easily built from such generators using

standard techniques in the literature [49, 7]. Indeed, all protocols we are interested in

use PRGs with expansion factor two only.

2.2 Encryption

Besides pseudo-random generators, the other primitive we are concerned with

is encryption(more precisely,symmetric-keyencryption). In the symbolic world, an

encryption scheme is modeled as a functionE defined over symbolic expressions: it

takes, as input, an expressionM , called themessage, and a keyK , and maps these

to another expressionEK (M), called theciphertextcorresponding toM . Intuitively,

the ciphertext hides the message completely and the latter can be recovered only if the

encryption keyK is known; that is, givenEK (M), M is recoverable if and only ifK is

recoverable.

We allow encryption to be performed in a “nested” fashion: ciphertexts can

themselves act as messages and every message can be encrypted iteratively under mul-

tiple keys. For example,ER1(ER2(R3)) is a valid ciphertext in our model, and so is

ER1(ER1(ER1(R2))). Nested encryption has, in fact, been deployed in security pro-

tocols in the past, sometimes with the purpose of enhancing their security [28] and

sometimes even to better the efficiency of known schemes [14, 21].

15

2.3 Protocol Messages

Messages, in our model, are expressions created by applying the functions

E andG iteratively on elements ofR. Formally, we define aprotocol messageas an

expression that is derivable from the variableM in the following context-free grammar:

M → K | EK (M)

K → R | G0(K) | G1(K)
(2.1)

Here, the variableK models keys generated during the protocol, which can

either be purely random (contained in the setR) or pseudo-random (derived from purely

random keys usingG). Note that a pseudo-random keyK can be obtained via multiple,

iterative applications ofG on the same purely random key; the latter is referred to as

theroot of K and the number of iterations ofG required to generateK from its root is

called thedepthof K . We denote these byroot(K) anddepth(K) respectively. As an

example, ifK = G0(G1(R1)), thenroot(K) = R1 anddepth(K) = 2.

Let Msgs denote the set of all messages that can be derived from gram-

mar (2.1) andKeys the set of all keys derivable from it. Note that both these sets

are infinite and thatKeys ⊂Msgs. (That is, every key derivable from our grammar is

also a message.) Some examples of expressions contained inMsgs are:

• G0(G1(R1)), the pseudo-random key obtained by first applyingG1 on the purely

random keyR1, and then applyingG0 on the resulting key.

• ER2(G0(G1(R1))), the ciphertext corresponding to the encryption of

G0(G1(R1)) under a purely random keyR2;

• EG1(R2)(EG0(R1)(R3)), the ciphertext corresponding to the “double” encryption

of a keyR3 under the keysG0(R1) andG1(R2).

In practice, protocols can also generate ciphertexts formed by encrypting ar-

bitrary data, and not necessarily keys; we use the above model because our interest

16

is primarily in “key” distribution protocols, where keys are the only objects to be en-

crypted. It is possible to extend many of the results of this thesis to protocols that

encrypt arbitrary data as well and in the sequel, we discuss how this can be done.

One important remark regarding our grammar is the following. Although we

allow ciphertexts to be created by iterative applications of the encryption function and

the PRG in a fairly general manner, we do not allow them to be used as keys, either

for encrypting messages or as seeds to the pseudo-random generator. (That is, we do

not incorporate rules of the formM → EM (M) or K → G0(M) | G1(M).) This

is because, in practice, ciphertexts need not possess the pseudo-randomness properties

that keys do (or rather, are assumed to do); indeed, using them to play the role of keys is

considered injudicious cryptographic practice and could lead to the design of insecure

protocolseven for secure implementations ofG andE.

2.4 An Entailment Relation

Given a set of protocol messagesM ⊂ Msgs, what information about the

protocol can be recovered from this set? We formalize this notion using an entailment

relationM ` M (symbolizing the assertion “M is recoverable fromM”), and define it

recursively using the following rules:

M ∈M =⇒ M ` M (Rule 0)

M ` K =⇒ M ` G0(K) ∧ M ` G1(K) (Rule 1)

M ` EK (M) ∧ M ` K =⇒ M ` M (Rule 2)

Rule 0 is trivial: every message that is contained inM is clearly recover-

able from it. Rule 1 is the correctness condition associated with the pseudo-random

generator—if one can recover a keyK , then one can also recover all pseudo-random

keys derived fromK . The last rule,Rule 2, formalizes the notion of decryption asso-

ciated with any encryption function—if one possesses a ciphertextEK (M) and also the

17

keyK used to create that ciphertext, then one can “open” the ciphertext to recoverM .3

We say that a messageM is recoverable fromM in i steps(for somei ≥ 0)

if M can be derived fromM usingi applications of the non-trivial rules,Rule 1 and

Rule 2. (If M ∈ M, then it is said to be recoverable fromM in 0 steps.) For example,

consider the set

M = {R2,EG1(R2)(EG0(R1)(R3)),ER2(G1(R1)),EG0(G1(R1))(R4)}

From the trivial rule, we know that

M ` R2,

M ` EG1(R2)(EG0(R1)(R3)),

M ` ER2(G1(R1)),

and, M ` EG0(G1(R1))(R4)

The keyR4 can now be recovered fromM in 3 steps:

M ` R2 ∧ M ` ER2(G1(R1)) =⇒ M ` G1(R1) (UsingRule 2)

M ` G1(R1) =⇒ M ` G0(G1(R1))

(UsingRule 1)

M ` G0(G1(R1)) ∧ M ` EG0(G1(R1))(R4) =⇒ M ` R4 (UsingRule 2)

while the ciphertextEG0(R1)(R3) can be recovered in2 steps:

M ` R2 =⇒ M ` G1(R2) (UsingRule 1)

M ` G1(R2) ∧ M ` EG1(R2)(EG0(R1)(R3)) =⇒ M ` EG0(R1)(R3)

(UsingRule 2)

For any message-setM, we useRec(M) to denote the set ofall messages

that are recoverable from it (irrespective of the number of steps required to do so); that is,
3For more generality, one could also incorporate a rule for “encryption”, formalizing the idea that given a keyK ,

and a messageM , it is easy to construct the ciphertextEK (M). However, such a rule would be of no benefit to us.
For one, ciphertexts themselves cannot be used to recover anything other than the message that they encrypt. For two,
we analyze protocols in terms of whatkeys(as opposed to ciphertexts) can be recovered from protocol messages; for
this purpose, the rules that we have listed above suffice.

18

Rec(M) = {M |M ` M }. In our example, bothR4 andEG0(R1)(R3) are inRec(M).

Notice thatRec(M) is typically infinite; for example, if any keyRi ∈ Rec(M) then

for any d > 0 and anyb1, b2, . . . , bl ∈ {0, 1}, the keyGbl(Gbl−1
(· · · (Gb1(Ri)) · · ·))

is also inRec(M). For singleton message-setsM = {M }, we write Rec(M) for

Rec(M).

The entailment relation, besides formalizing the functionality of the operations

E andG, implicitly defines their security semantics as well. In particular, we assume

that information thatcannotbe recovered using this relation is completely “hidden”

from the point of view of any adversarial observer. In our example, the keysR3 and

G0(R1) cannot be recovered fromM (even though they both appear in it) and so, it is

assumed that an attacker, when given access to all ofM, has no knowledge, whatsoever,

either aboutR3 or aboutG0(R1). (In effect,M conceals these two keys completely.)

Such a line of reasoning reflects the basic philosophy of the symbolic model, namely,

that cryptographic operations are ideal objects and information that is not obtainable

using certain fixed rules (modeling just the correctness properties of these objects) is

secure by default.

Chapter 3

Defining Group Key Distribution

Consider a set ofn users, labeled1, 2, . . . ,n, sharing a broadcast communi-

cation channel. Suppose thatn is very large (say, of the order of the number of hosts

on the Internet). At any timet, users in a specific setS(t) ⊂ {1, . . . ,n}, referred to as

themembersat that time, are authorized to receive information sent on the channel and

in order to enable private communication amongst these users, we would like to enable

them to share agroup keyK (t) and to encrypt all transmitted information using that key.

The setS(t) changes with time and accordingly, the users should also be able to update

K (t) in such a manner that at every instantt, all and only the users inS(t) can recover

K (t).

This, in essence, is the problem of group key distribution. The problem can

easily be seen to be equivalent to that of privacy in group communication: on one hand,

given a protocol for distributing group keys securely, one can use it to ensure privacy in

the group (by suitably performing encryption under the group key at every instant) and

on the other, given a protocol for private group communication, one can distribute group

keys securely using it (by simply generating a fresh key at every instant and transmitting

it securely to everyone in the group). As such, throughout this thesis, we identify the

problem of private group communication with the group key distribution problem. We

remark that group key distribution protocols can find applications in multiple contexts

(besides that of ensuring privacy); for example, when coupled with a message authenti-

19

20

cation scheme, they can be used to guarantee integrity of all messages exchanged within

the group and to identify the sender of any message as being a member of the group.

In this thesis, we are interested incentralizedprotocols for group key distribu-

tion; that is, we assume that there exists a (physical or logical) central trusted authority

C who shares a unique, long-lived keyKi with every useri of the underlying broadcast

channel, and uses these keys to communicate the group keyK (t) securely to all mem-

bers at timet. We also assume that the channel is reliable (every message sent byC

is received by every user of the channel) and authenticated (every user can verify that

the message was indeed sent byC). Most known protocols for group key distribution in

the literature are based on the assumption of centralized trust (primarily for reasons of

efficiency).

3.1 Protocol Correctness

A group key distribution (GKD) protocolΠ for n users has two components:

a setup programS, and a key distribution programC. (The latter models all activities

of the center.) The setup program assigns long-lived keys to all users and decides the

initial state ofC. For all i, the long-lived key of useri, denotedKi, is an element of

Keys subject to the requirement that it is not recoverable from any other long-lived

key. In other words, there must exist no two keysKi,Kj such thatKj ∈ Rec(Ki)

(that is,Kj = Gb1(Gb2(· · ·Gbl(Ki) · · ·)) for somel ≥ 0 and b1, · · · , bl ∈ {0, 1}).

The initial stateZ(0) of the programC is a set of keys with the property that for every

i ∈ {1, . . . ,n}, Ki ∈ Rec(Z(0)).

We remark that the setup program is just an abstraction used for convenience

of protocol description. In practice, long-lived keys of users need not be generated all

at once before the protocol begins, but only when the respective user joins the group.

(Once generated, the key can be shared between the user and the center using standard

techniques based on, say, public-key cryptography.) Furthermore, to reduce storage re-

quirements at the center, all long-lived keys could be derived using a single seed keyK0,

21

via multiple applications of the PRGG, while satisfying the above-stated requirement.

(For greater efficiency, a pseudo-randomfunction[22] could also be used.)

At every instantt > 0, the programC is given, as input, a description of the

current set of membersS(t) and a set of keysZ(t−1) corresponding to its state at the

previous instant. It outputs a set of messagesMΠ
S(t) (to be transmitted on the broadcast

channel) and its updated stateZ(t). Each message inMΠ
S(t) is an element ofMsgs (that

is, it is derived from the variableM in grammar (2.1)). These messages are referred to

as therekeymessages for timet since they are used to establish a fresh secret key—the

group key—amongst all members at that time.

Let [n] denote the set{1, . . . ,n} and let2[n] denote the power set of[n]. For

any sequence of member-sets
−→
S (t) := (S(1), · · · ,S(t)) ∈ (2[n])t, letMΠ−→

S (t)
denote the

set of all the rekey messages output byC when given this sequence as input; that is,

MΠ−→
S (t)

=
⋃

1≤t′≤t

MΠ
S(t′)

Definition 3.1.1 An n-user GKD protocolΠ is called correct if for allt > 0, for all

sequences
−→
S (t) ∈ (2[n])t there exists a keyK such that

∀i ∈ S(t) : K ∈ Rec({Ki}
⋃
MΠ−→

S (t)
) (3.1)

We assume that for every instantt, there is a distinguished keyK that satisfies

the above criterion and that is also used for applications (like the encryption of group

data); this key is the group key for timet and we denote it byK (t). We remark that

our correctness definition is quite liberal in the sense that members are allowed to be

able to recover the group key usingall the messages transmitted by the center up to the

current instant. In practice, one could be more stringent and require instead that the

group key be recoverable by a member using only the messages transmittedsince the

instant the member joined the group. Indeed, all protocols we consider in this thesis

have that property.

22

3.2 Security Definitions

A natural first step in defining security of group key distribution would be to

require that for each instantt, no non-member be able to recover, individually, the group

key K (t) using the messages sent up to that instant. This essentially involves negating

criterion (3.1) for non-members as follows:

Definition 3.2.1 An n-user GKD protocolΠ is calledsecure against single-user attacks

(in the symbolic model) if for allt > 0, and for all sequences
−→
S (t) ∈ (2[n])t

∀i /∈ S(t) : K (t) /∈ Rec({Ki}
⋃
MΠ−→

S (t)
) (3.2)

The above definition is quite intuitive and easy to use, but it has one severe

shortcoming: it does not allow non-members tocolludewith each other and tomount

coordinated attackson the protocol. In practice, coordinated attacks could be quite

feasible to implement—an intruder could gain illegitimate access to several hosts on a

network (by, say, cracking their administrative passwords in parallel), and could poten-

tially combine all information available on these hosts and recover group keys that none

of the hosts can recover individually.

Let us now strengthen this definition to incorporate collusion attacks. For any

instantt, let S(t)
denote the set of non-members in the protocol at that instant; that is,

S(t)
= [n] \ S(t).

Definition 3.2.2 An n-user GKD protocolΠ is calledsecure against collusion attacks,

or simplycollusion-resistant(in the symbolic model), if for allt > 0, for all sequences
−→
S (t) ∈ (2[n])t

K (t) /∈ Rec({Ki}i∈S(t)

⋃
MΠ−→

S (t)
) (3.3)

Note that condition (3.3) is equivalent to requiring that the keyK (t) not be in

Rec({Ki}i∈S
⋃
MΠ−→

S (t)
) for any subsetS of S(t)

. This follows from the observation that

the functionRec(·) is monotone with respect to the set inclusion relation; that is, for

every two sets of messagesM1,M2 such thatM1 ⊆ M2, Rec(M1) ⊆ Rec(M2).

23

Thus,K (t) is protected from all non-members at timet if and only if it is protected from

every malicious subset of them.

The new definition appears reasonable but it is still lacking in one aspect: what

if non-members at timet cannot recoverK (t) immediately but can do solater on, after

viewing more messages sent by the protocol? For example, consider a protocol that

setsK (t+1) to be the same asK (t) whenever a new user joins the group at timet + 1.

This means that, when running the protocol, a user who is not a member at timet but

becomes one at timet + 1 would be able to acquire the keyK (t), absolutely for free!

Should such a protocol be called secure?

The answer depends on the application one is considering though it is reason-

able to believe that in most situations, such an occurrence would count as a security

violation. For example, in many applications (like pay-per-view services), every piece

of information has a price associated with it and often, this price is independent of when

the information is actually communicated. In such a setting, preserving secrecy of key

material communicated in the past would be very important.

Thus, a natural way to strengthen the above security definitions would be to

require that non-members at any instantt not be able to recover the group keyK (t),

even when they are given access to future protocol messages. Such a requirement is

usually referred to asbackward secrecyin the literature (see, for example, [43]) because

it ensures that no group member can recover group keys of past instants when it was not

part of the group.

Definition 3.2.3 An n-user GKD protocolΠ is calledstrongly secure against single-

user attacks(in the symbolic model) if for allt > 0, for all sequences
−→
S (t) ∈ (2[n])t, we

have

∀t̃ ≤ t, ∀i /∈ S(t̃) : K (t̃) /∈ Rec({Ki}
⋃
MΠ−→

S (t)
) (3.4)

Definition 3.2.4 An n-user GKD protocolΠ is calledstrongly collusion-resistant(in

the symbolic model) if for allt > 0, for all sequences
−→
S (t) ∈ (2[n])t, we have

∀t̃ ≤ t : K (t̃) /∈ Rec({Ki}
i∈S(t̃)

⋃
MΠ−→

S (t)
) (3.5)

24

Definition 3.2.4 is the strongest symbolic security definition we consider in

this thesis. As in the case of Definition 3.2.2, we could re-phrase condition (3.5) by

requiring that for all̃t ≤ t, K (t̃) not be inRec({Ki}i∈S
⋃
MΠ−→

S (t)
) for any subsetS of

S(t̃)
. (Again, the equivalence of the reformulated definitions with the above ones would

follow from the monotonicity of the functionRec(·).) Alternatively, we could say that

a protocol is strongly collusion-resistant if for all setsS ⊆ [n], for all sequences
−→
S (t),

and for all instants̃t ≤ t such thatS(t̃) ∩ S = ∅, K (t̃) /∈ Rec({Ki}i∈S ∪MΠ−→
S (t)

).

In past work on group key distribution, security notions of the above kind

have already been considered but to the best of our knowledge, our work is the first

to formalize these notions within a general symbolic model of computation. Such a

formalization is essential both from the perspective of proving security of protocols (as

we do in Chapter 5) and also for the purpose of proving robust lower bounds on the

efficiency of protocols (as done in Chapter 6).

Chapter 4

An Equivalence Theorem

4.1 Single Encryption Protocols

Although the protocol language we defined in Chapter 2 is fairly general and

encompasses all (symmetric-key) group key distribution protocols in the literature, it

turns out that most protocols of interest can be captured by a more restrictive model.

Specifically, our grammar of protocol messages (equation (2.1)) allows protocols to use

nested encryptionin generating ciphertexts whereas most GKD protocols (nine out of

eleven surveyed in [31]) do not exploit this possibility at all. In other words, messages

in such protocols are derivable from the following modified version of grammar (2.1):

M → K | EK (K)

K → R | G0(K) | G1(K)
(4.1)

Notice that the ruleM → EK (M) has been replaced withM → EK (K) in the above

grammar.

We refer to protocols that generate messages according to grammar (4.1) as

single encryption protocolsand group key distribution protocols that fall within this

class are calledsingle encryptionGKD protocols, or simply, S-GKDprotocols. Inter-

estingly, even with this minor restriction, security analysis of protocols can be greatly

simplified, as is illustrated by the following theorem:

25

26

Theorem 4.1.1 An S-GKD protocolΠ is (strongly) secure against single-user attacks if

and only if it is (strongly) collusion-resistant. In other words,Π satisfies Definition 3.2.1

(resp. Definition 3.2.3) if and only if it satisfies Definition 3.2.2 (resp. Definition 3.2.4).

Thus, if one is interested in analyzing the security of an S-GKD protocol

against collusion attacks, it suffices to prove it secure against single-user attacks only;

collusion-resistance would follow from thisautomatically!We illustrate the usefulness

of this result by applying it to the security analysis of various protocols in Chapter 5.

First, let us prove the result.

4.2 Key Graphs

The key insight underlying the proof of Theorem 4.1.1 (and of several other

results in subsequent chapters) is the observation that security analysis of S-GKD pro-

tocols can be conducted, quite conveniently, using a graph-theoretic abstraction. We

first describe this abstraction in detail.

Consider the execution of an S-GKD protocolΠ given any sequence of mem-

ber sets
−→
S (t) = (S(1), · · · ,S(t)) as input. With any such execution, let us associate a

directed graphGΠ−→
S (t)

, called thekey graphfor that execution ofΠ, defined as follows:

• The set of nodes inGΠ−→
S (t)

is equal toKeys (the set of all keys derivable from

grammar (2.1)).

• For anyK ,K ′ ∈ Keys, there is an edge fromK to K ′ in GΠ−→
S (t)

if and only if

either of the following is true:

– K ′ = Gb(K) for someb ∈ {0, 1};

– MΠ−→
S (t)

contains the messageEK (K ′).

We refer to an edge of the formK → Gb(K) as agiven edgeor, simply, ag-edge

and all other edges are referred to asciphertext edgesor c-edges.

27

The intuition underlying both types of edges is the same: Given the keyK

(and the ciphertexts transmitted by the protocol), if we can recover another keyK ′ in

exactly one step (via the entailment relation` of Section 2.4), then—and only then—

we introduce an edge fromK to K ′ in GΠ−→
S (t)

. Note that the creation ofc-edges is

dependent on the protocol whereasg-edges are given to us for free, independently of

which protocol we are running (hence the name “given edges”).

Since every edge in a key graph corresponds to a single step in the computation

of the functionRec(·), a sequence of edges (that is, apathin the graph) would naturally

correspond to a sequence of such steps. As a result, all keys that can bereachedfrom a

key K in the graph are exactly those that can be recovered from it (and the ciphertexts

sent by the protocol).

The following lemma formalizes this relationship between reachability and

recoverability. For any key graphG and any set of keysK, let ReachG(K) denote the

set of all keys that are reachable fromK in G. Formally,ReachG(K) is the smallest set

of keys such thatK ⊆ ReachG(K) and for everyK ∈ ReachG(K), and every edge

from K to another keyK ′, K ′ is also inReachG(K). For any set of messageMΠ−→
S (t)

transmitted by a protocol (when given the sequence
−→
S (t) as input), letKΠ−→

S (t)
denote the

set of unencrypted keys contained inMΠ−→
S (t)

.

Lemma 4.2.1 For anyn-user S-GKD protocolΠ, for any set of keysK, for any integer

t > 0, and for any sequence of sets
−→
S (t) ∈ (2[n])t

Rec(K ∪MΠ−→
S (t)

) ∩Keys = ReachGΠ−→
S (t)

(K ∪KΠ−→
S (t)

)

Proof: We prove, using induction, that, for anyi ≥ 0, a keyK is recoverable from

K∪MΠ−→
S (t)

in i steps if and only if there exists a path of lengthi in GΠ−→
S (t)

that starts from

some key inK∪KΠ−→
S (t)

and ends inK . From this, the lemma would follow immediately.

For the base case, observe that a keyK is recoverable fromK ∪ MΠ−→
S (t)

in

0 steps if and only if it is contained inK ∪MΠ−→
S (t)

, which is true if and only ifK ∈

K ∪ KΠ−→
S (t)

. The latter is equivalent to saying that there exists a path of length0 from a

node inK ∪ KΠ−→
S (t)

to K .

28

Now suppose that the claim is true for some arbitraryĩ ≥ 0. Using this, we

prove the claim for̃i+ 1. K is recoverable fromK∪MΠ−→
S (t)

in ĩ+ 1 steps if and only if

there exists another keyK ′ that is recoverable (from the same set) inĩ steps and either

(a) K = Gb(K
′) for someb ∈ {0, 1} or else, (b)EK ′(K) ∈ MΠ−→

S (t)
. (In the former

case, we applyRule 1 of Section 2.4 to getK , and in the latter, we useRule 2.) From

the inductive hypothesis, we know that there exists a path of lengthĩ in GΠ−→
S (t)

from

some keyK ′′ ∈ K ∪ KΠ−→
S (t)

to K ′. From the definition ofGΠ−→
S (t)

, we know that either

(a) or (b) is true if and only if there is an edge fromK ′ to K in that graph. Joining the

former path with the latter edge gives us a path fromK ′′ to K of lengthĩ+ 1.

For the rest of this thesis, most of the discussion on S-GKD protocols takes

place in terms of key graphs. In particular, we describe and analyze protocols (within

this class) in graph-theoretic terms, and, later on, use the concept of key graphs to es-

tablish lower bounds as well. As a first step, let us see how this concept helps us give a

simple proof of Theorem 4.1.1.

4.3 Proof of Theorem 4.1.1

We first prove equivalence between definitions 3.2.3 and 3.2.4; the proof of

equivalence between definitions 3.2.1 and 3.2.2 is very similar and we only sketch the

difference between the two proofs in-line.

Clearly, Definition 3.2.4 implies Definition 3.2.3—if a protocol is strongly

collusion-resistant then it must be strongly secure against single-user attacks as well.

(This follows from the monotonicity of the key recovery functionRec(·).) So we just

need to prove the converse.

Let Π be any S-GKD protocol that isnot strongly collusion-resistant, that is,

one that fails to meet Definition 3.2.4. Then, there must exist some sequence
−→
S (t) =

(S(1), · · · ,S(t)) and some instant̃t ≤ t for which:

K (t̃) ∈ Rec({Ki}
i∈S(t̃) ∪MΠ−→

S (t)
)

29

Using Lemma 4.2.1 we can express the above condition in terms of key graphs

as below:

K (t̃) ∈ ReachGΠ−→
S (t)

({Ki}
i∈S(t̃) ∪ KΠ−→

S (t)
) (4.2)

We claim that for any key graphG, any set of usersS ⊆ [n], and any set of

keysK in G,

ReachG({Ki}i∈S ∪ K) =
⋃
i∈S

ReachG({Ki} ∪ K) (4.3)

Note that given this claim, condition (4.2) on protocolΠ can be written equiv-

alently as:

K (t̃) ∈
⋃
i∈S(t̃)

ReachGΠ−→
S (t)

({Ki} ∪ KΠ−→
S (t)

)

=⇒ ∃i ∈ S(t̃)
: K (t̃) ∈ ReachGΠ−→

S (t)
({Ki} ∪ KΠ−→

S (t)
)

=⇒ ∃i ∈ S(t̃)
: K (t̃) ∈ Rec({Ki} ∪MΠ−→

S (t)
) ∩Keys

which implies thatΠ fails to meet Definition 3.2.3, and the theorem follows from this.

(For the proof of equivalence between Definition 3.2.1 and Definition 3.2.2, the argu-

ment would be the same except thatt̃ ≤ t would get replaced bỹt = t.)

What we have claimed above—equation (4.3)—is actually a simple conse-

quence of the definition of reachability in graphs, formalized in the succeeding lemma.

(Below, we use the notationReachG(K) for an arbitrary graphG just as we did for key

graphs, that is, to denote the set of nodes reachable from a node-setK in G.)

Lemma 4.3.1 Let G be any directed graph and for any positive integers, let

K1,K2, · · · ,Ks be arbitrary sets of nodes in it. Then,

ReachG(∪si=1Ki) =
s⋃
i=1

ReachG(Ki)

Note that by selectings = |S| andKi = K ∪ {Ki} for eachi ∈ {1, · · · , s} in

the above lemma, we obtain equation (4.3).

Proof: The proof uses an inductive argument. Let us first enhance the definition of

reachability to incorporate the number of “hops” required to reach a node from a given

30

set of nodes. For any set of nodesV in G, the set of nodes that are reachable fromV in

h hops, denotedReachhG(V), is defined recursively as follows:

(a) Reach0
G(V) = V; and

(b) For anyh ≥ 0, a nodev′ is contained inReachh+1
G (V) if and only if v′ ∈

ReachhG(V) or there exists a nodev ∈ ReachhG(V) for which v → v′ is an

edge inG.

Clearly, for anyV, ReachG(V) =
⋃∞
h=0 ReachhG(V). Thus, to prove the lemma, it

suffices to show that for any sequence of node-setsK1,K2, · · · ,Ks and anyh ≥ 0,

ReachhG(∪si=1Ki) =
⋃s
i=1 ReachhG(Ki). From the monotonicity of the function, we

know thatReachhG(∪si=1Ki) ⊇
⋃s
i=1 ReachhG(Ki), so we only need to prove contain-

ment in the other direction.

The statement is trivially true forh = 0: by definition,Reach0
G(∪si=1Ki) = ∪si=1Ki =⋃s

i=1 Reach0
G(Ki). Suppose that the statement is true for any arbitraryh ≥ 0; that is,

for anyK1, · · · ,Ks, ReachhG(∪si=1Ki) ⊆
⋃s
i=1 ReachhG(Ki). Consider any nodev′ in

Reachh+1
G (∪si=1Ki). For any such node, there exists a nodev ∈ ReachhG(∪si=1Ki) such

that eitherv = v′ or else there exists an edge fromv to v′ in G. From the inductive

hypothesis,v ∈
⋃s
i=1 ReachhG(Ki); that is,v belongs toReachhG(Ki) for somei ∈

{1, · · · , s}. For such ani, v′ must be inReachh+1
G (Ki). (This is true whetherv = v′

or there exists an edgev → v′ in G.) Thus,v′ ∈
⋃s
i=1 Reachh+1

G (Ki), which means

Reachh+1
G (∪si=1Ki) ⊆

⋃s
i=1 Reachh+1

G (Ki).

4.4 A Cautionary Note

A natural question to ask is whether our equivalence theorem can be proven for

GKD protocols that exploit the possibility of nesting the encryption operation. It turns

out that this is impossible—even for protocols that make use of double encryption (one

level of nesting) only, we can establish a separation between the notion of collusion-

resistance and that of security against single-user attacks.

31

Theorem 4.4.1 There exists a GKD protocol that uses double encryption, is strongly

secure against single-user attacks (that is, satisfies Definition 3.2.3) but is not collusion-

resistant (that is, does not satisfy Definition 3.2.2).

Since collusion-resistance (Definition 3.2.2) is weaker than strong collusion-

resistance (Definition 3.2.4), the above theorem also implies a separation between strong

collusion-resistance and strong security against single-user attacks. Similarly, the no-

tions of plain collusion-resistance and plain security against single-user attacks (defini-

tions 3.2.2 and 3.2.1 respectively) are also separated by the theorem.

The intuition behind the separation is quite simple: a keyK that is doubly

encrypted requires the knowledge oftwo decryption keys to be recovered (as opposed

to onesuch key in the case of single encryption). Now, if a protocol distributes this

doubly encrypted key and assigns the other keys in a manner such that the decryption

keys required to recoverK are known to two different users, collusion can be a boon:

the users cannot recoverK by themselves but, by cooperating and putting their keys

together, they can! IfK is the group key and the two users are malicious non-members,

this would mean that the protocol is ruined against collusions.

We now present a concrete protocol that formalizes this intuition. Our pro-

tocol is very similar to one due to Pinkas [39], which was designed for the purpose

of performing state updates in GKD protocols. (In [39], an improvement of the same

protocol that provides collusion-resistance is also given.)

Proof: The separation protocol involves the use of, what we refer to in this thesis,fully-

pseudo-random chains (FPCs)of keys, a notion similar to that of forward-secure PRGs

already studied in the literature [6]. An FPC of lengthn, built from a purely random

key K0 ∈ R is a sequence ofn key pairs((Ki,K
′
i))i∈[n] such that for everyi ∈ [n],

Ki = Gb(Ki−1) andK ′
i = G1−b(Ki) (whereb ∈ {0, 1} is fixed for all i). TheK ′

i ’s in

this chain are “fully” pseudo-random in the sense that it is (computationally) infeasible

to distinguish between them and a sequence ofn independently random keys.

32

K'1 K'2 K'3 K'4 K'5 K'6

K'6 K'5 K'4 K'3 K'2 K'1

K1 K2 K3 K4 K5 K6

X X1 3 4 6
K6 K5 K4 K3 K2 K1

K0

K0

G1-b

Gb

Gb

G1-b

Figure 4.1: An illustration for the proof of Theorem 4.4.1.

In our protocol, the setup programS creates two FPCs of lengthn (the total number

of users) using two different purely random keysK0 andK0, one called theforward

chain and the other called thebackward chain(See the figure for an example with

n = 6), and gives the keys(Ki, Kn−i+1) to useri1. Note that given this, useri can

recover the key pairs(Ki, K
′
i), · · · , (Kn, K

′
n) in the forward chain and the key pairs

(Kn−i+1, K
′
n−i+1), · · · , (Kn, K

′
n) in the backward chain.

The key distribution programC works as follows: given a setS(t) as input, it first di-

vides the sequence(1, · · · ,n) into the smallest possible set of intervals such that every

i ∈ S(t) belongs to exactly one interval and noi ∈ S(t)
belongs to any of the inter-

vals. For example, ifn = 6 and the target set is{1, 3, 4, 6}, these intervals would be

(1), (3, 4), (6), as shown in the figure. The number of such intervals is at most the size

of S(t)
, plus1.

Let I1, · · · , Ir+1 denote these intervals.C generates a fresh (purely random) keyK (t)

and for each intervalIj = (j1, · · · , jm), it creates a ciphertextEK
′
n−j1+1

(EK′
jm

(K (t))).

Note that this ciphertext can be decrypted by the users who know bothK ′
jm andK

′
n−j1+1,

which is exactly the users inIj. (In the figure, the darkened keys denote the keys used

to encryptK (t) so as to transmit it to users in the interval(3, 4).) The setMΠ
S(t) includes

all ciphertexts created in this manner.
1Such a setup procedure does not directly fit our model for group key distribution but can easily be made to do so

by having the center transmit, at timet = 1, the keys in the two FPCs suitably encrypted under the unique long-lived
keys of the users.

33

It is easy to verify that this protocol is strongly secure against single-user attacks (sat-

isfies Definition 3.2.3) but is not collusion-resistant (fails Definition 3.2.2). In fact, a

malicious coalition of size two is enough to break the protocol. For example, in the fig-

ure, users2 and5 can collude and recoverK (t): user2 knowsK ′
4 (but notK

′
4) and user

5 knowsK
′
4 (but notK ′

4); so, even though neither of them can recoverK (t) by himself,

they can do so easily by colluding.

4.5 Acknowledgement

Chapter 4, in part, is a reprint of the material as it appears in 33rd International

Colloquium on Automata, Languages and Programming (ICALP), July 2006, Miccian-

cio, Daniele; Panjwani, Saurabh. The dissertation author was the primary investigator

and author of this paper. The presentation of the proof of Theorem 4.1.1 is different and

more modular in the current work.

Chapter 5

Upper Bounds

In this chapter, we present several group key distribution protocols and analyze

them with respect to the symbolic notions of security defined in Chapter 3. The protocols

we present fall into two categories:logical key hierarchy protocolsandsubset cover

protocols.

5.1 Logical Key Hierarchy Protocols

The Logical Key Hierarchy (LKH) protocols are a class of GKD protocols

devised by Wonget al. [46] and independently by Wallneret al. [45], in the context

of implementing secure multicast over the Internet.LKH protocols are highly efficient,

both in terms of the amount of computation performed by protocol users and the commu-

nication costs incurred by rekey operations, and require very little state to be maintained

by users. In this thesis, we consider two protocols from theLKH class: the first protocol,

which we refer to asplain-LKH, is the original protocol due to [46, 45] and uses encryp-

tion as the only cryptographic building-block. The second protocol, calledimproved-

LKH here, is a protocol due to Canetti, Garay, Itkis, Micciancio, Naor and Pinkas [10];

it uses both encryption and pseudo-random generators and bettersplain-LKH in terms

of communication efficiency. Both protocols are single encryption protocols, that is,

neither of them uses nested encryption in the process of generating rekey messages. In

this section, we presentplain-LKH and improved-LKH (rather, a more secure variant

34

35

of each of the protocols), and analyze security of both these protocols in the symbolic

model.

5.1.1 Protocol state

In anyLKH protocol (and inplain-LKH andimproved-LKH in particular), the

center’s state at timet consists of a set of keys that are organized in the form of a tree,

denotedTr(t). This tree represents a hierarchy of keys, with the group keyK (t) being

at the top of the hierarchy (as the root), and the long-lived keys of users inS(t) being at

the bottom (as leaves of the tree). The goal of the protocol, roughly, is to ensure that at

every instantt, each useri ∈ S(t) can recover all and only the keys lyingon the path

from Ki to K (t) in Tr(t), and that non-members cannot recover any key in it. This, in

turn, guarantees that the group key is recoverable by all and only the members at every

instant.

For simplicity, we present the protocols assuming that the treeTr(t) is always

binary and its height is fixed atdlog2(n)e; generalizing to trees with arbitrary structure

(in particular, trees that have variable depth and width) is easy, and we omit the details of

how this is done. LetL denote the set of all binary strings of length at mostdlog2(n)e.

For any strings ∈ L and any valueb ∈ {0, 1}, let s · b denote the string formed by

appendingb to s. For anys ∈ L, let |s| denotes the length ofs.

For any instantt during the execution of anLKH protocol, we denote the keys

in Tr(t) using symbols of the formK(t)
s , with s being a string inL. The root ofTr(t)

(the group key) is denotedK(t)
ε and for any key denotedK(t)

s , its left (resp. right) child

is denotedK(t)
s·0 (resp.K(t)

s·1). For any setS ⊆ L, letK(t)
S = {K(t)

s | s ∈ S}. LetK(t)

denote the set of all keys inTr(t). Initially (at t = 0), K(t) = ∅ and for alls ∈ L, the

keyK(0)
s = ⊥ (which stands for “undefined”). For anyt > 0, K(t)

ε is the group key at

time t and for everyi ∈ S(t), there exists a unique stringst(i) ∈ {0, 1}dlog2(n)e such that

K
(t)
st(i)

= Ki. We denote the set of all prefixes ofst(i) by pret(i). So,K(t)
pret(i)

is the set

of keys inTr(t) that lie on the path fromKi toK(t)
ε .

Besides the set of keys inTr(t), the center also stores the long-lived keys of all

36

K10K01
(t-1) (t-1)

K6 K7

K11K00

Ke

K1K0

K1 K2 K3
S = {1, 2, 3, 6, 7}

(t-1)

(t-1)

(t-1)

(t-1)

(t-1)

(t-1)

(a)

K11

(t)

(t)S = {1, 2, 3, 6, 7,8}

(t)

K01

K1
(t)

Ke

K6 K7 K8K1 K2 K3

K10K00

K0
(t)

(t) (t) (t)

Ke
(t-1)

(b)

S = {1, 2, 3, 6, 7, 8}(t)

Ke
(t)

K11
(t)

Ke
(t-1)

K0
(t)

K7

K00

(t) 1

K1
(t)

K6K1 K2 K3

K10K01
(t) (t)

1

0

0

1

K8

(c)

(t)S = {2, 3, 6, 7}

K00
(t)

K0
(t)

Ke
(t-1)

K1

K01

K6 K7K2 K3

K10
(t) (t)

Ke
(t)

K1
(t)

K11
(t)

(d)

K00

(t)

K0
(t)

Ke
(t)

1

1

S = {2, 3, 6, 7}(t)

K6 K7K1 K2 K3

K11K10K01

Ke

K1

(t-1)

(t) (t)

(t)

(t)

1

0

0

(e)

Figure 5.1: Theplain-LKH+ andimproved-LKH+ protocols.

37

usersK1, . . . ,Kn as part of its internal state. In particular, its state at timet = 0 contains

only these keys (or a succinct representation of the same).

5.1.2 Rekey Messages

As in [46, 45, 10], we assume that at each instantt, the size of the groupS(t)

changes by at most one and that either a single member leaves the group or else a single

non-member joins it. A sequence of sets
−→
S (t) = (S(1), · · · ,S(t)) created in this manner

is referred to as asimplesequence; formally,
−→
S (t) is simple ifS(1) has exactly one user

and for all1 ≤ t̃ < t, S(t̃+1) = S(t̃) ∪ {i} for somei ∈ S(t̃)
or S(t̃+1) = S(t̃) \ {i}

for somei ∈ S(t̃). It is clear that arbitrary group membership updates can be simulated

using simple sequences only.

Suppose that at some instantt > 0, a useri ∈ S(t−1)
is added to the group;

that is,S(t) = S(t−1) ∪ {i}. (We think ofS(0) as being empty, soS(0)
= [n].) In

response, the center first assigns a value tost(i) from {0, 1}dlog2(n)e such that there is

no j ∈ S(t−1) for which st(i) = st−1(j). For eachj ∈ S(t−1), the center setsst(j) to

be equal tost−1(j). Subsequently, the key hierarchy is updated fromTr(t−1) to Tr(t) as

follows: K(t)
st(i)

is set to be equal toKi and for alls /∈ pret(i),K
(t)
s is set toK(t−1)

s . Keys

in the setK(t)
pret(i)\{st(i)} are assigned new values, as described below.

Letpre′t(i) denote the setpret(i)\{st(i)}. In bothplain-LKH andimproved-

LKH, every key inK(t)

pre′t(i)
is set to be a fresh symbol fromR—a symbol that has not

been used in the protocol before timet. The center then distributes each newly generated

keyK(t)
s (for s ∈ pre′t(i)) by outputting two ciphertexts for each such key:

(a) the encryption ofK(t)
s underK(t−1)

s , that is,E
K

(t−1)
s

(K
(t)
s).

(b) the encryption ofK(t)
s underKi, that is,EKi

(K
(t)
s).

Intuitively, the first set of ciphertexts allows all members in the setS(t−1) who

are authorized to recoverK(t)
s (that is, for whomK(t)

s lies on the path from their long-

lived key to the root ofTr(t)) to be able to do so, and the second set of ciphertexts allows

useri to be able to recover it. We argue (in Chapter 8) that this procedure for rekeying

38

is insecure when considering security against computational attackers since it requires

the group key at timet − 1 to be used for key distribution; in particular, it is used for

encrypting the new group keyK(t)
ε and distributing it. As such, we modify the procedure

and define two new protocolsplain-LKH+ andimproved-LKH+Ṫhe rekeying procedure

for both these protocols is illustrated in the figure.

Suppose again that useri is added to the group at timet. In plain-LKH+,

the center generates values for keys inK(t)

pre′t(i)
just like in plain-LKH but distributes

each freshly generated key by encrypting it under its two “children” in the updated key

hierarchy. Specifically, for eachs ∈ pre′t(i), and for eachb ∈ {0, 1}, if K(t)
s·b 6= ⊥,

then the center outputs the rekey messageE
K

(t)
s·b

(K
(t)
s). In terms of key graphs, this

corresponds to creating ac-edge from K
(t)
s·b to its parentK(t)

s in the hierarchy. For

example, consider the situation shown in Figure Figure 5.1(a) wheren = 8 andS(t−1) =

{1, 2, 3, 6, 7}. Suppose that user8 joins the group at timet (S(t) = {1, 2, 3, 6, 7, 8})

and is assigned the labelst(8) = 111. New values for keys with labels inpre′t(8) =

{11, 1, ε} are generated, and distributed using thec-edges shown (as solid arrows) in

Figure Figure 5.1(b). (Keys that are inK(t) are shown in black while those that are in

K(t−1) \ K(t) are shown in white.)

In improved-LKH+, keys inK(t)

pre′t(i)
are assigned pseudo-random values. For

any integerl and anyRj ∈ R, let Gl
0(Rj) denote the pseudo-random key formed by

applying the functionG0 on Rj l times, iteratively. When useri is added to the group

in the protocolimproved-LKH+, the center first picks a fresh (unused) symbolRj from

R and for everys ∈ pre′t(i), defines a valuẽK(t)
s = G

(dlog2(n)e−1)−|s|
0 (Rj). Then, it

setsK(t)
s to be equal toG1(K̃

(t)
s). Note that such a key assignment ensures that for

anys, s′ ∈ pre′t(i) for which s′ is a prefix ofs, K(t)
s′ is recoverable fromK̃(t)

s (that is,

K
(t)
s′ ∈ Rec(K̃

(t)
s)). In particular, the group keyK(t)

ε is recoverable from̃K(t)
s for every

s ∈ pre′t(i).

Finally, for eachs ∈ pre′t(i), and for eachb ∈ {0, 1}, if K(t)
s·b /∈ K(t)

pre′t(i)
∪

{⊥}, the center outputs the rekey messageE
K

(t)
s·b

(K̃
(t)
s). Figure Figure 5.1(c) shows an

example for the case when user8 is added to the groupS(t−1) = {1, 2, 3, 6, 7} of Figure

39

Figure 5.1(a); here, the newly createdg-edges are shown using dashed arrows (g-edges

corresponding toG0 are labeled with0 and the others with1), while c-edges are shown

using solid arrows as before.

We remark that the procedure for rekeying in response to user addition in

improved-LKH+ is very similar to that for user deletion inimproved-LKH, described

below. We also remark that a simpler procedure in which the stepK
(t)
s ← G1(K̃

(t)
s)

(assignment ofG1(K̃
(t)
s) to K(t)

s) is replaced withK(t)
s ← K̃

(t)
s could also be consid-

ered. However, the resulting protocol would not be secure in the computational model,

which is why we prefer the above presentation.

USER DELETION. The rekeying procedure for user deletion in bothplain-

LKH+ and improved-LKH+ is the same as inplain-LKH and improved-LKH respec-

tively, and is, in fact, quite similar to the process of rekeying for user addition. When

a useri ∈ S(t−1) leaves the group at timet (or is deleted from it on purpose), that is,

S(t) = S(t−1) \ {i}, the center generates new keys corresponding to strings inpret−1(i)

and distributes them securely to the legitimate members. First, for eachj ∈ S(t), it sets

st(j) to be equal tost−1(j), and for eachs /∈ pret−1(i), it setsK(t)
s toK(t−1)

s . Then, it

computes the longest stringsi ∈ pret−1(i) such that there existsb ∈ {0, 1} for which

(a) si · b /∈ pret−1(i); and

(b) K(t)
si·b 6= ⊥.

Let pre′t(i) be the set of all prefixes ofsi.

New values are generated only for the keys labeled by strings inpre′t(i). (So,

for all s ∈ pret−1(i) \ pre′t(i), K
(t)
s equals⊥.) The new values are generated and

distributed differently inplain-LKH and inimproved-LKH. In plain-LKH, a fresh (un-

used) symbol fromR is assigned toK(t)
s for eachs ∈ pre′t(i), and for eachb ∈ {0, 1},

if K(t)
s·b 6= ⊥, the rekey messageE

K
(t)
s·b

(K
(t)
s) is output. In improved-LKH, a fresh

symbolRj from R is picked and for eachs ∈ pre′(i), the center defines the value

K̃
(t)
s = G

|si|−|s|
0 (Rj) and setsK(t)

s to be equal toG1(K̃
(t)
s). For eachs ∈ pre′t(i), if

40

there existsb ∈ {0, 1} such thatK(t)
s·b /∈ K(t)

pre′t(i)
∪ {⊥}, the center outputs the rekey

messageE
K

(t)
s·b

(K̃
(t)
s). Figure Figure 5.1(d) shows how rekeying is done inplain-LKH

when user1 is deleted from the group{1, 2, 3, 6, 7} of Figure Figure 5.1(a), and Figure

Figure 5.1(e) shows the same forimproved-LKH.

It is easy to show that both the protocols satisfy the correctness definition for

GKD protocols (Definition 3.1.1): at every instantt, every memberi ∈ S(t) knows all

the keys inK(t)
pret(i)

and this set includes the group keyK(t)
ε . A more formal argument

appears as part of the proof of Theorem 5.1.1 below.

5.1.3 Efficiency

The LKH protocols are much more communication-efficient than the trivial

protocol discussed in the introduction. For each addition or deletion of a member from

the group, the number of ciphertexts output as rekey messages by the center is at most

2dlog2(n)e in the case ofplain-LKH+ and at mostdlog2(n)e in the case ofimproved-

LKH+. (Contrast this withO(n) ciphertexts in the case of the trivial protocol.) This de-

crease in communication overhead comes at the cost of slightly increased computation

cost (O(dlog2(n)e) decryptions and/or PRG computations per member) and increased

storage requirements (O(dlog2(n)e) keys per member besides the long-lived key). We

remark that it is easy to modify both the protocols such that the key hierarchy is main-

tained as acompletebinary tree at every instant and its depth varied based on the num-

ber of members in the group. The communication complexity of the resulting protocols

would be2dlog2(n)e in the case ofplain-LKH+ anddlog2(n)e in improved-LKH+, for

n being the size of the group (rather than the total number of users in the protocol).

Bothplain-LKH+ andimproved-LKH+ can also be modified to used-ary trees

(for arbitraryd ∈ {2, 3, . . . ,n}) instead of a binary one. In the modified protocols, the

key hierarchy would be labeled using strings from the alphabet{0, 1, . . . , d − 1}∗ and

every newly generated key would be transmitted by encrypting it under all its children

in the hierarchy (in the case ofplain-LKH+) or under all but one of its children (in the

case ofimproved-LKH+). We refer to the modified protocols as thed-ary instances

41

of plain-LKH+ and improved-LKH+ respectively. The communication complexity of

the d-ary instance ofplain-LKH+ is d · dlogd(n)e while that of improved-LKH+ is

(d − 1) · dlogd(n)e. Thus, an increase in the value ofd affects the communication

efficiency of the protocols negatively but, as we show later (in Chapter 9), it also leads

to stronger computational security guarantees.

5.1.4 Security Analysis

Although bothplain-LKH and improved-LKH have existed in the literature

for a long time, a formal security analysis of either of these protocols has not been

conducted prior to the current work. Indeed, as we discuss in Chapter 8, neither of

these protocols are provably secure in the computational model,even against passive

eavesdropping attacks; as such, their security analysis in the symbolic model alone is of

little value. In the following theorems, we establish security of the modified protocols,

plain-LKH+ andimproved-LKH+, against collusion attacks in the symbolic model. In

Chapter 8, we use these results to prove security of the same protocols in the computa-

tional model as well.

Theorem 5.1.1 Bothplain-LKH+ andimproved-LKH+ are strongly secure against col-

lusion attacks in the symbolic model.

Proof: We analyze security ofplain-LKH+ andimproved-LKH+ with respect to simple

sequences only, since the protocol accepts only such sequences as input. (As already

mentioned, execution with non-simple sequences is easily simulatable using executions

with simple ones.)

We usep-LKH+ and i-LKH+ as shorthand forplain-LKH+ and improved-LKH+. For

any Π ∈ {p-LKH+, i-LKH+}, any i ∈ [n], and any simple sequence
−→
S (t), let

ReachGΠ−→
S (t)

(i) denote the set of keys reachable fromKi in the key graph created when

Π is executed on input
−→
S (t). Given Lemma 4.2.1, and the fact that no rekey message

ever output by eitherp-LKH+ or i-LKH+ is an unencrypted key, this set is the same as

Rec({Ki} ∪MΠ−→
S (t)

) ∩Keys.

42

Claim 5.1.2 Let Π ∈ {p-LKH+, i-LKH+}. For all t ≥ 0, and for all simple sequences
−→
S (t) ∈ (2[n])t, the following is true:

(a) ∀i ∈ S(t) : ReachGΠ−→
S (t)

(i) ∩ K(t) = K(t)
pret(i)

;

(b) ∀i ∈ S(t)
: ReachGΠ−→

S (t)
(i) ∩ K(t) = ∅

Note that this claim implies two important facts aboutp-LKH+ and i-LKH+. First,

that both are correct (in the sense of Definition 3.1.1) and second, that both are secure

against single-user attacks (in the sense of Definition 3.2.1).

NOTATIONS. Before we prove the claim, we develop some notation. LetΠ ∈ {p-LKH+,

i-LKH+}. For any set of keysK and anyS(t) ⊆ [n], let reachΠ
S(t)(K) denote the set of

keys reachable fromK via thec-edges andg-edges created in the protocol key graph

for Π at time t, given that the input at that time isS(t). For anyS(t) ⊆ [n] and any

i ∈ S(t), let K̃(t)
pret(i)

be a set defined as follows: ifΠ is p-LKH+, this set is empty, and if

it is i-LKH+, it contains all keys of the form̃K(t)
s for which s ∈ pret(i). (Note that this

definition is valid even ifi is not the user added to the group at timet.)

For each instantt > 0 during the execution of eitherp-LKH+ or i-LKH+, the following

is true:

• For eachi ∈ S(t) ∩S(t−1), reachΠ
S(t)(K(t−1)

pret−1(i)) = K(t−1)
pret−1(i) ∪K

(t)
pret(i)

∪ K̃(t)
pret(i)

• For eachi ∈ S(t−1) \ S(t), reachΠ
S(t)(K(t−1)

pret−1(i)) = K(t−1)
pret−1(i)

• For eachi ∈ S(t) \ S(t−1), reachΠ
S(t)({Ki}) = K(t)

pret(i)
∪ K̃(t)

pret(i)

• For eachi /∈ S(t) ∪ S(t−1), reachΠ
S(t)({Ki}) = {Ki}.

The proof of the above four assertions follows simply from inspection ofp-LKH+ and

i-LKH+.

43

Proof of Claim 5.1.2. Clearly, the claim is true fort = 0: S(0) = ∅ andK(0) = ∅ for

both protocols and so,ReachGΠ−→
S (0)

(i) ∩ K(0) = ∅ for all i. We argue that if the claim is

true for somet − 1 ≥ 0, then it is true fort as well; this suffices to prove the claim in

general.

Consider any simple sequence
−→
S (t) = (S(1), · · · ,S(t−1),S(t)) and anyi ∈ [n]. Let

Reach1 := ReachGΠ−→
S (t)

(i). This set can alternatively be expressed as follows:

Reach1 = reachΠ
S(t)(ReachGΠ−→

S (t−1)
(i))

= reachΠ
S(t)((ReachGΠ−→

S (t−1)
(i) ∩ K(t−1)) ∪ {Ki})

Both these equalities follow from the fact that inp-LKH+ and i-LKH+, everyc-edge

created in the protocol key graph at timet issues from a key inK(t−1) ∪ K(t) or else

a long-lived keyKi, and is always incident upon a key inK(t) (or else, upon a key of

the formK̃
(t)
s in the case ofi-LKH+). LetReach2 denote the set(ReachGΠ−→

S (t−1)
(i) ∩

K(t−1)) ∪ {Ki}; soReach1 = reachΠ
S(t)(Reach2).

• Case 1 (i ∈ S(t−1), i ∈ S(t)): From the inductive hypothesis, we know that, in

this case,Reach2 = K(t−1)
pret−1(i); so,Reach1 = reachΠ

S(t)(Reach2) = K(t−1)
pret−1(i) ∪

K(t)
pret(i)

∪ K̃(t)
pret(i)

, and so,Reach1 ∩ K(t) = K(t)
pret(i)

.

• Case 2 (i ∈ S(t−1), i /∈ S(t)): In this case,Reach2 = K(t−1)
pret−1(i) again, but this

timeReach1 = reachΠ
S(t)(Reach2) = K(t−1)

pret−1(i) (since useri gets deleted from

S(t−1) at timet); thus,Reach1 ∩ K(t) = K(t−1)
pret−1(i) ∩ K(t) = ∅.

• Case 3 (i /∈ S(t−1), i ∈ S(t)): From the inductive hypothesis, we know that

Reach2 = {Ki}, which meansReach1 = reachΠ
S(t)(Reach2) = K(t)

pret(i)
∪K̃(t)

pret(i)

(since useri gets added toS(t−1) at timet), and so,Reach1 ∩ K(t) = K(t)
pret(i)

.

• Case 4 (i /∈ S(t−1), i /∈ S(t)): In this case,Reach2 = {Ki} as in Case 3, but

reachΠ
S(t)(Reach2) = {Ki} this time, and so,Reach1 ∩ K(t) = {Ki} ∩ K(t) = ∅.

The claim, thus, follows from the induction principle.

Next, we use Claim 5.1.2 to prove the following.

44

Claim 5.1.3 Let Π ∈ {p-LKH+, i-LKH+}. For all t ≥ 0, for all t′ ≥ t, for every simple

sequences
−→
S (t′), and for everyi ∈ S(t)

, ReachGΠ
−→
S (t′)

(i) ∩ K(t) = ∅

Proof of Claim 5.1.3.We prove the claim using induction overt′. The claim is trivially

true fort′ = t since we know from Claim 5.1.2 thatReach−→
S (t)(i) ∩ K(t) = ∅ for every

i ∈ S(t)
. Suppose that the claim is true for some arbitraryt′ ≥ t. We prove that it is also

true fort′ + 1 as well.

Let
−→
S (t′+1) be any simple sequence and consider anyi /∈ S(t)

. Let Reach3 =

ReachGΠ

S(t′+1)
(i) \ ReachGΠ

S(t′)
(i). Our goal is to show thatReach3 ∩ K(t) = ∅; this,

combined with the inductive hypothesis, would immediately imply Claim 5.1.3.Reach3

can be expressed as follows:

Reach3 = reachΠ
S(t′+1)(ReachGΠ

−→
S (t′)

(i)) \ ReachGΠ
−→
S (t′)

(i)

= reachΠ
S(t′+1)(ReachGΠ

−→
S (t′)

(i) ∩ K(t′)) ∪ {Ki}) \ K(t′)

These equalities follow from the fact that inp-LKH+ andi-LKH+, everyc-edge created

in the protocol key graph at timet′ + 1 issues from a key inK(t′) ∪ K(t′+1) or else a

long-lived keyKi and is always incident upon a key inK(t′+1) (or else, upon a key of

the formK̃(t′+1)
s in the case ofi-LKH+). LetReach4 = (ReachGΠ

−→
S (t′)

(i)∩K(t′))∪{Ki}.

As before, four possibilities arise.

• Case 1 (i ∈ S(t′), i ∈ S(t′+1)): From Claim 5.1.2, we know that, in this case,

Reach4 = K(t′)
pret′ (i)

, which meansreachΠ
S(t′+1)(Reach4) = K(t′)

pret′ (i)
∪K(t′+1)

pret′+1(i)∪

K̃(t′+1)
pret′+1(i), and soReach3 = K(t′+1)

pret′+1(i) ∪ K̃
(t′+1)
pret′+1(i). We know thati /∈ S(t) and

so,K(t′+1)
pre(i) must contain keys that are generatedafter time t (possibly wheni was

first added to the group after timet or possibly even later on). As such,K(t′+1)
pret′+1(i)

can have no overlap withK(t). Further, all keys iñK(t′+1)
pret′+1(i) are generated at time

t′ + 1 and are trivially not contained inK(t). Therefore,Reach3 ∩ K(t) must be

empty.

• Case 2 (i ∈ S(t′), i /∈ S(t′+1)): Again, Reach4 = K(t′)
pret′ (i)

and so,

reachΠ
S(t′+1)(Reach4) = K(t′)

pret′ (i)
, implying thatReach3 = ∅, which, in turn,

45

impliesReach3 ∩ K(t) = ∅.

• Case 3 (i /∈ S(t′), i ∈ S(t′+1)): From Claim 5.1.2, we know that, in this case,

Reach4 = {Ki}, which meansreachΠ
S(t′+1)(Reach4) = K(t′+1)

pret′+1(i) ∪ K̃
(t′+1)
pret′+1(i),

and soReach3 equalsK(t′+1)
pre(i) ∪ K̃

(t′+1)
pret′+1(i) as well. As in case 1, bothK(t′+1)

pre(i) and

K̃(t′+1)
pret′+1(i) share no element withK(t), thus implying thatReach3 ∩ K(t) = ∅.

• Case 4 (i /∈ S(t′), i /∈ S(t′+1)): As in case 3,Reach4 equals{Ki}, but this time,

reachΠ
S(t′+1)(Reach4) = {Ki}, so,Reach3 = ∅, thus implyingReach3∩K(t) = ∅.

This concludes the proof of Claim 5.1.3.

Note that Claim 5.1.3 implies thatp-LKH+ andi-LKH+ are both strongly secure against

single-user attacks (that is, they satisfy Definition 3.2.3). Using Theorem 4.1.1 and

the fact that both protocols are S-GKD protocols, we conclude directly that they are

strongly collusion-resistant in the symbolic model.

5.2 Subset Cover Protocols

The subset cover method is used for performing group key distribution in var-

ious broadcast encryptionschemes, which in turn, find application in several contexts

like secure pay-per-view and copyright protection for digital media. The method was

proposed by Naoret al. [34], and has, since then, been deployed in multiple broadcast

encryption schemes [25, 24, 15, 26]. Subset cover protocols, likeLKH protocols, are

based on symmetric-key techniques (in particular, they use symmetric-key encryption

and PRGs only), but unlike the latter, these schemes implement group key distribution

for statelessusers; that is, legitimate users in a subset cover protocol can recover group

keys using only theirinitial state and the instantaneous transmissions of the center. This

property makes the protocols applicable in a larger context thanLKH protocols (for ex-

ample, they are better suited for copyright protection mechanisms) but it also reduces

their efficiency: subset cover protocols have a greater communication complexity than

that ofLKH protocols.

46

At an abstract level, every subset cover protocol has the following structure:

Suppose that the number of users in the protocol isn. At the outset, the center forms

a collection of setsC = {S1,S2, . . . ,Sw} such that for eachj ∈ [w], Sj is a subset of

[n]. A long-lived keyK̂j is associated with each subsetSj. (These keys could be purely

random keys drawn fromR or else, related to each other via a pseudo-random generator

G.) Every useri is given a set of keysKi as initial state, such that for each subsetSj 3 i,

K̂j ∈ Rec(Ki).

To distribute a group key to a setS(t), the center first picks a purely random

key K (t) ∈ R (such thatK (t) has not been used in the protocol before timet) and then

computes a set of disjoint subsetsSj1 ,Sj2 , . . . ,Sjl such that

S(t) =
l⋃

i=1

Sji

This set of subsets constitutes a “subset cover” forS(t). (The collectionC is such that

every setS(t) ⊆ [n] can be covered using it.) The center then distributes the keyK (t) to

users inS(t) by outputting the ciphertexts

EK̂j1
(K (t)),EK̂j2

(K (t)), . . . ,EK̂jl
(K (t))

This gives us the set of rekey messagesMΠ
S(t) for time t. Each useri ∈ S(t) can

recoverK (t) by decrypting the ciphertextEK̂ji′
(K (t)) for which i ∈ Sji′ since for any

suchi′, K̂ji′
∈ Rec(Ki). (In a broadcast encryption protocol based on such a protocol,

some group data is also transmitted along with the above set of ciphertexts, by suitably

encrypting such data underK (t).)

Note that a subset cover protocol does not directly fit the model of group

key distribution defined in Chapter 3 since the initial state of every user is not a sin-

gle (unique) long-lived key but aset of keys, and the elements of each set could be

shared across users. However, any such protocol can be easily transformed into one that

fits our model by including an initial key distribution step in which the center distributes

all the long-lived keys; that is, ifKi denotes the individual long-lived key of useri (that

corresponding to the subset{i}), the center in the transformed protocol would transmit

47

the following ciphertexts at timet = 0:⋃
i∈[n]

{EKi
(K) | K ∈ Ki \ {Ki}}

To prove that a subset cover protocol is correct and secure in the symbolic

model, it suffices to check that it satisfies the following two properties:

1. For all i ∈ [n], {K̂j | i ∈ Sj} ⊆ Rec(Ki). This property guarantees correctness

of the protocol in the sense of Definition 3.1.1.

2. For all i ∈ [n], {K̂j | i /∈ Sj} ∩Rec(Ki) = ∅. This property guarantees security

of the protocol against single-user attacks, both in the sense of Definition 3.2.1

and of Definition 3.2.3. Furthermore, given Theorem 4.1.1 and the fact that subset

cover protocols don’t use nested encryption, this also implies their security against

collusion attacks, in the sense of definitions 3.2.2 and 3.2.4.

We now present two example subset cover protocols due to Naoret al.[34] and

verify the above two properties for both of them. Based on this analysis, in Chapter 8,

we prove security of the protocols in the computational model as well.

5.2.1 The Complete Subtree Protocol

In the complete subtree (CS) protocol [34], every user is associated with a

leaf in a complete binary treeTr of heightdlog2(n)e. We label nodes in this tree using

the letteru and denote the leaf corresponding to any useri ∈ [n] by u(i). The subset

collectionC corresponds one-to-one with the set of all nodes inTr: there exists a subset

Su ∈ C for every nodeu ∈ Tr and for anyi ∈ [n], i ∈ Su if and only if i is a leaf in

thesubtreeof Tr rooted atu. The extreme subsets are the set[n] (corresponding to the

root of Tr) and the singleton sets{1}, {2}, . . . , {n} (corresponding to its leaves). The

subsetSu corresponding to an internal nodeu contains exactly2h(u) elements where

h(u) denotes the height ofu in the tree.

The key distribution mechanism works as follows:(i) with each subsetSu ∈ C

a long-lived keyK̂u ∈ R is associated in a manner such that for anyu1 6= u2, K̂u1 6=

48

K̂u2; and (ii) for any i ∈ [n], Ki containsK̂u if and only if the subtree rooted atu

containsu(i). In other words, for eachi ∈ [n],Ki = {K̂u | i ∈ Su}. (In a sense, theCS

protocol is a stateless analogue of theplain-LKH protocol: the keys in the key hierarchy

of plain-LKH correspond to the subset keys inCS, but with the difference that these

subset keys do not change with time.)

The correctness of theCS protocol (property 1) is obvious. Furthermore, since

the long-lived keys are all distinct, there exists no subsetSu 63 i for which K̂u ∈ Ki.

This implies property 2 above. We conclude that:

Theorem 5.2.1 TheCS protocol is strongly secure against collusion attacks in the sym-

bolic model.

In terms of efficiency, theCS protocol incurs a communication cost of at most

q · dlog2(n/q)e to transmit a group key to any set of sizen − q. This is because the

smallest sub-collection ofC required to cover any setS of sizen − q has size at least

q · dlog2(n/q)e. (The optimal subset cover is formed as follows: consider the spanning

treeTr′ of the nodes in{u(i) | i /∈ S} and the root ofTr. Consider the set of nodes

u ∈ Tr \ Tr′ that “hang off” from this tree (that is, nodes for whichu is not in Tr′

but u’s parent node is). IncludeSu in the desired sub-collection. It can be shown,

using induction, that the sub-collection thus obtained has sizeq · dlog2(n/q)e.) The

protocol requires every user to store at mostdlog2(n)e keys, which is reasonable for

most applications.

5.2.2 The Subset Difference Protocol

The subset difference (SD) protocol [34] uses a more involved procedure to

form the subset collectionC. As in theCS protocol, it first associates every useri with

a leafu(i) in a binary treeTr of heightdlog2(n)e. For any nodeu in Tr, let Su denote

the set of all indicesi such thatu(i) is a leaf in the subtree ofTr rooted atu. For any

pair of nodes(u, v) in Tr let Su,v = Su \ Sv.

In the SD protocol, the setC contains all setsSu,v for which u is a strict

49

ancestor ofv in Tr, that is, for whichu lies on the path fromv to the root ofTr and is

distinct fromv. By definition, for any pair of such nodes(u, v), Su is a strict superset of

Sv, soSu,v is always non-empty. Besides sets of this form, the set[n] is also included

in C. It can be shown [34] that to cover any setS ⊆ [n] of sizen− q, one needs to pick

at most2q − 1 subsets fromC; this feature makes the communication complexity of the

SD protocol better than that of theCS protocol.

KEY GENERATION. Long-lived keys in theSD protocol are generated using

a pseudo-random generatorG. We describe here a slight variant of the process of key

generation given in [34]: in [34], a PRG with expansion factor3 is used, while we

simulate the same using a PRG with expansion factor2.

For anyb1, b2 ∈ {0, 1}, let Gb1b2(·) denote the functionGb1(Gb2(·)). First,

the center generates a purely random keyRu for every nodeu in the treeTr. Just like in

theCS protocol, these keys are all distinct. For any nodev and any distinct ancestoru

of v in Tr, the long-lived keyK̂u,v corresponding to the subsetSu,v is derived fromRu.

Towards this, every nodev in Tru (includingu itself) is labeled with an “intermediate”

key Lu,v as follows: letLu,u = Ru, and for any nodev in Tru, label its left child

G00(Lu,v) and its right childG01(Lu,v). For any nodev in Tru such thatv 6= u, K̂u,v is

set to be equal toG10(Lu,v).

Note that every keŷKu,v can be derived fromRu using at most2dlog2(n)e

PRG applications. The keŷK[n] corresponding to the set[n] is a purely random key that

is distinct fromRu for everyu ∈ Tr.

KEY ASSIGNMENT. Every useri is required to be able to recover a long-lived

key K̂u,v if and only if i ∈ Su,v, which, in turn, is true if and only ifu is an ancestor

of u(i) but v is not. There areO(n) such keys for everyi but since some of them are

related to each other via the PRG, the setKi need not contain a direct representation of

each of them.

The key assignment works as follows. For every useri, and every ancestoru

50

of u(i) in Tr, Ki contains all “intermediate” keysLu,v such thatv is not an ancestor of

u(i) in Tru but the parent ofv is. The keyK̂[n] is also included inKi. For every user

i, the size of the setKi thus obtained isO(dlog2(n)e2). It is straightforward to check

that for everyi, Rec(Ki) contains the long-lived key associated with every subset that

containsi and is part ofC.

Security of the key assignment scheme follows from two important observa-

tions. Pick anyi ∈ [n]. Since the purely random keysRu used to derive all long-lived

keys are distinct for distinct values ofu, Rec(Ki) does not contain any key of the form

K̂u,v for whichu is not an ancestor ofu(i). Second, recall that the inverses of the func-

tionsG0 andG1 cannot be computed via the symbolic recovery function`. Given this

fact, it is easy to show thatRec(Ki) does not contain any keŷKu,v for which u andv

are both ancestors ofu(i). In effect,Rec(Ki) contains no keŷKu,v for which i /∈ Su,v.

Property 2 for subset cover protocols is thus verified, and we conclude that

Theorem 5.2.2 TheSD protocol is strongly secure against collusion attacks in the sym-

bolic model.

In terms of communication complexity, theSD protocol fairs better than the

CS protocol: for any target setS(t) of sizen − q, the number of rekey messages trans-

mitted is at most2q − 1, and whenq � n (which is typically the scenario in broadcast

encryption), this is considerably smaller than the cost of rekeying in theCS proto-

col. However, the protocol requires every user to maintainO(dlog2(n)e2) keys as its

state, which is greater than the amount of storage required in theCS protocol. The

Layered Subset Difference (LSD) protocol [25] improves this trade-off between com-

munication and storage costs for theSD protocol: it reduces the storage requirements

toO(dlog2(n)e3/2) keys per user while maintaining the cost of rekeying atO(q).

Chapter 6

A Lower Bound

One advantage of using a symbolic model of computation is that it facilitates

the task of proving lower bounds on the efficiency of protocols. In this chapter, we use

the model to prove a lower bound on the communication complexity of GKD proto-

cols which shows that in any GKD protocol, the number of rekey messages required

to be transmitted per group update in order to maintain security against collusion at-

tacks, is at least logarithmic in the group size. The bound applies not only to protocols

that use pseudo-random generators and symmetric-key encryption (as modeled by gram-

mar (2.1)), but also to those that employ secret sharing schemes [42], and combine such

schemes with encryption and pseudo-random generation in an arbitrary fashion.

Our result establishes the optimality of theLKH protocols presented in the

preceding chapter and in particular, it shows that theimproved-LKH+ protocol is the

most communication-efficient GKD protocol that one can design, while also satisfying

security against collusion attacks. In fact, our bound matches the communication effi-

ciency of improved-LKH+ exactly, modulo a small additive sub-constant term. Thus,

even the use of techniques like nested encryption and secret sharing schemes (neither

of which is used inLKH protocols) cannot improve the communication complexity of

improved-LKH+ by any reasonable measure.

51

52

6.1 Previous Lower Bounds

Lower bounds for the communication complexity of GKD protocols have

been explored in several prior works. The first non-trivial communication lower bound

for the problem was proven by Canetti, Malkin and Nissim in [13]. This bound applies

to a restricted class of protocols, namely protocols where users have a bounded amount

of memory, and the key distribution mechanism has a special “structure-preserving”

property (as defined in [13]). A different, and seemingly tight, lower bound, for a more

general class of protocols without memory or structure restrictions was later proven by

Snoeyink, Suri and Varghese [43], who showed that in any GKD protocol (within a

certain class), the group center can be forced to transmit at least3 log3(n) rekey mes-

sages per group update (on the average) in order to maintain security of against collusion

attacks1. A similar result was independently proven by Yang and Lam [48], although

the bound in [48] is slightly smaller, namelyln(n). Snoeyinket al. [43] also provide

a simple variant of theplain-LKH protocol [46, 45] that meets the established lower

bound.

It turns out that despite the close relationship between existing protocols and

the lower bounds proven in [48, 43], the class of protocols considered in these works

falls short of accommodating all known protocols. The protocol model used in [48, 43]

mandates that the group center transmit rekey messages only of the formER1(R2)—

the encryption of a random keyR2 under another random keyR1. However, this rules

out the possibility of using nested encryption and/or pseudo-random generators, two

important cryptographic techniques which are deployed in various GKD protocols in

the literature [19, 14, 10, 38, 34, 25, 21].

The inadequacy of the results of [48, 43] is clearly demonstrated by known

protocols that “beat” the lower bound proven in [43]. An important example is the

improved-LKH+ protocol: it has a communication complexity oflog2(n), which is

strictly smaller than the3 log3(n) ≈ 1.89 log2(n) bound proven in [43]. This obser-

1In [43], security of protocols is analyzed with respect to simple sequences only; that is, it is assumed that at each
instant, either a single non-member joins the group or else a single member leaves it.

53

vation highlights the limited applicability of the results of [48, 43], and leaves open the

possibility of designing protocols with communication efficiency better thanlog2(n) us-

ing cryptographic techniques not considered in either of those works. The question we

are interested in is the following:

Can we designGKD protocols that use nested encryption and/or pseudo-random

generators, are secure against collusion attacks, and have communication complexity

smaller thanlog2(n)?

6.2 Our Result

We answer the above question in the negative. We show that all collusion-

resistant GKD protocols that use symmetric-key encryption, pseudo-random generators,

and even secret sharing schemesin generating rekey messages must incur a communica-

tion cost of at leastlog2(n) per group update operation in the worst case. More precisely,

we exhibit an adversarial strategy for performing group update operations that forces the

center in any collusion-resistant GKD protocol to transmit at leastlog2(n)−δ messages

per update on the average, withn being the size of the group andδ a quantity that tends

to 0 as the number of updates increases.

The adversarial strategy we use involvesreplacingan existing member of the

group with a non-member at every instant. In other words, we consider input sequences

of the following form:

Definition 6.2.1 A sequence of member-sets
−→
S (t) = (S(1), . . . ,S(t)) ∈ (2[n])t is called

a replace-onlysequence if for eacht′ ∈ {1, . . . , t − 1}, S(t′+1) = S(t′) ∪ {i} \ {j} for

somei ∈ S(t′)
andj ∈ S(t′).

Analyzing protocols against such sequences simplifies the task of proving the

lower bound since it ensures that the size of the group remains constant across time.

It is easy to see that theimproved-LKH+ protocol can be modified suitably so that it

incurs a communication cost ofdlog2(n)e rekey messages (per update operation) against

replace-only sequences.

54

Before we present our result, we first describe how we extend the model of

group key distribution defined in Chapter 3 to incorporate secret sharing schemes.

6.2.1 An Extended Symbolic Model

SECRET SHARING. Let n be any integer. Ann-wise secret sharing func-

tion is a function that takes a messageM as input and outputsn expressions, denoted

S1(M), . . . ,Sn(M), which are referred to as thesharescorresponding toM . With

any such function is associated anaccess structureΓ which is a set of subsets of[n];

that isΓ ⊆ 2[n]. The functionS is defined in such a way that given the set of shares

SI(M) = {Si(M)}i∈I for anyI ∈ Γ, the messageM can be easily recovered. A typ-

ical example of secret sharing schemes isk-out-of-n secret sharing, where the access

structure is the set of all subsets of{1, . . . , n} of size at leastk, that is, a secret message

can be recovered if and only if at leastk of its shares are known.

The efficiency of secret sharing schemes makes them excellent tools to be

used in conjunction with symmetric-key encryption and pseudorandom generators. (For

example, “n out of n” sharing, which is a special case of “k out of n” sharing, can be

implemented using only theXOR operation.) Secret sharing schemes have been used

in various security protocols of practical interest, and, in particular, they have been used

in the design of some broadcast encryption protocols [35].

THE MODIFIED GRAMMAR . Let S be anyn-wise secret sharing function

with arbitrary access structureΓ ⊆ 2[n]. We extend the grammar of protocol messages

defined in Chapter 2 as follows:

M → K | EK (M) | S1(M) | · · · | Sn(M)

K → R | G0(K) | G1(K)
(6.1)

For example, expressions of the formS1(S2(R1)) andER2(EG0(R3)(S2(R5)))

can be derived from the variableM above. Every expression derivable fromM is re-

ferred to as a protocol message. Note that our grammar allows shares to be created by

55

applying the sharing function iteratively on both keys and ciphertexts. Shares can be

encrypted under multiple keys but cannot themselves be used to encrypt other messages

or to generate pseudorandom keys. Although we restrict shares from being used in this

manner, we remark that our lower bound also applies to protocols that do use shares

for encryption and pseudorandom generation. We focus on the above class of protocols

mainly for simplicity of exposition.

The semantics of the sharing function is defined by suitably modifying the

definition of the entailment relatioǹ. RecallRule 0, Rule 1 andRule 2 used to define

` in Section 2.4 of Chapter 2. Besides these three rules, we also include the following

rule:

∃I ∈ Γ.

[
∀i ∈ I.

(
M ` Si(M)

)]
=⇒ M ` M (Rule 3)

For any message-setM, Rec(M) now denotes the set of all messages that

are recoverable fromM usingRule 0, Rule 1, Rule 2 as well asRule 3. A messageM

is said to be recoverable fromM in i steps(for somei ≥ 0) if M can be derived from

M usingi applications ofRule 1, Rule 2 orRule 3.

6.2.2 The Result

We consider GKD protocols in which every rekey message transmitted by the

center is an expression derived from grammar (6.1). For the rest of this chapter, every

usage of the term “GKD protocol” refers to a protocol of this kind. For any setS, we

use|S| to denote the size ofS. The following is the main result of the chapter.

Theorem 6.2.2 For anyn-user GKD protocolΠ that is secure against collusion attacks

(satisfies Definition 3.2.2), and for anyn, t such thatn + t ≤ n, there exists a replace-

only sequence
−→
S (t) = (S(1),S(2), . . . ,S(t)) ∈ (2[n])t such that|S(1)| = n, and

|MΠ−→
S (t)
| ≥ (t− 1) · dlog2(n)e

From the theorem, it follows that the amortized communication cost that any

collusion-resistant GKD protocol incurs is at least(t−1
t

)·dlog2(n)e = (1− 1
t
)·dlog2(n)e

56

in the worst case. This quantity equalsdlog2(n)e − o(1) for t � log2(n), and so

the asymptotic communication complexity of the protocol is bounded from below by

dlog2(n)e. Note that the theorem applies to protocols that are collusion-resistant in the

sense of Definition 3.2.2, which is weaker than Definition 3.2.4. However, since we are

proving a lower bound, the same result also holds for protocols that are secure in the

stronger sense (those that satisfy Definition 3.2.4) as well. Some important remarks are

in order:

• It is imperative to consider the amortized communication complexity of GKD

protocols when proving a lower bound since in any protocol, the rekeying cost in-

curred for a single membership update can be distributed across multiple instants,

while still maintaining security and correctness. Particularly, rekey messages re-

quired to be sent in response to thetth update command could instead be sent

before timet, thus lowering the rekeying cost for timet arbitrarily. Previous

lower bounds [48, 43] in the literature are also amortized lower bounds2.

• Our lower bound, like that of [48, 43], is aworst-caselower bound for GKD pro-

tocols, proven with respect to an adversarially-chosen sequence of membership

update operations. Worst-case analysis of these protocols (and of cryptographic

protocols, in general) is essential from the perspective of security since we would

like all protocols to be designed so that they remain secure in any possible execu-

tion environment. Analyzing protocols in the worst case is the standard approach

to proving their security in the cryptography literature.

We present the proof of Theorem 6.2.2 in two steps. In the first step, we show

that a similar result holds for S-GKD protocols (those that use single encryption and

pseudo-random generation only and do not deploy secret sharing schemes). This step

highlights the key idea underlying the proof of Theorem 6.2.2 and gives intuition about
2In [44], a lower bound oflog2(n) is proven on the rekeying cost for a specific class of GKD protocols (called

key graph protocolsin [44]), but without amortizing over sequences of update operations. However, the result of [44]
is incomparable to ours: although it proves a non-amortized lower bound, it does so for a very restricted type of
protocols. In particular, the protocol class considered in [44] is much smaller than that considered in all previous
works on lower bounds on GKD protocols [13, 48, 43].

57

how thelog2(n) bound is reached. In the second step, we extend the result from the first

step to protocols that also use nested encryption and secret sharing.

6.3 A First Step Towards the Proof

Consider the class of S-GKD protocols, that is, protocols in which every rekey

message transmitted by the center is derived using grammar (4.1). For this class of

protocols, we can prove essentially the same result as Theorem 6.2.2.

Theorem 6.3.1 For anyn-user S-GKD protocolΠ that is secure against single-user

attacks (satisfies Definition 3.2.1), and for anyn, t such thatn + t ≤ n, there exists a

replace-only sequence
−→
S (t) = (S(1),S(2), . . . ,S(t)) ∈ (2[n])t such that|S(1)| = n, and

|MΠ−→
S (t)
| ≥ (t− 1) · dlog2(n)e

Since security against single-user attacks is equivalent to collusion-resistance

for S-GKD protocols (Theorem 4.1.1), the above bound applies to S-GKD protocols

that are collusion-resistant as well.

Before we prove Theorem 6.3.1, we develop some terminology that is used

in the proofs of both Theorem 6.2.2 and Theorem 6.3.1. LetΠ be anyn-user GKD

protocol that satisfies Definition 3.2.2 (security against collusion attacks) and
−→
S (t) any

sequence given as input toΠ. The keys used in the protocol when executed on input
−→
S (t) can be partitioned into two classes—those that are recoverable by non-members at

time t and those that are not.

Definition 6.3.2 A keyK is uselessat timet if it can be recovered from the keys of non-

members at that time, that is, ifK ∈ Rec({Ki}i∈S(t)

⋃
MΠ−→

S (t)
). It is usefulotherwise.

In the special case of S-GKD protocols, usefulness of a keyK can alterna-

tively be defined by requiring thatK not be contained inRec({Ki}
⋃
MΠ−→

S (t)
) for every

i ∈ S(t)
. Note that for allt, and all sequences

−→
S (t), the group keyK (t) and the long-lived

keys of members,{Ki}i∈S(t) , must be inUΠ−→
S (t)

for otherwise the collusion-resistance

property of the protocol would be violated.

58

Usefulness is defined for rekey messages as well, based on the plaintext key

they encapsulate. Formally, we say that a messageM encapsulatesa keyK if M is

obtained by applying a (possibly empty) sequence of encryption and sharing operations

to K ; in other words,M equalse1(e2(· · · el(K) · · ·)) for somel ≥ 0, where eachei

is either equal toEK (for some keyK) or Sj (for somej ∈ {1, · · · , n}). For exam-

ple, the messagesR3, ER1(R3) andER1(S1(R3)) all encapsulateR3 and the message

EG1(R1)(S1(ER2(G0(R3)))) encapsulatesG0(R3).

Definition 6.3.3 A messageM is useful(resp. useless) at timet if M encapsulates a

key that is useful (resp. useless) at that time.

For example, if a keyK is recoverable by the non-members at timet, then

any rekey message of the formEK ′(K) sent up to that time would be useless. Note

that a message could be useless even when it is not decipherable by the non-members.

For example, ifK is recoverable by the non-members at timet, butK ′ is not, then the

messageEK ′(K) is useless, even if it cannot be decrypted by the non-members.

Usefulness is a dynamic concept: keys and messages that are useful at one

instant may be useless at another instant. Every time a member is removed from the

group (or replaced with a non-member), all useful keys known to that member (including

the group key) turn useless, and, as a result, all messages encapsulating these keys that

were transmitted in the past also become useless.

The intuition underlying the proofs of Theorems 6.2.2 and 6.3.1 is the

following: We develop a strategy for replacing members in such a way that after the

execution of every replace operation, “sufficiently” many—in particular, logarithmi-

cally many—rekey messages become useless. The messages that become useless at

any instantt could have been sent atany other instantt′ < t (and not necessarily at

time t − 1); all that is relevant for the proof is that there are logarithmically many

such messages for everyt. In order to cope with so many messages turning useless,

the protocol must, on the average, transmit logarithmically many rekey messages at

every instant, thus implying that the amortized communication cost it incurs must be

59

logarithmic, too.

Proof of Theorem 6.3.1. The proof exploits the notion of key graphs de-

fined for S-GKD protocols in Chapter 3. For any keyK and any key graphG, let

IndegreeG(K) denote the in-degree ofK in G and c-IndegreeG(K) the number of

c-edges incident upon it in the graph. The following proposition formalizes an im-

portant property of key graphs:

Proposition 6.3.4 For any key graphG and any keyK in it, c-IndegreeG(K) ≥

IndegreeG(K)− 1.

Proof: The semantics of our symbolic security model dictates that every key used in the

protocol be obtainable from a unique seed, and using a unique sequence of zero or more

PRG computations. In the context of key graphs, this has the implication that every key

in a key graphG must have at most oneg-edge incident upon it. (Purely random keys

have nog-edge incident upon them while pseudorandom ones have oneg-edge per key.)

The proposition follows from this.

Let Π be anyn-user S-GKD protocol that is secure against single-user attacks

and letn, t be integers such thatn + t ≤ n. For any sequence
−→
S (t), consider the key

graphGΠ−→
S (t)

corresponding to the execution ofΠ on input
−→
S (t). We know that for any

useri ∈
−→
S (t), the group keyK (t) is recoverable from{Ki} ∪ MΠ−→

S (t)
, and also that

K (t) is not recoverable fromMΠ−→
S (t)

alone (for otherwiseΠ would be insecure). Using

Lemma 4.2.1 then, we conclude that for everyi ∈
−→
S (t), K (t) is reachable fromKi in

GΠ−→
S (t)

.

For anyi ∈
−→
S (t), let P (t)

i be a path inGΠ−→
S (t)

that goes fromKi to K (t). Let

G̃Π−→
S (t)

be a sub-graph ofGΠ−→
S (t)

formed by taking the union ofP (t)
i for eachi ∈ S(t). That

is, an edge is iñGΠ−→
S (t)

if and only if it is contained inP (t)
i for somei ∈ S(t). While

taking the union of these paths, priority is given toc-edges: if there exists ac-edge from

K to K ′ in P (t)
i (for somei ∈ S(t)), and ag-edge between the same two keys inP (t)

j

(for somej ∈ S(t) \ {i}), thenG̃Π−→
S (t)

contains ac-edge from K to K ′. We refer toG̃Π−→
S (t)

60

as themember key graphfor time t.

Claim 6.3.5 For anyt, and any sequence
−→
S (t) = (S(1), . . . ,S(t)) ∈ (2[n])t, every key in

the graphG̃Π−→
S (t)

is useful at timet.

Proof: For every keyK in the graphG̃Π−→
S (t)

, the group keyK (t) is reachable fromK ,

and so,K (t) ∈ Rec({K} ∪MΠ−→
S (t)

). Suppose there exists a keyK in G̃Π−→
S (t)

such that

K is useless at timet. ThenK ∈ Rec({Ki}i∈S(t) ∪MΠ−→
S (t)

), which implies thatK (t),

which is contained inRec({K}∪MΠ−→
S (t)

), is also inRec({Ki}i∈S(t) ∪MΠ−→
S (t)

). But this

would mean thatK (t) is useless at timet, and this, we know, is not possible. The claim

follows.

Claim 6.3.6 For anyt, any sequence
−→
S (t) = (S(1), . . . ,S(t)) ∈ (2[n])t, and anyi ∈ S(t),

Indegree G̃Π−→
S (t)

(Ki) = 0.

Proof: Fix t and
−→
S (t) and pick anyi, j ∈ S(t) such thati 6= j. We claim that the keyKj

does not lie on the pathP (t)
i . Suppose this is not the case; that is, suppose there exists

i, j ∈ S(t) (i 6= j) such thatKj lies on the pathP (t)
i . Then,Kj ∈ Rec({Ki} ∪MΠ−→

S (t′))

for any t′ ≥ t. Let S(t+1) = S(t) \ {i} and consider the execution ofΠ on input
−→
S (t+1) = (S(1), . . . ,S(t),S(t+1)). From the correctness of the protocol, we know that

the group key created for timet + 1, K (t+1), is contained inRec({Kj} ∪ MΠ−→
S (t+1)

),

which, in turn, implies thatK (t+1) ∈ Rec({Ki} ∪MΠ−→
S (t+1)

). But this means thatΠ is

insecure against single-user attacks, a contradiction!

Thus, there exists no distincti, j ∈ S(t) for whichKj lies on the pathP (t)
i , which means

that for eachi ∈ S(t), Indegree G̃Π−→
S (t)

(Ki) = 0.

The figure shows an example member key graph for three membersi1, i2, i3

and their corresponding pathsP (t)
i1
, P

(t)
i2

andP (t)
i3

. In the figure,c-edges have been shown

with solid lines andg-edges with dashed lines. The pathsP (t)
i1

andP (t)
i2

share a common

edgeK ′ → K (t).

61

K

K

Pi1 Pi2

Pi3

K'

K
K

(t) (t)
(t)

i1
i2

i3

(t)

Figure 6.1: A member key graph.

For the proof of Theorem 6.3.1, we need to count the number ofc-edges inci-

dent upon keys on a pathP (t)
i for some memberi at timet. To do this, we introduce the

concept of thec-edge weightof a path.

Definition 6.3.7 Let t > 0,
−→
S (t) = (S(1), . . . ,S(t)) ∈ (2[n])t andi ∈ S(t). Thec-edge

weightof the pathP (t)
i , denotedc-Weight(P

(t)
i), is defined as:

c-Weight(P
(t)
i) =

∑
K∈P (t)

i

c-Indegree G̃Π−→
S (t)

(K)

We are now ready to give the replace-only sequence required to prove Theo-

rem 6.3.1. Define a sequence
−→
S (t) = (S(1), . . . ,S(t)) as follows. LetS(1) be any arbi-

trary subset of[n] of sizen. For eacht′ ∈ {2, . . . , t}, let S(t′) = S(t′−1) ∪ {it′} \ {jt′}

for anyit′ , jt′ ∈ [n] such that

it′ /∈
t′−1⋃
t′′=1

S(t′′)

jt′ = arg maxj∈S(t′−1)

{
c-Weight(P

(t′−1)
j)

}
In words, at every instantt′, we replace an existing memberjt′ ∈ S(t′−1) for which the

pathP (t′−1)
jt′

hasmaximumc-edge weight (relative to all pathsP (t′−1)
j for j ∈ S(t′−1))

with a non-memberit′ such thatit′ wasnevera member before timet′.

We claim that for any such sequence
−→
S (t), the number of rekey messages

output byΠ when given
−→
S (t) as input is(t − 1) · dlog2(n)e. Consider the execution of

Π on input
−→
S (t). For each instantt′ > 1 during the execution, consider the set of keys

62

Kjt′ that lie on the pathP (t′−1)
jt′

wherejt′ is the member that is removed at timet′. There

are two important facts about this set:

• All keys inKjt′ are useful at timet′ − 1: This follows from Claim 6.3.5.

• All keys inKjt′ are useless at timet′: This is because every keyK ∈ Kjt′ is

reachable fromKj in the key graph at timet′ − 1, that is,K ∈ Rec({Kj} ∪

MΠ−→
S (t′−1)

) ⊆ Rec({Kj} ∪ MΠ−→
S (t′)). Sincejt′ ∈ S

(t′)
, this implies thatK ∈

Rec({Ki}i∈S(t′) ∪MΠ−→
S (t′)) as well.

This means that all rekey messages that encapsulate keys inKjt′ are useful at

time t′ − 1 but useless at timet′. Since each rekey message is represented uniquely as a

c-edge, the number of such rekey messages is at least equal to thec-edge weight of the

pathP (t′−1)
jt′

. Furthermore, sincejt′ is not included inS(t′′) for any t′′ ≥ t′, each such

rekey message remains useless up to timet.

The number of rekey messages output byΠ till time t is at least equal to the

number of useful rekey messages output till that time. The latter is, in turn, at least

equal to the number of useful rekey messages “that become useless” at any instant from

1 throught. It follows that

|MΠ−→
S (t)
| ≥

t∑
t′=2

c-Weight(P
(t′−1)
jt′

) (6.2)

Next, we argue thatc-Weight(P
(t′−1)
jt′

) is at leastdlog2(n)e for eacht′ ∈

{2, . . . , t}. To make the argument, we introduce a concept similar to that ofc-edge

weight, but one that is applicable to arbitrary graphs (not necessarily key graphs). From

Proposition 6.3.4, we know that for any key graphG and any keyK , c-IndegreeG(K) ≥

IndegreeG(K) − 1. This means that thec-edge weight of any path in a key graph is at

least equal to the number of edges that are incident upon keys lying on the path but that

are not included in the path. We refer to this number as thein-degreeof the path.

Definition 6.3.8 Let G be a directed graph and letP be a path inG that starts from a

nodes. The in-degreeof P in G, denotedIndegreeG(P), is the number of edges inG

63

that start from a node not inP and are incident upon one that is inP . That is,

IndegreeG(P) = IndegreeG(s) +
∑

v∈P ;v 6=s

(IndegreeG(v)− 1)

Recall that in any member key graph, the in-degree of any long-lived key in

the graph is always zero (Claim 6.3.6). As a result, for anyt′ ∈ {2, . . . , t}, thec-edge

weight of the pathP (t′−1)
jt′

(wherejt′ is the label of the member removed from the group

at timet′) is no less than the in-degree ofP (t′−1)
jt′

in G̃Π−→
S (t′−1)

. To bound thec-edge weight

of P (t′−1)
jt′

from below, it suffices to bound its in-degree instead.

Lemma 6.3.9 Let G be an arbitrary directed graph over a set of nodesV and let

{v1, · · · , vn, v} be any subset ofV such that for eachi ∈ {1, · · · , n}, there exists a

pathPi from vi to v and there exists noj (j 6= i) such thatvi occurs inPj. Then, there

exists ani ∈ {1, · · · , n} such thatIndegreeG(Pi) ≥ dlog2(n)e

Using the lemma and the fact that long-lived keys always have in-degree zero

in member key graphs, we obtain that for everyt′ ∈ {2, . . . , t}, the in-degree of the path

P
(t′−1)
jt′

in the graphG̃Π−→
S (t′−1)

is at leastdlog2(n)e. Therefore, thec-edge weight of each

suchP (t′−1)
jt′

is at leastdlog2(n)e, and invoking equation (6.2), we conclude that the size

ofMΠ−→
S (t)

is at least(t− 1) · dlog2(n)e.

To complete the proof of Theorem 6.3.1, it suffices to prove Lemma 6.3.9.

6.3.1 Proof of Lemma 6.3.9

The proof of this lemma involves an inductive argument. We perform induc-

tion overn, and show that for alln, all subsets{v1, · · · , vn, v} of V and all sets of paths

{P1, · · · , Pn} satisfying the conditions in the lemma, there exists ani ∈ {1, · · · , n}

such thatIndegreeG(Pi) ≥ dlog2(n)e. We treat paths as sequences of nodes and for any

two pathsP andQ, P · Q denotes the path (that is, the sequence of nodes) formed by

concatenatingP andQ.

Forn = 1, the lemma is trivially true. The path fromv1 to v, P1, is the only

path under consideration and it has in-degree equal todlog2(1)e = 0.

64

V1 V2 V3 V4

v
~

v

v1 v2 v3
v4

~ ~ ~ ~

P

Figure 6.2: Illustration for the proof of Lemma 6.3.9.

We hypothesize that for somẽn ≥ 2, the statement of the lemma is true for

all values ofn less thañn. That is, for alln < ñ, all sets of nodes{v1, · · · , vn} ⊆ V

and all sets of paths{P1, · · · , Pn} such that for alli ≤ n (a) Pi is a path fromvi to v

and (b)vi does not lie onPj for any j 6= i, we can find ani ∈ {1, · · · , n} such that

IndegreeG(Pi) ≥ dlog2(n)e.

Consider any subset ofV, {v1, · · · , vñ, v}, such that there exist paths

{P̃1, · · · , P̃ñ}, each path̃Pi going fromvi to v and novi lying on P̃j for j 6= i. Without

loss of generality, we assume that all these paths are loop-free. (The existence of a path

with loops implies the existence of one without loops between the same two nodes.) Let

P be the largest common suffix of̃P1, · · · , P̃ñ; that is,P is the longest path such that

for eachP̃i, there exists a path̃Qi for which P̃i = Q̃i · P . Let ṽ be the first node inP .

Since we assumed thẽPi’s to be loop-free, there is exactly one pathQ̃i for eachP̃i such

that P̃i = Q̃i · P . We partition the set{Q̃1, · · · , Q̃ñ} based on the last node on these

paths; that is, for each setQj in this partition, the last node on each of theQ̃i’s in Qj,

is the same, saỹvj. Let d be the size of this partition, which, given the maximality of

the suffixP , must be at least2. Corresponding to the partition of thẽQi’s, the nodes

v1, · · · , vñ can also be partitioned intod sets. LetV1, · · · ,Vd be these sets. The figure

shows an example withd = 4.

65

Since the total number of nodes inV1, · · · ,Vd put together is̃n, there must

exist somej ∈ {1, · · · , d} such thatVj has size at leastd ñ
d
e. Let G̃ be the graph formed

by taking the union of thẽQi’s corresponding to such aVj. The set of paths{Q̃i}vi∈Vj

has the property that (a) each̃Qi is a path fromvi to ṽj and (b) novi lies on a path

Q̃j for j 6= i. From the inductive hypothesis, then, there must exist an indexi = imax

(vimax ∈ Vj) such thatIndegree G̃(Q̃imax) is at leastdlog2(d ñde)e.

Now, the in-degree of path̃Pimax is at least equal to the sum of the in-degree of

Q̃imax and(IndegreeG(ṽ) − 1). (This is becausẽv lies onP̃imax but not onQ̃imax .) This

sum can be bounded from below as:

IndegreeG(P̃
′
i) + Indegree G̃(ṽ)− 1 ≥ dlog2(d

ñ

d
e)e+ d− 1

≥ dlog2(
ñ

d
)e+ d− 1

= dlog2(ñ)− log2(d)e+ d− 1

≥ dlog2(ñ)e − log2(d) + d− 1

≥ dlog2(ñ)e

The last inequality holds because for all integersd ≥ 1, d− 1 ≥ log2(d).

6.4 Completing the Proof

For the proof of Theorem 6.2.2, we first suitably extend the notion of key

graphs so that it is applicable to arbitrary GKD protocols.

Let Π be anyn-user GKD protocol that is secure against collusion attacks and

let n, t be integers such thatn + t ≤ n. For any sequence
−→
S (t) given as input toΠ,

we define the key graphGΠ−→
S (t)

corresponding to the execution ofΠ with that input as

follows. The nodes inGΠ−→
S (t)

are the keys in the protocol that are useful at timet. For

any two useful keysK ,K ′ such thatK = Gb(K
′) for someb ∈ {0, 1}, we introduce

a g-edge from K ′ to K just as before. For every useful messageM ∈ MΠ−→
S (t)

that

encapsulates a keyK , we introduceat mostonec-edge in GΠ−→
S (t)

using the following

rule:

66

• If there is a sub-expression ofM of the formEK ′(M ′) such thatK ′ is useful, a

c-edge corresponding toM is introduced inGΠ−→
S (t)

. In particular, we locate the

sub-expression ofM of the formEK ′(M ′) such that (a)K ′ is useful, and (b)M ′

does not contain a sub-expressionEK ′′(M ′′) for which K ′′ is also useful, and

introduce thec-edge K ′ → K in the graph. Intuitively, such aK ′ corresponds to

the inner-most useful encryption key inM .

• Otherwise, we introduce noc-edge corresponding toM in the graph.

For example, a rekey message of the formER1(ER2(R3)), would get mapped

to R2 → R3 if R2 and R3 were useful, and toR1 → R3 if R1 and R3 were

useful butR2 was not. Similarly, ifR1,R2 and R3 were all useful, then the mes-

sageER1(S1(ER2(R3))) andER1(ER2(S2(R3))) would both be mapped to thec-edge

R2 → R3.

Note that according to this convention, a rekey message in which there are no

encryption keys or one in which all encryption keys are useless (for the given instant)

is not represented in the key graph; for example, messages of the formS2(R2) and

S1(ER1(R2)) for some useless keyR1 do not have anyc-edge associated with them.

Such a representation of messages may appear too parsimonious at first glance (for

example, protocol messages comprising a key share are not depicted inGΠ−→
S (t)

at all, even

if the corresponding key is useful at timet) but it suffices for proving the lower bound.

Lemma 6.4.1 For everyt > 0, for every sequence
−→
S (t) ∈ (2[n])t given as input toΠ,

and for any two keysK ,K ′ generated during the execution ofΠ such that both keys are

useful at timet, if K ′ ∈ Rec({K} ∪MΠ−→
S (t)

), then there exists a path fromK to K ′ in

GΠ−→
S (t)

such that for every keyK ′′ on this path,K ′′ ∈ Rec({K} ∪MΠ−→
S (t)

).

Given this lemma, the proof of Theorem 6.2.2 is essentially the same as that of

Theorem 6.3.1. Just as in the proof of that theorem, we define, for everyt, a sub-graph

G̃Π−→
S (t)

of GΠ−→
S (t)

formed by taking the unions of all paths from the member long-lived keys

to the group key at timet. (One path per member is selected.) This sub-graph is referred

to as the member key graph for timet. Claims 6.3.5 and 6.3.6 and Proposition 6.3.4

67

can now be proven for such member key graphs as well. It can next be shown that the

replace-only sequence defined for the proof of Theorem 6.3.1 also applies to prove the

log2(n) lower bound for the communication complexity ofΠ.

6.4.1 Proof of Lemma 6.4.1

Let t > 0, and let
−→
S (t) be any sequence given as input toΠ. Let K andK ′

be any two keys that are useful at timet and are such thatK ′ is recoverable from the

setM0 := {K} ∪MΠ−→
S (t)

. Let q be the smallest number of steps in whichK ′ can be

recovered fromM0. For example, ifK ′ ∈M0 thenq = 0; if K ′ /∈M0 but there exists

a keyK ′′ such that{K ′′,EK ′′(K ′)} ⊆ M0, thenq = 1; and so on.

We prove the lemma using induction overq. We show that for allq and for

every useful keyK ′ recoverable fromM0 in q steps, there exists a path fromK to K ′ in

GΠ−→
S (t)

such that every key on this path is recoverable fromM0. The statement is true for

q = 0 since in this caseK ′ must be equal toK (for if K ′ was inMΠ−→
S (t)

, then it would

be useless) and there is a trivial path fromK to itself.

Suppose that the statement is true for all values ofq smaller than a positive

integerQ. That is, for allq < Q, every useful key recoverable fromM0 in q steps has

a path leading to itself fromK in GΠ−→
S (t)

and all keys along the path are inRec(M0).

Consider any useful keyK ′ recoverable fromM0 in Q steps. Two possibilities arise:

• There exists a keyK ′′ such thatK ′ = Gb(K
′′) for someb ∈ {0, 1} and K ′′ is

recoverable fromM0 in Q− 1 steps.ForK ′ to be useful at timet, the same must

be true forK ′′. From the inductive hypothesis, it follows that there exists a path

from K to K ′′ in GΠ−→
S (t)

and joining this path with theg-edge K ′′ → K ′ gives us

the desired path fromK to K ′.

• There exist a set of rekey messagesM′ ⊆ MΠ−→
S (t)

, each message encapsulating

K ′, such that the setKe of encryption keys inall these messages is recoverable

fromM0 in less thanQ steps andK ′ is recoverable fromKe ∪M′. In this case,

we first observe that at least one of the keys inKe must be useful: if all ofKe

68

was useless, that is, ifKe was contained inRec({Ki}i∈S(t) ∪MΠ−→
S (t)

), thenK ′,

which is in Rec(Ke ∪ M′) ⊆ Rec(Ke ∪ MΠ−→
S (t)

) would also be contained in

Rec({Ki}i∈S(t) ∪MΠ−→
S (t)

). This would meanK ′ is useless, which, we know, is

not true.

Thus, there must exist at least one messageM ∈ M′ that encapsulatesK ′ and

contains a useful encryption keyK ′′ ∈ Ke, with K ′′ being the inner-most useful

encryption key inM . For such aK ′′, there must exist ac-edge from K ′′ to K ′

in GΠ−→
S (t)

. Furthermore, we know thatK ′′ is recoverable fromM0 in less thanQ

steps. Again, from our hypothesis, it follows that there exists a path fromK to

K ′′ in GΠ−→
S (t)

and we join this path with thec-edge K ′′ → K ′ to get a path fromK

to K ′.

Note that in the second case above,K ′ can be recoverable fromM′ andKe
using multiple decryption and share reconstruction operations. All these operations are

abstracted into a single edgeK ′′ → K ′ in the key graph.

6.5 On Beating thelog2(n) Barrier

In this chapter, we have shown that designing GKD protocols secure against

collusion attacks while achieving communication complexity lower than logarithmic in

the number of group members is impossible. This impossibility result holds not only

for protocols that use symmetric-key encryption and pseudo-random generators but also

those that employ secret sharing schemes in generating the center’s rekey messages.

Thus, to achieve sub-logarithmic communication efficiency in GKD protocols one must

either weaken the security requirements from protocols in some way or else, consider

usage of primitives that are not incorporated in our model. We discuss each of these

possibilities below.

• Weaker Security Requirements: If security against single-user attacks is the

only security objective, then GKD protocols with sub-logarithmic communica-

tion efficiency can indeed be constructed. In particular, it is possible to design

69

protocols [14, 21] that are secure against single-user attacks (but not collusion-

resistant) and that incur only aconstantcommunication overhead for every group

membership update. Such protocols must rely on the usage of nested encryption

in generating rekey messages (as is the case with the protocols of [14, 21]) since,

as we showed in Theorem 6.3.1, by using single encryption and PRGs alone, one

cannot beat thelog2(n) bound even for the weaker definition.

We remark that some protocols in the literature [47] achieve communication com-

plexity better thanlog2(n) by performing group key updates in “batches”, that

is, by executing a single key update for multiple consecutive changes in group

membership. Such an approach also compromises security of the protocol since

it does not guarantee foolproof privacy of group keys in the interval separating

any two key updates. Furthermore, even the efficiency benefit that one derives

from batched rekeying is not significant; for example, in the protocol of [47], a

key update for batches of size up to
√
n incurs an average cost oflog2(n)/2 per

update, which is within a factor2 of the lower bound we prove.

• New Primitives: It is possible that by using cryptographic primitives not incorpo-

rated in our model, one can design protocols that are more efficient than those that

are known to exist. One such primitive that comes to mind is apseudo-random

function (PRF)[22]—a function that behave like a random function and can pro-

duce exponentially-many pseudo-random keys from the same seed key. Our belief

is that the use of PRFs is unlikely to lead to GKD protocols with communication

complexity better thanlog2(n), though it would be nice to substantiate such a

claim with formal arguments3.

Some protocols in the literature [8] use bilinear maps to achieve constant com-

munication complexity but they do so at the expense of requiring all parties (the

center as well as all the protocol users) to store a public key that is linear inn (the
3We note that some known protocols do make use of PRFs (for example, [38]), but not in a substantial way,

meaning that whatever they do can be easily achieved using PRGs instead. In effect, these protocols fit our model of
group key distribution.

70

total number of protocol users). Furthermore, the computation cost incurred by

users in such protocols in order to decrypt the group key is significantly more than

that incurred in typical protocols based on symmetric-key techniques.

It thus appears that in order to beat thelog2(n) barrier in the communication

complexity of GKD protocols, one must make significant compromises on other aspects

of protocol design like security and/or computational and storage requirements of users;

surpassing the barrier without such compromises seems highly improbable.

6.6 Acknowledgement

Chapter 6, in part, is a reprint of the material to be published in IEEE/ACM

Transactions on Networking, October 2008, Micciancio, Daniele; Panjwani, Saurabh.

The dissertation author is the primary investigator and author of this paper. The pre-

sentation of the proof of Theorem 6.2.2 is different and more modular in the current

work.

Part II

The Computational Model

71

72

The main drawback of the symbolic model is that it provides a very coarse

abstraction for representing cryptographic primitives and for arguing about security of

protocols in general. Treating cryptographic primitives symbolically makes security

analysis convenient, but it does not necessarily guarantee security against all practical

threats to protocols. Real adversaries can potentially extract more information from

protocol messages than is computable using only the symbolic rules of information re-

covery.

To understand this issue better, let us consider again an example we used in

Chapter 2 (Section 2.4). LetM be a set of symbolic messages defined as follows:

M = {R2,EG1(R2)(EG0(R1)(R3)),ER2(G1(R1)),EG0(G1(R1))(R4)}

It is easy to check that the keysR3 andG0(R1) cannot be recovered fromM using

the entailment relation we defined in Section 2.4. However, it is unclear whether these

keys would remain completely secret if a protocol were to distribute such messages on a

public channel. Could not an adversarial observer learn partial information aboutR3 or

G0(R1) fromM? For one, any adversary can easily distinguish the pair(R3,G0(R1))

from a pair of purely random and independent values—R3 andG0(R1) are related to

each other via the ciphertextEG0(R1)(R3) and since the latter is recoverable fromM,

this leaks sufficient information about the two keys for an attacker to be able to distin-

guish them from two purely random values. Thus,R3 andG0(R1) cannot be guaranteed

to be secret in an absolute sense.

Besides this, there is another potential problem. Even if the functionE is

implemented in a secure manner (such that secrecy of any message encrypted underE

is guaranteed in a strong sense), some non-trivial information about the keyG0(R1)

could be leaked by the ciphertextEG0(R1)(R3): secrecy of the message being encrypted

(in this case,R3) does not imply secrecy of the key used to encrypt it (in this case,

G0(R1))4. This could, in turn, leak partial information about the seedR1 used to derive

G0(R1), which could potentially reveal information about other keys as well.
4Indeed, standard definitions of security for encryption, like the one we use in this thesis (Definition 7.2.1),do

not require encryption keys to remain completely secret after encryption; it is possible that partial information about
keys be leaked by the encryption operation.

73

The main point here is that the notion of recoverability developed in the sym-

bolic model is insufficient for arguing about secrecy properties of protocols, and it is

unclear whether a protocol proven secure using symbolic arguments alone can be guar-

anteed to be secure in a real implementation of the same. The computational model

addresses this limitation of the symbolic model. It provides a rigorous framework for

representing cryptographic primitives and protocols, for modeling realistic attacks on

protocols and, in particular, for formulating the notion of secrecy in a precise manner.

In the current part of the thesis, we describe the computational model in depth

and develop notions of security for group key distribution within this model. Naturally,

using a more rigorous model makes analysis of protocols harder, and security proofs

more complex. Instead of analyzing every protocol in the new model “from scratch”,

we develop general techniques that enable us to relate security analyses conducted in

the symbolic model with those in the computational model. Specifically, we devise suf-

ficient conditions on encryption protocols such that for any protocol satisfying these

conditions, a proof of security of the protocol in the symbolic model also implies se-

curity against powerful computational adversaries. These conditions restrict protocols

only at asyntacticlevel, and most protocols of practical interest either already satisfy

them or can be easily modified (that is, without any loss in efficiency) to do so. Such an

approach gives us the best of both worlds—the simplicity of doing security proofs in the

symbolic model, as well as the thoroughness and mathematical rigor of computational

cryptography.

Chapter 7

Security Definitions

We begin our exposition on the computational model by giving definitions of

security for the tasks of pseudo-random generation, encryption and group key distribu-

tion within the model.

In the computational model, every piece of data generated and used by a pro-

tocol is treated as a bitstring, that is, an element of the set{0, 1}∗. Keys of protocol

users and messages generated and exchanged between them are all viewed as bitstrings.

For any bitstrings ∈ {0, 1}∗, we use|s| to denote the length ofs. For any two bitstrings

s1, s2, s1 ‖ s2 denotes the string formed by concatenatings1 ands2.

By anadversary, we refer to any arbitrary randomized algorithm designed to

attack a cryptographic primitive or protocol. We use the concrete-security framework [5]

to formalize the notions of attacks; that is, we use concrete parameters to bound the run-

ning time of adversaries as well as their probability of being able to execute successful

attacks. The letterτ is used to denote time complexity of adversaries whileε denotes the

success probability of the attacks they execute. As such,τ is always a variable that takes

positive integral values andε one that takes values in the range[0, 1]. The probability of

any eventE is denotedP[E].

An important ingredient of the computational model is a security parameter

η, an integer that determines the length of all keys used in any protocol, which, in turn,

determines the amount of security provided by cryptographic primitives. LetR be an

74

75

algorithm that samples a key uniformly at random from the space{0, 1}η and outputs

it. We useτ(R) to denote the running time ofR. By k ← R, we denote the process of

generating a keyk via an independent invocation ofR.

7.1 Pseudo-random Generators

In computational terminology, a pseudo-random generator (PRG) is a deter-

ministic algorithmG that takes a bitstringk ∈ {0, 1}η as input and outputs another

bitstring, denotedG(k), such that|G(k)| = η + γ for someγ > 0. The parameterγ

is referred to as thestretchof G. For any PRGG, we denote the running time ofG by

τ(G).

Besides increasing the length of its input, a PRG must also guarantee that

the resulting output is “pseudo-random” in the sense that no efficient algorithm can

distinguish it from a purely random string of the same length. For any PRGG with

stretchγ, letXG
0 be the random variable corresponding to the output ofG when given,

as input, a bitstringk obtained by runningR and letXG
1 be that corresponding to the

uniform distribution over{0, 1}η+γ. For any adversaryA and anyb ∈ {0, 1}, let A(XG
b)

denote the random variable corresponding to the output ofA when given a sample from

XG
b as input. Theadvantageof A againstG is defined as

∆G
prg(A) =

∣∣∣∣P[A(XG
0) = 1]−P[A(XG

1) = 1]

∣∣∣∣
with the probabilities being taken over the random coins used byA and the randomness

involved in generatingXG
0 andXG

1 .

Definition 7.1.1 (Security of pseudo-random generation)A pseudo-random gener-

ator G is called (τ, ε)-secure if for every adversaryA running in time at mostτ ,

∆G
prg(A) ≤ ε.

As in the symbolic model, we are interested in PRGs that take a single key as

input and output a string that can be parsed as two keys. This essentially corresponds to

doubling the length of the input, that is, settingγ = η. Any PRG satisfying this property

76

is referred to as alength-doubling pseudo-random generator. For any keyk given as

input to such a PRG, we denote byG0(k) andG1(k) the left and right halves of the

bitstringG(k); so,|G0(k)| = |G1(k)| andG(k) = G0(k) ‖G1(k).

7.2 Encryption Schemes

A symmetric-key encryption scheme is a pair of algorithmsP = (E,D), re-

ferred to as the encryption and decryption algorithms respectively, which have the fol-

lowing properties:

• E is a randomized algorithm that takes, as input, a plaintextm ∈ {0, 1}∗, and

a keyk ∈ {0, 1}η and outputs a ciphertextc ∈ {0, 1}∗. The random variable

corresponding to the output ofE when givenm andk as input is denotedEk(m).

The running time ofE is denotedτ(E).

• D, on input a ciphertextc ∈ {0, 1}∗ and a keyk ∈ {0, 1}η, returns a value in

{0, 1}∗. D must be deterministic and for anym, c ∈ {0, 1}∗, and anyk ∈ {0, 1}η,

the output ofD on inputc andk must equalm if and only if c lies in the support

of Ek(m). (The output must be undefined otherwise.)

In this thesis, we use the notion of semantic security against chosen plaintext

attacks for encryption schemes, which was first defined by Goldwasser and Micali [23]

for public-keyencryption, and later adapted to the symmetric-key setting by Bellareet

al. [4]. Informally, an encryption scheme is semantically secure against chosen plaintext

attacks, or simplyCPA-secure, if no efficient adversaryA can distinguish between the

encryptions of two equal-length plaintexts with noticeable probability, provided the en-

cryptions are created using a randomly chosen key unknown toA. CPA-security is a nat-

ural (and reasonably strong) notion of security for encryption schemes and is currently

regarded as the “standard” notion of encryption security in the cryptography literature.

It implies various useful properties that one might expect from encryption schemes, for

example, the property of one-wayness (no efficient adversary can invert a ciphertext to

77

the corresponding plaintext), and of partial plaintext recovery (no efficient adversary can

recover from a ciphertext even a single bit of the corresponding plaintext).

For any encryption schemeP = (E,D), and anyb ∈ {0, 1}, let OP
b denote

an oracle procedure that first generates a keyk by runningR and subsequently, accepts

queries of the form(m0,m1) ∈ {0, 1}∗ × {0, 1}∗ such that|m0| = |m1|. Upon receiv-

ing such a query, the procedure responds to it with a ciphertext sampled according to

Ek(mb). (For queries that are not of the said form, the procedure does nothing.) For

any adversaryA, let AOP
b denote the random variable corresponding to the output ofA

when given black-box access toOP
b . TheCPA-advantage ofA againstP is defined as the

following quantity:

∆P
enc(A) =

∣∣∣∣P[AOP
0 = 1]−P[AOP

1 = 1]

∣∣∣∣
that is,∆P

enc(A) is the difference between the probabilities thatA outputs1 when given

black-box access toOP
0 versus the same when it receives access toOP

1 instead. Both

probabilities are taken over the random coins used byA and byOP
b (which includes the

randomness used to generate the secret keyk used for encryption).

Definition 7.2.1 (Security of encryption)A symmetric-key encryption schemeP =

(E,D) is called(τ, ε)-secure against chosen plaintext attacks if for every adversaryA

running in time at mostτ , ∆P
enc(A) ≤ ε.

Pseudo-random generators and symmetric-key encryption schemes are both

typically constructed using cryptographic objects calledblock ciphers. The work of Bel-

lareet al. [4] provides various block-cipher based constructions of encryption schemes

and proves them to be(τ, ε)-secure under suitable assumptions with respect to the secu-

rity of the underlying block cipher.

7.3 Mapping Symbolic Messages to Bitstrings

Every message generated by a protocol in the symbolic model can be mapped

to a bitstring in a natural manner by implementing the functionG with a length-doubling

78

PRG and the functionE with a symmetric-key encryption algorithm. Formally, letP =

(E,D) be a symmetric-key encryption scheme andG a length-doubling pseudo-random

generator. LetM be any message derived from grammar (2.1) andψ : R → {0, 1}η

a map such thatψ(Ri) is defined for everyRi occurring inM . Theevaluation ofM

with respect toψ,E and G is the random variable corresponding to the output of the

following recursive procedure:

procedure evaluateE,G(M , ψ)

If M ∈ R, returnψ(M).

If M = Gb(K) for some symbolK and someb ∈ {0, 1}, do the following:

Let k ← evaluateE,G(K , ψ).

ReturnGb(k).

If M = EK (M ′) for some symbolsK andM ′, do the following:

Let k ← evaluateE,G(K , ψ).

Let m ′ ← evaluateE,G(M ′, ψ).

Return a sample fromEk(m
′).

We useJM KE,G
ψ to denote the evaluation ofM with respect toψ,E andG.

7.4 Group Key Distribution

As in the symbolic model, we consider group key distribution protocols built

generically from a length-doubling pseudo-random generatorG and a symmetric-key

encryption schemeP = (E,D). For anyn-user GKD protocolΠ = (S,C) in the

symbolic model, the computational interpretation ofΠ is defined as a pair of algorithms

ΠP,G = (SP,G,CP,G) that work as follows:

• SP,G first runsS to obtain the initial state of programC, Z(0), and the symbolic

long-lived keys of all the users,K1, . . . ,Kn. It then initializes a key mapψ and for

each purely random key symbolRi occurring inZ(0) ∪ {K1, . . . ,Kn}, it samples

a bitstringri independently and uniformly at random from{0, 1}η and setsψ(Ri)

79

to beri. Finally, it outputs two things: (a) the initial stateZ(0) of CP,G which is

equal to{(K , JK KE,G
ψ) | K ∈ Z(0)}; and (b) the long-lived keysk1, . . . , kn of all

users, where for eachi ∈ [n], ki = JKiKE,G
ψ .

• CP,G, when given a setS(t) ⊆ [n] and its current stateZ(t−1), runsC with input

S(t) andZ(t−1) := {K | ∃k : (K , k) ∈ Z(t−1)} for which the latter outputs a set of

symbolic messagesMΠ
S(t) and the updated state ofC, Z(t). For eachRi occurring

inMΠ
S(t)∪Z(t) such thatψ(Ri) is undefined,CP,G setsψ(Ri) to be an independent,

uniformly random sample from{0, 1}η and then outputs the evaluations ofMΠ
S(t)

andZ(t); that is, it outputs two setsMΠ
S(t) andZ(t) defined as follows:

MΠ
S(t) = {(M , JM KE,G

ψ) | M ∈MΠ
S(t)}

Z(t) = {(K , JK KE,G
ψ) | K ∈ Z(t)}

We formalize security ofΠP,G using an indistinguishability-based definition,

akin to the definitions of security for encryption and pseudo-random generation. For

any t > 0, let k (t) denote the bitstring group key distributed by the protocol at timet;

that is,k (t) = JK (t)KE,G
ψ whereψ is the key map at timet. Intuitively, the protocol is

secure (in the computational model) if for any possible execution, and for any instantt

during the execution, the keyk (t) appears indistinguishable from random, when viewed

by the non-members at that instant. Furthermore, this condition should hold even when

changes in membership are made in an adversarial manner and when non-members are

corrupted adversarially.

To formalize this notion, we define, for eachb ∈ {0, 1}, an oracle procedure

OΠ,P,G
gkd,b that emulatesΠP,G as follows. First,OΠ,P,G

gkd,b runsSP,G to obtain the initial state

of the protocol—the valueZ(0) and the long-lived keysk1, . . . , kn. It then accepts and

responds to three types of queries:

• Execution queries:These queries specify membership changes made during the

execution ofΠ and include an argumentS denoting the current set of members.

Upon receiving any query of the formexecute(S), OΠ,P,G
gkd,b first checks if this is

80

the first query of its kind. If so, it initializes a variablet and sets it to be equal

to 1; otherwise, it simply incrementst. After doing this, it invokesCP,G on input

S(t) := S andZ(t−1), stores the updated stateZ(t) of CP,G and returns the set of

rekey messagesMΠ
S(t) to the querying algorithm.

• Corruption queries: These queries model corruption of users in the protocol.

When given a query of the formcorrupt(i) for somei ∈ [n], OΠ,P,G
gkd,b returns

the long-lived keyki.

• Challenge queries:These queries test the distinguishability of group keys from

purely random values. When given a querychallenge(t′) such thatt′ ∈

{1, . . . , t}, OΠ,P,G
gkd,b replies withk (t′) if b = 0, and with a keyr (t′) obtained by

runningR if b = 1. (If the same querychallenge(t′) is received multiple times,

and if b = 1, the reply isr (t′) each time.)

Consider any adversaryA that is given black-box access to such a procedure

and is allowed to make queries to it in an arbitrary, adaptive manner; that is, the choice of

any query it makes can depend on the replies it receives for queries made in the past. We

would like to be able to show thatA cannot guess the bitb with probability noticeably

better than half, that is,A’s output when given access toOΠ,P,G
gkd,0 is similarly distributed

as its output when given access toOΠ,P,G
gkd,1 .

Clearly, we cannot make such an assertion for every possible adversary: ifA

makes an execution queryexecute(S) at timet = 1 such thatS contains a corrupt user,

and later issues the querychallenge(1), it can trivially compute the value ofb. Thus,

it makes sense to consider only those adversaries thatdo notissue challenge queries for

instants when corrupt users are part of the group.

For any adversaryA interacting withOΠ,P,G
gkd,b , let c(A) denote the number of

corruption queries made byA andScorr(A) the set of valuesi for which A makes the

querycorrupt(i). Let T chal(A) be the set of instantst′ for which A issues the query

81

challenge(t′). LetSchal(A) be the set defined as

Schal(A) :=
⋃

t′∈T chal(A)

S(t′)

Note thatc(A),Scorr(A), T chal(A) andSchal(A) are all random variables de-

pending on the coins used byA and by the procedureOΠ,P,G
gkd,b .

Definition 7.4.1 An adversaryA is calledlegitimateif for any b ∈ {0, 1}, in any execu-

tion of A involving interaction withOΠ,P,G
gkd,b , Scorr(A) ∩ Schal(A) = ∅.

We distinguish between two types of legitimate adversaries, depending upon

the manner in which the adversary issues its corruption queries.

Definition 7.4.2 A legitimate adversaryA is callednon-adaptiveif for any b ∈ {0, 1},

in any execution ofA involving interaction withOΠ,P,G
gkd,b , every corruption query ofA is

madebeforean execution query.A is calledadaptiveotherwise.

Non-adaptive adversaries correspond to a scenario in which the set of corrupt

users in the protocol is decided at the outset, that is, before the execution of the protocol

begins. Security analysis of protocols against such adversaries is relatively easier and is

addressed first in the forthcoming chapters. Note that we allow non-adaptive adversaries

to issue execution queries and challenge queries in an interleaving and adaptive manner,

as long as these queries are made after making all corruption queries. Furthermore,

the corruption queries themselves can be such that the choice of theith user to corrupt

depends on the keys of the firsti− 1 corrupt users.

The GKD-advantage of any legitimate adversaryA is defined as the following

quantity:

∆ΠP,G

gkd (A) =

∣∣∣∣P[AOΠ,P,G
gkd,0 = 1]−P[AOΠ,P,G

gkd,1 = 1]

∣∣∣∣
As usual, both probabilities are taken over the random choices made byA as well as

those made byOΠ,P,G
gkd,b .

Definition 7.4.3 (Security of group key distribution) Let P be a symmetric-

key encryption scheme andG a length-doubling pseudo-random generator. Let

82

adv-type ∈ {adaptive,non-adaptive}. An n-user GKD protocolΠP,G is called

(τ, t, ε)-adv-type ly secure against single-user attacksin the computational model,

if for everyadv-type adversaryA that runs in time at mostτ , makes at mostt execu-

tion queries and for whichc(A) is always at most1, ∆ΠP,G
gkd (A) ≤ ε. The protocol is called

(τ, t, ε)-adv-type ly secure against collusion attacksin the computational model if for

everyadv-type adversaryA that runs in time at mostτ and makes at mostt execution

queries,∆ΠP,G
gkd (A) ≤ ε.

This definition corresponds with the notions of “strong” security against

single-user and collusion attacks (definitions 3.2.3 and 3.2.4) used in the symbolic

model, and as in the symbolic model, security against collusion attacks implies secu-

rity against single-user attacks here as well. We do not consider computational counter-

parts of the weaker notions (definitions 3.2.1 and 3.2.2) since our interest is in analyzing

protocols (and proving them secure) in the strong sense only.

Our security definition for GKD protocols in the computational model is sim-

ilar to the definition of security for broadcast encryption protocols typically found in the

literature [34], but for three differences. First, we consider the security of a key distribu-

tion protocol, rather than of an encryption protocol built using it (which is the situation

considered in broadcast encryption protocols). This is not a substantial difference as the

two protocol classes are equivalent in the sense that a protocol from one can be easily

converted into a protocol from the other. Second, we allow the adversary to issue mul-

tiple challenge queries of its choice; this models the requirement that group keys for

different instants be “jointly” pseudo-random (in particular, that they be independent of

each other). In contrast, definitions of broadcast encryption used in the literature con-

sider adversaries that are challenged only for a single instant in the protocol. In this

respect, our definition is seemingly stronger.1 Third, our definition captures the notion

of CPA-security, which is weaker than the notion ofCCA-security (security against cho-
1For the case of broadcast encryption, this restriction does not matter, that is, allowing the adversary the power

to issue multiple challenge queries does not make the definition any stronger. For group key distribution, however, it
does make a difference: there exist protocols that are secure against adversaries that make single challenge queries
but insecure against those that are allowed to make multiple such queries.

83

sen ciphertext attacks [40]) used in [34]; that is, we do not consider adversaries that can,

besides issuing execution queries, ask for decryptions of arbitrary rekey messages of

their choice. Extending the results of this thesis to incorporateCCA-security is possible

provided we define the encryption schemeP to be secure in theCCA sense as well. We

focus onCPA-based definitions in order to keep the exposition simpler and the results

easier to comprehend.

Chapter 8

Computational Security against

Non-Adaptive Adversaries

In the symbolic world, all security definitions are formulated using the notion

of recoverability, and in order to prove secrecy of a key, one argues that the key is not

recoverable, in its entirety, by the malicious users in the protocol. On the other hand,

secrecy properties in the computational model are expressed in terms of distinguishabil-

ity: to prove secrecy of a key, one shows that it is hard to distinguish thebitstring value

of that key from a purely random (and independently chosen) value.

Before we begin to analyze GKD protocols in the computational model, we

ask ourselves a more general question:how do the notions of recoverability and distin-

guishability relate to each other?More precisely, when can we say that unrecoverability

of a key also implies indistinguishability of the same from a random value? Or, under

what conditions is symbolic analysis of protocols “computationally sound” in the sense

that a protocol that is proven symbolically secure (using the notion of key recoverabil-

ity) is guaranteed to be computationally secure (in terms of key indistinguishability) as

well? Recall that in the computational model, adversaries can be arbitrary randomized

algorithms and can potentially control the execution of protocols, modify their execu-

tion flow in an adaptive manner, and, worst still, corrupt protocol users adaptively. Can

we hope to prove soundness of symbolic analysis with respect to such entities?

84

85

At an abstract level, we are faced with the following problem. Consider an

adversaryA that creates an arbitrary sequence of symbolic messagesM1,M2, . . . ,Mq

(generated according to grammar (2.1)), and receives, in return, the evaluations of each

of these messages with respect to some key mapψ that is kept secret from it. These

symbolic messages can be either ciphertexts (for example, rekey messages in a GKD

protocol) or simply keys (for example, keys of corrupt protocol users), and can be gen-

erated in an adaptive manner by the adversary. LetK be any symbolic key that isnot re-

coverable from the set{M1,M2, . . . ,Mq}; that is,K /∈ Rec({M1,M2, . . . ,Mq}). Then,

can we assert thatA cannot distinguish between the evaluation ofK and a uniformly

random bitstring? Can we find reasonable restrictions on the choice of the messages

M1, . . . ,Mq such that the assertion holds foranyadversary satisfying those restrictions?

In the current and the succeeding chapter, we consider the above problem and

present two different positive solutions to it. Our first solution, presented in the cur-

rent chapter, involves imposing certain restrictions on theorder in which the messages

M1, . . . ,Mq are issued by the adversary. These restrictions are fairly mild and enable

us to relate symbolic and computational definitions of security for a large variety of

GKD protocols. However, under these restrictions, symbolic security can be proven to

imply computational security, only as long as the latter is considered with respect to non-

adaptive adversaries (that is, adversaries who corrupt protocol users in a non-adaptive

manner). In the next chapter, we take a different approach to address the problem,

and show how computational security against adaptive adversaries is also possible to

achieve.

8.1 A Computational Game

Let P = (E,D) be any symmetric-key encryption scheme andG a length-

doubling pseudo-random generator. For any bitb ∈ {0, 1}, we define an oracle pro-

cedureOP,G
adpt,b that first initializes a key mapψ and subsequently, accepts two types of

queries:evaluationqueries andchallengequeries. Every evaluation queryeval(M) in-

86

procedureOP,G
adpt,b

Initialize a key mapψ to be empty.

Upon receiving a query of the formeval(M), do the following:
For every fresh keyRi occurring inM ,

If ψ(Ri) is undefined, setψ(Ri)← R.
Reply withJMiKE,G

ψ .

Upon receiving a query of the formchallenge(K), do the following:
If ψ(root(K)) is undefined, setψ(root(K))← R.
If b = 0, reply withJK KE,G

ψ .
Else, reply with an independent, random sample from{0, 1}η.

Figure 8.1: ProcedureOP,G
adpt,b used in our computational game.

cludes a symbolic messageM (derived from grammar (2.1)) as an argument, andOP,G
adpt,b

responds to the query with the bitstring evaluation ofM , JM KE,G
ψ . (If, for some fresh

keyRi occurring inM , ψ(Ri) is undefined, the procedure first defines it appropriately.)

Every challenge query is of the formchallenge(K)—K being a symbolic key—and,

depending upon the value ofb, the procedure responds with either the evaluation ofK

or a random, independent bitstring key. Figure Figure 8.1 shows the details of how the

responses are created.

Consider any adversaryA that is given black-box access toOP,G
adpt,b for some

bit b (that is kept secret fromA). A can make both evaluation and challenge queries to

OP,G
adpt,b of its choice, and can do so in an adaptive manner; that is, at any instant, it can

decide its next query toOP,G
adpt,b based on the replies it received for the previously-made

queries. Its objective is to guess the value ofb correctly.

LetM(A) be the set of all symbolic messagesM such thatA makes a query

eval(M) andK(A) the set of allK such that it makes a querychallenge(K). Note

that bothM(A) andK(A) are random variables depending on the coins used byA as

well as byOP,G
adpt,b.

87

Definition 8.1.1 An adversaryA is calledvalid relative toOP,G
adpt,b if in any execution of

A involving interaction withOP,G
adpt,b, the following is true for everyK ∈ K(A):

• For everyK ′ ∈ Rec(M(A)), K ′ /∈ Rec(K);

• For everyEK ′(M) ∈ Rec(M(A)), K ′ /∈ Rec(K); and

• For everyK ′ ∈ K(A) \ {K}, K ′ /∈ Rec(K).

The three conditions that characterize validity are necessary if our goal is to

prove pseudo-randomness of all keys inK(A) (more precisely, of the evaluations of all

symbols inK(A)). This is because for any keyK , a keyK ′ ∈ Rec(K) (or a ciphertext

EK ′(M) for which K ′ ∈ Rec(K)) leaks sufficient information aboutK for it to be

distinguishable from a purely random value. Such aK ′ should not be revealed to the

adversary for anyK ∈ K(A).

We would like to be able to show that for every valid adversaryA, the keys

in K(A) are indeed pseudo-random; in other words, no valid adversary can distinguish

between the behavior of the procedureOP,G
adpt,b whenb = 0 from its behavior whenb = 1

with noticeable probability. However, proving this in general, assuming only the stan-

dard notions of security of encryption and pseudo-random generation (definitions 7.2.1

and 7.1.1), is rather difficult and, in fact, it is not even possible without restrictingA’s

queries in some way. We next define a set of syntactic restrictions onA’s queries which

enable us to prove such a claim.

8.2 Syntactic Restrictions

Before we define our syntactic restrictions, we need some notations. For any

symbolic messageM derived from grammar (2.1), letmsgkey(M) denote the key that

occurs as a plaintext inM and letenckeys(M) denote the set of keys used to perform

encryption inM . For example, ifM = G0(G1(R1)), msgkey(M) = G0(G1(R1))

and enckeys(M) = ∅, and if M = EG1(R2)(EG0(R1)(R3)), msgkey(M) = R3 and

enckeys(M) = {G1(R2),G0(R1)}. Let keys(M) denote the union ofenckeys(M) and

88

{msgkey(M)}. For any set of symbolic messagesM, let enckeys(M),msgkeys(M)

andkeys(M) denote the sets formed by taking the union ofenckeys(M),msgkeys(M)

andkeys(M) (respectively) over all messagesM ∈M.

Definition 8.2.1 A set of symbolic messagesM is calledsafeif,

(a) for everyK ∈ enckeys(M) and for everyK ′ ∈ keys(M) \ {K}, K ′ /∈ Rec(K).

(b) for everyM ∈M, and for everyK ∈ enckeys(M), K /∈ Rec(msgkey(M)).

Both these conditions correspond to commonly accepted norms in computa-

tional cryptography. For example, it is known that using a key as input to more than one

cryptographic primitive could completely compromise it,even for some secure imple-

mentations of the primitives. Condition (a) above prohibits this from happening in our

setting: it says that no keyK can be used both as an encryption key and as a seed to the

pseudo-random generator. In a similar vein, encrypting a key with itself or with a key

related to it is considered bad cryptographic practice; condition (b) disallows such usage

of keys. Note that we exclude the possibilitymsgkey(M) /∈ Rec(K) in this condition

since this is already prohibited by condition (a).

Besides the safety conditions, we impose one more restriction on the queries

of valid adversaries. This restriction in on the order in which queries are made by the

adversary and it enables computational proof techniques to work in our setting.

Definition 8.2.2 A sequence of messages(M1, . . . ,Mq) is calledwell-orderedif for

every i, j ∈ {1, . . . , q} such thati < j, there exists noK ∈ enckeys(Mi) for which

K ∈ Rec(msgkey(Mj)).

For example,(ER1(R2),ER2(R3)) and (ER1(R2),EG0(R2)(R3)) are well-

ordered sequences but neither(ER2(R3),ER1(R2)) nor (ER1(R2),ER2(R1)) is so. En-

cryption protocols usually distribute keys while satisfying the well-ordered constraint:

keys are typically distributed before they are used for encrypting other keys (and, some-

times, simultaneously as such encryption is performed). All protocols we consider in

this thesis are of this nature. At the same time, Definition 8.2.2 is overly restrictive in

89

that it disallows the evaluation of a keyK to be revealed after a ciphertext of the form

EK (M) has been evaluated. As such, by imposing such a restriction, we are able to

analyze security of protocols only against adversaries that corrupt protocol users non-

adaptively. Proving computational security of protocols against adaptive corruptions

requires very different techniques, and forms the topic of discussion of the next chapter.

For any adversaryA given black-box access to the procedureOP,G
adpt,b, let

M̂(A) denote the sequence of messagesM for which A issues the queryeval(M);

each message is included in̂M(A) in the order of its occurrence as an argument of an

evaluation query. LikeM(A), M̂(A) is also a random variable depending upon the

coins ofA andOP,G
adpt,b.

Definition 8.2.3 An adversaryA is calledcompliantif in any execution involving inter-

action withOP,G
adpt,b,

• M(A) ∪ K(A) is safe; and

• M̂(A) is well-ordered.

8.3 The Soundness Theorem

For any adversaryA, let AOP,G
adpt,b denote the random variable corresponding to

the output ofA when given black-box access toOP,G
adpt,b. The adaptive advantage ofA

againstP andG is defined as the following quantity:

∆P,G
adpt(A) =

∣∣∣∣P[AOP,G
adpt,0 = 1] = P[AOP,G

adpt,1 = 1]

∣∣∣∣
As usual, both probabilities are taken over the coins used byA as well as byOP,G

adpt,b.

Let n, q, d ∈ IN . We refer toA as an(n, q, d)-adversary if in every execution,

the number of purely random symbolic keys used inA’s queries (that is, the size of the

set{Ri | ∃K ∈ keys(M(A))∪K(A)s.t.root(K) = Ri}) is at mostn, the size ofM(A)

is at mostq, and every pseudo-random key inenckeys(M(A))∪K(A) has depth at most

d.

90

Definition 8.3.1 LetP = (E,D) be a symmetric-key encryption scheme andG a length-

doubling pseudo-random generator.P and G are called(τ, n, q, d, ε)-secure against

partial adaptive attacksif for every valid and compliant(n, q, d)-adversaryA that runs

in time at mostτ , ∆P,G
adpt(A) ≤ ε.

By “partial” adaptive attacks, we refer to the fact that we consider security

only against adversaries that satisfy the well-ordered constraint in the above definition;

in particular, adversaries that can corrupt keys adaptively are not considered. The fol-

lowing is the main result of this chapter:

Theorem 8.3.2 Let G be a length-doubling pseudo-random generator andP = (E,D) a

symmetric-key encryption scheme. IfG is (τ1, ε1)-secure andP is (τ2, ε2)-secure against

chosen plaintext attacks, then they are together(τ, n, q, d, ε)-secure against partial adap-

tive attacks for any parametersτ, n, q, d, ε satisfying

τ = min{τ1, τ2} − n · (τ(R) + 2dτ(G) + qτ(E))−O(1)

ε = 2n2d · (5dε1 + 2ε2)

Notice that the reduction factor in the above theorem (the quantity that relates

ε to ε1 andε2) is linear in the number of purely random keys involved,n, but exponential

in the maximum depthd of all pseudo-random keys. Since in most security protocols

(and particularly, in the ones we consider in this thesis), the depth of pseudo-random

keys generated during any protocol execution is logarithmic in the number of protocol

users, application of the theorem to such protocols still gives a polynomial reduction

factor in the security analysis. The question of whether one can prove a result analogous

to Theorem 8.3.2 with a reduction factor that is sub-exponential in the depth of pseudo-

random keys is left open by this thesis.

8.4 Application to GKD protocols

Before we give the proof of Theorem 8.3.2, we illustrate how it is useful in the

context of analyzing GKD protocols against non-adaptive adversaries.

91

For any GKD protocolΠ, and for any set of rekey messagesMΠ
S(t) output by

it, anorderingofMΠ
S(t) is any sequence that contains all and only the elements ofMΠ

S(t) .

We say that a sequence of rekey message-sets,(MΠ
S(1) ,MΠ

S(2) , . . . ,MΠ
S(t)) output by the

protocol is well-ordered if for everyt′ ∈ [t], there exists an orderinĝMΠ
S(t′) ofMΠ

S(t′)

such that the concatenation of the sequencesM̂Π
S(1) ,M̂Π

S(2) , . . . ,M̂Π
S(t) is well-ordered

(satisfies Definition 8.2.2).

Definition 8.4.1 An n-user GKD protocolΠ is calledcompliantif for all t > 0, for all

sequences
−→
S (t) = (S(1), . . . ,S(t)) ∈ (2[n])t, the following is true:

(a) For everyt′ ∈ [t], the group keyK (t′) is used neither as an encryption key nor as

an input toG in any message inMΠ−→
S (t)
∪ {K1, . . . ,Kn}.

(b) MΠ−→
S (t)
∪ {K1, . . . ,Kn} is safe and(MΠ

S(1) , . . . ,MΠ
S(t)) is well-ordered.

Let n̂, q̂, d̂ : IN → IN . We say that a protocolΠ for n users is an(n̂, q̂, d̂)-

GKD protocol if for all t > 0, for all sequences
−→
S (t) ∈ (2[n])t, the number of purely

random keys inMΠ−→
S (t)

is at most̂n(t), the size ofMΠ−→
S (t)

is at most̂q(t), and the depth

of any key in this set (or in{K1, . . . ,Kn}) is at mostd̂(t).

Theorem 8.4.2 Let G be a length-doubling pseudo-random generator that is(τ1, ε1)-

secure andP = (E,D) a symmetric-key encryption scheme that is(τ2, ε2) secure

(against chosen plaintext attacks). LetΠ be a compliant(n̂, q̂, d̂)-GKD protocol forn

users. IfΠ is strongly secure against single-user (resp. collusion) attacks in the symbolic

model, thenΠP,G is (τ, t, ε)-non-adaptively secure against single-user (resp. collusion)

attacks in the computational model, for anyτ, t andε satisfying:

τ = min{τ1, τ2} − n̂(t) · (τ(R) + 2d̂(t)τ(G) + q̂(t)τ(E))− n · (τ(R) + 2d̂(t)τ(G))−O(1)

ε = 2n̂(t)2d̂(t) · (5d̂(t)ε1 + 2ε2)

Proof: We prove the theorem only for the case of security against collusion attacks; the

proof for the other case is very similar and is, thus, omitted.

92

ADVERSARY A′

Run the setup programS of Π and store its outputZ(0) ∪ {K1, . . . ,Kn}.
Initialize a countert1 ← 0.
WhenA issues a corruption querycorrupt(i),

Sendeval(Ki) toOP,G
adpt,b. Let ki be the response.

Returnki to A.
WhenA issues an execution queryexecute(S),

t1 ← t1 + 1.
Run the key distribution programC of Π on inputS(t1) := S andZ(t1−1).
Order its outputMΠ

S(t1) into a well-ordered sequencêMΠ
S(t1) .

For eachMi ∈ M̂Π
S(t1) in order, sendeval(Mi) toOP,G

adpt,b; let mi be
the response.

Return the setMΠ
S(t1) = {(Mi,mi) | Mi ∈MΠ

S(t1)} to A.
Store the updated state ofC, Z(t1).

WhenA issues a challenge querychallenge(t′),
Sendchallenge(K (t′)) toOP,G

adpt,b. Let kt′ be the response.
Sendkt′ to A.

Output whateverA outputs.

Figure 8.2: The adversary constructed for the proof of Theorem 8.4.2.

Let Π be any compliant(n̂, q̂, d̂)-GKD protocol for n users,G a length-doubling

(τ1, ε1)-secure PRG andP a (τ2, ε2)-secure symmetric-key encryption scheme. Suppose

thatΠ is secure against collusion attacks in the symbolic model butΠP,G does not satisfy

the definition of(τ, t, ε)-security in the computational model for some set of parameters

τ, t andε defined in the theorem. That is, there exists some non-adaptive adversaryA

that runs in timeτ , makes at mostt execution queries, but for which∆ΠP,G
gkd (A) > ε.

We claim that any such adversaryA can be used to construct a valid and compliant

(n̂(t), q̂(t), d̂(t))-adversaryA′ in the computational game defined in Section 8.1 such

thatA′ runs in timeτ + n · (τ(R) + 2d̂(t)τ(G)) + O(1), and still∆P,G
adpt(A

′) > ε. This

falsifies Theorem 8.3.2, thus implying that Theorem 8.4.2 must be correct.

At a high level, the adversaryA′ works as follows: It emulates the execution of the

protocolΠ, invokesA in a black-box manner and for each query thatA makes, it executes

93

Π in accordance with the query. However,A expects to receive bitstrings in reply, and

so,A′ uses its oracleOP,G
adpt,b to evaluate all the symbolic messages and keys generated

by Π before providing them as replies toA’s queries. In the end, it outputs whateverA

outputs. The detailed construction ofA′ is given in figure Figure 8.2.

SinceA is non-adaptive (and thus issues all its corruption queries before issuing queries

of other types), and since the rekey messages output byΠ satisfy the well-ordered prop-

erty, the message-sequencêM(A′) is well-ordered. Furthermore, since the rekey mes-

sages output byΠ in any execution are safe, this implies that the setM(A) ∪ K(A) is

also safe. Thus,A′ is a compliant adversary.

The validity ofA′ follows from the fact that group keys inΠ are never used as encryption

keys or as inputs toG and the fact thatΠ is secure in the symbolic model. ThatA′ is a

(n̂(t), q̂(t), d̂(t))-adversary follows from the fact thatΠ is a(n̂, q̂, d̂)-GKD protocol and

thatA issues at mostt execution queries.

Lastly, it is easy to check thatA′ runs in timeτ + n · (τ(R) + 2d̂(t)τ(G)) + O(1) and

that ∆P,G
adpt(A

′) is the same as∆ΠP,G
gkd (A), which is greater thanε. A contradiction to

Theorem 8.3.2 has been reached.

8.4.1 Analysis of Protocols

Next, we use Theorem 8.4.2 to analyze the protocols we presented in the first

part of the thesis. Consider first theLKH protocols. Recall that the protocolsplain-

LKH+ and improved-LKH+ are strongly secure against collusion attacks in the sym-

bolic model (Theorem 5.1.1). Using this fact, and Theorem 8.4.2, we can directly estab-

lish collusion-resistance of these protocols in the computational model. For simplicity,

we consider collusion-resistance of the protocols against adversaries whose execution

queries form simple sequences: for everyt > 0, thetth execution query,execute(S(t)),

issued by the adversary is such that eitherS(t) = S(t−1) ∪ {i} for somei /∈ S(t−1) or

S(t) = S(t−1) \ {i} for somei ∈ S(t−1). (S(0) is assumed to be the empty set.) In

the theorems below, the term “security against collusion attacks” refers to security with

94

respect to such adversaries only.

Theorem 8.4.3 Letn ≥ 2 andd ∈ {2, 3, . . . ,n}. Thed-ary instance of theplain-LKH+

protocol, when implemented forn users using a(τ1, ε1)-secure encryption schemeP =

(E,D), is (τp, t, εp)-non-adaptively secure against collusion attacks in the computational

model for anyτp, t, εp satisfying:

τp = τ1 − (t(dlogd(n)e − 1) + n) · (τ(R) + dtdlogd(n)eτ(E))− nτ(R)−O(1)

εp = 4(t(dlogd(n)e − 1) + n) · ε1

Theorem 8.4.4 Let n ≥ 2 andd ∈ {2, 3, . . . ,n}. Thed-ary instance of theimproved-

LKH+ protocol, when implemented forn users using a(τ1, ε1)-secure pseudo-random

generatorG and a(τ2, ε2)-secure encryption schemeP = (E,D), is (τi, t, εi)-non-

adaptively secure against collusion attacks in the computational model for anyτi, t, εi

satisfying:

τi = min{τ1, τ2} − (t+ n) · (τ(R) + 2dlogd(n)eτ(G) + t(d− 1)dlogd(n)eτ(E))

−n · (τ(R) + 2dlogd(n)eτ(G))−O(1)

εi = 21+dlogd(n)e(t+ n) · (5dlogd(n)eε1 + 2ε2)

Both these theorems follow immediately from Theorem 8.4.2, given the fact

that plain-LKH+ and improved-LKH+ are collusion-resistant in the symbolic model

(Theorem 5.1.1), and that both protocols are compliant in the sense of Definition 8.4.1.

The latter follows from the facts that group keys inplain-LKH+ and improved-LKH+

are used neither for encryption nor for pseudo-random generation, that both protocols

are safe, and that rekey messages generated by both protocols in any execution satisfy

the well-ordered property. The choice of the parametersτp, εp, τi and εi is based on

the following observation: for anyt-time execution ofplain-LKH+ (resp. improved-

LKH+), the number of purely random keys generated by the protocol is at mostt ·

(dlogd(n)e−1)+n (resp.n+ t), the number of ciphertexts output as rekey messages is

at mosttd·dlogd(n)e (resp.t(d−1)·dlogd(n)e), and the maximum depth of any pseudo-

95

random key is0 (resp. dlogd(n)e). Notice that for both the protocols, the security

reduction factors we obtain are polynomial inn andt.

Security statements of the above nature cannot be made forplain-LKH and

improved-LKH [46, 45, 10] since neither of these protocols satisfy the compliance prop-

erty required by Theorem 8.4.2. Indeed, since group keys are used to encrypt other keys

in both these protocols, their pseudo-randomness (in the sense of Definition 7.4.3) is not

even possible to prove. In principle, using group keys for rekeying operations (as done

in plain-LKH andimproved-LKH) as well as for performing other cryptographic appli-

cations (like group message encryption or group message authentication) could lead to

complete compromise of these keyseven by a passive eavesdropper on the channel.

Now consider the subset cover protocols. Recall that both theCS protocol

and theSD protocol are strongly secure against collusion attacks in the symbolic model

(Theorems 5.2.1 and 5.2.2). By observing that both these protocols are compliant, and

by invoking Theorem 8.4.2 again, we conclude the following.

Theorem 8.4.5 TheCS protocol, when implemented forn users using a(τ1, ε1)-secure

encryption schemeP = (E,D), is (τc, t, εc)-non-adaptively secure against collusion

attacks in the computational model, for anyτc, t, εc satisfying:

τc = τ1 − (t+ 2n) · (τ(R) + ntdlog2(n)eτ(E))− nτ(R)−O(1)

εc = 4(t+ 2n) · ε1

Theorem 8.4.6 TheSD protocol, when implemented forn users using a(τ1, ε1)-secure

pseudo-random generatorG and a(τ2, ε2)-secure encryption schemeP = (E,D), is

(τs, t, εs)-non-adaptively secure against collusion attacks in the computational model,

for anyτs, t, εs satisfying:

τs = min{τ1, τ2} − (t+ 2n) · (τ(R) + 4n2τ(G) + tnτ(E))

− n · (τ(R) + 4n2τ(G))−O(1)

εs = 8n2(t+ 2n) · (10dlog2(n)eε1 + 2ε2)

In comparison with the security results in [34], the proofs of the above the-

orems are simpler, and both theorems follow almost immediately from the symbolic

96

security of the protocols under consideration. The choice of the parameters is based on

the observation that in anyt-time execution of theCS (resp.SD) protocol, the number

of purely random keys generated by the protocol is at most2n+ t, the number of cipher-

texts output as rekey messages is at mostnt · dlog2(n)e (resp.nt), and the maximum

depth of any pseudo-random key used in the protocol is0 (resp. 2dlog2(n)e). We re-

mark that the above theorems establish security of these protocols against non-adaptive

adversaries only, whereas in [34], security against adaptive adversaries is also proven.

The issue of proving security against adaptive adversaries is addressed separately in

Chapter 9.

8.5 Proof of Theorem 8.3.2

We conclude the chapter with a proof of the main result, Theorem 8.3.2. Given

any (n, q, d)-adversaryA that is valid and compliant, and that runs in timeτ , we con-

struct a set of adversaries, which fall into three categories:

• adversaries oftype-1, denotedA1
d′,be,bc

, one for eachd′ ∈ {0, 1, . . . , d} and

be, bc ∈ {0, 1} and each running in time at mostτ1;

• adversaries oftype-2, denotedA2
bc

, one for eachbc ∈ {0, 1} and each running in

time at mostτ2; and

• adversaries oftype-3, denotedA3
d′, one for eachd′ ∈ {0, 1, . . . , d} and each run-

ning in time at mostτ1.

We construct these adversaries in a manner such that if∆P,G
adpt(A) > ε, then for

some tuple(d′, be, bc) ∈ {0, 1, . . . , d} × {0, 1} × {0, 1}, either∆G
prg(A

1
d′,be,bc

) > ε1,

or ∆G
prg(A

3
d′) > ε1 or ∆P

enc(A
2
bc

) > ε2. Such a condition contradicts the security

assumptions we made forP andG, thus implying that∆P,G
adpt(A) is bounded from above

by ε for anyA that is valid and compliant and that runs in time at mostτ .

97

8.5.1 Notations

Let Σd be the set of all binary sequences of length at mostd; this in-

cludes the empty sequence, which we denote byε. For anyd̃ ∈ [d], any sequence

σ = (b1, . . . , bd̃) ∈ Σd and anyRi ∈ R, let Gσ(Ri) denote the symbolic key

Gbd̃
(Gbd̃−1

(· · ·Gb1(Ri) · · ·)), and letGε(Ri) denote the keyRi. Since the number of

purely random symbolic keys used inA’s queries is at mostn and since all keys are

of depth at mostd, we can, without loss of generality, assume that all keys used inA’s

queries are of the formGσ(Ri) for somei ∈ [n] and someσ ∈ Σd.

Let d̃ ∈ [d] andσ = (b1, . . . , bd̃) ∈ Σd. For anyd′ ∈ {0, 1, . . . , d}, let

prefix(σ, d′) denote thed′-long prefix ofσ if d′ ≤ d̃; let it denoteσ otherwise. That is,

prefix(σ, d′) =


ε if d′ = 0

(b1, . . . , bd′) if 1 ≤ d′ ≤ d̃

σ otherwise

For anyd′ ∈ {1, . . . , d}, let near prefix(σ, d′) be defined as follows:

near prefix(σ, d′) =

 (b1, . . . , bd′−1, 1− bd′) if 1 ≤ d′ ≤ d̃

(b1, . . . , bd̃−1, 1− bd̃) otherwise

We extend the notion of prefixes and near-prefixes to symbolic keys in the

natural manner. For anyσ ∈ Σd, any keyK = Gσ(Ri) and anyd′ ∈ {0, 1, . . . , d}, let

prefix(K , d′) = Gprefix(σ,d′)(Ri). If K = Ri, prefix(K , d′) denotesRi for any d′ ≥ 0.

Let near prefixes(K) denote the set{Gnear prefix(σ,d′)(Ri)}d′=1,...,d; this set is empty if

K = Ri.

8.5.2 The Reduction

Each of our adversaries (oftype-1, type-2 as well astype-3) works in two

phases: asetupphase and anexecutionphase. The setup phase is similar for all types

of adversaries and is illustrated in figure Figure 8.3. In this phase, the adversaries es-

sentially initialize some variables (to be used in the execution phase) and generate a

98

PHASE I: SETUP

001. Initialize two mapsψ andψ′, a setM, and a listL , all to be empty
002. Initialize a boolean valuegood event← 0
003. Samplei andσ uniformly at random from[n] andΣd respectively
004. LetKcrit = Gσ(Ri).

(Kcrit stands for the “critical” (symbolic) key. Adversaries oftype-2 asso-
ciateKcrit with the key used by their oracleOP

b while those oftype-1 and
type-3 associate it with a key derived from their input.)

Figure 8.3: The setup phase for each of our adversaries for Theorem 8.3.2.

symbolic keyKcrit (called thecritical key), uniformly at random from the space of all

symbolic keys of depthd that can be generated from the set{R1, . . . ,Rn}.

The execution phase of each of the adversary types is shown in three different

figures—figures Figure 8.4, Figure 8.6 and Figure 8.8. Adversaries of each type execute

A in a black-box manner and use two sub-procedures to evaluate the keys and the

messages generated byA in the execution. The procedure used to evaluate messages is

denotedeval (i) for type-i adversaries and that to evaluate keys is denotedkey eval (i).

Each of thetype-1 and type-3 adversaries receive, as input, a bitstrings = s0 ‖ s1

(such thats0, s1 ∈ {0, 1}η), which is sampled from eitherXG
0 orXG

1 , and its objective is

to deduce which distributions is sampled from. Adversaries of both these types uses to

evaluate keys created byA via a common procedurekey eval (1) shown in figure Figure

8.5. Each of thetype-2 adversaries is given black-box access to a procedureOP
b , and

its objective is to guess the bitb. Each such adversary usesOP
b to evaluate ciphertexts

queried byA, as shown in figure Figure 8.6. It is easy to check that the running time of

each of the adversaries is at leastτ + n · (τ(R) + 2dτ(G) + qτ(E)) + O(1), which is

bounded from above by bothτ1 andτ2, as desired.

99

ADVERSARY A1
d′,be,bc

, PHASE II: EXECUTION

000. LetKtarget = prefix(Kcrit, d
′).

(While evaluating symbolic keys,A1
d′,be,bc

mapsG(Ktarget) to its input
s0 ‖ s1.)

010. RunA.
020. WhenA makes a query of the formeval(M),
021. LetM←M∪ {M }.
022. LetKfirst be the key s.t.Kfirst occurs inM , Kfirst /∈ Rec(M)

and there existsM ′ for whichEKfirst
(M ′) ∈ Rec(M).

(If there is no such key,Kfirst = ⊥)
023. Reply witheval (1)(M ,Kfirst, 0)
030. WhenA makes a query of the formchallenge(K),
031. If bc = 0, reply withkey eval (1)(K , 0).
032. Else, reply with a uniformly random sample from{0, 1}η.
040. WhenA halts, output whateverA outputs.

procedure eval (1)(M ,Kfirst, flag)
100. If M = K for some symbolic keyK ,
101. Returnkey eval (1)(K , flag).
110. If M = EK (M ′) for some symbolic keyK and symbolic messageM ′,
120. If flag = 0 andK 6= Kfirst,
121. ReturnEkey eval(1)(K ,0)(eval

(1)(M ′,Kfirst, 0)).
130. If flag = 0 andK = Kfirst andK 6= Kcrit,
131. If K /∈ L andgood event = 0, appendK to L .
132. If K ∈ L , returnEkey eval(1)(K ,0)(eval

(1)(M ′,Kfirst, 1)).
133. Else, returnEkey eval(1)(K ,0)(eval

(1)(M ′,Kfirst, 0)).
140. If flag = 0 andK = Kfirst = Kcrit,
141. good event← 1.
142. ReturnEkey eval(1)(K ,0)(eval

(1)(M ′,Kfirst, be))

150. If flag = 1, returnEkey eval(1)(K ,1)(eval
(1)(M ′,Kfirst, 1)).

Figure 8.4: The execution phase fortype-1 adversaries.

8.5.3 The Analysis

For any execution of adversaryA, let outkeys(A) denote the random variable

corresponding to the subset ofenckeys(M(A)) such that for everyK ∈ outkeys(A),

the following is true:

100

procedure key eval (1)(K , flag)
200. If flag = 0, do the following:
201. If Ktarget ∈ Rec(K),
202. If K = Ktarget = Kcrit andgood event = 1, do the following:
203. Ifψ(K) is undefined, setψ(K)← R. Returnψ(K).
204. Else, output a random bit.Halt!
205. If K = Gb(Ktarget) for someb ∈ {0, 1},
206. If good event = 1, returnsb.
207. Else, output a random bit.Halt!
208. If K ∈ near prefixes(Ktarget),
209. Ifψ′(K) is undefined, setψ′(K)← R. Returnψ′(K).
210. If K ∈ R,
211. Ifψ(K) is undefined, setψ(K)← R. Returnψ(K).
212. If K = Gb′(K

′) for someb ′ ∈ {0, 1} andK ′ 6= Ktarget,
ReturnGb′(key eval (1)(K ′, 0)).

220. If flag = 1, return a uniformly random sample from{0, 1}η

Figure 8.5: Procedurekey eval (1) used bytype-1 andtype-3 adversaries.

• K /∈ Rec(M(A)); and

• There exists someM ′ such thatEK (M ′) ∈ Rec(M(A)).

Intuitively, outkeys(A) is the set of all unrecoverable encryption keys occur-

ring in A’s queries such that each such key occurs as the “outermost” unrecoverable key

in some query ofA.

Before proceeding to analyze the three types of adversaries we have con-

structed, we make one important remark about them. Observe line 022 for each of

these adversaries. The keyKfirst defined in this line is the outermost unrecoverable key

in the messageM queried byA. We claim thatKfirst is, in fact, contained inoutkeys(A).

This follows from the fact thatA is a compliant adversary: SinceA is compliant, its

evaluation queries satisfy the well-ordered property (Definition 8.2.2) and soKfirst (or

any pseudo-random inverse of it)cannotbe used as a message key in any other message

that is evaluatedafter M . This, in turn, implies thatKfirst cannot be recoverable in any

101

ADVERSARY A2
bc

, PHASE II: EXECUTION

010. RunA.
020. WhenA makes a query of the formeval(M),
021. LetM←M∪ {M }.
022. LetKfirst be the key s.t.Kfirst occurs inM , Kfirst /∈ Rec(M)

and there existsM ′ for whichEKfirst
(M ′) ∈ Rec(M).

(If there is no such key,Kfirst = ⊥)
023. Reply witheval (2)(M ,Kfirst, 0)
030. WhenA makes a query of the formchallenge(K),
031. If bc = 0, reply withkey eval (2)(K , 0).
032. Else, reply with a uniformly random sample from{0, 1}η.
040. WhenA halts, output whateverA outputs.

procedure eval (2)(M ,Kfirst, flag)
100. If M = K for some symbolic keyK ,
101. Returnkey eval (2)(K , flag).
110. If M = EK (M ′) for some symbolic keyK and symbolic messageM ′,
120. If flag = 0 andK 6= Kfirst,
121. ReturnEkey eval(2)(K ,0)(eval

(2)(M ′,Kfirst, 0)).
130. If flag = 0 andK = Kfirst andK 6= Kcrit,
131. If K /∈ L andgood event = 0, appendK to L .
132. If K ∈ L , returnEkey eval(2)(K ,0)(eval

(2)(M ′,Kfirst, 1)).
133. Else, returnEkey eval(2)(K ,0)(eval

(2)(M ′,Kfirst, 0)).
140. If flag = 0 andK = Kfirst = Kcrit,
141. good event← 1.
142. m ′

0 ← eval (2)(M ′,Kfirst, 0)

143. m ′
1 ← eval (2)(M ′,Kfirst, 1)

144. ReturnOP
b (m

′
0,m

′
1)

150. If flag = 1, returnEkey eval(2)(K ,1)(eval
(2)(M ′,Kfirst, 1)).

Figure 8.6: The execution phase fortype-2 adversaries.

evaluation query made aftereval(M), which meansKfirst /∈ Rec(M(A)). This, and

the the fact thatEKfirst
(M ′) ∈ Rec(M) ⊆ Rec(M(A)) (M ′ as defined in line 022),

implies thatKfirst is contained inoutkeys(A).

We first consider the adversaries oftype-1. Letb denote the bit corresponding

to the input provided to any adversary of this type: ifb = 0, the input is sampled

102

procedure key eval (2)(K , flag)
200. If flag = 0, do the following:
201. If Kcrit ∈ Rec(K), output a random bit.Halt!
202. If K ∈ near prefixes(Kcrit),
203. Ifψ′(K) is undefined, setψ′(K)← R.
204. Returnψ′(K).
205. If K ∈ R,
206. Ifψ(K) is undefined, setψ(K)← R.
207. Returnψ(K).
208. If K = Gb′(K

′) for some keyK ′ andb ′ ∈ {0, 1},
ReturnGb′(key eval (2)(K ′, 0)).

210. If flag = 1, return a uniformly random sample from{0, 1}η

Figure 8.7: Procedurekey eval (2) used bytype-2 adversaries.

according toXG
0 , and if b = 1, the input is sampled according toXG

1 . Let Bad be the

event that the critical keyKcrit is not in outkeys(A) for the execution ofA as defined in

any adversary oftype-1. It is straightforward to check that when eventBad occurs, the

output of any such adversary is independent of its input. Furthermore, the occurrence

of Bad itself is computationally independent of the input provided to the adversary, as

formalized in the following proposition.

Proposition 8.5.1 |P[Bad | b = 0]−P[Bad | b = 1]| ≤ ε1

Proof: The proof is by contradiction. Any adversary oftype-1 for which the condition

in the proposition is defied can be transformed into one that outputs1 if and only if Bad

occurs. (This can be done with essentially no loss in running time complexity.) The

transformed adversary would violate the(τ1, ε1)-security ofG.

For any(d′, be, bc) ∈ {0, 1, . . . , d} × {0, 1} × {0, 1}, consider thetype-1

adversaryA1
d′,be,bc

. Let Θ1
d′,be,bc

denote the event that the output ofA1
d′,be,bc

equals1. So,

∆G
prg(A

1
d′,be,bc

) = |P[Θ1
d′,be,bc

| b = 0]−P[Θ1
d′,be,bc

| b = 1]|

We expand this quantity in terms of the occurrence/non-occurrence of event

Bad. Below, and for the rest of the proof, we use the shorthandA; B to denoteA ∧ B

103

for any two eventsA andB.

∆G
prg(A

1
d′,be,bc

) = |P[Θ1
d′,be,bc

; Bad | b = 0]−P[Θ1
d′,be,bc

; Bad | b = 1]

+ P[Θ1
d′,be,bc

; Bad | b = 0]−P[Θ1
d′,be,bc

; Bad | b = 1]|

≥ |P[Θ1
d′,be,bc

; Bad | b = 0]−P[Θ1
d′,be,bc

; Bad | b = 1]|

− |P[Θ1
d′,be,bc

; Bad | b = 0]−P[Θ1
d′,be,bc

; Bad | b = 1]|

= |P[Θ1
d′,be,bc

; Bad | b = 0]−P[Θ1
d′,be,bc

; Bad | b = 1]|

−P[Θ1
d′,be,bc

| Bad] · |P[Bad | b = 0]−P[Bad | b = 1]| (8.1)

≥ |P[Θ1
d′,be,bc

; Bad | b = 0]−P[Θ1
d′,be,bc

; Bad | b = 1]|

− ε1 (8.2)

Here, equation (8.1) follows from the fact that given the occurrence ofBad, the output of

A1
d′,be,bc

is independent of the bitb, and equation (8.2) follows from the proposition 8.5.1.

Let ∆1
d′,be,bc

denote the quantityP[Θ1
d′,be,bc

; Bad | b = 0]−P[Θ1
d′,be,bc

; Bad |

b = 1]. Since ∆G
prg(A

1
d′,be,bc

) must be bounded from above byε1 for any d′ ∈

{0, 1, . . . , d} and anybe, bc ∈ {0, 1}, we conclude that for any such values ofd′, be

andbc,

|∆1
d′,be,bc

| ≤ ∆G
prg(A

1
d′,be,bc

) + ε1

≤ 2ε1 (8.3)

In a similar vein as above, we define eventsBad andΘ2
bc

for adversaries of

type-2: Bad is the event thatKcrit does not occur inoutkeys(A) whenA is executed

by A2
bc

(as shown in figure Figure 8.6) andΘ2
bc

is the event thatA2
bc

outputs1. Let ∆2
bc

denote the quantityP[Θ2
bc

; Bad | b = 0] − P[Θ2
bc

; Bad | b = 1] with b being the bit

chosen by the oracleOP
b given toA2

bc
. As above, we can prove that for anybc ∈ {0, 1}:

|∆2
bc
| ≤ 2ε2 (8.4)

For anytype-3 adversaryA3
d′, let Bad be the event that the critical keyKcrit is

not contained inK(A) whenA is executed byA3
d′ (as shown in figure Figure 8.8). LetΘ3

d′

104

ADVERSARY A3
d′ , PHASE II: EXECUTION

000. LetKtarget = prefix(Kcrit, d
′).

(While evaluating symbolic keys,A1
d′ mapsG(Ktarget) to its inputs0 ‖ s1.)

010. RunA.
020. WhenA makes a query of the formeval(M),
021. LetM←M∪ {M }.
022. LetKfirst be the key s.t.Kfirst occurs inM , Kfirst /∈ Rec(M)

and there existsM ′ for whichEKfirst
(M ′) ∈ Rec(M).

(If there is no such key,Kfirst = ⊥)
023. Reply witheval (3)(M ,Kfirst, 0)
030. WhenA makes a query of the formchallenge(K),
031. If K = Kcrit,
032. good event← 1. Returnkey eval (1)(K , 0).
033. Else,
034. If good event = 0, returnkey eval (1)(K , 1).
035. Else, returnkey eval (1)(K , 0).
040. WhenA halts, output whateverA outputs.

procedure eval (3)(M ,Kfirst, flag)
100. If M = K for some symbolic keyK ,
101. Returnkey eval (1)(K , flag).
110. If M = EK (M ′) for some symbolic keyK and symbolic messageM ′,
120. If flag = 0 andK 6= Kfirst,
121. ReturnEkey eval(1)(K ,0)(eval

(3)(M ′,Kfirst, 0)).
130. If flag = 0 andK = Kfirst,
131. ReturnEkey eval(1)(K ,0)(eval

(3)(M ′,Kfirst, 1)).
140. If flag = 1,
141. ReturnEkey eval(1)(K ,1)(eval

(3)(M ′,Kfirst, 1)).

Figure 8.8: The execution phase fortype-3 adversaries.

be the event thatA3
d′ outputs1 and∆3

d′ the quantityP[Θ3
d′ ; Bad | b = 0]−P[Θ3

d′ ; Bad |

b = 1]. (Here,b denotes the bit corresponding to the input given toA3
d′.) As in the case

of type-1 andtype-2 adversaries, we can prove that for anyd′ ∈ {0, 1, . . . , d}:

|∆3
d′| ≤ 2ε1 (8.5)

105

RELATING ∆P,G
adpt(A) TO ∆1

d′,be,bc
,∆2

bc
,∆3

d′ . Next, we express∆P,G
adpt(A) in terms of the

quantities∆1
d′,be,bc

,∆2
bc

and∆3
d′ defined above. Towards this, we first define a sequence

of events for each type of adversary we have constructed, and then use these events to

relate∆1
d′,be,bc

,∆2
bc

and∆3
d′, first, to each other, and then, to∆P,G

adpt(A).

Consider again the adversaries oftype-1. For any such adversaryA1
d′,be,bc

and

any i ∈ [q], let Φi be the event that the size ofoutkeys(A), as defined for the execution

of A by A1
d′,be,bc

, is equal toi. (We assume, without loss of generality, thatoutkeys(A) is

non-empty for any execution ofA.) For anyj ∈ [q], let Ψj be the event that the critical

keyKcrit is thejth among all keys inoutkeys(A) (where the latter are considered in the

order of their occurrence as outermost unrecoverable keys inA’s queries). Clearly, for

any i1 6= i2, Φi1 andΦi2 are mutually exclusive and for anyj1 6= j2, Ψj1 andΨj2 are

mutually exclusive. Furthermore, the eventBad (as defined fortype-1 adversaries) can

be expressed in terms of these events as follows:

Bad =

q∨
i=1

(
Φi ∧

[i∨
j=1

Ψj

])

=

q∨
i=1

i∨
j=1

(
Φi ∧Ψj

)
(8.6)

Events of this kind can be defined fortype-2 adversaries as well. We abuse

notation and useΦi to denote also the event thatoutkeys(A), as defined for the execution

of A by sometype-2 adversary, has sizei andΨj the event thatKcrit is thejth element

in the setoutkeys(A) so defined. Clearly, equation (8.6) holds even in the setting of

type-2 adversaries as well.

In the context oftype-3 adversaries, we useΦi to denote the event thatK(A)

(for the adversary’s execution ofA) has sizei and Ψj the event thatKcrit is the jth

element inK(A). Let qc be an upper bound on the number of challenge queries made by

A in any execution. Equation (8.6) holds even in the setting oftype-3 adversaries, with

the slight difference thatq gets substituted withqc here.

106

For any(d′, be, bc) ∈ {0, 1, . . . , d}×{0, 1}×{0, 1}, let∆1
d′,be,bc,i,j

,∆2
bc,i,j

and

∆3
d′,i,j be probability differences defined as follows:

∆1
d′,be,bc,i,j = P[Θ1

d′,be,bc
; Φi; Ψj | b = 0]−P[Θ1

d′,be,bc
; Φi; Ψj | b = 1]

∆2
bc,i,j = P[Θ2

bc
; Φi; Ψj | b = 0]−P[Θ2

bc
; Φi; Ψj | b = 1]

∆3
d′,i,j = P[Θ3

d′ ; Φi; Ψj | b = 0]−P[Θ3
d′ ; Φi; Ψj | b = 1]

Using equation (8.6) and the fact that the eventsΨ1, . . . ,Ψq andΦ1, . . . ,Φq

are mutually exclusive, we obtain the following:

∆1
d′,be,bc

=

q∑
i=1

i∑
j=1

∆1
d′,be,bc,i,j (8.7)

∆2
bc

=

q∑
i=1

i∑
j=1

∆2
bc,i,j (8.8)

∆3
d′ =

qc∑
i=1

i∑
j=1

∆3
d′,i,j (8.9)

We bound the quantity∆P,G
adpt(A) (from above) in terms of quantities of

the form ∆1
d′,be,bc,i,j

,∆2
bc,i,j

and ∆3
d′,i,j and then use equations (8.7), (8.8) and (8.9)

(and (8.3), (9.4), (8.5)) to relate it toε1 andε2 as desired. First, we re-write∆P,G
adpt(A)

in terms of probabilities of the formP[Θ1
∗; Φi; Ψj|b = ∗]. The following lemma does

precisely this.

Lemma 8.5.2

∆P,G
adpt(A) = n · 2d ·

∣∣∣∣∣
q∑
i=1

[
P[Θ1

0,0,0; Φi; Ψ1 | b = 0]−P[Θ1
0,0,1; Φi; Ψ1 | b = 0]

]∣∣∣∣∣
In the next lemma, we relate probabilities of the formP[Θ1

∗; Φi; Ψj|b = ∗]

to each other and to those of the formP[Θ2
∗; Φi; Ψj|b = ∗] andP[Θ3

∗; Φi; Ψj|b = ∗].

Lemma 8.5.3 (Hybrid Cancellation Lemma - I)

1. ∀d′ ∈ {0, 1, . . . , d− 1},∀(be, bc) ∈ {0, 1}2,∀i ∈ [q],∀j ∈ [i] :

P[Θ1
d′,be,bc

; Φi; Ψj | b = 1] = P[Θ1
d′+1,be,bc

; Φi; Ψj | b = 0]

107

2. ∀bc ∈ {0, 1},∀i ∈ [q],∀j ∈ [i] :

P[Θ1
d,0,bc

; Φi; Ψj | b = 1] = P[Θ2
bc

; Φi; Ψj | b = 0]

and, P[Θ1
d,1,bc

; Φi; Ψj | b = 1] = P[Θ2
bc

; Φi; Ψj | b = 1]

3. ∀bc ∈ {0, 1},∀i ∈ [q],∀j ∈ {0, 1, . . . , i− 1} :

P[Θ1
0,1,bc

; Φi; Ψj | b = 0] = P[Θ1
0,0,bc

; Φi; Ψj+1 | b = 0]

4. ∀d′ ∈ {0, 1, . . . , d− 1},∀i ∈ [qc],∀j ∈ [i] :

P[Θ3
d′ ; Φi; Ψj | b = 1] = P[Θ3

d′+1; Φi; Ψj | b = 0]

5. ∀i ∈ [qc],∀j ∈ {0, 1, . . . , i− 1} :

P[Θ3
d; Φi; Ψj | b = 1] = P[Θ3

0; Φi; Ψj+1 | b = 0]

6. And finally,

q∑
i=1

P[Θ1
0,1,0; Φi; Ψi | b = 0] =

qc∑
i=1

P[Θ3
0; Φi; Ψ1 | b = 0]

and,
q∑
i=1

P[Θ1
0,1,1; Φi; Ψi | b = 0] =

qc∑
i=1

P[Θ3
d; Φi; Ψi | b = 1]

Before presenting the proofs of these two lemmas, we illustrate how they suf-

fice to prove the theorem. Let∆ be defined as follows:

∆ =

q∑
i=1

[
P[Θ1

0,0,0; Φi; Ψj | b = 0]−P[Θ1
0,0,1; Φi; Ψj | b = 0]

]
(8.10)

108

From Lemma 8.5.2, we know that∆P,G
adpt(A) = n · 2d · |∆|. By invoking Lemma 8.5.3

multiple times, we express∆ as a sequence of summations as follows:

∆ =



∑q
i=1



∑i
j=1



∑d
d′=0

 P[Θ1
d′,0,0; Φi; Ψj | b = 0]

−P[Θ1
d′,0,0; Φi; Ψj | b = 1]



+

 P[Θ2
0; Φi; Ψj | b = 0]

−P[Θ2
0; Φi; Ψj | b = 1]



−
∑d

d′=0

 P[Θ1
d′,1,0; Φi; Ψj | b = 0]

−P[Θ1
d′,1,0; Φi; Ψj | b = 1]





−
∑i

j=1



∑d
d′=0

 P[Θ1
d′,0,1; Φi; Ψj | b = 0]

−P[Θ1
d′,0,1; Φi; Ψj | b = 1]



+

 P[Θ2
1; Φi; Ψj | b = 0]

−P[Θ2
1; Φi; Ψj | b = 1]



−
∑d

d′=0

 P[Θ1
d′,1,1; Φi; Ψj | b = 0]

−P[Θ1
d′,1,1; Φi; Ψj | b = 1]







+
∑qc

i=1

∑i
j=1

∑d
d′=0

 P[Θ3
d′ ; Φi; Ψj | b = 0]

−P[Θ3
d′ ; Φi; Ψj | b = 1]




which can be written, in short, as:

109

∆ =



∑q
i=1


∑i

j=1

(∑d
d′=0 ∆1

d′,0,0,i,j + ∆2
0,i,j −

∑d
d′=1 ∆3

d′,1,0,i,j

)

−
∑i

j=1

(∑d
d′=0 ∆1

d′,0,1,i,j + ∆2
1,i,j −

∑d
d′=1 ∆3

d′,1,1,i,j

)


+
∑qc

i=1

∑qc
j=1

∑d
d′=0 ∆3

d′,i,j


Now, applying equations (8.7), (8.8) and (8.9), we get:

∆ =


∑d

d′=0 ∆1
d′,0,0 + ∆2

0 −
∑d

d′=1 ∆3
d′,1,0

−
∑d

d′=0 ∆1
d′,0,1 + ∆2

1 −
∑d

d′=1 ∆3
d′,1,1 +

∑d
d′=0 ∆3

d′


Finally, using equations (8.3), (9.4) and (8.5), we obtain our desired goal:

∆P,G
adpt(A) = n · 2d · |∆|

≤ n · 2d ·


∑d

d′=0 |∆1
d′,0,0|+ |∆2

0|+
∑d

d′=1 |∆3
d′,1,0|

+
∑d

d′=0 |∆1
d′,0,1|+ |∆2

1|+
∑d

d′=1 |∆3
d′,1,1|+

∑d
d′=0 |∆3

d′|


= 2n2d · {4dε1 + 2ε2 + dε1}

= 2n2d · {5dε1 + 2ε2}

8.5.4 Proof of Lemma 8.5.2

Let ∆ be the term defined in equation (8.10). Our goal is to show that|∆| =
1

n·2d ·∆P,G
adpt(A). Towards this, we first re-write∆ as follows:

∆ =

q∑
i=1

 P[Θ1
0,0,0; Φi | Ψ1; b = 0] ·P[Ψ1; b = 0]

− P[Θ1
0,0,1; Φi | Ψ1; b = 0] ·P[Ψ1; b = 0]


We claim that the probability that the eventΨ1 occurs in eitherA1

0,0,0 or A1
0,0,1, condi-

tioned on bitb being equal to0, is exactly 1
n·2d . The proof of this claim follows from

two observations:

110

• LetKn,d be the set of all keys of depth at mostd that can be derived from the keys

R1, . . . ,Rn; that is,Kn,d = {K | ∃i ∈ [n] s.t.K ∈ Rec(Ri) ∧ depth(K) ≤ d}.

Our first observation is that for anyK ∈ Kn,d, the probability thatKcrit (as define

in A1
0,0,0 or A1

0,0,1) equalsK is equal to 1
n·2d .

• Second, we note that for anyK ∈ Kn,d, the probability that thefirst key in

outkeys(A), sayKf , as defined forA’s execution inA1
0,0,0 (resp. A1

0,0,1), equals

K conditioned on the eventsKcrit = K andb = 0, is equal to the probability that

Kf equalsK whenA executes with black-box access toOP,G
adpt,0 (resp.OP,G

adpt,1).

This second observation is a bit non-trivial and requires a careful understanding

of the execution phases ofA1
0,0,0 andA1

0,0,1 and comparison of the same with the

procedureOP,G
adpt,b; details are omitted.

Thus,∆ can further be re-written as:

∆ =
1

n · 2d
·

q∑
i=1

[
P[Θ1

0,0,0; Φi | Ψ1; b = 0]−P[Θ1
0,0,1; Φi | Ψ1; b = 0]

]
Finally, we observe that the probability ofA1

0,0,0 (resp.A1
0,0,1) outputting1 and of event

Φi taking place, conditioned on eventsΨ1 andb = 0 is the same as the probability ofA

outputting1 andΦi taking place, when the former is given black-box access toOP,G
adpt,0

(resp.OP,G
adpt,1). This follows from the fact thatA is a valid and compliant adversary and

that conditioned on eventsΨ1 andb = 0 taking place, all replies given byA1
0,0,0 (resp.

A1
0,0,1) to A’s queries are determined just as in the procedureOP,G

adpt,0 (resp. OP,G
adpt,1).

Thus,

∆ =
1

n · 2d
·

q∑
i=1

[
P[AOP,G

adpt,0 = 1]−P[AOP,G
adpt,1 = 1]

]
From this, the lemma follows.

8.6 Related Work

The question of relating symbolic security notions with notions of security in

the computational model has been considered in several contexts prior to our work. The

111

pioneering efforts in this direction were made by Abadi and Rogaway [1] who proved

a computational soundness theorem for protocols based on symmetric-key encryption

only. (No other primitives were considered in [1].) Although the result of [1] is impor-

tant as a first step towards bridging the symbolic-computational divide, it is applicable

only in the context of passive adversaries (that is, adversaries who eavesdrop on the

protocol communication but do nothing else). In contrast, our result (Theorem 8.3.2)

enables security of protocols to be analyzed against adversaries who can adaptively in-

fluence the protocol execution. Security analysis with respect to such adversaries is

necessary for multi-user protocols like the ones we consider here. (Later on, in Chap-

ter 9, we further strengthen the adversarial model to incorporate adaptive corruptions

as well.) [2] extends the Abadi-Rogaway result to a wider class of protocols, namely,

to protocols that make use of encryption as well as secret sharing [42]; however, the

adversarial model used in [2] is the same as that of [1] and, in particular, it does not

incorporate adaptive attacks on protocols.

Other extensions of the Abadi-Rogaway result also exist in the literature but

they are largely orthogonal to the problem considered in this thesis. One notable ex-

tension is that due to Micciancio and Warinschi [33], who devise new techniques for

proving soundness of symbolic security proofs in the face ofactivecomputational ad-

versaries, that is, adversaries who can intercept and modify all communication between

protocol users. In order to prove soundness against such adversaries, a stronger com-

putational security notion for encryption schemes (namely,CCA-security [40]) is used

in [33]. (In contrast, our soundness result only relies onCPA-security.) We remark that

the result of [33] imposes several syntactic restrictions on the syntax of protocols which

are more stringent than the ordering constraint we have introduced; for example, in the

protocol class considered in [33], protocol users are not allowed to “forward” any ci-

phertext received from one user to another user, and the use of nested encryption is also

prohibited. Several extensions and generalizations of [33] have appeared in the litera-

ture (see, for example, [12, 16]); all these works primarily focus on security of two-party

cryptographic protocols (in particular, protocols for key exchange and mutual authen-

112

tication) in the presence of active adversaries. Our model, on the other hand, focusses

on multi-party protocols and considers their security in the face of passive butadaptive

adversaries. We do not incorporate active attacks in our attack model primarily for sim-

plicity, although we do believe that such an extension is possible and we leave it open

for future work.

8.7 Acknowledgement

Chapter 8, in part, is a reprint of the material as it appears in 33rd Internation

Colloquium on Automata, Languages and Programming (ICALP), July 2006, Miccian-

cio, Daniele; Panjwani, Saurabh. The dissertation author was the primary investigator

and author of this paper. The presentation of the material has been significantly im-

proved from the time of the original publication and some errors have also been elimi-

nated.

Chapter 9

Computational Security against

Adaptive Adversaries

The techniques developed in the previous chapter can be used for analyzing

security of GKD protocols in the computational model but only as long as security

againstnon-adaptiveadversaries (that is, adversaries who corrupt protocol users non-

adaptively) is the desired objective. In this chapter, we present a different, and more

powerful, approach for conducting security analysis of these protocols, which is appli-

cable even when user corruptions are performed by the adversary in an adaptive manner.

9.1 The Challenge Ahead

Arguing about security of multi-party protocols in the face of adaptive cor-

ruptions is a hard problem in cryptography. The possibility of user corruptions occur-

ring during protocol execution, and in a manner that is arbitrarily controlled by the

attacker, increases the threat to a protocol’s security and makes the task ofprovingpro-

tocols secure an unnerving task. Indeed, there exist protocols that are provably secure

against non-adaptive attacks but which can be completely broken once the adversary

is allowed to corrupt participants adaptively. (See [9] for an example based on secret

sharing schemes.) The situation is especially annoying for protocols that make use of

113

114

encryption—adversaries can spy on ciphertexts exchanged between two honest parties,

and later, at will, corrupt one of the parties, acquire its internal state, and use such infor-

mation to “open” all ciphertexts which were previously sent or received by that party.

While trying to prove security of such a protocol, one must argue that all “unopened”

ciphertexts (those that cannot be decrypted trivially using the compromised keys) leak

essentially no information to the adversary (that is, appear as good as encryptions of

random bitstrings). The heart of the problem lies in the fact that one does not a priori

know whichciphertexts are destined to be opened by the adversary and which are not,

since these decisions are made only as the protocol proceeds. Besides, every ciphertext

is a binding commitment to the plaintext it hides—one cannot hope to “fool” the adver-

sary by sending encryptions of random bitstrings every time and then, when he corrupts

a party, somehow convince him that the ciphertexts he saw earlier on (and which he can

now open) were, in fact, encryptions of real data.

In the past, security analysis of encryption-based multi-party protocols against

adaptive adversaries has largely been conducted using three approaches. The first (and

the simplest) one involves reducing the problem to the problem of proving security

against non-adaptive adversaries: in the security proof, one tries to guess the set of

parties that the adversary corrupts “beforehand” (that is, prior to protocol execution)

and then, if the guess is correct, does the rest of the proof just as in the non-adaptive

case. However, since the probability of guessing the corrupt set correctly is extremely

small (in particular, it is inversely exponential in the number of parties), such a proof

can be of very little use in practice. Reducing the problem of adaptive security to that of

non-adaptive security does not address the real challenge; it just bypasses it.

The second approach to adaptive security has been to study it in restricted

models where strict rules are imposed on the behavior of honest participants. The most

common imposition is that oferasure[3]—all honest parties should erase their past state

the moment they enter a new state configuration, wherein keys are generated afresh. In-

tuitively, such an imposition (rather, honest abidance by it) enables us to achieve adap-

tively secure encryption protocols because adversaries can no longer “open” previously-

115

sent ciphertexts evenafter corrupting the involved parties; doing so requires the keys

used to create the ciphertexts in the first place, which, we trust, have been diligently

erased from the system. However, investing such a level of trust in honest parties is an

unrealistic proposition—an honest party could simply forget to erase its previous states,

or else, internally deviate from the rules of the game (that is, purposely store past keys

and behave in an “honest-but-curious” manner). Besides, some cryptographic protocols,

for the sake of improving efficiency,requireusers to store keys received in the past (sev-

eral GKD protocols are of this nature) and such protocols would need to be re-designed

in order to comply with the model.

The third approach, and perhaps the most compelling one, to adaptive security

has been to develop non-standard notions of security of an encryption scheme. This

corresponds to a line of research initiated by Canettiet al. [9], who introduced a crypto-

graphic primitive, callednon-committing encryption, specifically to address the problem

of adaptive corruptions in multi-party protocols. Non-committing encryption schemes

have the unusual property that ciphertexts created using them need not behave as bind-

ing commitments on the corresponding plaintexts (hence the name “non-committing”).

That is, it is possible that an encryption of ‘0’ collide with an encryption of ‘1’ (or, more

generally, encryption of real data be the same as encryption of a random bitstring). How-

ever, such collisions occur with only negligible probability—the chances of encrypting

‘0’ and obtaining a ciphertext which can later be opened as ‘1’ are very small. At the

same time, these schemes allow to sample “ambiguous” ciphertexts (those that can be

opened as either ‘0’ or ‘1’) efficiently and toconvincean adversary of such a ciphertext

being an encryption of ‘0’ or of ‘1’, as the situation demands. Encryption protocols

implemented with non-committing encryption can be proven adaptively secure quite

easily: in the security proof, one simulates the real protocol by transmitting ambiguous

ciphertexts and upon corruption of a party, convinces the adversary that the ciphertexts

he saw earlier were indeed the encryptions of the revealed data.

Although interesting in their own right, non-committing encryption schemes

have their share of limitations as well: they are typically too inefficient for practical

116

applications, and allow only a restricted number of encryptions to be performed under a

single key. In fact, it has been shown [36] that any non-committing encryption scheme

that has a non-interactive encryption procedure must use a decryption key that isat

least as long as the total number of bits decrypted using it1. Such a restriction is too

prohibitive for real applications.

9.2 Overview of Our Result

We show that it is possible to argue about adaptive security of a large class of

encryption protocols—and of GKD protocols, in particular—without requiring erasures

and without resorting to primitives like non-committing encryption, while still achieving

efficiency that meets practical requirements. For simplicity, we focus on protocols that

use symmetric-key encryption only (that is, no pseudo-random generators are used) and

those in which every ciphertext is created by encrypting a key with asingleother key

(no nesting of the encryption operation)2. We show that in any such protocol, the quality

of adaptive security that can be provably achieved by a protocol is closely related to the

depthof the key graph3 generated in any protocol execution. More precisely, we prove

that in any encryption protocol for which execution key graphs (as defined in Chapter 4)

have size at mostn and depth at most̀, security in the symbolic model implies security

against adaptively-corrupting adversariesvia a reduction factor that isO(n · (2n)`).

That is, the smaller the depth of the key graph generated in any execution, the greater is

its strength against adaptive adversaries.

What makes our result of practical benefit is the fact that key graphs generated

by most known encryption protocols have depth much smaller (in fact, orders of magni-

tude smaller) than their total size. In the particular case of GKD protocols, key graphs

typically have depth at most logarithmic in the number of users, and thus, even in the
1Some non-committing encryption schemes [11] circumvent this impossibility result by studying the problem in

a restricted model where bounds on the frequency of communication between parties are placed.
2Extending our result to protocols that use nested encryption is also possible but the soundness theorem and the

corresponding proof become much more complex. We avoid nested encryption largely for the sake of simplicity (and
partly because most existing GKD protocols don’t use nesting).

3The depth of a graph refers to the length of the longest path in it.

117

size of graph. (See the examples in Chapter 5.) Furthermore, in most GKD protocols,

the depth of key graphs remains fixedeven for arbitrarily long runs of the protocol,

assuming the space of users has been ascertained beforehand. In general, the depth of

key graphs in encryption protocols is related to the number of decryptions performed by

users to recover certain keys or messages, while their size to the total number of users;

it is reasonable to expect that protocol designers, for the purpose of efficiency, would

strive to keep the former quantity smaller than the latter.

We apply our result to the security analysis of theplain-LKH+ protocol pre-

sented in Chapter 5 and show that the protocol’s security against adaptive corruptions

is related to the semantic security of the underlying encryption scheme via a reduction

factor that isquasi-polynomial in the number of protocol participants. (Specifically,

the reduction factor isO(nlog2(n)+1) with n being the total number of protocol users.)

This reduction factor, though not strictly polynomial, is still quite reasonable from a

practical perspective; for example, in a system with128 users, one is guaranteed that a

64-round execution ofplain-LKH+ provides at least64 bits of adaptive security (that is,

an efficient adversary has probability at most2−64 in subverting the protocol) when im-

plemented with commonly-used symmetric-key encryption schemes like counter-mode

AES [4]4. Our result practically eliminates the need for using expensive techniques like

non-committing encryption to build adaptively secure group key distribution protocols,

and it does this while matching the efficiency of existing schemes.

9.3 The Result

Let P = (E,D) be a symmetric-key encryption scheme. We consider a sim-

plified version of procedureOP,G
adpt,b (defined in Chapter 8) which only implements the

encryption schemeP, and denote it byOP
adpt,b. This procedure receives a parametern as

input and works as follows: it generates a set of keysk1, . . . , kn, each key being sampled

using an independent invocation ofR, and then accepts and responds to queries ofthree
4This calculation is based on the assumption that the block cipherAES used in the encryption scheme is a pseudo-

random permutation with128 bits of security.

118

types:

• Encryption queries:Upon receiving a query of the formencrypt(i, j) for some

i, j ∈ [n],OP
adpt,b responds with a sample fromEki

(kj).

• Corruption queries:Upon receiving a query of the formcorrupt(i) for some

i ∈ [n],OP
adpt,b returns the keyki.

• Challenge queries:Finally, OP
adpt,b receives and responds to challenge queries

just likeOP,G
adpt,b. A valid challenge query is of the formchallenge(i) for some

i ∈ [n], and for each such query,OP
adpt,b responds with the keyki if b = 0, and, if

b = 1, it responds with a keyri, sampled independently and uniformly at random

from {0, 1}η. (If OP
adpt,b receives the same querychallenge(i) multiple times,

and if b = 1, the reply equalsri each time.)

Encryption queries and corruption queries together model the evaluation

queries defined in the context ofOP,G
adpt,b, with the difference that the use of nested en-

cryption and pseudo-random generators is not permitted.

Consider any adversaryA given black-box access toOP
adpt,b. A can decide the

input n given to the procedure and can make multiple queries to it, interleavingly and

adaptively. We think of the queries ofA as creating a directed graph overn nodes (la-

beled1, 2, . . . , n), edge by edge, and in an adaptive fashion. Each queryencrypt(i, j)

made byA corresponds to the creation of an edge fromi to j, denotedi → j, in this

graph; such an edge models the fact that givenki and the ciphertextEki
(kj), A can easily

recover the keykj. (So, knowledge ofki “leads to” the knowledge ofkj.) For any adver-

saryA, the graph created by its queries in this manner is called thekey graphgenerated

by A and is denotedG(A). A nodei in G(A) for which A issues a querycorrupt(i) is

called acorrupt nodewhile one for whichA issues a querychallenge(i) is referred to

as achallenge node. The set of all corrupt nodes is denotedVcorr(A) and that of all chal-

lenge nodes is denotedVchal(A). Note thatG(A),Vcorr(A) andVchal(A) are all random

variables depending on the coins used by bothA andOP
adpt,b.

119

We assume thatVchal(A) is always non-empty and in any execution ofA, every

nodei ∈ Vchal(A) has at least one edge incident upon it. Put differently, this means that

A always makes at least one query of the formchallenge(i) and for each such query,

it makes at least one query of the formencrypt(x, i) during its entire execution. This

is without any loss of generality since an adversary for which these conditions are not

satisfied can be easily transformed (that is, without any significant difference in attack

advantage or time complexity) into one for which they are.

Similarly to the definition of valid adversaries in Chapter 8, we define validity

in the context ofOP
adpt,b as follows.

Definition 9.3.1 An adversaryA is calledvalid relative toOP
adpt,b if in any execution

involving interaction withOP
adpt,b, the values ofG(A),Vcorr(A) andVchal(A) are such

that:

1. For anyi ∈ Vcorr(A) and anyj ∈ Vchal(A), j is not reachable fromi in G(A).

2. Every node inVchal(A) has zero out-degree inG(A).

The first condition is equivalent to requiring that keys corresponding to chal-

lenge nodes not be symbolically recoverable byA. The second condition restricts these

keys from being used for encrypting other keys, which, as already discussed in Chap-

ter 8, is necessary for guaranteeing their pseudo-randomness.

For any adversaryA, let AOP
adpt,b denote the random variable corresponding to

the output ofA when given black-box access toOP
adpt,b. The adaptive advantage ofA

againstP is defined as the following quantity:

∆P
adpt(A) =

∣∣∣∣P[AOP
adpt,0 = 1]−P[AOP

adpt,1 = 1]

∣∣∣∣
As usual, both probabilities are taken over the coins used byA as well as byOP

adpt,b.

Let n, q, ` ∈ IN such that̀ < n. We say thatA is an(n, q, `)-adversary if

in any execution, the number of nodes and edges in the key graph generated byA are

bounded from above byn and q respectively and thedepthof the graph (that is, the

length of the longest path in it) is at most`. Note that the last condition also implies that

120

the key graph generated byA is acyclic (since in any graph with cycles, there exist paths

with infinite length).

Definition 9.3.2 An encryption schemeP is called(τ, n, q, `, ε)-secure against adaptive

attacksif for every valid(n, q, `)-adversaryA running in time at mostτ , ∆P
adpt(A) ≤ ε.

The following is the main result of this chapter:

Theorem 9.3.3 Let P = (E,D) a symmetric-key encryption scheme. IfP is (τ1, ε1)-

secure against chosen plaintext attacks, then it is(τ, n, q, `, ε)-secure against adaptive

attacks for any parametersτ, n, q, `, ε satisfying

τ = τ1 − (2nτ(R) + qτ(E) +O(1))

ε = ε1 ·
3n2

2
· (2n+ 1)`−1

We emphasize that in contrast to the soundness result of the previous chapter

(Theorem 8.3.2), the above result guarantees securitywithout any restrictions on the

order of queries made by adversaries. Thus, for protocols which generate key graphs

of small depth (like the ones we study in this thesis), this gives a more powerful tool to

analyze security—security can be proven against adaptively-corrupting adversaries, and

without requiring protocol messages to satisfy any ordering constraints. The downside,

however, is that the “amount” of security that can be guaranteed is intricately related

to the depth of protocol key graphs, which makes the result of limited applicability

in the context of protocols that generate arbitrary-depth key graphs. We believe that

improving the result to overcome this limitation is non-trivial, but a worthy direction for

future research; in particular, obtaining an analogous result but with a reduction factor

smaller thanΘ(n`) would be quite remarkable, and could lead to even newer techniques

to address adaptive corruptions in encryption protocols.

9.3.1 Relation with the Selective Decryption Problem

Our abstract game (involving the adversaryA and the oracle procedure

OP
adpt,b) is closely related to a well-studied problem in the cryptography literature called

121

the selective decryption problem. This problem often arises in the context of proving

adaptive security of multi-party protocols (see, for example, [9, 20]) but till date, no

satisfactory solution to the problem has been found. The problem involves an adversary

who interacts with an oracle in the following manner: the oracle initially generates a set

of plaintextsm1, · · · ,mn and a corresponding set of keysk1, · · · , kn. (We stress here

that the plaintexts are not chosen by the adversary, but generated by the challenger using

some fixed distribution; furthermore, they may be related to each other in an arbitrary

manner.) The adversary then requests the encryptions of all the plaintexts,{Eki
(mi)}ni=1

(whereE is a semantically secure encryption function), and later “opens” some of these

encryptions adaptively; that is, it queries an arbitrary setI ⊆ [n] and the oracle replies

with {ki}i∈I . The question now is to show that plaintexts corresponding to all unopened

ciphertexts are still “safe” in the sense that the adversary can learn no more informa-

tion about them than what it could anyway learn from the revealed plaintexts. In our

result, we are essentially generalizing the selective decryption problem by allowing the

adversary to request not onlysingleciphertexts butchainsof ciphertexts of the form

Ek1(k2),Ek2(k3),Ek3(k4), · · · and also to open such chains adaptively. Besides, we allow

the adversary to interleave its “encrypt” and “open” queries arbitrarily. Indeed, the fact

that ciphertexts can be asked for in an adaptive manner, possibly depending upon past

corruptions, is responsible for much of the complication in the proof of Theorem 9.3.3.

While the problem we are considering appears more general than the selective

decryption problem in several ways, there is one important caveat. In our problem, the

plaintexts on which encryption is performed are always keys, and the latter are assumed

to be generated in a mutually independent manner. It has been shown [20] that when

the selective decryption problem is considered with mutually independent plaintexts (as

in our problem), a solution to the problem does exist, and, in particular, it is possi-

ble to show that the adversary learns no more information about the hidden plaintexts

than what is easily computable from the opened ones. Our soundness theorem (Theo-

rem 9.3.3) essentially builds up on this positive result for selective decryption and ex-

tends it to the more general scenario of arbitrarily and adaptively generated key graphs.

122

The question of solving selective decryption without the independence assumption on

plaintexts, though, still remains open.

We remark here that independence of all keys is not just a simplifying assump-

tion in our theorem; it is arequirementfor the security of the protocols we are interested

in analyzing: a group key distribution protocol that uses related keys across key up-

dates cannot guarantee good security at all. Furthermore, an adaptively-secure group

key distribution protocol suffices to build adaptively-secure protocols for private group

communication since, as noted in Chapter 7, the two protocol problems are equivalent

to each other (even in the face of adaptive corruptions).

9.4 Analysis of Protocols

Before proving Theorem 9.3.3, we first illustrate how it is applicable to the

security analysis of GKD protocols against adaptive adversaries.

Let Π be any S-GKD protocol forn users and let̂n, q̂, ˆ̀be functions defined

over the set of natural numbers. We say thatΠ is an(n̂, q̂, ˆ̀)-S-GKD protocol if for all

t > 0, for all sequences
−→
S (t) ∈ (2[n])t, the number of purely random keys used inMΠ−→

S (t)

is at most̂n(t), the number of pseudo-random keys used in it is zero, the size ofMΠ−→
S (t)

is at mostq̂(t) and the depth of the key graphGΠ−→
S (t)

(corresponding to the execution of

Π when given
−→
S (t) as input) is at most̀̂(t). We say thatΠ is group-key-compliantif

no group key generated by the protocol is ever used to encrypt any other key (that is,

Π satisfies condition (a) of Definition 8.4.1 from Chapter 8). For any symmetric-key

encryption schemeP = (E,D), let ΠP denote the computational interpretation ofΠ

when its encryption functionE is implemented usingE.

Theorem 9.4.1 Let P be a symmetric-key encryption scheme and letΠ be a(n̂, q̂, ˆ̀)-

S-GKD protocol that is group-key-compliant. IfΠ is secure against single-user (resp.

collusion) attacks in the symbolic model, and ifP is (τ1, ε1)-secure against chosen plain-

text attacks, thenΠP is (τ, t, ε)-adaptively secure against single-user (resp. collusion)

123

attacks in the computational model for anyτ, t, ε satisfying

τ = τ1 − (2n̂(t)τ(R) + q̂(t)τ(E) +O(1))

ε = ε1 ·
3n̂(t)2

2
· (2n̂(t) + 1)

ˆ̀(t)−1

Proof: The proof of this theorem is very similar to that of Theorem 8.4.2 and we only

sketch it here. As in the proof of Theorem 8.4.2, we consider only the case of security

against collusion attacks. (The other case is very similar and thus omitted.)

Let Π be any(n̂, q̂, ˆ̀)-S-GKD protocol that is group-key-compliant andP a (τ1, ε1)-

secure encryption scheme. Suppose thatΠ is secure against collusion attacks in the

symbolic model and stillΠP does not satisfy the definition of(τ, t, ε)-security against

adaptive adversaries for some parametersτ, t, ε satisfying the conditions given in the

theorem. That is, there exists some adaptive adversaryA that runs in timeτ , makes at

mostt execution queries, but for which∆ΠP
gkd(A) > ε. We claim that any such adver-

saryA can be used to construct a valid(n̂(t), q̂(t), ˆ̀(t))-adversaryA′ such thatA′ runs

in time τ , and still ∆P
adpt(A

′) > ε. This falsifies Theorem 9.3.3, thus implying that

Theorem 9.4.1 must hold.

The adversaryA′ simply emulates the execution ofΠ, invokesA in a black-box manner

and for each query thatA makes, it executesΠ in accordance with the query. SinceA

expects to receive bitstrings in reply for each query,A′ uses its oracleOP
adpt,b to evaluate

all the symbolic messages and keys generated byΠ before providing them as replies to

A’s queries. In the end, it outputs whateverA outputs.

SinceΠ is secure in the symbolic model and since it is group-key-compliant, the adver-

saryA′ is valid with respect toOP
adpt,b. SinceΠ is a(n̂, q̂, d̂)-S-GKD protocol and since

A issues at mostt queries,A′ is a(n̂(t), q̂(t), ˆ̀(t))-adversary. The running time ofA′ is

the same as that ofA (modulo some constant overhead) and it is easy to check that its

advantage against the procedureOP
adpt,b is also the same as that ofA againstΠP. The

theorem follows.

We now use Theorem 9.4.1 to establish adaptive security of theplain-LKH+

124

protocol and theCS protocol. First consider theplain-LKH+ protocol. Recall that the

key graph generated in any execution of this protocol has depth exactlydlogd(n)e where

d is the arity of the key hierarchy andn the total number of users. Recall also thatplain-

LKH+ is secure against collusion attacks in the symbolic model (Theorem 5.1.1) and

is also group-key-compliant. Using these facts one can prove security ofplain-LKH+

against adaptive adversaries in the computational model as follows. (As in the case of

non-adaptive security, we consider security with respect to adversaries whose execution

queries form simple sequences.)

Theorem 9.4.2 Letn ≥ 2 andd ∈ {2, 3, . . . ,n}. Thed-ary instance of theplain-LKH+

protocol, when implemented forn users using a(τ1, ε1)-secure encryption scheme

P = (E,D), is (τp, t, εp)-adaptively secure against collusion attacks in the computa-

tional model for anyτp, t, εp satisfying:

τp = τ1 − (2ñτ(R) + tddlogd(n)eτ(E) +O(1))

εp = ε1 ·
3ñ2

2
· (2ñ + 1)dlogd(n)e−1

whereñ = n + t · dlogd(n)e.

Notice that the reduction factor in the above theorem is exponential inlogd(n)

which is independent of the number of roundst thatplain-LKH+ is executed for. (So, the

adaptive security ofplain-LKH+ degrades polynomially with the number of rounds of

execution.) Changing the hierarchy structure in the protocol involves a natural trade-off

between efficiency and security: if we increase the arityd of the hierarchy, the commu-

nication efficiency of the protocol suffers but we get a better guarantee on its adaptive

security. An extreme case is then-ary hierarchy for which the protocol incurs a linear

communication cost but is guaranteed to be adaptively secure via a reduction factor of

O(n2). (Note that this is exactly the trivial approach to group key distribution described

in the introduction.) Whether or not one can further improve this trade-off between ef-

ficiency and security across different instances ofplain-LKH+, and, in particular, prove

its adaptive security via a reduction factor smaller than the one given in Theorem 9.4.2,

assuming only the semantic security ofP, is a question left open by this work.

125

The case of theCS protocol is much simpler. Key graphs generated in that

protocol (and in any subset cover protocol, in general) always have depth one. Recall

that this protocol too is collusion-resistant in the symbolic model (Theorem 5.2.1) and

group-key-compliant. We conclude:

Theorem 9.4.3 TheCS protocol, when implemented forn users using a(τ1, ε1)-secure

encryption schemeP = (E,D), is (τc, t, εc)-adaptively secure against collusion attacks

in the computational model, for anyτc, t, εc satisfying:

τc = τ1 − (2(n + t)τ(R) + tnτ(E) +O(1))

εc = ε1 ·
3(n + t)2

2

Proving security theorems of the form of Theorem 8.4.3 and 9.4.3 for the

improved-LKH+ andSD protocols requires suitably extending Theorem 9.3.3 to incor-

porate pseudo-random generators, and is postponed to future work.

9.5 Proof of Theorem 9.3.3

The proof of Theorem 9.3.3 is much more involved than that of the soundness

theorem of Chapter 8 (Theorem 8.3.2). We begin with providing some intuition behind

the proof.

9.5.1 The Intuition

The starting point of the proof of our theorem is the positive result on the

selective decryption problem (more precisely, the selectivedecommitmentproblem) due

to Dworket al.[20]. Consider a situation in which the adversary is restricted to generate

key graphs of depth exactly1; that is, its key graph is a directed bipartite graph mapping

a set of sources to a set of sinks. (In the selective decryption problem, the map from

sources to sinks is one-to-one. In our case, it could be many-to-many; plus, it could be

adaptively generated based on previous corruptions.) How can we argue about security

in this case? Intuitively, an attacker’s ability to differentiate between real and random

126

values forall nodes inVchal(A) translates into its ability to differentiate between the

two values forsomenode (say thejth one) inVchal(A); that is, such an adversary can

effectively differentiate between two worlds, one in which the reply to each of the first

j − 1 queries of the formchallenge(i) is ri (and for the rest, it iski), and the other in

which the reply to each of the firstj queries of this form isri (and that for the rest iski).

Let us call these worldsWorldj(0) andWorldj(1) respectively. Let us assume

that the argument specified inA’s jth challenge query is known a priori (it can be

guessed with success probability1/n) and equalsij. Let I(ij) denote the set of nodes

is for which there exists an edgeis → ij in G(A). Now consider this modified version

of the original game: while generating keys in the beginning, the procedureOP
adpt,b also

generates a random keỹkij , independently of all other keys. It replies to the adver-

sary’s queries in one of two worlds again, but now the worlds are defined as follows.

Each query of the formencrypt(is, ij) is replied to with the real ciphertextEkis
(kij)

in the first world,World′j(0), but with a fakeone, namelyEkis
(k̃ij), in the other one,

World′j(1). All otherencrypt queries are replied to with real ciphertexts in both worlds.

For thechallenge queriesthe replies have the same distribution—ri for the firstj − 1

challenge queries andki for the rest. (In particular, the reply forchallenge(ij) is

alwayskij .)

It is easy to see that the distribution on the replies ofOP
adpt,b in World′j(0) is

exactly the same as inWorldj(0). (The replies to allencrypt, corrupt andchallenge

queries are decided in the same manner.) The key observation to make here is that the

distribution on the replies inWorld′j(1) is also the same as that inWorldj(1)! This is true

because the keyskij , k̃ij andrij are generated independently of each other, and so, reply-

ing toencrypt(is, ij) with Ekis
(kij) andchallenge(ij) with rij (as done inWorldj(1))

produces the same distribution as replying to the former withEkis
(k̃ij) and the latter

with kij (as done inWorld′j(1)). Thus, our adversary can differentiate betweenWorldj(0)

andWorldj(1) with the same probability as it can differentiate betweenWorld′j(0) and

World′j(1).

Why are the two worldsWorld′j(0) andWorld′j(1) indistinguishable? Because

127

the encryption scheme is semantically secure. If the adversary can distinguish between

two sets of ciphertexts{Ekis
(kij)}is∈I(ij) (the real ones) and{Ekis

(k̃ij)}is∈I(ij) (the fake

ones) then it must be able to tell the difference betweenEkis
(kij) andEkis

(k̃ij) for some

nodeis ∈ I(ij). (A standard hybrid argument applies here5.) This goes against the

semantic security ofP.

GOING BEYOND ` = 1. In the general setting, a nodeis, pointing at any node

ij ∈ Vchal(A) need not be a source—there could be other edges incident upon each such

is and extending the above argument to this general setting requires more work. In order

to be able to make a statement like“the ciphertextEkis
(kij) is indistinguishable from

Ekis
(k̃ij)” , one must first argue that every ciphertext of the formEki′s

(kis) (wherei′s → is

is an edge inG(A)) looks the same as one of the formEki′s
(k̃is) (a fake ciphertext). But

every suchki′s could, in turn, be encrypted under other keys (that is, the nodei′s could

have other edges incident on it). There could be a lot of nodes (O(n), in general) from

whichij is reachable inG(A) and at some point or the other, we would need to argue that

replying with real ciphertexts created under each of these nodes is the same as replying

with fake ones. Worse still, we do not a priori know the set of nodes from whichij can

be reached inG(A) since the graph is created adaptively; so we must make guesses in

the process.

It is easy to come up with an argument where the amount of guesswork in-

volved is exponential inn (simply guess the entire set of nodes from which there is a

path toij). In our proof, however, we take a radically different approach. We first de-

fine a sequence of hybrid distributions on the replies given toA such that in each of the

distributions, the replies corresponding to some of the edges in the key graph are fake,

and these “faked” edges are such that their end-points lie ona single pathending inij.

(Henceforth, we refer to every edge for which the corresponding reply is fake, as afaked

edge.) The extreme hybrid distributions are defined as in the two worldsWorld′j(0) and

World′j(1) for ` = 1: in one extreme, the replies corresponding to all edges are real,

5The reduction factor in this hybrid argument would be at mostn. This combined with the guessing probability
1/n associated with the nodeij defined above gives us a gross reduction factor ofO(n2), as desired for̀ = 1.

128

and in the other extreme, the replies corresponding to all edges incident onij are fake

(while the rest of the replies are still real). Intermediate to these extremes, however, are

several distributions in which edges other than those incident onij are faked. For any

two adjacent distributions in the sequence of distributions, the following properties are

always satisfied:

(a) The distributions differ in the reply corresponding to asingleedgeis → it; the

reply is real in one distribution while fake in the other.

(b) In both distributions, for everyir ∈ I(is), the edgeir → is is faked.

(c) There exists a path fromit to ij in the key graph and in both distributions, “some”

of the edges incident upon this path are faked, the faked edges being the same in

both distributions.

(d) No other edge in the key graph is faked in either of the distributions.

Properties (a) and (b) are meant to ensure that any two adjacent hybrids can be simulated

using a single encryption oracleOP
b (and so,A’s capability to distinguish between them

would imply that the encryption scheme is not secure). Properties (c) and (d) enable the

simulation to be carried out by guessing a path (that goes fromis to it to ij) as opposed

to guessing all the nodes from whichij is reachable. (This partly explains why our

reduction factor is exponential in the depth, rather than the size, of the key graph.) In

order to simultaneously achieve all these properties, we order the hybrid distributions

such that(i) when the reply for any edgeis → it is changed (from real to fake or vice

versa) in moving from one hybrid to another, all edges of the formir → is have already

been faked in previous hybrids; and(ii) after changing the reply foris → it, there is a

sequence of hybrids in which the replies for all edgesir → is are, step by step,changed

back from fake to real. This is done in order to satisfy property (d) above (particularly,

to make sure that it is satisfied when the replies for edges issuing fromit are changed in

a subsequent hybrid).

Thus, if we scan the sequence of hybrid distributions from one extreme to the

other, we observe both “real-to-fake” and “fake-to-real” transitions in the replies given

129

to A, taking place in an oscillating manner. The oscillations have a recursive structure—

for every oscillation in replies (transition from real to fake and back to real) for an edge

is → it, there are two oscillations (transition from real to fake to real to fake to real)

for every edgeir → is incident uponis. Simulating these hybrid distributions and

subsequently, arguing that the simulation works correctly is the most challenging part of

the proof. After developing an appropriate simulation strategy, we prove its correctness

using an inductive argument—assuming that, for some`′ ≤ `, the simulation behaves

correctly wheneveris is at depth smaller thaǹ′ in the key graph, we show that the

simulation is correct also whenis is at depth smaller thaǹ′ + 1. We now proceed to

give all the details of the proof.

9.5.2 The Reduction

Let A be any(n, q, `)-adversary that is valid relative toOP
adpt,b. Suppose that

A runs in timeτ and is such that∆P
adpt(A) > ε (τ andε as defined in Theorem 8.3.2);

that is, ∣∣∣∣P[AOP
adpt,0 = 1]−P[AOP

adpt,1 = 1]

∣∣∣∣ > ε (9.1)

Given any such adversary, we construct another adversaryA′ that runs in time

τ1 and is such that∆P
enc(A

′) > ε1. This contradicts the security assumption we made for

P, hence implying that our assumption aboutA was incorrect.

Before we give the construction, we need one small technical definition. Any

path in the graphG(A) generated byA can be represented using a sequence of length

`+ 1 as follows: First, write down the nodes in the path in the order of their occurrence

from start to end. Then, if the path is of length smaller than` (has fewer thaǹ + 1

nodes),prependthis sequence with a0 as many times as is required to make its length

equal̀ +1. For example, a pathi1 → i2 → i3 (with 2 edges only) would be represented

under this convention as:

(0, 0, · · · , 0︸ ︷︷ ︸
(`−2) times

, i1, i2, i3)

130

We say that a sequence of values from{0, 1, · · · , n} is a valid path inG(A) if it is a

representation (defined as above) of a path that exists inG(A).

Our construction of adversaryA′ is organized in two parts. In the first part,

called thesetupphase (Figure Figure 9.1),A′ generates all keys required to reply toA’s

queries and some other random values which are used to form the replies. (The italicized

comments embedded in Figure Figure 9.1 give some intuition about the semantics of

these random values.) The second part ofA′—theexecutionphase—which is shown in

Figure Figure 9.2, is the one in whichA′ runsA (in a black-box manner) and simulates

replies to all its queries; the replies to some of the queries (namely, queries of the form

encrypt(s, x) wheres is as decided in the setup phase) are given using the procedure

OP
b .

It is easy to check that the running time ofA′ is bounded from above byτ +

2nτ(R) + qτ(E), which is the same as the quantityτ1 in Theorem 9.3.3.

9.5.3 The Analysis

For any execution ofA, we define thetranscript of that execution as the

sequence of queries made by and replies given toA; formally, it is the sequence

(q1, r1, q2, r2, · · · , qf , rf), wheref is the total number of queries made byA in that

execution, and for everyi ∈ {1, · · · , f}, qi is theith query ofA andri is the reply re-

ceived forqi. Theviewof A, given a fixed procedure for deciding replies to its queries,

is the distribution over all possible transcripts that can be generated by executingA and

replying to it using the said procedure. The variablesG(A),Vchal(A) andVcorr(A) are

all functions of the view ofA, that is, their distribution depends not only on the coins

used byA but also on the procedure used to reply toA’s queries. For the most of our

analysis, we will be concerned with the view ofA in its interaction withA′, that is, when

the procedure for replying toA’s queries is as shown in figures Figure 9.1 and Figure

9.2. So, unless otherwise specified,G(A),Vchal(A),Vcorr(A) should be treated as random

variables defined for this particular view.

Let Bad be the event thatA′’s simulation of replies toA’s queries is unsuccess-

131

PHASE I: SETUP

(Generating keys and preparing to reply toA’s queries)

001. Samplè − 1 numbersu0, u1, · · · , u`−2 independently from the set
{0, 1, 2, · · · , n} such that for eachj ∈ {0, 1, · · · , `− 2}, the following
holds:

∀i ∈ [n] : P[uj = i] = 2
2n+1

; and
P[uj = 0] = 1

2n+1

Sampleu`−1 andu` independently and uniformly at random from[n].
(The sequence(u0, u1, · · · , u`) is A′’s “guess” for a path; a successful
execution ofA′ will be one in which this sequence is a valid path inG(A).
Note that we do not rule out repetitions amongst theuj ’s—it is possible that
uj = uj′ for somej 6= j′—even though the resulting sequences are bound
to be invalid. This is done only for the sake of simplicity. (The reduction
factor is not significantly improved by avoiding this triviality.) The choice
for the specific distribution of theuj ’s defined above will be clearer after
seeing the analysis ofA′.)

002. Letus be the first non-zero value in the sequence(u0, u1, · · · , u`−1, u`).
(us is the start node of the path guessed byA′. While replying toA’s
queries,A′ will associate the key used by its encryption oracleOP

b , with
us. Note thats ≤ `− 1 always.)

003. Samplè − s− 1 valuesbs, bs+1, · · · , b`−2 independently and uniformly
at random from{0, 1}. Let b`−1 = 0.
(Roughly, these bit values determine which of the edges in the path
(us, us+1, · · · , u`) are replied to with “fake” ciphertexts and which are
not. For their exact semantics, see the execution phase ofA′.)

004. Generate keysk1, · · · , kus−1, kus+1, · · · , kn andrus , rus+1 , · · · , ru`
using

independent invocations ofR.
(Theri’s are used in creating “fake” ciphertexts in the execution phase.)

Figure 9.1: The first phase of the adversary constructed for the proof of Theorem 9.3.3.

ful, that is, the valuesu0, · · · , u` that it selects are such that:

(a) u` /∈ Vchal(A); OR

(b) (u0, u1, · · ·u`−1, u`) is not a valid path inG(A).

132

PHASE II: EXECUTION

(RunningA and simulating replies to its queries)

100. Initialize an array of booleansseen[s], seen[s+ 1], . . . , seen[`− 1].
Set each of these to befalse.

200. RunA. WhenA issues a queryencrypt(x, y), do the following—
210. Ifx = us ∧ y = us+1,

seen[s]← true.
If bs = 0, reply withOP

b (kus+1 , rus+1).
If bs = 1, reply withOP

b (rus+1 , kus+1).
220. Ifx = us ∧ y /∈ {us+1, · · · , u`−1, u`},

Reply withOP
b (ky, ky).

230. If y = us,
Reply withEkx(rus). (SinceA′ does not know the value of
k—the key associated withus—its reply to every edge
x→ us created byA is a fake ciphertext.)

240. For everyj ∈ {s, · · · , `− 1}, do the following:
241. Ifx 6= uj ∧ y = uj+1 ∧ ¬seen[j],

If x 6= us, reply withEkx(ruj+1
)

If x = us, reply withOP
b (ruj+1

, ruj+1
)

242. Ifx 6= uj ∧ y = uj+1 ∧ seen[j],
If x 6= us, reply withEkx(kuj+1

)
If x = us, reply withOP

b (kuj+1
, kuj+1

)
243. Ifx = uj ∧ y = uj+1 ∧ j > s,

(Note: The casex = us, y = us+1 is addressed above)
seen[j]← true.
If bj = bj−1, reply withEkuj

(kuj+1
).

If bj 6= bj−1, reply withEkuj
(ruj+1

).
250. If noneof the above conditions are satisfied, reply withEkx(ky).

300. WhenA issues a querycorrupt(x), do the following—
If x 6= us, returnkx to A.
If x = us, output a random bit.Halt!

Figure 9.2: The second phase of the adversary constructed for the proof of Theo-
rem 9.3.3.

Notice that when eventBad occurs, the output ofA′ is a uniformly random bit. (See

line 500 in Figure Figure 9.3.) Intuitively, the occurrence ofBad is computationally

independent of the choice of the bitb (used in the procedureOP
b), for otherwise we

133

PHASE II: EXECUTION

400. WhenA issues a querychallenge(x), do the following—
Reply withkx if either of the following is true:

(a)x = u`.
(b) x 6= u` but the querychallenge(u`) has been

made already.
Otherwise, reply with a fresh key, sampled by runningR.
(We stress that the reply for the querychallenge(u`) is ku`

.
Also, until the querychallenge(u`) is made, the reply to every
query of the fromchallenge(x) is a random value, sampled
independently ofkx.)

(Following are some bad conditions under whichA′ fails in its simulation.)
500. If at any point during or after the execution ofA, it is found that:

(a) (u0, · · · , u`) is not a valid path inG(A); OR
(b) u` /∈ Vchal(A),

Then output a random bit.Halt!

600. In the end, output whateverA outputs.

Figure 9.3: The second phase of the adversary constructed for the proof of Theo-
rem 9.3.3 (continued).

would be contradicting the security ofP. This intuition is formalized in the following

proposition:

Proposition 9.5.1 ∆Bad := |P[Bad | b = 0]−P[Bad | b = 1]| ≤ ε1

Proof Sketch: The proof uses a straightforward reduction argument. Suppose that the

statement is false, that is,∆Bad > ε1. Modify the code ofA′ slightly such that if at any

point during the simulation ofA the eventBad occurs, the code outputs1 (instead of

a purely random bit). The resulting code gives us an adversary that defies the(τ1, ε1)-

security ofP.

Let ΘA′ denote the event thatA′ outputs1 when given black-box access toOP
b .

Our goal is to bound theCPA-advantage ofA′, which can now be re-written as

∆P
enc(A

′) = |P[ΘA′ | b = 0]−P[ΘA′ | b = 1]|

Let us expand this quantity based on the occurrence/non-occurrence of eventBad. Be-

134

low and for the rest of the proof, we use the shorthandA; B to denoteA ∧ B for any

two eventsA andB.

∆P
enc(A

′) = |
(
P[ΘA′ ; Bad | b = 0]−P[ΘA′ ; Bad | b = 1]

)
+ (P[ΘA′ ; Bad | b = 0]−P[ΘA′ ; Bad | b = 1]) |

≥ |P[ΘA′ ; Bad | b = 0]−P[ΘA′ ; Bad | b = 1]|

− |P[ΘA′ ; Bad | b = 0]−P[ΘA′ ; Bad | b = 1]|

= |P[ΘA′ ; Bad | b = 0]−P[ΘA′ ; Bad | b = 1]|

−
∣∣∣∣P[ΘA′ | b = 0; Bad]︸ ︷︷ ︸

= 1
2

·P[Bad | b = 0]

− P[ΘA′ | b = 1; Bad]︸ ︷︷ ︸
= 1

2

·P[Bad | b = 1]

∣∣∣∣
= |P[ΘA′ ; Bad | b = 0]−P[ΘA′ ; Bad | b = 1]| − 1

2
·∆Bad

≥ |P[ΘA′ ; Bad | b = 0]−P[ΘA′ ; Bad | b = 1]| − ε1
2

(9.2)

(Follows from Prop. 9.5.1)

Let ∆ := P[ΘA′ ; Bad; b = 0] − P[ΘA′ ; Bad; b = 1]. Inequality (9.2) can

be re-written in terms of∆ as follows:

∆P
enc(A

′) ≥ |P[ΘA′ ; Bad | b = 0]−P[ΘA′ ; Bad | b = 1]| − ε1
2

=

∣∣∣∣P[ΘA′ ; Bad; b = 0]

P[b = 0]
− P[ΘA′ ; Bad; b = 1]

P[b = 1]

∣∣∣∣− ε1
2

=

∣∣∣∣P[ΘA′ ; Bad; b = 0]

1/2
− P[ΘA′ ; Bad; b = 1]

1/2

∣∣∣∣− ε1
2

= 2 ·
∣∣P[ΘA′ ; Bad; b = 0]−P[ΘA′ ; Bad; b = 1]

∣∣− ε1
2

= 2 · |∆| − ε1
2

We now focus our attention on bounding the quantity∆. Let

α =
1

n2 · (2n+ 1)`−1
(9.3)

Our goal is to show that:

135

Lemma 9.5.2 |∆| > αε
2

From this, the theorem would follow immediately using the following chain of inequal-

ities:

∆P
enc(A

′) ≥ 2 · |∆| − ε1/2

> 2 · αε
2
− ε1

2
(Plugging in Lemma 9.5.2)

= αε− 1

2
· 2αε

3
= αε− αε

3
=

2αε

3
= ε1

which is what our initial goal—inequality (9.1)—was.

9.5.4 Proof of Lemma 9.5.2

Let ΘA be the event thatA′ completes the execution ofA successfully (event

Bad does not occur) and the latter outputs1 after termination. Observe that ifBad is

knownnot to occur, the eventsΘA andΘA′ are exactly the same; that is,P[ΘA′ | Bad] =

P[ΘA | Bad]. Using this observation, we can re-write∆ as

∆ = P[ΘA; Bad; b = 0]−P[ΘA; Bad; b = 1]

We break up the eventBad into ` mutually exclusive eventsΛ0,Λ1, · · · ,Λ`−1

as follows: for eachj ∈ {0, · · · , ` − 1}, define Λj as the event that the values

u0, u1, · · · , u` selected byA′ satisfy the following three conditions:

(a) u` ∈ Vchal(A);

(b) (u0, u1, · · · , u`) is a valid path inG(A);

(c) u0 = u1 = · · · = uj−1 = 0 butuj 6= 0. (In other words, the value ofs decided in

line 002 ofA′’s setup phase isj.)

Condition (c), together with (b), implies that for allj′ ∈ {j, j + 1, · · · , `},

uj′ 6= 0. Clearly, for any distinctj andj′ (in {0, · · · , ` − 1}), Λj andΛj′ are mutually

136

exclusive andBad =
∨`−1
j=0 Λj. For eachj ∈ {0, · · · , `− 1}, we define a quantity∆j as

follows:

∆j := P[ΘA; Λj; b = 0]−P[ΘA; Λj; b = 1]

∆ can be expressed in terms of these quantities as follows:

∆ = P[ΘA; Bad; b = 0]−P[ΘA; Bad; b = 1]

= P[ΘA;
`−1∨
j=0

Λj; b = 0]−P[ΘA;
`−1∨
j=0

Λj; b = 1]

=
`−1∑
j=0

(P[ΘA; Λj; b = 0]−P[ΘA; Λj; b = 1])

=
`−1∑
j=0

∆j (9.4)

We now work towards breaking down the eventsΛ0, · · · ,Λ`−1 further and

correspondingly, expressing the∆j ’s as summations of more detailed terms. For this,

we need some more definitions.

ConsiderA’s interaction withA′. For any of the valuesuj selected byA′, we

denote (the random variable corresponding to) the in-degree ofuj in the graphG(A)

created during this interaction byIndegree(uj). (If uj = 0, we defineIndegree(uj) to

be 0.) We think of nodes inVchal(A) to be ordered according to their occurrence as

arguments ofchallenge queries; so, in the sequel, whenever we say thatu` is “the

i`th node inVchal(A)”, we imply thatchallenge(u`) is thei`th among allchallenge

queries received byA′ from A. Likewise, for any two valuesuj−1, uj, whenever we say

thatuj−1 is “the ijth node pointing atuj”, we mean thatencrypt(uj−1, uj) is theijth

query of the formencrypt(x, uj) received byA′.

For any j ∈ [`], any d, d`, d`−1, · · · , dj+1, dj ∈ [n], and any

i, i`, i`−1, · · · , ij+1, ij ∈ [n] such thati ≤ d, i` ≤ d`, · · · , ij ≤ dj, let Ψ(d,d`,··· ,dj)

(i,i`,··· ,ij) denote

the event that

(a) Λj−1 occurs; and

137

(b) Vchal(A) has sized andu` is theith node in it; and

(c) for eachj′ ∈ {j, j + 1, · · · , `}, Indegree(uj′) = dj′ anduj′−1 is the ij′th node

pointing atuj′ in G(A).

The eventsΛ0,Λ1, · · · ,Λ`−1 can quite easily be expressed in terms of events

of the above type. For anyj ∈ {0, · · · , ` − 1}, Λj occurs if and only if the size of

Vchal(A) equalsd for somed ∈ [n], andu` is theith node inVchal(A) for somei ∈ [d]

and has non-zero in-degreed` for somed` in [n], andu`−1 is thei`th node pointing at

u` in G(A) for somei` ∈ [d`], and so on, all the way uptouj. Put succinctly, for any

j ∈ {0, · · · , `− 1}:

Λj =
n∨
d=1

d∨
i=1

n∨
d`=1

d∨̀
i`=1

· · ·
n∨

dj+1=1

dj+1∨
ij+1=1

Ψ
(d,d`,··· ,dj+1)

(i,i`,··· ,ij+1)

Clearly, for any distinct pairs of vectors(d, d`, · · · , dj), (i, i`, · · · , ij) and

(d′, d′`, · · · , d′j′), (i′, i′`, · · · , i′j′), the eventsΨ(d,d`,··· ,dj)

(i,i`,··· ,ij) andΨ
(d′,d′`,··· ,d

′
j′)

(i′,i′`,··· ,i
′
j′)

are mutually ex-

clusive, and so

∆j = P[ΘA; Λj; b = 0]−P[ΘA; Λj; b = 1]

=
∑
d∈[n],
i∈[d]

∑
d`∈[n],
i`∈[d`]

· · ·
∑

dj+1∈[n],
ij+1∈[dj+1]

 P[ΘA; Ψ
(d,d`,··· ,dj+1)

(i,i`,··· ,ij+1) ; b = 0]

− P[ΘA; Ψ
(d,d`,··· ,dj+1)

(i,i`,··· ,ij+1) ; b = 1]

 (9.5)

We will now show how to sum up this quantity withj ranging from0 through

` − 1 and to express the sum (which is the same as∆) in terms of∆P
adpt(A). Towards

this, we first define another type of event, similar to events of the other type.

Let j be any arbitrary number in[`]. For any sequence of bits

νj, νj+1, · · · , ν`−1, let −→ν j denote the bitvector(νj, νj+1, · · · , ν`−1). For any

d, d`, · · · , dj ∈ [n] any i ∈ [d], i` ∈ [d`], · · · , ij ∈ [dj] and any bitvector−→ν j−1 ∈

{0, 1}`−j+1, let Θ(d,d`,··· ,dj)

(i,i`,··· ,ij) (−→ν j−1) denote the event that:

(a) For somẽj ∈ {0, 1, · · · , j − 1}, the eventΛj̃ occurs andIndegree(uj̃) = 0

138

(b) Vchal(A) has sized andu` is theith node in it;

(c) For eachj′ ∈ {j, j + 1, · · · , `}, Indegree(uj′) = dj′, uj′−1 is the ij′th node

pointing atuj′ in G(A) and the following holds:

◦ If νj′−1 = 0, A receives the real reply forencrypt(uj′−1, uj′), that is,

Ekuj′−1
(kuj′

).

◦ If νj′−1 = 1, A receives a fake reply for the same query, that is,Ekuj′−1
(ruj′

).

(d) For eachj′ ∈ {j̃ + 1, · · · , j − 1}, uj′−1 is thefirst node pointing atuj′ andA

receives the real reply for the queryencrypt(uj′−1, uj′). (That is, it receives a

ciphertextc← Ekuj′−1
(kuj′

).)

The last condition is equivalent to saying thatA receives the real reply for

everyquery of the formencrypt(x, uj′) wherej′ < j. (To see this, observe line 242

in A′’s code—A′’s reply to each query of this form succeedingencrypt(uj′−1, uj′) is

always real.) We useΘfirst andΘlast to denote the following events:

Θfirst =
n∨
d=1

n∨
d`=1

Θ
(d,d`)
(1,1) ((0))

Θlast =
n∨
d=1

n∨
d`=1

Θ
(d,d`)
(d,d`)

((1))

In words,Θfirst (resp. Θlast) is the event that for somẽj ∈ {0, · · · , ` − 1}, Λj̃ occurs

andIndegree(uj̃) = 0, thatu` is thefirst (resp. last) node inVchal(A), thatu`−1 is the

first (resp. last) node pointing atu` in G(A), that the replyA receives for the query

encrypt(u`−1, u`) is a real ciphertext (resp. a fake one) and, finally, that the replyA

receives for every query of the formencrypt(x, uj) (j̃ < j < l) is a real ciphertext.

The view ofA under the occurrence of eitherΘfirst or Θlast are, in fact, quite similar to its

view when interacting with the procedureOP
adpt,b. This is formalized in the following

claim.

Claim 9.5.3 |P[ΘA | Θfirst]−P[ΘA | Θlast]| = ∆P
adpt(A)

139

In the next claim, we relate the probabilities of the eventsΘfirst andΘlast to the

quantityα defined in equation 9.3.

Claim 9.5.4 P[Θfirst] = P[Θlast] = α/2

The proof of these claims are postponed to Sections 9.5.5 and 9.5.6 respec-

tively. We will now illustrate how the two types of events we have defined hitherto—the

Ψ’s and theΘ’s—are related to each other. This will help us sum up the∆j ’s (as de-

fined in equation 9.5), express the sum in terms ofΘfirst andΘlast, and thus relate it to

∆P
adpt(A).

Before we explain the relation between theΨ’s and theΘ’s, we need one last

set of notations. For any bitvector−→ν j and any bit valueν ∈ {0, 1}, let ν · −→ν j denote

the bitvector formed byprependingν to−→ν j, and letXOR(ν,−→ν j) be defined as follows:

XOR(ν,−→ν j) = (ν ⊕ νj, νj ⊕ νj+1, νj+1 ⊕ νj+2, · · · , ν`−3 ⊕ ν`−2, ν`−2 ⊕ ν`−1)

(If j = `− 1, XOR(ν,−→ν j) equals(ν⊕ νj).) LetΘ(d,d`,··· ,dj ,0)

(i,i`,··· ,ij ,0) (1 ·−→ν j−1) denote the event

thatΘ(d,d`,··· ,dj)

(i,i`,··· ,ij) (−→ν j−1) occurs andIndegree(uj−1) = 0.

For any two eventsE1 andE2, we useE1 = E2 to denote an assertion thatE1

andE2 are identical events (that is,E1 occurs if and only ifE2 occurs) andE1 ' E2

to denote that the view ofA in its interaction withA′ givenE1 occurs is identically

distributed as its view givenE2 occurs. LetE1 ≡ E2 denote thatE1 ' E2 andP[E1] =

P[E2]. It is easy to check that ifE1 ≡ E2, thenP[ΘA; E1] = P[ΘA; E2].

Lemma 9.5.5 (Hybrid Cancellation Lemma - II)

1. For alld ∈ {2, · · · , n} andi ∈ {1, · · · , d− 1},
n∨

d`=1

Θ
(d,d`)
(i,d`)

((1)) ≡
n∨

d`=1

Θ
(d,d`)
(i+1,1)((0))

2. For all j ∈ {1, · · · , `}, for all d, d`, · · · , dj ∈ [n] and i, i`, · · · , ij such that

1 ≤ i ≤ d, 1 ≤ i` ≤ d`, · · · , 1 ≤ ij ≤ dj, and for any bitvector−→ν j =

(νj, · · · , ν`−1) ∈ {0, 1}`−j:

Θ
(d,d`,··· ,dj)

(i,i`,··· ,ij) (1 · −→ν j) ≡ Θ
(d,d`,··· ,dj+1,dj)

(i,i`,··· ,ij+1,ij+1)(0 ·
−→ν j)

140

3. For all j ∈ {1, · · · , `}, for all d, d`, · · · , dj ∈ [n] and i, i`, · · · , ij such that

1 ≤ i ≤ d, 1 ≤ i` ≤ d`, · · · , 1 ≤ ij ≤ dj, and for any bitvector−→ν j−1 =

(νj−1, · · · , ν`−1) ∈ {0, 1}`−j+1:

Θ
(d,d`,··· ,dj)

(i,i`,··· ,ij) (−→ν j−1) =
[
Θ

(d,d`,··· ,dj ,0)

(i,i`,··· ,ij ,0) (1 · −→ν j−1)
]

∨

 n∨
dj−1=1

Θ
(d,d`,··· ,dj ,dj−1)

(i,i`,··· ,ij ,1) (0 · −→ν j−1)


4. Fix ν`−1 = 0. Let ν be any arbitrary bit value and let(b = ν) denote the event

that the oracleOP
b (provided toA′) selectsν to be the value ofb. Then, for all

j ∈ {1, 2, · · · , `}, for all d, d`, · · · , dj ∈ [n] andi, i`, · · · , ij such that1 ≤ i ≤

d, 1 ≤ i` ≤ d`, · · · , 1 ≤ ij ≤ dj, the following is true:

(a) If j = 1, then

Ψ
(d,d`,··· ,dj)

(i,i`,··· ,ij) ∧ (b = ν) =
∨

νj−1,νj ,··· ,ν`−2∈{0,1}

Θ
(d,d`,··· ,dj)

(i,i`,··· ,ij) (XOR(ν,−→ν j−1))

(b) If j > 1, then

Ψ
(d,d`,··· ,dj)

(i,i`,··· ,ij) ∧ (b = ν) ≡∨n
dj−1=0

(∨
νj−1,νj ,··· ,ν`−2∈{0,1} Θ

(d,d`,··· ,dj ,dj−1)

(i,i`,··· ,ij ,dj−1) (1 · XOR(ν,−→ν j−1))
)

The proof of this lemma appears in Section 9.5.7. The next lemma invokes the

above lemma and uses it to sum up the∆j ’s, step by step, in an inductive manner. For

anyj ∈ {0, · · · , `− 1}, let

∆j =

j∑
j′=0

∆j′

Lemma 9.5.6 (Telescoping Sums Lemma)For all j ∈ {0, 1, · · · , `− 1}, ∆j equals

∑
d∈[n],
i∈[d]

∑
d`∈[n],
i`∈[d`]

· · ·
∑

dj+1∈[n],
ij+1∈[dj+1]

∑
νj ,··· ,ν`−2∈{0,1},

ν`−1=0


P[ΘA; Θ

(d,d`,··· ,dj+1)

(i,i`,··· ,ij+1) (XOR(0,−→ν j))]

− P[ΘA; Θ
(d,d`,··· ,dj+1)

(i,i`,··· ,ij+1) (XOR(1,−→ν j))]



141

The proof of this lemma is given in Section 9.5.8. Given these two lemmas and

Claims 9.5.3 and 9.5.4, the final result (Lemma 9.5.2) is quite easy to prove. Using

Lemma 9.5.6, equation (9.4) can be re-written as:

∆ = ∆`−1

=
∑
d∈[n],
i∈[d]

∑
d`∈[n],
i`∈[d`]

∑
ν`−1=0

 P[ΘA; Θ
(d,d`)
(i,i`)

(XOR(0,−→ν `−1))]

− P[ΘA; Θ
(d,d`)
(i,i`)

(XOR(1,−→ν `−1))]


=

∑
d∈[n],
i∈[d]

∑
d`∈[n],
i`∈[d`]

(
P[ΘA; Θ

(d,d`)
(i,i`)

((0))]−P[ΘA; Θ
(d,d`)
(i,i`)

((1))]
)

=
∑
d∈[n],
i∈[d]

∑
d`∈[n]

(
P[ΘA; Θ

(d,d`)
(i,1) ((0))]−P[ΘA; Θ

(d,d`)
(i,d`)

((1))]
)

(Follows from the hybrid cancellation lemma, Lemma 9.5.5, part 2)

=
n∑
d=1

n∑
d`=1

[d∑
i=1

(
P[ΘA; Θ

(d,d`)
(i,1) ((0))]−P[ΘA; Θ

(d,d`)
(i,d`)

((1))]
)]

=
n∑
d=1

n∑
d`=1

(
P[ΘA; Θ

(d,d`)
(1,1) ((0))]−P[ΘA; Θ

(d,d`)
(d,d`)

((1))]
)

(Follows from the hybrid cancellation lemma, part 1)

= P[ΘA; Θfirst]−P[ΘA; Θlast]

= P[ΘA | Θfirst] ·P[Θfirst]−P[ΘA | Θlast] ·P[Θlast]

Now invoking Claims 9.5.3 and 9.5.4, we get

|∆| = |P[ΘA | Θfirst] ·P[Θfirst]−P[ΘA | Θlast] ·P[Θlast]|

=
α

2
· |P[ΘA | Θfirst]−P[ΘA | Θlast]|

=
α

2
·∆P

adpt(A)

>
αε′

2
(Follows from our initial assumption, inequality (9.1))

We next give the proofs of all the lemmas and claims used to prove

Lemma 9.5.2.

142

9.5.5 Proof of Claim 9.5.3

We argue thatA’s view in its interaction withA′ given the occurrence ofΘfirst

(resp. Θlast) is distributed identically as its view when interacting withOP
adpt,0 (resp.

OP
adpt,1). This suffices to prove the claim.

When Θfirst occurs,everyquery of A of the form encrypt(x, y) is replied

to with a real ciphertext (Ekx(ky)) and that of the formchallenge(x) is replied to

with kx—exactly the manner in which replies are created by the procedureOP
adpt,0.

Why is this? To see why the former is true, note that under the occurrence ofΘfirst,

the only queries that could be replied to with fake ciphertexts are those of the form

encrypt(x, u`) and either the same as or preceding the queryencrypt(u`−1, u`). But,

givenΘfirst occurs,u`−1 is the first node pointing atu` and the reply toencrypt(u`−1, u`)

is real, thus implying that the replies for allencrypt queries ofA are real. To see why

the latter is true, note that the reply to every querychallenge(x), including or suc-

ceedingchallenge(u`) is alwayskx (line 400 ofA′’s code), and whenΘfirst occurs,

challenge(u`) is the firstchallenge query.

WhenΘlast happens, things are a bit less straightforward. As above, the only

queries whose replies could be faked byA′ are those of the formencrypt(x, u`),

either including or precedingencrypt(u`−1, u`). However, under the occurrence

of Θlast, encrypt(u`−1, u`) is the last query of this form, and even the reply for

encrypt(u`−1, u`) is fake, thus implying that every query of the formencrypt(x, u`)

is replied to in a fake manner (specifically, withEkx(ru`
)). Note also that givenΘlast,

challenge(u`) is the lastchallenge query, and thus, the reply to allchallenge(x)

queriesexceptchallenge(u`) is a random key, sampled independently ofkx. For

challenge(u`), the reply isku`
. Now comes the crucial part: Replying to the query

challenge(u`) with ku`
and to every query of the formencrypt(x, u`) with Ekx(ru`

)—

whereru`
is independent of (but identically distributed as)ku`

—produces the same dis-

tribution on the replies as replying tochallenge(u`) with ru`
and to every query of

the formencrypt(x, u`) with Ekx(ku`
). Furthermore, we observe that neitherku`

nor

ru`
is used in creating replies forA other than those of the formencrypt(x, u`) or

143

challenge(u`). In effect, the replies thatA′ provides toA conditioned on eventΘlast,

are distributed exactly as the procedureOP
adpt,1’s replies toA—real ciphertexts for all

encrypt queries and a random key (independent ofkx) for every query of the form

challenge(x).

9.5.6 Proof of Claim 9.5.4

We prove thatP[Θfirst] = α/2; the proof for the other part of the claim

(namely,P[Θlast] = α/2) is quite similar and is omitted.

First, some notations. Recall that in any execution ofA, the graphG(A) and

the setVchal(A) are random variables depending on the coins used byA and those used in

the procedure for replying toA’s queries. We define here some more random variables

related toG(A) andVchal(A) and the manner in which these are created in any execution.

• Let fchal be the random variable corresponding to the first node inVchal(A).

• For any fixedw ∈ [n], let fnode(w) be the random variable corresponding to the

first node pointing atw in G(A).

• For any fixedw ∈ [n], let fpath(w) be the random variable corresponding to the

path inG(A) that ends inw, that starts in a source (ofG(A)) and is such that

for every edgex → y in the path,x = fnode(y). Let flen(w) be the length of

fpath(w) (that is, the number of edges in it).

SinceG(A) is always acyclic,fpath(w) andflen(w) are well-defined (and uniquely so)

for every value ofw ∈ [n] and every value assigned toG(A).

Let us now consider the eventΘfirst and re-phrase it in terms of the above

definitions. Θfirst occurs if and only if inA’s interaction with A′, the variables

G(A),Vchal(A), u0, · · · , u`, s, bs, · · · , b`−2 and the bitb (chosen byOP
b) are such that:

1. fchal = u`;

2. fnode(u`) = u`−1;

144

3. s = `− flen(u`) = `− flen(u`−1)− 1 andfpath(u`−1) = (us, us+1, · · · , u`−1)
6

4. For allj ∈ {0, 1, · · · , s− 1}, uj = 0.

5. b = 0 andbs = bs+1 = · · · = b`−2 = 0.7

The last condition ensures that the replies thatA′ provides toA for all queries

of the formencrypt(uj, uj+1) (j ≥ s) are real ciphertexts. (How so? For this, first

observe that the reply for any queryencrypt(uj, uj+1), for j > s, is real if and only if

bj = bj−1 and that for the queryencrypt(us, us+1) is real if and only ifb = bs. Then

notice thatb`−1 = 0 always, which means that forΘfirst to occur, all the otherbj ’s and

the bitb must also be zero.)

The probability thatΘfirst occurs is thus:

P[Θfirst] =
`−1∑
`′=0

P


fchal = u`; fnode(u`) = u`−1; flen(u`−1) = `′;

fpath(u`−1) = (u`−`′−1, · · · , u`−1);

u0 = · · · = u`−`′−2 = 0; b = 0;

b`−`′−1 = · · · = b`−2 = 0



=
`−1∑
`′=0

∑
w`,··· ,w`−`′−1∈[n]

P



fchal = w`; fnode(w`) = w`−1;

flen(w`−1) = `′;

fpath(w`−1) = (w`−`′−1, · · · , w`−1);

u` = w`; · · · ; u`−`′−1 = w`−`′−1;

u`−`′−2 = · · · = u0 = 0;

b = 0; b`−`′−1 = · · · = b`−2 = 0


The above expression ofP[Θfirst] gives us some intuition about why

Claim 9.5.4 is correct: for any value of`′ ∈ {0, . . . , ` − 1} andw`, . . . , w`−`′−1 ∈ [n],

the probability that(u`, . . . , u`−`′−1) = (w`, . . . , w`−`′−1), u`−`′−2 = · · · = u0 = 0 and

b = b`−`′−1 = · · · = b`−2 = 0 is exactly equal toα/2. (This probability is computed

6Throughout the proof of Claim 9.5.4 and Lemma 9.5.5, we denote paths inG(A) as sequences of nodes, but
without any zeroes prepended to the first node.

7While expressingΘlast in terms offchal , fnode(·), fpath(·) etc., the first two conditions and the last condition are
suitably modified as follows—u` is thelastnode inVchal(A), u`−1 is thelastnode pointing atu` andb, bs, · · · , b`−2

are all equal to1. The other conditions remain the same as above.

145

using the independence property of theui’s and thebi’s; details appear below.) Thus,

P[Θfirst] equalsα/2 multiplied by the probability of the eventfchal = w`; fnode(w`) =

w`−1; flen(w`−1) = `′; fpath(w`−1) = (w`−`′−1, · · · , w`−2, w`−1) summed upover all

possible values of̀′ and thewi’s. Since the latter sum equals1, the value ofP[Θfirst] is

exactlyα/2.

Translating this intuition into proof is, however, not straightforward since

we need to account for the dependencies between theui’s and the random functions

fnode(·), fpath(·) andflen(·). The details of this process are somewhat cumbersome

and could be skipped for faster perusal of the rest of the proof of Theorem 9.3.3.

Let −→w denote the sequence(w`−`′−1, w`−`′ , · · · , w`−1). For any `′ ∈

{0, · · · , `− 1} and−→w ∈ [n]`
′+2, letE(`′,−→w)

1 andE(`′,−→w)
2 be events defined as follows:

E
(`′,−→w)
1 =

 fchal = w` ∧ fnode(w`) = w`−1 ∧ flen(w`−1) = `′

∧ fpath(w`−1) = (w`−`′−1, · · · , w`−1)



E
(`′,−→w)
2 =

 ul = w` ∧ · · · ∧ u`−`′−1 = w`−`′−1 ∧ u`−`′−2 = · · · = u0 = 0

∧ b = 0 ∧ b`−`′−1 = · · · = b`−2 = 0


P[Θfirst] can now be written succinctly as follows:

P[Θfirst] =
`−1∑
`′=0

∑
−→w∈[n]`

′+2

P[E
(`′,−→w)
1 ; E

(`′,−→w)
2]

=
`−1∑
`′=0

∑
−→w∈[n]`′+2

P[E
(`′,−→w)
1 | E(`′,−→w)

2] ·P[E
(`′,−→w)
2]

Let us first computeP[E
(`′,−→w)
2] for any arbitrary`′ and−→w . Notice that the

valuesu0, · · · , u`, bs, · · · b`−2 are all generated byA′ independently of each other and

of the bit b chosen byA′’s oracleOP
b . Using this fact, computingP[E

(`′,−→w)
2] is quite

146

straightforward:

P[E
(`′,−→w)
2] = P


u` = w`; u`−1 = w`−1; · · · ; u`−`′−1 = w`−`′−1;

u`−`′−2 = · · · = u0 = 0;

b = 0; b`−`′−1 = · · · = b`−2 = 0


= P[u` = w`] ·P[u`−1 = w`−1] · · ·P[u`−`′−1 = w`−`′−1]

× P[u`−`′−2 = 0] ·P[u`−`′−3 = 0] · · ·P[u0 = 0]

× P[b = 0] ·P[b`−`′−1 = 0] · · ·P[b`−2 = 0]

=

{
1

n
· 1
n
·
(

2

2n+ 1

)`′
}
×

{(
1

2n+ 1

)`−`′−1
}
×

{
1

2
·
(

1

2

)`′
}

(To understand this step, observe the probability distribution associated

with theuj ’s in line 001 of figure Figure 9.1)

=
1

2n2
·
(

1

2n+ 1

)`′

·
(

1

2n+ 1

)`−`′−1

=
1

2n2(2n+ 1)`−1
=

α

2

Plugging this into the expression forP[Θfirst], we get:

P[Θfirst] =
α

2
·
`−1∑
`′=0

∑
−→w∈[n]`

′+2

P[E
(`′,−→w)
1 | E(`′,−→w)

2]

We now focus on the quantityP[E
(`′,−→w)
1 | E(`′,−→w)

2]. Let us denote this quantity

by p. Our goal will be to show that the sum

Sp :=
`−1∑
`′=0

∑
−→w∈[n]`′+2

p

is equal to one. From this, the claim will follow immediately.

PROVING Sp = 1: Fix `′ and−→w . A transcript ofA’s execution is called agood

transcript if the eventE(`′,−→w)
1 occurs during that execution; it is calledbad otherwise.

(Note: “Goodness” is a concept well-defined for any execution ofA, not necessarily

one involving interaction withA′.) Given a transcript ofA’s execution, it is easy to

tell whether it is good or not—simply check if the queries contained in it satisfy the

147

following conditions:(i) fchal = w`; (ii) fnode(w`) = w`−1; (iii) flen(w`−1) = `′; and

(iv) fpath(w`−1) = (w`−`′−1, · · · , w`−1). This essentially boils down to verifying that:

(a) challenge(w`) is the firstchallenge query made byA;

(b) for everyj ∈ {`− `′, · · · , `−1}, encrypt(wj−1, wj) is the first query of the form

encrypt(x,wj) made byA; and

(c) no query of the formencrypt(x,w`−`′−1) is ever made byA.

A bad queryin a transcriptt is one that violates any of the above conditions;

that is, a queryqi ∈ t is bad if

• qi = challenge(x) for somex 6= w` and the querychallenge(w`) does not

occur before it int; or

• qi = encrypt(x,wj) (for somej ∈ {` − `′, · · · , ` − 1} andx 6= wj−1) and the

queryencrypt(wj−1, wj) does not occur before it int; or

• qi is of the formencrypt(x,w`−`′−1).8

Clearly, every bad transcript contains at least one bad query. Thelongest good

prefixof a bad transcriptt = (q1, r1, · · · , qf , rf) is the sequence(q1, r1, · · · , qi, ri) (i <

f) such that the queriesq1, · · · , qi are all good but the queryqi+1 is bad. (Note: The

longest good prefix of a bad transcript could possibly be empty—the very first query in

the transcript could be bad.)

For any transcriptt, the relevanttranscript corresponding tot, rel(t), is de-

fined as follows: ift is good,rel(t) = t, elserel(t) is the longest good prefix oft.

Note that relevant transcripts contain only good queries. For any multiset of transcripts,

T , let rel(T) denote the multiset of relevant transcripts corresponding toT ; that is,

rel(T) = {rel(t) | t ∈ T }. An execution ofA is called relevant if it yields a relevant

transcript. (Here, when we say “execution”, we also refer topartial executions ofA,

that is, executions upto a certain query, e.g. the first bad query, made byA.)
8One could consider adding another requirement to the definition of bad queries, namely thatqi 6= corrupt(wj)

for anyj ∈ {` − `′ − 1, · · · , `}; the proof remains essentially the same even without this extra condition.

148

Now let us considerA’s interaction withA′. Suppose that the eventE(`′,−→w)
2

is known to have occurred, which means thats (computed in line 003 ofA′) is equal

to ` − `′ − 1. Let T
A | E(`′,−→w)

2

denote the multiset of all possible transcripts that can be

generated givenE(`′,−→w)
2 ; thus, the size ofT

A | E(`′,−→w)
2

, sayt, is equal to the number of pos-

sible assignments to the random variablesk1, · · · , kus−1, kus+1, · · · , kn andrus , · · · , ru`

(generated byA′ in line 004), the keyk (generated byOP
b), the randomness,rE, used

in performing all encryption operations, and, finally, the random coins,rA, used byA.

Some of the transcripts inT
A | E(`′,−→w)

2

are good while others are bad, and the quantityp

we defined earlier on is the ratio of the number of good transcripts inT
A | E(`′,−→w)

2

to t.

Consider the multisetrel(T
A | E(`′,−→w)

2

). There are two interesting features of this

multiset:

(a) First, notice that, for each transcript inrel(T
A | E(`′,−→w)

2

), none of the replies given

to the adversary involve the random variablesrus , rus+1, · · · , ru`
at all. Why is

this? Given thatE(`′,−→w)
2 occurs, these variables could be used in replying to

queries either of the formencrypt(x,ws), or else of the formencrypt(x,wj)

(j ∈ {s + 1, · · · , `}) provided the latter type of queries are made before

encrypt(wj−1, wj). But any such query would be a bad query, and, by defini-

tion, transcripts inrel(T
A | E(`′,−→w)

2

) do not contain such queries!

Thus, every relevant execution ofA in its interaction withA′ givenE(`′,−→w)
2 is com-

pletely determined by an assignment tok1, · · · , kus−1, kus := k , kus+1, · · · , kn,

and torE andrA. Let T̂
A | E(`′,−→w)

2

denote the multiset of transcripts containing one

transcript for each such execution. (Note: T̂
A | E(`′,−→w)

2

contains the same transcripts

as inrel(T
A | E(`′,−→w)

2

) but is smaller than it, because we ignore therui
’s while enu-

merating these transcripts.)

(b) Now observe that in every transcript in̂T
A | E(`′,−→w)

2

, the replies given for a query

of the formencrypt(x, y) is a real ciphertext (that is,Ekx(ky)) and that of the

form challenge(x) is a real key (that is,kx). This is exactly the manner in which

replies to queries are created by the procedureOP
adpt,0. Thus, if we were to con-

149

sider only relevant executions ofA, the view ofA when interacting withOP
adpt,0

has the same distribution as its view in its interaction withA′ givenE(`′,−→w)
2 occurs.

It follows that the quantityp is equal to the probability that eventE(`′,−→w)
1 takes

place whenA interacts withOP
adpt,0. Sp simply sums this probability over all possible

values of̀ ′ and−→w and must thus be equal to1.

9.5.7 Proof of the Hybrid Cancellation Lemma II (Lemma 9.5.5)

Let us first set up some new notations specific to the proof of the lemma.

We think of the interaction betweenA′ andA as a game in whichA makes multiple

queries andA′ replies to these queries in some prescribed manner based on the random

variables u0, · · · , u`, bs, · · · , b`−2 (and other randomness involved in generating

keys, and forming ciphertexts). We denote this game byGame0. Throughout the

proof of the lemma, we will be considering various modifications of this game and

making statements of the sort:“the probability that eventE occurs inGame0 is

the same as the probability thatE occurs in some modified version ofGame0” .

To formalize such statements, we adopt the following convention: For any eventE,

P[E] denotes the probability thatE occurs inGame0, while for any modification of

Game0, sayGame′, the probability thatE occurs inGame′ is denoted byPGame′ [E].

Proof of Part 1. Fix d andi such thatd ∈ {2, · · · , n} andi ∈ {1, · · · , d−1}.

Define eventsE(0)
d,i andE(1)

d,i as follows:

E
(0)
d,i =

n∨
d`=1

Θ
(d,d`)
(i,d`)

((1)) and E
(1)
d,i =

n∨
d`=1

Θ
(d,d`)
(i+1,1)((0))

Now consider the following modified version ofGame0, which we denote byGamei.

In this modification,A′ first generates keysk1, · · · , kn (Note: All keys are generated)

and, subsequently, replies toall encrypt queries using real ciphertexts, just as is done

by OP
adpt,b. The responses to allcorrupt queries are also just as they are given by

OP
adpt,b. For thechallenge queries, however,A′ does the following—it replies to the

150

first i queries of the formchallenge(x) with a random element of{0, 1}η, sampled

independently ofkx, while to the other queries of this form, its reply iskx.

We claim that the view ofA in Game0 givenE(0)
d,i occurs or givenE(1)

d,i occurs

is the same as its view inGamei given thatVchal(A) has sized. It is easy to see why this

is true for the case whenE(1)
d,i occurs (follows almost immediately from the definition of

eventΘ(d,d`)
(i+1,d`)

((0))). The other part is somewhat more non-trivial and we will prove it

in greater detail.

Given that eventE(0)
d,i occurs, the replies thatA′ provides toA in Game0 are

decided as follows:

(a) for each query of the formchallenge(x) that is issuedbeforetheith challenge

query—which is the same aschallenge(u`)—the reply is a random key from

{0, 1}η, sampled independently ofkx, and for each querychallenge(x) issued

after theith challenge query, the reply iskx;

(b) for theith challenge query, namelychallenge(u`), the reply isku`
.

(c) for each query of the formencrypt(x, u`), the reply isEkx(ru`
). (This is because,

givenE(0)
d,i occurs, the reply for the last query of the formencrypt(x, u`)—which

is the same asencrypt(u`−1, u`)—is a fake ciphertextEku`−1
(ru`

). This means

that the reply foreveryquery of that form must be fake, too.)

(d) for every otherencrypt (andcorrupt) query, the reply is just as given byOP
adpt,b.

Notice thatku`
andru`

are generated byA′ independently of each other and

are not used in replying to any query other than that of the formencrypt(x, u`) or

challenge(u`). So, if we modify conditions (b) and (c) as below

(b’) for the ith challenge query, namelychallenge(u`), the reply isru`
; and

(c’) for each query of the formencrypt(x, u`), the reply isEkx(ku`
).

the distribution of the replies given toA remains unmodified. Conditions (a), (b’), (c’)

and (d) can now succinctly be written as follows:

151

(a”) for each querychallenge(x) that is issuedbefore the(i+1)th challenge query

the reply is a random key from{0, 1}η, sampled independently ofkx, and for each

querychallenge(x) issuedafter the (i + 1)th challenge query (and including

it), the reply iskx;

(b”) for eachencrypt andcorrupt query, the reply is just as given byOP
adpt,b.

This is exactly the manner in which replies toA’s queries are decided inGamei. As

such, the view ofA givenE(0)
d,i occurs is the same as its view inGamei givenVchal(A)

has sized.

We are left with proving thatP[E
(0)
d,i] = P[E

(1)
d,i]. The proof for this statement

uses techniques similar to those used to prove Claim 9.5.4; we will, thus, omit many

details.

For anyw ∈ [n], let fnode(w), fpath(w) andflen(w) be random variables as

defined in Section 9.5.6. Letlnode(w) be the random variable corresponding to thelast

node pointing atw in G(A). Let Φ(d) denote the event that the size ofVchal(A) equals

d andΦ
(d)
(i) (w) (w ∈ [n]) the event thatΦ(d) occurs and theith node in it isw. As with

fnode(w), fpath(w) andflen(w), the eventsΦ(d),Φ
(d)
(i) (w) and the variablelnode(w) are

well-defined for any execution ofA, not necessarily one involving interaction withA′.

The probability that eventE(0)
d,i occurs can be written in terms of these random

variables as follows:

P[E
(0)
d,i] =

n∑
d`=1

P[Θ
(d,d`)
(i,d`)

((1))]

=
n∑

d`=1

`−1∑
`′=0

P



Φ
(d)
(i) (u`); Indegree(u`) = d`; lnode(u`) = u`−1;

flen(u`−1) = `′;

fpath(u`−1) = (u`−`′−1, · · · , u`−1);

u`−`′−2 = · · · = u0 = 0; b = 1;

b`−`′−1 = · · · = b`−2 = 1


To understand the last part of this step (that is, why we requireb, b`−`′−1, · · · b`−2

all to be equal to1), observe that under the occurrence ofE
(0)
d,i , (a) the reply to the

152

query encrypt(u`−1, u`) must be fake, which means thatb`−1 ⊕ b`−2 = 1 and so

b`−2 = 1; and (b) the reply to all queries of the formencrypt(uj−1, uj) (j < l and

j > `− 1− flen(u`−1)) must be real, which means thatb`−2 ⊕ b`−3 = 0, b`−3 ⊕ b`−4 =

0, · · · , b`−flen(u`−1) ⊕ b`−1−flen(u`−1) = 0, b`−1−flen(u`−1) ⊕ b = 0.

For any `′ ∈ {0, · · · , ` − 1}, and any vector of values−→w =

(w`−`′−1, · · · , wl) ∈ [n]`
′+2, letE(`′,−→w)

1 andE(`′,−→w)
2 be events defined as follows:

E
(`′,−→w)
1 =

(
Φ

(d)
(i) (w`) ∧ Indegree(w`) = d` ∧ lnode(w`) = w`−1 ∧

flen(w`−1) = `′ ∧ fpath(w`−1) = (w`−`′−1, · · · , w`−1)

)

E
(`′,−→w)
2 =

 u` = w` ∧ · · · ∧ u`−`′−1 = w`−`′−1 ∧ u`−`′−2 = · · · = u0 = 0 ∧

b = 1 ∧ b`−`′−1 = · · · = b`−2 = 1


P[E

(0)
d,i] can now be expressed in terms of these events as follows:

P[E
(0)
d,i] =

n∑
d`=1

`−1∑
`′=0

∑
−→w∈[n]`

′+2

P[E
(`′,−→w)
1 ; E

(`′,−→w)
2]

=
n∑

d`=1

`−1∑
`′=0

∑
−→w∈[n]`′+2

P[E
(`′,−→w)
1 | E(`′,−→w)

2] ·P[E
(`′,−→w)
2]

As in the proof of Claim 9.5.4, we can show thatP[E
(`′,−→w)
2] is equal toα/2 for every

choice of`′ and−→w , and so

P[E
(0)
d,i] =

α

2
·

n∑
d`=1

`−1∑
`′=0

∑
−→w∈[n]`′+2

P[E
(`′,−→w)
1 | E(`′,−→w)

2]

We now claim that the conditional probabilityP[E
(`′,−→w)
1 | E(`′,−→w)

2] is equal

to the probability of occurrence ofE(`′,−→w)
1 in Gamei. The proof of this claim uses

the same ideas as used in the proof of Claim 9.5.4 (specifically, one needs to carefully

establish a one-to-one correspondence between transcripts—complete ones as well as

partial ones—that do not violateE(`′,−→w)
1 in Game0 and those that do not violate it in

Gamei); details of the proof of the claim are omitted. Using the claim, we can re-write

153

P[E
(0)
d,i] as

P[E
(0)
d,i] =

α

2
·

n∑
d`=1

`−1∑
`′=0

∑
−→w∈[n]`′+2

PGamei
[E

(`′,−→w)
1]

=
α

2
·

n∑
d`=1

`−1∑
`′=0

∑
−→w∈[n]`

′+2

PGamei


Φ

(d)
(i) (w`); Indegree(w`) = d`;

lnode(w`) = w`−1; flen(w`−1) = `′;

fpath(w`−1) = (w`−`′−1, · · · , w`−1)



=
α

2
·

n∑
w`=1

n∑
d`=1

PGamei
[Φ

(d)
(i) (w`); Indegree(w`) = d`]

=
α

2
·PGamei

[Φ(d)]

Using essentially the same approach, we can also equateP[E
(1)
d,i] to

(α/2)PGamei
[Φ(d)]. First, define two events̃E(`′,−→w)

1 andẼ(`′,−→w)
2 as follows:

Ẽ
(`′,−→w)
1 =

(
Φ

(d)
(i+1)(w`) ∧ Indegree(w`) = d` ∧ fnode(w`) = w`−1

∧ flen(w`−1) = `′ ∧ fpath(w`−1) = (w`−`′−1, · · · , w`−1)

)

Ẽ
(`′,−→w)
2 =

(
u` = w` ∧ · · · ∧ u`−`′−1 = w`−`′−1 ∧ u`−`′−2 = · · · = u0 = 0

∧ b = 0 ∧ b`−`′−1 = · · · = b`−2 = 0

)
(Notice howẼ(`′,−→w)

1 differs fromE
(`′,−→w)
1 : We requirew` to be the(i + 1)th node in

Vchal(A) andw`−1 to be thefirst node pointing atw`. Also notice that inẼ(`′,−→w)
2 , we

require thebi’s to be equal to0, not1.) Now expressP[E
(1)
d,i] in terms of these events:

P[E
(1)
d,i] =

n∑
d`=1

`−1∑
`′=0

∑
−→w∈[n]`′+2

P[Ẽ
(`′,−→w)
1 ; Ẽ

(`′,−→w)
2]

=
n∑

d`=1

`−1∑
`′=0

∑
−→w∈[n]`′+2

P[Ẽ
(`′,−→w)
1 | Ẽ(`′,−→w)

2] ·P[Ẽ
(`′,−→w)
2]

=
α

2
·

n∑
d`=1

`−1∑
`′=0

∑
−→w∈[n]`′+2

P[Ẽ
(`′,−→w)
1 | Ẽ(`′,−→w)

2]

154

Again, P[Ẽ
(`′,−→w)
1 | Ẽ(`′,−→w)

2] can be shown to be equal toPGamei
[Ẽ

(`′,−→w)
1], using which

the desired expression forP[E
(1)
d,i] is easily obtained:

P[E
(1)
d,i] =

α

2
·

n∑
d`=1

`−1∑
`′=0

∑
−→w∈[n]`′+2

PGamei
[Ẽ

(`′,−→w)
1]

=
α

2
·

n∑
d`=1

`−1∑
`′=0

∑
−→w∈[n]`′+2

PGamei


Φ

(d)
(i+1)(w`); Indegree(w`) = d`;

fnode(w`) = w`−1; flen(w`−1) = `′;

fpath(w`−1) = (w`−`′−1, · · · , w`−1)


=

α

2
·

n∑
w`=1

n∑
d`=1

PGamei
[Φ

(d)
(i+1)(w`); Indegree(w`) = d`]

=
α

2
·PGamei

[Φ(d)]

Proof of Part 2. Fix j, d, d`, · · · , dj and i, i`, · · · , ij such thati ∈ [d], i` ∈

[d`], · · · , ij ∈ [dj] and fix a bitvector−→ν j ∈ {0, 1}`−j. Consider the following mod-

ified version ofGame0, which we callGamej,ij . In the setup phase,A′ first gen-

erates the valuesuj, uj+1, · · · , u` and bj, · · · , b`−2, b`−1 and it does so exactly as in

the original version:u` andu`−1 are sampled uniformly at random from[n]; for each

j′ ∈ {j, · · · , ` − 2}, P[uj′ = 0] = 1/(2n + 1) andP[uj′ = x] (for anyx ∈ [n]) equals

2/(2n + 1); b`−1 = 0; and, bj, · · · , b`−2 are all sampled uniformly at random from

{0, 1}. A′ then setsbj−1 = νj ⊕ νj+1⊕ · · · ⊕ ν`−1. Finally,A′ generates keysk1, · · · , kn
(Note again: Allkeys are generated!) and also some other random valuesruj

, · · · , ru`

(each sampled independently and uniformly at random from{0, 1}η).

In the execution phase, the replies toA’s queries are decided as follows: For

any corrupt query,corrupt(x), the reply is simplykx; for every query of the form

challenge(x) made beforechallenge(u`), the reply is a random bitstring, generated

independently ofkx, and for every such query made afterchallenge(u`) (and including

it as well), the reply iskx. For every query of the formencrypt(uj′ , uj′+1) such that

j′ ∈ {j, · · · , `− 1}, the reply is real, that isEkuj′
(kuj′+1

), if and only if bj′ = bj′−1 (and

155

is fake, that isEkuj′
(ruj′+1

) otherwise); for every query of the formencrypt(x, uj′)

made before (resp. after)encrypt(uj′−1, uj′), the reply is fake (resp. real). For all other

encrypt queries, except those of the formencrypt(x, u`), the reply is always real. For

queries of the formencrypt(x, uj), the matter is a bit tricky:the firstij queries of this

form (ij as fixed earlier on) are replied to with fake ciphertexts (Ekx(ruj
)) while the rest

with real ones (Ekx(kuj
)).

For anyw ∈ [n], and any execution ofA either inGame0 or in Gamej,ij , we

define the following event, denotedΦ(d,d`,··· ,dj)

(i,i`,··· ,ij) (−→ν j, w). This event occurs if and only if

• Vchal(A) has sized andu` is theith node in it; and

• For allj′ ∈ {j+1, · · · , `}, Indegree(uj′) = dj′, uj′−1 is theij′th node pointing at

uj′ in G(A) and the reply given for queryencrypt(uj′−1, uj′) is real if and only if

νj′−1 = 0; and

• Indegree(uj) = dj andw is theijth node pointing atuj in G(A).

Let Φ
(d,d`,··· ,dj+1,dj)

(i,i`,··· ,ij+1) (−→ν j) denote the event thatΦ(d,d`,··· ,dj)

(i,i`,··· ,ij) (−→ν j, w) occurs for

somew ∈ [n]; that is,Φ(d,d`,··· ,dj+1,dj)

(i,i`,··· ,ij+1) (−→ν j) =
∨
w∈[n] Φ

(d,d`,··· ,dj)

(i,i`,··· ,ij) (−→ν j, w). LetE(0)
j,d,i(
−→ν j)

andE(1)
j,d,i(
−→ν j) be defined as follows:

E
(0)
j,d,i(
−→ν j) = Θ

(d,d`,··· ,dj)

(i,i`,··· ,ij) (1 · −→ν j)

E
(1)
j,d,i(
−→ν j) = Θ

(d,d`,··· ,dj+1,dj)

(i,i`,··· ,ij+1,ij+1)(0 ·
−→ν j)

Our task is to show thatE(0)
j,d,i(
−→ν j) ≡ E

(1)
j,d,i(
−→ν j), that is, (a)E(0)

j,d,i(
−→ν j) '

E
(1)
j,d,i(
−→ν j) and (b) P[E

(0)
j,d,i(
−→ν j)] = P[E

(1)
j,d,i(
−→ν j)]. Proving part (a) is relatively

simple—one only needs to argue that the view ofA in Game0 givenE(0)
j,d,i(
−→ν j) oc-

curs or givenE(1)
j,d,i(
−→ν j) occurs is the same as its view inGamej,ij given that the event

Φ
(d,d`,··· ,dj+1,dj)

(i,i`,··· ,ij+1) (−→ν j) occurs in that game. This follows almost immediately from the def-

initions ofE(0)
j,d,i(
−→ν j), E

(1)
j,d,i(
−→ν j) and ofΦ(d,d`,··· ,dj+1,dj)

(i,i`,··· ,ij+1) (−→ν j). (The details of the proof

are omitted.) ProvingP[E
(0)
j,d,i(
−→ν j)] = P[E

(1)
j,d,i(
−→ν j)] is the hard part and we sketch the

proof for this here. The proof, as in the proof of part 1, involves expressing each of these

probabilities as a sum of various conditional probabilities; in the current proof, though,

156

each such conditional probability expressionP[E1 | E2] is equated to an expression of

the formPGamej,ij
[E1], and this is then used to perform the summation.

First, focus onP[E
(0)
j,d,i(
−→ν j)]. Notice that whenE(0)

j,d,i(
−→ν j) occurs inGame0,

uj−1 is theijth node pointing atuj and the reply to the queryencrypt(uj−1, uj) is fake.

Since the replies to all queries of the formencrypt(uj′−1, uj′) for j′ > j are ascertained

by the vector−→ν j and since, fors < j′ < j, every such query is replied to with a real

ciphertext, there is exactly one assignment to the variablesbj−1, bj−2, · · · , bs, b (where

b is selected by the procedureOP
b) for whichE(0)

j,d,i(
−→ν j) can occur. A careful analysis of

the code ofA′ reveals that this assignment is as follows:

bj−1 = νj ⊕ νj+1 ⊕ · · · ⊕ ν`−1

b = bs = · · · = bj−3 = bj−2 = 1⊕ νj ⊕ νj+1 ⊕ · · · ⊕ ν`−1

Using this observation, we can writeP[E
(0)
j,d,i(
−→ν j)] as follows:

P[E
(0)
j,d,i(
−→ν j)] =

j−1∑
`′=0

P



Φ
(d,d`,··· ,dj)

(i,i`,··· ,ij) (−→ν j, uj−1); flen(uj−1) = `′;

fpath(uj−1) = (uj−`′−1, · · · , uj−1);

uj−`′−2 = · · · = u0 = 0;

bj−1 = νj ⊕ νj+1 ⊕ · · · ⊕ ν`−1;

b = bj−`′−1 = · · · = bj−2

= 1⊕ νj ⊕ νj+1 ⊕ · · · ⊕ ν`−1


Now, for any`′ ∈ {0, · · · , j − 1} and any vector−→w = (wj−`′−1, · · · , wj−1) ∈ [n]`

′+1,

let us define the following events:

E
(`′,−→w)
j,1 =

 Φ
(d,d`,··· ,dj)

(i,i`,··· ,ij) (−→ν j, wj−1) ∧ flen(wj−1) = `′

∧ fpath(wj−1) = (wj−`′−1, · · · , wj−1)



E
(`′,−→w)
j,2 =


uj−1 = wj−1 ∧ uj−2 = wj−2 ∧ · · · ∧ uj−`′−1 = wj−`′−1 ∧

uj−`′−2 = · · · = u0 = 0 ∧ bj−1 = νj ⊕ νj+1 ⊕ · · · ⊕ ν`−1 ∧

b = bj−`′−1 = · · · = bj−2 = 1⊕ νj ⊕ νj+1 ⊕ · · · ⊕ ν`−1



157

P[E
(0)
j,d,i(
−→ν j)] can now be written succinctly as:

P[E
(0)
j,d,i(
−→ν j)] =

j−1∑
`′=0

∑
−→w∈[n]`′+1

P[E
(`′,−→w)
j,1 ; E

(`′,−→w)
j,2]

=

j−1∑
`′=0

∑
−→w∈[n]`

′+1

P[E
(`′,−→w)
j,1 | E(`′,−→w)

j,2] ·P[E
(`′,−→w)
j,2]

Let α′ = P[E
(`′,−→w)
j,2]. It can be checked easily that for any`′ ∈ {0, · · · , j − 1} and any

−→w ∈ [n]`
′+1,

α′ =

 1
2(2n+1)j if j < l

1
2n(2n+1)`−1 if j = l

Thus,

P[E
(0)
j,d,i(
−→ν j)] = α′ ·

j−1∑
`′=0

∑
−→w∈[n]`

′+1

P[E
(`′,−→w)
j,1 | E(`′,−→w)

j,2]

We claim that the probabilityP[E
(`′,−→w)
j,1 | E(`′,−→w)

j,2] is equal to the probability thatE(`′,−→w)
j,1

occurs inGamej,ij , that is,P[E
(`′,−→w)
j,1 | E(`′,−→w)

j,2] = PGamej,ij
[E

(`′,−→w)
j,1]. The intuition

behind this is the following—given thatE(`′,−→w)
j,2 occurs inGame0, none of the random

valuesrj−`′−1, · · · , rj−1 are used in any execution ofA unless and until one or more con-

ditions underE(`′,−→w)
j,1 are violated. Thus, if we consider transcripts of this interaction—

givenE(`′,−→w)
j,2 occurs—only upto the point where a violation ofE(`′,−→w)

j,1 is found (that is,

truncate the “bad” transcripts at the point where they start violatingE
(`′,−→w)
j,1), the tran-

scripts would look exactly like one in the interaction ofA with A′ in Gamej,ij . In effect,

there is a one-to-one correspondence between “non-violating” transcripts in these two

interactions. The probabilityP[E
(`′,−→w)
j,1 |E(`′,−→w)

j,2] is the ratio of thegood(that is, untrun-

cated) transcripts to the total number of transcripts inGame0, which, in the setting of

Gamej,ij , is the same asPGamej,ij
[E

(`′,−→w)
j,1]. The details of the proof are similar to those

in the proof of Claim 9.5.4 and are omitted.

158

Using the above claim, we write:

P[E
(0)
j,d,i(
−→ν j)] = α′ ·

j−1∑
`′=0

∑
−→w∈[n]`′+1

PGamej,ij
[E

(`′,−→w)
j,1]

= α′ ·
j−1∑
`′=0

∑
−→w∈[n]`′+1

PGamej,ij


Φ

(d,d`,··· ,dj)

(i,i`,··· ,ij) (−→ν j, wj−1);

flen(wj−1) = `′;

fpath(wj−1) =

(wj−`′−1, · · · , wj−1)


= α′ ·

∑
wj−1∈[n]

j−1∑
`′=0

PGamej,ij
[Φ

(d,d`,··· ,dj)

(i,i`,··· ,ij) (−→ν j, wj−1); flen(wj−1) = `′]

= α′ ·PGamej,ij
[Φ

(d,d`,··· ,dj+1,dj)

(i,i`,··· ,ij+1) (−→ν j)]

And now using essentially the same approach one can also equate

P[E
(1)
j,d,i(
−→ν j)] to

α′ ·PGamej,ij
[Φ

(d,d`,··· ,dj+1,dj)

(i,i`,··· ,ij+1) (−→ν j)]. We briefly sketch here how this is done, highlight-

ing only the parts where the proof differs from that for the case ofE
(0)
j,d,i(
−→ν j).

WhenE(1)
j,d,i(
−→ν j) = Θ

(d,d`,··· ,dj+1,dj)

(i,i`,··· ,ij+1,ij+1)(0 ·
−→ν j) occurs inGame0, uj−1 is the

(ij + 1)th node pointing atuj and the reply to the queryencrypt(uj−1, uj) is real.

The replies to all queriesencrypt(uj′−1, uj′) for j′ > j are ascertained by the vector
−→ν j, and fors < j′ < j, every such query is replied to with a real ciphertext. This

implies that there is exactly one assignment to the variablesbj−1, bj−2, · · · , bs, b for

whichE(1)
j,d,i(
−→ν j) can occur, which is as follows:

b = bs = · · · = bj−3 = bj−2 = bj−1 = νj ⊕ νj+1 ⊕ · · · ⊕ ν`−1

Now, for any`′ ∈ {0, · · · , j − 1} and any vector−→w = (wj−`′−1, · · · , wj−1) ∈ [n]`
′+1,

let us define the following events:

Ẽ
(`′,−→w)
j,1 =

 Φ
(d,d`,··· ,dj+1,dj)

(i,i`,··· ,ij+1,ij+1)(
−→ν j, wj−1) ∧ flen(wj−1) = `′

∧ fpath(wj−1) = (wj−`′−1, · · · , wj−1)



Ẽ
(`′,−→w)
j,2 =


uj−1 = wj−1 ∧ uj−2 = wj−2 ∧ · · · ∧ uj−`′−1 = wj−`′−1 ∧

uj−`′−2 = · · · = u0 = 0 ∧

b = bj−`′−1 = · · · = bj−2 = bj−1 = νj ⊕ νj+1 ⊕ · · · ⊕ ν`−1



159

Notice howẼ(`′,−→w)
j,1 differs fromE

(`′,−→w)
j,1 : we requirewj−1 to be the(ij + 1)th node (and

not theijth one) pointing atuj. P[E
(1)
j,d,i(
−→ν j)] can be written in terms of these events as:

P[E
(1)
j,d,i(
−→ν j)] =

j−1∑
`′=0

∑
−→w∈[n]`′+1

P[Ẽ
(`′,−→w)
j,1 ; Ẽ

(`′,−→w)
j,2]

=

j−1∑
`′=0

∑
−→w∈[n]`′+1

P[Ẽ
(`′,−→w)
j,1 | Ẽ(`′,−→w)

j,2] ·P[Ẽ
(`′,−→w)
j,2]

which can (using the same techniques as used in the case ofE
(0)
j,d,i(
−→ν j)) be shown to be

equal to

= α′ ·
j−1∑
`′=0

∑
−→w∈[n]`′+1

PGamej,ij
[Ẽ

(`′,−→w)
j,1]

= α′ ·
j−1∑
`′=0

∑
−→w∈[n]`

′+1

PGamej,ij

 Φ
(d,d`,··· ,dj+1,dj)

(i,i`,··· ,ij+1,ij+1)(
−→ν j, wj−1); flen(wj−1) = `′;

fpath(wj−1) = (wj−`′−1, · · · , wj−1)


= α′ ·

∑
wj−1∈[n]

j−1∑
`′=0

PGamej,ij
[Φ

(d,d`,··· ,dj+1,dj)

(i,i`,··· ,ij+1,ij+1)(
−→ν j, wj−1); flen(wj−1) = `′]

= α′ ·PGamej,ij
[Φ

(d,d`,··· ,dj+1,dj)

(i,i`,··· ,ij+1) (−→ν j)]

Proof of Part 3. The proof of this part follows from the defini-

tion of Θ
(d,d`,··· ,dj)

(i,i`,··· ,ij) (−→ν j−1). When Θ
(d,d`,··· ,dj)

(i,i`,··· ,ij) (−→ν j−1) occurs, the in-degree

of uj−1 in G(A) is either zero or in the range of1 through n. If the in-

degree is zero, this is the same as the occurrence ofΘ
(d,d`,··· ,dj ,0)

(i,i`,··· ,ij ,0) (1 · −→ν j−1).

If the in-degree is non-zero (say, it is equal todj−1), then uj−2 must be the

first node pointing atuj−1 in G(A) and the eventΘ(d,d`,··· ,dj ,dj−1)

(i,i`,··· ,ij ,1) (0 · −→ν j−1)

must occur. This gives us the desired expression forΘ
(d,d`,··· ,dj)

(i,i`,··· ,ij) (−→ν j−1).

Proof of Part 4. The proof of part (a) is relatively straightforward and follows

immediately from the definition ofΨ(d,d`,··· ,dj)

(i,i`,··· ,ij) and by inspection of the code ofA′. No-

160

tice that whenΨ(d,d`,··· ,d1)
(i,i`,··· ,i1) occurs, the eventΛ0 must occur (that is,u0, u1, · · · , u` must

all be non-zero and must form a valid path inG(A)), and since the depth ofG(A) is at

most`, Indegree(u0) must equal0. Also, for eachj′ ∈ {0, · · · , ` − 2}, bj′ must equal

νj′ for “some”νj′ ∈ {0, 1} and for each such assignment to thebj′ ’s, the reply given for

the queryencrypt(uj′−1, uj′), whenj′ > 1, is real if and only ifνj′−1 ⊕ νj′−2 = 0;

when j′ = 1, the reply is real if and only ifν0 ⊕ b = 0. Thus, the occurrence

of Ψ
(d,d`,··· ,d1)
(i,i`,··· ,i1) is equivalent to the occurrence ofΘ

(d,d`,··· ,d1)
(i,i`,··· ,i1) (XOR(b,−→ν 0)) for “some”

choice ofν0, ν1, · · · , ν`−2 ∈ {0, 1}. From this, the desired result follows.

The proof of part 4(b) is similar to the proof of part 2. As in that proof, we first

define a new game played betweenA′ andA which is the same asGamej,ij but with

two differences:(i) In the setup phase,A′ selectsbj−1 to be equal toν (as opposed to

νj ⊕ · · · ⊕ ν`−1 as inGamej,ij); and(ii) In the execution phase,A′ replies toall queries

of the formencrypt(x, uj) with fake ciphertexts (as opposed to just the firstij queries

as inGamej,ij). We denote this modified game byGamej,all and for any eventE, we

denote the probability thatE occurs duringGamej,all by PGamej,all [E]. Note that the

eventΦ(d,d`,··· ,dj+1,dj)

(i,i`,··· ,ij+1) (−→ν j) is well-defined for the gameGamej,all.

Let E
(0)
j,d,i,ν = Ψ

(d,d`,··· ,dj)

(i,i`,··· ,ij) ∧ (b = ν) ; and

E
(1)
j,d,i,ν =

n∨
dj−1=1

 ∨
νj−1,··· ,ν`−2∈{0,1}

Θ
(d,d`,··· ,dj ,dj−1)

(i,i`,··· ,ij ,dj−1) (1 · XOR(ν,−→ν j−1))


Let Φ

(dj−1)
−→ν j−1

:= Φ
(d,d`,··· ,dj ,dj−1)

(i,i`,··· ,ij) (XOR(ν,−→ν j−1)). It is easy to check that

the view of A in Game0 given Ψ
(d,d`,··· ,dj)

(i,i`,··· ,ij) ∧ (b = ν) occurs is the same as its

view in Gamej−1,all given Φ
(dj−1)
−→ν j−1

occurs for somedj−1 ∈ [n] ∪ {0} and some
−→ν j−1 ∈ {0, 1}`−j (such thatν`−1 = 0). (This is also the same asA’s view in

Game0 given Φ
(dj−1)
−→ν j−1

occurs for somedj−1 and−→ν j−1.) At the same time, given that

Θ
(d,d`,··· ,dj ,dj−1)

(i,i`,··· ,ij ,dj−1) (1 · XOR(ν,−→ν j−1)) occurs inGame0, the view ofA is identically dis-

tributed as its view inGamej−1,all given Φ
(dj−1)
−→ν j−1

occurs. In other words,A’s view in

Game0 givenE(1)
j,d,i,ν is the same as its view inGamej−1,all given Φ

(dj−1)
−→ν j−1

occurs for

161

somedj−1 and−→ν j−1 ∈ {0, 1}`−j (ν`−1 = 0). From this, it follows thatE(0)
j,d,i,ν ' E

(1)
j,d,i,ν .

We are left with proving P[E
(0)
j,d,i,ν] = P[E

(1)
j,d,i,ν]. Fix ν`−1 =

0. For any νj−1, · · · , ν`−2, we use
∑

νj−1,...,`−2
as shorthand for the summation∑

(νj−1,··· ,ν`−2)∈{0,1}`−j .

First, focus onP[E
(0)
j,d,i,ν]. This probability can be written in terms of the event

Φ
(dj−1)
−→ν j−1

, as follows:

P[E
(0)
j,d,i,ν] =

n∑
dj−1=0

∑
νj−1,...,`−2

P
[

Φ
(dj−1)
−→ν j−1

; u0 = u1 = · · · = uj−2 = 0; b = ν
]

=
1

2

(
1

2n+ 1

)j−1 n∑
dj−1=0

∑
νj−1,...,`−2

P


Φ

(dj−1)
−→ν j−1

|

u0 = u1 = · · · = uj−2 = 0;

b = ν


The probability that eventΦ(dj−1)

−→ν j−1
= Φ

(d,d`,··· ,dj ,dj−1)

(i,i`,··· ,ij) (XOR(ν,−→ν j−1)) occurs inGame0

givenu0, · · · , uj−2 are all zero andb = ν is simply equal to the probability thatΦ(dj−1)
−→ν j−1

occurs inGamej−1,all. So,

P[E
(0)
j,d,i,ν] =

1

2

(
1

2n+ 1

)j−1 n∑
dj−1=0

∑
νj−1,...,`−2

PGamej−1,all

[
Φ

(dj−1)
−→ν j−1

]

The probability of occurrence of eventE(1)
j,d,i,ν (in Game0) can also be shown to be

equal to the above quantity. First, let us split this event based on the in-degree of node

162

uj−1 in G(A) being zero or non-zero.

P[E
(1)
j,d,i,ν] =

n∑
dj−1=0

∑
νj−1,...,`−2

P[Θ
(d,d`,··· ,dj ,dj−1)

(i,i`,··· ,ij ,dj−1) (1 · XOR(ν,−→ν j−1))]

=
∑

νj−1,...,`−2

P

 Φ
(d,d`,··· ,dj ,0)

(i,i`,··· ,ij) (XOR(ν,−→ν j−1));

u0 = · · · = uj−2 = 0; b = ν


︸ ︷︷ ︸

= p1

+

∑n
dj−1=1

∑
νj−1,...,`−2

∑j−2
`′=0

∑
wj−2,...wj−`′−2∈[n]

P



Φ
(d,d`,··· ,dj ,dj−1)

(i,i`,··· ,ij ,dj−1) (XOR(ν,−→ν j−1), wj−2);

flen(wj−2) = `′;

fpath(wj−2) = (wj−`′−2, · · · , wj−2);

uj−2 = wj−2; · · · ; uj−`′−2 = wj−`′−2;

uj−`′−3 = · · · = u0 = 0; bj−2 = ν;

b = bj−`′−2 = · · · = bj−3 = 1⊕ ν


︸ ︷︷ ︸

= p2

The first term,p1, in the right hand side can easily be shown to be equal to

1

2

(
1

2n+ 1

)j−1 ∑
νj−1,...,`−2

PGamej−1,all

[
Φ

(dj−1)
−→ν j−1

]
The second term,p2, is harder to tackle. For anỳ′ ∈ {0, · · · , j − 2} and−→w =

(wj−`′−2, · · · , wj−2) ∈ [n]`
′+1, define the following two events:

E
(`′,−→w)
j,ν,1 =

 Φ
(d,d`,··· ,dj ,dj−1)

(i,i`,··· ,ij ,dj−1) (XOR(ν,−→ν j−1), wj−2);

flen(wj−2) = `′; fpath(wj−2) = (wj−`′−2, · · · , wj−2)



E
(`′,−→w)
j,ν,2 =

 uj−2 = wj−2; · · · ; uj−`′−2 = wj−`′−2; uj−`′−3 = · · · = u0 = 0;

bj−2 = ν; b = bj−`′−2 = · · · = bj−3 = 1⊕ ν



163

P[E
(`′,−→w)
j,ν,2], for any valid choice of̀ ′ and−→w , is equal to 1

2(2n+1)j−1 . Thus,

p2 =
n∑

dj−1=1

∑
νj−1,...,`−2

 j−2∑
`′=0

∑
−→w∈[n]`′+1

P
[
E

(`′,−→w)
j,ν,1 ; E

(`′,−→w)
j,ν,2

]
=

n∑
dj−1=1

∑
νj−1,...,`−2

 j−2∑
`′=0

∑
−→w∈[n]`′+1

P
[
E

(`′,−→w)
j,ν,1 | E

(`′,−→w)
j,ν,2

]
·P

[
E

(`′,−→w)
j,ν,2

]
=

1

2(2n+ 1)j−1

n∑
dj−1=1

∑
νj−1,...,`−2

 j−2∑
`′=0

∑
−→w∈[n]`

′+1

P
[
E

(`′,−→w)
j,ν,1 | E

(`′,−→w)
j,ν,2

]

For any fixed̀ ′ and−→w , the conditional probabilityP
[
E

(`′,−→w)
j,ν,1 | E

(`′,−→w)
j,ν,2

]
is equal to the

probability that eventE(`′,−→w)
j,ν,1 occurs inGamej−1,all (again, this involves showing a

one-to-one correspondence between transcripts inGame0 conditioned on eventE(`′,−→w)
j,ν,2

occurring and transcripts inGamej−1,all; details are omitted) and using this fact, we get

thatp2 equals

1

2(2n+ 1)j−1

n∑
dj−1=1

∑
νj−1,...,`−2

 j−2∑
`′=0

∑
−→w∈[n]`

′+1

PGamej−1,all

[
E

(`′,−→w)
j,ν,1

]
=

1

2(2n+ 1)j−1

n∑
dj−1=1

∑
νj−1,...,`−2

j−2∑
`′=0

∑
−→w∈[n]`

′+1

PGamej−1,all


Φ

(d,d`,··· ,dj ,dj−1)

(i,i`,··· ,ij ,dj−1) (XOR(ν,−→ν j−1), wj−2);

flen(wj−2) = `′;

fpath(wj−2) = (wj−`′−2, · · · , wj−2)


=

1

2(2n+ 1)j−1

n∑
dj−1=1

∑
νj−1,...,`−2

∑
wj−2∈[n]

PGamej−1,all

[
Φ

(d,d`,··· ,dj ,dj−1)

(i,i`,··· ,ij ,dj−1) (XOR(ν,−→ν j−1), wj−2)
]

=
1

2(2n+ 1)j−1

n∑
dj−1=1

∑
νj−1,...,`−2

PGamej−1,all

[
Φ

(d,d`,··· ,dj ,dj−1)

(i,i`,··· ,ij) (XOR(ν,−→ν j−1))
]

=
1

2(2n+ 1)j−1

n∑
dj−1=1

∑
νj−1,...,`−2

PGamej−1,all

[
Φ

(dj−1)
−→ν j−1

]

164

Thus,

P[E
(1)
j,d,i,ν] = p1 + p2

=
1

2(2n+ 1)j−1

n∑
dj−1=0

∑
νj−1,...,`−2

PGamej−1,all

[
Φ

(dj−1)
−→ν j−1

]

9.5.8 Proof of the Telescoping Sums Lemma (Lemma 9.5.6)

We will prove the lemma using induction overj. Recall the expression for∆j

(equation 9.5):

∆j =
∑
d∈[n],
i∈[d]

∑
d`∈[n],
i`∈[d`]

· · ·
∑

dj+1∈[n],
ij+1∈[dj+1]

 P[ΘA; Ψ
(d,d`,··· ,dj+1)

(i,i`,··· ,ij+1) ; b = 0]

− P[ΘA; Ψ
(d,d`,··· ,dj+1)

(i,i`,··· ,ij+1) ; b = 1]


Whenj = 0, this becomes:

∆0 =
∑
d∈[n],
i∈[d]

∑
d`∈[n],
i`∈[d`]

· · ·
∑
d1∈[n],
i1∈[d1]

 P[ΘA; Ψ
(d,d`,··· ,d1)
(i,i`,··· ,i1) ; b = 0]

− P[ΘA; Ψ
(d,d`,··· ,d1)
(i,i`,··· ,i1) ; b = 1]


Using the hybrid cancellation lemma, part 4, we can re-write this as

∆0 =
∑

d∈[n],d`∈[n],
i∈[d],i`∈d`

· · ·
∑
d1∈[n],
i1∈[d1]

∑
ν0,ν1,··· ,ν`−2∈{0,1},

ν`−1=0


P[ΘA; Θ

(d,d`,··· ,d1)
(i,i`,··· ,i1) (XOR(0,−→ν 0))]

− P[ΘA; Θ
(d,d`,··· ,d1)
(i,i`,··· ,i1) (XOR(1,−→ν 0))]


From this, and the fact that∆0 = ∆0, it follows that Lemma 9.5.6 is true forj = 0.

Suppose that for somêj > 0, the lemma is true forj = ĵ − 1, that is:

∆ĵ−1 =
∑

d∈[n],d`∈[n],··· ,dĵ∈[n],

i∈[d],i`∈d`,··· ,iĵ∈[dĵ]

∑
νĵ−1,··· ,ν`−2∈{0,1},

ν`−1=0


P[ΘA; Θ

(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(XOR(0,−→ν ĵ−1))]

− P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(XOR(1,−→ν ĵ−1))]


We will show that the lemma is also true forj = ĵ. In the sequel, we will denote any

sequence of summations of the form∑
d∈[n],
i∈[d]

∑
d`∈[n],
i`∈[d`]

· · ·
∑
dj∈[n],
ij∈[dj]

165

by
∑

d,i,d`,··· ,dj ,ij
and one of the form

∑
νj ,νj+1,··· ,ν`−2∈{0,1},

ν`−1=0

by
∑

ν+
j

. From the inductive

hypothesis, we have:

∆ĵ−1 =
∑

d,i,d`,··· ,dĵ ,iĵ

∑
ν+

ĵ−1


P[ΘA; Θ

(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(XOR(0,−→ν ĵ−1))]

− P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(XOR(1,−→ν ĵ−1))]



=
∑

d,i,d`,··· ,dĵ ,iĵ

∑
ν+

ĵ−1


P[ΘA; Θ

(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
((νĵ−1, νĵ−1 ⊕ νĵ, · · · , ν`−2 ⊕ ν`−1))]

− P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
((νĵ−1, νĵ−1 ⊕ νĵ, · · · , ν`−2 ⊕ ν`−1))]


Let us now expand the innermost sequence of summations based on the value

assigned toνĵ−1. We get that∆ĵ−1 equals

∑
d,i,d`,··· ,dĵ ,iĵ

∑
ν+

ĵ



P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
((0, νĵ, νĵ ⊕ νĵ+1, · · · , ν`−2 ⊕ ν`−1))]

+ P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
((1, νĵ, νĵ ⊕ νĵ+1, · · · , ν`−2 ⊕ ν`−1))]

− P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
((1, νĵ, νĵ ⊕ νĵ+1, · · · , ν`−2 ⊕ ν`−1))]

− P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
((0, νĵ, νĵ ⊕ νĵ+1, · · · , ν`−2 ⊕ ν`−1))]



=
∑

d,i,d`,··· ,dĵ ,iĵ

∑
ν+

ĵ



P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(0 · XOR(0,−→ν ĵ))]

+ P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(1 · XOR(1,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(1 · XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(0 · XOR(1,−→ν ĵ))]



=
∑

d,i,d`,··· ,dĵ+1,iĵ+1

∑
dĵ∈[n]

∑
iĵ∈[dĵ]

∑
ν+

ĵ



P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(0 · XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(1 · XOR(0,−→ν ĵ))]

+ P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(1 · XOR(1,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(0 · XOR(1,−→ν ĵ))]



166

and this can be written as:

∑
d,i,d`,··· ,dĵ+1,iĵ+1

∑
dĵ∈[n]

∑
ν+

ĵ



∑
iĵ∈[dĵ]

 P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(0 · XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(1 · XOR(0,−→ν ĵ))]



+
∑

iĵ∈[dĵ]

 P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(1 · XOR(1,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ)

(i,i`,··· ,iĵ)
(0 · XOR(1,−→ν ĵ))]




And now let us apply the hybrid cancellation lemma (part 2) to the terms in

the innermost summations. We get that∆ĵ−1 equals

∑
d,i,d`,··· ,dĵ+1,iĵ+1

∑
dĵ∈[n]

∑
ν+

ĵ



 P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,1)
(0 · XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,dĵ)
(1 · XOR(0,−→ν ĵ))]



+

 P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,dĵ)
(1 · XOR(1,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,1)
(0 · XOR(1,−→ν ĵ))]




(9.6)

Now, let us recall the expression for∆ĵ (equation (9.5)), and let us re-write it in terms

of theΘ’s by invoking part 4 of the hybrid cancellation lemma

∆ĵ =

∑
d,i,d`,··· ,dĵ+1,iĵ+1

∑
0≤dĵ≤n

∑
νĵ ,··· ,ν`−2∈{0,1},

ν`−1=0

 P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,dĵ)
(1 · XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,dĵ)
(1 · XOR(1,−→ν ĵ))]



=
∑

d,i,d`,··· ,dĵ+1,iĵ+1

∑
dĵ∈[n]

∑
ν+

ĵ

 P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,dĵ)
(1 · XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,dĵ)
(1 · XOR(1,−→ν ĵ))]


+

∑
d,i,d`,··· ,dĵ+1,iĵ+1

∑
ν+

ĵ

 P[ΘA; Θ
(d,d`,··· ,dĵ+1,0)

(i,i`,··· ,iĵ+1,0)
(1 · XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ+1,0)

(i,i`,··· ,iĵ+1,0)
(1 · XOR(1,−→ν ĵ))]


(9.7)

167

Let us now use the above equation and equation (9.6) to express∆ĵ in terms of theΘ’s:

∆ĵ = ∆ĵ−1 + ∆ĵ

=
∑

d,i,d`,··· ,dĵ+1,iĵ+1

∑
dĵ∈[n]

∑
ν+

ĵ



 P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,1)
(0 · XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,dĵ)
(1 · XOR(0,−→ν ĵ))]



+

 P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,dĵ)
(1 · XOR(1,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,1)
(0 · XOR(1,−→ν ĵ))]



+

 P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,dĵ)
(1 · XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,dĵ)
(1 · XOR(1,−→ν ĵ))]




+

∑
d,i,d`,··· ,dĵ+1,iĵ+1

∑
ν+

ĵ

 P[ΘA; Θ
(d,d`,··· ,dĵ+1,0)

(i,i`,··· ,iĵ+1,0)
(1 · XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ+1,0)

(i,i`,··· ,iĵ+1,0)
(1 · XOR(1,−→ν ĵ))]


Notice that two pairs of terms in the first sequence of summations (enclosed in the tall

square braces

[
· · ·

]
) cancel out, leaving us with the following:

∆ĵ =
∑

d,i,d`,··· ,dĵ+1,iĵ+1

∑
dĵ∈[n]

∑
ν+

ĵ

 P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,1)
(0 · XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,1)
(0 · XOR(1,−→ν ĵ))]


+

∑
d,i,d`,··· ,dĵ+1,iĵ+1

∑
ν+

ĵ

 P[ΘA; Θ
(d,d`,··· ,dĵ+1,0)

(i,i`,··· ,iĵ+1,0)
(1 · XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ+1,0)

(i,i`,··· ,iĵ+1,0)
(1 · XOR(1,−→ν ĵ))]



=
∑

d,i,d`,··· ,dĵ+1,iĵ+1

∑
ν+

ĵ



P[ΘA; Θ
(d,d`,··· ,dĵ+1,0)

(i,i`,··· ,iĵ+1,0)
(1 · XOR(0,−→ν ĵ))]

+
∑

dĵ∈[n] P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,1)
(0 · XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ+1,0)

(i,i`,··· ,iĵ+1,0)
(1 · XOR(1,−→ν ĵ))]

−
∑

dĵ∈[n] P[ΘA; Θ
(d,d`,··· ,dĵ+1,dĵ)

(i,i`,··· ,iĵ+1,1)
(0 · XOR(1,−→ν ĵ))]


One final invocation of the hybrid cancellation lemma (this time, part 3) gives us the

168

desired expression for∆ĵ:

∆ĵ =
∑

d,i,d`,··· ,dĵ+1,iĵ+1

∑
ν+

ĵ

 P[ΘA; Θ
(d,d`,··· ,dĵ+1)

(i,i`,··· ,iĵ+1) (XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ+1)

(i,i`,··· ,iĵ+1) (XOR(1,−→ν ĵ))]


=

∑
d∈[n],
i∈[d]

∑
d`∈[n],
i`∈[d`]

· · ·
∑

dĵ+1∈[n],

iĵ+1∈[dĵ+1]

∑
νĵ ,··· ,ν`−2∈{0,1},

ν`−1=0

 P[ΘA; Θ
(d,d`,··· ,dĵ+1)

(i,i`,··· ,iĵ+1) (XOR(0,−→ν ĵ))]

− P[ΘA; Θ
(d,d`,··· ,dĵ+1)

(i,i`,··· ,iĵ+1) (XOR(1,−→ν ĵ))]


The main result of this chapter, Theorem 9.3.3, was previously published

in [37]. An analysis of theplain-LKH+ protocol was also published in that work but

the presentation is slightly different in the current work.

Bibliography

[1] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the compu-
tational soundness of formal encryption).Journal of Cryptology, 15(2):103–127,
2002.

[2] M. Abadi and B. Warinschi. Security analysis of cryptographically controlled ac-
cess to xml documents. InProceedings of the 24th ACM Symposium on Principles
of Database Systems (PODS), pages 108–117, Baltimore, Maryland, June 2005.
ACM.

[3] D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic
adversaries. In R. A. Rueppel, editor,Advances in Cryptology – EUROCRYPT’92,
volume 658 ofLecture Notes in Computer Science, pages 307–323, Balatonfred,
Hungary, May 24–28, 1992. Springer-Verlag, Berlin, Germany.

[4] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In38th Annual Symposium on Foundations of Computer
Science, pages 394–403, Miami Beach, Florida, Oct. 19–22, 1997. IEEE Computer
Society Press.

[5] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining
message authentication code. In Y. Desmedt, editor,Advances in Cryptology –
CRYPTO’94, volume 839 ofLecture Notes in Computer Science, pages 341–358,
Santa Barbara, CA, USA, Aug. 21–25, 1994. Springer-Verlag, Berlin, Germany.

[6] M. Bellare and B. Yee. Forward security in private key cryptography. In M. Joye,
editor, Topics in Cryptology – CT-RSA 2003, volume 2612 ofLecture Notes in
Computer Science, pages 1–18, San Francisco, CA, USA, Apr. 13–17, 2003.
Springer-Verlag, Berlin, Germany.

[7] M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudorandom bits.SIAM Journal on Computing, 13(4):850–864, 1984.

[8] D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In V. Shoup, editor,Advances in Cryptology -
CRYPTO 2005, volume 3621 ofLecture Notes in Computer Science, pages 258–
275, Santa Barbara, CA, USA, August 2005. Springer Verlag, Berlin, Germany.

169

170

[9] R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multiparty
computation. In28th Annual ACM Symposium on Theory of Computing, pages
639–648, Philadephia, Pennsylvania, USA, May 22–24, 1996. ACM Press.

[10] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast
security: A taxonomy and some efficient constructions. InProceedings of INFO-
COM 1999, volume 2, pages 708–716, New York, NY, USA, March 1999. IEEE.

[11] R. Canetti, S. Halevi, and J. Katz. Adaptively secure non-interactive public key
encryption. In J. Kilian, editor,TCC ’05: Second Theory of Cryptography Con-
ference, volume 3378 ofLecture Notes in Computer Science, pages 150–168.
Springer-Verlag, February 2005.

[12] R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual
authentication and key exchange protocols. In S. Halevi and T. Rabin, editors,
TCC ’06: Third Theory of Cryptography Conference, volume 3876 ofLecture
Notes in Computer Science, pages 380–403. Springer-Verlag, 2006.

[13] R. Canetti, T. Malkin, and K. Nissim. Efficient communication-storage tradeoffs
for multicast encryption. In J. Stern, editor,Advances in Cryptology - Eurocrypt
1999, volume 1592 ofLecture Notes in Computer Science, Prague, Czech Reppub-
lic, May 1999. Springer-Verlag.

[14] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha. Key management
for secure internet multicast using boolean function minimization techniques. In
Proceedings of IEEE Infocomm ’99, volume 2, pages 689–698, New York, NY,
USA, March 1999. IEEE Computer and Communication Societies.

[15] J. H. Cheon, N. su Jho, M.-H. Kim, and E. S. Yoo. Skipping, cascade, and com-
bined chain schemes for broadcast encryption. Cryptology ePrint Archive, Report
2005/136. Preliminary version in Eurocrypt 2005, 2005.

[16] A. Datta, A. Derek, J. Mitchell, and B. Warinschi. Computationally sound compo-
sitional logic for key exchange protocols. In19th IEEE Computer Security Foun-
dations Workshop (CSFW ’06), pages 321–334. IEEE Computer Society, 2006.

[17] S. E. Deering. Multicast Routing in Internetworks and Extended LANs. InPro-
ceedings of ACM SIGCOMM ’88, pages 55–64. ACM Press, August 1988.

[18] D. Dolev and A. C. Yao. On the security of public-key protocols.IEEE Transac-
tions on Information Theory, 29(2):198–208, March 1983.

[19] L. R. Dondeti, S. Mukherjee, and A. Samal. Scalable secure one-to-many group
communication using dual encryption.Computer Communication, 23(17):1681–
1701, November 1999.

[20] C. Dwork, M. Naor, O. Reingold, and L. Stockmeyer. Magic functions.Journal of
the ACM, 50(6):852–921, 2003.

171

[21] J. Fan, P. Judge, and M. H. Ammar. Hysor: Group key management with collusion-
scalability tradeoffs using a hybrid structuring of receivers. InProceedings of the
IEEE International Conference on Computer Communications Networks, 2002.

[22] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
In 25th Annual Symposium on Foundations of Computer Science, pages 464–479,
Singer Island, Florida, Oct. 24–26, 1984. IEEE Computer Society Press.

[23] S. Goldwasser and S. Micali. Probabilistic encryption.Journal of Computer and
System Sciences, 28:270–299, 1984.

[24] M. T. Goodrich, J. Z. Sun, and R. Tamassia. Efficient tree-based revocation in
groups of low-state devices. In M. Franklin, editor,Advances in Cryptology –
CRYPTO 2004, volume 3152 ofLecture Notes in Computer Science, pages 511–
527, Santa Barbara, CA, USA, Aug. 15–19, 2004. Springer-Verlag, Berlin, Ger-
many.

[25] D. Halevy and A. Shamir. The lsd broadcast encryption scheme. In M. Yung,
editor,Advances in Cryptology - CRYPTO 2002, volume 2442 ofLecture Notes in
Computer Science, pages 47–60, Santa Barbara, CA, USA, August 2002. Springer-
Verlag, Berlin, Germany.

[26] J. Y. Hwang, D. H. Lee, and J. Lim. Generic transformation for scalable broad-
cast encryption schemes. In V. Shoup, editor,Advances in Cryptology - CRYPTO
2005, volume 3621 ofLecture notes in Computer Science, pages 276–292, Santa
Barbara, CA, USA, August 2005. Springer Verlag, Berlin, Germany.

[27] E. Kiltz, A. Mityagin, S. Panjwani, and B. Raghavan. Append-only signatures. In
A. de Santis, editor,Automata, Languages and Programming, 32nd International
Colloquium, ICALP Proceedings, volume 3580 ofLecture Notes in Computer Sci-
ence, pages 434–445, Lisboa, Portugal, July 2005. Springer-Verlag, Berlin, Ger-
many.

[28] R. Merkle and M. Hellman. On the security of multiple encryption.Communica-
tions of the ACM, 24(7):465–467, July 1981.

[29] D. Micciancio and S. Panjwani. Optimal communication complexity of generic
multicast key distribution. In C. Cachin and J. Camenisch, editors,Advances in
Cryptology – EUROCRYPT 2004, volume 3027 ofLecture Notes in Computer
Science, pages 153–170, Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag,
Berlin, Germany.

[30] D. Micciancio and S. Panjwani. Adaptive security of symbolic encryption. In
J. Kilian, editor,Theory of Cryptography Conference, TCC 2005, volume 3378
of Lecture Notes in Computer Science, pages 169–187, Cambridge, MA, USA,
February 2005. Springer-Verlag, Berlin, Germany.

172

[31] D. Micciancio and S. Panjwani. Corrupting one vs. corrupting many: The case of
broadcast and multicast encryption. InAutomata, Languages, and Programming:
33rd International Colloquium, ICALP 2006, Proceedings, Part II, volume 4052
of Lecture Notes in Computer Science. Springer-Verlag, July 2006.

[32] D. Micciancio and S. Panjwani. Optimal communication complexity of generic
multicast key distribution.IEEE/ACM Transactions in Networking, 2008. To ap-
pear.

[33] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence
of active adversaries. In M. Naor, editor,TCC 2004: 1st Theory of Cryptography
Conference, volume 2951 ofLecture Notes in Computer Science, pages 133–151,
Cambridge, MA, USA, Feb. 19–21, 2004. Springer-Verlag, Berlin, Germany.

[34] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless
receivers. In J. Kilian, editor,Advances in Cryptology – CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 41–62, Santa Barbara, CA,
USA, Aug. 19–23, 2001. Springer-Verlag, Berlin, Germany.

[35] M. Naor and B. Pinkas. Efficient Trace and Revoke Schemes. InFC ’00: Proceed-
ings of the 4th International Conference on Financial Cryptography, pages 1–20.
Springer-Verlag, London, UK, 2000.

[36] J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In M. Yung, editor,Advances in Cryptol-
ogy – CRYPTO 2002, volume 2442 ofLecture Notes in Computer Science, pages
111–126, Santa Barbara, CA, USA, Aug. 18–22, 2002. Springer-Verlag, Berlin,
Germany.

[37] S. Panjwani. Tackling adaptive corruptions in multicast encryption protocols. In
S. Vadhan, editor,Theory of Cryptography Conference, TCC 2007, volume 4392
of Lecture Notes in Computer Science, pages 21–40. Springer-Verlag, Berlin, Ger-
many, February 2007.

[38] A. Perrig, D. Song, and D. Tygar. ELK, a new protocol for efficient large-group
key distribution. InIEEE Symposium on Security and Privacy, Oakland, CA, USA,
May 2001. IEEE Computer Society Press.

[39] B. Pinkas. Efficient state updates for key management. In T. Sander, editor,Se-
curity and Privacy in Digital Rights Management: ACM CCS-8 Workshop DRM
2001, Philadelphia, PA, USA. Springer-Verlag, Berlin, Germany, November 2001.

[40] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In J. Feigenbaum, editor,Advances in Cryptology -
CRYPTO ’91, volume 576 ofLecture Notes in Computer Science, Santa Barbara,
CA, USA, August 1991. Springer-Verlag.

173

[41] B. Raghavan, S. Panjwani, and A. Mityagin. Analysis of the spv secure routing
protocol: weaknesses and lessons.ACM SIGCOMM Computer Communication
Review, 37(2):29–38, 2007.

[42] A. Shamir. How to share a secret.Communications of the Association for Com-
puting Machinery, 22(11):612–613, Nov. 1979.

[43] J. Snoeyink, S. Suri, and G. Varghese. A lower bound for multicast key distribu-
tion. Computer Networks, 47(3):429–441, 2005).

[44] R. Tamassia and N. Triandopoulos. Computational bounds on hierarchical data
processing with applications to information security. InAutomata, Languages and
Programming, 32nd International Colloquium, ICALP Proceedings, volume 3580
of Lecture Notes in Computer Science, pages 153–165. Springer-Verlag, Berlin,
Germany, July 2005.

[45] D. M. Wallner, E. J. Harder, and R. C. Agee. Key management for multicast:
Issues and architectures. Internet Draft, Sept. 1998.

[46] C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using key
graphs.IEEE/ACM Transactions on Networking, 8(1):16–30, Feb. 2000.

[47] R. Yang, X. Li, X. Zhang, and S. S. Lam. Reliable group rekeying: A performance
analysis. InProceedings of ACM SIGCOMM ’01, pages 27–38. ACM Press, Au-
gust 2001.

[48] Y. R. Yang and S. S. Lam. A secure group key management protocol communica-
tion lower bound. Technical Report TR-00-24, 2000.

[49] A. C. Yao. Theory and applications of trapdoor functions. In23rd Annual Sympo-
sium on Foundations of Computer Science, pages 80–91, Chicago, Illinois, Nov. 3–
5, 1982. IEEE Computer Society Press.

