UC San Diego

UC San Diego Electronic Theses and Dissertations

Title
Private group communication : two perspectives and a unifying solution

Permalink
https://escholarship.org/uc/item/83t4k4nh

Author
Panjwani, Saurabh Kumar

Publication Date
2007

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/83t4k4nb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

PRIVATE GROUP COMMUNICATION:
TWO PERSPECTIVES AND A UNIFYING SOLUTION

A Dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy
in

Computer Science

by

Saurabh Kumar Panjwani

Committee in charge:

Professor Daniele Micciancio, Chair
Professor Mihir Bellare

Professor Sam Buss

Professor Alex Snoeren

Professor Alexander Vardy

2007

Copyright
Saurabh Kumar Panjwani, 2007

All rights reserved.

The Dissertation of Saurabh Kumar Panjwani is approved,
and it is acceptable in quality and form for publication on

microfilm:

Chair

University of California, San Diego

2007

TABLE OF CONTENTS

Signature Page iii
Tableof Contents iv
Listof Figures Vil
Acknowledgments o Vil
Vita . . . Xi
Abstract Xiii
Chapter 1 Introduction e 1
1.1. PrivacyviaGroupKeys 2
1.2. ATaleofTwoModels 3
1.3. TheCentralQuestion 5
1.4. Contributionsof ThisThesis 6
1.5. Thesis Organization 9
| The Symbolic Model 11
Chapter2 TheModel 13
2.1. Pseudo-random Generators 13
2.2. Encryption 14
2.3. ProtocolMessages 15
2.4. An EntailmentRelation 16
Chapter 3 Defining Group Key Distribution 19
3.1. Protocol Correctness 20
3.2. Security Definitions 22
Chapter 4 An Equivalence Theorem 25
4.1. Single Encryption Protocols 25
42. KeyGraphs 26
4.3. Proofof Theorem4.1.1 28
4.4, ACautionaryNote 30
4.5. Acknowledgement L oL 33
Chapter5 UpperBounds 34
5.1. Logical Key Hierarchy Protocols 34
5.1.1. Protocolstate 35
5.1.2. RekeyMessages v v v v it i 37

5.1.3. Efficiency 40

5.1.4. Security Analysis o 41
5.2. SubsetCoverProtocols 45
5.2.1. The Complete Subtree Protocol 47
5.2.2. The Subset Difference Protocol 48
Chapter6 AlLowerBound 51
6.1. Previous LowerBounds 52
6.2. OurResult 53
6.2.1. An Extended Symbolic Model 54
6.2.2. TheResult. 55
6.3. A First Step TowardstheProof 57
6.3.1. ProofofLemma6.39 63
6.4. CompletingtheProof 65
6.4.1. ProofofLemma6.4.1. 67
6.5. On Beating théog,(n) Barrier 68
6.6. Acknowledgement 70
Il The Computational Model 71
Chapter 7 Security Definitionso 74
7.1. Pseudo-random Generators 75
7.2. EncryptionSchemes 76
7.3. Mapping Symbolic Messages to Bitstrings 77
7.4. Group Key Distribution 78
Chapter 8 Computational Security against Non-Adaptive Adversaries 84
8.1. AComputationalGame 85
8.2. Syntactic Restrictions 87
8.3. The Soundness Theorem 89
8.4. Applicationto GKD protocols 90
8.4.1. Analysisof Protocols 93
8.5. Proofof Theorem8.3.2 96
8.5.1. Notations 97
8.5.2. TheReduction. 97
85.3. TheAnalysis 99
8.5.4. ProofofLemma85.2. 109
8.6. RelatedWork 110
8.7. Acknowledgement oL 112

Chapter 9 Computational Security against Adaptive Adversaries 113

9.1. TheChallenge Ahead 113
9.2. Overviewof OurResult 116
93. TheResult 117
9.3.1. Relation with the Selective Decryption Problem 120
9.4. Analysisof Protocols 122
9.5. Proofof Theorem9.3.3 125
9.5.1. Thelntuition, 125
9.5.2. TheReduction. 129
9.5.3. TheAnalysis 130
9.5.4. ProofofLemma95.2.................... 135
9.5.5. ProofofClaim953 142
9.5.6. ProofofClaim954 143
9.5.7. Proof of the Hybrid Cancellation Lemma Il (Lemma 9.5.5) 149
9.5.8. Proof of the Telescoping Sums Lemma (Lemma 9.5.6) . . 164
Bibliography 169

Vi

LIST OF FIGURES

Figure 4.1 An illustration for the proof of Theorem4.4.1. 32
Figure 5.1 Theplain-LKH™ andimproved-LKH™ protocols. 36
Figure 6.1 A memberkeygraph. L. 61
Figure 6.2 lllustration for the proof of Lemma 6.3.9. 64
Figure 8.1 Procedur@fﬁnb used in our computational game. 86
Figure 8.2 The adversary constructed for the proof of Theorem 8.4.2. . . 92
Figure 8.3 The setup phase for each of our adversaries for Theorem 8.3.2. 98
Figure 8.4 The execution phase fgpe-1 adversaries. 99
Figure 8.5 Procedurkey_cval™ used bytype-1 andtype-3 adversaries. 100
Figure 8.6 The execution phase fgpe-2 adversaries. 101
Figure 8.7 Procedurkey_cval® used bytype-2 adversaries. 102
Figure 8.8 The execution phase fgpe-3 adversaries. 104
Figure 9.1 The first phase of the adversary constructed for the proof of

Theorem9.3.3. 131
Figure 9.2 The second phase of the adversary constructed for the proof

of Theorem9.3.3.. 132
Figure 9.3 The second phase of the adversary constructed for the proof

of Theorem 9.3.3 (continued). 133

vii

ACKNOWLEDGMENTS

My years at UCSD have been the most fruitful years of my life. Although
| started my research in computer science on a rather negative note, and went into a
long phase of depression in the very first year of graduate school, | was fortunate to
find the right people and the right problems to help me recover from it pretty soon. Just
when | had made up my mind to quit my PhD, | happened to meet my (then “to-be”)
advisor, Daniele Micciancio, and he introduced me to a problem which he felt could be
of interest to me. For some reason, | immediately got hooked on to that problem and
wouldn’t want to leave it till | had found a solution to it that satisfied me (and Daniele).
| did end up finding such a solution and, along the way, | also found an excellent advisor
and plenty more interesting problems to work on.

It is perhaps an under-statement to say that this thesis wouldn’t be what it is
without the supervision | received from Daniele. My very motivation to do research
in cryptography came from the initial interactions | had with him and if ever | felt this
motivation waning later on, it would be his advice that would put me back on track. His
capacity for abstract thinking always inspired me and even though my discussions with
him often left me feeling like a dolt, in the big picture of things, these discsussions layed
the very foundation for doing good research within me. | always knew that Daniele cared
as much for my research problems as | did (sometimes, | felt he cared even more than
me!) and | can say with full confidence that he belongs to that rare league of advisors
who like to get “personally” involved in their students’ worKhanks much, Daniele.
There’s little in this thesis that | could have done without your guidance.

Besides Daniele, there are a number of people who have contributed towards
the shaping up of this thesis, and to my overall development as a researcher, in many
small, yet important, ways. | am grateful to Mihir Bellare, Sam Buss, Alex Snoeren and
Alexander Vardy for having served on my thesis committee and for giving me valuable
feedback during the candidacy exam as well as the final defense. Mihir and Alex, in
particular, made some important remarks during my candidacy exam, which influenced

the subsequent course of this thesis. | also thank Russell Impagliazzo for encouragement

viii

and mentorship throughout my stay in UCSD and especially, for giving me detailed
feedback on several of my practice talks, prior to the research conferences | attended.

Much of what | learnt in graduate school was derived from interactions with
my peers, including, in particular, my colleagues from the cryptography and theory labs.
| was fortunate to meet some of the sharpest minds in computer science at my university
and to engage in insightful discussions with them on a variety of topics, ranging from
the mating patterns of Californian ravens to the complexity of concurrent black-box
zero-knowledge proof systems. | extend my gratitude to Michel Abdalla, Alexandra
Boldyreva (Sasha), Tadayoshi Kohno (Yoshi), Alejandro Hevia, Ragesh Jaiswal, Eike
Kiltz, Kirill Levchenko, Vadim Lyubashevsky, Jia Mao, Anton Mityagin, Jean Mon-
nerat, Gregory Neven, Adriana Palacio, Barath Raghavan, Thomas Ristenpart, Todor
Ristov, Sarah Shoup, Bogdan Warinschi and Scott Yilek for being the wonderful col-
leagues that they are and for making graduate school the enjoyable experience that it
(normally) isn’t. Special thanks to Jean (for reading and commenting on the introduc-
tion of this thesis), to Bogdan (for discussing with me the details of his work on com-
putational soundness, and also for feedback on some of my own results, in particular,
the results included in Chapter 8 of this thesis), and to Kirill (for his enthusiastic in-
volvement in all my presentations | gave during the theory seminar, and for the “peace”
lunches he organized to increase collaboration between the theory and crypto labs).
Special thanks also to Eike, Anton, and Barath for being such great collaborators in the
research projects we worked on together; | daresay that those projects were the most
fun-packed projects | did during my entire stay at UCSD.

| thank my parents for their love, support and encouragement and for giving
me the freedom to follow the career path of my liking even though it conflicted with
their own ideas and preferences in various ways. | thank my younger brother, Pratyush,
for his affection and adoration, and for fulfilling many of the dreams that | had seen
for myself (but could never pursue sincerely because of my strong inclination towards
academics).

Finally, | would like to thank my friends at Udai, a voluntary student orga-

nization | was a member of, for the engaging discussions on social development | had
with them, and for making graduate school such a “meaningful” experience for me. Al-
though my activities at Udai had very little to do with the research | did in computer
science, they did influence my critical thinking in several ways and improved my capac-
ity to reason rationally and with a human touch. It is through these activities that | have
discovered a new direction in life, which I shall now set about pursuing.

Chapters 4 and 8, in part, are reprints of the material as it appears in 33rd In-
ternation Colloquium on Automata, Languages and Programming (ICALP), July 2006,
Micciancio, Daniele; Panjwani, Saurabh. The dissertation author was the primary in-
vestigator and author of this paper.

Chapter 6, in part, is a reprint of the material to be published in IEEE/ACM
Transactions on Networking, October 2008, Micciancio, Daniele; Panjwani, Saurabh.

The dissertation author is the primary investigator and author of this paper.

VITA

2007 Doctor of Philosophy in Computer Science
University of California, San Diego
San Diego, CA, USA

2002 Bachelor of Technology
Indian Institute of Technology (IIT), Bombay,
Mumbai, India

PUBLICATIONS

D. Micciancio and S. Panjwani. Optimal communication complexity of generic multi-
cast key distributionlEEE/ACM Transactions in Networking008. To appear.

B. Raghavan, S. Panjwani, and A. Mityagin. Analysis of the spv secure routing pro-
tocol: weaknesses and lessor&SCM SIGCOMM Computer Communication Review
37(2):29-38, 2007.

S. Panjwani. Tackling adaptive corruptions in multicast encryption protocols. In S. Vad-
han, editor,Theory of Cryptography Conference, TCC 200Glume 4392 ofLecture
Notes in Computer Scienceages 21-40. Springer-Verlag, Berlin, Germany, February
2007.

D. Micciancio and S. Panjwani. Corrupting one vs. corrupting many: The case of broad-
cast and multicast encryption. Automata, Languages, and Programming: 33rd Inter-
national Colloquium, ICALP 2006, Proceedings, Partblume 4052 of_ecture Notes

in Computer Science&pringer-Verlag, July 2006.

E. Kiltz, A. Mityagin, S. Panjwani, and B. Raghavan. Append-only signatures. In
A. de Santis, editorlutomata, Languages and Programming, 32nd International Collo-
quium, ICALP Proceedingsolume 3580 ot ecture Notes in Computer Scienpages
434-445, Lisboa, Portugal, July 2005. Springer-Verlag, Berlin, Germany.

D. Micciancio and S. Panjwani. Adaptive security of symbolic encryption. In J. Kilian,
editor, Theory of Cryptography Conference, TCC 2008lume 3378 oL ecture Notes

in Computer Scienggages 169-187, Cambridge, MA, USA, February 2005. Springer-
Verlag, Berlin, Germany.

D. Micciancio and S. Panjwani. Optimal communication complexity of generic multi-
cast key distribution. In C. Cachin and J. Camenisch, edifasances in Cryptology

— EUROCRYPT 20Q40lume 3027 otecture Notes in Computer Scienpages 153—
170, Interlaken, Switzerland, May 2—6, 2004. Springer-Verlag, Berlin, Germany.

Xi

FIELDS OF STUDY

Major Field: Computer Science

Studies in Cryptography
Professor Daniele Micciancio

Xii

ABSTRACT OF THE DISSERTATION

PRIVATE GROUP COMMUNICATION:
TWO PERSPECTIVES AND A UNIFYING SOLUTION

by

Saurabh Kumar Panjwani
Doctor of Philosophy in Computer Science
University of California, San Diego, 2007

Professor Daniele Micciancio, Chair

Private communication in groups of users is a security problem that is rele-
vant in a host of real-world applications like pay-per-view, secure online conferencing
and the protection of content on digital media. Despite a long history of research on
the topic, there exists a fundamental dichotomy in the literature in the manner in which
the problem is modeled and security analysis of protocols conducted. Most of the ex-
isting protocols for the problem have been analyzed using a simple “symbolic” model
of computation, one in which cryptographic primitives are treated as ideal objects and
adversarial behavior defined using a fixed set of inference rules. Some others have
been approached using a more detailed computational model, wherein security is based
on complexity assumptions (like the existence of one-way functions) and proven using
very careful probabilistic analysis. The two approaches have their individual merits but
are in conflict with each other: while the method of the computational approach is more
realistic, security proofs in the symbolic approach are far easier to produce and to verify.

This thesis reconciles the two approaches and proposes a methodology for
analyzing protocols that is symbolic in nature, and still powerful enough to guarantee
security against arbitrary computationally-bounded entities. We define a large class of
protocols for private group communication, and provide syntactic conditions on pro-

tocols in this class such that any protocol that satisfies these conditions, and meets the

Xiii

symbolic definition of security, is guaranteed to be secure in the computational model as
well. Such an implication enables us to conduct security analysis of protocols (falling
within our class) symbolically, and simultaneously reap the benefits of computational
security analysis. As an illustration, we apply our methodology to the security anal-
ysis of four existing protocols for group privacy, two of which were not known to be
computationally secure prior to our work.

An important contribution of this thesis is a new technique to prove secu-
rity of group privacy protocols in the presence of computational adversaries who can
corrupt protocol participants in adaptivemanner. We show that if one suitably re-
stricts the length of encryption chains (sequences of ciphertexts of theEafii,),
Ex,(K;),Ex (Ky),...) generated in protocol executions, then security of a protocol
against adaptive corruptions follows almost immediately from its security in the sym-
bolic model. Prior to our work, all techniques to proving adaptive security of privacy
protocols involved either restricting the security model severely (for example, by requir-
ing all users to be stateless) or using non-standard, and inefficient, ways to implement

the encryption operation.

Xiv

Chapter 1

Introduction

Consider a situation in which a set of usérs/ish to communicate as a group
over a public broadcast channel. The number of potential users of the channel is quite
large and users is would like to ensure that no user outside this set is able to de-
cipher the information being communicated. The Sethanges with time: users can
leave and/or join it at different instants and privacy of group information needs to be
maintained even when such changes take place arbitrarily, and in an a-priori-unknown
manner. For example, if Alice is ifi at timet; but not in it at timet, (for anyt, # t1),
then she should be able to recover information sent latit should learn nothing about
what is sent at,. If Bob isnotin S at timet¢; butis so at timet,, the converse should
hold for him. Can we design cryptographic mechanisms that achieve such an objective,
and do so in aefficientandprovably securenanner?

The above problem often arises when dealing with protocols involving multi-
user communication and is relevant in a lot of real-world scenarios. One such scenario is
that of pay-per-view services. Providers of pay-per-view services distribute content to a
dynamic set of clients using a broadcast medium (like a satellite link), and their primary
concern is to ensure that at every point in time, all and only the receivers who subscribe
to their serviceat that instantcan recover the information being broadcast. Another
scenario where the problem is applicable is that of DVD content protection. Content

stored and distributed on DVDs must be encoded in a manner such that only certain

“compliant” devices are able to decode it. Over time, the decoding rights of some of
the compliant devices may be revoked (perhaps due to their involvement in piracy), and
suitable mechanisms must be designed to preserve privacy even after such revocations
occur. A third application scenario is that of securing multicast communication over the
Internet. Today, quite a few Internet-based applications (like video conferences, online
games) are implemented using IP multicast [17] and privacy is an important security
concern in some of these applications (for example, applications run over enterprise
networks). Since Internet users can join and leave multicast groups at will, privacy in

multicast must be achievable even in the face of arbitrary group membership changes.

1.1 Privacy via Group Keys

In point-to-point communication, privacy can easily be ensured using con-
ventional, symmetric-key cryptographic techniques: If Alice wishes to communicate
privately with Bob, she first shares a cryptographic kewith him and then “encrypts”
every message that she wishes to send using an encryption fuligtioh That is, for
any messagé/, instead of sending/ to Bob, she sends a transformed version of it,
Ex (M), referred to as thencryption of M under K. The transformed message has
the desirable property that only a user who knd&gin this case, Bob) is capable of
recoveringM from it.

A similar approach could be used for achieving privacy in multi-user commu-
nication as well: all the communicating users could share a common cryptographic key
and encrypt every message exchanged within the group under that key. If the group is
dynamic, this key must also be updated with time and distributed in a manner such that
at each instant, all and only the current group members are able to recover it. In order to
solve the problem of privacy in groups, it thus suffices to solve the problem of securely
distributing group keys over a broadcast channel.

Assuming the presence of a central trusted authority, one way in which the

key distribution problem can be solved is as follows: have the central authority share

a unique long-lived key with every user of the channel, and at each instant, generate a
fresh value for the group key and transmit it encrypted under the long-lived keys of the
current group members. So,Af; denotes the long-lived key of usgrandS® denotes

the group at time, then at every instantt the center generates a fresh k&Y, and
transmits the encrypted messdgg, (K") for eachi ¢ S®. K® thus becomes the
group key for time, and can be used to guarantee privacy of all information exchanged
at that instant.

The problem with the above protocol is that it incurs a communication over-
head that is linear in the size of the group: even for a single addition to or deletion from
a group of sizen, the number of messages that need to be transmitted to distribute the
group key securely i©(n). This does not scale well with the size of the group and a
better solution is clearly desirable. Much research has gone into designing group key
distribution protocols with sub-linear communication complexity and currently, the best
known protocol for the problem has communication complexity that is logarithmic in

the number of group members [10].

1.2 A Tale of Two Models

Despite the progress made in the direction of designing efficient protocols for
group key distribution, there exists a fundamental dichotomy in the literature in the way
security analysis of these protocols is conducted. Most of the existing work on group
key distribution adopts a “symbolic” approach to model the problem and to describe
and analyze solutions to it. Under this approach, all information generated and used
by a protocol is modeled using abstract data types and security primitives (like encryp-
tion functions) are treated as symbolic operations performed on such data types. Every
protocol message is thus an expression formed by applying one or more symbolic oper-
ations on basic data elements like keys and constants. It is assumed that all primitives
behave ideally and that adversarial entities know nothing about their underlying imple-

mentation. So, for example, if an adversary acquires the encryption of a medsage

under a keyK and does not know\’, one deduces that no information, whatsoever, is
leaked abouf/ by such an acquisition.

Such a model leads to simple, tractable proofs of security and typically, one
can prove security of protocols within the model using straightforward inductive argu-
ments. However, the model itself is quite unrealistic in that it makes extreme assump-
tions on the behavior of adversaries and on the security features offered by cryptographic
primitives. In real implementations, primitives cannot be expected to behave ideally nor
can adversaries be guaranteed to abide by the symbolic rules of information recovery.
As such, the conclusions one derives from symbolic security arguments alone are of
limited practical benefit.

The computational model addresses this limitation and provides a more rigor-
ous framework for conducting security analysis of protocols. In this model, adversaries
are modeled as computational entities that are completely unconstrained in the manner
in which they can attack protocols as long as they can do so “efficiently” (for example,
in time that is polynomial in the size of cryptographic keys). Primitives are not assumed
to be ideal objects; rather, their security is defined with respect to computationally-
bounded attacks only. Proving computational security of a protocol involves arguing,
carefully, that an attack on the protocol gy computational adversary must imply an
attack on at least one of the primitives used to construct it. A fair number (though still a
minority) of group key distribution protocols in the literature have been analyzed using
such an approach.

Even with its obvious benefits over the symbolic model, the computational
model has its share of shortcomings. Proofs of security in the model are complex, hard
to write down and hard to verify. They contain intricate arguments involving probabil-
ities and complexity assumptions, and these arguments are too prone to human errors.
The situation is particularly grim for multi-user protocols (like the ones we are consider-
ing), for which an arbitrary subset of users can be corrupted during protocol execution,
possibly in an adversarial manner, and changes in the execution flow of the protocol (for

example, membership dynamics in the case of group key distribution) can also be made

adversarially. Analyzing protocols in the presence of computational entities who per-
form such manipulations can, expectedly, be quite cumbersome. This probably explains
why most of the existing protocols for group key distribution have not been subjected
to computational analysis at all, and even those that have been so are supported with
security proofs that are either too opaque, or incomplete or, in some situations, even

incorrect. (See [31] for a survey.)

1.3 The Central Question

The existence of two, seemingly-conflicting approaches to addressing the
same problem in the literature is a rather unsettling state of affairs. Ideally, one would
like to be able to prove security of all known protocols for group key distribution in the
computational model or else modify them suitably so they are rendered computationally
secure. In the current situation, it is not even clear if the majority of protocols, that
are known only to be symbolically secuiegn be proven secure in the computational
model at all. Analyzing each of these protocols (at least seven are known [31]) against
computational attacks from scratch is a tremendous task for any security analyst.

Is there an easy way out of this situation? Can we somehow guarantee security
of protocols in the computational sense, while still keeping proofs simple and elegant,
as they are in the symbolic model? It would be ideal if we could show that symbolic and
computational notions of security are closely related and that one follows from the other
always (that is, for every protocol). But this would be too much to ask for. Given the
idealistic treatment of security in the symbolic model, it is natural to expect that there
be protocols that are symbolically secure but are still insecure against computational
attackers. (Indeed, we will see some examples of these later on.)

In order to establish connections between symbolic and computational secu-

rity notions, we must thus impose some restrictions on the protocols first. We ask:

Is it possible to find reasonable conditions on group key distribution protocols, such

that for any protocol satisfying these conditions, security in the symbolic model also

implies security against computationally-bounded adversaries?

Here, by “reasonable”, we mean that the conditions we obtain be simple (that
is, it should be easy to check if a protocol satisfies them or not) and not overly restrictive
(existing protocols for the problem should either satisfy them or should be modifiable to

do so easily).

1.4 Contributions of This Thesis

In this thesis, we provide an affirmative answer to the question raised above.
We show that for a fairly general class of group key distribution protocols, it is possi-
ble to argue about security in purely symbolic terms and simultaneously obtain strong
guarantees on computational security of the protocol. We focus on protocols that rely
on symmetric-key cryptographic techniques only and in particular, those that make ar-
bitrary black-box usage of symmetric-key encryption schemes and pseudo-random gen-
erators. (Most protocols for the problem in the literature are symmetric-key in nature,
primarily for efficiency reasons, and almost all of these rely on encryption and pseudo-
random generation only.) For this class of protocols, we introduce simple syntactic con-
ditions such that any protocol satisfying the conditions and also satisfying the symbolic
notion of security for group key distribution, is provably secure against computational
adversaries foany computationally-secure implementation of the primitives.

The syntactic conditions we introduce are fairly easy to verify and some of
these are, in fact, even necessary to prove security of protocols in the computational
model. The conditions fall into two categories. Those in the first category restrict the
order in which messages are transmitted in protocols and more specifically, the order
in which keys are used in protocol messages. Intuitively, these conditions require that
every key be used in a protocol in two distinct phasedistibutionphase, in which it is
sent encrypted under one or more keys (or possibly transmitted unencrypted), followed
by a deploymenphase, in which it is used to encrypt other keys or plaintexts. Key

distribution is not allowed to succeed key deployment. Most known protocols for group

key distribution indeed comply with this requirement, that is, they distribute keys only
prior to their being deployed for any cryptographic purposes.

One disadvantage of the ordering constraint is that it does not permit users’
internal states to be revealed in the midst of a protocol since the state of any user could
contain keys that are used for encryption. As a result, under this constraint, one cannot
prove computational security of protocols against adversaries who corruptuserg
protocol execution, possibly in an adaptive manner (that is, based on the protocol his-
tory). Proving computational security of multi-user encryption protocols against adap-
tive adversaries, in general, is known to be an extremely challenging problem in cryp-
tography. Currently, the only known approaches to solving the problem involve using ei-
ther non-standard models (for example, the erasure model [3]) for doing security proofs
or non-standard primitives (for example, “non-committing” encryption schemes [9]) to
implement the encryption operation. The first approach has the drawback that it makes
unrealistic assumptions on the behavior of honest users while the second one suffers
from being too inefficient to implement in practice.

An important contribution of this thesis is a new technique to argue about
adaptive security of encryption protocols (and of group key distribution protocols, in
particular) which neither restricts the security model in any way nor requires the use of
encryption schemes with special properties. We demonstrate that the “amount” of adap-
tive security that can be provably achieved in any encryption protocol is related to the
length of the longest encryption chain of the foBg, (K>), Ex,(K3), Ex, (Ky), ..., (E
being a symmetric-key encryption operation) created by it and the shorter the encryption
chains generated in any execution, the better is the guarantee on the adaptive security
of the protocol. In particular, we show that if the longest encryption chain created by
a protocol has length at most logarithmic in the number of protocol users, and, if the
protocol is secure in the symbolic model, then security against adaptively-corrupting
computational adversaries follows automaticallfhus, to prove adaptive security of

any encryption protocol that is known to be symbolically secure, it suffices to check that

1We remark that the above restriction on encryption chains allows to prove securitgwésipolynomial reduc-
tion, as opposed to a fully polynomial one. See Chapter 9 for details.

the protocol does not create messages which could lead to the formation of arbitrarily

long encryption chains.

ANALYSIS OF PROTOCOLS We apply our results to the security analysis of
two important types of group key distribution protocolksgical key hierarchy I(KH)
protocols[46, 45] andsubset cover protocol84]. Most known protocols for group
key distribution belong to one of these two types. Ti&H protocols were designed
for the problem of securing multicast communication over the Internet and they have
exponentially better communication efficiency than the trivial protocol we described
earlier on. The subset cover protocols are relatively less efficient but have the advantage
of being stateless: users need to maintain a fixed, small set of keys as their internal state
and their state does not change with time. This property makes subset cover protocols
applicable in several scenarios besides that of multicast communication (for example, in
the scenario of DVD content protection).

We analyze two protocols belonging to each of these classes [46, 45, 10, 34]
(four protocols in all). In the process of analyzing these protocols, we uncover a
weakness in théKH protocols of [46, 45, 10] and show that both these protocols are
insecure in the computational model, even against non-adaptive adversaries. We then
fix these protocols in a manner such that they become compliant with our syntactic
conditions and then use our results to establish computational security for each of
them. (For the protocol of [10], computational security is proven against non-adaptive
adversaries while for [46, 45], adaptive security is also proven.) For the two subset
cover protocols we study, computational security was already proven in [34] but our

techniques provide a much simpler proof of security for both the protocols.

A LOWER BOUND. Besides conducting security analysis of protocols, we
also investigate the issue of designing group key distribution protocols that are more
efficient than those already known to exist. In this context, our results are negative.

We prove that in any secure (symmetric-key) group key distribution protocol, the min-

imum number of messages (each message being the encryption of a key under another
key) required to be transmitted at each instant, on the average, is at least logarithmic
in the number of group members. This lower bound on communication complexity
matches the upper bound of [10]—the most communication-efficient protocol known—
up tosub-constanadditive terms and is, thus, extremely tight. Not only this, we show
that the same bound also applies to protocols that use secret sharing schemes [42] be-
sides encryption and pseudo-random generation. Thus, even the use of secret sharing
cannot help in reducing the communication complexity of known protocols by any rea-
sonable measure.

Our lower bound on group key distribution holds for protocols that are se-
cure againstollusionsof malicious users; that is, it is proven with respect to a security
definition in which the adversary can corrupt multiple users (possibly adaptively), put
together their long-lived keys and use such information to circumvent the protocol. In-
deed, such a bound cannot be proven for protocols that are secure only against solitary
malicious users (as is illustrated by known protocols that satisfy this weaker definition
and achieve constant communication complexity). Collusion-resistance is considered an
essential security criterion for multi-user protocols and almost all group key distribution
protocols in the literature have been designed with this objective in mind. We prove our
lower bound with respect to the symbolic definition of collusion-resistance but since this
definition is weaker than its computational counterparts, the same bound easily applies

to computationally-secure protocols as well.

1.5 Thesis Organization

The rest of this thesis is divided into two parts. In the first part, we consider
the group key distribution problem purely in symbolic terms. We first define a symbolic
model for arbitrary symmetric-key encryption protocols, develop various definitions of
security for group key distribution within this model, and then analyzd.id proto-

cols and the subset cover protocols of [46, 45, 10, 34] with respect to these definitions.

10

We also prove our lower bound on communication complexity in this part of the thesis.
The second part of the thesis contains our most important contributions. In
this part, we provide computational definitions of security for group key distribution
protocols and relate these definitions to the symbolic definitions developed earlier on
using two very general technical results. The first result provides the syntactic con-
ditions under which symbolic security implies computational security with respect to
non-adaptive adversaries, while the second one does the same for computational secu-
rity against adaptive adversaries. Once the relations between symbolic and computa-
tional definitions are established, we extend our security results from the first part of the
thesis to the computational setting and prove computational security of all the protocols

studied therein.

Part |

The Symbolic Model

11

12

In this part of the thesis, we develop a symbolic model for studying encryption
protocols and, subsequently, use this model to define security notions for the specific
task of group key distribution. Our model is symbolic in the sense that it treats all
keys and messages generated by a protocol as abstract data types and cryptographic
primitives as abstract functions over such data types. How these data types and functions
are implemented is left unspecified, and even adversarial entities are assumed to know
nothing about their implementation. Such an abstraction leads to simple, tractable proofs
of security and as we illustrate, protocols can be proven secure within the model using
straightforward inductive arguments.

A symbolic model like ours was first proposed in [18] for analyzing security of
encryption protocols against impersonation attacks and is often referred tolRal¢ve
Yao security modedfter the authors of [18]. Our model differs from the Dolev-Yao
model in two ways: on the one hand, we generalize the original model to incorporate
the use of pseudo-random generators, which are frequently used in conjunction with
encryption schemes in the design of security protocols; on the other, we consider a
weaker attack model, one in which the adversary only eavesdrops on the communication
of all parties but may not have the power to disrupt or modify any such communication.

The symbolic model provides a convenient framework to analyze security of
protocols but given its idealistic nature, the conclusions one derives from such security
analysis are of limited practical benefit. This is an issue we discuss in detail, and suitably

address, in the next part of the thesis.

Chapter 2

The Model

Let R = {Ry, Ry,...,} be an arbitrary, infinite alphabet. We refer to the
symbols in this alphabet gsirely random keysor fresh keysthese can be used directly
for performing cryptographic operations like encryption. Oftentimes, though, protocols
also make use of keys that are not purely random but “pseudo” random in the sense that
no efficient observer can distinguish them from purely random values. Such keys can
be obtained by using pseudo-random generator (PR@)cryptographic primitive that
takes a purely random key as input and “expands” it into a sequence of pseudo-random

ones.

2.1 Pseudo-random Generators

In symbolic terminology, a pseudo-random generator is a fundBothat
maps a keyK to a sequence of seemingly random key&G(K), - ,G,_1(K)) for
somel > 1. We refer to/ as theexpansion factoof G2. The keys that are output
by a pseudo-random generator, when given a random (or pseudo-randofi)dsein-
put, are considered as good as purely random ones; in particular, encryption schemes

remain secure when such keys are deployed in them. Pseudo-random generators have

In the symbolic model, random keys are just constant expressions without any probability distribution associated
with them. The word “random” refers only to the intended implementation of such expressions.

2The notion of expansion factor is different from that of steetchof a PRG [7], more commonly used in the
literature; the latter is defined for a setting in which the PRG is modeled as a map over binary strings.

13

14

been extensively used in the design of encryption protocols, in general, (and of group
key distribution protocols, in particular), typically to improve protocol efficiency, and
sometimes even to add new functionality; as such, incorporating them in our model is
paramount.

For the rest of this thesis, we consider a fixed pseudo-random gen€fator
with expansion factor equal t—on input a keyK, such a generator outputs two keys,
which we denote bYG((K) and G,(K). This is without loss of generality because
PRGs with larger expansion factors can be quite easily built from such generators using
standard techniques in the literature [49, 7]. Indeed, all protocols we are interested in

use PRGs with expansion factor two only.

2.2 Encryption

Besides pseudo-random generators, the other primitive we are concerned with
is encryption(more preciselysymmetric-keyencryption). In the symbolic world, an
encryption scheme is modeled as a functlordefined over symbolic expressions: it
takes, as input, an expressian, called themessageand a keyK, and maps these
to another expressioR (M), called theciphertextcorresponding tal/. Intuitively,
the ciphertext hides the message completely and the latter can be recovered only if the
encryption keyK is known; that is, giveE (M), M is recoverable if and only if(is
recoverable.

We allow encryption to be performed in a “nested” fashion: ciphertexts can
themselves act as messages and every message can be encrypted iteratively under mul-
tiple keys. For examplelEg, (Eg,(R3)) is a valid ciphertext in our model, and so is
Egr, (Eg, (Eg,(R2))). Nested encryption has, in fact, been deployed in security pro-
tocols in the past, sometimes with the purpose of enhancing their security [28] and

sometimes even to better the efficiency of known schemes [14, 21].

15

2.3 Protocol Messages

Messages, in our model, are expressions created by applying the functions
E andG iteratively on elements oR. Formally, we define @rotocol messagas an
expression that is derivable from the variabfein the following context-free grammar:

M — K [Ex(M)
(2.1)
K — R | Go(K) | Gi(K)

Here, the variablgl models keys generated during the protocol, which can
either be purely random (contained in theBgtor pseudo-random (derived from purely
random keys using@s). Note that a pseudo-random k&ycan be obtained via multiple,
iterative applications o€z on the same purely random key; the latter is referred to as
theroot of K and the number of iterations & required to generat& from its root is
called thedepthof K. We denote these byot(K) anddepth(K') respectively. As an
example, ifK = Go(G1(R;)), thenroot(K) = R; anddepth(K) = 2.

Let Msgs denote the set of all messages that can be derived from gram-
mar (2.1) andKeys the set of all keys derivable from it. Note that both these sets
are infinite and thaKeys C Msgs. (That is, every key derivable from our grammar is

also a message.) Some examples of expressions contaiivéskimare:

e Go(G1(Ry)), the pseudo-random key obtained by first apply@igon the purely
random keyR;, and then applyin@x, on the resulting key.

o Ex,(Go(Gi(Ry))), the ciphertext corresponding to the encryption of
Go(G1(R,)) under a purely random kejs;

o Eg,(r,)(Eg.(r)(R3)), the ciphertext corresponding to the “double” encryption

of a key R3 under the key€z(R;) andG (Ry).

In practice, protocols can also generate ciphertexts formed by encrypting ar-

bitrary data, and not necessarily keys; we use the above model because our interest

16

is primarily in “key” distribution protocols, where keys are the only objects to be en-
crypted. It is possible to extend many of the results of this thesis to protocols that
encrypt arbitrary data as well and in the sequel, we discuss how this can be done.

One important remark regarding our grammar is the following. Although we
allow ciphertexts to be created by iterative applications of the encryption function and
the PRG in a fairly general manner, we do not allow them to be used as keys, either
for encrypting messages or as seeds to the pseudo-random generator. (That is, we do
not incorporate rules of the form/ — Ey (M) or K — Go(M) | Gy(M).) This
is because, in practice, ciphertexts need not possess the pseudo-randomness properties
that keys do (or rather, are assumed to do); indeed, using them to play the role of keys is
considered injudicious cryptographic practice and could lead to the design of insecure

protocolseven for secure implementations@fandE.

2.4 An Entailment Relation

Given a set of protocol messagéd C Msgs, what information about the
protocol can be recovered from this set? We formalize this notion using an entailment
relation M + M (symbolizing the assertionV! is recoverable froro\1”), and define it

recursively using the following rules:

MeM = MFM (Rule 0)
MFEK = MF Go(K) A M F Gy(K) (Rule 1)
MEEx(M)AMEFK = MFM (Rule 2)

Rule 0 is trivial: every message that is containedMt is clearly recover-
able from it. Rule 1 is the correctness condition associated with the pseudo-random
generator—if one can recover a kéy, then one can also recover all pseudo-random
keys derived fromK. The last ruleRule 2, formalizes the notion of decryption asso-

ciated with any encryption function—if one possesses a ciphdtgxfl/) and also the

17

key K used to create that ciphertext, then one can “open” the ciphertext to retfover
We say that a messadé is recoverable from\ in ¢ steps(for some: > 0)

if M can be derived frora\t using: applications of the non-trivial rule®ule 1 and

Rule 2. (If M € M, then it is said to be recoverable fra in 0 steps.) For example,

consider the set

M = { Ry, Eq,(r,)(Eco(r)(R3)), Br, (G1(R1)), Egy(a, () (Ra) }
From the trivial rule, we know that

M F R27
M F Eg, (r)(Eao(r)(13)),
M F Eg,(Gi(R)),

and, M F Egyc(r)(f1)
The keyR, can now be recovered fro in 3 steps:

M Ry A ME ERQ(Gl(Rl)) — MFE Gl(Rl) (US|ng Rule 2)

M Gi(R) = MF Go(Gi(R))
(UsingRule 1)

M+ Go(Gl(Rl)) AN ME EGO(Gl(Rl))(R4) — M R, (USIﬂg Rule 2)
while the ciphertexEg,r,)(R3) can be recovered idsteps:

ME Ry = MFE Gi(R;) (UsingRule 1)
M+ Gl(RQ) N Mt EGl(Rz)(EGo(Rl)(R3)) — Mk EGO(Rl)(R3)
(UsingRule 2)

For any message-sal, we useRec(M) to denote the set dall messages

that are recoverable from it (irrespective of the number of steps required to do so); that is,

3For more generality, one could also incorporate a rule for “encryption”, formalizing the idea that giveria key
and a messag®/, it is easy to construct the cipherté&ix (M). However, such a rule would be of no benefit to us.
For one, ciphertexts themselves cannot be used to recover anything other than the message that they encrypt. For two,
we analyze protocols in terms of whatys(as opposed to ciphertexts) can be recovered from protocol messages; for
this purpose, the rules that we have listed above suffice.

18

Rec(M) = {M | M+ M}. Inour example, boti®, andE¢,r,)(Rs3) are inRec(M).
Notice thatRec(M) is typically infinite; for example, if any key; € Rec(M) then
for anyd > 0 and anyby,bs,...,b € {0,1}, the keyGy,(Gy,_, (- - (G, (R;)) --+))
is also inRec(M). For singleton message-setd = {M}, we write Rec(M) for
Rec(M).

The entailment relation, besides formalizing the functionality of the operations
E and G, implicitly defines their security semantics as well. In particular, we assume
that information thatannotbe recovered using this relation is completely “hidden”
from the point of view of any adversarial observer. In our example, the Kgyand
Go(R;) cannot be recovered from (even though they both appear in it) and so, it is
assumed that an attacker, when given access to &l dias no knowledge, whatsoever,
either aboutk; or aboutGy(R;). (In effect, M conceals these two keys completely.)
Such a line of reasoning reflects the basic philosophy of the symbolic model, namely,
that cryptographic operations are ideal objects and information that is not obtainable
using certain fixed rules (modeling just the correctness properties of these objects) is

secure by default.

Chapter 3
Defining Group Key Distribution

Consider a set of users, labeled, 2, ..., n, sharing a broadcast communi-
cation channel. Suppose thats very large (say, of the order of the number of hosts
on the Internet). At any timg users in a specific s&* c {1,...,n}, referred to as
thememberst that time, are authorized to receive information sent on the channel and
in order to enable private communication amongst these users, we would like to enable
them to share group keyK (V) and to encrypt all transmitted information using that key.
The setS® changes with time and accordingly, the users should also be able to update
K® in such a manner that at every instanall and only the users i§*) can recover
K®,

This, in essence, is the problem of group key distribution. The problem can
easily be seen to be equivalent to that of privacy in group communication: on one hand,
given a protocol for distributing group keys securely, one can use it to ensure privacy in
the group (by suitably performing encryption under the group key at every instant) and
on the other, given a protocol for private group communication, one can distribute group
keys securely using it (by simply generating a fresh key at every instant and transmitting
it securely to everyone in the group). As such, throughout this thesis, we identify the
problem of private group communication with the group key distribution problem. We
remark that group key distribution protocols can find applications in multiple contexts

(besides that of ensuring privacy); for example, when coupled with a message authenti-

19

20

cation scheme, they can be used to guarantee integrity of all messages exchanged within
the group and to identify the sender of any message as being a member of the group.

In this thesis, we are interesteddantralizedprotocols for group key distribu-
tion; that is, we assume that there exists a (physical or logical) central trusted authority
C who shares a unique, long-lived ké&y with every uset of the underlying broadcast
channel, and uses these keys to communicate the grouf kegecurely to all mem-
bers at timef. We also assume that the channel is reliable (every message sént by
is received by every user of the channel) and authenticated (every user can verify that
the message was indeed sentd)yMost known protocols for group key distribution in
the literature are based on the assumption of centralized trust (primarily for reasons of

efficiency).

3.1 Protocol Correctness

A group key distribution (GKD) protocdIl for n users has two components:
a setup prograr, and a key distribution prograf@. (The latter models all activities
of the center.) The setup program assigns long-lived keys to all users and decides the
initial state ofC. For all 7, the long-lived key of usef, denotedkj, is an element of
Keys subject to the requirement that it is not recoverable from any other long-lived
key. In other words, there must exist no two keys K; such thatk; € Rec(K;)
(that is, K; = Gy, (Gp, (- Gy, (K;) - --)) for somel > 0 andby,---,b € {0,1}).
The initial stateZ®) of the progranC is a set of keys with the property that for every
i€{l,...,n}, K; € Rec(Z2).

We remark that the setup program is just an abstraction used for convenience
of protocol description. In practice, long-lived keys of users need not be generated all
at once before the protocol begins, but only when the respective user joins the group.
(Once generated, the key can be shared between the user and the center using standard
techniques based on, say, public-key cryptography.) Furthermore, to reduce storage re-

guirements at the center, all long-lived keys could be derived using a single se&g, key

21

via multiple applications of the PRG, while satisfying the above-stated requirement.
(For greater efficiency, a pseudo-randfumction[22] could also be used.)

At every instant > 0, the progranC is given, as input, a description of the
current set of memberS® and a set of key - corresponding to its state at the
previous instant. It outputs a set of messageg(t) (to be transmitted on the broadcast
channel) and its updated sta#é). Each message ng Is an element oMsgs (that
is, it is derived from the variablé/ in grammar (2.1)). These messages are referred to
as therekeymessages for timesince they are used to establish a fresh secret key—the
group key—amongst all members at that time.

Let [n] denote the sefl, ..., n} and let2®] denote the power set @f]. For
any sequence of member-s@d?) := (SO, ... SO e (2, let MY, denote the
set of all the rekey messages output®when given this sequence as input; that is,

M%m - U Mgﬂ’)
1<t/<t
Definition 3.1.1 An n-user GKD protocoll is called correct if for alt > 0, for all

_> -
sequencess @ € (2)! there exists a key such that
vie SY . K € Rec({K;}| JME,) (3.1)

We assume that for every instanthere is a distinguished kdy that satisfies
the above criterion and that is also used for applications (like the encryption of group
data); this key is the group key for timteand we denote it by ®. We remark that
our correctness definition is quite liberal in the sense that members are allowed to be
able to recover the group key usialj the messages transmitted by the center up to the
current instant. In practice, one could be more stringent and require instead that the
group key be recoverable by a member using only the messages transmtedhe
instant the member joined the graufpndeed, all protocols we consider in this thesis

have that property.

22

3.2 Security Definitions

A natural first step in defining security of group key distribution would be to
require that for each instantno non-member be able to recover, individually, the group
key K ® using the messages sent up to that instant. This essentially involves negating

criterion (3.1) for non-members as follows:

Definition 3.2.1 An n-user GKD protocoll is calledsecure against single-user attacks

(in the symbolic model) if for alt > 0, and for all sequences) ¢ (2t

Vig SY : KU ¢ Rec({K} | JME,) (3.2)

S (1)

The above definition is quite intuitive and easy to use, but it has one severe
shortcoming: it does not allow non-membersctwlude with each other and taount
coordinated attack®n the protocol. In practice, coordinated attacks could be quite
feasible to implement—an intruder could gain illegitimate access to several hosts on a
network (by, say, cracking their administrative passwords in parallel), and could poten-
tially combine all information available on these hosts and recover group keys that none
of the hosts can recover individually.

Let us now strengthen this definition to incorporate collusion attacks. For any
instantt, let E(t) denote the set of non-members in the protocol at that instant; that is,
S =[]\ 8.

Definition 3.2.2 An n-user GKD protocoll is calledsecure against collusion attacks
or simply collusion-resistan{in the symbolic model), if for alt > 0, for all sequences
ﬁ
S ¢ (2t
t II
K" ¢ Rec({K}, <o [JME) (3.3)

Note that condition (3.3) is equivalent to requiring that the k&% not be in

Rec({K;};es UME,)

the functionRec(-) is monotone with respect to the set inclusion relation; that is, for

every two sets of messagdd,, M, such thatM; C M, Rec(M;) C Rec(M,).

for any subsef of S This follows from the observation that

23

Thus, K ® is protected from all non-members at timigé and only if it is protected from
every malicious subset of them.

The new definition appears reasonable but it is still lacking in one aspect: what
if non-members at time cannot recovek) immediately but can do sater on after
viewing more messages sent by the protocol? For example, consider a protocol that
setsK 1) to be the same a& (Y) whenever a new user joins the group at titne 1.

This means that, when running the protocol, a user who is not a member at e
becomes one at time+ 1 would be able to acquire the kay*), absolutely for free!
Should such a protocol be called secure?

The answer depends on the application one is considering though it is reason-
able to believe that in most situations, such an occurrence would count as a security
violation. For example, in many applications (like pay-per-view services), every piece
of information has a price associated with it and often, this price is independent of when
the information is actually communicated. In such a setting, preserving secrecy of key
material communicated in the past would be very important.

Thus, a natural way to strengthen the above security definitions would be to
require that non-members at any instamot be able to recover the group kés("),
even when they are given access to future protocol mess&esh a requirement is
usually referred to alsackward secrecin the literature (see, for example, [43]) because
it ensures that no group member can recover group keys of past instants when it was not

part of the group.

Definition 3.2.3 An n-user GKD protocoll is calledstrongly secure against single-
user attackgin the symbolic model) if for alt > 0, for all sequences) ¢ (2t we
have

vi<t Vig S . KO ¢ Rec({K;} | JME,) (3.4)

S

Definition 3.2.4 An n-user GKD protocoll is calledstrongly collusion-resistanfin

the symbolic model) if for alt > 0, for all sequences ® ¢ (2t we have

Vi<t : KU ¢ Rec({K}, oo | M%) (3.5)

24

Definition 3.2.4 is the strongest symbolic security definition we consider in
this thesis. As in the case of Definition 3.2.2, we could re-phrase condition (3.5) by
requiring that for alf < ¢, K not be inRec({K;},.s U Mz, ,) for any subses of
s, (Again, the equivalence of the reformulated definitions with the above ones would
follow from the monotonicity of the functiolRec(-).) Alternatively, we could say that
a protocol is strongly collusion-resistant if for all s&sC [n], for all sequence§(t),
and for all instants < ¢ such thats® NS = 0, K© ¢ Rec({Ki};cs UMT).

In past work on group key distribution, security notions of the above kind
have already been considered but to the best of our knowledge, our work is the first
to formalize these notions within a general symbolic model of computation. Such a
formalization is essential both from the perspective of proving security of protocols (as
we do in Chapter 5) and also for the purpose of proving robust lower bounds on the

efficiency of protocols (as done in Chapter 6).

Chapter 4

An Equivalence Theorem

4.1 Single Encryption Protocols

Although the protocol language we defined in Chapter 2 is fairly general and
encompasses all (symmetric-key) group key distribution protocols in the literature, it
turns out that most protocols of interest can be captured by a more restrictive model.
Specifically, our grammar of protocol messages (equation (2.1)) allows protocols to use
nested encryptiom generating ciphertexts whereas most GKD protocols (nine out of
eleven surveyed in [31]) do not exploit this possibility at all. In other words, messages
in such protocols are derivable from the following modified version of grammar (2.1):

M — K |Eg(K)
(4.1)
K — R|Go(K) | Gi(K)
Notice that the ruleV/ — Ex (M) has been replaced withh — Ex (K) in the above
grammar.

We refer to protocols that generate messages according to grammar (4.1) as
single encryption protocoland group key distribution protocols that fall within this
class are calledingle encryptioflGKD protocols or simply, S-GKDprotocols Inter-
estingly, even with this minor restriction, security analysis of protocols can be greatly

simplified, as is illustrated by the following theorem:

25

26

Theorem 4.1.1 An S-GKD protocoll is (strongly) secure against single-user attacks if
and only if itis (strongly) collusion-resistant. In other wortissatisfies Definition 3.2.1

(resp. Definition 3.2.3) if and only if it satisfies Definition 3.2.2 (resp. Definition 3.2.4).

Thus, if one is interested in analyzing the security of an S-GKD protocol
against collusion attacks, it suffices to prove it secure against single-user attacks only;
collusion-resistance would follow from theaitomatically! We illustrate the usefulness
of this result by applying it to the security analysis of various protocols in Chapter 5.

First, let us prove the result.

4.2 Key Graphs

The key insight underlying the proof of Theorem 4.1.1 (and of several other
results in subsequent chapters) is the observation that security analysis of S-GKD pro-
tocols can be conducted, quite conveniently, using a graph-theoretic abstraction. We
first describe this abstraction in detail.

Consider the execution of an S-GKD proto€bgiven any sequence of mem-
ber setsS) — (SW ... S®) as input. With any such execution, let us associate a

directed graprg%m, called thekey graphfor that execution ofI, defined as follows:

e The set of nodes i@% is equal toKeys (the set of all keys derivable from

(®)
grammar (2.1)).

e ForanyK, K' € Keys, there is an edge fromk to K’ in g% if and only if

(t)
either of the following is true:
— K' = Gy(K) for someb € {0,1};

- M, contains the messad® (K”).

We refer to an edge of the forld — G, (K) as agiven edger, simply, ag-edge

and all other edges are referred tocgshertext edgesr c-edges.

27

The intuition underlying both types of edges is the same: Given thekkey
(and the ciphertexts transmitted by the protocol), if we can recover anothek kizy
exactly one step (via the entailment relatiorof Section 2.4), then—and only then—
we introduce an edge froml’ to K’ in Q%(t). Note that the creation af-edges is
dependent on the protocol wheregsdges are given to us for free, independently of
which protocol we are running (hence the name “given edges”).

Since every edge in a key graph corresponds to a single step in the computation
of the functionRec(+), a sequence of edges (that ipathin the graph) would naturally
correspond to a sequence of such steps. As a result, all keys that ezatbedirom a
key K in the graph are exactly those that can be recovered from it (and the ciphertexts
sent by the protocol).

The following lemma formalizes this relationship between reachability and
recoverability. For any key graph and any set of keyk’, let Reachg(K) denote the
set of all keys that are reachable fr@tin G. Formally,Reachg(K) is the smallest set
of keys such thall C Reachg(K) and for everyK € Reachg(K), and every edge
from K to another keyK’, K’ is also inReachg(K). For any set of messag’m%(t)
transmitted by a protocol (when given the sequesd® as input), letC’} | denote the

set of unencrypted keys containedfm% o

Lemma 4.2.1 For anyn-user S-GKD protocadll, for any set of key4C, for any integer

¢ > 0, and for any sequence of sefs?) ¢ (2M))!

Rec(U ML

_ 1
<) NKeys = Reachg%(t) (KUK=

S(t))

Proof: We prove, using induction, that, for any> 0, a key K is recoverable from
K UM%M in 7 steps if and only if there exists a path of length g%(t) that starts from
some key infCU IC%M and ends inK. From this, the lemma would follow immediately.

For the base case, observe that a keys recoverable fronkC U M%m in

0 steps if and only if it is contained ift U ML | which is true if and only ifK <

S’
Ku IC%U). The latter is equivalent to saying that there exists a path of lénfjfttm a

node inK UKL toK.
S

28

Now suppose that the claim is true for some arbitraty 0. Using this, we
prove the claim fog + 1. K is recoverable froniC U M%m ini + 1 steps if and only if
there exists another ke’ that is recoverable (from the same set) steps and either
(@) K = Gu(K') for someb € {0,1} or else, (D)Ex/ (K) € M%(t).
case, we applfRule 1 of Section 2.4 to gek’, and in the latter, we udtule 2.) From

(In the former

the inductive hypothesis, we know that there exists a path of Ieh'gthg%(t) from

some keyK"” € K U IC%M to K'. From the definition ofg%m, we know that either
(@) or (b) is true if and only if there is an edge fraifi to K in that graph. Joining the

former path with the latter edge gives us a path frithto X of lengthi + 1. |

For the rest of this thesis, most of the discussion on S-GKD protocols takes
place in terms of key graphs. In particular, we describe and analyze protocols (within
this class) in graph-theoretic terms, and, later on, use the concept of key graphs to es-
tablish lower bounds as well. As a first step, let us see how this concept helps us give a

simple proof of Theorem 4.1.1.

4.3 Proof of Theorem 4.1.1

We first prove equivalence between definitions 3.2.3 and 3.2.4; the proof of
equivalence between definitions 3.2.1 and 3.2.2 is very similar and we only sketch the
difference between the two proofs in-line.

Clearly, Definition 3.2.4 implies Definition 3.2.3—if a protocol is strongly
collusion-resistant then it must be strongly secure against single-user attacks as well.
(This follows from the monotonicity of the key recovery functiBec(-).) So we just
need to prove the converse.

Let IT be any S-GKD protocol that isot strongly collusion-resistant, that is,
one that fails to meet Definition 3.2.4. Then, there must exist some seq@ﬁ‘c&

(SMW ... S®) and some instarit< ¢ for which:

K" € Rec({Ki}, oo UML)

29

Using Lemma 4.2.1 we can express the above condition in terms of key graphs
as below:
K ¢ Reachgn ({Ki}, s UKS) (4.2)

We claim that for any key grap#i, any set of user§ C [n], and any set of
keysKin g,
Reachg({K},.5s UK) = | Reachg({K;} UK) (4.3)

ieS
Note that given this claim, condition (4.2) on proto€btan be written equiv-

alently as:

K® ¢ U Reachg%(t>({Ki} U/C%»(t))
ies®
. =® £
= FieS” : KWe Reachg%(t) ({Ki}uU]C%m)

— 3ie8? . KD c Rec({K;} UML

<) N Keys

which implies thatl fails to meet Definition 3.2.3, and the theorem follows from this.
(For the proof of equivalence between Definition 3.2.1 and Definition 3.2.2, the argu-
ment would be the same except that ¢ would get replaced by = t.)

What we have claimed above—equation (4.3)—is actually a simple conse-
guence of the definition of reachability in graphs, formalized in the succeeding lemma.
(Below, we use the notatioReachg (K) for an arbitrary graply/ just as we did for key

graphs, that is, to denote the set of nodes reachable from a noklarsét)

Lemma4.3.1Let G be any directed graph and for any positive integer let
Kq,Ka, -+, IC, be arbitrary sets of nodes in it. Then,
Reachg(U;_,K;) = U Reachg(K;)
=1
Note that by selecting = |S| andk; = K U {K;} for eachi € {1,--- ,s}in

the above lemma, we obtain equation (4.3).

Proof: The proof uses an inductive argument. Let us first enhance the definition of

reachability to incorporate the number of “hops” required to reach a node from a given

30

set of nodes. For any set of nodésn G, the set of nodes that are reachable frgrnm

h hops denote(Reachg(V), is defined recursively as follows:

(a) Reachg (V) =V; and

(b) For anyh > 0, a nodev’ is contained inReachy; ™ (V) if and only if v/ €
Reach(V) or there exists a node € Reach((V) for whichv — o' is an

edge ing.

Clearly, for anyV, Reachg(V) = (J;°,Reachy(V). Thus, to prove the lemma, it
suffices to show that for any sequence of node-§t3C,, - - - , K, and anyh > 0,

Reach(,(Us_,K;) = |J;_, Reach(K;). From the monotonicity of the function, we
know thatReachf(Us_,K;) 2 J;_, Reach{(K;), so we only need to prove contain-

ment in the other direction.

The statement is trivially true fd¢ = 0: by definition, Reachg (U;_,K;) = Ui, K; =

Ui, Reachg(lci). Suppose that the statement is true for any arbithary 0; that is,
forany Ky, - - -, Ky, Reachf(Us_,K;) C |J;_, Reach;(K;). Consider any node’ in

Reach}"! (Us_, K;). For any such node, there exists a node Reach(;(Us_, ;) such
that eitherv = v’ or else there exists an edge franto ' in G. From the inductive
hypothesisp € |J;_, Reachf(K;); that is,v belongs toReach,(K;) for somei €

{1,--+,s}. For such an, v' must be inReachf;"" (K;). (This is true whethev = v’

or there exists an edge — ¢’ in G.) Thus,v’ € |J;_, Reach}"!(K;), which means
Reach," (Us_,K;) C U;_, Reachl"!(K). 1

4.4 A Cautionary Note

A natural question to ask is whether our equivalence theorem can be proven for
GKD protocols that exploit the possibility of nesting the encryption operation. It turns
out that this is impossible—even for protocols that make use of double encryption (one
level of nesting) only, we can establish a separation between the notion of collusion-

resistance and that of security against single-user attacks.

31

Theorem 4.4.1 There exists a GKD protocol that uses double encryption, is strongly
secure against single-user attacks (that is, satisfies Definition 3.2.3) but is not collusion-

resistant (that is, does not satisfy Definition 3.2.2).

Since collusion-resistance (Definition 3.2.2) is weaker than strong collusion-
resistance (Definition 3.2.4), the above theorem also implies a separation between strong
collusion-resistance and strong security against single-user attacks. Similarly, the no-
tions of plain collusion-resistance and plain security against single-user attacks (defini-
tions 3.2.2 and 3.2.1 respectively) are also separated by the theorem.

The intuition behind the separation is quite simple: a kéyhat is doubly
encrypted requires the knowledgetafo decryption keys to be recovered (as opposed
to onesuch key in the case of single encryption). Now, if a protocol distributes this
doubly encrypted key and assigns the other keys in a manner such that the decryption
keys required to recovek’ are known to two different users, collusion can be a boon:
the users cannot recovéf by themselves but, by cooperating and putting their keys
together, they can! If(is the group key and the two users are malicious non-members,
this would mean that the protocol is ruined against collusions.

We now present a concrete protocol that formalizes this intuition. Our pro-
tocol is very similar to one due to Pinkas [39], which was designed for the purpose
of performing state updates in GKD protocols. (In [39], an improvement of the same

protocol that provides collusion-resistance is also given.)

Proof: The separation protocol involves the use of, what we refer to in this tHiekys,
pseudo-random chains (FPCai keys, a notion similar to that of forward-secure PRGs
already studied in the literature [6]. An FPC of lengthbuilt from a purely random

key Ky € R is a sequence af key pairs((K;, K))icm) such that for every € [n],

K; = Gy(K;—1) and K] = G;_(K;) (whereb € {0,1} is fixed for alli). The K/’s in

this chain are “fully” pseudo-random in the sense that it is (computationally) infeasible

to distinguish between them and a sequenae ioldependently random keys.

32

O Ky O Kz O K Ks O
O—>$—>$—>$—>$—>$—>% C'hi_,
O
a :
K,

oy o e €

Ok, Ok, @ik, Ok, K
Figure 4.1: An illustration for the proof of Theorem 4.4.1.

In our protocol, the setup prografhcreates two FPCs of lengil (the total number
of users) using two different purely random kel and Ky, one called thdorward
chain and the other called thbackward chain(See the figure for an example with
n = 6), and gives the key§K;, K,,_;.1) to useri’. Note that given this, usercan
recover the key pair§K;, K!),--- , (K,, K} in the forward chain and the key pairs

!

(Kn_it1, K i11),- -, (Kn, K,) in the backward chain.

The key distribution prograr works as follows: given a s as input, it first di-
vides the sequendg, - - - , n) into the smallest possible set of intervals such that every
i € S® belongs to exactly one interval and nae s belongs to any of the inter-
vals. For example, ih = 6 and the target set i§l, 3,4, 6}, these intervals would be
(1),(3,4),(6), as shown in the figure. The number of such intervals is at most the size

of S”, plust.

Let I,,--- ,I,,, denote these interval€ generates a fresh (purely random) k&Y
and for each interval; = (ji, -, jm), it creates a cipherted: (Exr (K®)).

Note that this ciphertext can be decrypted by the users who knomlt’fothndK njyt1s

which is exactly the users ify. (In the figure, the darkened keys denote the keys used

to encryptkK) so as to transmit it to users in the inter¢al4).) The setM,, includes

S
all ciphertexts created in this manner.

1Such a setup procedure does not directly fit our model for group key distribution but can easily be made to do so
by having the center transmit, at time= 1, the keys in the two FPCs suitably encrypted under the unique long-lived
keys of the users.

33

It is easy to verify that this protocol is strongly secure against single-user attacks (sat-
isfies Definition 3.2.3) but is not collusion-resistant (fails Definition 3.2.2). In fact, a
malicious coalition of size two is enough to break the protocol. For example, in the fig-
ure, user€ and5 can collude and recovet®: user2 knows K’; (but notx’,) and user

5 knows K, (but notK?,); so, even though neither of them can recoi@? by himself,

they can do so easily by colluding.

4.5 Acknowledgement

Chapter 4, in part, is a reprint of the material as it appears in 33rd International
Colloquium on Automata, Languages and Programming (ICALP), July 2006, Miccian-
cio, Daniele; Panjwani, Saurabh. The dissertation author was the primary investigator
and author of this paper. The presentation of the proof of Theorem 4.1.1 is different and

more modular in the current work.

Chapter 5

Upper Bounds

In this chapter, we present several group key distribution protocols and analyze
them with respect to the symbolic notions of security defined in Chapter 3. The protocols
we present fall into two categoriesogical key hierarchy protocolsnd subset cover

protocols

5.1 Logical Key Hierarchy Protocols

The Logical Key Hierarchy (KH) protocols are a class of GKD protocols
devised by Wonget al. [46] and independently by Wallneat al. [45], in the context
of implementing secure multicast over the InternéfH protocols are highly efficient,
both in terms of the amount of computation performed by protocol users and the commu-
nication costs incurred by rekey operations, and require very little state to be maintained
by users. In this thesis, we consider two protocols fronitkE class: the first protocol,
which we refer to aplain-LKH, is the original protocol due to [46, 45] and uses encryp-
tion as the only cryptographic building-block. The second protocol, caiguioved-
LKH here, is a protocol due to Canetti, Garay, Itkis, Micciancio, Naor and Pinkas [10];
it uses both encryption and pseudo-random generators and h@#erd KH in terms
of communication efficiency. Both protocols are single encryption protocols, that is,
neither of them uses nested encryption in the process of generating rekey messages. In

this section, we presepiain-LKH andimproved-LKH (rather, a more secure variant

34

35

of each of the protocols), and analyze security of both these protocols in the symbolic

model.

5.1.1 Protocol state

In anyLKH protocol (and irplain-LKH andimproved-LKH in particular), the
center’s state at timeconsists of a set of keys that are organized in the form of a tree,
denotedZr®. This tree represents a hierarchy of keys, with the group/&y being
at the top of the hierarchy (as the root), and the long-lived keys of us&f®)ibeing at
the bottom (as leaves of the tree). The goal of the protocol, roughly, is to ensure that at
every instant, each usei € S® can recover all and only the keys lyimg the path
from K; to K® in 7r®, and that non-members cannot recover any key in it. This, in
turn, guarantees that the group key is recoverable by all and only the members at every
instant.

For simplicity, we present the protocols assuming that theZrée is always
binary and its height is fixed dtog,(n)|; generalizing to trees with arbitrary structure
(in particular, trees that have variable depth and width) is easy, and we omit the details of
how this is done. Let denote the set of all binary strings of length at mjdsg,(n)]|.

For any strings € £ and any valué € {0, 1}, let s - b denote the string formed by
appending to s. For anys € L, let|s| denotes the length of

For any instant during the execution of abKH protocol, we denote the keys
in 7r® using symbols of the fornk”, with s being a string inC. The root of 7r®
(the group key) is denotel” and for any key denoted", its left (resp. right) child
is denotedk!”) (resp. K")). For any sets C £, let K = {K{" | s € 5}. Letk®
denote the set of all keys i®. Initially (att = 0), K) = () and for alls € L, the
key K = 1 (which stands for “undefined”). For arty> 0, K is the group key at
timet and for everyi ¢ S, there exists a unique string(i) € {0, 1}°s2(™1 sych that
ngi) = K;. We denote the set of all prefixes fi) by pre, (7). SO’ICI(:I)'et(i) is the set
of keys in7r® that lie on the path fronk; to K"

Besides the set of keys ("), the center also stores the long-lived keys of all

(t-1)
K

. €
(t-1) (t-1)
0 . . KI
(t-1) (t-1) (t-1) (t-1)
00 KOI KID Kll
[] ([J o ®
o o o o o
Ki Kz Kz Ke Kz

“Y_11,2, 3,6, 7}

(a)
’K(:)
(t-1) E] K(x)
KEO " 1
A]
) \@\ K(:
0 O \d‘ 4‘
O K Km/ 19
®
. OO‘ . 01 10 O
e o o []
K K, K Ky K K Ky Kg Ky Ke K7 Kg
sP21(1,2.3.6,7.8) s¥=1{1,2,3,6,7, 8
(b) (c)
®
K(Qk
© | (1)
KO'k o) Ke
0 @°
© ®
Koo'\ @) K
of © o ©
o o1 IO. 'KH
O [] L
Ky Ky Kj K Ky K K K Ko Ko
¥ —12.3.6,7) s =2,3,6,7
(d) (e)

Figure 5.1: Theplain-LKH" andimproved-LKH™ protocols.

37

userski, ..., K, as part of its internal state. In particular, its state at tirae0 contains

only these keys (or a succinct representation of the same).

5.1.2 Rekey Messages

As in [46, 45, 10], we assume that at each instatiie size of the groug®
changes by at most one and that either a single member leaves the group or else a single
non-member joins it. A sequence of s&¢) = (S, .- ,S®) created in this manner
is referred to as aimplesequence; formallyS @ is simple ifS() has exactly one user
and for alll < i < t, S0 = SO U {} for somei € 8" or SEH) = SO\ {;}
for somei € SO, Itis clear that arbitrary group membership updates can be simulated
using simple sequences only.

Suppose that at some instant- 0, a useri € S“ Y is added to the group;
that is, S = StV U {i}. (We think of S© as being empty, 6 = [n].) In
response, the center first assigns a value 9 from {0, 1}/°s2(1 such that there is
noj € S® Y for which s,(i) = s,_,(j). For eachj € S*1, the center sets, () to
be equal tos,_, (j). Subsequently, the key hierarchy is updated fforii—") to 7r*) as
follows: &'
in the setic” (i are assigned new values, as described below.

pre, (i)\{s:(i
Let pre; (i) denote the saqire,(i)\{s;(¢)}. In bothplain-LKH andimproved-

1, Is set to be equal té; and for alls ¢ pre,(i), K" is settok{"". Keys

LKH, every key in’CEfﬁe; 0) is set to be a fresh symbol fro—a symbol that has not
been used in the protocol before timé he center then distributes each newly generated

key K9 (for s € pre,(i)) by outputting two ciphertexts for each such key:
(@) the encryption ofc” underk{'~", thatis,E .. (K").
(b) the encryption ofx{" underk;, that is,Ex, (K{").

Intuitively, the first set of ciphertexts allows all members in the¥&t!) who
are authorized to recovér.” (that is, for whomk!" lies on the path from their long-
lived key to the root off(*)) to be able to do so, and the second set of ciphertexts allows

useri to be able to recover it. We argue (in Chapter 8) that this procedure for rekeying

38

is insecure when considering security against computational attackers since it requires
the group key at time — 1 to be used for key distribution; in particular, it is used for
encrypting the new group kdﬂ(” and distributing it. As such, we modify the procedure
and define two new protocatsain-LKH" andimproved-LKH*"I'he rekeying procedure
for both these protocols is illustrated in the figure.

Suppose again that usefis added to the group at time In plain-LKH™,
the center generates values for keysl(i?’i) just like in plain-LKH but distributes
each freshly generated key by encrypting it under its two “children” in the updated key
hierarchy. Specifically, for each € pre;(i), and for eactb € {0, 1}, if K) # L,
then the center outputs the rekey messEg(eg t) . In terms of key graphs, this
corresponds to creating @&edge from Ks(,tg to its parenth(t) in the hierarchy. For
example, consider the situation shown in Figure Figure 5.1(a) wher® andS¢—1 =
{1,2,3,6,7}. Suppose that useXjoins the group at time (S*) = {1,2,3,6,7,8})
and is assigned the label(8) = 111. New values for keys with labels ipre}(8) =
{11,1, ¢} are generated, and distributed using the@lges shown (as solid arrows) in
Figure Figure 5.1(b). (Keys that are f&*) are shown in black while those that are in
KED\ £® are shown in white.)

In improved-LKH™", keys ink") , are assigned pseudo-random values. For

pre; (i)
any integerl and anyR; € R, let G|(R;) denote the pseudo-random key formed by
applying the functiorG, on R; [times, iteratively. When useris added to the group
in the protocoimproved-LKH™, the center first picks a fresh (unused) symBpfrom
R and for everys € pre|(i), defines a valug'!”? = G{[*=™1"V-F(R) Then, it
setsk" to be equal toGl(Kst)). Note that such a key assignment ensures that for
anys, s € pre;(') for which s’ is a prefix ofs, K() is recoverable fronk!” (that is,
K(t € Rec(K})) In particular, the group keg(e is recoverable fromi(" for every
s € prej(i).

Finally, for eachs € pre}(i), and for eactb € {0, 1}, if Kstg ¢ lere @Y

{L}, the center outputs the rekey messﬁggt)). Figure Figure 5.1(c) shows an
example for the case when useis added to the groug*~Y = {1, 2, 3,6, 7} of Figure

39

Figure 5.1(a); here, the newly creatg@dges are shown using dashed arrowgse(iges
corresponding téx, are labeled witl) and the others with), while c-edges are shown
using solid arrows as before.

We remark that the procedure for rekeying in response to user addition in
improved-LKH™ is very similar to that for user deletion improved-LKH, described
below. We also remark that a simpler procedure in which the Et@p<— Gl(f(ét))
(assignment o6 (K) to K" is replaced withk!” — K could also be consid-
ered. However, the resulting protocol would not be secure in the computational model,

which is why we prefer the above presentation.

UsSeR DELETION. The rekeying procedure for user deletion in bpthin-
LKHT andimproved-LKH is the same as iplain-LKH andimproved-LKH respec-
tively, and is, in fact, quite similar to the process of rekeying for user addition. When
a useri € St |eaves the group at time(or is deleted from it on purpose), that is,
S® = §t=1\ {;j}, the center generates new keys corresponding to stringeein , (1)
and distributes them securely to the legitimate members. First, forjeach®, it sets
s,(j) to be equal tas,_1(j), and for eacts ¢ pre, (), it setsk'” to K{'"V. Then, it

computes the longest string € pre,_,(¢) such that there existse {0, 1} for which

(@) s;-b¢ pre,_,(i); and
(b) K., # L.

Let pre;(i) be the set of all prefixes 6f.

New values are generated only for the keys labeled by stringseft(i). (So,
for all s € pre, (i) \ prej(i), K" equalsL.) The new values are generated and
distributed differently irplain-LKH and inimproved-LKH. In plain-LKH, a fresh (un-
used) symbol fronR is assigned tdc!” for eachs € pre;(i), and for eacth € {0, 1},
if ng #+ 1, the rekey messagEKSg(Kgﬂ) is output. Inimproved-LKH, a fresh
symbol R; from R is picked and for each € pre'(i), the center defines the value

K = GF17"(R;) and setsk” to be equal taG,(K{"). For eachs € pre,(i), if

40

there exist$ € {0,1} such thatk’) ¢ k)

/
pre;

i Y {L}, the center outputs the rekey

messagdt (f(s(t)). Figure Figure 5.1(d) shows how rekeying is dongiain-LKH

K®
when user |sb deleted from the groufl, 2, 3,6, 7} of Figure Figure 5.1(a), and Figure
Figure 5.1(e) shows the same forproved-LKH.

It is easy to show that both the protocols satisfy the correctness definition for
GKD protocols (Definition 3.1.1): at every instantevery membei € S® knows all

the keys ink”

pre,(i

) and this set includes the group kﬁgé“. A more formal argument

appears as part of the proof of Theorem 5.1.1 below.

5.1.3 Efficiency

The LKH protocols are much more communication-efficient than the trivial
protocol discussed in the introduction. For each addition or deletion of a member from
the group, the number of ciphertexts output as rekey messages by the center is at most
2[log,(n)] in the case oplain-LKH' and at mosflog,(n)] in the case ofmproved-

LKH™. (Contrast this wittO(n) ciphertexts in the case of the trivial protocol.) This de-
crease in communication overhead comes at the cost of slightly increased computation
cost O([log,(n)]) decryptions and/or PRG computations per member) and increased
storage requirement§)([log,(n)]) keys per member besides the long-lived key). We
remark that it is easy to modify both the protocols such that the key hierarchy is main-
tained as @ompletebinary tree at every instant and its depth varied based on the num-
ber of members in the group. The communication complexity of the resulting protocols
would be2[log,(n)] in the case oplain-LKH™ and[log,(n)] in improved-LKH™, for

n being the size of the group (rather than the total number of users in the protocol).

Bothplain-LKH' andimproved-LKH™ can also be modified to ugeary trees
(for arbitraryd € {2,3,...,n}) instead of a binary one. In the modified protocols, the
key hierarchy would be labeled using strings from the alph&bet, ... ,d — 1}* and
every newly generated key would be transmitted by encrypting it under all its children
in the hierarchy (in the case pfain-LKH™) or under all but one of its children (in the

case ofimproved-LKH™). We refer to the modified protocols as thery instances

41

of plain-LKH" andimproved-LKH" respectively. The communication complexity of
the d-ary instance oplain-LKH" is d - [log,;(n)] while that of improved-LKH* is

(d — 1) - [logy(n)]. Thus, an increase in the value éfaffects the communication
efficiency of the protocols negatively but, as we show later (in Chapter 9), it also leads

to stronger computational security guarantees.

5.1.4 Security Analysis

Although bothplain-LKH andimproved-LKH have existed in the literature
for a long time, a formal security analysis of either of these protocols has not been
conducted prior to the current work. Indeed, as we discuss in Chapter 8, neither of
these protocols are provably secure in the computational medeh against passive
eavesdropping attackas such, their security analysis in the symbolic model alone is of
little value. In the following theorems, we establish security of the modified protocols,
plain-LKH* andimproved-LKH™, against collusion attacks in the symbolic model. In
Chapter 8, we use these results to prove security of the same protocols in the computa-

tional model as well.

Theorem 5.1.1 Bothplain-LKH™ andimproved-LKH™ are strongly secure against col-

lusion attacks in the symbolic model.

Proof: We analyze security gflain-LKH™ andimproved-LKH™" with respect to simple
sequences only, since the protocol accepts only such sequences as input. (As already
mentioned, execution with non-simple sequences is easily simulatable using executions

with simple ones.)

We usep-LKH™ andi-LKH™ as shorthand foplain-LKH' andimproved-LKH™. For

any II € {p-LKH*, i-LKH"}, anyi € [n], and any simple sequencs @), let
Reachg%(t) (1) denote the set of keys reachable frégnin the key graph created when

IT is executed on inpug(t). Given Lemma 4.2.1, and the fact that no rekey message
ever output by eithep-LKH™ ori-LKH™ is an unencrypted key, this set is the same as

Rec({K;} U M%<t>) N Keys.

42

Claim5.1.2 LetII € {p-LKH", i-LKH"}. For allt > 0, and for all simple sequences
S ¢ (2, the following is true:

(@) Vi € §© : Reachgn (i)NK® =K)
S

pre, (i)’

(b) Vi e S : Reachgn (i) NK® =0
S t

Note that this claim implies two important facts abgut KH' andi-LKH™. First,
that both are correct (in the sense of Definition 3.1.1) and second, that both are secure

against single-user attacks (in the sense of Definition 3.2.1).

NOTATIONS. Before we prove the claim, we develop some notationILet {p-LKH,
i-LKH™*}. For any set of key& and anyS® C [n], letreachy,, (k) denote the set of
keys reachable fronC via the c-edges andg-edges created in the protocol key graph
for II at time ¢, given that the input at that time &*. For anyS® C [n] and any
icSW, let /clﬁjje be a set defined as follows:Iif is p-LKH™, this set is empty, and if

it is i-LKH, it contains all keys of the fornk’\"” for which s € pre,(i). (Note that this

definition is valid even if is not the user added to the group at titrje

For each instant > 0 during the execution of eithgr-LKH™ ori-LKH™, the following

is true:

For each € S NS¢, reachll, (K")= Y UIC UIC

pre,_;(4) pre,_(pre, (i)

For eachi € St \ 8O, reachl, (K" Y)=V

pre, (i) pre,_; (i)
e Foreach € S®\ 8¢V, reachl, ({K}) = ’CSre 0 ’Cgr)et(z’)

For each ¢ S® US* Y, reachy, ({K;}) = {K:}.

The proof of the above four assertions follows simply from inspectiop-bKH* and
i-LKH™.

43

Proof of Claim 5.1.2. Clearly, the claim is true fot = 0: S© = (¢ andK©) = § for

both protocols and sd}eachgg(o) (1) N K© = @ for all i. We argue that if the claim is
S

true for some — 1 > 0, then it is true fort as well; this suffices to prove the claim in

general.

Consider any simple sequen&®® = (S, ... S¢-1 S®) and anyi € [n]. Let

Reach, := Reachgg()(i). This set can alternatively be expressed as follows:
S t

(1))
= reachgm((Reachgg()(2) NKEDY U {K;))
S(t—1

Reach, = reachy (Reachgn

Sit-1)

Both these equalities follow from the fact thatpaLKH™ andi-LKH™, everyc-edge
created in the protocol key graph at timéssues from a key ilC~" U K® or else
a long-lived keyK;, and is always incident upon a key &® (or else, upon a key of
the form K in the case of-LKH*). Let Reach, denote the se(tReachgn . ()N
KDY U {K;}; sSOReach; = reachl,, (Reachs).

e Case 1{ c StV i ¢ S®): From the inductive hypothesis, we know that, in
this caseReach, = K"V .+ s0,Reach, = reachl, (Reachy) = KUY

pre;_; () pre,_; (i)

K8 o UKk, i) and soReachy N KO = K[

pre, (i) pre, ()"

e Case 2{ € StV i ¢ SM): In this caseReach, = IC(H)l(Z.) again, but this

pre;_

time Reach, = reachgm(Reachz) = K(t_l)l(i) (since uset gets deleted from

pre;_
St at timet); thus, Reach; N KO = KUY A K® = .

pre;_ ()

e Case 3(¢ SV i ¢ SY). From the inductive hypothesis, we know that
Reachsy = { K;}, which meansReach; = reachl,, (Reach,) = K

pre, (i)
(since uset gets added t&~ 1) at timet), and soReachy N KO = K

pre,(

U ICpre

e Case 4 (¢ SV i ¢ S): In this caseReach, = {K;} as in Case 3, but
reachy, (Reachy) = { K;} this time, and soReach; N K = {K;} N K® = 0.

The claim, thus, follows from the induction principld.

Next, we use Claim 5.1.2 to prove the following.

44

Claim 5.1.3 LetII € {p-LKH™,i-LKH"}. For allt > 0, for all ' > ¢, for every simple
sequencess), and for every € S\, Reachgn , (i) N KO =0
S

Proof of Claim 5.1.3. We prove the claim using induction ovér The claim is trivially

true fort’ = ¢ since we know from Claim 5.1.2 th&each—, (i) N K® = () for every

S @)
1€ s, Suppose that the claim is true for some arbitrary ¢. We prove that it is also

true fort’ + 1 as well.

Let S+1 be any simple sequence and consider any SY. Let Reachs =

Reachgn (i) \ Reachgn (i). Our goal is to show thaReachs N KO = 05 this,
s

s(t'+

combined Wlth the inductive hypothesis, would immediately imply Claim 5Réchs

can be expressed as follows:

Reachs = reach @+1 (Reachgn

@)

(7)) \ Reachgg()(z)
s
= reachswﬂ)(Reachg%(t,> () NKEYU{K}) \ K®

These equalities follow from the fact thatgaLKH™* andi-LKH™, everyc-edge created

in the protocol key graph at time + 1 issues from a key iriC") U K*'+) or else a

long-lived key K; and is always incident upon a key &f*+) (or else, upon a key of
the form&{" "V in the case oELKH™). Let Reach, = (Reachg%(t,) () NKE)U{K;}.

As before, four possibilities arise.

e Case 1{ e S i ¢ S¥+Y): From Claim 5.1.2, we know that, in this case,

Reachy = ICI(ML , Which mean$each8(,/+1)(7€each4) ICI(ML i)Ulcg;:;il(i) U
KD and soReachs = KUY U KETY | We know thati ¢ S® and
prey (1) pre,/ (i) prey (1)

so, K “ must contain keys that are generasddrtime ¢ (possibly when was

pre(i)
(t'+1)
bre;s 4 (i)

can have no overlap witkk”. Further, all keys i “)) are generated at time

prey

first added to the group after timer possibly even later on). As sudti

t' 4+ 1 and are trivially not contained ift®. Therefore,Reachg N K® must be

empty.

eCase 2 { € S, ¢ SU*+U) Again, Reachy = ICS;L,(Z.)
reachg(t, w1y (Reachy) =)

prey (i)’

and so,

implying thatReachs = (), which, in turn,

45

implies Reachs N K® = (.

e Case 3(¢ S i ¢ S¥+V): From Claim 5.1.2, we know that, in this case,
Reachs = {K;}, which meangeach, ., (Reach,) = KUYy £UHY

pre; (i) pre; (i)’
and soReach; equalsk!’ H; UKY) aswell. As in case 1, botk! “; and

pre(i pre;s (i) pre(i
~Sr:)+l(i) share no element witk (), thus implying thatReachs N K® = §.
e Case 4 (¢ S i ¢ S¥+Y): Asin case 3Reach, equals{ K;}, but this time,

reachy ., (Reachs) = {K;}, s0,Reachs = (), thus implyingReachs; N K" = §.

This concludes the proof of Claim 5.1.3.

Note that Claim 5.1.3 implies thatLKH™ andi-LKH™ are both strongly secure against
single-user attacks (that is, they satisfy Definition 3.2.3). Using Theorem 4.1.1 and
the fact that both protocols are S-GKD protocols, we conclude directly that they are

strongly collusion-resistant in the symbolic modEl.

5.2 Subset Cover Protocols

The subset cover method is used for performing group key distribution in var-
ious broadcast encryptioschemes, which in turn, find application in several contexts
like secure pay-per-view and copyright protection for digital media. The method was
proposed by Naoet al. [34], and has, since then, been deployed in multiple broadcast
encryption schemes [25, 24, 15, 26]. Subset cover protocols|Kik¢ protocols, are
based on symmetric-key techniques (in particular, they use symmetric-key encryption
and PRGs only), but unlike the latter, these schemes implement group key distribution
for statelessisers; that is, legitimate users in a subset cover protocol can recover group
keys using only theimitial state and the instantaneous transmissions of the center. This
property makes the protocols applicable in a larger contextltKah protocols (for ex-
ample, they are better suited for copyright protection mechanisms) but it also reduces
their efficiency: subset cover protocols have a greater communication complexity than

that of LKH protocols.

46

At an abstract level, every subset cover protocol has the following structure:
Suppose that the number of users in the protocal. i$\t the outset, the center forms
a collection of set€ = {51, S, ..., S, } such that for each € [w], S; is a subset of
[n]. A long-lived keyf(j is associated with each subsgt (These keys could be purely
random keys drawn frorR or else, related to each other via a pseudo-random generator
G.) Every usei is given a set of keyk; as initial state, such that for each subSeb i,
K; € Rec(K;).

To distribute a group key to a sé&t?), the center first picks a purely random
key K ¢ R (such thatX ® has not been used in the protocol before tithand then

computes a set of disjoint subséis, S;,, ..., S;, such that

This set of subsets constitutes a “subset coverSér. (The collectionC is such that
every setS® C [n] can be covered using it.) The center then distributes theikéyto

users inS® by outputting the ciphertexts

E; (K, Eg (KY),....E;

. . g (K(t))
This gives us the set of rekey message&,, for time ¢. Each user € S can
recoverK) by decrypting the cipherted ;. (K®) for whichi € S;, since for any

suchi/, K] € Rec(K;). (In a broadcast enéryption protocol based on such a protocol,
some group data is also transmitted along with the above set of ciphertexts, by suitably
encrypting such data undér®.)

Note that a subset cover protocol does not directly fit the model of group
key distribution defined in Chapter 3 since the initial state of every user is not a sin-
gle (unique) long-lived key but aetof keys, and the elements of each set could be
shared across users. However, any such protocol can be easily transformed into one that
fits our model by including an initial key distribution step in which the center distributes
all the long-lived keys; that is, i; denotes the individual long-lived key of usifthat

corresponding to the subsgt}), the center in the transformed protocol would transmit

47

the following ciphertexts at time= 0:
U{EK(K) | K € K\ {Ki}}
1€[n]
To prove that a subset cover protocol is correct and secure in the symbolic

model, it suffices to check that it satisfies the following two properties:

1. Foralli € [n], {K; | i € S;} C Rec(K;). This property guarantees correctness

of the protocol in the sense of Definition 3.1.1.

2. Foralli € [n], {K; | i ¢ S;} NRec(K;) = 0. This property guarantees security
of the protocol against single-user attacks, both in the sense of Definition 3.2.1
and of Definition 3.2.3. Furthermore, given Theorem 4.1.1 and the fact that subset
cover protocols don’t use nested encryption, this also implies their security against

collusion attacks, in the sense of definitions 3.2.2 and 3.2.4.

We now present two example subset cover protocols due todiabf34] and
verify the above two properties for both of them. Based on this analysis, in Chapter 8,

we prove security of the protocols in the computational model as well.

5.2.1 The Complete Subtree Protocol

In the complete subtreeCS) protocol [34], every user is associated with a
leaf in a complete binary tre®r of height[log,(n)|. We label nodes in this tree using
the letteru and denote the leaf corresponding to any user[n] by u(i). The subset
collectionC corresponds one-to-one with the set of all nodegrinthere exists a subset
S, € C for every nodeu € 7r and for anyi € [n], i € S, if and only if i is a leaf in
the subtreeof 7 rooted atu. The extreme subsets are the [sgt(corresponding to the
root of 7r) and the singleton sefd }, {2}, ..., {n} (corresponding to its leaves). The
subsetS, corresponding to an internal nodecontains exactly2"(™) elements where
h(u) denotes the height af in the tree.

The key distribution mechanism works as follow$:with each subsef, € C

a long-lived keyf(u € R is associated in a manner such that for any us,, f(ul -+

48

K,,; and (i) for anyi € [n], K; containsk, if and only if the subtree rooted at
containsu(i). In other words, for eache [n], K; = {K, | i € S,}. (In a sense, th€S
protocol is a stateless analogue of fgi@in-LKH protocol: the keys in the key hierarchy
of plain-LKH correspond to the subset keys@%, but with the difference that these
subset keys do not change with time.)

The correctness of tH@S protocol (property 1) is obvious. Furthermore, since
the long-lived keys are all distinct, there exists no sulsset? ¢ for which K, € K..

This implies property 2 above. We conclude that:

Theorem 5.2.1 TheCS protocol is strongly secure against collusion attacks in the sym-

bolic model.

In terms of efficiency, th€S protocol incurs a communication cost of at most
q - [logy,(n/q)] to transmit a group key to any set of sime— ¢. This is because the
smallest sub-collection af required to cover any s& of sizen — ¢ has size at least
q - [logy,(n/q)]. (The optimal subset cover is formed as follows: consider the spanning
tree7r’ of the nodes inu(i) | i« ¢ S} and the root of7r. Consider the set of nodes
u € 7Tr \ 7r' that “hang off” from this tree (that is, nodes for whichis not in 77/
but u’s parent node is). Includé, in the desired sub-collection. It can be shown,
using induction, that the sub-collection thus obtained has gizHog,(n/q)].) The
protocol requires every user to store at mgsg,(n)| keys, which is reasonable for

most applications.

5.2.2 The Subset Difference Protocol

The subset differencesD) protocol [34] uses a more involved procedure to
form the subset collectiofi. As in theCS protocol, it first associates every ugewith
aleafu(i) in a binary treeZr of height[log,(n)|. For any node: in 7, letS,, denote
the set of all indices such thatu(i) is a leaf in the subtree dfr rooted atu. For any
pair of nodegu, v) in 7r letS, , = S, \ Sy.

In the SD protocol, the seC contains all setsS, , for which u is a strict

49

ancestor ob in 7r, that is, for whichu lies on the path from to the root of7r and is
distinct fromuv. By definition, for any pair of such nodés, v), S, is a strict superset of
S,, S0S,,, is always non-empty. Besides sets of this form, theseis also included

in C. It can be shown [34] that to cover any set_ [n] of sizen — ¢, one needs to pick
at most2q — 1 subsets frond’; this feature makes the communication complexity of the

SD protocol better than that of ti@S protocol.

KEY GENERATION. Long-lived keys in théSD protocol are generated using
a pseudo-random generai@r. We describe here a slight variant of the process of key
generation given in [34]: in [34], a PRG with expansion factos used, while we
simulate the same using a PRG with expansion fattor

For anyby, by € {0,1}, let Gy, (-) denote the functiozy, (Gy,(+)). First,
the center generates a purely random Kgyor every node in the treeZr. Just like in
the CS protocol, these keys are all distinct. For any nedend any distinct ancestar
of v in 7r, the long-lived keyf(u,v corresponding to the subs8f , is derived fromR,,.
Towards this, every nodein 7r, (includingu itself) is labeled with an “intermediate”
key L, , as follows: letL,, = R,, and for any node in 7r,, label its left child
Goo(Lu,) and its right childGq, (L,,). For any node in 77, such thaw # u, K, , is
set to be equal t6(L,.,).

Note that every ke)f(u,v can be derived fronR, using at mosg[log,(n)]
PRG applications. The ke&[n] corresponding to the sat] is a purely random key that

is distinct fromR,, for everyu € 7r.

KEY ASSIGNMENT. Every uset is required to be able to recover a long-lived
key f(u,v if and only if i € S, which, in turn, is true if and only if: is an ancestor
of u(i) butv is not. There ar®(n) such keys for every but since some of them are
related to each other via the PRG, the/sgheed not contain a direct representation of
each of them.

The key assignment works as follows. For every usand every ancestor

50

of u(z) in 7r, IC; contains all “intermediate” keys,, , such thaw is not an ancestor of
u(?) in Tr, but the parent ob is. The keyfqn] is also included inC;. For every user

i, the size of the set’; thus obtained i£)([log,(n)]?). It is straightforward to check
that for everyi, Rec(K;) contains the long-lived key associated with every subset that
contains; and is part of.

Security of the key assignment scheme follows from two important observa-
tions. Pick anyi € [n]. Since the purely random keys, used to derive all long-lived
keys are distinct for distinct values of Rec(/XC;) does not contain any key of the form
K., for whichu is notan ancestor ofi(i). Second, recall that the inverses of the func-
tions G, and G, cannot be computed via the symbolic recovery functioiGiven this
fact, it is easy to show thaec(k;) does not contain any ke&u,v for which v andv
are both ancestors af 7). In effect,Rec(K;) contains no ke;f(uﬂ, for whichi ¢ S, ..

Property 2 for subset cover protocols is thus verified, and we conclude that

Theorem 5.2.2 TheSD protocol is strongly secure against collusion attacks in the sym-

bolic model.

In terms of communication complexity, tf&D protocol fairs better than the
CS protocol: for any target se&8® of sizen — ¢, the number of rekey messages trans-
mitted is at mos2q — 1, and when; < n (which is typically the scenario in broadcast
encryption), this is considerably smaller than the cost of rekeying inCaeproto-
col. However, the protocol requires every user to main@jflog,(n)]?) keys as its
state, which is greater than the amount of storage required i€&erotocol. The
Layered Subset Difference (LSD) protocol [25] improves this trade-off between com-
munication and storage costs for t88 protocol: it reduces the storage requirements

to O([log,(n)]%/?) keys per user while maintaining the cost of rekeyin@é).

Chapter 6

A Lower Bound

One advantage of using a symbolic model of computation is that it facilitates
the task of proving lower bounds on the efficiency of protocols. In this chapter, we use
the model to prove a lower bound on the communication complexity of GKD proto-
cols which shows that in any GKD protocol, the number of rekey messages required
to be transmitted per group update in order to maintain security against collusion at-
tacks, is at least logarithmic in the group size. The bound applies not only to protocols
that use pseudo-random generators and symmetric-key encryption (as modeled by gram-
mar (2.1)), but also to those that employ secret sharing schemes [42], and combine such
schemes with encryption and pseudo-random generation in an arbitrary fashion.

Our result establishes the optimality of th&H protocols presented in the
preceding chapter and in particular, it shows thatithproved-LKH™ protocol is the
most communication-efficient GKD protocol that one can design, while also satisfying
security against collusion attacks. In fact, our bound matches the communication effi-
ciency ofimproved-LKH™ exactly modulo a small additive sub-constant term. Thus,
even the use of techniques like nested encryption and secret sharing schemes (neither
of which is used inLKH protocols) cannot improve the communication complexity of

improved-LKH™ by any reasonable measure.

51

52

6.1 Previous Lower Bounds

Lower bounds for the communication complexity of GKD protocols have
been explored in several prior works. The first non-trivial communication lower bound
for the problem was proven by Canetti, Malkin and Nissim in [13]. This bound applies
to a restricted class of protocols, namely protocols where users have a bounded amount
of memory, and the key distribution mechanism has a special “structure-preserving”
property (as defined in [13]). A different, and seemingly tight, lower bound, for a more
general class of protocols without memory or structure restrictions was later proven by
Snoeyink, Suri and Varghese [43], who showed that in any GKD protocol (within a
certain class), the group center can be forced to transmit atdéast(n) rekey mes-
sages per group update (on the average) in order to maintain security of against collusion
attack$. A similar result was independently proven by Yang and Lam [48], although
the bound in [48] is slightly smaller, namely(n). Snoeyinket al. [43] also provide
a simple variant of thelain-LKH protocol [46, 45] that meets the established lower
bound.

It turns out that despite the close relationship between existing protocols and
the lower bounds proven in [48, 43], the class of protocols considered in these works
falls short of accommodating all known protocols. The protocol model used in [48, 43]
mandates that the group center transmit rekey messages only of th&fg(i,)—
the encryption of a random ke, under another random key,. However, this rules
out the possibility of using nested encryption and/or pseudo-random generators, two
important cryptographic techniques which are deployed in various GKD protocols in
the literature [19, 14, 10, 38, 34, 25, 21].

The inadequacy of the results of [48, 43] is clearly demonstrated by known
protocols that “beat” the lower bound proven in [43]. An important example is the
improved-LKH™ protocol: it has a communication complexity bfg,(n), which is

strictly smaller than the3log,(n) ~ 1.891og,(n) bound proven in [43] This obser-

11n [43], security of protocols is analyzed with respect to simple sequences only; that is, it is assumed that at each
instant, either a single non-member joins the group or else a single member leaves it.

53

vation highlights the limited applicability of the results of [48, 43], and leaves open the
possibility of designing protocols with communication efficiency better thgy(n) us-
ing cryptographic techniques not considered in either of those works. The question we

are interested in is the following:

Can we desigiisKD protocols that use nested encryption and/or pseudo-random
generators, are secure against collusion attacks, and have communication complexity

smaller thanlog,(n)?

6.2 Our Result

We answer the above question in the negative. We show that all collusion-
resistant GKD protocols that use symmetric-key encryption, pseudo-random generators,
and even secret sharing schenregenerating rekey messages must incur a communica-
tion cost of at leasbg,(n) per group update operation in the worst case. More precisely,
we exhibit an adversarial strategy for performing group update operations that forces the
center in any collusion-resistant GKD protocol to transmit at leastn) — 6 messages
per update on the average, wittbeing the size of the group anida quantity that tends
to 0 as the number of updates increases.

The adversarial strategy we use involveglacingan existing member of the
group with a non-member at every instant. In other words, we consider input sequences

of the following form:

Definition 6.2.1 A sequence of member-se&® = (SO, ...,8®) e (2t is called
areplace-onlysequence if for each € {1,...,t — 1}, S®*) = S® y {i} \ {j} for

somei ¢ S"” andj e 8.

Analyzing protocols against such sequences simplifies the task of proving the
lower bound since it ensures that the size of the group remains constant across time.
It is easy to see that thenproved-LKH™ protocol can be modified suitably so that it
incurs a communication cost flog, (n)| rekey messages (per update operation) against

replace-only sequences.

54

Before we present our result, we first describe how we extend the model of

group key distribution defined in Chapter 3 to incorporate secret sharing schemes.

6.2.1 An Extended Symbolic Model

SECRET SHARING Let n be any integer. Am-wise secret sharing func-
tion is a function that takes a messalfeas input and outputs expressions, denoted
Si(M),...,S.(M), which are referred to as thgharescorresponding tal/. With
any such function is associated access structur& which is a set of subsets @f];
that isT" C 2", The functionS is defined in such a way that given the set of shares
Sz(M) = {S;(M)},c7 foranyZ € I', the messagé/ can be easily recovered. A typ-
ical example of secret sharing schemeg&-mut-of-n secret sharing, where the access
structure is the set of all subsets{df ..., n} of size at leask, that is, a secret message
can be recovered if and only if at ledsof its shares are known.

The efficiency of secret sharing schemes makes them excellent tools to be
used in conjunction with symmetric-key encryption and pseudorandom generators. (For
example, H out of n” sharing, which is a special case df but of n” sharing, can be
implemented using only thEOR operation.) Secret sharing schemes have been used
in various security protocols of practical interest, and, in particular, they have been used

in the design of some broadcast encryption protocols [35].

THE MODIFIED GRAMMAR. Let S be anyn-wise secret sharing function
with arbitrary access structufe C 2. We extend the grammar of protocol messages
defined in Chapter 2 as follows:

M — K |Eg(M)[Sy(M) |- [S\(M)
' 6.1)
K — R|[Go(K) | Gi(K)

For example, expressions of the foBN(S,(R,)) andEg, (Eg,(r,) (S2(R5)))

can be derived from the variabled above. Every expression derivable fravhis re-

ferred to as a protocol message. Note that our grammar allows shares to be created by

55

applying the sharing function iteratively on both keys and ciphertexts. Shares can be
encrypted under multiple keys but cannot themselves be used to encrypt other messages
or to generate pseudorandom keys. Although we restrict shares from being used in this
manner, we remark that our lower bound also applies to protocols that do use shares
for encryption and pseudorandom generation. We focus on the above class of protocols
mainly for simplicity of exposition.

The semantics of the sharing function is defined by suitably modifying the
definition of the entailment relatidn. RecallRule 0, Rule 1 andRule 2 used to define
in Section 2.4 of Chapter 2. Besides these three rules, we also include the following

rule:
37 e T. [WGI. (Mi—SKM))] - MFM (Rule 3)

For any message-saétl, Rec(M) now denotes the set of all messages that
are recoverable fromM usingRule 0, Rule 1, Rule 2 as well aRRule 3. A messagé/
is said to be recoverable from in ¢ steps(for somei > 0) if M can be derived from

M using: applications oRule 1, Rule 2 orRule 3.

6.2.2 The Result

We consider GKD protocols in which every rekey message transmitted by the
center is an expression derived from grammar (6.1). For the rest of this chapter, every
usage of the term “GKD protocol” refers to a protocol of this kind. For anySsete

use|S| to denote the size &. The following is the main result of the chapter.

Theorem 6.2.2 For anyn-user GKD protocoll that is secure against collusion attacks
(satisfies Definition 3.2.2), and for amy¢ such that: + ¢ < n, there exists a replace-
only sequences ® = (S, 8@ ..., S®) ¢ (2 such thatSM| = n, and

(M| = (t—1) - [logy(n)]

From the theorem, it follows that the amortized communication cost that any

collusion-resistant GKD protocol incurs is at leést') - [log,(n)] = (1—1)-[log,(n)]

56

in the worst case. This quantity equdleg,(n)] — o(1) for ¢ > log,(n), and so

the asymptotic communication complexity of the protocol is bounded from below by
[log,(n)]. Note that the theorem applies to protocols that are collusion-resistant in the
sense of Definition 3.2.2, which is weaker than Definition 3.2.4. However, since we are
proving a lower bound, the same result also holds for protocols that are secure in the
stronger sense (those that satisfy Definition 3.2.4) as well. Some important remarks are

in order:

e It is imperative to consider the amortized communication complexity of GKD
protocols when proving a lower bound since in any protocol, the rekeying cost in-
curred for a single membership update can be distributed across multiple instants,
while still maintaining security and correctness. Particularly, rekey messages re-
quired to be sent in response to tlik update command could instead be sent
before timet, thus lowering the rekeying cost for timearbitrarily. Previous

lower bounds [48, 43] in the literature are also amortized lower bdunds

e Our lower bound, like that of [48, 43], isworst-casdower bound for GKD pro-
tocols, proven with respect to an adversarially-chosen sequence of membership
update operations. Worst-case analysis of these protocols (and of cryptographic
protocols, in general) is essential from the perspective of security since we would
like all protocols to be designed so that they remain secure in any possible execu-
tion environment. Analyzing protocols in the worst case is the standard approach

to proving their security in the cryptography literature.

We present the proof of Theorem 6.2.2 in two steps. In the first step, we show
that a similar result holds for S-GKD protocols (those that use single encryption and
pseudo-random generation only and do not deploy secret sharing schemes). This step

highlights the key idea underlying the proof of Theorem 6.2.2 and gives intuition about

%In [44], a lower bound ofog,(n) is proven on the rekeying cost for a specific class of GKD protocols (called
key graph protocol# [44]), but without amortizing over sequences of update operations. However, the result of [44]
is incomparable to ours: although it proves a non-amortized lower bound, it does so for a very restricted type of
protocols. In particular, the protocol class considered in [44] is much smaller than that considered in all previous
works on lower bounds on GKD protocols [13, 48, 43].

57

how thelog,(n) bound is reached. In the second step, we extend the result from the first

step to protocols that also use nested encryption and secret sharing.

6.3 A First Step Towards the Proof

Consider the class of S-GKD protocols, that is, protocols in which every rekey
message transmitted by the center is derived using grammar (4.1). For this class of

protocols, we can prove essentially the same result as Theorem 6.2.2.

Theorem 6.3.1 For anyn-user S-GKD protocoll that is secure against single-user

attacks (satisfies Definition 3.2.1), and for any such that, + ¢ < n, there exists a
_>

replace-only sequencg) = (81 . S@ .. 8®) ¢ (2 such thatS™| = n, and

(M| = (t—1) - [logy(n)]

Since security against single-user attacks is equivalent to collusion-resistance
for S-GKD protocols (Theorem 4.1.1), the above bound applies to S-GKD protocols
that are collusion-resistant as well.

Before we prove Theorem 6.3.1, we develop some terminology that is used
in the proofs of both Theorem 6.2.2 and Theorem 6.3.1. [L&te anyn-user GKD
protocol that satisfies Definition 3.2.2 (security against collusion attacksféﬁcany
sequence given as input b The keys used in the protocol when executed on input
S can be partitioned into two classes—those that are recoverable by non-members at

timet and those that are not.

Definition 6.3.2 Akey K is uselesat timet if it can be recovered from the keys of non-

members at that time, that is, &f € Rec({K:}, s U M%(t)). It is usefulotherwise.

In the special case of S-GKD protocols, usefulness of akeyan alterna-
tively be defined by requiring thdt not be contained ilRec({ K;} J M%m) for every
i € . Note that for alk, and all sequences ¥, the group keyk and the long-lived
keys of members{ K;},.s«, must be inu%m for otherwise the collusion-resistance

property of the protocol would be violated.

58

Usefulness is defined for rekey messages as well, based on the plaintext key
they encapsulate. Formally, we say that a mesddgencapsulates key K if M is
obtained by applying a (possibly empty) sequence of encryption and sharing operations
to K; in other words,M equalse; (ex(--- ¢, (K)---)) for somel > 0, where eacle;
is either equal tdx (for some keyK) or S; (for some;j € {1,---,n}). For exam-
ple, the message’;, Eg, (R;) andEg, (S;(R3)) all encapsulatgz; and the message
Ec,(r)(S1(Er,(Go(Rs3)))) encapsulate6s,(Rs).

Definition 6.3.3 A messageV/ is useful(resp. useleskat timet if M encapsulates a

key that is useful (resp. useless) at that time.

For example, if a keyK is recoverable by the non-members at timéhen
any rekey message of the forBy. (K) sent up to that time would be useless. Note
that a message could be useless even when it is not decipherable by the non-members.
For example, ifK is recoverable by the non-members at timbut K’ is not, then the
messagd k(K) is useless, even if it cannot be decrypted by the non-members.

Usefulness is a dynamic concept: keys and messages that are useful at one
instant may be useless at another instant. Every time a member is removed from the
group (or replaced with a non-member), all useful keys known to that member (including
the group key) turn useless, and, as a result, all messages encapsulating these keys that
were transmitted in the past also become useless.

The intuition underlying the proofs of Theorems 6.2.2 and 6.3.1 is the
following: We develop a strategy for replacing members in such a way that after the
execution of every replace operation, “sufficiently” many—in particular, logarithmi-
cally many—rekey messages become useless. The messages that become useless at
any instantt could have been sent ahy other instant’ < t¢ (and not necessarily at
time ¢t — 1); all that is relevant for the proof is that there are logarithmically many
such messages for evety In order to cope with so many messages turning useless,
the protocol must, on the average, transmit logarithmically many rekey messages at

every instant, thus implying that the amortized communication cost it incurs must be

59

logarithmic, too.

Proof of Theorem 6.3.1. The proof exploits the notion of key graphs de-
fined for S-GKD protocols in Chapter 3. For any k&y and any key graply, let
Indegreeg(K) denote the in-degree ok in G and c-Indegreeg(K) the number of
c-edges incident upon it in the graph. The following proposition formalizes an im-

portant property of key graphs:

Proposition 6.3.4 For any key graphG and any keyK in it, c-Indegreeg(K) >
Indegreeg(K) — 1.

Proof: The semantics of our symbolic security model dictates that every key used in the
protocol be obtainable from a unique seed, and using a unique sequence of zero or more
PRG computations. In the context of key graphs, this has the implication that every key
in a key graphg must have at most orgedge incident upon it. (Purely random keys

have nag-edge incident upon them while pseudorandom ones havegesige per key.)

The proposition follows from thisl

LetII be anyn-user S-GKD protocol that is secure against single-user attacks
and letn, t be integers such that+ ¢ < n. For any sequencg(t), consider the key
graphg%(t) corresponding to the execution Ofon inputg(t). We know that for any
useri € S®, the group keyk® is recoverable from{ K;} U M%(t), and also that
K® is not recoverable fromM%(t) alone (for otherwisél would be insecure). Using

Lemma 4.2.1 then, we conclude that for everg S® K s reachable fronds; in

g
S®"
A 1) (t) ATl (t)
For anyi € S, let P} be a path |rQ§>(t> that goes fromk; to K'". Let
Q%(t) be a sub-graph @ | formed by taking the union aP") for eachi € S®. That

is, an edge is irﬁ%m if and only if it is contained inP" for somei € S®. While

taking the union of these paths, priority is giverctedges: if there exists @-edge from
K to K'in Pz.(t) (for somei € S®), and ag-edge between the same two keys Hy‘t)

(for some;j € S®\ {i}), thenG contains &-cdge from K to K'. We refer tog™t |

60

as themember key grapfor time ¢.

Claim 6.3.5 For anyt, and any sequencs) — (SW ..., 80) ¢ (2), every key in

the grapiﬁ%(t) is useful at time.

Proof: For every keyK in the graphé% the group keyk ® is reachable fronk,

)’

and so,K® € Rec({K} U M%m). Suppose there exists a kéin C}%m such that
K is useless at time ThenK € Rec({K;}, g0 U M%m), which implies thati @,
which is contained iRec({ K'} UM%m), is also inRec({ K}, < UM%(t)). But this
would mean thaf{ ® is useless at timg and this, we know, is not possible. The claim

follows. 1

Claim 6.3.6 For anyt, any sequence () — (SW ..., 8M) ¢ (2, and anyi € S,
Indegreeg%(t) (K;) = 0.

Proof: Fix t and S ® and pick anyi, j € S® such that # j. We claim that the keys;

does not lie on the patﬁ’i(t). Suppose this is not the case; that is, suppose there exists
i,j € 8U (i # j) such thatk; lies on the pati?”. Then,K; € Rec({K;} U ME)
foranyt > t. Let S**) = S® \ {i} and consider the execution &f on input
S+ — (SW, ..., 8® St+D), From the correctness of the protocol, we know that
the group key created for time+ 1, K(+Y, is contained inRRec({K;} U ML

5(t+1))’
which, in turn, implies thak’ “*" € Rec({K;} UM). But this means thdl is

)
insecure against single-user attacks, a contradiction!
Thus, there exists no distingtj € S for which K; lies on the patkPi(t), which means

that for each € S, [ndegreeg~2< : (K;) =0.1
S (t

The figure shows an example member key graph for three membeéysi;
and their corresponding pat#’, 2"’ andP". In the figure c-edges have been shown
with solid lines andy-edges with dashed lines. The patﬁéf) andPi(;) share a common

edgeK’ — KO,

61

Figure 6.1: A member key graph.

For the proof of Theorem 6.3.1, we need to count the numbefedges inci-
dent upon keys on a paﬂj(t) for some member at timet. To do this, we introduce the

concept of thes-edge weightof a path.

Definition 6.3.7 Lett > 0, S® = (SM,...,8®) € (2} andi € S®. Thec-edge
weightof the pathP”), denotect- Weight(P."), is defined as:
c- Weight(Pi(t)) = Z c-Indegreegn (K)

t
Kep" s

We are now ready to give the replace-only sequence required to prove Theo-
rem 6.3.1. Define a sequen&® = (SO, ...,S®) as follows. LetS® be any arbi-
trary subset ofn] of sizen. For eacht’ € {2,...,t}, letS®) =S¥V U {5} \ {jv}
for anyiy, j» € [n] such that

t'—1

i ¢ US(t”)

t1=1

Jjy = arg manesa’—l){C' Wez'ght(Pj(tll))}

In words, at every instarit, we replace an existing membgr € S®~1 for which the
path Pj(f,/‘l) hasmaximumc-edge weight (relative to all path#" " for j & S¢'~1)
with a non-membei, such that, wasnevera member before timé.

We claim that for any such sequen&®, the number of rekey messages
output byIT when givenS © as input is(t — 1) - [log,(n)]. Consider the execution of

ITon inputf(”. For each instant > 1 during the execution, consider the set of keys

62

K;, that lie on the patljjjjl_l) wherejy is the member that is removed at tifieThere

are two important facts about this set:
o All'keys ink;, are useful attime¢’ — 1: This follows from Claim 6.3.5.

o All keys inK’;, are useless at tim¢: This is because every kef < K;, is
reachable from¥; in the key graph at tim¢' — 1, that is, K € Rec({K;} U
M%(t’—l)) g Rec({Kj} U M%’
II

ReC({Ki}ieg(t/) U Mg

). Sincejy € S| this implies thatk ¢

('

(t,>) as well.

This means that all rekey messages that encapsulate ké&ys are useful at
timet’ — 1 but useless at tim&. Since each rekey message is represented uniquely as a
c-edge, the number of such rekey messages is at least equal dde: weight of the
path]%(tf'_l). Furthermore, sincg, is not included inS®") for any¢” > ¢/, each such
rekey message remains useless up to time

The number of rekey messages outputlbtill time ¢ is at least equal to the
number of useful rekey messages output till that time. The latter is, in turn, at least
equal to the number of useful rekey messages “that become useless” at any instant from

1 throught. It follows that

ML | > Zt: c- Weight(P\ V) (6.2)
t'=2
Next, we argue that- Wez’ght(Pj(j/’l)) is at least[log,(n)] for eacht ¢
{2,...,t}. To make the argument, we introduce a concept similar to thatealfge
weight, but one that is applicable to arbitrary graphs (not necessarily key graphs). From
Proposition 6.3.4, we know that for any key graphnd any keyx', c-Indegreeg(K) >
Indegreeg(K) — 1. This means that the-edge weight of any path in a key graph is at
least equal to the number of edges that are incident upon keys lying on the path but that

are not included in the path. We refer to this number asrttoegreeof the path.

Definition 6.3.8 Let G be a directed graph and Iét be a path ing that starts from a

nodes. Thein-degreeof P in G, denotedindegrees(P), is the number of edges i

63

that start from a node not i and are incident upon one that isih That is,

Indegreeg(P) = Indegreeg(s) + Z (Indegreeg(v) — 1)
vEP;v#s

Recall that in any member key graph, the in-degree of any long-lived key in
the graph is always zero (Claim 6.3.6). As a result, for ény {2,...,t}, thec-edge
weight of the pathDj(jl_l) (wherej, is the label of the member removed from the group
at timet’) is no less than the in-degreijfj/’l) in G%“_U. To bound the-edge weight
of Q(tf/_l) from below, it suffices to bound its in-degree instead.

Lemma 6.3.9 Let G be an arbitrary directed graph over a set of notfeand let
{v1,--+ ,v,,v} be any subset op such that for eachh € {1,--- ,n}, there exists a
path P, from v; to v and there exists ng (j #) such that, occurs inP;. Then, there

exists an € {1,--- ,n} such thatindegrees(P;) > [logy(n)]

Using the lemma and the fact that long-lived keys always have in-degree zero
in member key graphs, we obtain that for evérg {2, ... ¢}, the in-degree of the path
PV in the graphg’}

e ,, Is at least{log,(n)]. Therefore, the-edge weight of each

(t'—
sucth’l) is at leastlog,(n)], and invoking equation (6.2), we conclude that the size
of M, isatleas(t — 1) - [logy(n)].

To complete the proof of Theorem 6.3.1, it suffices to prove Lemma 6.3.9.

6.3.1 Proof of Lemma 6.3.9

The proof of this lemma involves an inductive argument. We perform induc-
tion overn, and show that for alt, all subsetqvy,--- , v,,v} of V and all sets of paths
{P,---, P,} satisfying the conditions in the lemma, there exists an {1,--- ,n}
such thatindegrees(P;) > [log,(n)]. We treat paths as sequences of nodes and for any
two pathsP and@, P -) denotes the path (that is, the sequence of nodes) formed by
concatenating® and(@.

Forn = 1, the lemma is trivially true. The path from to v, P, is the only

path under consideration and it has in-degree equiabg(1)] = 0.

64

Figure 6.2: lllustration for the proof of Lemma 6.3.9.

We hypothesize that for some > 2, the statement of the lemma is true for
all values ofn less tham:. That is, for alln < @, all sets of nodegv,, - ,v,} CV
and all sets of path§P,, - - - , P,} such that for ali < n (a) P, is a path fromv; to v
and (b)v; does not lie onP; for any j # i, we can find an € {1,--- ,n} such that
Indegreeg(P,) > [log,(n)].

Consider any subset of, {v,---,vs,v}, such that there exist paths
{P,,---, Py}, each pathP; going fromu; to v and now; lying on P; for j # . Without
loss of generality, we assume that all these paths are loop-free. (The existence of a path
with loops implies the existence of one without loops between the same two nodes.) Let
P be the largest common suffix @, .-, P;; thatis, P is the longest path such that
for eachP;, there exists a patf); for which P, = Q; - P. Let© be the first node irP.
Since we assumed the'’s to be loop-free, there is exactly one pathfor eachP,; such
that P, = Q; - P. We partition the se{Q:, --- ,Q5} based on the last node on these
paths; that is, for each s€}; in this partition, the last node on each of thes in Q;,
is the same, say;. Letd be the size of this partition, which, given the maximality of
the suffix P, must be at least. Corresponding to the partition of th@;’s, the nodes
vy, -+, U5 Can also be partitioned intdsets. LetVy, --- ,V,; be these sets. The figure

shows an example witth = 4.

65

Since the total number of nodes ¥, - - - , V,; put together is, there must
exist somej € {1,--- ,d} such thal); has size at least:]. LetG be the graph formed
by taking the union of thé),’s corresponding to suchld,. The set of path$c~2i}vievj
has the property that (a) each is a path fromy; to v; and (b) nov; lies on a path
Qj for j # i. From the inductive hypothesis, then, there must exist an inGexX .«
(Vinae € V;) SUCh thatfndegree;(Q;,...) is at leastlog, ([27)].

Now, the in-degree of patR, _ is at least equal to the sum of the in-degree of

but not onQ;....) This

max

Qino. aNd(Indegreeg(v) — 1). (This is because lies on P,

max

sum can be bounded from below as:

Indegreeg(P;) + Indegreeg(v) — 1 > ﬂogﬂf%}ﬂ +d—1

> [logy(5)]+d 1

= [log,(n) — log,(d)] +d —1
> [log,(72)] — logy(d) +d — 1
> [logy(11)]

The last inequality holds because for all integées 1, d — 1 > log,(d). 1

6.4 Completing the Proof

For the proof of Theorem 6.2.2, we first suitably extend the notion of key
graphs so that it is applicable to arbitrary GKD protocols.

LetIT be anyn-user GKD protocol that is secure against collusion attacks and
let n,t be integers such that + ¢ < n. For any sequencg(t) given as input tdl,

we define the key grapﬁ% corresponding to the execution Of with that input as

(t)
follows. The nodes irg%(t> are the keys in the protocol that are useful at timéor
any two useful keys(, K’ such thatX’ = G,(K’) for someb € {0, 1}, we introduce
a g-edge from K’ to K just as before. For every useful messddec M%m that

using the following

encapsulates a kelf, we introduceat mostone c-edge in gg(t)

rule:

66

e If there is a sub-expression éf of the formE . (M) such thatK’ is useful, a

c-edge corresponding tal/ is introduced ing% In particular, we locate the

)"
sub-expression al/ of the formE k. (M') such that (a)<’ is useful, and (b}\/’

does not contain a sub-expressiBin(M") for which K is also useful, and
introduce thec-edge K’ — K in the graph. Intuitively, such &’ corresponds to

the inner-most useful encryption key i.
e Otherwise, we introduce n@edge corresponding td/ in the graph.

For example, a rekey message of the fdim (Ex,(Rs)), would get mapped
to Ry — Rs if Ry and Rs; were useful, and ta?;, — Rs if R; and R; were
useful butR; was not. Similarly, if R, R, and R; were all useful, then the mes-
sageEg, (S1(Eg,(Rs))) andEg, (Eg,(S2(R3))) would both be mapped to theedge
Ry — Rs.

Note that according to this convention, a rekey message in which there are no
encryption keys or one in which all encryption keys are useless (for the given instant)
is not represented in the key graph; for example, messages of theSfdi) and
S1(Eg, (Ry)) for some useless keft; do not have ang-edge associated with them.
Such a representation of messages may appear too parsimonious at first glance (for
example, protocol messages comprising a key share are not depi@%giat all, even

if the corresponding key is useful at timebut it suffices for proving the lower bound.

Lemma 6.4.1 For everyt > 0, for every sequencg(t) c (27 given as input tdl,
and for any two keyd(, K’ generated during the executionldfsuch that both keys are
useful at timet, if K’ € Rec({K} UML), then there exists a path frofi to K’ in

S
G- ., such that for every ke on this pathK” € Rec({K} UM%).

S S

Given this lemma, the proof of Theorem 6.2.2 is essentially the same as that of
Theorem 6.3.1. Just as in the proof of that theorem, we define, for evarsub-graph
é%(t) of g%(t)
to the group key at timeé (One path per member is selected.) This sub-graph is referred

formed by taking the unions of all paths from the member long-lived keys

to as the member key graph for time Claims 6.3.5 and 6.3.6 and Proposition 6.3.4

67

can now be proven for such member key graphs as well. It can next be shown that the
replace-only sequence defined for the proof of Theorem 6.3.1 also applies to prove the

log,(n) lower bound for the communication complexity Iaf

6.4.1 Proof of Lemma6.4.1

Lett > 0, and letS ® be any sequence given as inputlfo Let K and K’
be any two keys that are useful at tirhand are such thak™ is recoverable from the
setM, = {K} U M%@). Let ¢ be the smallest number of steps in whikh can be
recovered fromM,. For example, iK' € M, theng = 0; if K’ ¢ M, but there exists
akeyK"” suchthaf K", Ex/(K')} C My, theng = 1; and so on.

We prove the lemma using induction ower We show that for all; and for
every useful keyx’ recoverable from\, in ¢ steps, there exists a path frakhto K’ in
g%(t) such that every key on this path is recoverable fibtyg. The statement is true for
g = 0 since in this casé&’ must be equal td< (for if K’ was in/\/l%w, then it would
be useless) and there is a trivial path fréfto itself.

Suppose that the statement is true for all valueg sialler than a positive
integer@. That is, for allg < @, every useful key recoverable from(, in ¢ steps has
a path leading to itself fronk in Q%(t) and all keys along the path are Rec(M,).

Consider any useful ke¥(’ recoverable from\, in) steps. Two possibilities arise:

e There exists a key” such thatK’ = G,(K") for someb € {0,1} and K" is
recoverable fromM, in Q — 1 steps.For K’ to be useful at time, the same must
be true forK”. From the inductive hypothesis, it follows that there exists a path
from K to K" in G2

the desired path frork’ to K.

and joining this path with thg-edge K” — K’ gives us

e There exist a set of rekey messagds C M% each message encapsulating

®)’
K', such that the set’, of encryption keys imll these messages is recoverable
from M, in less than() steps andkX’ is recoverable fronkC, U M. In this case,

we first observe that at least one of the key¥iinmust be useful: if all ofiC,

68

15 U M%@), then K,
which is in Rec(K. U M’) C Rec(K. U M%m) would also be contained in

ReC({Ki}iegw U M%m)

was useless, that is, k. was contained iRec({ X;}

. This would meank” is useless, which, we know, is

not true.

Thus, there must exist at least one message M’ that encapsulateE” and
contains a useful encryption key” € K., with K being the inner-most useful
encryption key inM. For such ak”, there must exist a-edge from K" to K’
H 11
ing=,-
steps. Again, from our hypothesis, it follows that there exists a path #ota

Furthermore, we know that” is recoverable from\, in less than®)

K"”in g%m and we join this path with the-edge K" — K’ to get a path fronkK
to K'.

Note that in the second case abo¥&,can be recoverable froom’ and KC.
using multiple decryption and share reconstruction operations. All these operations are

abstracted into a single edg&’ — K’ in the key graphl

6.5 On Beating thelog,(n) Barrier

In this chapter, we have shown that designing GKD protocols secure against
collusion attacks while achieving communication complexity lower than logarithmic in
the number of group members is impossible. This impossibility result holds not only
for protocols that use symmetric-key encryption and pseudo-random generators but also
those that employ secret sharing schemes in generating the center’s rekey messages.
Thus, to achieve sub-logarithmic communication efficiency in GKD protocols one must
either weaken the security requirements from protocols in some way or else, consider
usage of primitives that are not incorporated in our model. We discuss each of these

possibilities below.

e Weaker Security Requirements: If security against single-user attacks is the
only security objective, then GKD protocols with sub-logarithmic communica-

tion efficiency can indeed be constructed. In particular, it is possible to design

69

protocols [14, 21] that are secure against single-user attacks (but not collusion-
resistant) and that incur onlya@nstanttommunication overhead for every group

membership update. Such protocols must rely on the usage of nested encryption
in generating rekey messages (as is the case with the protocols of [14, 21]) since,
as we showed in Theorem 6.3.1, by using single encryption and PRGs alone, one

cannot beat thivg, (n) bound even for the weaker definition.

We remark that some protocols in the literature [47] achieve communication com-
plexity better tharlog,(n) by performing group key updates in “batches”, that

is, by executing a single key update for multiple consecutive changes in group
membership. Such an approach also compromises security of the protocol since
it does not guarantee foolproof privacy of group keys in the interval separating
any two key updates. Furthermore, even the efficiency benefit that one derives
from batched rekeying is not significant; for example, in the protocol of [47], a
key update for batches of size up {0 incurs an average cost bfg,(n)/2 per

update, which is within a factar of the lower bound we prove.

e New Primitives: Itis possible that by using cryptographic primitives not incorpo-
rated in our model, one can design protocols that are more efficient than those that
are known to exist. One such primitive that comes to mind gseudo-random
function (PRF)22]—a function that behave like a random function and can pro-
duce exponentially-many pseudo-random keys from the same seed key. Our belief
is that the use of PRFs is unlikely to lead to GKD protocols with communication
complexity better thanog,(n), though it would be nice to substantiate such a

claim with formal arguments

Some protocols in the literature [8] use bilinear maps to achieve constant com-
munication complexity but they do so at the expense of requiring all parties (the

center as well as all the protocol users) to store a public key that is line(the

3We note that some known protocols do make use of PRFs (for example, [38]), but not in a substantial way,
meaning that whatever they do can be easily achieved using PRGs instead. In effect, these protocols fit our model of
group key distribution.

70

total number of protocol users). Furthermore, the computation cost incurred by
users in such protocols in order to decrypt the group key is significantly more than

that incurred in typical protocols based on symmetric-key techniques.

It thus appears that in order to beat thg,(n) barrier in the communication
complexity of GKD protocols, one must make significant compromises on other aspects
of protocol design like security and/or computational and storage requirements of users;

surpassing the barrier without such compromises seems highly improbable.

6.6 Acknowledgement

Chapter 6, in part, is a reprint of the material to be published in IEEE/ACM
Transactions on Networking, October 2008, Micciancio, Daniele; Panjwani, Saurabh.
The dissertation author is the primary investigator and author of this paper. The pre-
sentation of the proof of Theorem 6.2.2 is different and more modular in the current

work.

Part |l

The Computational Model

71

72

The main drawback of the symbolic model is that it provides a very coarse
abstraction for representing cryptographic primitives and for arguing about security of
protocols in general. Treating cryptographic primitives symbolically makes security
analysis convenient, but it does not necessarily guarantee security against all practical
threats to protocols. Real adversaries can potentially extract more information from
protocol messages than is computable using only the symbolic rules of information re-
covery.

To understand this issue better, let us consider again an example we used in

Chapter 2 (Section 2.4). Le¥! be a set of symbolic messages defined as follows:

M = {R27 EGl(RQ) (EGO(Rl) (R3))> Erg, (Gl(R1>>7 EGO(Gl(Rl))<R4)}

It is easy to check that the key; and G((R;) cannot be recovered frooM using

the entailment relation we defined in Section 2.4. However, it is unclear whether these
keys would remain completely secret if a protocol were to distribute such messages on a
public channel. Could not an adversarial observer learn partial information &paut
Go(R;) from M? For one, any adversary can easily distinguish the (g&irGy(R;))

from a pair of purely random and independent valuég—and G((R;) are related to

each other via the ciphertelig,(z,)(Rs) and since the latter is recoverable from,

this leaks sufficient information about the two keys for an attacker to be able to distin-
guish them from two purely random values. Thitg andG(R,) cannot be guaranteed

to be secret in an absolute sense.

Besides this, there is another potential problem. Even if the fundfios
implemented in a secure manner (such that secrecy of any message encryptdd under
is guaranteed in a strong sense), some non-trivial information about th& ey,)
could be leaked by the cipherteRi;, (z,)(Rs): secrecy of the message being encrypted
(in this case,R3) does not imply secrecy of the key used to encrypt it (in this case,
Go(Ry))* This could, in turn, leak partial information about the ségdised to derive

Go(R;), which could potentially reveal information about other keys as well.

“Indeed, standard definitions of security for encryption, like the one we use in this thesis (Definitiond02.1),
notrequire encryption keys to remain completely secret after encryption; it is possible that partial information about
keys be leaked by the encryption operation.

73

The main point here is that the notion of recoverability developed in the sym-
bolic model is insufficient for arguing about secrecy properties of protocols, and it is
unclear whether a protocol proven secure using symbolic arguments alone can be guar-
anteed to be secure in a real implementation of the same. The computational model
addresses this limitation of the symbolic model. It provides a rigorous framework for
representing cryptographic primitives and protocols, for modeling realistic attacks on
protocols and, in particular, for formulating the notion of secrecy in a precise manner.

In the current part of the thesis, we describe the computational model in depth
and develop notions of security for group key distribution within this model. Naturally,
using a more rigorous model makes analysis of protocols harder, and security proofs
more complex. Instead of analyzing every protocol in the new model “from scratch”,
we develop general techniques that enable us to relate security analyses conducted in
the symbolic model with those in the computational model. Specifically, we devise suf-
ficient conditions on encryption protocols such that for any protocol satisfying these
conditions, a proof of security of the protocol in the symbolic model also implies se-
curity against powerful computational adversaries. These conditions restrict protocols
only at asyntacticlevel, and most protocols of practical interest either already satisfy
them or can be easily modified (that is, without any loss in efficiency) to do so. Such an
approach gives us the best of both worlds—the simplicity of doing security proofs in the

symbolic model, as well as the thoroughness and mathematical rigor of computational

cryptography.

Chapter 7

Security Definitions

We begin our exposition on the computational model by giving definitions of
security for the tasks of pseudo-random generation, encryption and group key distribu-
tion within the model.

In the computational model, every piece of data generated and used by a pro-
tocol is treated as a bitstring, that is, an element of the{@et}*. Keys of protocol
users and messages generated and exchanged between them are all viewed as bitstrings.
For any bitstrings € {0, 1}*, we usds| to denote the length &f. For any two bitstrings
s1, 89, 81 || 82 denotes the string formed by concatenatngndss;.

By anadversary we refer to any arbitrary randomized algorithm designed to
attack a cryptographic primitive or protocol. We use the concrete-security framework [5]
to formalize the notions of attacks; that is, we use concrete parameters to bound the run-
ning time of adversaries as well as their probability of being able to execute successful
attacks. The letter is used to denote time complexity of adversaries whdenotes the
success probability of the attacks they execute. As suishalways a variable that takes
positive integral values andone that takes values in the rari@el|. The probability of
any eventt is denotedP[E].

An important ingredient of the computational model is a security parameter
71, an integer that determines the length of all keys used in any protocol, which, in turn,

determines the amount of security provided by cryptographic primitives RUst an

74

75

algorithm that samples a key uniformly at random from the sgéicé}” and outputs
it. We user(RR) to denote the running time &. By & — R, we denote the process of

generating a key via an independent invocation Bf

7.1 Pseudo-random Generators

In computational terminology, a pseudo-random generator (PRG) is a deter-
ministic algorithmG that takes a bitstring € {0,1}"” as input and outputs another
bitstring, denoteds(k), such thaiG(k)| = n + ~ for somey > 0. The parametey
is referred to as thsetretchof G. For any PRGG, we denote the running time & by
7(G).

Besides increasing the length of its input, a PRG must also guarantee that
the resulting output is “pseudo-random” in the sense that no efficient algorithm can
distinguish it from a purely random string of the same length. For any BR@th
stretchy, let X§ be the random variable corresponding to the outp® efhen given,
as input, a bitstring: obtained by runnindR and letX? be that corresponding to the
uniform distribution ovef 0, 1}7+7. For any adversank and any € {0, 1}, letA(X?)
denote the random variable corresponding to the outpétwiien given a sample from

XF as input. Theadvantageof A againstG is defined as

G
APRG

(A) = |P[A(XY) = 1] = P[A(XY) = 1]

with the probabilities being taken over the random coins usedl &yd the randomness

involved in generating(y and X .

Definition 7.1.1 (Security of pseudo-random generationA pseudo-random gener-
ator G is called (7, ¢)-secure if for every adversarnk running in time at mostr,

AS (A) <e.

PRG

As in the symbolic model, we are interested in PRGs that take a single key as
input and output a string that can be parsed as two keys. This essentially corresponds to

doubling the length of the input, that is, setting= n. Any PRG satisfying this property

76

is referred to as &ngth-doubling pseudo-random generatdior any keyk given as
input to such a PRG, we denote B (k) and G, (k) the left and right halves of the
bitstringG(k); so,|Go (k)| = |G (k)| andG(k) = Go(k) || G1 (k).

7.2 Encryption Schemes

A symmetric-key encryption scheme is a pair of algorititns- (E, D), re-
ferred to as the encryption and decryption algorithms respectively, which have the fol-

lowing properties:

e [E is a randomized algorithm that takes, as input, a plaintext {0, 1}*, and
a keyk € {0,1}" and outputs a ciphertext € {0,1}*. The random variable
corresponding to the output &fwhen givermm andk as input is denotell;, (m).

The running time oft is denoted-(E).

e D, on input a ciphertext € {0,1}* and a keyk € {0,1}", returns a value in
{0, 1}*. D must be deterministic and for amy, ¢ € {0,1}*, and anyk € {0, 1}",
the output ofD on inputc and% must equaln if and only if ¢ lies in the support

of Ex(m). (The output must be undefined otherwise.)

In this thesis, we use the notion of semantic security against chosen plaintext
attacks for encryption schemes, which was first defined by Goldwasser and Micali [23]
for public-keyencryption, and later adapted to the symmetric-key setting by Bedtare
al. [4]. Informally, an encryption scheme is semantically secure against chosen plaintext
attacks, or simplycPA-secure if no efficient adversary can distinguish between the
encryptions of two equal-length plaintexts with noticeable probability, provided the en-
cryptions are created using a randomly chosen key unknown¢®A-security is a nat-
ural (and reasonably strong) notion of security for encryption schemes and is currently
regarded as the “standard” notion of encryption security in the cryptography literature.
It implies various useful properties that one might expect from encryption schemes, for

example, the property of one-wayness (no efficient adversary can invert a ciphertext to

77

the corresponding plaintext), and of partial plaintext recovery (no efficient adversary can
recover from a ciphertext even a single bit of the corresponding plaintext).

For any encryption schenie = (E, D), and anyb € {0, 1}, let Of denote
an oracle procedure that first generates akby runningR and subsequently, accepts
queries of the forn{mg, m;) € {0,1}* x {0,1}* such thaimy,| = |m,|. Upon receiv-
ing such a query, the procedure responds to it with a ciphertext sampled according to
Ex(mp). (For queries that are not of the said form, the procedure does nothing.) For
any adversary, let A% denote the random variable corresponding to the outpiét of
when given black-box access®. Thecra-advantage oA againstP is defined as the

following quantity:

P
AENC

(A) = [P[AD = 1] — P[AY" = 1]

that is, AL .(A) is the difference between the probabilities tAatutputsl when given
black-box access t®f versus the same when it receives acces®'tanstead. Both
probabilities are taken over the random coins used bayd byO; (which includes the

randomness used to generate the secret:kesed for encryption).

Definition 7.2.1 (Security of encryption) A symmetric-key encryption schenie =
(E,D) is called(r, ¢)-secure against chosen plaintext attacks if for every adversary

running in time at most, AL (A) <e.

ENC

Pseudo-random generators and symmetric-key encryption schemes are both
typically constructed using cryptographic objects cab&mtk ciphers The work of Bel-
lare et al. [4] provides various block-cipher based constructions of encryption schemes
and proves them to b, ¢)-secure under suitable assumptions with respect to the secu-

rity of the underlying block cipher.

7.3 Mapping Symbolic Messages to Bitstrings

Every message generated by a protocol in the symbolic model can be mapped

to a bitstring in a natural manner by implementing the func@bwith a length-doubling

78

PRG and the functiolt with a symmetric-key encryption algorithm. Formally, Rt

(E, D) be a symmetric-key encryption scheme &hd length-doubling pseudo-random
generator. LetV/ be any message derived from grammar (2.1) andR — {0,1}"

a map such that(R;) is defined for everyR; occurring in. The evaluation ofM
with respect toy, E and G is the random variable corresponding to the output of the

following recursive procedure:

procedure evaluate™C (M 1))

If M € R, returny)(M).

If M = G(K) for some symboK and somé < {0, 1}, do the following:
Let k «— evaluate™® (K, 1)).
ReturnGy (k).

If M = Eg(M')for some symbolg(and!’, do the following:
Let k «— evaluate™® (K, 1).
Let m’ — evaluate™® (M’ 1)).

Return a sample fro, (m’).

We use[M]]ﬁ’(c’ to denote the evaluation @f with respect ta), E andG.

7.4 Group Key Distribution

As in the symbolic model, we consider group key distribution protocols built
generically from a length-doubling pseudo-random gener@tand a symmetric-key
encryption schem@® = (E, D). For anyn-user GKD protocolll = (S,C) in the
symbolic model, the computational interpretatioiis defined as a pair of algorithms

176 = (SB€ CPC) that work as follows:

o SPC first runsS to obtain the initial state of progra®, Z(®, and the symbolic
long-lived keys of all the userg, ..., K. Itthen initializes a key map and for
each purely random key symb#} occurring inZ® U {K,, ..., K,}, it samples

a bitstringr; independently and uniformly at random frof, 1}” and sets)(R;)

79

to ber;. Finally, it outputs two things: (a) the initial stagg® of C*¢ which is
equal tof (K, [K],;©) | K € Z©}; and (b) the long-lived keysi, .. ., &, of all

users, where for eache [n], k; = [K];°.

e C"C, when given a se§® C [n] and its current statd“~", runsC with input
SWandzZ®V .= {K | 3k : (K, k) € 3V} for which the latter outputs a set of
symbolic messageﬁsflgm and the updated state 6f Z(*). For eachR; occurring

in M1, UZ® such that)(R;) is undefined(™ ¢ setsi/(R;) to be an independent,

uniformly random sample frorfi0, 1} and then outputs the evaluationS/bfg(t)

andZ"); that is, it outputs two se®t, and3(") defined as follows:

Moy = {(M, M%) | M € MGy}
30 = {(K,[K],") | K € 20}

We formalize security ofI™® using an indistinguishability-based definition,
akin to the definitions of security for encryption and pseudo-random generation. For
anyt > 0, let k¥ denote the bitstring group key distributed by the protocol at time
that is, k() = [[K(t)]]ﬁ’c’ where) is the key map at time. Intuitively, the protocol is
secure (in the computational model) if for any possible execution, and for any instant
during the execution, the key*) appears indistinguishable from random, when viewed
by the non-members at that instant. Furthermore, this condition should hold even when
changes in membership are made in an adversarial manner and when non-members are
corrupted adversarially.

To formalize this notion, we define, for eathe {0, 1}, an oracle procedure

I,P,G
OGKD,b

II.P,G
GKD,b

that emulate$I™® as follows. First,O runsSFC to obtain the initial state
of the protocol—the valu@® and the long-lived key$;, . .., k,. It then accepts and

responds to three types of queries:

e Execution queriesThese queries specify membership changes made during the
execution oflI and include an argumest denoting the current set of members.

Upon receiving any query of the forexecute(S), O™EE first checks if this is

GKD,b

80

the first query of its kind. If so, it initializes a variabteand sets it to be equal
to 1; otherwise, it simply increments After doing this, it invoke<C™® on input
S® .= S and3Y, stores the updated stgd€’ of C*:¢ and returns the set of

rekey messageBly,, to the querying algorithm.

e Corruption queries: These queries model corruption of users in the protocol.

IL,P,G
GKD,b

When given a query of the formorrupt(i) for somei € [n]|, O returns

the long-lived keyk;.

e Challenge queriesThese queries test the distinguishability of group keys from
purely random values. When given a quetyallenge(t’) such thatt’ €
{1,...,t}, Oy replies with k@) if b = 0, and with a keyr®) obtained by

runningR if b = 1. (If the same querghallenge(t’) is received multiple times,

and ifb = 1, the reply isr®) each time.)

Consider any adversa#dy that is given black-box access to such a procedure
and is allowed to make queries to it in an arbitrary, adaptive manner; that is, the choice of
any query it makes can depend on the replies it receives for queries made in the past. We
would like to be able to show th@t cannot guess the bitwith probability noticeably

better than half, that i$\’s output when given access @Eﬁi’% is similarly distributed

PG
“KD,1 *

as its output when given acces
Clearly, we cannot make such an assertion for every possible adversAry: if
makes an execution quesyecute(S) attimet = 1 such thatS contains a corrupt user,
and later issues the quetyiallenge(1), it can trivially compute the value @t Thus,
it makes sense to consider only those adversarieslthadtissue challenge queries for
instants when corrupt users are part of the group.
For any adversanj interacting withOg;, let ¢(A) denote the number of

corruption queries made by andS<"(A) the set of values for which A makes the

querycorrupt(i). Let 7<"?/(A) be the set of instantg for which A issues the query

81

challenge(t'). LetS"?/(A) be the set defined as
SchaI(A) — U S(t’)
t’ETChal(A)

Note thatc(A), S (A), 7<!(A) and S<"2!/(A) are all random variables de-

IL,P.G
GKD,b "

pending on the coins used Byand by the procedur@

Definition 7.4.1 An adversanA is calledlegitimateif for any b € {0, 1}, in any execu-

tion of A involving interaction withO!"5% georr(A) 0 Sehal(A) = (),

GKD,b !

We distinguish between two types of legitimate adversaries, depending upon

the manner in which the adversary issues its corruption queries.

Definition 7.4.2 A legitimate adversar is callednon-adaptivef for any b € {0, 1},
in any execution oA involving interaction with®™*¢ every corruption query of is

GKD,b !

madebeforean execution quenA is calledadaptiveotherwise.

Non-adaptive adversaries correspond to a scenario in which the set of corrupt
users in the protocol is decided at the outset, that is, before the execution of the protocol
begins. Security analysis of protocols against such adversaries is relatively easier and is
addressed first in the forthcoming chapters. Note that we allow non-adaptive adversaries
to issue execution queries and challenge queries in an interleaving and adaptive manner,
as long as these queries are made after making all corruption queries. Furthermore,
the corruption queries themselves can be such that the choice ahthger to corrupt
depends on the keys of the fiist 1 corrupt users.

The GKD-advantage of any legitimate adversaryg defined as the following
quantity:

AT (A) = |P[A%500 = 1] — P[AC) = 1]

GKD

As usual, both probabilities are taken over the random choices madeasywell as

IIL,P,G
GKD,b *

those made by

Definition 7.4.3 (Security of group key distribution) Let P be a symmetric-

key encryption scheme an@ a length-doubling pseudo-random generator. Let

82

adv-type € {adaptivenon-adaptivé. An n-user GKD protocolll*:® is called
(1,t,¢)-adv-type ly secure against single-user attacksthe computational model,
if for everyadv-type adversanA that runs in time at most, makes at mostexecu-
tion queries and for whick(A) is always at most, A " (A) < e. The protocol is called
(1,t,¢)-adv-type ly secure against collusion attacksthe computational model if for
everyadv-type adversanA that runs in time at mostand makes at mostexecution

queriesAT " (A) < e.

This definition corresponds with the notions of “strong” security against
single-user and collusion attacks (definitions 3.2.3 and 3.2.4) used in the symbolic
model, and as in the symbolic model, security against collusion attacks implies secu-
rity against single-user attacks here as well. We do not consider computational counter-
parts of the weaker notions (definitions 3.2.1 and 3.2.2) since our interest is in analyzing
protocols (and proving them secure) in the strong sense only.

Our security definition for GKD protocols in the computational model is sim-
ilar to the definition of security for broadcast encryption protocols typically found in the
literature [34], but for three differences. First, we consider the security of a key distribu-
tion protocol, rather than of an encryption protocol built using it (which is the situation
considered in broadcast encryption protocols). This is not a substantial difference as the
two protocol classes are equivalent in the sense that a protocol from one can be easily
converted into a protocol from the other. Second, we allow the adversary to issue mul-
tiple challenge queries of its choice; this models the requirement that group keys for
different instants be “jointly” pseudo-random (in particular, that they be independent of
each other). In contrast, definitions of broadcast encryption used in the literature con-
sider adversaries that are challenged only for a single instant in the protocol. In this
respect, our definition is seemingly strongerhird, our definition captures the notion

of cpA-security, which is weaker than the notion@tA-security (security against cho-

LFor the case of broadcast encryption, this restriction does not matter, that is, allowing the adversary the power
to issue multiple challenge queries does not make the definition any stronger. For group key distribution, however, it
does make a difference: there exist protocols that are secure against adversaries that make single challenge queries
but insecure against those that are allowed to make multiple such queries.

83

sen ciphertext attacks [40]) used in [34]; that is, we do not consider adversaries that can,
besides issuing execution queries, ask for decryptions of arbitrary rekey messages of
their choice. Extending the results of this thesis to incorparate-security is possible
provided we define the encryption schelih& be secure in thecA sense as well. We
focus oncpA-based definitions in order to keep the exposition simpler and the results

easier to comprehend.

Chapter 8

Computational Security against

Non-Adaptive Adversaries

In the symbolic world, all security definitions are formulated using the notion
of recoverability, and in order to prove secrecy of a key, one argues that the key is not
recoverable, in its entirety, by the malicious users in the protocol. On the other hand,
secrecy properties in the computational model are expressed in terms of distinguishabil-
ity: to prove secrecy of a key, one shows that it is hard to distinguishitbing value
of that key from a purely random (and independently chosen) value.

Before we begin to analyze GKD protocols in the computational model, we
ask ourselves a more general questioon do the notions of recoverability and distin-
guishability relate to each otherilore precisely, when can we say that unrecoverability
of a key also implies indistinguishability of the same from a random value? Or, under
what conditions is symbolic analysis of protocols “computationally sound” in the sense
that a protocol that is proven symbolically secure (using the notion of key recoverabil-
ity) is guaranteed to be computationally secure (in terms of key indistinguishability) as
well? Recall that in the computational model, adversaries can be arbitrary randomized
algorithms and can potentially control the execution of protocols, modify their execu-
tion flow in an adaptive manner, and, worst still, corrupt protocol users adaptively. Can

we hope to prove soundness of symbolic analysis with respect to such entities?

84

85

At an abstract level, we are faced with the following problem. Consider an
adversaryA that creates an arbitrary sequence of symbolic messagesls, . .., M,
(generated according to grammar (2.1)), and receives, in return, the evaluations of each
of these messages with respect to some key mépat is kept secret from it. These
symbolic messages can be either ciphertexts (for example, rekey messages in a GKD
protocol) or simply keys (for example, keys of corrupt protocol users), and can be gen-
erated in an adaptive manner by the adversaryA_be any symbolic key that isotre-
coverable from the sdtM,, Ms, ..., M,}; thatis,K ¢ Rec({M,, M, ..., M,}). Then,
can we assert that cannot distinguish between the evaluationfofand a uniformly
random bitstring? Can we find reasonable restrictions on the choice of the messages
M, ..., M, such that the assertion holds foryadversary satisfying those restrictions?

In the current and the succeeding chapter, we consider the above problem and
present two different positive solutions to it. Our first solution, presented in the cur-
rent chapter, involves imposing certain restrictions onditker in which the messages
M, ..., M, are issued by the adversary. These restrictions are fairly mild and enable
us to relate symbolic and computational definitions of security for a large variety of
GKD protocols. However, under these restrictions, symbolic security can be proven to
imply computational security, only as long as the latter is considered with respect to non-
adaptive adversaries (that is, adversaries who corrupt protocol users in a non-adaptive
manner). In the next chapter, we take a different approach to address the problem,
and show how computational security against adaptive adversaries is also possible to

achieve.

8.1 A Computational Game

LetP = (E,D) be any symmetric-key encryption scheme &hd length-
doubling pseudo-random generator. For anybbit {0,1}, we define an oracle pro-
cedure®™:€ that first initializes a key map and subsequently, accepts two types of

ADPT,b

queries:evaluationqueries anahallengequeries. Every evaluation quesyal(M) in-

86

P,G
procedure O, ;.. ,

Initialize a key map) to be empty.

Upon receiving a query of the forewval(M), do the following:
For every fresh key; occurring in,
If ¢(R;) is undefined, sep(R;) — R.
Reply with [A]5°.

Upon receiving a query of the forehallenge(K), do the following:
If ¢)(root(K)) is undefined, sep(root(K)) < R.
If b =0, reply with [K;°.
Else, reply with an independent, random sample f{or }".

Figure 8.1: Procedur@”® . used in our computational game.

ADPT,b

cludes a symbolic messagé (derived from grammar (2.1)) as an argument, éﬁ’gﬁw
responds to the query with the bitstring evaluatiomof [[M]]ﬁ"c’. (If, for some fresh
key R; occurring inM, ¢ (R;) is undefined, the procedure first defines it appropriately.)
Every challenge query is of the forahallenge(K)—K being a symbolic key—and,
depending upon the value bfthe procedure responds with either the evaluatioi of
or a random, independent bitstring key. Figure Figure 8.1 shows the details of how the
responses are created.

Consider any adversady that is given black-box access @Jffl;w for some

bit b (that is kept secret fromA). A can make both evaluation and challenge queries to

one , Of its choice, and can do so in an adaptive manner; that is, at any instant, it can

ADPT,

P.G
ADPT,b

decide its next query t® based on the replies it received for the previously-made
gueries. Its objective is to guess the value obrrectly.

Let M(A) be the set of all symbolic messag®ssuch thatA makes a query
eval(M) and/C(A) the set of allK such that it makes a quethallenge(K). Note

that both M (A) and KC(A) are random variables depending on the coins used by

P,.G
ADPT,b"

well as byO

87

Definition 8.1.1 An adversanA is calledvalid relative to®":¢ _, if in any execution of

ADPT,b

A involving interaction with©®™'%_ the following is true for everys e K(A):

ADPT,b?

o ForeveryK’ € Rec(M(A)), K’ ¢ Rec(K);
e ForeveryEx/ (M) € Rec(M(A)), K' ¢ Rec(K); and
e ForeveryK’' € L(A)\ {K}, K’ ¢ Rec(K).

The three conditions that characterize validity are necessary if our goal is to
prove pseudo-randomness of all keysGfA) (more precisely, of the evaluations of all
symbols infC(A)). This is because for any key, a keyK’ € Rec(K) (or a ciphertext
Ex (M) for which K’ € Rec(K)) leaks sufficient information about” for it to be
distinguishable from a purely random value. Suck’ashould not be revealed to the
adversary for anys € K(A).

We would like to be able to show that for every valid adversaryhe keys
in IC(A) are indeed pseudo-random; in other words, no valid adversary can distinguish
between the behavior of the proced@%ﬁ’,w whenb = 0 from its behavior wheh = 1
with noticeable probability. However, proving this in general, assuming only the stan-
dard notions of security of encryption and pseudo-random generation (definitions 7.2.1
and 7.1.1), is rather difficult and, in fact, it is not even possible without restriéting
gueries in some way. We next define a set of syntactic restrictioAssajueries which

enable us to prove such a claim.

8.2 Syntactic Restrictions

Before we define our syntactic restrictions, we need some notations. For any
symbolic messagé/ derived from grammar (2.1), letsgkey(M) denote the key that
occurs as a plaintext in/ and letenckeys(M) denote the set of keys used to perform
encryption in)M. For example, ifM = Go(G1(Ry)), msgkey(M) = Go(G1(Ry))
and enckeys(M) = 0, and if M = Eg, (g, (Bgo(r)(Rs)), msgkey(M) = Rs and
enckeys(M) = {G1(R2), Go(R1)}. Let keys(M) denote the union ofnckeys(M) and

88

{msgkey(M)}. For any set of symbolic messagés, let enckeys(M), msgkeys(M)
andkeys(M) denote the sets formed by taking the unioreofkeys(M), msgkeys(M)

andkeys(M) (respectively) over all messagés € M.

Definition 8.2.1 A set of symbolic messagée¥! is calledsafeif,
(a) foreveryK € enckeys(M) and for everyK' € keys(M)\ {K}, K' ¢ Rec(K).
(b) for everyM € M, and for everyK € enckeys(M), K ¢ Rec(msgkey(M)).

Both these conditions correspond to commonly accepted norms in computa-
tional cryptography. For example, it is known that using a key as input to more than one
cryptographic primitive could completely compromiseaten for some secure imple-
mentations of the primitivesCondition (a) above prohibits this from happening in our
setting: it says that no ke}f can be used both as an encryption key and as a seed to the
pseudo-random generator. In a similar vein, encrypting a key with itself or with a key
related to it is considered bad cryptographic practice; condition (b) disallows such usage
of keys. Note that we exclude the possibilitggkey (M) ¢ Rec(K) in this condition
since this is already prohibited by condition (a).

Besides the safety conditions, we impose one more restriction on the queries
of valid adversaries. This restriction in on the order in which queries are made by the

adversary and it enables computational proof techniques to work in our setting.

Definition 8.2.2 A sequence of messagés/, ..., M,) is calledwell-orderedif for
everyi,j € {1,...,q} such that < j, there exists nd{ € enckeys(M;) for which
K € Rec(msgkey(M;)).

For example,(Eg, (R,), Eg,(R3)) and (Eg, (R2), Eg,(r,)(R3)) are well-
ordered sequences but neitli@yg, (Rs3), Eg, (R2)) nor (Eg, (R2), Eg,(R1)) is so. En-
cryption protocols usually distribute keys while satisfying the well-ordered constraint:
keys are typically distributed before they are used for encrypting other keys (and, some-
times, simultaneously as such encryption is performed). All protocols we consider in

this thesis are of this nature. At the same time, Definition 8.2.2 is overly restrictive in

89

that it disallows the evaluation of a key to be revealed after a ciphertext of the form

Ex (M) has been evaluated. As such, by imposing such a restriction, we are able to
analyze security of protocols only against adversaries that corrupt protocol users non-
adaptively. Proving computational security of protocols against adaptive corruptions

requires very different techniques, and forms the topic of discussion of the next chapter.

G
DPT,b’

For any adversanA given black-box access to the procedyp let

M(A) denote the sequence of messagédor which A issues the quergval(M);
each message is included.M (A) in the order of its occurrence as an argument of an

evaluation query. LikeM(A), M(A) is also a random variable depending upon the

coins ofA and©""®

ADPT,b"

Definition 8.2.3 An adversanA is calledcompliantif in any execution involving inter-

action with©™¢

ADPT,b?
e M(A)UK(A) is safe; and

e M(A) is well-ordered.

8.3 The Soundness Theorem

For any adversarg, let A% denote the random variable corresponding to
the output ofA when given black-box access ¢ ,. The adaptive advantage Af

ADPT,b"

againstP? andG is defined as the following quantity:

ARG (A) _ P[AOTL’)G};T,O _ 1] — P[Aofﬁnl — 1]

ADPT

P,.G
ADPT,b"

As usual, both probabilities are taken over the coins usedl &y well as byO
Letn,q,d € IN. We refer toA as an(n, ¢, d)-adversary if in every execution,

the number of purely random symbolic keys used®queries (that is, the size of the

set{R; | K € keys(M(A))UK(A)s.t.root(K) = R;}) is at mostr, the size ofM (A)

is at mosty, and every pseudo-random keydnckeys(M(A)) UK (A) has depth at most

d.

90

Definition 8.3.1 LetP = (E, D) be a symmetric-key encryption scheme &hd length-
doubling pseudo-random generatdf. and G are called(r,n, ¢, d, €)-secure against
partial adaptive attack# for every valid and compliantn, ¢, d)-adversanA that runs

in time at mostr, AL% (A) <.

By “partial” adaptive attacks, we refer to the fact that we consider security
only against adversaries that satisfy the well-ordered constraint in the above definition;
in particular, adversaries that can corrupt keys adaptively are not considered. The fol-

lowing is the main result of this chapter:

Theorem 8.3.2 Let G be a length-doubling pseudo-random generatorfard(E, D) a
symmetric-key encryption scheme @fis (71, €;)-secure andP is (7, e2)-secure against
chosen plaintext attacks, then they are together, ¢, d, €)-secure against partial adap-

tive attacks for any parametersn, g, d, e satisfying

7 = min{r,n} —n-(7(R) + QdT(G> +q7(E)) —0(1)

e = 2n2%. (5de; + 2¢,)

Notice that the reduction factor in the above theorem (the quantity that relates
€ 10 ¢; andey) is linear in the number of purely random keys involvedbut exponential
in the maximum deptld of all pseudo-random keys. Since in most security protocols
(and particularly, in the ones we consider in this thesis), the depth of pseudo-random
keys generated during any protocol execution is logarithmic in the number of protocol
users, application of the theorem to such protocols still gives a polynomial reduction
factor in the security analysis. The question of whether one can prove a result analogous
to Theorem 8.3.2 with a reduction factor that is sub-exponential in the depth of pseudo-

random keys is left open by this thesis.

8.4 Application to GKD protocols

Before we give the proof of Theorem 8.3.2, we illustrate how it is useful in the

context of analyzing GKD protocols against non-adaptive adversaries.

91

For any GKD protocoll, and for any set of rekey messag’eﬁgm output by
it, anorderingof Mg(t) is any sequence that contains all and only the elemem‘&@f).
We say that a sequence of rekey message{set§,,,, MY, ..., My,) output by the
protocol is well-ordered if for every < [t], there exists an ordering?lg(t,) of Mg(t,)

such that the concatenation of the sequeneg$, , MY, ..., MY, is well-ordered

(satisfies Definition 8.2.2).

Definition 8.4.1 An n-user GKD protocoll is calledcompliantif for all £ > 0, for all

sequencess) = (SM), ..., S®W) € (2, the following is true:

(a) Foreveryt’ € [t], the group keyx) is used neither as an encryption key nor as

an input toG in any message in%m U{Ki,..., K}

(b) M%w U{Ki,..., Ky} issafe and My, ..., My,) is well-ordered.

Letf,g,d : IN — IN. We say that a protocdl for n users is ar(ﬁ,q,d)-
GKD protocol if for allt > 0, for all sequencesS ® ¢ (2i)t, the number of purely
random keys in/\/l%(t> is at mostn(t), the size of/\/l%m is at most;(¢), and the depth

of any key in this set (or iIf K, . .., Ky }) is at mostd(¢).

Theorem 8.4.2Let G be a length-doubling pseudo-random generator thét;is)-
secure and® = (E,D) a symmetric-key encryption scheme that(is, ¢2) secure
(against chosen plaintext attacks). Lebe a compliantn, g, d)-G KD protocol forn
users. IflTis strongly secure against single-user (resp. collusion) attacks in the symbolic
model, thenlI®€ is (7, t, €)-non-adaptively secure against single-user (resp. collusion)

attacks in the computational model, for any ande satisfying:
r = min{r, %} — () - (7(R) +2"97(G) + 4()7(E)) — n - (7(R) + 2'7(G)) — O(1)

e = 20a(t)290 . (5d(t)e; + 2€5)

Proof: We prove the theorem only for the case of security against collusion attacks; the

proof for the other case is very similar and is, thus, omitted.

92

ADVERSARY A’

Run the setup prograof IT and store its output® U {K,, ..., K,}.

Initialize a countet; < 0.

WhenA issues a corruption quegprrupt(i),

Sendeval(K;) to Of;f;nb. Let k; be the response.
Returnk; to A.

WhenA issues an execution quesyecute(S),
tl — tl + 1.

Run the key distribution progra of IT on inputS®) := S and 21—,

Order its outputMY,, | into a well-ordered sequenderll, .

For each); € MY, in order, sendgval(M;) to O, letm; be
the response.

Return the sedty,) = {(M;, m;) | M; € MY, } tOA.

Store the updated state 6f Z(*).

WhenA issues a challenge quetytallenge(t'),
Sendchallenge(K) to O, . Letky be the response.
Sendky to A.

Output whateveA outputs.

Figure 8.2: The adversary constructed for the proof of Theorem 8.4.2.

A

Let IT be any compliantn, ¢, d)-GKD protocol forn users,G a length-doubling
(11, €1)-secure PRG anél a (7, €2)-secure symmetric-key encryption scheme. Suppose
thatlI is secure against collusion attacks in the symbolic moddilBi{tdoes not satisfy

the definition of(r, ¢, €)-security in the computational model for some set of parameters
7,t ande defined in the theorem. That is, there exists some non-adaptive advarsary
that runs in timer, makes at most execution queries, but for which!L " (A) > «.

We claim that any such adversafycan be used to construct a valid and compliant
(A(t), (t),d(t))-adversaryA’ in the computational game defined in Section 8.1 such
thatA’ runs in timer + n - (7(R) + 270 7(G)) + O(1), and still A%S. (A’) > e. This

falsifies Theorem 8.3.2, thus implying that Theorem 8.4.2 must be correct.

At a high level, the adversar’ works as follows: It emulates the execution of the

protocolll, invokesA in a black-box manner and for each query thahakes, it executes

93

IT in accordance with the query. HowevArgxpects to receive bitstrings in reply, and

P.G
ADPT,b

so,A’ uses its oracle® to evaluate all the symbolic messages and keys generated
by IT before providing them as replies £6s queries. In the end, it outputs whatever

outputs. The detailed constructionAfis given in figure Figure 8.2.

SinceA is non-adaptive (and thus issues all its corruption queries before issuing queries
of other types), and since the rekey messages outplitdatisfy the well-ordered prop-

erty, the message-sequeryée(A’) is well-ordered. Furthermore, since the rekey mes-
sages output byl in any execution are safe, this implies that the s¢tA) U K(A) is

also safe. Thug)' is a compliant adversary.

The validity of A’ follows from the fact that group keys i are never used as encryption
keys or as inputs t€ and the fact thall is secure in the symbolic model. Thatis a

(n(t), q(t), d(t))-adversary follows from the fact thétis a(n, ¢, d)-GKD protocol and

thatA issues at mogtexecution queries.

Lastly, it is easy to check that' runs in timer + n - (7(R) + 2¢(G)) + O(1) and
that A%% (A’) is the same as\Il""(A), which is greater tham. A contradiction to

GKD

Theorem 8.3.2 has been reachgd.

8.4.1 Analysis of Protocols

Next, we use Theorem 8.4.2 to analyze the protocols we presented in the first
part of the thesis. Consider first thé&H protocols. Recall that the protocgisain-
LKHT andimproved-LKH™ are strongly secure against collusion attacks in the sym-
bolic model (Theorem 5.1.1). Using this fact, and Theorem 8.4.2, we can directly estab-
lish collusion-resistance of these protocols in the computational model. For simplicity,
we consider collusion-resistance of the protocols against adversaries whose execution
queries form simple sequences: for every 0, thetth execution quergxecute(S®),
issued by the adversary is such that eit§€t = S~ U {i} for somei ¢ St~V or
S® = StV \ {i} for somei € S, (SO is assumed to be the empty set.) In

the theorems below, the term “security against collusion attacks” refers to security with

94

respect to such adversaries only.

Theorem 8.4.3Letn > 2andd € {2,3,...,n}. Thed-ary instance of thplain-LKH™*
protocol, when implemented far users using &y, ¢;)-secure encryption schenffe=
(E,D), is (1., t, €,)-non-adaptively secure against collusion attacks in the computational

model for anyr,, ¢, ¢, satisfying:

7 = 71— (t([logg(n)] = 1) +n) - (7(R) + di[logy(n)]7(E)) — n7(R) — O(1)

e, = 4(t([logg(n)] —1)+n)- ¢

Theorem 8.4.4Letn > 2 andd € {2,3,...,n}. Thed-ary instance of thenproved-
LKH™ protocol, when implemented far users using &r, ¢;)-secure pseudo-random
generatorG and a(m,€;)-secure encryption schenie = (E,D), is (1, ¢, ¢)-non-
adaptively secure against collusion attacks in the computational model far,any

satisfying:

7 = min{n,n} — (t+n) - (7(R) + 2M8M™Ir(G) + t(d — 1)[log,(n)]7(E))
—n - (7(R) + 2°&™r(G)) — O(1)

¢ = 2ltMoga(n)] (t+mn) - (5[log,(n)]e + 2¢€)

Both these theorems follow immediately from Theorem 8.4.2, given the fact
that plain-LKH' and improved-LKH™ are collusion-resistant in the symbolic model
(Theorem 5.1.1), and that both protocols are compliant in the sense of Definition 8.4.1.
The latter follows from the facts that group keysplain-LKH™ andimproved-LKH™"
are used neither for encryption nor for pseudo-random generation, that both protocols
are safe, and that rekey messages generated by both protocols in any execution satisfy
the well-ordered property. The choice of the parametgrs,, 7; ande; is based on
the following observation: for any-time execution oplain-LKH™ (resp. improved-

LKHT), the number of purely random keys generated by the protocol is at imost
([log,(n)] — 1) +n (resp.n +t), the number of ciphertexts output as rekey messages is

atmosttd- [log,(n)] (resp.t(d—1)-[log,(n)]), and the maximum depth of any pseudo-

95

random key is0 (resp. [log,(n)]). Notice that for both the protocols, the security
reduction factors we obtain are polynomialdirandz.

Security statements of the above nature cannot be madddor-LKH and
improved-LKH [46, 45, 10] since neither of these protocols satisfy the compliance prop-
erty required by Theorem 8.4.2. Indeed, since group keys are used to encrypt other keys
in both these protocols, their pseudo-randomness (in the sense of Definition 7.4.3) is not
even possible to prove. In principle, using group keys for rekeying operations (as done
in plain-LKH andimproved-LKH) as well as for performing other cryptographic appli-
cations (like group message encryption or group message authentication) could lead to
complete compromise of these keyxgen by a passive eavesdropper on the channel

Now consider the subset cover protocols. Recall that botlfCBerotocol
and theSD protocol are strongly secure against collusion attacks in the symbolic model
(Theorems 5.2.1 and 5.2.2). By observing that both these protocols are compliant, and

by invoking Theorem 8.4.2 again, we conclude the following.

Theorem 8.4.5 TheCS protocol, when implemented fer users using &ry, €,)-Secure
encryption schem® = (E,D), is (1, t, ¢.)-non-adaptively secure against collusion
attacks in the computational model, for anyt, . satisfying:
7. = 11— (t+2n)- (7(R) + nt[logy(n)]7(E)) — nT(R) — O(1)
e = 4(t+2n) ¢
Theorem 8.4.6 The SD protocol, when implemented fer users using &y, €;)-secure
pseudo-random generat@r and a(7, €;)-secure encryption schenfe = (E, D), is
(75, t, €s)-non-adaptively secure against collusion attacks in the computational model,
for anyry, t, € satisfying:
7. = min{r,n} — (t+2n) - (7(R) + 4n’7(G) + tn7(E))
— n- (7(R) 4+ 4n°7(G)) — O(1)
€ = Sn?(t+2n)- (10[logy(n)]es + 2¢)
In comparison with the security results in [34], the proofs of the above the-

orems are simpler, and both theorems follow almost immediately from the symbolic

96

security of the protocols under consideration. The choice of the parameters is based on
the observation that in anytime execution of th&€S (resp.SD) protocol, the number

of purely random keys generated by the protocol is at rifmst ¢, the number of cipher-

texts output as rekey messages is at nmst[log,(n)]| (resp. nt), and the maximum

depth of any pseudo-random key used in the protocol(i®sp. 2[log,(n)]). We re-

mark that the above theorems establish security of these protocols against non-adaptive
adversaries only, whereas in [34], security against adaptive adversaries is also proven.
The issue of proving security against adaptive adversaries is addressed separately in
Chapter 9.

8.5 Proof of Theorem 8.3.2

We conclude the chapter with a proof of the main result, Theorem 8.3.2. Given
any (n, ¢, d)-adversaryA that is valid and compliant, and that runs in timewe con-

struct a set of adversaries, which fall into three categories:

o adversaries otype-1, denotedA}, , , , one for eachd’ € {0,1,...,d} and

be, be € {0, 1} and each running in time at most

e adversaries ofype-2, denotedA; , one for eachb. € {0,1} and each running in

time at mostr,; and

e adversaries dfype-3, denotedA?,, one for eachl’ € {0,1,...,d} and each run-

ning in time at most.

We construct these adversaries in a manner such thAEﬁT(A) > ¢, then for
some tuple(d’, b, b.) € {0,1,...,d} x {0,1} x {0,1}, eitherAZ, (A}, ;) > €1,

PRG

or Af.(A3) > e or AL (A7) > e. Such a condition contradicts the security

ENC

assumptions we made frandG, thus implying thaﬂfﬁT(A) is bounded from above

by e for anyA that is valid and compliant and that runs in time at maost

97

8.5.1 Notations

Let X¢ be the set of all binary sequences of length at mfsthis in-
cludes the empty sequence, which we denote byFor anyd € [d], any sequence
o = (b,...,b;) € X% and anyR;, € R, let G,(R;) denote the symbolic key
GbJ(Gbgfl(- -Gy, (R;)--+)), and letG.(R;) denote the keyr;. Since the number of
purely random symbolic keys used Ais queries is at most and since all keys are
of depth at mostl/, we can, without loss of generality, assume that all keys usécsin
queries are of the forrG, (R;) for somei € [n] and somer € .

Letd € [d] ando = (by,...,b;) € X4 Foranyd € {0,1,...,d}, let

prefix(o, d') denote thel’-long prefix ofc if @ < d; let it denotes otherwise. That is,

€ ifd =0
prefix(o,d') = < (by,...,by) f1<d <d

o otherwise

Foranyd' € {1,...,d}, letnear_prefix(c, d') be defined as follows:

_ (by,... . by_1,1—by) f1<d <d
near_prefix(o,d’) =
(b1,...,b; ,,1—b;) otherwise

We extend the notion of prefixes and near-prefixes to symbolic keys in the
natural manner. For any € ¢, any keyK = G,(R;) and anyd’ € {0,1,...,d}, let
prefix(K, d') = Gprefixo,a)(Ri). If K = R;, prefix(K,d') denotesR; for anyd’ > 0.

77777

K:RZ‘.

8.5.2 The Reduction

Each of our adversaries (bfpe-1,type-2 as well astype-3) works in two
phases: &etupphase and aaxecutionphase. The setup phase is similar for all types
of adversaries and is illustrated in figure Figure 8.3. In this phase, the adversaries es-

sentially initialize some variables (to be used in the execution phase) and generate a

98

PHASE |: SETUP

001. Initialize two mapg> andy’, a setM, and a listZ, all to be empty

002. Initialize a boolean valugod_event < 0

003. Sample ando uniformly at random fromn| and%¢ respectively

004. LetK.i = G,(R)).
(K. Stands for the “critical” (symbolic) key. Adversariestype-2 asso-
ciate K with the key used by their oract8] while those otype-1 and
type-3 associate it with a key derived from their input.)

Figure 8.3: The setup phase for each of our adversaries for Theorem 8.3.2.

symbolic keyK.,;; (called thecritical key), uniformly at random from the space of all
symbolic keys of depth that can be generated from the §&,..., R, }.

The execution phase of each of the adversary types is shown in three different
figures—figures Figure 8.4, Figure 8.6 and Figure 8.8. Adversaries of each type execute
A in a black-box manner and use two sub-procedures to evaluate the keys and the
messages generated Ayn the execution. The procedure used to evaluate messages is
denotedeval'® for type-i adversaries and that to evaluate keys is denbtgdeval®.

Each of thetype-1 andtype-3 adversaries receive, as input, a bitstring= s, || s
(suchthat, s; € {0,1}"), which is sampled from eitheX? or X, and its objective is

to deduce which distributioais sampled from. Adversaries of both these typessuse
evaluate keys created Byvia a common procedurey_eval!) shown in figure Figure
8.5. Each of theype-2 adversaries is given black-box access to a procejreand

its objective is to guess the Hit Each such adversary us@y to evaluate ciphertexts
gueried byA, as shown in figure Figure 8.6. It is easy to check that the running time of
each of the adversaries is at least n - (7(R) + 2¢7(G) + ¢7(E)) + O(1), which is

bounded from above by both andr,, as desired.

99

ADVERSARY A}, , ., PHASE II: EXECUTION

OOO Letharget — pl’efIX(Kcr,t, d/)
(While evaluating symbolic keyg\} , , mMaps G(Kirget) 10 its input

So ” Sl.)
010. RunA.
020. WhenrA makes a query of the formwal (M),
021. LetM — MU {M}.
022. LetKs: be the key s.t.K,s Occurs inM, Ky ¢ Rec(M)

and there existd/’ for whichEg, (M') € Rec(M).
(If there is no such keyss.sc = L)

023. Reply witheval™ (M, K, 0)

030. WhenA makes a query of the forrhallenge(K),

031. If b, = 0, reply with key_eval™ (K, 0).

032. Else, reply with a uniformly random sample frgf 1},

040. WhenA halts, output whatevek outputs.

procedure evalV (M, Ky, flag)

100. If M = K for some symbolic key,

101. Returnkey_evalV (K, flag).

110. If M = Ex(M’) for some symbolic key< and symbolic messag#’,
120. Ifflag = 0and K # Ky,

121. ReturrE,,, .m0 (cval™ (M, Kipst, 0)).

130. Ifflag = 0and K = Kj.s and K # Kgit,

131. If K ¢ £ andgood_event = 0, appendk to L.

132. IfK € L,retumnE,, ..o .0 (eval (M, K, 1)),
133. Else, returlﬂikeyimlu)m,o)(eval(l)(M’, Kiirst, 0)).
140. lfflag = 0 and K = Kprsr = Kerir,

141. good_event « 1.

142. ReturrE,,, .00 (eval™ (M, Keist, be))

150. Ifflag = 1, returnE,, . x.p) (eval™ (M, Kese, 1)).

Figure 8.4: The execution phase tgpe-1 adversaries.

8.5.3 The Analysis

For any execution of adversafy let outkeys(A) denote the random variable
corresponding to the subset aickeys(M(A)) such that for everyX € outkeys(A),

the following is true:

100

procedure key_evalV (K | flag)

200. Ifflag = 0, do the following:

201. If Kiarget € Rec(K),

202. If K = Kiarget = Kcrir andgood_event = 1, do the following:

203. Ify»(K) is undefined, sep(K) «— R. Returny(K).

204. Else, output a random bl alt!

205. If K = Gy(Ktarger) for somebd € {0, 1},

206. If good_event = 1, returns,,.

207. Else, output a random bl alt!

208. If K € near_prefixes(Kiarget),

209. If /(K is undefined, set’(K) «— R. Returny’(K).

210. If K € R,

211. Ify)(K) is undefined, set(K) «— R. Returm)(K).

212. If K = Gy (K') for someb’ € {0,1} and K’ # Kiarget,
ReturnG,, (key_eval ™ (K',0)).

220. |Ifflag = 1, return a uniformly random sample frofd, 1}”

Figure 8.5: Procedurkey_eval) used bytype-1 andtype-3 adversaries.

e K ¢ Rec(M(A)); and
e There exists som&/’ such thatE (M’) € Rec(M(A)).

Intuitively, outkeys(A) is the set of all unrecoverable encryption keys occur-
ring in A’s queries such that each such key occurs as the “outermost” unrecoverable key
in some query oA.

Before proceeding to analyze the three types of adversaries we have con-
structed, we make one important remark about them. Observe line 022 for each of
these adversaries. The ké&y,.. defined in this line is the outermost unrecoverable key
in the messag@/ queried byA. We claim thatK; is, in fact, contained inutkeys(A).

This follows from the fact thaf\ is a compliant adversary: Sindeis compliant, its
evaluation queries satisfy the well-ordered property (Definition 8.2.2) arfd;so(or
any pseudo-random inverse of@dnnotbe used as a message key in any other message

that is evaluatedfter M. This, in turn, implies thaf(;,; cannot be recoverable in any

101

ADVERSARY A%c, PHASE Il: EXECUTION

010. RunA.

020. WhenA makes a query of the formwal(M),

021. LetM — MU {M}.

022. Let K5t be the key s.t.K,s, OCcurs inM, Ky ¢ Rec(M)
and there existd/’ for whichEg, (M') € Rec(M).
(If there is no such keyfiss = L)

023. Reply witheval'® (M, K, 0)

030. WhenA makes a query of the forehallenge(K),

031. If b, = 0, reply with key_eval™® (K, 0).

032. Else, reply with a uniformly random sample frgfny 1}".

040. WhenA halts, output whatevek outputs.

procedure eval® (M, Ky, flag)

100. If M = K for some symbolic keys,

101. Returnkey_eval'® (K , flag).

110. If M = Eg(M') for some symbolic keyx and symbolic messagé’,
120. Ifflag = 0 and K # Kiist,

121. Returr,,, ...k) (eval™ (M’ Kgpst, 0)).

130. Ifflag = 0 and K = Kj.s and K # Kz,

131. If K ¢ L andgood_event = 0, appendK to L.
132. IfK € L, retumE,, . .e k.0 (eval® (M, K, 1)),
133. Else, returit,,, .. o) (eval® (M’, Ky, 0)).
140. lfflag = 0 and K = Kivsr = Kerirs

141. good_event «+— 1.

142. my «— eval(2)(M’, Kirst, 0)

143. my «— eval(Q)(M’, Kirst, 1)

144. ReturrOf (my, my)

150. Ifflag = 1, returnE,,, ., k1) (eval® (M, Kpse, 1)).

Figure 8.6: The execution phase tgpe-2 adversaries.

evaluation query made afteral(M), which meansKy,« ¢ Rec(M(A)). This, and
the the fact thaEg, (M') € Rec(M) C Rec(M(A)) (M' as defined in line 022),
implies thatKjs,; is contained imutkeys(A).

We first consider the adversariestgpe-1. Let b denote the bit corresponding

to the input provided to any adversary of this type:bif= 0, the input is sampled

102

procedure key_eval® (K, flag)
200. |Ifflag = 0, do the following:

201. If K.ix € Rec(K), output a random bitHalt!
202. If K € near_prefixes(Keit),

203. If'(K) is undefined, set’(K) < R.

204. Return)/(K).

205. IfK € R,

206. If)(K) is undefined, sep(K) «— R.

207. Return)(K).

208. If K = Gy (K') for some keyK’ andb’ € {0, 1},

ReturnG (key_eval® (K',0)).
210. Ifflag = 1, return a uniformly random sample froff), 1}

Figure 8.7: Procedurkey_eval® used bytype-2 adversaries.

according toX ¥, and if b = 1, the input is sampled according #6°. Let Bad be the

event that the critical key(.,;; is notin outkeys(A) for the execution of as defined in

any adversary ofype-1. It is straightforward to check that when evéd occurs, the
output of any such adversary is independent of its input. Furthermore, the occurrence
of Bad itself is computationally independent of the input provided to the adversary, as

formalized in the following proposition.
Proposition 8.5.1 |P[Bad | b =0] — P[Bad | b = 1]| < ¢

Proof: The proof is by contradiction. Any adversarytgpe-1 for which the condition
in the proposition is defied can be transformed into one that outgtigsd only if Bad
occurs. (This can be done with essentially no loss in running time complexity.) The
transformed adversary would violate tfe, ¢;)-security ofG. |

For any (d’, b.,b.) € {0,1,...,d} x {0,1} x {0,1}, consider thetype-1

adversanA} , , . Let®} , , denote the event that the outputAjf , , equalsl. So,
G 1
APRG(Ad’,be,bc) = |P[@¢1i’,be,bc

We expand this quantity in terms of the occurrence/non-occurrence of event

b=0] PO, |b=1]

Bad. Below, and for the rest of the proof, we use the shorthand3 to denoteA A B

103

for any two eventsd and B.

G
APRG

(Agl’,be,bc) = ‘P[@cll/,be,bd Bad [b= 0] - P[Q}l’,be,bJ Bad | b =1]
+ P[0}, ,.; Bad|b=0]—P[O}, ,: Bad|b=1]|
> PO}, Bad | b=0]-P[O), ,; Bad |b=1]
— [P}, Bad | b=0]— PO}, ,; Bad|b=1]
= P[0}, Bad | b=0]— P[0}, ,; Bad | b=1]
—P[©},,, | Bad]-|[P[Bad | b=0] — P[Bad | b = 1] (8.1)
2 |P[@c1l/,be,bc§ Bad | b=0] - P[Q}i’,be,bc; Bad | b =1]|
e (8.2)
Here, equation (8.1) follows from the fact that given the occurren8adfthe output of
A}l“be,bc is independent of the bit, and equation (8.2) follows from the proposition 8.5.1.

LetA} , , denotethe quantiti?[©} , ,; Bad|b=0]-P[O}, ,: Bad|
b = 1]. Since AS

PRG

(Ay,.) must be bounded from above by for any d' <
{0,1,...,d} and anyb., b. € {0,1}, we conclude that for any such values ®fb,

andb,,

’Al’,be,bc

< Abe(Adp,) Ta

S 261 (83)

In a similar vein as above, we define eveBtsl and©7 for adversaries of
type-2: Bad is the event thaf(,,;; does not occur iutkeys(A) whenA is executed
by A7 (as shown in figure Figure 8.6) a¥} is the event tha} outputsl. Let A}
denote the quantit’[©7 ; Bad | b = 0] — P[©7 ; Bad | b = 1] with b being the bit

chosen by the orack®; given toA; . As above, we can prove that for ahye {0, 1}:

For anytype-3 adversanA?,, let Bad be the event that the critical key,,;; is
not contained ifkC(A) whenA is executed byA?, (as shown in figure Figure 8.8). Lét,

104

ADVERSARY Ag,, PHASE IlI: EXECUTION
000. LetKiyger = prefix(Keit, d').
(While evaluating symbolic keya}, mapsG (Kiarget) t0 its inputsg || s1.)
010. RunA.
020. WhenA makes a query of the formwal(M),
021. LetM «— MU {M}.
022. LetKs,s be the key s.t.Ky,s Occurs inM, Ki: ¢ Rec(M)
and there existd/’ for whichEx,_(M') € Rec(M).
(If there is no such keyss.s. = 1)

023. Reply witheval® (M, Ky, 0)

030. WhenrA makes a query of the forehallenge(K),
031. If K = Kgits

032. good_event « 1. Returnkey_evalV (K, 0).
033. Else,

034. If good_event = 0, returnkey_evalV (K, 1).
035. Else, returlﬂ:ey,eval(l)(K, 0).

040. WhenA halts, output whateveXk outputs.

procedure eval® (M, Ky, flag)

100. If M = K for some symbolic key,

101. Returrkey_evalV (K | flag).

110. If M = Ex(M’) for some symbolic keys and symbolic messag#’,
120. Ifflag = 0 and K # Kjyst,

121. RetUrrE,,, .m0 (val® (M, Keist, 0)).
130. Ifflag =0andK = Kot

131. ReturriE,,, .m0 (cval® (M, Kpst, 1)).
140. Ifflag = 1,

141. ReturrE,,, .o x.1) (eval® (M, Kipst, 1)).

Figure 8.8: The execution phase tgpe-3 adversaries.

be the event thak?, outputsl andA?, the quantityP[©3,; Bad | b = 0] —P[0©%; Bad |
b = 1]. (Here,b denotes the bit corresponding to the input giveA}o) As in the case

of type-1 andtype-2 adversaries, we can prove that for alye {0,1,...,d}:

A3 < 2¢ (8.5)

105

RELATING Aljir(A) TO AL, , A2 A% Next, we express\ii.(A) in terms of the
quantitiesA), , , , A} andAj defined above. Towards this, we first define a sequence
of events for each type of adversary we have constructed, and then use these events to
relateAl, , , ,A? andA}, first, to each other, and then, 25,5, (A).

Consider again the adversariesyge-1. For any such adversa#, , , and
anyi € [q], let ®; be the event that the size ofitkeys(A), as defined for the execution
of Aby A}, ;.. is equal ta. (We assume, without loss of generality, thatkeys(A) is
non-empty for any execution @.) For anyj € [¢], let U, be the event that the critical
key K. is the jth among all keys inutkeys(A) (where the latter are considered in the
order of their occurrence as outermost unrecoverable kexsigueries). Clearly, for
anyi; # iy, ®;, and®,, are mutually exclusive and for angy # j,, ¥; andV¥,, are
mutually exclusive. Furthermore, the ev&atd (as defined fotype-1 adversaries) can

be expressed in terms of these events as follows:
—_ a ‘
q 7
= \VV (cpi A \Ifj) (8.6)

Events of this kind can be defined ftype-2 adversaries as well. We abuse
notation and usé@; to denote also the event thattkeys(A), as defined for the execution
of A by sometype-2 adversary, has sizeandV; the event that(.; is the jth element
in the setoutkeys(A) so defined. Clearly, equation (8.6) holds even in the setting of
type-2 adversaries as well.

In the context otype-3 adversaries, we usk; to denote the event that(A)
(for the adversary’s execution &) has sizei and ¥; the event that{.; is the jth
elementinC(A). Letq. be an upper bound on the number of challenge queries made by
A in any execution. Equation (8.6) holds even in the settintyjpé-3 adversaries, with

the slight difference that gets substituted with. here.

106

Forany(d', b, b.) € {0,1,...,d} x {0,1} x {0,1}, letA}, , , ;.. A} ;. and

beij
A}, ,.; be probability differences defined as follows:

A(li’,be,bc,i,j = P[@}i',be,bc; i Wy | b= 0] — P[@zl’,be,bc; ;5 Wy | b=1]
A}, = PO} @ U | b=0]-P[OF; &; U;|b=1]
Ay = PO & ;[b=0]-P[O); & T; [b=1]

Using equation (8.6) and the fact that the evehts. .., ¥, and®4,..., P,

are mutually exclusive, we obtain the following:

q)

Agl’7be7bc = ZZA}i’,be,bc,z’,j (8-7)
i=1 j=1
q)

A= D) AL (8.8)
i=1 j=1

AL = 3OS AL (8.9)
i=1 j=1

We bound the quantit;A[E;ff,T(A) (from above) in terms of quantities of
the form Ay, 4 ;. A7, and A% ;- and then use equations (8.7), (8.8) and (8.9)
(and (8.3), (9.4), (8.5)) to relate it tq ande, as desired. First, we re-writAfﬁ;T(A)

in terms of probabilities of the for®[0©}; ®;; ¥;|b = x]. The following lemma does

precisely this.

Lemma 8.5.2
q
ATE(A) =20 3 [P[@é,o,o; Bii Uy | b= 0] =P[O}, & Wy | b— O]H
=1

In the next lemma, we relate probabilities of the foBfB); ®;; U,|b = x|
to each other and to those of the fol©?%;, ®;; U,;|b = x| andP[©%; &;; W,|b = *].

Lemma 8.5.3 (Hybrid Cancellation Lemma - I)
1.vd €{0,1,...,d—1},V(b, b.) € {0,1}2,Vi € [q],V] € [i]:

P[@zli’,be,bc; Dy Vb= 1] = P[Gcll’—i-l,be,bc; i Uy | b= 0]

107

N

. Vb € {0,1},Vi € [q], V] € [i]:

POyos: ©i V| b=1] = P[OF; & ¥, | b=0]

and, P[@Cllyl,bc; (I)“ \Ijj ’ b= 1]

PO} ; & ;| b=1]

w

. Vb, € {0,1},Vi € [q], V5 € {0,1,...,i—1}:

PlO§,,; i V| b=0] =P[Oy, ; Pi; Vjr1|b=0]

IS

. Vd €{0,1,...,d—1},Vi € [g.),Vj € [i]:

PO); @5 U, |b=1=P[O5 ; & ¥, |b=0]

a1

Vi€ g,V €{0,1,...,i—1}:

POF @ W[b=1]=P[OF @ Yy |b=0

(o2}

. And finally,
q qc
Y P[O§, 0 P Ui |b=0] = Y P[Of; & Uy |b=0]
=1 =1

q qc
and, > PO i Ui [b=0] = Y PO} O U |b=1]
=1

=1

Before presenting the proofs of these two lemmas, we illustrate how they suf-

fice to prove the theorem. Lét be defined as follows:

q
A= [PlBhoss @)10 =01- POy 0 w10 =0] (10
=1

108

From Lemma 8.5.2, we know that} s, (A) = n - 2¢ . |A|. By invoking Lemma 8.5.3
multiple times, we expresA as a sequence of summations as follows:

(B T)

d P[®c1i',o,0? Dy Uy [b =0]
Zd’:O
P[G)(li’,(],o; @1, \I]j | b - 1]

i P[O§; @i ;| b=0]

S|+ 2

—PlOg; @i V[b=1]
d’107 ;; \Il ‘b—O]
Oy 100 Pis ¥ | b=1]

- Yo

q
i=1

65,017 O Wy | b=0]
> o
A == 61/017 q)la \II |b_1]

i PO & U, | b =0
- 2
PO}, ©; ¥, | b=1]
d P[@é/,l,ﬁ Dy Wy | b=0]
o d'=0 1
- P[@d/7171; ®’L) \D] ‘ b: 1]

c i d
+ 20 [2= | 2ow=o

\

which can be written, in short, as:

109

(.
7 d 1 2 d 3
Zj=1 (Zd’=0 D004, T Biig — D=1 Al 10,0
q
i=1
_ i d 1 2 d 3
A = - Zj:l (Zd/:o Ad’,O,l,i,j + Al,i,j - Zd’:l Ad’71,1,i7j
qc qdc d 3

\ + Zi:l 7=1 Zd’:o Ad/,i,j)

Now, applying equations (8.7), (8.8) and (8.9), we get:

d 1 2 d 3
Zd':o Ad/,o,o + A0 - dezl Ad/,m

- ZZ’:O Atli’,O,l + A% - Zizl/zl AZ)i’71,1 + ZZ/:O Ag’l'
Finally, using equations (8.3), (9.4) and (8.5), we obtain our desired goal:
A]E}S;T(A) = n- 2¢. |A|

d d
D=0 1A% ool FIAF 40—y AT 1l
n-2¢.

IN

d d d
+ Do Aol + 1A+ 301 18T 1] + 20— [AG]
= 2027 {4de; + 2¢5 + dey}

= 2n2%. {5de; + 2¢,}

8.5.4 Proof of Lemma 8.5.2

Let A be the term defined in equation (8.10). Our goal is to show|that=

L - Al (A). Towards this, we first re-writé as follows:

a PO ; ®; | Uy b=0]-P[U; b=0
a=ss | PlObost % b=0]-Plis b=

i=1 — P[@(l),O,l; (I)z ‘ \Ijl, b= 0] . P[\I’h b= 0]
We claim that the probability that the evedit occurs in eithe\;, , or Ag,;, condi-
tioned on bitb being equal td), is exactly—. The proof of this claim follows from

two observations:

110

o Let/C, 4 be the set of all keys of depth at maeisthat can be derived from the keys
Ry,..., Ry thatis,IC,, s = {K | 3i € [n] s.t. K € Rec(R;) A depth(K) < d}.
Our first observation is that for anly € K, 4, the probability that<,;; (as define

inAjy,0rAj,,)equalsk is equal to—;.

e Second, we note that for an§ € K, 4, the probability that thdirst key in
outkeys(A), say Kz, as defined foA’s execution inA;, , (resp. Aj,), equals
K conditioned on the evenfs.;; = K andb = 0, is equal to the probability that
K; equalsk whenA executes with black-box access@y;.. o (resp. Ojiir1)-
This second observation is a bit non-trivial and requires a careful understanding
of the execution phases &f , , andA ,, and comparison of the same with the

F.C . details are omitted.

ADPT,b?

procedured

Thus, A can further be re-written as:

1
n-2d

q
A= -Z[P[@é,o,o; ®; | W5 b=0]—P[Og; & |V b=0]
=1

Finally, we observe that the probability Aﬁm (resp.Aém) outputtingl and of event
®, taking place, conditioned on evenks andb = 0 is the same as the probability Af
outputtingl and®; taking place, when the former is given black-box accei@fyﬁw
(resp.(’)f]ﬁm). This follows from the fact thaA is a valid and compliant adversary and
that conditioned on events, andb = 0 taking place, all replies given b; , , (resp.
Al to A’'s queries are determined just as in the procedd(g., , (resp. Oy,).

Thus,

From this, the lemma follows.

8.6 Related Work

The question of relating symbolic security notions with notions of security in

the computational model has been considered in several contexts prior to our work. The

111

pioneering efforts in this direction were made by Abadi and Rogaway [1] who proved

a computational soundness theorem for protocols based on symmetric-key encryption
only. (No other primitives were considered in [1].) Although the result of [1] is impor-
tant as a first step towards bridging the symbolic-computational divide, it is applicable
only in the context of passive adversaries (that is, adversaries who eavesdrop on the
protocol communication but do nothing else). In contrast, our result (Theorem 8.3.2)
enables security of protocols to be analyzed against adversaries who can adaptively in-
fluence the protocol execution. Security analysis with respect to such adversaries is
necessary for multi-user protocols like the ones we consider here. (Later on, in Chap-
ter 9, we further strengthen the adversarial model to incorporate adaptive corruptions
as well.) [2] extends the Abadi-Rogaway result to a wider class of protocols, namely,
to protocols that make use of encryption as well as secret sharing [42]; however, the
adversarial model used in [2] is the same as that of [1] and, in particular, it does not
incorporate adaptive attacks on protocols.

Other extensions of the Abadi-Rogaway result also exist in the literature but
they are largely orthogonal to the problem considered in this thesis. One notable ex-
tension is that due to Micciancio and Warinschi [33], who devise new techniques for
proving soundness of symbolic security proofs in the facaatifve computational ad-
versaries, that is, adversaries who can intercept and modify all communication between
protocol users. In order to prove soundness against such adversaries, a stronger com-
putational security notion for encryption schemes (nameta-security [40]) is used
in [33]. (In contrast, our soundness result only reliexcea-security.) We remark that
the result of [33] imposes several syntactic restrictions on the syntax of protocols which
are more stringent than the ordering constraint we have introduced; for example, in the
protocol class considered in [33], protocol users are not allowed to “forward” any ci-
phertext received from one user to another user, and the use of nested encryption is also
prohibited. Several extensions and generalizations of [33] have appeared in the litera-
ture (see, for example, [12, 16]); all these works primarily focus on security of two-party

cryptographic protocols (in particular, protocols for key exchange and mutual authen-

112

tication) in the presence of active adversaries. Our model, on the other hand, focusses
on multi-party protocols and considers their security in the face of passiaaptive
adversaries. We do not incorporate active attacks in our attack model primarily for sim-
plicity, although we do believe that such an extension is possible and we leave it open

for future work.

8.7 Acknowledgement

Chapter 8, in part, is a reprint of the material as it appears in 33rd Internation
Colloguium on Automata, Languages and Programming (ICALP), July 2006, Miccian-
cio, Daniele; Panjwani, Saurabh. The dissertation author was the primary investigator
and author of this paper. The presentation of the material has been significantly im-
proved from the time of the original publication and some errors have also been elimi-

nated.

Chapter 9

Computational Security against

Adaptive Adversaries

The techniques developed in the previous chapter can be used for analyzing
security of GKD protocols in the computational model but only as long as security
againstnon-adaptiveadversaries (that is, adversaries who corrupt protocol users non-
adaptively) is the desired objective. In this chapter, we present a different, and more
powerful, approach for conducting security analysis of these protocols, which is appli-

cable even when user corruptions are performed by the adversary in an adaptive manner.

9.1 The Challenge Ahead

Arguing about security of multi-party protocols in the face of adaptive cor-
ruptions is a hard problem in cryptography. The possibility of user corruptions occur-
ring during protocol execution, and in a manner that is arbitrarily controlled by the
attacker, increases the threat to a protocol’s security and makes the faskiofj pro-
tocols secure an unnerving task. Indeed, there exist protocols that are provably secure
against non-adaptive attacks but which can be completely broken once the adversary
is allowed to corrupt participants adaptively. (See [9] for an example based on secret

sharing schemes.) The situation is especially annoying for protocols that make use of

113

114

encryption—adversaries can spy on ciphertexts exchanged between two honest parties,
and later, at will, corrupt one of the parties, acquire its internal state, and use such infor-
mation to “open” all ciphertexts which were previously sent or received by that party.
While trying to prove security of such a protocol, one must argue that all “unopened”
ciphertexts (those that cannot be decrypted trivially using the compromised keys) leak
essentially no information to the adversary (that is, appear as good as encryptions of
random bitstrings). The heart of the problem lies in the fact that one does not a priori
know which ciphertexts are destined to be opened by the adversary and which are not,
since these decisions are made only as the protocol proceeds. Besides, every ciphertext
is a binding commitment to the plaintext it hides—one cannot hope to “fool” the adver-
sary by sending encryptions of random bitstrings every time and then, when he corrupts
a party, somehow convince him that the ciphertexts he saw earlier on (and which he can
now open) were, in fact, encryptions of real data.

In the past, security analysis of encryption-based multi-party protocols against
adaptive adversaries has largely been conducted using three approaches. The first (and
the simplest) one involves reducing the problem to the problem of proving security
against non-adaptive adversaries: in the security proof, one tries to guess the set of
parties that the adversary corrupts “beforehand” (that is, prior to protocol execution)
and then, if the guess is correct, does the rest of the proof just as in the non-adaptive
case. However, since the probability of guessing the corrupt set correctly is extremely
small (in particular, it is inversely exponential in the number of parties), such a proof
can be of very little use in practice. Reducing the problem of adaptive security to that of
non-adaptive security does not address the real challenge; it just bypasses it.

The second approach to adaptive security has been to study it in restricted
models where strict rules are imposed on the behavior of honest participants. The most
common imposition is that adrasurel3]—all honest parties should erase their past state
the moment they enter a new state configuration, wherein keys are generated afresh. In-
tuitively, such an imposition (rather, honest abidance by it) enables us to achieve adap-

tively secure encryption protocols because adversaries can no longer “open” previously-

115

sent ciphertexts eveafter corrupting the involved parties; doing so requires the keys
used to create the ciphertexts in the first place, which, we trust, have been diligently
erased from the system. However, investing such a level of trust in honest parties is an
unrealistic proposition—an honest party could simply forget to erase its previous states,
or else, internally deviate from the rules of the game (that is, purposely store past keys
and behave in an “honest-but-curious” manner). Besides, some cryptographic protocols,
for the sake of improving efficiencygquireusers to store keys received in the past (sev-
eral GKD protocols are of this nature) and such protocols would need to be re-designed
in order to comply with the model.

The third approach, and perhaps the most compelling one, to adaptive security
has been to develop non-standard notions of security of an encryption scheme. This
corresponds to a line of research initiated by Camtl.[9], who introduced a crypto-
graphic primitive, callechon-committing encryptigrspecifically to address the problem
of adaptive corruptions in multi-party protocols. Non-committing encryption schemes
have the unusual property that ciphertexts created using them need not behave as bind-
ing commitments on the corresponding plaintexts (hence the name “non-committing”).
Thatis, itis possible that an encryption of ‘0’ collide with an encryption of ‘1’ (or, more
generally, encryption of real data be the same as encryption of a random bitstring). How-
ever, such collisions occur with only negligible probability—the chances of encrypting
‘0’ and obtaining a ciphertext which can later be opened as ‘1’ are very small. At the
same time, these schemes allow to sample “ambiguous” ciphertexts (those that can be
opened as either ‘0’ or ‘1’) efficiently and wmpnvincean adversary of such a ciphertext
being an encryption of ‘0’ or of ‘1’, as the situation demands. Encryption protocols
implemented with non-committing encryption can be proven adaptively secure quite
easily: in the security proof, one simulates the real protocol by transmitting ambiguous
ciphertexts and upon corruption of a party, convinces the adversary that the ciphertexts
he saw earlier were indeed the encryptions of the revealed data.

Although interesting in their own right, non-committing encryption schemes

have their share of limitations as well: they are typically too inefficient for practical

116

applications, and allow only a restricted number of encryptions to be performed under a
single key. In fact, it has been shown [36] that any non-committing encryption scheme
that has a non-interactive encryption procedure must use a decryption key #tat is
least as long as the total number of bits decrypted usihgSuch a restriction is too

prohibitive for real applications.

9.2 Overview of Our Result

We show that it is possible to argue about adaptive security of a large class of
encryption protocols—and of GKD protocols, in particular—without requiring erasures
and without resorting to primitives like non-committing encryption, while still achieving
efficiency that meets practical requirements. For simplicity, we focus on protocols that
use symmetric-key encryption only (that is, no pseudo-random generators are used) and
those in which every ciphertext is created by encrypting a key wiimgle other key
(no nesting of the encryption operatiényVe show that in any such protocol, the quality
of adaptive security that can be provably achieved by a protocol is closely related to the
depthof the key graphgenerated in any protocol execution. More precisely, we prove
that in any encryption protocol for which execution key graphs (as defined in Chapter 4)
have size at most and depth at mogt security in the symbolic model implies security
against adaptively-corrupting adversariega a reduction factor that i (n - (2n)").

That is, the smaller the depth of the key graph generated in any execution, the greater is
its strength against adaptive adversaries.

What makes our result of practical benefit is the fact that key graphs generated
by most known encryption protocols have depth much smaller (in fact, orders of magni-
tude smaller) than their total size. In the particular case of GKD protocols, key graphs

typically have depth at most logarithmic in the number of users, and thus, even in the

!Some non-committing encryption schemes [11] circumvent this impossibility result by studying the problem in
a restricted model where bounds on the frequency of communication between parties are placed.

2Extending our result to protocols that use nested encryption is also possible but the soundness theorem and the
corresponding proof become much more complex. We avoid nested encryption largely for the sake of simplicity (and
partly because most existing GKD protocols don’t use nesting).

3The depth of a graph refers to the length of the longest path in it.

117

size of graph. (See the examples in Chapter 5.) Furthermore, in most GKD protocols,
the depth of key graphs remains fixeden for arbitrarily long runs of the protocol
assuming the space of users has been ascertained beforehand. In general, the depth of
key graphs in encryption protocols is related to the number of decryptions performed by
users to recover certain keys or messages, while their size to the total number of users;
it is reasonable to expect that protocol designers, for the purpose of efficiency, would
strive to keep the former quantity smaller than the latter.

We apply our result to the security analysis of piain-LKH™ protocol pre-
sented in Chapter 5 and show that the protocol’s security against adaptive corruptions
is related to the semantic security of the underlying encryption scheme via a reduction
factor that isquastpolynomial in the number of protocol participants. (Specifically,
the reduction factor i€ (n'=2(™+1) with n being the total number of protocol users.)
This reduction factor, though not strictly polynomial, is still quite reasonable from a
practical perspective; for example, in a system with users, one is guaranteed that a
64-round execution oplain-LKH™ provides at leagi4 bits of adaptive security (that is,
an efficient adversary has probability at mds§* in subverting the protocol) when im-
plemented with commonly-used symmetric-key encryption schemes like counter-mode
AES [4]*. Our result practically eliminates the need for using expensive techniques like
non-committing encryption to build adaptively secure group key distribution protocols,

and it does this while matching the efficiency of existing schemes.

9.3 The Result

LetP = (E,D) be a symmetric-key encryption scheme. We consider a sim-

P,G
ADPT,b

encryption schemg, and denote itby)! .. ,. This procedure receives a parametes

plified version of procedur&® (defined in Chapter 8) which only implements the

input and works as follows: it generates a set of kigys. . , &, each key being sampled

using an independent invocation®f and then accepts and responds to queri¢isreé

4This calculation is based on the assumption that the block ciESrused in the encryption scheme is a pseudo-
random permutation with28 bits of security.

118

types:

e Encryption queriesUpon receiving a query of the forencrypt(, j) for some

i,j € [n], Ofppr, responds with a sample fromy, (;).

e Corruption queries:Upon receiving a query of the formorrupt(:) for some

i € [n], OF .., returns the key;.

ADPT,b

e Challenge queriesFinally, Of .., receives and responds to challenge queries
just like (’)f;ﬁ’,nb. A valid challenge query is of the forrhallenge(i) for some
i € [n], and for each such quer§;, .. , responds with the ke¥; if b = 0, and, if
b = 1, it responds with a key;, sampled independently and uniformly at random
from {0,1}7. (If OF,,., receives the same quetytallenge(i) multiple times,

and ifb = 1, the reply equals; each time.)

Encryption queries and corruption queries together model the evaluation
queries defined in the context (ﬂfﬁw, with the difference that the use of nested en-
cryption and pseudo-random generators is not permitted.

Consider any adversafygiven black-box access @y, ,. A can decide the
input n given to the procedure and can make multiple queries to it, interleavingly and
adaptively. We think of the queries éfas creating a directed graph ovenodes (la-
beledl,2,...,n), edge by edge, and in an adaptive fashion. Each qeeryypt (i, j)
made byA corresponds to the creation of an edge froto j, denotedi — 7, in this
graph; such an edge models the fact that giveand the ciphertext, (£;), A can easily
recover the key;. (So, knowledge of; “leads to” the knowledge of;.) For any adver-
saryA, the graph created by its queries in this manner is calletefiggraphgenerated
by A and is denoted/(A). A nodei in G(A) for which A issues a quergorrupt(i) is
called acorrupt nodewhile one for whichA issues a queryhallenge(i) is referred to
as achallenge nodeThe set of all corrupt nodes is deno®®™ (A) and that of all chal-
lenge nodes is denota#"!(A). Note thatG(A), V=°"(A) and V<"l (A) are all random

variables depending on the coins used by otnd O

ADPT,b*

119

We assume that<h?!(A) is always non-empty and in any executiomoevery
nodei € V"?(A) has at least one edge incident upon it. Put differently, this means that
A always makes at least one query of the famallenge(i) and for each such query,
it makes at least one query of the formcrypt(x,¢) during its entire execution. This
is without any loss of generality since an adversary for which these conditions are not
satisfied can be easily transformed (that is, without any significant difference in attack
advantage or time complexity) into one for which they are.

Similarly to the definition of valid adversaries in Chapter 8, we define validity

in the context of0~%, .., as follows.

Definition 9.3.1 An adversaryA is calledvalid relative toOy .. , if in any execution
involving interaction withOF the values ofj(A), V°"(A) and V<" (A) are such

ADPT,b?
that:
1. Foranyi € V=°"(A) and anyj € V"!(A), j is not reachable fromin G(A).

2. Every node iv"?!(A) has zero out-degree #(A).

The first condition is equivalent to requiring that keys corresponding to chal-
lenge nodes not be symbolically recoverablebyl'he second condition restricts these
keys from being used for encrypting other keys, which, as already discussed in Chap-
ter 8, is necessary for guaranteeing their pseudo-randomness.

For any adversary, let A%wrs denote the random variable corresponding to
the output ofA when given black-box access @@, ,. The adaptive advantage Af

againstP is defined as the following quantity:
AEDPT<A) = P[AOR)M*O = 1] — P[AOE’DPTJ = 1]

As usual, both probabilities are taken over the coins usedl &y well as byO} .. ,.
Letn,q,¢ € IN such that/ < n. We say thatA is an(n, ¢, {)-adversary if

in any execution, the number of nodes and edges in the key graph generateardy

bounded from above by andq respectively and thdepthof the graph (that is, the

length of the longest path in it) is at mdstNote that the last condition also implies that

120

the key graph generated Byis acyclic (since in any graph with cycles, there exist paths

with infinite length).

Definition 9.3.2 An encryption schem@ is called(r, n, ¢, ¢, €)-secure against adaptive

attacksif for every valid (n, ¢, /)-adversanA running in time at most, AL (A) <.

The following is the main result of this chapter:

Theorem 9.3.3Let P = (EE,D) a symmetric-key encryption scheme.Fifis (71, ¢;)-
secure against chosen plaintext attacks, then(it,is, ¢, ¢, €)-secure against adaptive
attacks for any parametersn, q, ¢, e satisfying
T = 11— (2n7(R) + g7 (E) + O(1))
3n? -1
€ = 61-7-(2n+1)

We emphasize that in contrast to the soundness result of the previous chapter
(Theorem 8.3.2), the above result guarantees secwiihout any restrictions on the
order of queries made by adversarieBhus, for protocols which generate key graphs
of small depth (like the ones we study in this thesis), this gives a more powerful tool to
analyze security—security can be proven against adaptively-corrupting adversaries, and
without requiring protocol messages to satisfy any ordering constraints. The downside,
however, is that the “amount” of security that can be guaranteed is intricately related
to the depth of protocol key graphs, which makes the result of limited applicability
in the context of protocols that generate arbitrary-depth key graphs. We believe that
improving the result to overcome this limitation is non-trivial, but a worthy direction for
future research; in particular, obtaining an analogous result but with a reduction factor
smaller thar® (n*) would be quite remarkable, and could lead to even newer techniques

to address adaptive corruptions in encryption protocols.

9.3.1 Relation with the Selective Decryption Problem

Our abstract game (involving the adversakyand the oracle procedure

OEDPT,b) is closely related to a well-studied problem in the cryptography literature called

121

the selective decryption problemThis problem often arises in the context of proving
adaptive security of multi-party protocols (see, for example, [9, 20]) but till date, no
satisfactory solution to the problem has been found. The problem involves an adversary
who interacts with an oracle in the following manner: the oracle initially generates a set
of plaintextsmy, - - - , m,, and a corresponding set of keys - - - , k,. (We stress here
that the plaintexts are not chosen by the adversary, but generated by the challenger using
some fixed distribution; furthermore, they may be related to each other in an arbitrary
manner.) The adversary then requests the encryptions of all the plaiq&x{sy;)},
(wherekE is a semantically secure encryption function), and later “opens” some of these
encryptions adaptively; that is, it queries an arbitrary/set [n| and the oracle replies
with {%; };c;. The question now is to show that plaintexts corresponding to all unopened
ciphertexts are still “safe” in the sense that the adversary can learn no more informa-
tion about them than what it could anyway learn from the revealed plaintexts. In our
result, we are essentially generalizing the selective decryption problem by allowing the
adversary to request not ongyngle ciphertexts buthainsof ciphertexts of the form
Eg, (k2), B, (k3), Eg, (ky), - - - and also to open such chains adaptively. Besides, we allow
the adversary to interleave its “encrypt” and “open” queries arbitrarily. Indeed, the fact
that ciphertexts can be asked for in an adaptive manner, possibly depending upon past
corruptions, is responsible for much of the complication in the proof of Theorem 9.3.3.
While the problem we are considering appears more general than the selective
decryption problem in several ways, there is one important caveat. In our problem, the
plaintexts on which encryption is performed are always keys, and the latter are assumed
to be generated in a mutually independent manner. It has been shown [20] that when
the selective decryption problem is considered with mutually independent plaintexts (as
in our problem), a solution to the problem does exist, and, in particular, it is possi-
ble to show that the adversary learns no more information about the hidden plaintexts
than what is easily computable from the opened ones. Our soundness theorem (Theo-
rem 9.3.3) essentially builds up on this positive result for selective decryption and ex-

tends it to the more general scenario of arbitrarily and adaptively generated key graphs.

122

The question of solving selective decryption without the independence assumption on
plaintexts, though, still remains open.

We remark here that independence of all keys is not just a simplifying assump-
tion in our theorem; it is @quirementor the security of the protocols we are interested
in analyzing: a group key distribution protocol that uses related keys across key up-
dates cannot guarantee good security at all. Furthermore, an adaptively-secure group
key distribution protocol suffices to build adaptively-secure protocols for private group
communication since, as noted in Chapter 7, the two protocol problems are equivalent

to each other (even in the face of adaptive corruptions).

9.4 Analysis of Protocols

Before proving Theorem 9.3.3, we first illustrate how it is applicable to the
security analysis of GKD protocols against adaptive adversaries.

LetIT be any S-GKD protocol fon users and lef, g, 7 be functions defined
over the set of natural numbers. We say thas an(n, g, E)-S-GKD protocol if for all
t > 0, for all sequences) ¢ (221t the number of purely random keys usedfl
is at mostn(t), the number of pseudo-random keys used in it is zero, the slm%g‘t)

is at most;(t) and the depth of the key grapj}% (corresponding to the execution of

(t)
IT when givenS) as input) is at most(t). We say thafl is group-key-complianif

no group key generated by the protocol is ever used to encrypt any other key (that is,
I1 satisfies condition (a) of Definition 8.4.1 from Chapter 8). For any symmetric-key
encryption schem@® = (E, D), let IT* denote the computational interpretationIof

when its encryption functiol is implemented using.

A

Theorem 9.4.1Let P be a symmetric-key encryption scheme andldte a(n, g, ¢)-
S-GKD protocol that is group-key-compliant. IIf is secure against single-user (resp.
collusion) attacks in the symbolic model, an®®iis (7, ¢;)-secure against chosen plain-

text attacks, thel” is (7, ¢, ¢)-adaptively secure against single-user (resp. collusion)

123

attacks in the computational model for any, e satisfying

T = 1= QeO7(R) +4()7(E) + O(1))
€ = €- 3nét) - (2n(t) + 1)2@)*1

Proof: The proof of this theorem is very similar to that of Theorem 8.4.2 and we only
sketch it here. As in the proof of Theorem 8.4.2, we consider only the case of security

against collusion attacks. (The other case is very similar and thus omitted.)

Let IT be any(n,q,) -S-GKD protocol that is group-key-compliant affda (74, €;)-
secure encryption scheme. Suppose ilhas secure against collusion attacks in the
symbolic model and stillT" does not satisfy the definition ¢f, ¢, ¢)-security against
adaptive adversaries for some parametetse satisfying the conditions given in the
theorem. That is, there exists some adaptive adversdimat runs in timer, makes at
most¢ execution queries, but for whichll (A) > e. We claim that any such adver-

saryA can be used to construct a valid(¢), G(t), £(t))-adversaryA’ such thatA’ runs

in time 7, and still AT

ADPT

(A") > e. This falsifies Theorem 9.3.3, thus implying that
Theorem 9.4.1 must hold.

The adversanpA’ simply emulates the execution HOf invokesA in a black-box manner
and for each query tha@ makes, it executeH in accordance with the query. Sinée
expects to receive bitstrings in reply for each quéfyses its oraclé)ADPT , to evaluate
all the symbolic messages and keys generateld bgfore providing them as replies to

A’s queries. In the end, it outputs whateveoutputs.

Sincell is secure in the symbolic model and since it is group-key-compliant, the adver-

saryA' is valid with respect t@* Sincell is a(n, q, cZ)-S-GKD protocol and since

ADPT,b"

A

A issues at mostqueries A’ is a (7 (t), G(t), {(t))-adversary. The running time &f is
the same as that & (modulo some constant overhead) and it is easy to check that its
advantage against the proced(ﬁ%mb is also the same as that AfagainstlI*. The

theorem follows.1

We now use Theorem 9.4.1 to establish adaptive security gltie-LKH™"

124

protocol and theCS protocol. First consider thglain-LKH™ protocol. Recall that the

key graph generated in any execution of this protocol has depth exagtyn)| where

d is the arity of the key hierarchy andthe total number of users. Recall also thktin-

LKH™ is secure against collusion attacks in the symbolic model (Theorem 5.1.1) and
is also group-key-compliant. Using these facts one can prove secumigiofLKH™
against adaptive adversaries in the computational model as follows. (As in the case of
non-adaptive security, we consider security with respect to adversaries whose execution

queries form simple sequences.)

Theorem 9.4.2Letn > 2andd € {2,3,...,n}. Thed-ary instance of thplain-LKH"
protocol, when implemented fat users using gy, ¢;)-secure encryption scheme
P = (E,D), is (7, t, €,)-adaptively secure against collusion attacks in the computa-
tional model for anyr,, t, €, satisfying:

7, = 7 — (207(R) + td[log,(n)]7(E) + O(1))

3~2
€ = 61.%.(2ﬁ+1)(1ogd<n)w—1

wheren = n +t - [log,(n)].

Notice that the reduction factor in the above theorem is exponentiat jn)
which is independent of the number of roundisatplain-LKH™ is executed for. (So, the
adaptive security oplain-LKH" degrades polynomially with the number of rounds of
execution.) Changing the hierarchy structure in the protocol involves a natural trade-off
between efficiency and security: if we increase the arivf the hierarchy, the commu-
nication efficiency of the protocol suffers but we get a better guarantee on its adaptive
security. An extreme case is tlmeary hierarchy for which the protocol incurs a linear
communication cost but is guaranteed to be adaptively secure via a reduction factor of
O(n?). (Note that this is exactly the trivial approach to group key distribution described
in the introduction.) Whether or not one can further improve this trade-off between ef-
ficiency and security across different instanceplafn-LKH™, and, in particular, prove
its adaptive security via a reduction factor smaller than the one given in Theorem 9.4.2,

assuming only the semantic securitylfyfis a question left open by this work.

125

The case of th&€S protocol is much simpler. Key graphs generated in that
protocol (and in any subset cover protocol, in general) always have depth one. Recall
that this protocol too is collusion-resistant in the symbolic model (Theorem 5.2.1) and

group-key-compliant. We conclude:

Theorem 9.4.3 TheCS protocol, when implemented fer users using &y, €;)-secure
encryption schem® = (E, D), is (7, t, e.)-adaptively secure against collusion attacks

in the computational model, for any, t, ¢, satisfying:

. = 11— 2m+)7(R) +tnt(E) + O(1))
Proving security theorems of the form of Theorem 8.4.3 and 9.4.3 for the
improved-LKH™ andSD protocols requires suitably extending Theorem 9.3.3 to incor-

porate pseudo-random generators, and is postponed to future work.

9.5 Proof of Theorem 9.3.3

The proof of Theorem 9.3.3 is much more involved than that of the soundness
theorem of Chapter 8 (Theorem 8.3.2). We begin with providing some intuition behind

the proof.

9.5.1 The Intuition

The starting point of the proof of our theorem is the positive result on the
selective decryption problem (more precisely, the seleciemmitmergroblem) due
to Dworket al.[20]. Consider a situation in which the adversary is restricted to generate
key graphs of depth exactly that is, its key graph is a directed bipartite graph mapping
a set of sources to a set of sinks. (In the selective decryption problem, the map from
sources to sinks is one-to-one. In our case, it could be many-to-many; plus, it could be
adaptively generated based on previous corruptions.) How can we argue about security

in this case? Intuitively, an attacker’s ability to differentiate between real and random

126

values forall nodes inV<h?(A) translates into its ability to differentiate between the
two values forsomenode (say theth one) inV<"!(A); that is, such an adversary can
effectively differentiate between two worlds, one in which the reply to each of the first
j — 1 queries of the fornthallenge(7) is r; (and for the rest, it ig;), and the other in
which the reply to each of the firgtqueries of this form ig; (and that for the rest i8).

Let us call these worldg/orld;(0) andWorld,;(1) respectively. Let us assume
that the argument specified s jth challenge query is known a priori (it can be
guessed with success probabilityn) and equals,. Let I(i;) denote the set of nodes
i for which there exists an edge — i, in G(A). Now consider this modified version
of the original game: while generating keys in the beginning, the proc@l&gg’b also
generates a random kéy] independently of all other keys. It replies to the adver-
sary’s queries in one of two worlds again, but now the worlds are defined as follows.
Each query of the fornencrypt(i,, i;) is replied to with the real cipherte®;, (k;,)
in the first world, World’;(0), but with afake one, namelyEkiS(fcij), in the other one,
World’;(1). All other encrypt queries are replied to with real ciphertexts in both worlds.
For thechallenge queriesthe replies have the same distributien; for the firstj — 1
challenge queries and; for the rest. (In particular, the reply fathallenge(i;) is
alwaysk;. .)

It is easy to see that the distribution on the replie€Xf,., , in World’;(0) is
exactly the same as World;(0). (The replies to aléncrypt, corrupt andchallenge
gueries are decided in the same manner.) The key observation to make here is that the
distribution on the replies iWorld’ (1) is also the same as that\¥orld; (1)! This is true
because the keys,, IEZ»]. andr;, are generated independently of each other, and so, reply-
ing toencrypt(is, i;) With Ey, (k;,) andchallenge(i;) with r;; (as done inNorld;(1))
produces the same distribution as replying to the former Wi;gp(l}ij) and the latter
with %;, (as done ifWorld’(1)). Thus, our adversary can differentiate betwéénld; (0)
andWorld, (1) with the same probability as it can differentiate betw&ésrld’; (0) and
World’,(1).

Why are the two world®Vorld’;(0) andWorld’;(1) indistinguishable? Because

127

the encryption scheme is semantically secure. If the adversary can distinguish between

two sets of ciphertext§E,, (ki) }i.cr;) (the real ones) andlE;, (l?:ij)}ise 1(i;) (the fake

ones) then it must be able to tell the difference betwiegn(k;,) andE;, (k;,) for some

nodeis € I(i;). (A standard hybrid argument applies HeyeThis goes against the

semantic security dpP.

GOING BEYOND /¢ = 1. In the general setting, a nodg pointing at any node
i; € V*"!(A) need not be a source—there could be other edges incident upon each such
i, and extending the above argument to this general setting requires more work. In order
to be able to make a statement likke ciphertextlE,, (k;;) is indistinguishable from

Es, (k)" , one must first argue that every ciphertext of the féhm (k:,) (wherei, — i,

15

is an edge irG(A)) looks the same as one of the fomié (k;,) (a fake ciphertext). But
every suchk;; could, in turn, be encrypted under other keys (that is, the rfpdeuld
have other edges incident on it). There could be a lot of no@és)(in general) from
whichi; is reachable i (A) and at some point or the other, we would need to argue that
replying with real ciphertexts created under each of these nodes is the same as replying
with fake ones. Worse still, we do not a priori know the set of nodes from whican
be reached iigj(A) since the graph is created adaptively; so we must make guesses in
the process.

It is easy to come up with an argument where the amount of guesswork in-
volved is exponential im (simply guess the entire set of nodes from which there is a
path toi;). In our proof, however, we take a radically different approach. We first de-
fine a sequence of hybrid distributions on the replies giveh $ach that in each of the
distributions, the replies corresponding to some of the edges in the key graph are fake,
and these “faked” edges are such that their end-points leesingle pathending in:;.
(Henceforth, we refer to every edge for which the corresponding reply is fakéaked
edge.) The extreme hybrid distributions are defined as in the two \/\deallsI;.(O) and

World;(l) for / = 1: in one extreme, the replies corresponding to all edges are real,

5The reduction factor in this hybrid argument would be at mosThis combined with the guessing probability
1/n associated with the node defined above gives us a gross reduction fact@?@i?), as desired fof = 1.

128

and in the other extreme, the replies corresponding to all edges incidénton fake

(while the rest of the replies are still real). Intermediate to these extremes, however, are
several distributions in which edges other than those inciderit are faked. For any

two adjacent distributions in the sequence of distributions, the following properties are

always satisfied:

(a) The distributions differ in the reply corresponding tsiagleedgei, — i;; the

reply is real in one distribution while fake in the other.
(b) In both distributions, for every. € I(i,), the edge, — i, is faked.

(c) There exists a path fromto i; in the key graph and in both distributions, “some”
of the edges incident upon this path are faked, the faked edges being the same in

both distributions.

(d) No other edge in the key graph is faked in either of the distributions.

Properties (a) and (b) are meant to ensure that any two adjacent hybrids can be simulated
using a single encryption oracte’ (and soA’s capability to distinguish between them
would imply that the encryption scheme is not secure). Properties (c) and (d) enable the
simulation to be carried out by guessing a path (that goes fydav, to i,;) as opposed
to guessing all the nodes from whichis reachable. (This partly explains why our
reduction factor is exponential in the depth, rather than the size, of the key graph.) In
order to simultaneously achieve all these properties, we order the hybrid distributions
such that(i) when the reply for any edge — i, is changed (from real to fake or vice
versa) in moving from one hybrid to another, all edges of the form i, have already
been faked in previous hybrids; afig after changing the reply far, — i, there is a
sequence of hybrids in which the replies for all edges- i, are, step by steghanged
back from fake to realThis is done in order to satisfy property (d) above (particularly,
to make sure that it is satisfied when the replies for edges issuing:frama changed in
a subsequent hybrid).

Thus, if we scan the sequence of hybrid distributions from one extreme to the

other, we observe both “real-to-fake” and “fake-to-real” transitions in the replies given

129

to A, taking place in an oscillating manner. The oscillations have a recursive structure—
for every oscillation in replies (transition from real to fake and back to real) for an edge
is — 13, there are two oscillations (transition from real to fake to real to fake to real)
for every edgei, — i, incident uponi,. Simulating these hybrid distributions and
subsequently, arguing that the simulation works correctly is the most challenging part of
the proof. After developing an appropriate simulation strategy, we prove its correctness
using an inductive argument—assuming that, for séim€ ¢, the simulation behaves
correctly whenevei, is at depth smaller tha#l in the key graph, we show that the
simulation is correct also when is at depth smaller thafi + 1. We now proceed to

give all the details of the proof.

9.5.2 The Reduction

Let A be any(n, ¢, /)-adversary that is valid relative 67, ,. Suppose that
A runs in timer and is such that\® . (A) > ¢ (r ande as defined in Theorem 8.3.2);
that is,

P[AOEUPT,O — 1] — P[AOE’DPTJ =]_] > € (91)

Given any such adversary, we construct another advefgahat runs in time
7, and is such thahf, (A’) > ¢,. This contradicts the security assumption we made for
P, hence implying that our assumption abduivas incorrect.

Before we give the construction, we need one small technical definition. Any
path in the graplt$(A) generated byA can be represented using a sequence of length
¢+ 1 as follows: First, write down the nodes in the path in the order of their occurrence
from start to end. Then, if the path is of length smaller tighas fewer tharf + 1
nodes) prependthis sequence with @as many times as is required to make its length
equall/ + 1. For example, a path — i, — i3 (with 2 edges only) would be represented
under this convention as:

(0,0, 0,141,142, 43)
(t—2) times

130

We say that a sequence of values fréMm1,--- ,n} is avalid path inG(A) if it is a
representation (defined as above) of a path that exigisAn.

Our construction of adversawy is organized in two parts. In the first part,
called thesetupphase (Figure Figure 9.1), generates all keys required to replyAts
gueries and some other random values which are used to form the replies. (The italicized
comments embedded in Figure Figure 9.1 give some intuition about the semantics of
these random values.) The second paw’ef-the executiorphase—which is shown in
Figure Figure 9.2, is the one in whidi runsA (in a black-box manner) and simulates
replies to all its queries; the replies to some of the queries (namely, queries of the form
encrypt(s,) wheres is as decided in the setup phase) are given using the procedure
Oy,

It is easy to check that the running time Afis bounded from above by +

2n7(R) + ¢7(E), which is the same as the quantityin Theorem 9.3.3.

9.5.3 The Analysis

For any execution oA, we define thetranscript of that execution as the
sequence of queries made by and replies gived;tdormally, it is the sequence
(d1,r1,92,r2, -+ ,qy,rs), Where f is the total number of queries made Byin that
execution, and for every € {1,---, f}, q; is theith query ofA andr; is the reply re-
ceived forq;. Theviewof A, given a fixed procedure for deciding replies to its queries,
is the distribution over all possible transcripts that can be generated by exe&win)
replying to it using the said procedure. The varialfgs), V<"2'(A) and V<" (A) are
all functions of the view ofA, that is, their distribution depends not only on the coins
used byA but also on the procedure used to replyAte queries. For the most of our
analysis, we will be concerned with the viewAin its interaction withA’, that is, when
the procedure for replying t&’s queries is as shown in figures Figure 9.1 and Figure
9.2. So, unless otherwise specifigdA), V=" (A), V= (A) should be treated as random
variables defined for this particular view.

Let Bad be the event tha”’s simulation of replies té\'s queries is unsuccess-

131

PHASE |: SETUP
(Generating keys and preparing to replyAés queries)

001. Sample — 1 numbersugy, uy, - - - , us—o independently from the set
{0,1,2,--- n} such that for each € {0, 1,--- ,¢ — 2}, the following
holds:

Vi€ [n]: Plu; =1] =

Plu; =0] = 505
Sampleu,_, andu, independently and uniformly at random frgnj.
(The sequencéug, uq,--- ,u,) is A’s “guess” for a path; a successfu|
execution ofA” will be one in which this sequence is a valid patiGiA).
Note that we do not rule out repetitions amongstithie—it is possible that
u; = ujy for somej # j'—even though the resulting sequences are bound
to be invalid. This is done only for the sake of simplicity. (The reduction
factor is not significantly improved by avoiding this triviality.) The choice
for the specific distribution of the;’s defined above will be clearer after
seeing the analysis @f'.)

2 .
T and

002. Letu, be the first non-zero value in the sequefg uy, - - - , up_1, up).
(us is the start node of the path guessed By. While replying toA’s
queries,A’ will associate the key used by its encryption oradg with
us. Note thats < ¢/ — 1 always.)

003. Sample¢ — s — 1 valuesbs, b1, - - - , by_s independently and uniformly

at random from{0, 1}. Letb,_; = 0.
(Roughly, these bit values determine which of the edges in the |path

(us,usy1,- - ,u) are replied to with “fake” ciphertexts and which are
not. For their exact semantics, see the execution phagé)of

D

004. Generate keys, - -, ky,—1, ky,41,- -, by andry , 7, - -+ , 7, USING
independent invocations .
(Ther;’s are used in creating “fake” ciphertexts in the execution phase|)

Figure 9.1: The first phase of the adversary constructed for the proof of Theorem 9.3.3.

ful, that is, the values,, - - - , u, that it selects are such that:
(@) ug ¢ VhI(A); OR

(b) (ug,uq,---us_1,u) is notavalid path irG(A).

132

PHASE |I: EXECUTION
(RunningA and simulating replies to its queries)

100. Initialize an array of booleansen|s|, seen[s + 1], ..., seen[¢ — 1].
Set each of these to hfalse.
200. RunA. WhenA issues a quergncrypt(z,y), do the following—
210. fr=us ANy = s,
seen[s| < true.
If bs =0, reply withO; (ky., ., Tu,.y)-
If bs =1, reply withO;p (1, ku,.,)-

220. Ifz=us ANy ¢& {usi1, -, up—1,up},
Reply withOy (ky, k).
230. Ify = ug,

Reply withE,,_(r,.). (SinceA’ does not know the value of
k—the key associated with—its reply to every edge
x — u, created byA is a fake ciphertext.)
240. For every) € {s,---,¢ — 1}, do the following:
241. Ifx # uj Ay = ujp1 A —seen[j],
If © # u,, reply withE;, (ry,.,)
If & = u,, reply withOy (7, u,,,)
242. Ifz # u; Ay = w1 A seenfj],
If © # u, reply withE,_ (k.. ,)
If 2 = ug, reply withO; (ky, ., ku,.,)
243. Ifz=u; ANy =ujp1 Aj>s,
(Note: The case = u,, y = us, IS addressed above)
seen[j| « true.
If b, = b;_1, reply with]Ekuj (Fujy)-
It b; # bj—1, reply withEy, (7.,).
250. If noneof the above conditions are satisfied, reply with (&,).

300. WhenA issues a queryorrupt(z), do the following—
If = £ ug, returnk, to A.
If z = u,, output a random bitdalt!

Figure 9.2: The second phase of the adversary constructed for the proof of Theo-
rem 9.3.3.

Notice that when everBad occurs, the output o’ is a uniformly random bit. (See
line 500 in Figure Figure 9.3.) Intuitively, the occurrence B&d is computationally

independent of the choice of the bit(used in the procedur®?), for otherwise we

133

PHASE |I: EXECUTION
400. WhenA issues a querghallenge(x), do the following—
Reply with k. if either of the following is true:
@)z = uy.
(b) z # u, but the queryhallenge(u,) has been
made already.
Otherwise, reply with a fresh key, sampled by running
(We stress that the reply for the quetlyallenge(uy) iS ki, .
Also, until the querghallenge(u,) is made, the reply to every
query of the fronthallenge(z) is a random value, sampled
independently of,.)

(Following are some bad conditions under whighfails in its simulation.)
500. If at any point during or after the execution/fit is found that:
(@) (ug, - - - ,uy) is not a valid path irG(A); OR
(b) ug ¢ V!(A),
Then output a random bitalt!

600. Inthe end, output whatevaroutputs.

Figure 9.3: The second phase of the adversary constructed for the proof of Theo-
rem 9.3.3 (continued).

would be contradicting the security & This intuition is formalized in the following

proposition:
Proposition 9.5.1 Ag,q := [P[Bad | b = 0] —P[Bad | b = 1]| < ¢

Proof Sketch: The proof uses a straightforward reduction argument. Suppose that the
statement is false, that i&g.q > ¢;. Modify the code ofA” slightly such that if at any
point during the simulation oA the eventBad occurs, the code outpuis(instead of
a purely random bit). The resulting code gives us an adversary that defies the-
security ofP. |

Let © denote the event that outputsl when given black-box access .

Our goal is to bound thepra-advantage of’, which can now be re-written as
AP (A) = |P[On | b=0] — P[Ox | b=1]|

Let us expand this quantity based on the occurrence/non-occurrence oBeuderge-

134

low and for the rest of the proof, we use the shorthandB to denoteA A B for any

two eventsAd and B.

Ane(A) = | (P[Oa; Bad | b=0] —P[Oa; Bad | b=1])
+ (P[Oa; Bad |b=0] —P[Oa; Bad |b=1])]
> |P[Oa; Bad |b=0] — P[Oa; Bad | b=1]|
— |P[O®a; Bad | b=0] —P[Oa; Bad | b=1]|
— |P[Oa; Bad |b=0] - P[Oa; Bad | b=1]|
— | P[Oa | b=0; Bad]-P[Bad | b= 0]

-~

M=

— P[On | b=1; Bad] -P[Bad | b = 1]

ol

N — 1
= |P[Oa; Bad | b=0]—P[Oa; Bad | b=1]| — 5 ABad
> [P[On: Bad | b= 0]~ P[Ox; Bad | b=1]| - 5 9.2)
(Follows from Prop. 9.5.1)
Let A := P[Oa; Bad; b = 0] — P[Oa; Bad; b = 1]. Inequality (9.2) can
be re-written in terms oA as follows:
AP (A) > |P[On; Bad|b=0]—P[Ox; Bad|b=1]] —%

P[b = 0] P[b = 1] 2
B 1/2 1/2 2
€1

= 2.a- 2
2

We now focus our attention on bounding the quantityl_et

1
R R (3:3)

Our goal is to show that:

135

Lemma 9.5.2 |A| > &

From this, the theorem would follow immediately using the following chain of inequal-
ities:

AHEDNC(A,) > 2'|A|_61/2

aE €

5T "3 (Plugging in Lemma 9.5.2)
B I 2ae ae 2ae
= e 5 3 ae 3 3 €1

which is what our initial goal—inequality (9.1)—was.

9.5.4 Proof of Lemma 9.5.2

Let O be the event thad’ completes the execution éf successfully (event
Bad does not occur) and the latter outputafter termination. Observe that#ad is
knownnotto occur, the event®, andO, are exactly the same; that B[O, | @} =

P[O4 | Bad]. Using this observation, we can re-writeas

A = P[O,; Bad; b=0] — P[O,; Bad; b=1]

We break up the evefitad into ¢ mutually exclusive event&,, A, - -, Ay_4
as follows: for eachj € {0,---,¢ — 1}, defineA; as the event that the values
ug, U1, - -+, uy Selected byA’ satisfy the following three conditions:

(@) u, € VI(A);
(b) (uo,us,--- ,up)is avalid path inG(A);

(€) up =u; =--- =wuj_1 = 0 butu; # 0. (In other words, the value afdecided in
line 002 ofA”’s setup phase i$.)

Condition (c), together with (b), implies that for gl € {j,7 + 1,--- , ¢},
uj # 0. Clearly, for any distincy andj’ (in {0,--- ,¢ —1}), A; andA; are mutually

136

exclusive andad = \/f;é A;. For eachj € {0,---,¢ — 1}, we define a quantit}\; as
follows:
A;:=P[Oa; Aj; b=0]—P[Oa; Aj; b=1]

A can be expressed in terms of these quantities as follows:

A = P[O,; Bad; b= 0] — P[Ox; Bad; b= 1]

-1 -1
= POa; \/ Ay b=0]-P[Ox; \/Aj; b=1]

j=0 §=0

~

-1

= (P[Oa; Aj; b=10] = P[Oa; Aj; b=1])

~ s
Ll
- o

.
=)

We now work towards breaking down the events - -- , A,_; further and
correspondingly, expressing the;’s as summations of more detailed terms. For this,
we need some more definitions.

ConsiderA’s interaction withA’. For any of the values; selected byA’, we
denote (the random variable corresponding to) the in-degree of the graphG(A)
created during this interaction y.degree(u;). (If u; = 0, we definelndegree(u;) to
be 0.) We think of nodes in/<"?/(A) to be ordered according to their occurrence as
arguments okhallenge queries; so, in the sequel, whenever we say thas “the
isth node iny<"3'(A)”, we imply thatchallenge(u,) is thei,th among allchallenge
queries received by’ from A. Likewise, for any two values,_;, u,;, whenever we say
thatw,_, is “the i;th node pointing at;;”, we mean thatncrypt(u,_1,u;) is thei,th
query of the formencrypt(z, u;) received byA'.

For any ;7 € [¢, any d,dy,dy—q, -+ ,dj+1,d; € [n], and any

d,dg, -+,
[RVIEN

Q00 %0-1," 041,15 € [n] suchthat < d,i, < d,---,i; <dj, Iet\IfE jj) denote

the event that

(a) A;_, occurs; and

137

(b) V<2l (A) has sizel andu, is theith node in it; and

(c) for eachj’ € {j,j + 1,--- ¢}, Indegree(u;) = d; andu;_, is thei;th node
pointing atu,, in G(A).

The events\q, Ay, --- , Ay_; can quite easily be expressed in terms of events
of the above type. For any € {0,---,¢ — 1}, A; occurs if and only if the size of
Vyehal(A) equalsd for somed € [n], andu, is theith node iny<"!(A) for somei € [d]
and has non-zero in-degrégefor somed, in [n], andu,_; is thei,th node pointing at
u, in G(A) for somei, € [d,], and so on, all the way upte;. Put succinctly, for any
jed0,--- 0—1}:

n dg J+1

n d
“VVV V- VoV e
(3,30, ZJ+1)
d=11i= dg 11/ 1 dj+1 1’L]+1 1

Clearly, for any distinct pairs of vector&l, dy,--- ,d;), (i,4,--- ,4;) and

) dd,, - d,
(d,dy,- - dy), (7, if, - -+ 7)), the eventsl dd‘ g) and\IJEi, Z.;m Z.,J)) are mutually ex-

b b 7]'/

clusive, and so

Aj = P[@A; Aj; bZO]—P[GA, Aj' bzl]
P[Oa; Wb =)

— .« .. (Z e K +1)

DD DY e i), (:5)
d€[n], d¢€[n], djt1€[n], - P[GA’ (isiessij41) b= 1]
i€[d] ip€[dy] ij11€[dj11]

We will now show how to sum up this quantity wighranging from0 through
¢ — 1 and to express the sum (which is the samé\jn terms of AL (A). Towards

this, we first define another type of event, similar to events of the other type.

Let j be any arbitrary number in¢]. For any sequence of bits
Vi, Vi1, , V1, let 7; denote the bitvector(v;, v, -, v). For any
d,dg,---,d; € [n] anyi € [d],i, € [dy],---,i; € [d;] and any bitvector; ; €

{0, 1)+ Iet@(dd‘f ;))(uj,l) denote the event that:

Zlg

(a) Forsomg € {0,1,---,j — 1}, the event\; occurs andndegree(us;) = 0

138

(b) V<hal(A) has sizel andu, is theith node in it;

(c) For eachy’ € {j,j + 1,---,¢}, Indegree(uj) = dj, uy—y is theiyth node
pointing atu,, in G(A) andthe following holds:

o If vy_y = 0, A receives the real reply fosncrypt(u; _1,u;), that is,
Ekuj,_l(kuj/)-

o If vy_1 =1, Areceives a fake reply for the same query, thajg, (Tuy)-

(d) Foreachy’ € {j +1,---,j — 1}, u;y_, is thefirst node pointing at;;; and A
receives the real reply for the quesytcrypt(u;_1,u;). (Thatis, it receives a

ciphertextc < E;, . (kuj,).)

The last condition is equivalent to saying thfatreceives the real reply for
everyquery of the formencrypt(z,u;) wherej’ < j. (To see this, observe line 242
in A”s code—A"'s reply to each query of this form succeediagcrypt(u; 1, ;) iS

always real.) We us®y;,s andO,5; to denote the following events:

®first = \/ \/ @Eilﬁlf)((o))
d=1dp,=1
Olast = \/ \/ @ngzﬁ;((l»
d=1dy=1
In words, Oy (resp. Oasy IS the event that for som}'a € {0,--- 0 — 1}, Ai occurs

and Indegree(u;) = 0, thatuy is thefirst (resp. last) node iny<hal(A), thatu,_, is the
first (resp. last) node pointing at:, in G(A), that the replyA receives for the query
encrypt(u,_1,u,) IS a real ciphertext (resp. a fake one) and, finally, that the raply
receives for every query of the forancrypt(z, u;) (j < j < 1)is a real ciphertext.
The view ofA under the occurrence of eith@¥;s; or Ot are, in fact, quite similar to its
view when interacting with the procedu€® ., ,. This is formalized in the following

claim.

Claim 9.5.3 ‘P[@A | @first] - P[@A | @IastH = AIEDPT(A)

139

In the next claim, we relate the probabilities of the evédyg; andO,¢ to the

guantitya defined in equation 9.3.
Claim9.5.4 P[@ﬁrst] = P[@Iast] = 04/2

The proof of these claims are postponed to Sections 9.5.5 and 9.5.6 respec-
tively. We will now illustrate how the two types of events we have defined hitherto—the
U’s and theo’s—are related to each other. This will help us sum upM&s (as de-
fined in equation 9.5), express the sum in term®gf; andO,5, and thus relate it to
Alper(A)-

Before we explain the relation between this and the©’s, we need one last
set of notations. For any bitvectar ; and any bit value: € {0, 1}, letv - 7/; denote

the bitvector formed byprepending to 7/, and letXOR(v, 7/ ;) be defined as follows:
XOR(v, 7]’) = VOV, Vv © Vi1, Vi1 O Vjya, V3 DV, Ve 2 ® V)

(If j = ¢—1,XOR(v, 7;) equals(v & v;).) Let@ (ddedi.0) (.37) denote the event

(i,igs i 0)
thatG)(fz" ij))(vV ;—1) occurs andndegree(u;_1) = 0.
For any two event®; andE,, we useF;, = E, to denote an assertion that
and £, are identical events (that i;; occurs if and only ifF; occurs) andt; ~ F,
to denote that the view oA in its interaction withA’ given E; occurs is identically
distributed as its view gived, occurs. Lett; = E, denote that”; ~ F, andP[E,| =

P[FE,). Itis easy to check that if;, = Es, thenP[Oa; Ei]| = P[Oa; Esl.
Lemma 9.5.5 (Hybrid Cancellation Lemma - I1)

1. Foralld € {2,--- ,n}andi € {1,---,d — 1},

V e () =V 61, (0)
do=1 dp=1
2. Forallj € {1,---,¢}, forall d,dy,--- ,d; € [n] andi,i,,---,i; such that
1 <i<d1l<i <dy--,1 <i; <djand for any bitvectorv; =
(vj, -+ 1) € {0, 1}

(d,de,+,dy) — \ _ (dde, e djt1,dj) —
@(177’@777’]) (1 ’ I/‘]) = @(7’72577Z‘7+1a7q+1)(v)

140

3. Forally € {1,---.¢}, for all d,dy,---,d; € [n] andi, iz, ---,i; such that
1 <i<d1l<i <dy,-,1<i; <dj and for any bitvectorv’; , =

(Vj—la s ,Vg_l) < {0, 1}€7j+1:

(4500, 4i5) (4,3g,+ ,5,0)

@(flvfie,...?dj)(7j_l> _ [@(fl@““tdj’m(l'73'_1)}

(d,dg,-, j,
v \/ 6(1 ”5 ('7j_1)
dj_1=1
4. Fixv,—y = 0. Letv be any arbitrary bit value and I1ék = v) denote the event
that the oracle); (provided toA’) selectsv to be the value ob. Then, for all
je{L,2,--- ¢}, foralld,dy,---,d; € [n] andi, iy, --- ,i; such thatl < i <

d,1 <i,<dy,---,1<1; <dj, the following is true:

(@) Ifj =1, then

dydg,- d; id
e A=) = Vo 0 XOR(, 7 1)

Vj_1,Vj, Ve—2€{0,1}

v

(b) If j > 1, then

(d7d27"'7d') _ _
n (d,de, - ,dj,dj—1)
\/dj,1:0 (Vuj,l,uj,---,l/g,QE{O,l} © zz; i dji)1 (1 XOR(1)))

The proof of this lemma appears in Section 9.5.7. The next lemma invokes the
above lemma and uses it to sum up thes, step by step, in an inductive manner. For

anyj € {0,---,¢— 1}, let

j
Aj == Z Aj/
3'=0
Lemma 9.5.6 (Telescoping Sums Lemmdjor allj € {0,1,--- ,¢— 1}, A, equals

PO O) (XOR(0, 7))

2.2 X

dE[TL dzE[n] J+1€[Tl] Vj, IJZ_QE{O,I},

icld] is€ld)] ijm€ldiy] ve1=0 — P[Oga; @ (dde, s ”1)(XOR(i)l

(4,20,

141

The proof of this lemma is given in Section 9.5.8. Given these two lemmas and
Claims 9.5.3 and 9.5.4, the final result (Lemma 9.5.2) is quite easy to prove. Using

Lemma 9.5.6, equation (9.4) can be re-written as:

A = Ay,

B [©a; O (XOR(0, 7 1))]
zzz(»

d€[n], de€[n], ve—1=0 — P[Oga; @ (d.de) (XOR(1,

icld] igeldy] (i

= 2 X (PO O () - Pl egz;jg)«lm)

de[n], d¢€[n],
i€[d] ic€[dy]

= 33 (Plow 0 ()] - Plon O (1))

d€[n], d¢€[n]
1€[d]

(Follows from the hybrid cancellation lemma, Lemma 9.5.5, part 2)

- S35 (Plew e ()1 -piow o)

3
3
ISH

n n

= 2 X (Ploa O () —Ploa: 035 (1)])
d=1 d;=1
(Follows from the hybrid cancellation lemma, part 1)
= P[@A; @first} - P[@A§ @Iast]

— P[@A ’ @first] 'P{@first] - P{@A ’ @Iast] : P[@Iast]
Now invoking Claims 9.5.3 and 9.5.4, we get

Al =

P[Oa | Oirst] - P[Orsirst) — P[Oa | Olas] - P[Oast|
- |P[Oa | Ofirst) — P[Oa | Olasd|

+Aloer(A)

Q MIQI\DIQ

6/

(Follows from our initial assumption, inequality (9.1))

|

We next give the proofs of all the lemmas and claims used to prove
Lemma 9.5.2.

142

9.5.5 Proof of Claim 9.5.3

We argue thaf\’s view in its interaction withA’ given the occurrence @y
(resp. Oysy is distributed identically as its view when interacting W(ﬂfDPT,O (resp.
Oiper)- This suffices to prove the claim.

When Oyt 0ccurs,everyquery of A of the formencrypt(z,y) is replied
to with a real ciphertextHy, (k,)) and that of the formchallenge(z) is replied to
with k,—exactly the manner in which replies are created by the proce@ﬁggﬁo.
Why is this? To see why the former is true, note that under the occurren®gsnf
the only queries that could be replied to with fake ciphertexts are those of the form
encrypt(z,u,) and either the same as or preceding the qeentypt(u,_1,u,). But,
givenOys; OCCUrsu,_; is the first node pointing at, and the reply tencrypt (u,_1, wy)
is real, thus implying that the replies for @lhcrypt queries ofA are real. To see why
the latter is true, note that the reply to every quengllenge(x), including or suc-
ceedingchallenge(u,) is alwaysk, (line 400 of A”s code), and wher®ss; occurs,
challenge(uy) is the firstchallenge query.

When©,,5 happens, things are a bit less straightforward. As above, the only
queries whose replies could be faked Ayare those of the fornencrypt(x,u),
either including or precedingncrypt(u,_1,u;). However, under the occurrence
of Ojs, encrypt(uy_1,ue) is the last query of this form, and even the reply for
encrypt(u,_1,u,) is fake, thus implying that every query of the foemcrypt(z, u)
is replied to in a fake manner (specifically, wit, (r,,)). Note also that give®,,st,
challenge(uy) is the lastchallenge query, and thus, the reply to alhallenge(x)
queriesexceptchallenge(u,) is a random key, sampled independentlyiof For
challenge(u), the reply isk,,. Now comes the crucial part: Replying to the query
challenge(u,) with k,, and to every query of the forencrypt(z, u,) with Ey, (1,,)—
wherer,, is independent of (but identically distributed d&s)—produces the same dis-
tribution on the replies as replying thallenge(u,) with r,, and to every query of
the formencrypt(z, u,) with E;, (k,,). Furthermore, we observe that neitligr nor

1., IS Used in creating replies fok other than those of the forrncrypt(x,u,) or

£

143

challenge(u,). In effect, the replies tha’ provides toA conditioned on even®i,g,
are distributed exactly as the procedd?§, . ,'s replies toA—real ciphertexts for all
encrypt queries and a random key (independentgf for every query of the form

challenge(x). 1

9.5.6 Proofof Claim9.5.4

We prove thatP[Of] = «/2; the proof for the other part of the claim
(namely,P[Oasf = «/2) is quite similar and is omitted.

First, some notations. Recall that in any executiopthe graphG(A) and
the sefv<h(A) are random variables depending on the coins useddnyd those used in
the procedure for replying tA’s queries. We define here some more random variables

related toG(A) andV<h?(A) and the manner in which these are created in any execution.

e Let fchal be the random variable corresponding to the first nodéir (A).

e For any fixedw € [n], let fnode(w) be the random variable corresponding to the

first node pointing atv in G(A).

e For any fixedw € [n], let fpath(w) be the random variable corresponding to the
path inG(A) that ends inw, that starts in a source (¢f(A)) and is such that
for every edger — y in the path,z = frnode(y). Let flen(w) be the length of
fpath(w) (that is, the number of edges in it).

SinceG(A) is always acyclicfpath(w) andflen(w) are well-defined (and uniquely so)
for every value ofw € [n] and every value assigned@dA).

Let us now consider the evefl;s and re-phrase it in terms of the above
definitions. Oyt Occurs if and only if inA’s interaction with A’, the variables

G(A), Val(A) ug, -+ ,up, 8, by, - -+, by_o @and the bith (chosen byOf) are such that:
1. fchal = uy;

2. fnode(ug) = ug_q;

144

3. s =10~ flen(uy) = £ — flen(ue_1) — 1 andfpath(u,_y) = (us, Usi1, "+ ,Up_1)°
4. Forallj € {0,1,--- ,s — 1}, u; = 0.
5. b:()andbsz bs+1 = =byo =0.f

The last condition ensures that the replies tigtrovides toA for all queries
of the formencrypt(u;, u;y1) (j > s) are real ciphertexts. (How so? For this, first
observe that the reply for any quesyicrypt(u;, u;i1), for j > s, is real if and only if
b; = b;_, and that for the quergncrypt(us, us11) is real if and only ifb = b,. Then
notice thatb,_, = 0 always, which means that f@s to occur, all the otheb;’s and
the bitb must also be zero.)

The probability thaBy,s; 0ccurs is thus:

fchal = uyp; frnode(ug) = up_q; flen(ue—y) = 0';

-1

frath(ue—1) = (ue—p—1,-+ s ur-1);

P[Ofs] = g P 1 1 '
=0

U=+ =wu_p_=0; b=0;

by =-=bpo=0

fechal = wy; fnode(wy) = wy_1;

flen(wy_1) = 1';

-1
frath(we—1) = (We—p—1,- - ,We—1);
=> > P
=0 wg7~--7w4_4/_16[n] Up = Wy 5 Up—pr—1 = Wyp—_pr 1,
Up_pr—g =+ =1ug = 0;
b=0; bpp_1=+=0b_2=0

The above expression oP|[Ofs| gives us some intuition about why

Claim 9.5.4 is correct: for any value éf € {0,...,¢ — 1} andwy, ..., we_p_1 € [n],
the probability thatu,, ..., uy_p_1) = (we, ..., we_p_1), Up—p—o = -+ = ug = 0 and
b="brp1=--=b_o = 0is exactly equal tax/2. (This probability is computed

5Throughout the proof of Claim 9.5.4 and Lemma 9.5.5, we denote patfi$Ai as sequences of nodes, but
without any zeroes prepended to the first node.

"While expressin®iast in terms offchal, fnode(-), fpath(-) etc., the first two conditions and the last condition are
suitably modified as follows— is thelastnode inV®"!(A), u,_; is thelastnode pointing at,, andb, bs, - - - , by_2
are all equal td. The other conditions remain the same as above.

145

using the independence property of thés and theb;’s; details appear below.) Thus,
P[Of«t] equalsy/2 multiplied by the probability of the everfithal = wy; frnode(w,) =
we—1; flen(we—q) =05 fpath(we—1) = (We_p_1,- -+ , W2, we_1) SUMmMed upver all
possible values of and thew;’s. Since the latter sum equalsthe value ofP Oy is
exactlya/2.

Translating this intuition into proof is, however, not straightforward since
we need to account for the dependencies betweentheand the random functions
fnode(-), fpath(-) and flen(-). The details of this process are somewhat cumbersome

and could be skipped for faster perusal of the rest of the proof of Theorem 9.3.3.

Let w denote the sequenc@u,_p_y,we_g, - ,we_y). For any? ¢
{0,-- .0 — 1} andw@ € [n]"+2, let B and E{"™ be events defined as follows:
o) fechal = we N fnode(w;) = w1 N flen(we—q) =¥’
1 prm—
A fpath(we—1) = (We—p—1,- -+ ,We—1)
gl _ w=wg N - N Uppg =Wp_p_y N Up_pr_g=""=1uy=0

2 =

ANb=0ANbyp1=--=b_9=0

P[Ost) can now be written succinctly as follows:

l—
P[Ofst] = Z Z
@ W) ' w W
Z | 7] Pl
S
Let us first computeP[Eé”’m] for any arbitrary¢’ and w. Notice that the

valuesuyg, - - - ,up, bs, - - - by_o are all generated by’ independently of each other and

of the bitb chosen byA”s oracle©}. Using this fact, computin@’[Ey’m] is quite

146

straightforward:
Up = Wy Up—1 = We—15 "5 Up—p—1 = Wp—p'—1
P[Ey’w)] = P Up—pr—g =+ =ug = 0;
b=0; bpp1="=b_2=0

= Pluy=w| Plup—1 = we1] - Plug—p_1 = we_p_1]
X P[Ug_gl_g = 0] : P[Ug_gl_g = 0] ce P[UO = O}
x Plb=0]-Plbyy_i = 0] Plby_s = 0]

e T (]

(To understand this step, observe the probability distribution associated

with theu;’s in line 001 of figure Figure 9.1)

1 1 A 1 —0'—1 1
B ﬁ’(znﬂ) ’<2n+1> T owm(2n+ 1)L

Plugging this into the expression fBY Oy, we get:

| Q

P [@first] =

MIQ
||MN

Z | B
wen)t

We now focus on the quantitl}'[Ey/’m | Eé”’m]. Let us denote this quantity

by p. Our goal will be to show that the sum

/—1
5= %
0'=0 Gen]t'+2

is equal to one. From this, the claim will follow immediately.

PROVING S, = 1: Fix ¢ andw. A transcript ofA’s execution is called good
transcript if the evenE1) occurs during that execution; it is callééd otherwise.
(Note: “Goodness” is a concept well-defined for any executiorAphot necessarily
one involving interaction withA’.) Given a transcript ofA’s execution, it is easy to

tell whether it is good or not—simply check if the queries contained in it satisfy the

147

following conditions: (i) fchal = wy; (ii) frnode(w,) = wy_q; (i) flen(w,—1) = ¢'; and

(iv) fpath(we—1) = (we_p_1,- -+ ,we_1). This essentially boils down to verifying that:
(a) challenge(wy) is the firstchallenge query made bw;

(b) foreveryj e {{—¢,--- ,{—1}, encrypt(w;_1,w,) is the first query of the form

encrypt(z,w;) made byA; and
(c) no query of the forrencrypt(z, w,_p—_1) IS ever made by.

A bad queryin a transcript is one that violates any of the above conditions;

that is, a query; € tis bad if

e q; = challenge(z) for somex # w, and the queryxhallenge(w,) does not

occur before it int; or

e q; = encrypt(z,w;) (forsomej € {¢{ —¢,--- ¢ — 1} andx # w;_,) and the

queryencrypt(w;_1,w;) does not occur before it ity or
e q; is of the formencrypt(z, wy_p_1).8

Clearly, every bad transcript contains at least one bad querylohbest good
prefixof a bad transcript = (q1,r1,--- ,qy,ry) IS the sequencyy, ri, -+, qi, 1) (0 <
f) such that the queries, - - - ,q; are all good but the quenry;,, is bad. Note: The
longest good prefix of a bad transcript could possibly be empty—the very first query in
the transcript could be bad.)

For any transcript, the relevanttranscript corresponding t9 rel(t), is de-
fined as follows: ift is good, rel(t) = t, elserel(t) is the longest good prefix af
Note that relevant transcripts contain only good queries. For any multiset of transcripts,
T, let rel(7) denote the multiset of relevant transcripts corresponding;tehat is,
rel(T) = {rel(t) | t € T}. An execution ofA is called relevant if it yields a relevant
transcript. (Here, when we say “execution”, we also refepadial executions ofA,

that is, executions upto a certain query, e.g. the first bad query, madlg by

80ne could consider adding another requirement to the definition of bad queries, namgly#hasrrupt (w;)
foranyj € {¢ — ¢ —1,--- ,£}; the proof remains essentially the same even without this extra condition.

148

Now let us consideA’s interaction withA’. Suppose that the eveﬂtﬁ”’m
is known to have occurred, which means thkgtomputed in line 003 of’) is equal

tol — ¢ —1. Let7 = denote the multiset of all possible transcripts that can be

(e’
| E;

generated giveﬂgl’m; thus, the size of , | B
2

sible assignments to the random variabdes - - | k,. 1, ky 1, , k, andr,, -+, 7y

/@), SayT, is equal to the number of pos-

¢

(generated by in line 004), the keyk (generated by)y), the randomnessg, used

in performing all encryption operations, and, finally, the random coigsused byA.

Some of the transcripts i#, |) are good while others are bad, and the quantity

we defined earlier on is the ratio of the number of good transcripfs |irbl§4’vm to T.
Consider the multisetel(7, | Ey/,m). There are two interesting features of this

multiset:

(a) First, notice that, for each transcriptﬂd(Y;|Ey/,m)), none of the replies given
to the adversary involve the random variablgs r, 1, -+, 7, at all. Why is
this? Given thatel""™ occurs, these variables could be used in replying to
queries either of the formncrypt(z,w;), or else of the formencrypt(z, w;)

(G € {s+ 1,---,¢}) provided the latter type of queries are made before
encrypt(w;_1,w;). But any such query would be a bad query, and, by defini-

tion, transcripts invel(7, | @) do not contain such queries!
2

Thus, every relevant execution Afin its interaction withA’ given 5™ is com-

pletely determined by an assignmentio- - - , ky, 1, ku, := k, kw1, ", kns

and torg andra. Letj’A |) denote the multiset of transcripts containing one
2

transcript for each such executioldte: TA =) contains the same transcripts

| By
as inrel(7, | L) butis smaller than it, because we ignore thes while enu-
2

merating these transcripts.)

(b) Now observe that in every transcriptfrj\‘Ew,m, the replies given for a query
of the formencrypt(z,y) is a real ciphertext (that i€, (k,)) and that of the
form challenge(z) is a real key (that is,). This is exactly the manner in which

replies to queries are created by the proced?dfg,, ,. Thus, if we were to con-

149

sider only relevant executions af the view of A when interacting withO%

ADPT,0

has the same distribution as its view in its interaction witigiven Eéel’m occurs.

It follows that the quantity is equal to the probability that eve) takes
place whem interacts withO% S, simply sums this probability over all possible

ADPT,0"

values of¢’ andw and must thus be equal to |

9.5.7 Proof of the Hybrid Cancellation Lemma Il (Lemma 9.5.5)

Let us first set up some new notations specific to the proof of the lemma.
We think of the interaction betweel and A as a game in whiclh makes multiple
gueries and\’ replies to these queries in some prescribed manner based on the random
variables ug, - -+ ,ug, bs, -+, bs_o (and other randomness involved in generating
keys, and forming ciphertexts). We denote this gameGaime,. Throughout the
proof of the lemma, we will be considering various modifications of this game and
making statements of the sortthe probability that eventE occurs in Game, is
the same as the probability thal occurs in some modified version Gfame,” .
To formalize such statements, we adopt the following convention: For any éyent
P[E] denotes the probability thaf occurs inGame,, while for any modification of

Game,, sayGame', the probability thaf? occurs inGame’ is denoted byP g ame [F]-

Proof of Part 1. Fix d andi such thatl € {2,--- ,n}andi € {1,--- ,d—1}.

Define eventss|) and £} as follows:

n

0 d,d 1 d,d
EY =\ el () and By =\/ e ((0)
dp=1

de=1
Now consider the following modified version 6Gfame,, which we denote byzame;.
In this modification,A’ first generates keyk, - - - , k, (Note: All keys are generated)
and, subsequently, repliesal encrypt queries using real ciphertexts, just as is done

by OF The responses to atlorrupt queries are also just as they are given by

ADPT,b"
P
OADPT,b'

For thechallenge queries, however’ does the following—it replies to the

150

first i queries of the fornthallenge(z) with a random element of0, 1}”, sampled
independently of,., while to the other queries of this form, its replykis

We claim that the view oA in Game, given Ec(l?i) occurs or giverEC(l}i) occurs
is the same as its view i@ame; given thaty"?'(A) has sizel. Itis easy to see why this

is true for the case Wheﬁgg occurs (follows almost immediately from the definition of

d,dy)

(
evento ;1

((0))). The other part is somewhat more non-trivial and we will prove it
in greater detail.
Given that evenEfl?i) occurs, the replies th@t’ provides toA in Game, are

decided as follows:

(a) for each query of the forrhallenge(x) that is issuedbeforetheith challenge
query—which is the same ahallenge(u,)—the reply is a random key from
{0,1}", sampled independently @f, and for each querghallenge(z) issued
aftertheith challenge query, the reply i<,;

(b) for theith challenge query, namelythallenge(uy), the reply isk,,.

(c) for each query of the forrncrypt(z, u,), the reply isEy, (1.,). (This is because,
given Ec(l?i) occurs, the reply for the last query of the foefcrypt(x, u,)—which
is the same asncrypt(us—1,u,)—is a fake ciphertexty,, (r,,). This means

that the reply foreveryquery of that form must be fake, too.)
(d) forevery otheencrypt (andcorrupt) query, the reply is just as given bS)EDPT’b.

Notice thatk,, andr,, are generated b¥’ independently of each other and
are not used in replying to any query other than that of the ferwxrypt(z,u,) or

challenge(u,). So, if we modify conditions (b) and (c) as below
(b’) for theith challenge query, namelyhallenge(uy), the reply isr,,; and
(c) for each query of the formncrypt(z, u,), the reply isEy, (k.,).

the distribution of the replies given # remains unmodified. Conditions (a), (b’), (c)

and (d) can now succinctly be written as follows:

151

(@”) for each querghallenge(x) thatis issuedbefore thgi + 1)th challenge query
the reply is a random key frod0, 1}, sampled independently &f, and for each
querychallenge(x) issuedafterthe (i + 1)th challenge query (and including
it), the reply isk,;

(b") for eachencrypt andcorrupt query, the reply is just as given Iy’

DPT,b"

This is exactly the manner in which repliesA& queries are decided iGame;. As
such, the view ofA given Ec(l?i) occurs is the same as its view@ame; givenV<"a!(A)
has sizeli.

We are left with proving thaP[E.)] = P[E})]. The proof for this statement
uses techniques similar to those used to prove Claim 9.5.4; we will, thus, omit many
details.

For anyw € [n], let fnode(w), fpath(w) andflen(w) be random variables as
defined in Section 9.5.6. Létode(w) be the random variable corresponding to st
node pointing atv in G(A). Let 9 denote the event that the size ! (A) equals
d and@éf)) (w) (w € [n]) the event tha®® occurs and théth node in it isw. As with
fnode(w), fpath(w) andflen(w), the eventsb@ @Ejl)) (w) and the variablénode(w) are
well-defined for any execution &, not necessarily one involving interaction with

The probability that everEC(lf? occurs can be written in terms of these random

variables as follows:

0 d.d
PIE] = D PO (D))
dp=1
CI)E?)) (we); Indegree(uy) = dy; Inode(up) = up_;
n (-1 ﬂe’l"l,(Ug_l) = gla
= > D> P fpath(ug—) = (we—p—1,- -+, te-1);
dy=1£'=0
U’[—Z’—QZ"':UOZO; b:]_’
I b1 = =bo=1 |

To understand the last part of this step (that is, why we requibe ,_1,--- b;_»

all to be equal tal), observe that under the occurrenceEJ(dﬂ), (a) the reply to the

152

query encrypt(u,_1,u,) must be fake, which means that ; © b,_» = 1 and so
bi—» = 1; and (b) the reply to all queries of the foremcrypt(u;_1,u;) (j < [and

j>¢—1— flen(uy_1)) must be real, which means thiat ; ® b, 3 = 0, b,_3 P by_4 =

07 R bl—ﬂen(ug,l) S bé—l—ﬂen(w 1) O bé 1—flen(ug—1) @®b=0.
For any ¢ ¢ {0,---,¢ — 1}, and any vector of valueswy =
(We_p_1,--- ,wy;) € [n]¢F2, let Eyl’m andEg"m be events defined as follows:
. < (I)Ej))(’wg) A Indegree(w;) = dy N Inode(w;) = we—1 N)
flen(we_q) =0 N fpath(we_1) = (we_pr_1,- - ,We_1)
2T _ Up=1wy N =+ N Up_p—1 = Wp—p—1 N\ Up—pr_g="--=u =0A
5 =
b=1 AN bi_p_1=---=b_o=1

P[Ec(l?l.)] can now be expressed in terms of these events as follows:

PIEY] — iz S PEST; B

dz 14 = E[n]4/+2

_ 3 S PE | B BT

de=10'=0 7 c[n)¥'+2

As in the proof of Claim 9.5.4, we can show trB@Ey"m] is equal toa/2 for every

choice of?’ andw, and so

We now claim that the conditional probabilily[Efg/’B) | Ey/’m] is equal
to the probability of occurrence oﬂé"m in Game;. The proof of this claim uses
the same ideas as used in the proof of Claim 9.5.4 (specifically, one needs to carefully
establish a one-to-one correspondence between transcripts—complete ones as well as
partial ones—that do not vioIatEf”’l_”)) in Game, and those that do not violate it in

Game,); details of the proof of the claim are omitted. Using the claim, we can re-write

153

n

/-1
PEY = 235 Y Poame B

de=10'=0 35 g[n)¥' +2

[\

@E?))(wg); Indegree(wy) = dy;

= Z Z Z Pgame,; | lnode(w,) = wy_1; flen(we_y) =

l\DIQ

=1/0= n]t/+2
O = —
- 9 Z Z PGame, [(I)E?))(we); Indegree(w;) = d]
wy=1dy=1
= % ’ PGamei [(b(d)]

Using essentially the same approach, we can also qu@’li)] to

(0/2)P Game, [®@)]. First, define two event8'*"™) and E{"™ as follows:

BT _ (@Efil)(wg) A Indegree(w;) = dy N frnode(wy) = wy—y)
! —
A ﬂen(wg,l) = g/ A fpath(wg,l) = (U)g,glfl, s ,U)z,1>
FOT) _ (wp=wg A oo N Uppg = Wep—1 N Up_p_p=++=1uy=0 >
§ —
ANb=0 A bp_p_1=---=by_o=0

(Notice howE{el’m differs from Efel’m: We requirew, to be the(i + 1)th node in

(')

Vehal(A) andw,_; to be thefirst node pointing atv,. Also notice that inES "/, we

require theb,’s to be equal t@), not1.) Now expressP[E } in terms of these events:

PEY] — iz S PECT: BT

de=10'=0 5 c[n)¥' +2

n {—1
= >3 3> PECVIET-PEST

dp=10'=0 5 c[p)¥' +2

- 5NS S R A

dp=10'=0 g g[n]¥ +2

154

Again, P[E\" @) | ES “’)] can be shown to be equal Rgame, [F\" w)] using which

the desired expression f&t| dﬂ.] is easily obtained:

PIEY] = 5 iZ Z PGame, B "]

dp=1/0'= Z’+2

. @Edil)(wg)' Indegree(wy) = dy;
a
= g'ZZ Z PGame, | frode(w;) = wy_1; flen(w_1) = £
de=10'= e +2
fpath(we_1) = (We—p—1,- -+, We_1)
a
O Puma 8 (wr)s Indegree(un) = dg
W= ldg 1
= %'PGamei[(I)(d)] I

Proof of Part 2. Fix j,d,d,,--- ,d; andi, i, --- ,i; such that € [d],i, €

[dy],--- ,i; € [d;] and fix a bitvectorv’; € {0,1}*~7. Consider the following mod-
ified version ofGame,, which we callGame;; . In the setup phasey’ first gen-
erates the values;, u;q,--- ,up and b;,--- , by_o, by_y and it does so exactly as in
the original versionu, andu,_, are sampled uniformly at random froml|; for each
jed{j-,0—2},Pluy =0]=1/(2n+ 1) andP[u;, = z] (for anyz € [n]) equals
2/(2n + 1); by = 0; and, b;,--- , by_ are all sampled uniformly at random from
{0,1}. A’thensetd; 1 =v; ®v;41 & --- By Finally, A’ generates keyk,, - - - , k,
(Note again: Allkeys are generated!) and also some other random vajues- , r,,
(each sampled independently and uniformly at random ffom }").

In the execution phase, the repliesAs queries are decided as follows: For
any corrupt query, corrupt(x), the reply is simplyk,; for every query of the form
challenge(x) made beforehallenge(uy), the reply is a random bitstring, generated
independently of;,, and for every such query made aft@nllenge(u,) (and including
it as well), the reply isk,. For every query of the formncrypt(u;/,u;41) such that

j ed{j,---,0—1}, thereplyisreal, that i, (k..),ifandonlyifb; = by, (and

Ut 4

155

is fake, that isIEkuj, (ru,,,) otherwise); for every query of the forencrypt(z,u;)
made before (resb. afteshcrypt(u;_1,u;), the reply is fake (resp. real). For all other
encrypt queries, except those of the foemcrypt(z, uy), the reply is always real. For
queries of the fornencrypt(z, u;), the matter is a bit trickythe first:; queries of this
form (;; as fixed earlier on) are replied to with fake ciphertexts (r.,)) while the rest
with real onesE;, (k.,)).

For anyw € [n], and any execution df either inGame, or in Game;; , we

dd[<—)

define the following event, denotdt{ w). This event occurs if and only if

R

e VMl(A) has sizel andu, is theith node in it; and

e Forallj’ € {j+1,---,¢}, Indegree(u;) = dj, uj_; is theiyth node pointing at
u;, in G(A) and the reply given for quemnhcrypt(u; 1, u;) is real if and only if
vjy—1 = 0; and

o Indegree(u;) = d; andw is thei,;th node pointing at; in G(A).

Let 440 dm d;)(;) denote the event thait ; dd“ s)(_> w) occurs for

(2711’.7' 1) Z)

somew € [n]; that is,q)(‘,i’.d"‘ T) = Ve Pl .d)(_>j,). Let B (V)

(400, ij+1) (43, 5i5)
andE\) (/) be defined as follows:
(© (dydg, - dy)
Ej,g,i(7j> = @(z ué zj) (]‘ ’ 7])
(d d@ 1, d) —
(4,30, 27_]; zJ—H)(O) Vj)

E_glcil(?]) = 0
Our task is to show thak'"),(7/;) = E\4,(7;), thatis, ()E\% (V) ~
E]“gl(yj) and (b) P| Jdl(?-)} = P[E](gi(?j)] Proving part (a) is relatively
simple—one only needs to argue that the viewAoh Game, given E]((g (V;) oc-

curs or glvenE](.(i ;(77;) occurs is the same as its view@ame; ;, given that the event
(dvdé d]+1 d)(
(g, 5 41)

initions of £ ;(7/), EJ(,” .(—>) and ofd“%414) (37) - (The details of the proof

d,i J (7'71[.7')ij +l)

;) occurs in that game. This follows almostimmediately from the def-

are omitted.) Provin@®[E! id (T = P[E](ﬁl(i,i(?j)} is the hard part and we sketch the
proof for this here. The proof, as in the proof of part 1, involves expressing each of these

probabilities as a sum of various conditional probabilities; in the current proof, though,

156

each such conditional probability expressiBf¥; | Es] is equated to an expression of
the formPGamej,ij [E4], and this is then used to perform the summation.

First, focus orP[EJ(.f)ii(7j)]. Notice that wherEJ(.fgﬁi(7j) occurs inGamey,
u;_1 is thei;th node pointing at;; and the reply to the quesnacrypt(u,_1, u;) is fake.
Since the replies to all queries of the foemcrypt(u;_1,u;) for j* > j are ascertained
by the vectorr’; and since, fos < j' < j, every such query is replied to with a real
ciphertext, there is exactly one assignment to the variaglesb,_», - - - , b5, b (where
bis selected by the procedut®) for which E%i(?j) can occur. A careful analysis of

the code ofA’ reveals that this assignment is as follows:

bj—l = Vj D Vjt1 DD
b:bS:"':bj—3:bj—2 = 1@Vj@yj+1@"'@yf—l
Using this observation, we can WrEe[EJ(.ii,i(?j)} as follows:
[(ddy, - d;]
(I)Ei,izl:---,ijg)(?muj—l)5 flen(uj—1) = €5
fpath(uj—y) = (uj—p—1, - uj);
j—1 Uiip_g =+ =1y =0
P(Eja, (V)] = D P J |
=0 bj—l =ViDVj1 DDy,
b — b]fe/fl — .. =]72
I =10v;0vjn®- - B]
Now, for any?’ € {0,---,j — 1} and any vectors = (w;_p_1,- - ,w;_1) € [0+,

let us define the following events:

E(éllvw) — (i,i[,"',l]‘)
J?
A fpath(wj—1) = (wj—p—1, - wj-1)
Uj—1 = Wj—-1 A Uj—2 = Wj—2 VARV Uj—pr—1 = Wj—pr—1 A
() _
Ej,? = ujff/fQZ"':u():O/\bj71:VjEBVj+1€B"'EBV£71/\

b=bjp 1= =bo=10r; OV ® O

157

P[Ej(.fg,i(7j)] can now be written succinctly as:

P[Ea(‘,(g,i(7j)] = Z Z P[E); Eﬁi’“’)]

Oqe[n]//‘*‘l

4R} 4R} (R}

- Z > PIELTELT]PELY
wen)+1

Leta/ = P[E](f @] It can be checked easily that for aflyc {0,--- ,5 — 1} and any

M= [n]”“,

Y sonry 17 <l
W if j =1
Thus,
j—1
PIEO. (V)] = o> S PESD|ESY)

=0 G e[p)t'+1

We claim that the probabilitP[Ej(.ﬁ"m | E](.g’m] is equal to the probability thdff{’m
occurs inGame,;,, that is, P[ES™) | EG™)) = PGame, [F)1 1. The intuition
behind this is the following—given theﬂ:’%’m occurs inGameg, none of the random
valuesr;_,_q,--- , ;1 are used in any execution Afunless and until one or more con-
ditions underEfl"m are violated. Thus, if we consider transcripts of this interaction—
given Ej(gm occurs—only upto the point where a violationﬁﬁ’m is found (that is,
truncate the “bad” transcripts at the point where they start violaﬁfﬁgﬁ)), the tran-
scripts would look exactly like one in the interactionfofvith A’ in Game; ;. In effect,
there is a one-to-one correspondence between “non-violating” transcripts in these two
interactions. The probablllt}?[e D) | E (@] is the ratio of thegood(that is, untrun-
cated) transcripts to the total number of transcript&iime,, which, in the setting of
Game;; , is the same aEGame” [EJ(K1 “’)]. The details of the proof are similar to those
in the proof of Claim 9.5.4 and are omitted.

158

Using the above claim, we write:

7j—1
0 VW
PIESL(T)] = o> > Paame,, By "]
V=0 en)¥+1

(d,dg, - ,d;) —)
(m;zj)] (v gs wjf1)7
— flen(w;_y) = 1';
g a/ . Z Z PGamejTij J
=0 ﬁ)e[n]lﬁ%l fpath(wj—l) =
i (wj'_g/_l’ Ce 7wj—l) |

Jj—1
dydg, ,d;
= o Z ZPGamej,i,- [q)gi,i;---,z'jf)(ﬁjjwj—1)§ flen(w;—1) = 5/]
wjfle[n] 2'=0

(d,dg, ,dj+1,dj)(7)]

/
= a - PGamej,i. [® Vi

J (i>ilv""ij+l)
And now using essentially the same approach one can also equate
P[ES4,(7V))]to

J,d,i
(dydg, - ,djt1,dj5)
(4, ij41)

o' Pgame,,, [(7;)]. We briefly sketch here how this is done, highlight-
ing only the parts where the proof differs from that for the casE]ﬁfi(ﬁ’j).

WhenE{4 (V) = @Efl‘?:ﬁl”dﬁl)(o - V;) occurs inGamey, u;_; is the
(¢; + 1)th node pointing at; and the reply to the quergncrypt(u;_1,u;) is real.
The replies to all queriesncrypt(u;—1,u;) for j/ > j are ascertained by the vector
7, and fors < j' < j, every such query is replied to with a real ciphertext. This
implies that there is exactly one assignment to the variables b;_,- - - , b5, b for

which E§37i(7j) can occur, which is as follows:

Now, for any?’ € {0,---,j — 1} and any vectoiw = (w; g1, ,w; 1) € [n]¢+1,
let us define the following events:

. (d,dgy- ,dj+1,d5)
~(£l7w) — (7’7ZZ77/LJ+1717+1)

=
A fpath(w;—) = (wj—p—1, -+, wj—1)

(Vj wjm1) A flen(wj_q) =1

Uj—1 = Wj—-1 A Uj—2 = Wj—2 VARV Uj—pr—1 = Wj—pr—1 A

(W) _
Ej’Q = Uj—pr—2 =+ = Uy = 0A

b=0bjp1="=bjo=b1=v;0Vv 1D D,

159

Notice howEf{’m differs fromE](.ﬁ’m: we requirew;_; to be the(i; + 1)th node (and

not thei;th one) pointing at,;. P[Ej(ﬁ,i(?j)} can be written in terms of these events as:

]. ~ él’m ~ EI,E)
P[E]((il(7.7):| = Z P[E(.); Ej(g)]

which can (using the same techniques as used in the cﬁﬁ}gf?j)) be shown to be

equal to

= od- Z Z PGameJ i ~(',

0'=0 Wefn]¢'+1

El

[—

)

(d7d 7"'7d' 7d) . .
= o Z Z Pc (D(iviel:---,ijﬁ,lijjrl)<7j’wj*l)’ flen(w;) = 0;
ame]Z
wen]z/+1 fpath(qu) = (wjfzuh T >wj71>

(d7d 7"'7d' 7d) _>
Y S P B (7w fen(uy) =
u}jfle[n] =0

(d’dév""dj+17dj)(7j)] I

= a PGameJ’zJ[(iviéz'" 77"j+1)

Proof of Part 3. The proof of this part follows from the defini-

tion of O (¥, .,). When O (¥, ;) occurs, the in-degree

(3,20,
of u;_; in G(A) is either zero or in the range of through n. If the in-
degree is zero, this is the same as the occurrenceé 61‘“ i 0) 01 - V1)

If the in-degree is non-zero (say, it is equal #_;), then u;_, must be the

(e s ds -
Ty 1)(0 - Vi)

must occur. This gives us the desired expression @)FW Z) (H 1)
I

first node pointing atu;,_; in G(A) and the event@

Proof of Part 4. The proof of part (a) is relatively straightforward and follows
(d d,;

immediately from the definition 0<I/) and by inspection of the code Af. No-

160

ddg

tice that whenlf) oceurs, the evemyy must occur (that isyg, uq, - - -, u, must

i1)
all be non-zero and must form a valid pathdfA)), and since the depth ¢f(A) is at
most/, Indegree(uy) must equab. Also, for eachj’ € {0,---,¢ — 2}, b must equal

v; for “some”v; € {0, 1} and for each such assignment to thes, the reply given for
the queryencrypt(u;_q,u;), whenj’” > 1, is real if and only ifv;,_y @ vj_5 = 0;
when ;' = 1, the reply is real if and only ity @ b = 0. Thus, the occurrence
of \IJE%Z Zd)l) is equivalent to the occurrence @I‘d e §)(XOR(b, 7)) for “some”
choice ofvy, v, -+ , 1,5 € {0,1}. From this, the deswed result follows.

The proof of part 4(b) is similar to the proof of part 2. As in that proof, we first
define a new game played betwe&nandA which is the same a&ame;;; but with
two differences:(i) In the setup phaséy’ selectsb;_; to be equal tas (as opposed to
v; @ - @y asinGame;;); and(ii) In the execution phasé, replies toall queries
of the formencrypt(z, u;) with fake ciphertexts (as opposed to just the firsjueries
as inGame;;;). We denote this modified game yame; oy and for any event’, we

denote the probability thall occurs duringGame; o bY Pgame, ,[F]. Note that the

(d,dg, ,dj11,d;)(
(480, yij41)

,all

eventd ;) is well-defined for the gam€&ame; 4.

Let Ejg;, = Vi A(b=v); and
1) ! (dydg,+ dj,dj_1)
EJ("d:i:V - \/ \/ G(i,i;---,ij,]djil)l (1 ’ XOR(Va 7]‘—1))

dj—1=1 \vj_1,,vp_2€{0,1}

Let &3 = @i Pl J(XOR(v, 7,.1)). It is easy to check that
im
the view of A in Game, given \Ifﬁf’i‘j‘fﬁ” é;i;) A (b = v) occurs is the same as its

view in Game;_; 4 given (ID(_f?fll) occurs for somed;_; € [n] U {0} and some

V1 € {0,1}*7 (such thaty, ; = 0). (This is also the same a&'s view in

Game, given <I>(_d,j:1) occurs for somel;_; and7;_,.) At the same time, given that

(dvdfv 7d 7dj 1
®(zw Jg,di—1)

) (1 XOR(w, 7';_1)) occurs inGamey, the view ofA is identically dis-

dj_ s .
(J 1) occurs. In other wordsA’s view in

()

tributed as its view inGame;_; 5 given U

Game, given £\ occurs for

i diy IS the same as its view Iﬁ}ame] Lal given &=

161

somed;_; and?’;_; € {0,1}*77 (v,_, = 0). From this, it follows thatz jdw o~ EJ(.RLV.
We are left with proving P[EJ((gw] = P[EJ(.B,LV]. Fix vy =
0. For anywj i,--- v, we use), as shorthand for the summation

Z(ljj_h'-- 7l/g_Q)E{O,l}Z*j *
First, focus orP[E\") ; ,]. This probability can be written in terms of the event
CID(;?‘II), as follows:
-

PEG, = 3 Y Plo% wmuw= e muy =0 b=y]

.....

The probability that evenb(dj*l) = @Effjg Zd) “-(XOR(v, 7;_1)) occurs inGame,
givenuy, - - - ,uj_o are all zero and = v is simply equal to the probability th@t(dJ 1

occurs inGame;_q 4. SO,

-1 n
(0) 1 1 (dj—1)
Pl = 5 (mer) X 3 Powmn [0
d

i—1=0Vv5_1

,,,,,,

The probability of occurrence of evelﬂ i, (in Gamey) can also be shown to be

equal to the above quantity. First, let us split this event based on the in-degree of node

162

u;_1 in G(A) being zero or non-zero.
1 dydg, dj,dj
PEN, = Y > PG I(1XORW, Vo))

dydgy d;.0 ,
= > P (I)Ei,z';~-~,¢j) '(XOR(v, 7;-1));
. =0; b=v

’L[,O:-.._uj_2_

[\
-~

1
n Jj—2
Zdj_lil Zl/j_L £—2 ZZ’ZO wj_z,...wjie/72€[7’l]

(dydg, dj,d;i_1) .
(”ZZ ’ijfdjil)l (XOR(», 7]’—1)’ Wj—2);

flen(wj—z) = '

b | Jpath(wia) = (Wj—p—z, - wia);
Uj—2 = Wj—2; -5 Uj_p—2 = Wj_p_2;
’U/jig/ig —_ .. = uo —= 0’ b]*2 e y,

b:bj_zr_2:~~': ,7—3:1@1/

~\~
= P2

The first termp, in the right hand side can easily be shown to be equal to

1 1 -1 p 1)
2 oir1) X Powmea 28]
I/j,

1,...,0—2

The second termy,, is harder to tackle. For an € {0,---,j — 2} and w

(wj_p_a,- -+ ,wj_s) € [n]“*+1, define the following two events:

dydy, - di,di_
E(@’,w) _ Eiyiff'“ ijd]_il)l)(XOR(V, 7)j—l)v wj—2>;

v, 1
’ flen(wj—2) = ' fpath(w;—2) = (Wj—p—2,- -, Wj—2)

(f’,W) _ uj—Z = wj—Q; SN uj—fl_2 = wj_gl_z; U’j—f/—fﬂ =.-.=yy= O,
j7y72 -
bj72:V;b:bjfz/72:.":bj73:1@]/

163

P[E}i;”] for any valid choice of’ andw, is equal tOW Thus,

pe Y% Z > PlEL: LY

dji—1=1vj_1,.. 0—2 wWen]t'+1
Z/TU’ e,*} Z/’A’
- ¥ z > o[BI B PR
dji_1=1vj_1,. 0-2 weln]¥+1
_ (E w (Z w)
B 2n+1 Z > Z 2 [Ewl | E5 }
J 1=1vj_1,... ¢0-2 G TL]Z/Jrl

For any fixed? andw, the conditional probability? [glw] is equal to the

]I/l ‘]l/2

probability that eventEJ(Kylw) occurs inGame,_; 4 (again, this involves showing a

one-to-one correspondence between transcripisaime, conditioned on evenffl,;”)
occurring and transcripts Bame;_ 4; details are omitted) and using this fact, we get

thatp, equals

—1 (¢ 7)
2(2n+ 1)j—1 Z Z PGame] 1al [Ej%l }

w n]W'H

Y
$

I
—

\
-
X
[
-
~

[
»
(3

A
O
m

,,,,,

,,,,,

(dde,+ dj,dj—1) .
(I)(i’iéli“' 7ij7jdjil)1 (XOR(v, 71’—1)7 wj_s);

PGamej,Lau ﬂen(w‘,Q) = g/;

fpath(w;j—s) = (Wj_p_2,- -+ ,wj_2)

i—1=1Vj_1,. -2 wj_2€[n]

(dde,- dj.d
PGamej_lﬂa" |:(b(l,lgl: ~,ZJ’]d]J11 (XOR(V V] 1) 'LUJ 2)]
1 - (ddé7 ~d
B W Z Z PGameg Ll [(P(l% 723) (XOR())]
djfl—l Vi1,..,

- W Z Z PGameJ 1,all |:(I)7]]:11):|

164

P[Ej(',ld),i,y] = p1+Dp2

n

1 .
= m Z Z PGame7 1,all |:(I)(VJJ 1):| |

AAAAA

9.5.8 Proof of the Telescoping Sums Lemma (Lemma 9.5.6)

We will prove the lemma using induction ovgrRecall the expression fak;

(equation 9.5):

PO W(T0) =]

“o Z Ry Jrl
DD IREDY =g
deln), de€ln], dj+1€[n, — P[@A’ /] “41’ . i—ﬁl»l b=1]
i€ld] i€lde] ij41€[d;j41]
Whenj; = 0, this becomes:
SO ol R
(d,d dq
defn]. dcln], dic[n — P[Oq; (i,z'Z...,m);b = 1]

i€[d] ip€[dg] Zle[dﬂ

Using the hybrid cancellation lemma, part 4, we can re-write this as

P[Oa; /71 (XOR(0, 7))]

(2,20, 11)

D I SRS

de(n],de€[n], di1€[n], vo,v1, ,vi—2€{0,1},

1€[d]igEdy i1€[d1] vg—1=0 -]-:)[G)Aa(_)(d’d(Z ll) (XOR())]

(4,
From this, and the fact that, = A, it follows that Lemma 9.5.6 is true fgr= 0

Suppose that for some> 0, the lemmais true fof = j — 1, that is:

P[0 Oy, 13 (XOR(0, 75_))
5.y ¥
de[n],d E[n],--~,d3€[n],u3_ o vp—2€{0,1}, (d,dyg,
iE[d],ifEd@y",ijE[d}} ' Véjlzo - P[@A;G(zze Z (XOR< 1))]

We will show that the lemma is also true for= j. In the sequel, we will denote any
sequence of summations of the form

de[n], de€ln), dj€[n],
i€[d] ip€[dy] i;€[d;]

165

bY > 4id,.a;,:, @and oneof the formy -, .., . v, hefo1y, BY D2, = From the inductive
vy_1=0

hypothesis, we have:

(d,dy,

5 (XOR(0, 7))

J

P[Oa; @

Z3_1 - Z Z

d,i,dg, ,d=is (d,dg,

]]V] 1 _P[@A’@

(didg--d3)
P[OA; O,) ((Vj—p Vi OV, Vg DY)

d)
O XOR(L T)]

:ZZ

dyiydp, do i (dydg, - ,d-)
ol vl [@Aae)(zul w§ (7 Vi Vi By, Ve B V)]

Let us now expand the innermost sequence of summations based on the value
assigned to;_,. We get thaTZ;_1 equals

P[Oa; 0 Zl;jz i5) ((07VJ’VJ DVt V2 D vi-1))]
+ PO O (LT @ vy, v @ i)
d,i,d(zd] o4 % - P[@A;@Ejzde z];)((lvljj’yj DV Ve ® 1))
~ PO O (0755 @ 500 s @)
POw O 0. XOR0. 7))]
i + PO O 17 (1 XOR(1L, ;)]
- d,i,d,zdj . Z ~ PO 0 (1-XOR(0, 7))
" | _ ppex On 3 (0 XOR(1, ;)]
-P[@AQGEZZZZ /(0 XOR(0, 7)) -
- P[@A;@(f[f 0 X0R(0, 7))
- Xdil o dje[n]lje[d}']%: + PlOa O ij§>(1 - XOR(1,73))]
~ P06, (0- XOR(L. 7))

166

and this can be written as:

(d,dg,
Plox 6L <o XOR(0, 7))
Ziﬁe[df] ddz
’ ’ — P[@A,@ s (1XOR(,I/]))]
dyiydgyesds g 5851 dz€n] (d,dg,-
ety el Plow el <1 XOR(1, >>]
+ ZZ}E[d}] (ddg

And now let us apply the hybrid cancellation lemma (part 2) to the terms in

the innermost summations. We get t@tl equals

(dydp,- \d5 4 d;
PO O mj))(O XOR(0, 7 ;)]
(dydp,-- s 4 ds
— PlOAi O, i] '(1-XOR(0, 7))

POENp 3P

e i e ICICH §<1 XOR(1, 7;))]
+ ’ J+ J
— P[Oa; 01 1 (0 XOR(L, 75))]

(isigy i34 451) |
(9.6)
Now, let us recall the expression fav; (equation (9.5)), and let us re-write it in terms

of the ©’s by invoking part 4 of the hybrid cancellation lemma

As =
(dody, -~ ds 1 ds
Z Z P[@A;G(”; s jld) (1 XOR())]
(ddg, ds
disdp, s 315y 0<d5<n v - Vl;g 26(;{01} - [@A,@W H:lj) (1-XOR(1,))]
(dydg, s 1.d5)
. Z GAa@zz; lJJ:dJ) (1 XOR())]
= (dg ;)
Qe is gy dscln] o7 |~ IJCINICHI Z;dj) (1-XOR(1, 73))]
(dydg, - ,d
Loy oy PlOA O[T 5 (1. XOR(0, 7))
(dds) .
disder i1y vE |7 P[@A;G)(“; Zgl) (1-XOR(1,]))]

(9.7)

167

Let us now use the above equation and equation (9.6) to exﬁr;eiasterms of thed’s:

A=A + A

(dde, - d; 4 1,d5)

P[@A;@zu 5 4001)

(d,dyg,- ,d;
_ . J+1°]
P[@A’@zu 54 d5)

(o XOR(0,
'(1- XOR(0,

7))
7))

(d,de, d-

P[@A;@

(4,00,

+

+

- P[@A;@

- P[@A; e

(dvdl

(d d/z
(die,

J
(d dg,

(isiey

d;

+1
9 (1 XOR(1,

dy+1 j

et '(0- XOR(1,

J+1 J

s (1. XOR(0,
-,ds

G ”(1 XOR(1,

7))l

7))

Zh))

Z0))

L +1 J) .

P[Oa; O 1 1 (1- XOR(0,

(4,i¢,
— P[OA; 0, :0) (1- XOR(

J+1
+

IO

ey ;58540 V

ddz d

(4,2¢,

7))l

Notice that two pairs of terms in the first sequence of summations (enclosed in the tall

square brace% . -}) cancel out, leaving us with the following:

(d,de, ds

Gr10d5)
Ze _ Z Z Z @Aa@zuddz]Jrld) (O XOR())]
J sy ods
dide, sy dseln] ot | P[@A,@(Wl ,: (0 XOR(1,7;))]
(dydg,-- ,d-
@A,@”]“ (1 XOR(0,))]
+ D Z aditha i1 0
dide oy vt [T P @A7@W 51.0) (1 XOR(L, j))]
[(d,de, J+1 i
PloA O 07 (1 XOR(0, 7))
(dude - d5.,, ds
+ Zd G[n]P[@A’@(zul zﬁlrl) (O XOR(j))]
dyi,d ,...,d5. 11‘3 1 vl (d,d d] 1,0
¢ +0+ Vs - P[@A;@“; lJ;l— 0) (1 XOR())]
(d,d
- Zd]e[n]P[QAHGH/Z (O XOR())]

One final invocation of the hybrid cancellation lemma (this time, part 3) gives us the

168

desired expression fak;:

(dydg,,)
_ P[Oa; 0 T XOR(0
S ki e poR0.7)
dideyds iy v |7 P| @A,Gl%, s (XOR())]
(d,dg,
Z Z Z Z P[@A;G)(zz; z]JH (XOR())] I
’ (d,dg, ; 1)
de[n], d¢€[n], d]+1€[n] v; - vg—2€{0,1}, - P[GA;@(zz; +1_ (XOR(j))]
i€[d] ig€ldy] i5,q€lds 4] vg_1=0

The main result of this chapter, Theorem 9.3.3, was previously published
in [37]. An analysis of theplain-LKH™ protocol was also published in that work but

the presentation is slightly different in the current work.

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

M. Abadi and P. Rogaway. Reconciling two views of cryptography (the compu-
tational soundness of formal encryptiodpurnal of Cryptology15(2):103-127,
2002.

M. Abadi and B. Warinschi. Security analysis of cryptographically controlled ac-
cess to xml documents. Proceedings of the 24th ACM Symposium on Principles
of Database Systems (POD$pges 108-117, Baltimore, Maryland, June 2005.
ACM.

D. Beaver and S. Haber. Cryptographic protocols provably secure against dynamic
adversaries. In R. A. Rueppel, editddvances in Cryptology — EUROCRYPT,;92
volume 658 ofLecture Notes in Computer Sciengages 307-323, Balatonfred,
Hungary, May 24-28, 1992. Springer-Verlag, Berlin, Germany.

M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. 188th Annual Symposium on Foundations of Computer
Sciencepages 394-403, Miami Beach, Florida, Oct. 19-22, 1997. IEEE Computer
Society Press.

M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining
message authentication code. In Y. Desmedt, editdyances in Cryptology —
CRYPTO’94 volume 839 ofLecture Notes in Computer Scienpages 341-358,
Santa Barbara, CA, USA, Aug. 21-25, 1994. Springer-Verlag, Berlin, Germany.

M. Bellare and B. Yee. Forward security in private key cryptography. In M. Joye,
editor, Topics in Cryptology — CT-RSA 200@olume 2612 ofLecture Notes in
Computer Sciengepages 1-18, San Francisco, CA, USA, Apr. 13-17, 2003.
Springer-Verlag, Berlin, Germany.

M. Blum and S. Micali. How to generate cryptographically strong sequences of
pseudorandom bitsSIAM Journal on Computindg.3(4):850-864, 1984.

D. Boneh, C. Gentry, and B. Waters. Collusion resistant broadcast encryption with
short ciphertexts and private keys. In V. Shoup, editalyances in Cryptology -
CRYPTO 2005volume 3621 olecture Notes in Computer Sciengages 258—
275, Santa Barbara, CA, USA, August 2005. Springer Verlag, Berlin, Germany.

169

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

170

R. Canetti, U. Feige, O. Goldreich, and M. Naor. Adaptively secure multiparty
computation. In28th Annual ACM Symposium on Theory of Computpages
639-648, Philadephia, Pennsylvania, USA, May 22-24, 1996. ACM Press.

R. Canetti, J. Garay, G. ltkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast
security: A taxonomy and some efficient constructionsPioceedings of INFO-
COM 1999 volume 2, pages 708—-716, New York, NY, USA, March 1999. IEEE.

R. Canetti, S. Halevi, and J. Katz. Adaptively secure non-interactive public key
encryption. In J. Kilian, editorTCC '05: Second Theory of Cryptography Con-
ference volume 3378 ofLecture Notes in Computer Sciengeages 150-168.
Springer-Verlag, February 2005.

R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual
authentication and key exchange protocols. In S. Halevi and T. Rabin, editors,
TCC ’'06: Third Theory of Cryptography Conferenocelume 3876 ofLecture
Notes in Computer Sciengeages 380—403. Springer-Verlag, 2006.

R. Canetti, T. Malkin, and K. Nissim. Efficient communication-storage tradeoffs
for multicast encryption. In J. Stern, editdrdvances in Cryptology - Eurocrypt
1999 volume 1592 otf_ecture Notes in Computer Scien&sague, Czech Reppub-
lic, May 1999. Springer-Verlag.

I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha. Key management
for secure internet multicast using boolean function minimization techniques. In
Proceedings of IEEE Infocomm ’'99olume 2, pages 689-698, New York, NY,
USA, March 1999. IEEE Computer and Communication Societies.

J. H. Cheon, N. su Jho, M.-H. Kim, and E. S. Yoo. Skipping, cascade, and com-
bined chain schemes for broadcast encryption. Cryptology ePrint Archive, Report
2005/136. Preliminary version in Eurocrypt 2005, 2005.

A. Datta, A. Derek, J. Mitchell, and B. Warinschi. Computationally sound compo-
sitional logic for key exchange protocols. 18th IEEE Computer Security Foun-
dations Workshop (CSFW '0@)ages 321-334. IEEE Computer Society, 2006.

S. E. Deering. Multicast Routing in Internetworks and Extended LANSPrbt
ceedings of ACM SIGCOMM ’'8@ages 55-64. ACM Press, August 1988.

D. Dolev and A. C. Yao. On the security of public-key protocdEBEE Transac-
tions on Information Theory29(2):198-208, March 1983.

L. R. Dondeti, S. Mukherjee, and A. Samal. Scalable secure one-to-many group
communication using dual encryptioomputer Communicatior23(17):1681—
1701, November 1999.

C. Dwork, M. Naor, O. Reingold, and L. Stockmeyer. Magic functialmirnal of
the ACM 50(6):852-921, 2003.

171

[21] J. Fan, P. Judge, and M. H. Ammar. Hysor: Group key management with collusion-
scalability tradeoffs using a hybrid structuring of receiversPtaceedings of the
IEEE International Conference on Computer Communications Netw2@a2.

[22] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.
In 25th Annual Symposium on Foundations of Computer Scigacges 464—479,
Singer Island, Florida, Oct. 24-26, 1984. IEEE Computer Society Press.

[23] S. Goldwasser and S. Micali. Probabilistic encryptidournal of Computer and
System Science®3:270-299, 1984.

[24] M. T. Goodrich, J. Z. Sun, and R. Tamassia. Efficient tree-based revocation in
groups of low-state devices. In M. Franklin, editéwlvances in Cryptology —
CRYPTO 2004volume 3152 ol ecture Notes in Computer Sciengages 511—
527, Santa Barbara, CA, USA, Aug. 15-19, 2004. Springer-Verlag, Berlin, Ger-
many.

[25] D. Halevy and A. Shamir. The Isd broadcast encryption scheme. In M. Yung,
editor,Advances in Cryptology - CRYPTO 20@2lume 2442 ot ecture Notes in
Computer Sciengpages 47-60, Santa Barbara, CA, USA, August 2002. Springer-
Verlag, Berlin, Germany.

[26] J. Y. Hwang, D. H. Lee, and J. Lim. Generic transformation for scalable broad-
cast encryption schemes. In V. Shoup, edifatyances in Cryptology - CRYPTO
2005 volume 3621 ol ecture notes in Computer Scienpages 276—-292, Santa
Barbara, CA, USA, August 2005. Springer Verlag, Berlin, Germany.

[27] E. Kiltz, A. Mityagin, S. Panjwani, and B. Raghavan. Append-only signatures. In
A. de Santis, editorAutomata, Languages and Programming, 32nd International
Colloquium, ICALP Proceedingsolume 3580 of_ecture Notes in Computer Sci-
ence pages 434-445, Lisboa, Portugal, July 2005. Springer-Verlag, Berlin, Ger-
many.

[28] R. Merkle and M. Hellman. On the security of multiple encrypti@ommunica-
tions of the ACM24(7):465—-467, July 1981.

[29] D. Micciancio and S. Panjwani. Optimal communication complexity of generic
multicast key distribution. In C. Cachin and J. Camenisch, editddsances in
Cryptology — EUROCRYPT 200%olume 3027 ofLecture Notes in Computer
Sciencepages 153-170, Interlaken, Switzerland, May 2—6, 2004. Springer-Verlag,
Berlin, Germany.

[30] D. Micciancio and S. Panjwani. Adaptive security of symbolic encryption. In
J. Kilian, editor, Theory of Cryptography Conference, TCC 2p06lume 3378
of Lecture Notes in Computer Sciengeges 169-187, Cambridge, MA, USA,
February 2005. Springer-Verlag, Berlin, Germany.

172

[31] D. Micciancio and S. Panjwani. Corrupting one vs. corrupting many: The case of
broadcast and multicast encryption. Antomata, Languages, and Programming:
33rd International Colloquium, ICALP 2006, Proceedings, Partviblume 4052
of Lecture Notes in Computer ScienS8pringer-Verlag, July 2006.

[32] D. Micciancio and S. Panjwani. Optimal communication complexity of generic
multicast key distributionlEEE/ACM Transactions in Networking008. To ap-
pear.

[33] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence
of active adversaries. In M. Naor, edit@iCC 2004: 1st Theory of Cryptography
Conferencevolume 2951 ot ecture Notes in Computer Scienpages 133-151,
Cambridge, MA, USA, Feb. 19-21, 2004. Springer-Verlag, Berlin, Germany.

[34] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing schemes for stateless
receivers. In J. Kilian, editorAdvances in Cryptology — CRYPTO 20@blume
2139 of Lecture Notes in Computer Sciengeges 41-62, Santa Barbara, CA,
USA, Aug. 19-23, 2001. Springer-Verlag, Berlin, Germany.

[35] M. Naor and B. Pinkas. Efficient Trace and Revoke SchemdsCI®0: Proceed-
ings of the 4th International Conference on Financial Cryptograpgiages 1-20.
Springer-Verlag, London, UK, 2000.

[36] J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In M. Yung, editddvances in Cryptol-
ogy — CRYPTO 20Q20lume 2442 olecture Notes in Computer Sciengages
111-126, Santa Barbara, CA, USA, Aug. 18-22, 2002. Springer-Verlag, Berlin,
Germany.

[37] S. Panjwani. Tackling adaptive corruptions in multicast encryption protocols. In
S. Vadhan, editorTheory of Cryptography Conference, TCC 200@lume 4392
of Lecture Notes in Computer Scienpages 21-40. Springer-Verlag, Berlin, Ger-
many, February 2007.

[38] A. Perrig, D. Song, and D. Tygar. ELK, a new protocol for efficient large-group
key distribution. INEEE Symposium on Security and Priva®©akland, CA, USA,
May 2001. IEEE Computer Society Press.

[39] B. Pinkas. Efficient state updates for key management. In T. Sander, &#tor,
curity and Privacy in Digital Rights Management: ACM CCS-8 Workshop DRM
2001, Philadelphia, PA, USApringer-Verlag, Berlin, Germany, November 2001.

[40] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In J. Feigenbaum, editbrances in Cryptology -
CRYPTO '91 volume 576 ofLecture Notes in Computer Scien&anta Barbara,
CA, USA, August 1991. Springer-Verlag.

173

[41] B. Raghavan, S. Panjwani, and A. Mityagin. Analysis of the spv secure routing
protocol: weaknesses and lessodsCM SIGCOMM Computer Communication
Review 37(2):29-38, 2007.

[42] A. Shamir. How to share a secrg&ommunications of the Association for Com-
puting Machinery22(11):612—-613, Nov. 1979.

[43] J. Snoeyink, S. Suri, and G. Varghese. A lower bound for multicast key distribu-
tion. Computer Network47(3):429-441, 2005).

[44] R. Tamassia and N. Triandopoulos. Computational bounds on hierarchical data
processing with applications to information securityAumomata, Languages and
Programming, 32nd International Colloquium, ICALP Proceedinggume 3580
of Lecture Notes in Computer Sciengmges 153-165. Springer-Verlag, Berlin,
Germany, July 2005.

[45] D. M. Wallner, E. J. Harder, and R. C. Agee. Key management for multicast:
Issues and architectures. Internet Draft, Sept. 1998.

[46] C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using key
graphs.|IEEE/ACM Transactions on Networking(1):16—30, Feb. 2000.

[47] R. Yang, X. Li, X. Zhang, and S. S. Lam. Reliable group rekeying: A performance
analysis. InProceedings of ACM SIGCOMM ’'Qpages 27-38. ACM Press, Au-
gust 2001.

[48] Y. R. Yang and S. S. Lam. A secure group key management protocol communica-
tion lower bound. Technical Report TR-00-24, 2000.

[49] A. C. Yao. Theory and applications of trapdoor functions28nd Annual Sympo-
sium on Foundations of Computer Sciefjgages 80-91, Chicago, lllinois, Nov. 3—
5, 1982. IEEE Computer Society Press.

